code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowerCamelCase__ = StableDiffusionInstructPixaPixPipeline lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} lowerCamelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCamelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE_ ( self :int ): torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=8 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) __SCREAMING_SNAKE_CASE : Dict = PNDMScheduler(skip_prk_steps=_lowerCamelCase ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : str = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) __SCREAMING_SNAKE_CASE : Dict = CLIPTextModel(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __SCREAMING_SNAKE_CASE : List[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] , _lowerCamelCase :List[Any] , _lowerCamelCase :Dict=0 ): __SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __SCREAMING_SNAKE_CASE : int = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('''RGB''' ) if str(_lowerCamelCase ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : int = torch.manual_seed(_lowerCamelCase ) else: __SCREAMING_SNAKE_CASE : Optional[int] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''image_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE_ ( self :Tuple ): __SCREAMING_SNAKE_CASE : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionInstructPixaPixPipeline(**_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inputs(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe(**_lowerCamelCase ).images __SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __SCREAMING_SNAKE_CASE : Tuple = np.array([0.7_5_2_6, 0.3_7_5_0, 0.4_5_4_7, 0.6_1_1_7, 0.5_8_6_6, 0.5_0_1_6, 0.4_3_2_7, 0.5_6_4_2, 0.4_8_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): __SCREAMING_SNAKE_CASE : Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components() __SCREAMING_SNAKE_CASE : List[str] = StableDiffusionInstructPixaPixPipeline(**_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = '''french fries''' __SCREAMING_SNAKE_CASE : List[str] = sd_pipe(**_lowerCamelCase , negative_prompt=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Any = output.images __SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __SCREAMING_SNAKE_CASE : Dict = np.array([0.7_5_1_1, 0.3_6_4_2, 0.4_5_5_3, 0.6_2_3_6, 0.5_7_9_7, 0.5_0_1_3, 0.4_3_4_3, 0.5_6_1_1, 0.4_8_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE_ ( self :str ): __SCREAMING_SNAKE_CASE : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : str = StableDiffusionInstructPixaPixPipeline(**_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = self.get_dummy_inputs(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = [inputs['''prompt''']] * 2 __SCREAMING_SNAKE_CASE : int = np.array(inputs['''image'''] ).astype(np.floataa ) / 2_5_5.0 __SCREAMING_SNAKE_CASE : List[str] = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ).to(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = image / 2 + 0.5 __SCREAMING_SNAKE_CASE : Any = image.permute(0 , 3 , 1 , 2 ) __SCREAMING_SNAKE_CASE : int = image.repeat(2 , 1 , 1 , 1 ) __SCREAMING_SNAKE_CASE : int = sd_pipe(**_lowerCamelCase ).images __SCREAMING_SNAKE_CASE : Any = image[-1, -3:, -3:, -1] assert image.shape == (2, 3_2, 3_2, 3) __SCREAMING_SNAKE_CASE : Optional[Any] = np.array([0.5_8_1_2, 0.5_7_4_8, 0.5_2_2_2, 0.5_9_0_8, 0.5_6_9_5, 0.7_1_7_4, 0.6_8_0_4, 0.5_5_2_3, 0.5_5_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE_ ( self :str ): __SCREAMING_SNAKE_CASE : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Optional[Any] = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionInstructPixaPixPipeline(**_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Any = sd_pipe(**_lowerCamelCase ).images __SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : Optional[Any] = [round(_lowerCamelCase , 4 ) for x in image_slice.flatten().tolist()] print(''','''.join([str(_lowerCamelCase ) for x in slice] ) ) assert image.shape == (1, 3_2, 3_2, 3) __SCREAMING_SNAKE_CASE : Dict = np.array([0.7_4_1_7, 0.3_8_4_2, 0.4_7_3_2, 0.5_7_7_6, 0.5_8_9_1, 0.5_1_3_9, 0.4_0_5_2, 0.5_6_7_3, 0.4_9_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE_ ( self :Dict ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def SCREAMING_SNAKE_CASE_ ( self :List[str] ): __SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Tuple = StableDiffusionInstructPixaPixPipeline(**_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = VaeImageProcessor(do_resize=_lowerCamelCase , do_normalize=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = pipe(**self.get_dummy_inputs_by_type(_lowerCamelCase , input_image_type='''pt''' ) )[0] __SCREAMING_SNAKE_CASE : Optional[int] = components['''vae'''] __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs_by_type(_lowerCamelCase , input_image_type='''pt''' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): __SCREAMING_SNAKE_CASE : Union[str, Any] = vae.encode(inputs[image_param] ).latent_dist.mode() __SCREAMING_SNAKE_CASE : Optional[int] = pipe(**_lowerCamelCase )[0] __SCREAMING_SNAKE_CASE : List[Any] = np.abs(out - out_latents_inputs ).max() self.assertLess(_lowerCamelCase , 1e-4 , '''passing latents as image input generate different result from passing image''' ) @slow @require_torch_gpu class snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self :Any , _lowerCamelCase :Tuple=0 ): __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = load_image( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg''' ) __SCREAMING_SNAKE_CASE : Tuple = { '''prompt''': '''turn him into a cyborg''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''image_guidance_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): __SCREAMING_SNAKE_CASE : int = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_inputs() __SCREAMING_SNAKE_CASE : List[str] = pipe(**_lowerCamelCase ).images __SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) __SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.5_9_0_2, 0.6_0_1_5, 0.6_0_2_7, 0.5_9_8_3, 0.6_0_9_2, 0.6_0_6_1, 0.5_7_6_5, 0.5_7_8_5, 0.5_5_5_5] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): __SCREAMING_SNAKE_CASE : int = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : str = self.get_inputs() __SCREAMING_SNAKE_CASE : Dict = pipe(**_lowerCamelCase ).images __SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) __SCREAMING_SNAKE_CASE : Dict = np.array([0.6_5_7_8, 0.6_8_1_7, 0.6_9_7_2, 0.6_7_6_1, 0.6_8_5_6, 0.6_9_1_6, 0.6_4_2_8, 0.6_5_1_6, 0.6_3_0_1] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): __SCREAMING_SNAKE_CASE : int = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : List[str] = self.get_inputs() __SCREAMING_SNAKE_CASE : Dict = pipe(**_lowerCamelCase ).images __SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) __SCREAMING_SNAKE_CASE : str = np.array([0.3_8_2_8, 0.3_8_3_4, 0.3_8_1_8, 0.3_7_9_2, 0.3_8_6_5, 0.3_7_5_2, 0.3_7_9_2, 0.3_8_4_7, 0.3_7_5_3] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE_ ( self :Tuple ): __SCREAMING_SNAKE_CASE : str = 0 def callback_fn(_lowerCamelCase :int , _lowerCamelCase :int , _lowerCamelCase :torch.FloatTensor ) -> None: __SCREAMING_SNAKE_CASE : Optional[Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: __SCREAMING_SNAKE_CASE : List[Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) __SCREAMING_SNAKE_CASE : str = latents[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : Optional[int] = np.array([-0.2_4_6_3, -0.4_6_4_4, -0.9_7_5_6, 1.5_1_7_6, 1.4_4_1_4, 0.7_8_6_6, 0.9_8_9_7, 0.8_5_2_1, 0.7_9_8_3] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: __SCREAMING_SNAKE_CASE : int = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) __SCREAMING_SNAKE_CASE : Optional[Any] = latents[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : Tuple = np.array([-0.2_6_4_4, -0.4_6_2_6, -0.9_6_5_3, 1.5_1_7_6, 1.4_5_5_1, 0.7_6_8_6, 0.9_8_0_5, 0.8_4_5_2, 0.8_1_1_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 __SCREAMING_SNAKE_CASE : int = False __SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_lowerCamelCase , torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE : Tuple = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : List[Any] = self.get_inputs() pipe(**_lowerCamelCase , callback=_lowerCamelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def SCREAMING_SNAKE_CASE_ ( self :Any ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __SCREAMING_SNAKE_CASE : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_lowerCamelCase , torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE : List[str] = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __SCREAMING_SNAKE_CASE : List[str] = self.get_inputs() __SCREAMING_SNAKE_CASE : List[Any] = pipe(**_lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 1_0**9 def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): __SCREAMING_SNAKE_CASE : List[Any] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 __SCREAMING_SNAKE_CASE : Optional[int] = inputs['''image'''].resize((5_0_4, 5_0_4) ) __SCREAMING_SNAKE_CASE : Tuple = '''timbrooks/instruct-pix2pix''' __SCREAMING_SNAKE_CASE : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( _lowerCamelCase , safety_checker=_lowerCamelCase , ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Optional[Any] = pipe(**_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = output.images[0] __SCREAMING_SNAKE_CASE : str = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 5_0_4, 3) __SCREAMING_SNAKE_CASE : List[str] = np.array([0.2_7_2_6, 0.2_5_2_9, 0.2_6_6_4, 0.2_6_5_5, 0.2_6_4_1, 0.2_6_4_2, 0.2_5_9_1, 0.2_6_4_9, 0.2_5_9_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
674
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCAmelCase_ ( lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Optional[Any]=True , lowercase_ : Any="pt" ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Union[str, Any] = {'''add_prefix_space''': True} if isinstance(lowercase_ , lowercase_ ) and not line.startswith(''' ''' ) else {} __SCREAMING_SNAKE_CASE : Optional[int] = padding_side return tokenizer( [line] , max_length=lowercase_ , padding='''max_length''' if pad_to_max_length else None , truncation=lowercase_ , return_tensors=lowercase_ , add_special_tokens=lowercase_ , **lowercase_ , ) def lowerCAmelCase_ ( lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : List[Any]=None , ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Dict = input_ids.ne(lowercase_ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class snake_case ( __UpperCAmelCase ): def __init__( self :Optional[Any] , _lowerCamelCase :Dict , _lowerCamelCase :Any , _lowerCamelCase :Optional[Any] , _lowerCamelCase :Tuple , _lowerCamelCase :Any="train" , _lowerCamelCase :str=None , _lowerCamelCase :Optional[Any]=None , _lowerCamelCase :List[Any]=None , _lowerCamelCase :Tuple="" , ): super().__init__() __SCREAMING_SNAKE_CASE : Dict = Path(_lowerCamelCase ).joinpath(type_path + '''.source''' ) __SCREAMING_SNAKE_CASE : Any = Path(_lowerCamelCase ).joinpath(type_path + '''.target''' ) __SCREAMING_SNAKE_CASE : Any = self.get_char_lens(self.src_file ) __SCREAMING_SNAKE_CASE : List[str] = max_source_length __SCREAMING_SNAKE_CASE : Dict = max_target_length assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}''' __SCREAMING_SNAKE_CASE : Dict = tokenizer __SCREAMING_SNAKE_CASE : Union[str, Any] = prefix if n_obs is not None: __SCREAMING_SNAKE_CASE : Any = self.src_lens[:n_obs] __SCREAMING_SNAKE_CASE : List[str] = src_lang __SCREAMING_SNAKE_CASE : str = tgt_lang def __len__( self :int ): return len(self.src_lens ) def __getitem__( self :Optional[Any] , _lowerCamelCase :Any ): __SCREAMING_SNAKE_CASE : Optional[Any] = index + 1 # linecache starts at 1 __SCREAMING_SNAKE_CASE : Any = self.prefix + linecache.getline(str(self.src_file ) , _lowerCamelCase ).rstrip('''\n''' ) __SCREAMING_SNAKE_CASE : Dict = linecache.getline(str(self.tgt_file ) , _lowerCamelCase ).rstrip('''\n''' ) assert source_line, f'''empty source line for index {index}''' assert tgt_line, f'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , _lowerCamelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __SCREAMING_SNAKE_CASE : Dict = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _lowerCamelCase ) else self.tokenizer ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer.generator if isinstance(self.tokenizer , _lowerCamelCase ) else self.tokenizer __SCREAMING_SNAKE_CASE : Dict = encode_line(_lowerCamelCase , _lowerCamelCase , self.max_source_length , '''right''' ) __SCREAMING_SNAKE_CASE : Dict = encode_line(_lowerCamelCase , _lowerCamelCase , self.max_target_length , '''right''' ) __SCREAMING_SNAKE_CASE : Any = source_inputs['''input_ids'''].squeeze() __SCREAMING_SNAKE_CASE : Any = target_inputs['''input_ids'''].squeeze() __SCREAMING_SNAKE_CASE : Dict = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def SCREAMING_SNAKE_CASE_ ( _lowerCamelCase :Any ): return [len(_lowerCamelCase ) for x in Path(_lowerCamelCase ).open().readlines()] def SCREAMING_SNAKE_CASE_ ( self :List[str] , _lowerCamelCase :List[str] ): __SCREAMING_SNAKE_CASE : int = torch.stack([x['''input_ids'''] for x in batch] ) __SCREAMING_SNAKE_CASE : str = torch.stack([x['''attention_mask'''] for x in batch] ) __SCREAMING_SNAKE_CASE : int = torch.stack([x['''decoder_input_ids'''] for x in batch] ) __SCREAMING_SNAKE_CASE : str = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _lowerCamelCase ) else self.tokenizer.pad_token_id ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _lowerCamelCase ) else self.tokenizer.pad_token_id ) __SCREAMING_SNAKE_CASE : List[str] = trim_batch(_lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = trim_batch(_lowerCamelCase , _lowerCamelCase , attention_mask=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch _lowerCamelCase = getLogger(__name__) def lowerCAmelCase_ ( lowercase_ : List[List] ): '''simple docstring''' return list(itertools.chain.from_iterable(lowercase_ ) ) def lowerCAmelCase_ ( lowercase_ : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Any = get_git_info() save_json(lowercase_ , os.path.join(lowercase_ , '''git_log.json''' ) ) def lowerCAmelCase_ ( lowercase_ : Any , lowercase_ : Optional[int] , lowercase_ : str=4 , **lowercase_ : List[str] ): '''simple docstring''' with open(lowercase_ , '''w''' ) as f: json.dump(lowercase_ , lowercase_ , indent=lowercase_ , **lowercase_ ) def lowerCAmelCase_ ( lowercase_ : Union[str, Any] ): '''simple docstring''' with open(lowercase_ ) as f: return json.load(lowercase_ ) def lowerCAmelCase_ ( ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Any = git.Repo(search_parent_directories=lowercase_ ) __SCREAMING_SNAKE_CASE : List[str] = { '''repo_id''': str(lowercase_ ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def lowerCAmelCase_ ( lowercase_ : Callable , lowercase_ : Iterable ): '''simple docstring''' return list(map(lowercase_ , lowercase_ ) ) def lowerCAmelCase_ ( lowercase_ : Any , lowercase_ : Any ): '''simple docstring''' with open(lowercase_ , '''wb''' ) as f: return pickle.dump(lowercase_ , lowercase_ ) def lowerCAmelCase_ ( lowercase_ : Any ): '''simple docstring''' def remove_articles(lowercase_ : Dict ): return re.sub(r'''\b(a|an|the)\b''' , ''' ''' , lowercase_ ) def white_space_fix(lowercase_ : Optional[int] ): return " ".join(text.split() ) def remove_punc(lowercase_ : Any ): __SCREAMING_SNAKE_CASE : Optional[int] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowercase_ : int ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowercase_ ) ) ) ) def lowerCAmelCase_ ( lowercase_ : Optional[int] , lowercase_ : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Any = normalize_answer(lowercase_ ).split() __SCREAMING_SNAKE_CASE : Any = normalize_answer(lowercase_ ).split() __SCREAMING_SNAKE_CASE : Tuple = Counter(lowercase_ ) & Counter(lowercase_ ) __SCREAMING_SNAKE_CASE : Tuple = sum(common.values() ) if num_same == 0: return 0 __SCREAMING_SNAKE_CASE : Any = 1.0 * num_same / len(lowercase_ ) __SCREAMING_SNAKE_CASE : List[str] = 1.0 * num_same / len(lowercase_ ) __SCREAMING_SNAKE_CASE : Optional[int] = (2 * precision * recall) / (precision + recall) return fa def lowerCAmelCase_ ( lowercase_ : str , lowercase_ : Union[str, Any] ): '''simple docstring''' return normalize_answer(lowercase_ ) == normalize_answer(lowercase_ ) def lowerCAmelCase_ ( lowercase_ : List[str] , lowercase_ : List[str] ): '''simple docstring''' assert len(lowercase_ ) == len(lowercase_ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for hypo, pred in zip(lowercase_ , lowercase_ ): em += exact_match_score(lowercase_ , lowercase_ ) if len(lowercase_ ) > 0: em /= len(lowercase_ ) return {"em": em} def lowerCAmelCase_ ( lowercase_ : str ): '''simple docstring''' return model_prefix.startswith('''rag''' ) def lowerCAmelCase_ ( lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Optional[int] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __SCREAMING_SNAKE_CASE : Any = '''dropout_rate''' for p in extra_params: if getattr(lowercase_ , lowercase_ , lowercase_ ): if not hasattr(lowercase_ , lowercase_ ) and not hasattr(lowercase_ , equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(lowercase_ ) ) delattr(lowercase_ , lowercase_ ) continue __SCREAMING_SNAKE_CASE : Optional[int] = p if hasattr(lowercase_ , lowercase_ ) else equivalent_param[p] setattr(lowercase_ , lowercase_ , getattr(lowercase_ , lowercase_ ) ) delattr(lowercase_ , lowercase_ ) return hparams, config
674
1
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): __snake_case : Tuple = inspect.getfile(accelerate.test_utils ) __snake_case : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) __snake_case : str = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def lowercase_ ( self ): __snake_case : Tuple = F""" {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} """.split() __snake_case : List[Any] = [sys.executable] + distributed_args execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() )
679
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ShapEPipeline __UpperCAmelCase = ["prompt"] __UpperCAmelCase = ["prompt"] __UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] __UpperCAmelCase = False @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return self.time_input_dim * 4 @property def lowercase_ ( self ): return 8 @property def lowercase_ ( self ): __snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(_UpperCAmelCase ) @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Any = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case : Dict = PriorTransformer(**_UpperCAmelCase ) return model @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Tuple = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case : Union[str, Any] = ShapERenderer(**_UpperCAmelCase ) return model def lowercase_ ( self ): __snake_case : Tuple = self.dummy_prior __snake_case : Dict = self.dummy_text_encoder __snake_case : Optional[int] = self.dummy_tokenizer __snake_case : str = self.dummy_renderer __snake_case : Tuple = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) __snake_case : Optional[int] = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): if str(_UpperCAmelCase ).startswith('mps' ): __snake_case : Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) else: __snake_case : int = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) __snake_case : Tuple = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def lowercase_ ( self ): __snake_case : Optional[int] = 'cpu' __snake_case : Tuple = self.get_dummy_components() __snake_case : Tuple = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Any = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Any = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) __snake_case : Union[str, Any] = output.images[0] __snake_case : Tuple = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case : Dict = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase_ ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase_ ( self ): __snake_case : List[str] = torch_device == 'cpu' __snake_case : int = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Dict = self.get_dummy_components() __snake_case : Any = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Tuple = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : int = 1 __snake_case : Optional[int] = 2 __snake_case : List[Any] = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: __snake_case : Union[str, Any] = batch_size * [inputs[key]] __snake_case : Any = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): __snake_case : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case : Any = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case : List[str] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Optional[Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) __snake_case : Optional[Any] = pipe( 'a shark' , generator=_UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
679
1
'''simple docstring''' class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' pass class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' pass class UpperCAmelCase_ : '''simple docstring''' def __init__( self ): """simple docstring""" _lowerCAmelCase = [ [], [], [], ] def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" try: if len(self.queues[priority] ) >= 100: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(_lowercase ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def _lowercase ( self ): """simple docstring""" for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self ): """simple docstring""" return "\n".join(F'Priority {i}: {q}' for i, q in enumerate(self.queues ) ) class UpperCAmelCase_ : '''simple docstring''' def __init__( self ): """simple docstring""" _lowerCAmelCase = [] def _lowercase ( self , _lowercase ): """simple docstring""" if len(self.queue ) == 100: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(_lowercase ) def _lowercase ( self ): """simple docstring""" if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: _lowerCAmelCase = min(self.queue ) self.queue.remove(_lowercase ) return data def __str__( self ): """simple docstring""" return str(self.queue ) def A (): _lowerCAmelCase = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(__lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(__lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def A (): _lowerCAmelCase = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(__lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(__lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
5
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
5
1
import os from datetime import datetime as dt from github import Github a_ : Optional[Any] = [ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def _SCREAMING_SNAKE_CASE ( ): __magic_name__ = Github(os.environ['''GITHUB_TOKEN'''] ) __magic_name__ = g.get_repo('''huggingface/diffusers''' ) __magic_name__ = repo.get_issues(state='''open''' ) for issue in open_issues: __magic_name__ = sorted(issue.get_comments() , key=lambda snake_case_ : i.created_at , reverse=snake_case_ ) __magic_name__ = comments[0] if len(snake_case_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
678
def _SCREAMING_SNAKE_CASE ( snake_case_ : str ): return " ".join( ''''''.join(word[::-1] ) if len(snake_case_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
678
1
'''simple docstring''' import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel a = False a = True a = False if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') a = parser.parse_args() a = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } a = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } a = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: a = reader.read() a = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): a = UNetaDModel(**config) else: a = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel a = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) a = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: a = config[key] del config[key] a = [k.replace('UNetRes', '') for k in config['down_block_types']] a = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: a = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) a = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue a = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: a = param_value a = True if not has_changed: a = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
350
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """dpr""" def __init__( self , lowercase=30522 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=0 , lowercase="absolute" , lowercase = 0 , **lowercase , ): super().__init__(pad_token_id=lowercase , **lowercase ) _lowerCamelCase : int = vocab_size _lowerCamelCase : Optional[int] = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : int = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : Tuple = attention_probs_dropout_prob _lowerCamelCase : Union[str, Any] = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : int = initializer_range _lowerCamelCase : Optional[int] = layer_norm_eps _lowerCamelCase : Dict = projection_dim _lowerCamelCase : int = position_embedding_type
630
0
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase = 3 UpperCamelCase = 250 UpperCamelCase = ids_tensor((batch_size, length) , SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.ones((batch_size, length) , device=SCREAMING_SNAKE_CASE , dtype=torch.float ) / length return input_ids, scores def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase , UpperCamelCase = self._get_tensors(5 ) UpperCamelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = MaxLengthCriteria(max_length=10 ) UpperCamelCase , UpperCamelCase = self._get_tensors(5 ) self.assertFalse(criteria(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCamelCase , UpperCamelCase = self._get_tensors(5 ) self.assertFalse(criteria(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) UpperCamelCase , UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) UpperCamelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" UpperCamelCase , UpperCamelCase = self._get_tensors(5 ) UpperCamelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) UpperCamelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(SCREAMING_SNAKE_CASE ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCamelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 1 )
414
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline __a : Optional[int] = logging.get_logger(__name__) @add_end_docstrings(snake_case__ ) class __UpperCAmelCase ( snake_case__ ): """simple docstring""" def __init__( self , **SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return super().__call__(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase = {} if "candidate_labels" in kwargs: UpperCamelCase = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: UpperCamelCase = kwargs["hypothesis_template"] return preprocess_params, {}, {} def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="This is a sound of {}." ) -> Optional[int]: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if audio.startswith("http://" ) or audio.startswith("https://" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png UpperCamelCase = requests.get(SCREAMING_SNAKE_CASE ).content else: with open(SCREAMING_SNAKE_CASE , "rb" ) as f: UpperCamelCase = f.read() if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase = ffmpeg_read(SCREAMING_SNAKE_CASE , self.feature_extractor.sampling_rate ) if not isinstance(SCREAMING_SNAKE_CASE , np.ndarray ): raise ValueError("We expect a numpy ndarray as input" ) if len(audio.shape ) != 1: raise ValueError("We expect a single channel audio input for ZeroShotAudioClassificationPipeline" ) UpperCamelCase = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="pt" ) UpperCamelCase = candidate_labels UpperCamelCase = [hypothesis_template.format(SCREAMING_SNAKE_CASE ) for x in candidate_labels] UpperCamelCase = self.tokenizer(SCREAMING_SNAKE_CASE , return_tensors=self.framework , padding=SCREAMING_SNAKE_CASE ) UpperCamelCase = [text_inputs] return inputs def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase = model_inputs.pop("candidate_labels" ) UpperCamelCase = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , SCREAMING_SNAKE_CASE ): UpperCamelCase = text_inputs[0] else: # Batching case. UpperCamelCase = text_inputs[0][0] UpperCamelCase = self.model(**SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) UpperCamelCase = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_audio, } return model_outputs def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" UpperCamelCase = model_outputs.pop("candidate_labels" ) UpperCamelCase = model_outputs["logits"][0] if self.framework == "pt": UpperCamelCase = logits.softmax(dim=0 ) UpperCamelCase = probs.tolist() else: raise ValueError("`tf` framework not supported." ) UpperCamelCase = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , key=lambda SCREAMING_SNAKE_CASE : -x[0] ) ] return result
414
1
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) class __snake_case ( lowerCAmelCase__ ): def __init__( self ,*a_ ,**a_ ): """simple docstring""" warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' ,_A ,) super().__init__(*_A ,**_A )
193
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowercase_ = """src/diffusers""" lowercase_ = """.""" # This is to make sure the diffusers module imported is the one in the repo. lowercase_ = importlib.util.spec_from_file_location( """diffusers""", os.path.join(DIFFUSERS_PATH, """__init__.py"""), submodule_search_locations=[DIFFUSERS_PATH], ) lowercase_ = spec.loader.load_module() def a__ ( snake_case , snake_case ): """simple docstring""" return line.startswith(snake_case ) or len(snake_case ) <= 1 or re.search(R'''^\s*\)(\s*->.*:|:)\s*$''' , snake_case ) is not None def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = object_name.split('''.''' ) __SCREAMING_SNAKE_CASE : str = 0 # First let's find the module where our object lives. __SCREAMING_SNAKE_CASE : Any = parts[i] while i < len(snake_case ) and not os.path.isfile(os.path.join(snake_case , F'''{module}.py''' ) ): i += 1 if i < len(snake_case ): __SCREAMING_SNAKE_CASE : str = os.path.join(snake_case , parts[i] ) if i >= len(snake_case ): raise ValueError(F'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''' ) with open(os.path.join(snake_case , F'''{module}.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __SCREAMING_SNAKE_CASE : Dict = f.readlines() # Now let's find the class / func in the code! __SCREAMING_SNAKE_CASE : Union[str, Any] = '''''' __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for name in parts[i + 1 :]: while ( line_index < len(snake_case ) and re.search(RF'''^{indent}(class|def)\s+{name}(\(|\:)''' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(snake_case ): raise ValueError(F''' {object_name} does not match any function or class in {module}.''' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). __SCREAMING_SNAKE_CASE : List[Any] = line_index while line_index < len(snake_case ) and _should_continue(lines[line_index] , snake_case ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __SCREAMING_SNAKE_CASE : Dict = lines[start_index:line_index] return "".join(snake_case ) lowercase_ = re.compile(R"""^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)""") lowercase_ = re.compile(R"""^\s*(\S+)->(\S+)(\s+.*|$)""") lowercase_ = re.compile(R"""<FILL\s+[^>]*>""") def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = code.split('''\n''' ) __SCREAMING_SNAKE_CASE : Dict = 0 while idx < len(snake_case ) and len(lines[idx] ) == 0: idx += 1 if idx < len(snake_case ): return re.search(R'''^(\s*)\S''' , lines[idx] ).groups()[0] return "" def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = len(get_indent(snake_case ) ) > 0 if has_indent: __SCREAMING_SNAKE_CASE : List[Any] = F'''class Bla:\n{code}''' __SCREAMING_SNAKE_CASE : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = black.format_str(snake_case , mode=snake_case ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = style_docstrings_in_code(snake_case ) return result[len('''class Bla:\n''' ) :] if has_indent else result def a__ ( snake_case , snake_case=False ): """simple docstring""" with open(snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __SCREAMING_SNAKE_CASE : List[str] = f.readlines() __SCREAMING_SNAKE_CASE : Optional[Any] = [] __SCREAMING_SNAKE_CASE : int = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(snake_case ): __SCREAMING_SNAKE_CASE : Dict = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = search.groups() __SCREAMING_SNAKE_CASE : int = find_code_in_diffusers(snake_case ) __SCREAMING_SNAKE_CASE : str = get_indent(snake_case ) __SCREAMING_SNAKE_CASE : Any = line_index + 1 if indent == theoretical_indent else line_index + 2 __SCREAMING_SNAKE_CASE : Dict = theoretical_indent __SCREAMING_SNAKE_CASE : Optional[int] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. __SCREAMING_SNAKE_CASE : List[Any] = True while line_index < len(snake_case ) and should_continue: line_index += 1 if line_index >= len(snake_case ): break __SCREAMING_SNAKE_CASE : Any = lines[line_index] __SCREAMING_SNAKE_CASE : Optional[Any] = _should_continue(snake_case , snake_case ) and re.search(F'''^{indent}# End copy''' , snake_case ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __SCREAMING_SNAKE_CASE : List[str] = lines[start_index:line_index] __SCREAMING_SNAKE_CASE : Dict = ''''''.join(snake_case ) # Remove any nested `Copied from` comments to avoid circular copies __SCREAMING_SNAKE_CASE : Tuple = [line for line in theoretical_code.split('''\n''' ) if _re_copy_warning.search(snake_case ) is None] __SCREAMING_SNAKE_CASE : Union[str, Any] = '''\n'''.join(snake_case ) # Before comparing, use the `replace_pattern` on the original code. if len(snake_case ) > 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = replace_pattern.replace('''with''' , '''''' ).split(''',''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = [_re_replace_pattern.search(snake_case ) for p in patterns] for pattern in patterns: if pattern is None: continue __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = pattern.groups() __SCREAMING_SNAKE_CASE : str = re.sub(snake_case , snake_case , snake_case ) if option.strip() == "all-casing": __SCREAMING_SNAKE_CASE : Optional[Any] = re.sub(obja.lower() , obja.lower() , snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = re.sub(obja.upper() , obja.upper() , snake_case ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line __SCREAMING_SNAKE_CASE : Optional[Any] = blackify(lines[start_index - 1] + theoretical_code ) __SCREAMING_SNAKE_CASE : int = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: __SCREAMING_SNAKE_CASE : Optional[int] = lines[:start_index] + [theoretical_code] + lines[line_index:] __SCREAMING_SNAKE_CASE : str = start_index + 1 if overwrite and len(snake_case ) > 0: # Warn the user a file has been modified. print(F'''Detected changes, rewriting {filename}.''' ) with open(snake_case , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(snake_case ) return diffs def a__ ( snake_case = False ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = glob.glob(os.path.join(snake_case , '''**/*.py''' ) , recursive=snake_case ) __SCREAMING_SNAKE_CASE : Tuple = [] for filename in all_files: __SCREAMING_SNAKE_CASE : int = is_copy_consistent(snake_case , snake_case ) diffs += [F'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs] if not overwrite and len(snake_case ) > 0: __SCREAMING_SNAKE_CASE : Optional[int] = '''\n'''.join(snake_case ) raise Exception( '''Found the following copy inconsistencies:\n''' + diff + '''\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") lowercase_ = parser.parse_args() check_copies(args.fix_and_overwrite)
74
0
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A_ : """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=32 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=[10, 20, 30, 40] , __UpperCAmelCase=[2, 2, 3, 2] , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=10 , __UpperCAmelCase=0.02 , __UpperCAmelCase=["stage2", "stage3", "stage4"] , __UpperCAmelCase=3 , __UpperCAmelCase=None , ) -> List[Any]: a : Optional[int] = parent a : List[Any] = batch_size a : Dict = image_size a : Dict = num_channels a : Optional[int] = num_stages a : Union[str, Any] = hidden_sizes a : Union[str, Any] = depths a : Any = is_training a : str = use_labels a : Any = intermediate_size a : int = hidden_act a : Optional[Any] = type_sequence_label_size a : Optional[int] = initializer_range a : Dict = out_features a : int = num_labels a : Union[str, Any] = scope a : Tuple = num_stages def lowercase_ ( self ) -> Any: a : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a : Dict = None if self.use_labels: a : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a : str = self.get_config() return config, pixel_values, labels def lowercase_ ( self ) -> List[str]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowercase_ ( self ) -> int: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=__UpperCAmelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=__UpperCAmelCase , loss_ignore_index=2_55 , num_labels=self.num_labels , ) def lowercase_ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: a : List[Any] = UperNetForSemanticSegmentation(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a : Any = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase_ ( self ) -> Tuple: a : Tuple = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ) : Union[str, Any] = config_and_inputs a : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowercase : List[str] = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase : Union[str, Any] = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase : Optional[Any] = False lowercase : str = False lowercase : List[str] = False lowercase : Union[str, Any] = False lowercase : Optional[int] = False lowercase : int = False def lowercase_ ( self ) -> Union[str, Any]: a : Dict = UperNetModelTester(self ) a : Any = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def lowercase_ ( self ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self ) -> Optional[Any]: return def lowercase_ ( self ) -> Optional[Any]: a , a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : List[Any] = model_class(__UpperCAmelCase ) a : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a : int = [*signature.parameters.keys()] a : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def lowercase_ ( self ) -> List[str]: a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def lowercase_ ( self ) -> List[str]: pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def lowercase_ ( self ) -> Optional[int]: pass @unittest.skip(reason='UperNet does not have a base model' ) def lowercase_ ( self ) -> Tuple: pass @unittest.skip(reason='UperNet does not have a base model' ) def lowercase_ ( self ) -> Optional[int]: pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowercase_ ( self ) -> List[str]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self ) -> List[str]: pass def lowercase_ ( self ) -> int: def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): a : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): a : Dict = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) a : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a : Tuple = self.model_tester.num_stages self.assertEqual(len(__UpperCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) a , a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : List[Any] = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a : Optional[Any] = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def lowercase_ ( self ) -> List[str]: a , a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() a : List[str] = _config_zero_init(__UpperCAmelCase ) a : List[Any] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: a : Union[str, Any] = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip(reason='UperNet does not have tied weights' ) def lowercase_ ( self ) -> Union[str, Any]: pass @slow def lowercase_ ( self ) -> str: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Tuple = UperNetForSemanticSegmentation.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def A_ ( ) -> List[Any]: a : Optional[int] = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k' , repo_type='dataset' , filename='ADE_val_00000001.jpg' ) a : Any = Image.open(UpperCAmelCase__ ).convert('RGB' ) return image @require_torch @require_vision @slow class A_ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> str: a : List[Any] = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) a : Optional[int] = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(__UpperCAmelCase ) a : Union[str, Any] = prepare_img() a : Optional[int] = processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) with torch.no_grad(): a : Union[str, Any] = model(**__UpperCAmelCase ) a : Tuple = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) a : Optional[Any] = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) def lowercase_ ( self ) -> Dict: a : List[Any] = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) a : Any = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(__UpperCAmelCase ) a : int = prepare_img() a : List[str] = processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) with torch.no_grad(): a : str = model(**__UpperCAmelCase ) a : Optional[Any] = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) a : Dict = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
509
"""simple docstring""" def A_ ( UpperCAmelCase__ , UpperCAmelCase__ ) -> float: if discount_rate < 0: raise ValueError('Discount rate cannot be negative' ) if not cash_flows: raise ValueError('Cash flows list cannot be empty' ) a : List[str] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(UpperCAmelCase__ ) ) return round(UpperCAmelCase__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
509
1
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } __magic_name__ = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): for attribute in key.split("." ): snake_case__ = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: snake_case__ = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: snake_case__ = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case__ = value elif weight_type == "weight_g": snake_case__ = value elif weight_type == "weight_v": snake_case__ = value elif weight_type == "bias": snake_case__ = value else: snake_case__ = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase ): snake_case__ = [] snake_case__ = fairseq_model.state_dict() snake_case__ = hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case__ = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == "group" , ) snake_case__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: snake_case__ = True if "*" in mapped_key: snake_case__ = name.split(__lowerCAmelCase )[0].split("." )[-2] snake_case__ = mapped_key.replace("*" , __lowerCAmelCase ) if "weight_g" in name: snake_case__ = "weight_g" elif "weight_v" in name: snake_case__ = "weight_v" elif "bias" in name and "relative_attention_bias" not in name: snake_case__ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case__ = "weight" else: snake_case__ = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): snake_case__ = full_name.split("conv_layers." )[-1] snake_case__ = name.split("." ) snake_case__ = int(items[0] ) snake_case__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) snake_case__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ): # load the pre-trained checkpoints snake_case__ = torch.load(__lowerCAmelCase ) snake_case__ = WavLMConfigOrig(checkpoint["cfg"] ) snake_case__ = WavLMOrig(__lowerCAmelCase ) model.load_state_dict(checkpoint["model"] ) model.eval() if config_path is not None: snake_case__ = WavLMConfig.from_pretrained(__lowerCAmelCase ) else: snake_case__ = WavLMConfig() snake_case__ = WavLMModel(__lowerCAmelCase ) recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase ) hf_wavlm.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') __magic_name__ = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
276
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def A_ ( self ): snake_case__ = "ZinengTang/tvlt-base" snake_case__ = tempfile.mkdtemp() def A_ ( self , **lowerCamelCase ): return TvltImageProcessor.from_pretrained(self.checkpoint , **lowerCamelCase ) def A_ ( self , **lowerCamelCase ): return TvltFeatureExtractor.from_pretrained(self.checkpoint , **lowerCamelCase ) def A_ ( self ): shutil.rmtree(self.tmpdirname ) def A_ ( self ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=lowerCamelCase , feature_extractor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) snake_case__ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , lowerCamelCase ) self.assertIsInstance(processor.image_processor , lowerCamelCase ) def A_ ( self ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=lowerCamelCase , feature_extractor=lowerCamelCase ) snake_case__ = np.ones([1_20_00] ) snake_case__ = feature_extractor(lowerCamelCase , return_tensors="np" ) snake_case__ = processor(audio=lowerCamelCase , return_tensors="np" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A_ ( self ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=lowerCamelCase , feature_extractor=lowerCamelCase ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = image_processor(lowerCamelCase , return_tensors="np" ) snake_case__ = processor(images=lowerCamelCase , return_tensors="np" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A_ ( self ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=lowerCamelCase , feature_extractor=lowerCamelCase ) snake_case__ = np.ones([1_20_00] ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = processor(audio=lowerCamelCase , images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def A_ ( self ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=lowerCamelCase , feature_extractor=lowerCamelCase ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
276
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase : int = logging.get_logger(__name__) lowercase : Any = """▁""" lowercase : Dict = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} lowercase : Any = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } lowercase : str = {"""vinai/bartpho-syllable""": 1024} class __A( __UpperCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ["""input_ids""", """attention_mask"""] def __init__( self, A, A, A="<s>", A="</s>", A="</s>", A="<s>", A="<unk>", A="<pad>", A="<mask>", A = None, **A, ): """simple docstring""" _UpperCamelCase = AddedToken(A, lstrip=A, rstrip=A ) if isinstance(A, A ) else mask_token _UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A, eos_token=A, unk_token=A, sep_token=A, cls_token=A, pad_token=A, mask_token=A, sp_model_kwargs=self.sp_model_kwargs, **A, ) _UpperCamelCase = vocab_file _UpperCamelCase = monolingual_vocab_file _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _UpperCamelCase = {} _UpperCamelCase = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(A ) not in self.fairseq_tokens_to_ids: _UpperCamelCase = cnt cnt += 1 with open(A, '''r''', encoding='''utf-8''' ) as f: for line in f.readlines(): _UpperCamelCase = line.strip().split()[0] _UpperCamelCase = len(self.fairseq_tokens_to_ids ) if str(A ) not in self.fairseq_tokens_to_ids: _UpperCamelCase = len(self.fairseq_tokens_to_ids ) _UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): """simple docstring""" _UpperCamelCase = self.__dict__.copy() _UpperCamelCase = None _UpperCamelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self, A ): """simple docstring""" _UpperCamelCase = d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): _UpperCamelCase = {} _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _UpperCamelCase ( self, A, A = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] _UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCamelCase ( self, A, A = None, A = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A, token_ids_a=A, already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def _UpperCamelCase ( self, A, A = None ): """simple docstring""" _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _UpperCamelCase ( self ): """simple docstring""" return len(self.fairseq_ids_to_tokens ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCamelCase ( self, A ): """simple docstring""" return self.sp_model.encode(A, out_type=A ) def _UpperCamelCase ( self, A ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def _UpperCamelCase ( self, A ): """simple docstring""" return self.fairseq_ids_to_tokens[index] def _UpperCamelCase ( self, A ): """simple docstring""" _UpperCamelCase = ''''''.join(A ).replace(A, ''' ''' ).strip() return out_string def _UpperCamelCase ( self, A, A = None ): """simple docstring""" if not os.path.isdir(A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCamelCase = os.path.join( A, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCamelCase = os.path.join( A, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''], ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, A ) elif not os.path.isfile(self.vocab_file ): with open(A, '''wb''' ) as fi: _UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(A ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( A ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file, A ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(A, '''w''', encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F'''{str(A )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
716
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase : str = logging.get_logger(__name__) lowercase : Tuple = {"""vocab_file""": """vocab.json"""} lowercase : int = { """vocab_file""": { """mgp-str""": """https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json""", } } lowercase : int = {"""mgp-str""": 27} class __A( __UpperCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, A, A="[GO]", A="[GO]", A="[s]", A="[GO]", **A ): """simple docstring""" super().__init__( unk_token=A, bos_token=A, eos_token=A, pad_token=A, **A, ) with open(A, encoding='''utf-8''' ) as vocab_handle: _UpperCamelCase = json.load(A ) _UpperCamelCase = {v: k for k, v in self.vocab.items()} @property def _UpperCamelCase ( self ): """simple docstring""" return len(self.vocab ) def _UpperCamelCase ( self ): """simple docstring""" return dict(self.vocab, **self.added_tokens_encoder ) def _UpperCamelCase ( self, A ): """simple docstring""" _UpperCamelCase = [] for s in text: char_tokens.extend(A ) return char_tokens def _UpperCamelCase ( self, A ): """simple docstring""" return self.vocab.get(A, self.vocab.get(self.unk_token ) ) def _UpperCamelCase ( self, A ): """simple docstring""" return self.decoder.get(A ) def _UpperCamelCase ( self, A, A = None ): """simple docstring""" if not os.path.isdir(A ): logger.error('''Vocabulary path ({}) should be a directory'''.format(A ) ) return _UpperCamelCase = os.path.join( A, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(A, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab, indent=2, sort_keys=A, ensure_ascii=A ) + '''\n''' ) return (vocab_file,)
105
0
import warnings from .generation import TFGenerationMixin class __magic_name__ ( __UpperCAmelCase): '''simple docstring''' warnings.warn( "Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will " "be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead." , __UpperCAmelCase , )
234
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) def a (_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = DPTConfig() if "large" in checkpoint_url: SCREAMING_SNAKE_CASE_ = 1_0_2_4 SCREAMING_SNAKE_CASE_ = 4_0_9_6 SCREAMING_SNAKE_CASE_ = 2_4 SCREAMING_SNAKE_CASE_ = 1_6 SCREAMING_SNAKE_CASE_ = [5, 1_1, 1_7, 2_3] SCREAMING_SNAKE_CASE_ = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4] SCREAMING_SNAKE_CASE_ = (1, 3_8_4, 3_8_4) if "ade" in checkpoint_url: SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = 1_5_0 SCREAMING_SNAKE_CASE_ = '''huggingface/label-files''' SCREAMING_SNAKE_CASE_ = '''ade20k-id2label.json''' SCREAMING_SNAKE_CASE_ = json.load(open(cached_download(hf_hub_url(_lowerCAmelCase , _lowerCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) ) SCREAMING_SNAKE_CASE_ = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = idalabel SCREAMING_SNAKE_CASE_ = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = [1, 1_5_0, 4_8_0, 4_8_0] return config, expected_shape def a (_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def a (_lowerCAmelCase ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): SCREAMING_SNAKE_CASE_ = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: SCREAMING_SNAKE_CASE_ = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: SCREAMING_SNAKE_CASE_ = name.replace('''patch_embed''' , '''patch_embeddings''' ) if "pos_embed" in name: SCREAMING_SNAKE_CASE_ = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: SCREAMING_SNAKE_CASE_ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: SCREAMING_SNAKE_CASE_ = name.replace('''proj''' , '''projection''' ) if "blocks" in name: SCREAMING_SNAKE_CASE_ = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE_ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE_ = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name: SCREAMING_SNAKE_CASE_ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: SCREAMING_SNAKE_CASE_ = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: SCREAMING_SNAKE_CASE_ = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: SCREAMING_SNAKE_CASE_ = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: SCREAMING_SNAKE_CASE_ = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: SCREAMING_SNAKE_CASE_ = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: SCREAMING_SNAKE_CASE_ = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: SCREAMING_SNAKE_CASE_ = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: SCREAMING_SNAKE_CASE_ = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 SCREAMING_SNAKE_CASE_ = name.replace(F"refinenet{layer_idx}" , F"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: SCREAMING_SNAKE_CASE_ = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: SCREAMING_SNAKE_CASE_ = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: SCREAMING_SNAKE_CASE_ = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: SCREAMING_SNAKE_CASE_ = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: SCREAMING_SNAKE_CASE_ = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: SCREAMING_SNAKE_CASE_ = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: SCREAMING_SNAKE_CASE_ = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: SCREAMING_SNAKE_CASE_ = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: SCREAMING_SNAKE_CASE_ = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: SCREAMING_SNAKE_CASE_ = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: SCREAMING_SNAKE_CASE_ = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: SCREAMING_SNAKE_CASE_ = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: SCREAMING_SNAKE_CASE_ = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: SCREAMING_SNAKE_CASE_ = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: SCREAMING_SNAKE_CASE_ = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: SCREAMING_SNAKE_CASE_ = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: SCREAMING_SNAKE_CASE_ = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: SCREAMING_SNAKE_CASE_ = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: SCREAMING_SNAKE_CASE_ = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: SCREAMING_SNAKE_CASE_ = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: SCREAMING_SNAKE_CASE_ = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) return name def a (_lowerCAmelCase , _lowerCAmelCase ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE_ = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.weight" ) SCREAMING_SNAKE_CASE_ = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE_ = in_proj_weight[: config.hidden_size, :] SCREAMING_SNAKE_CASE_ = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE_ = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE_ = in_proj_bias[-config.hidden_size :] def a (): SCREAMING_SNAKE_CASE_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE_ = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def a (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = get_dpt_config(_lowerCAmelCase ) # load original state_dict from URL SCREAMING_SNAKE_CASE_ = torch.hub.load_state_dict_from_url(_lowerCAmelCase , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(_lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): SCREAMING_SNAKE_CASE_ = state_dict.pop(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = val # read in qkv matrices read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model SCREAMING_SNAKE_CASE_ = DPTForSemanticSegmentation(_lowerCAmelCase ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() # Check outputs on an image SCREAMING_SNAKE_CASE_ = 4_8_0 if '''ade''' in checkpoint_url else 3_8_4 SCREAMING_SNAKE_CASE_ = DPTImageProcessor(size=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(_lowerCAmelCase , return_tensors='''pt''' ) # forward pass SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ).logits if '''ade''' in checkpoint_url else model(**_lowerCAmelCase ).predicted_depth # Assert logits SCREAMING_SNAKE_CASE_ = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: SCREAMING_SNAKE_CASE_ = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(_lowerCAmelCase ) assert ( torch.allclose(outputs[0, 0, :3, :3] , _lowerCAmelCase , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , _lowerCAmelCase ) ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCAmelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print('''Pushing model to hub...''' ) model.push_to_hub( repo_path_or_name=Path(_lowerCAmelCase , _lowerCAmelCase ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=_lowerCAmelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_lowerCAmelCase , _lowerCAmelCase ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=_lowerCAmelCase , ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
234
1
from random import randint from tempfile import TemporaryFile import numpy as np def __UpperCamelCase ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] ): __a : Optional[int] = 0 if start < end: __a : int = randint(lowerCAmelCase__ , lowerCAmelCase__ ) __a : Union[str, Any] = a[end] __a : str = a[pivot] __a : Any = temp __a , __a : int = _in_place_partition(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) count += _in_place_quick_sort(lowerCAmelCase__ , lowerCAmelCase__ , p - 1 ) count += _in_place_quick_sort(lowerCAmelCase__ , p + 1 , lowerCAmelCase__ ) return count def __UpperCamelCase ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any ): __a : Union[str, Any] = 0 __a : int = randint(lowerCAmelCase__ , lowerCAmelCase__ ) __a : str = a[end] __a : Optional[int] = a[pivot] __a : int = temp __a : List[str] = start - 1 for index in range(lowerCAmelCase__ , lowerCAmelCase__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value __a : Union[str, Any] = new_pivot_index + 1 __a : str = a[new_pivot_index] __a : Any = a[index] __a : Dict = temp __a : Optional[int] = a[new_pivot_index + 1] __a : List[str] = a[end] __a : Tuple = temp return new_pivot_index + 1, count lowercase__ =TemporaryFile() lowercase__ =100 # 1000 elements are to be sorted lowercase__ , lowercase__ =0, 1 # mean and standard deviation lowercase__ =np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array lowercase__ =np.load(outfile) lowercase__ =len(M) - 1 lowercase__ =_in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
326
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=__lowercase ) class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : str = field(default="language-modeling" ,metadata={"include_in_asdict_even_if_is_default": True} ) _SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({"text": Value("string" )} ) _SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({} ) _SCREAMING_SNAKE_CASE : str = "text" @property def lowerCAmelCase (self : str ): return {self.text_column: "text"}
326
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer A_ = logging.get_logger(__name__) A_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} A_ = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } A_ = { "distilbert-base-uncased": 5_12, "distilbert-base-uncased-distilled-squad": 5_12, "distilbert-base-cased": 5_12, "distilbert-base-cased-distilled-squad": 5_12, "distilbert-base-german-cased": 5_12, "distilbert-base-multilingual-cased": 5_12, } A_ = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class _snake_case ( _a ): _A : List[Any] = VOCAB_FILES_NAMES _A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : str = PRETRAINED_INIT_CONFIGURATION _A : int = ['''input_ids''', '''attention_mask'''] _A : Union[str, Any] = DistilBertTokenizer def __init__( self : str ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ,SCREAMING_SNAKE_CASE__ : Dict=None ,SCREAMING_SNAKE_CASE__ : int=True ,SCREAMING_SNAKE_CASE__ : Optional[Any]="[UNK]" ,SCREAMING_SNAKE_CASE__ : int="[SEP]" ,SCREAMING_SNAKE_CASE__ : Optional[int]="[PAD]" ,SCREAMING_SNAKE_CASE__ : Tuple="[CLS]" ,SCREAMING_SNAKE_CASE__ : List[str]="[MASK]" ,SCREAMING_SNAKE_CASE__ : str=True ,SCREAMING_SNAKE_CASE__ : Any=None ,**SCREAMING_SNAKE_CASE__ : Tuple ,): super().__init__( SCREAMING_SNAKE_CASE__ ,tokenizer_file=SCREAMING_SNAKE_CASE__ ,do_lower_case=SCREAMING_SNAKE_CASE__ ,unk_token=SCREAMING_SNAKE_CASE__ ,sep_token=SCREAMING_SNAKE_CASE__ ,pad_token=SCREAMING_SNAKE_CASE__ ,cls_token=SCREAMING_SNAKE_CASE__ ,mask_token=SCREAMING_SNAKE_CASE__ ,tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ ,strip_accents=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) SCREAMING_SNAKE_CASE:Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" ,SCREAMING_SNAKE_CASE__ ) != do_lower_case or normalizer_state.get("strip_accents" ,SCREAMING_SNAKE_CASE__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" ,SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE:Tuple = getattr(SCREAMING_SNAKE_CASE__ ,normalizer_state.pop("type" ) ) SCREAMING_SNAKE_CASE:Tuple = do_lower_case SCREAMING_SNAKE_CASE:int = strip_accents SCREAMING_SNAKE_CASE:Optional[int] = tokenize_chinese_chars SCREAMING_SNAKE_CASE:List[str] = normalizer_class(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:List[str] = do_lower_case def __UpperCamelCase ( self : int ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Tuple=None ): SCREAMING_SNAKE_CASE:int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : List[int] ,SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE:Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE:Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Optional[str] = None ): SCREAMING_SNAKE_CASE:str = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ ,name=SCREAMING_SNAKE_CASE__ ) return tuple(SCREAMING_SNAKE_CASE__ )
143
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ = { "configuration_instructblip": [ "INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "InstructBlipConfig", "InstructBlipQFormerConfig", "InstructBlipVisionConfig", ], "processing_instructblip": ["InstructBlipProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "InstructBlipQFormerModel", "InstructBlipPreTrainedModel", "InstructBlipForConditionalGeneration", "InstructBlipVisionModel", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
143
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'SCUT-DLVCLab/lilt-roberta-en-base': ( 'https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json' ), } class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Tuple = '''lilt''' def __init__( self: str , _SCREAMING_SNAKE_CASE: str=30522 , _SCREAMING_SNAKE_CASE: int=768 , _SCREAMING_SNAKE_CASE: Union[str, Any]=12 , _SCREAMING_SNAKE_CASE: Optional[int]=12 , _SCREAMING_SNAKE_CASE: Optional[int]=3072 , _SCREAMING_SNAKE_CASE: Union[str, Any]="gelu" , _SCREAMING_SNAKE_CASE: int=0.1 , _SCREAMING_SNAKE_CASE: str=0.1 , _SCREAMING_SNAKE_CASE: List[Any]=512 , _SCREAMING_SNAKE_CASE: Dict=2 , _SCREAMING_SNAKE_CASE: Tuple=0.02 , _SCREAMING_SNAKE_CASE: Optional[Any]=1e-12 , _SCREAMING_SNAKE_CASE: str=0 , _SCREAMING_SNAKE_CASE: Dict="absolute" , _SCREAMING_SNAKE_CASE: Dict=None , _SCREAMING_SNAKE_CASE: int=4 , _SCREAMING_SNAKE_CASE: Optional[Any]=1024 , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = hidden_act UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = position_embedding_type UpperCamelCase_ = classifier_dropout UpperCamelCase_ = channel_shrink_ratio UpperCamelCase_ = max_ad_position_embeddings
717
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : Union[str, Any] = XLMTokenizer _UpperCamelCase : Optional[int] = False def lowercase ( self: Dict ) -> Union[str, Any]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase_ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] UpperCamelCase_ = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase_ = ["l o 123", "lo w 1456", "e r</w> 1789", ""] UpperCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(_SCREAMING_SNAKE_CASE ) ) def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> str: """simple docstring""" UpperCamelCase_ = "lower newer" UpperCamelCase_ = "lower newer" return input_text, output_text def lowercase ( self: int ) -> Tuple: """simple docstring""" UpperCamelCase_ = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCamelCase_ = "lower" UpperCamelCase_ = ["low", "er</w>"] UpperCamelCase_ = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokens + ["<unk>"] UpperCamelCase_ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) @slow def lowercase ( self: Optional[int] ) -> Tuple: """simple docstring""" UpperCamelCase_ = XLMTokenizer.from_pretrained("xlm-mlm-en-2048" ) UpperCamelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
371
0
from __future__ import annotations import math from collections.abc import Callable def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 100 , ): snake_case_ = x_start snake_case_ = fnc(SCREAMING_SNAKE_CASE__ ) snake_case_ = 0.0 for _ in range(SCREAMING_SNAKE_CASE__ ): # Approximates curve as a sequence of linear lines and sums their length snake_case_ = (x_end - x_start) / steps + xa snake_case_ = fnc(SCREAMING_SNAKE_CASE__ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step snake_case_ = xa snake_case_ = fxa return length if __name__ == "__main__": def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return math.sin(10 * x ) print('''f(x) = sin(10 * x)''') print('''The length of the curve from x = -10 to x = 10 is:''') lowerCAmelCase_ = 10 while i <= 10_00_00: print(f"""With {i} steps: {line_length(f, -10, 10, i)}""") i *= 10
39
import cmath import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) snake_case_ = math.radians(SCREAMING_SNAKE_CASE__ ) # Convert voltage and current to rectangular form snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = cmath.rect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
39
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase ={ "configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"], "tokenization_convbert": ["ConvBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase =["ConvBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase =[ "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvBertForMaskedLM", "ConvBertForMultipleChoice", "ConvBertForQuestionAnswering", "ConvBertForSequenceClassification", "ConvBertForTokenClassification", "ConvBertLayer", "ConvBertModel", "ConvBertPreTrainedModel", "load_tf_weights_in_convbert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase =[ "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFConvBertForMaskedLM", "TFConvBertForMultipleChoice", "TFConvBertForQuestionAnswering", "TFConvBertForSequenceClassification", "TFConvBertForTokenClassification", "TFConvBertLayer", "TFConvBertModel", "TFConvBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys UpperCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
543
'''simple docstring''' import torch from diffusers import StableDiffusionPipeline UpperCamelCase ="path-to-your-trained-model" UpperCamelCase =StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("cuda") UpperCamelCase ="A photo of sks dog in a bucket" UpperCamelCase =pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("dog-bucket.png")
543
1
'''simple docstring''' snake_case_ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowercase (): SCREAMING_SNAKE_CASE : Optional[Any] = input('''Enter message: ''' ) SCREAMING_SNAKE_CASE : Any = input('''Enter key [alphanumeric]: ''' ) SCREAMING_SNAKE_CASE : Any = input('''Encrypt/Decrypt [e/d]: ''' ) if mode.lower().startswith('''e''' ): SCREAMING_SNAKE_CASE : Optional[int] = '''encrypt''' SCREAMING_SNAKE_CASE : Union[str, Any] = encrypt_message(UpperCamelCase__ , UpperCamelCase__ ) elif mode.lower().startswith('''d''' ): SCREAMING_SNAKE_CASE : List[str] = '''decrypt''' SCREAMING_SNAKE_CASE : str = decrypt_message(UpperCamelCase__ , UpperCamelCase__ ) print(F'''\n{mode.title()}ed message:''' ) print(UpperCamelCase__ ) def __lowercase (_SCREAMING_SNAKE_CASE :str , _SCREAMING_SNAKE_CASE :str ): return translate_message(UpperCamelCase__ , UpperCamelCase__ , '''encrypt''' ) def __lowercase (_SCREAMING_SNAKE_CASE :str , _SCREAMING_SNAKE_CASE :str ): return translate_message(UpperCamelCase__ , UpperCamelCase__ , '''decrypt''' ) def __lowercase (_SCREAMING_SNAKE_CASE :str , _SCREAMING_SNAKE_CASE :str , _SCREAMING_SNAKE_CASE :str ): SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : Optional[int] = key.upper() for symbol in message: SCREAMING_SNAKE_CASE : Any = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(UpperCamelCase__ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(UpperCamelCase__ ): SCREAMING_SNAKE_CASE : Optional[Any] = 0 else: translated.append(UpperCamelCase__ ) return "".join(UpperCamelCase__ ) if __name__ == "__main__": main()
507
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json", } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''lxmert''' snake_case_ = {} def __init__( self , lowerCamelCase__=30_522 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=9_500 , lowerCamelCase__=1_600 , lowerCamelCase__=400 , lowerCamelCase__=3_072 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-12 , lowerCamelCase__=9 , lowerCamelCase__=5 , lowerCamelCase__=5 , lowerCamelCase__=2_048 , lowerCamelCase__=4 , lowerCamelCase__=6.67 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , **lowerCamelCase__ , ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = num_qa_labels __lowerCamelCase = num_object_labels __lowerCamelCase = num_attr_labels __lowerCamelCase = l_layers __lowerCamelCase = x_layers __lowerCamelCase = r_layers __lowerCamelCase = visual_feat_dim __lowerCamelCase = visual_pos_dim __lowerCamelCase = visual_loss_normalizer __lowerCamelCase = task_matched __lowerCamelCase = task_mask_lm __lowerCamelCase = task_obj_predict __lowerCamelCase = task_qa __lowerCamelCase = visual_obj_loss __lowerCamelCase = visual_attr_loss __lowerCamelCase = visual_feat_loss __lowerCamelCase = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**lowerCamelCase__ )
469
0
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class A_ ( unittest.TestCase ): def __init__( self : List[str] , snake_case__ : Optional[Any] , snake_case__ : List[str]=13 , snake_case__ : List[str]=7 , snake_case__ : Union[str, Any]=True , snake_case__ : int=True , snake_case__ : List[Any]=True , snake_case__ : List[Any]=True , snake_case__ : Optional[int]=99 , snake_case__ : Any=32 , snake_case__ : Any=5 , snake_case__ : int=4 , snake_case__ : Optional[Any]=37 , snake_case__ : Dict="gelu" , snake_case__ : Tuple=0.1 , snake_case__ : Tuple=0.1 , snake_case__ : int=5_12 , snake_case__ : Optional[Any]=16 , snake_case__ : List[Any]=2 , snake_case__ : Union[str, Any]=0.02 , snake_case__ : List[str]=4 , ): lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_attention_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = num_choices def SCREAMING_SNAKE_CASE__ ( self : List[str] ): lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = None if self.use_attention_mask: lowercase = random_attention_mask([self.batch_size, self.seq_length] ) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE__ ( self : Any ): lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase = config_and_inputs lowercase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class A_ ( __a , unittest.TestCase ): _A :List[Any] = True _A :Union[str, Any] = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE__ ( self : int ): lowercase = FlaxRoFormerModelTester(self ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): for model_class_name in self.all_model_classes: lowercase = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=snake_case__ ) lowercase = model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case__ ) @require_flax class A_ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowercase = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) lowercase = jnp.array([[0, 1, 2, 3, 4, 5]] ) lowercase = model(snake_case__ )[0] lowercase = 5_00_00 lowercase = (1, 6, vocab_size) self.assertEqual(output.shape , snake_case__ ) lowercase = jnp.array( [[[-0.1_205, -1.0_265, 0.2_922], [-1.5_134, 0.1_974, 0.1_519], [-5.0_135, -3.9_003, -0.8_404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , snake_case__ , atol=1E-4 ) )
72
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Union[str, Any] =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Tuple ={ '''google/pix2struct-textcaps-base''': ( '''https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json''' ), } class A_ ( __a ): _A :List[str] = '''pix2struct_text_model''' _A :int = ['''past_key_values'''] _A :Optional[Any] = { '''hidden_size''': '''hidden_size''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : int , snake_case__ : str=5_02_44 , snake_case__ : Dict=7_68 , snake_case__ : Optional[Any]=64 , snake_case__ : Union[str, Any]=20_48 , snake_case__ : Union[str, Any]=12 , snake_case__ : str=12 , snake_case__ : int=32 , snake_case__ : List[Any]=1_28 , snake_case__ : Optional[int]=0.1 , snake_case__ : int=1E-6 , snake_case__ : int=1.0 , snake_case__ : Dict="gelu_new" , snake_case__ : Union[str, Any]=0 , snake_case__ : str=False , snake_case__ : List[str]=0 , snake_case__ : str=1 , snake_case__ : Optional[Any]=False , snake_case__ : Tuple=True , **snake_case__ : List[str] , ): lowercase = vocab_size lowercase = hidden_size lowercase = d_kv lowercase = d_ff lowercase = num_layers lowercase = num_heads lowercase = relative_attention_num_buckets lowercase = relative_attention_max_distance lowercase = dropout_rate lowercase = layer_norm_epsilon lowercase = initializer_factor lowercase = use_cache lowercase = eos_token_id lowercase = decoder_start_token_id # for backwards compatibility lowercase = dense_act_fn super().__init__( pad_token_id=snake_case__ , eos_token_id=snake_case__ , decoder_start_token_id=snake_case__ , tie_word_embeddings=snake_case__ , is_decoder=snake_case__ , **snake_case__ , ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[int] , snake_case__ : Union[str, os.PathLike] , **snake_case__ : int ): cls._set_token_in_kwargs(snake_case__ ) lowercase , lowercase = cls.get_config_dict(snake_case__ , **snake_case__ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": lowercase = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(snake_case__ , **snake_case__ ) class A_ ( __a ): _A :Optional[int] = '''pix2struct_vision_model''' def __init__( self : Tuple , snake_case__ : Union[str, Any]=7_68 , snake_case__ : Any=7_68 , snake_case__ : Dict=20_48 , snake_case__ : int=64 , snake_case__ : str=12 , snake_case__ : Optional[int]=12 , snake_case__ : Union[str, Any]="gelu_new" , snake_case__ : Union[str, Any]=1E-6 , snake_case__ : int=0.0 , snake_case__ : Tuple=0.0 , snake_case__ : Optional[int]=1E-10 , snake_case__ : Optional[int]=1.0 , snake_case__ : Optional[Any]=40_96 , snake_case__ : Optional[int]=32 , snake_case__ : List[Any]=1_28 , **snake_case__ : Union[str, Any] , ): super().__init__(**snake_case__ ) lowercase = hidden_size lowercase = patch_embed_hidden_size lowercase = d_ff lowercase = dropout_rate lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = initializer_range lowercase = initializer_factor lowercase = attention_dropout lowercase = layer_norm_eps lowercase = dense_act_fn lowercase = seq_len lowercase = relative_attention_num_buckets lowercase = relative_attention_max_distance lowercase = d_kv @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[Any] , snake_case__ : Union[str, os.PathLike] , **snake_case__ : int ): cls._set_token_in_kwargs(snake_case__ ) lowercase , lowercase = cls.get_config_dict(snake_case__ , **snake_case__ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": lowercase = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(snake_case__ , **snake_case__ ) class A_ ( __a ): _A :int = '''pix2struct''' _A :str = True def __init__( self : Optional[int] , snake_case__ : List[str]=None , snake_case__ : Optional[Any]=None , snake_case__ : List[Any]=1.0 , snake_case__ : Any=0.02 , snake_case__ : Tuple=False , snake_case__ : Union[str, Any]=False , snake_case__ : Tuple=True , **snake_case__ : int , ): super().__init__(tie_word_embeddings=snake_case__ , is_encoder_decoder=snake_case__ , **snake_case__ ) if text_config is None: lowercase = {} logger.info("""text_config is None. Initializing the Pix2StructTextConfig with default values.""" ) if vision_config is None: lowercase = {} logger.info("""vision_config is None. Initializing the Pix2StructVisionConfig with default values.""" ) lowercase = PixaStructTextConfig(**snake_case__ ) lowercase = PixaStructVisionConfig(**snake_case__ ) lowercase = self.text_config.decoder_start_token_id lowercase = self.text_config.pad_token_id lowercase = self.text_config.eos_token_id lowercase = initializer_factor lowercase = initializer_range lowercase = self.initializer_range lowercase = self.initializer_range lowercase = is_vqa @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , snake_case__ : PixaStructTextConfig , snake_case__ : PixaStructVisionConfig , **snake_case__ : Any ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : str ): lowercase = copy.deepcopy(self.__dict__ ) lowercase = self.text_config.to_dict() lowercase = self.vision_config.to_dict() lowercase = self.__class__.model_type return output
72
1
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__) def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Any: lowerCamelCase : Dict = nn.functional.normalize(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Dict = nn.functional.normalize(_SCREAMING_SNAKE_CASE ) return torch.mm(_SCREAMING_SNAKE_CASE ,normalized_text_embeds.t() ) class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Tuple = CLIPConfig lowerCamelCase_ : Optional[int] = ["""CLIPEncoderLayer"""] def __init__( self , UpperCamelCase__ ) -> Any: super().__init__(UpperCamelCase__ ) lowerCamelCase : Optional[int] = CLIPVisionModel(config.vision_config ) lowerCamelCase : int = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=UpperCamelCase__ ) lowerCamelCase : Optional[int] = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=UpperCamelCase__ ) lowerCamelCase : List[str] = nn.Parameter(torch.ones(17 ) , requires_grad=UpperCamelCase__ ) lowerCamelCase : Optional[Any] = nn.Parameter(torch.ones(3 ) , requires_grad=UpperCamelCase__ ) @torch.no_grad() def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: lowerCamelCase : Optional[Any] = self.vision_model(UpperCamelCase__ )[1] # pooled_output lowerCamelCase : Tuple = self.visual_projection(UpperCamelCase__ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase : List[str] = cosine_distance(UpperCamelCase__ , self.special_care_embeds ).cpu().float().numpy() lowerCamelCase : List[str] = cosine_distance(UpperCamelCase__ , self.concept_embeds ).cpu().float().numpy() lowerCamelCase : Union[str, Any] = [] lowerCamelCase : List[Any] = image_embeds.shape[0] for i in range(UpperCamelCase__ ): lowerCamelCase : Dict = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images lowerCamelCase : List[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): lowerCamelCase : str = special_cos_dist[i][concept_idx] lowerCamelCase : Union[str, Any] = self.special_care_embeds_weights[concept_idx].item() lowerCamelCase : int = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]} ) lowerCamelCase : Tuple = 0.01 for concept_idx in range(len(cos_dist[0] ) ): lowerCamelCase : Union[str, Any] = cos_dist[i][concept_idx] lowerCamelCase : List[Any] = self.concept_embeds_weights[concept_idx].item() lowerCamelCase : Optional[int] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(UpperCamelCase__ ) result.append(UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = [len(res["bad_concepts"] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: lowerCamelCase : Optional[Any] = self.vision_model(UpperCamelCase__ )[1] # pooled_output lowerCamelCase : Dict = self.visual_projection(UpperCamelCase__ ) lowerCamelCase : Dict = cosine_distance(UpperCamelCase__ , self.special_care_embeds ) lowerCamelCase : List[str] = cosine_distance(UpperCamelCase__ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images lowerCamelCase : int = 0.0 lowerCamelCase : int = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) lowerCamelCase : Optional[int] = torch.any(special_scores > 0 , dim=1 ) lowerCamelCase : Any = special_care * 0.01 lowerCamelCase : List[str] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) lowerCamelCase : Any = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) lowerCamelCase : int = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
311
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Optional[Any] = (KDPMaDiscreteScheduler,) lowerCamelCase_ : str = 1_0 def _lowercase ( self , **UpperCamelCase__ ) -> int: lowerCamelCase : Optional[Any] = { "num_train_timesteps": 1100, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**UpperCamelCase__ ) return config def _lowercase ( self ) -> List[Any]: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def _lowercase ( self ) -> Dict: for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=UpperCamelCase__ , beta_end=UpperCamelCase__ ) def _lowercase ( self ) -> str: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=UpperCamelCase__ ) def _lowercase ( self ) -> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def _lowercase ( self ) -> str: lowerCamelCase : Optional[Any] = self.scheduler_classes[0] lowerCamelCase : Union[str, Any] = self.get_scheduler_config(prediction_type="v_prediction" ) lowerCamelCase : Optional[Any] = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase : Tuple = self.dummy_model() lowerCamelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase : Union[str, Any] = sample.to(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase : List[str] = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : List[str] = model(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Optional[Any] = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Optional[int] = output.prev_sample lowerCamelCase : Tuple = torch.sum(torch.abs(UpperCamelCase__ ) ) lowerCamelCase : Optional[Any] = torch.mean(torch.abs(UpperCamelCase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934e-07 ) < 1e-2 assert abs(result_mean.item() - 6.1112e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.693428650170972e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0002 ) < 1e-3 def _lowercase ( self ) -> str: if torch_device == "mps": return lowerCamelCase : Any = self.scheduler_classes[0] lowerCamelCase : Union[str, Any] = self.get_scheduler_config() lowerCamelCase : Optional[int] = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase : Optional[Any] = self.dummy_model() lowerCamelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase : int = sample.to(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase : Union[str, Any] = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Tuple = model(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : int = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Optional[Any] = output.prev_sample lowerCamelCase : Tuple = torch.sum(torch.abs(UpperCamelCase__ ) ) lowerCamelCase : Dict = torch.mean(torch.abs(UpperCamelCase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 def _lowercase ( self ) -> Optional[int]: if torch_device == "mps": return lowerCamelCase : Any = self.scheduler_classes[0] lowerCamelCase : Any = self.get_scheduler_config() lowerCamelCase : str = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCamelCase__ ) lowerCamelCase : List[Any] = self.dummy_model() lowerCamelCase : List[str] = self.dummy_sample_deter.to(UpperCamelCase__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCamelCase : Union[str, Any] = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Dict = model(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Tuple = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Tuple = output.prev_sample lowerCamelCase : Dict = torch.sum(torch.abs(UpperCamelCase__ ) ) lowerCamelCase : Dict = torch.mean(torch.abs(UpperCamelCase__ ) ) if str(UpperCamelCase__ ).startswith("cpu" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3
311
1
def snake_case (UpperCamelCase : str , UpperCamelCase : int ): '''simple docstring''' lowerCamelCase__ = [[] for _ in range(UpperCamelCase )] lowerCamelCase__ = key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1 or len(UpperCamelCase ) <= key: return input_string for position, character in enumerate(UpperCamelCase ): lowerCamelCase__ = position % (lowest * 2) # puts it in bounds lowerCamelCase__ = min(UpperCamelCase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(UpperCamelCase ) lowerCamelCase__ = ["""""".join(UpperCamelCase ) for row in temp_grid] lowerCamelCase__ = """""".join(UpperCamelCase ) return output_string def snake_case (UpperCamelCase : str , UpperCamelCase : int ): '''simple docstring''' lowerCamelCase__ = [] lowerCamelCase__ = key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1: return input_string lowerCamelCase__ = [[] for _ in range(UpperCamelCase )] # generates template for position in range(len(UpperCamelCase ) ): lowerCamelCase__ = position % (lowest * 2) # puts it in bounds lowerCamelCase__ = min(UpperCamelCase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("""*""" ) lowerCamelCase__ = 0 for row in temp_grid: # fills in the characters lowerCamelCase__ = input_string[counter : counter + len(UpperCamelCase )] grid.append(list(UpperCamelCase ) ) counter += len(UpperCamelCase ) lowerCamelCase__ = """""" # reads as zigzag for position in range(len(UpperCamelCase ) ): lowerCamelCase__ = position % (lowest * 2) # puts it in bounds lowerCamelCase__ = min(UpperCamelCase , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def snake_case (UpperCamelCase : str ): '''simple docstring''' lowerCamelCase__ = {} for key_guess in range(1 , len(UpperCamelCase ) ): # tries every key lowerCamelCase__ = decrypt(UpperCamelCase , UpperCamelCase ) return results if __name__ == "__main__": import doctest doctest.testmod()
235
def snake_case (UpperCamelCase : dict ): '''simple docstring''' lowerCamelCase__ = set() # To detect a back edge, keep track of vertices currently in the recursion stack lowerCamelCase__ = set() return any( node not in visited and depth_first_search(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) for node in graph ) def snake_case (UpperCamelCase : dict , UpperCamelCase : int , UpperCamelCase : set , UpperCamelCase : set ): '''simple docstring''' visited.add(UpperCamelCase ) rec_stk.add(UpperCamelCase ) for node in graph[vertex]: if node not in visited: if depth_first_search(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(UpperCamelCase ) return False if __name__ == "__main__": from doctest import testmod testmod()
235
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = 1 _lowerCamelCase : int = 3 _lowerCamelCase : Tuple = (3_2, 3_2) _lowerCamelCase : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCAmelCase ) return image @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) _lowerCamelCase : str = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) return model @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) _lowerCamelCase : Dict = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" torch.manual_seed(0 ) _lowerCamelCase : Any = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , ) return RobertaSeriesModelWithTransformation(__lowerCAmelCase ) @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" def extract(*__lowerCAmelCase : Tuple , **__lowerCAmelCase : Tuple ): class __snake_case : def __init__( self : List[str] ): """simple docstring""" _lowerCamelCase : Any = torch.ones([0] ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : List[Any] ): """simple docstring""" self.pixel_values.to(__lowerCAmelCase ) return self return Out() return extract def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : str = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCamelCase : Any = self.dummy_cond_unet _lowerCamelCase : int = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.dummy_vae _lowerCamelCase : List[str] = self.dummy_text_encoder _lowerCamelCase : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) _lowerCamelCase : Union[str, Any] = 7_7 _lowerCamelCase : List[Any] = self.dummy_image.to(__lowerCAmelCase ) _lowerCamelCase : List[str] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _lowerCamelCase : int = AltDiffusionImgaImgPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) _lowerCamelCase : List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = alt_pipe.to(__lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : Dict = "A painting of a squirrel eating a burger" _lowerCamelCase : List[str] = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) _lowerCamelCase : int = alt_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=__lowerCAmelCase , ) _lowerCamelCase : Dict = output.images _lowerCamelCase : Any = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) _lowerCamelCase : Union[str, Any] = alt_pipe( [prompt] , generator=__lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=__lowerCAmelCase , return_dict=__lowerCAmelCase , )[0] _lowerCamelCase : List[Any] = image[0, -3:, -3:, -1] _lowerCamelCase : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _lowerCamelCase : List[str] = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Optional[int] = self.dummy_cond_unet _lowerCamelCase : str = PNDMScheduler(skip_prk_steps=__lowerCAmelCase ) _lowerCamelCase : int = self.dummy_vae _lowerCamelCase : int = self.dummy_text_encoder _lowerCamelCase : List[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) _lowerCamelCase : Tuple = 7_7 _lowerCamelCase : Any = self.dummy_image.to(__lowerCAmelCase ) # put models in fp16 _lowerCamelCase : List[str] = unet.half() _lowerCamelCase : Union[str, Any] = vae.half() _lowerCamelCase : Union[str, Any] = bert.half() # make sure here that pndm scheduler skips prk _lowerCamelCase : Optional[Any] = AltDiffusionImgaImgPipeline( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , vae=__lowerCAmelCase , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase , safety_checker=__lowerCAmelCase , feature_extractor=self.dummy_extractor , ) _lowerCamelCase : int = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = alt_pipe.to(__lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _lowerCamelCase : int = "A painting of a squirrel eating a burger" _lowerCamelCase : List[Any] = torch.manual_seed(0 ) _lowerCamelCase : Optional[int] = alt_pipe( [prompt] , generator=__lowerCAmelCase , num_inference_steps=2 , output_type='''np''' , image=__lowerCAmelCase , ).images assert image.shape == (1, 3_2, 3_2, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 _lowerCamelCase : List[str] = init_image.resize((7_6_0, 5_0_4) ) _lowerCamelCase : Any = "BAAI/AltDiffusion" _lowerCamelCase : Optional[int] = AltDiffusionImgaImgPipeline.from_pretrained( __lowerCAmelCase , safety_checker=__lowerCAmelCase , ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing() _lowerCamelCase : Optional[Any] = "A fantasy landscape, trending on artstation" _lowerCamelCase : List[Any] = torch.manual_seed(0 ) _lowerCamelCase : Union[str, Any] = pipe( prompt=__lowerCAmelCase , image=__lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=__lowerCAmelCase , output_type='''np''' , ) _lowerCamelCase : Any = output.images[0] _lowerCamelCase : Optional[int] = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 7_6_0, 3) _lowerCamelCase : List[Any] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) _lowerCamelCase : Union[str, Any] = init_image.resize((7_6_8, 5_1_2) ) _lowerCamelCase : Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) _lowerCamelCase : Dict = "BAAI/AltDiffusion" _lowerCamelCase : str = AltDiffusionImgaImgPipeline.from_pretrained( __lowerCAmelCase , safety_checker=__lowerCAmelCase , ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing() _lowerCamelCase : Optional[int] = "A fantasy landscape, trending on artstation" _lowerCamelCase : Optional[Any] = torch.manual_seed(0 ) _lowerCamelCase : List[str] = pipe( prompt=__lowerCAmelCase , image=__lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=__lowerCAmelCase , output_type='''np''' , ) _lowerCamelCase : List[Any] = output.images[0] assert image.shape == (5_1_2, 7_6_8, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
83
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Tuple = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False ) -> int: '''simple docstring''' _lowerCamelCase : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ("text_embeddings.word_embeddings.weight", "vilt.embeddings.text_embeddings.word_embeddings.weight"), ( "text_embeddings.position_embeddings.weight", "vilt.embeddings.text_embeddings.position_embeddings.weight", ), ("text_embeddings.position_ids", "vilt.embeddings.text_embeddings.position_ids"), ( "text_embeddings.token_type_embeddings.weight", "vilt.embeddings.text_embeddings.token_type_embeddings.weight", ), ("text_embeddings.LayerNorm.weight", "vilt.embeddings.text_embeddings.LayerNorm.weight"), ("text_embeddings.LayerNorm.bias", "vilt.embeddings.text_embeddings.LayerNorm.bias"), # patch embeddings ("transformer.cls_token", "vilt.embeddings.cls_token"), ("transformer.patch_embed.proj.weight", "vilt.embeddings.patch_embeddings.projection.weight"), ("transformer.patch_embed.proj.bias", "vilt.embeddings.patch_embeddings.projection.bias"), ("transformer.pos_embed", "vilt.embeddings.position_embeddings"), # token type embeddings ("token_type_embeddings.weight", "vilt.embeddings.token_type_embeddings.weight"), ] ) # final layernorm + pooler rename_keys.extend( [ ("transformer.norm.weight", "vilt.layernorm.weight"), ("transformer.norm.bias", "vilt.layernorm.bias"), ("pooler.dense.weight", "vilt.pooler.dense.weight"), ("pooler.dense.bias", "vilt.pooler.dense.bias"), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("vqa_classifier.0.weight", "classifier.0.weight"), ("vqa_classifier.0.bias", "classifier.0.bias"), ("vqa_classifier.1.weight", "classifier.1.weight"), ("vqa_classifier.1.bias", "classifier.1.bias"), ("vqa_classifier.3.weight", "classifier.3.weight"), ("vqa_classifier.3.bias", "classifier.3.bias"), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("nlvr2_classifier.0.weight", "classifier.0.weight"), ("nlvr2_classifier.0.bias", "classifier.0.bias"), ("nlvr2_classifier.1.weight", "classifier.1.weight"), ("nlvr2_classifier.1.bias", "classifier.1.bias"), ("nlvr2_classifier.3.weight", "classifier.3.weight"), ("nlvr2_classifier.3.bias", "classifier.3.bias"), ] ) else: pass return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): _lowerCamelCase : Tuple = "vilt." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase : List[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : str = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : Any = in_proj_bias[: config.hidden_size] _lowerCamelCase : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Dict = in_proj_bias[-config.hidden_size :] def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Optional[int] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : List[Any] = dct.pop(_lowerCamelCase ) _lowerCamelCase : Optional[int] = val @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : int = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=_lowerCamelCase ) _lowerCamelCase : Optional[int] = False _lowerCamelCase : Tuple = False _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : str = False if "vqa" in checkpoint_url: _lowerCamelCase : str = True _lowerCamelCase : Union[str, Any] = 3129 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Optional[Any] = "vqa2-id2label.json" _lowerCamelCase : Union[str, Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Any = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[int] = idalabel _lowerCamelCase : int = {v: k for k, v in idalabel.items()} _lowerCamelCase : Any = ViltForQuestionAnswering(_lowerCamelCase ) elif "nlvr" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : List[str] = 2 _lowerCamelCase : Optional[Any] = {0: "False", 1: "True"} _lowerCamelCase : int = {v: k for k, v in config.idalabel.items()} _lowerCamelCase : Optional[Any] = 3 _lowerCamelCase : Optional[Any] = ViltForImagesAndTextClassification(_lowerCamelCase ) elif "irtr" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : Union[str, Any] = ViltForImageAndTextRetrieval(_lowerCamelCase ) elif "mlm_itm" in checkpoint_url: _lowerCamelCase : Dict = True _lowerCamelCase : Optional[int] = ViltForMaskedLM(_lowerCamelCase ) else: raise ValueError("Unknown model type" ) # load state_dict of original model, remove and rename some keys _lowerCamelCase : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" )["state_dict"] _lowerCamelCase : str = create_rename_keys(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase ) if mlm_model or irtr_model: _lowerCamelCase : Dict = ["itm_score.fc.weight", "itm_score.fc.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: _lowerCamelCase, _lowerCamelCase : List[str] = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_lowerCamelCase ) # Define processor _lowerCamelCase : int = ViltImageProcessor(size=384 ) _lowerCamelCase : Union[str, Any] = BertTokenizer.from_pretrained("bert-base-uncased" ) _lowerCamelCase : Optional[int] = ViltProcessor(_lowerCamelCase , _lowerCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: _lowerCamelCase : int = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw ) _lowerCamelCase : Union[str, Any] = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw ) _lowerCamelCase : str = ( "The left image contains twice the number of dogs as the right image, and at least two dogs in total are" " standing." ) _lowerCamelCase : List[str] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Optional[int] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : int = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _lowerCamelCase : str = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg" , stream=_lowerCamelCase ).raw ) if mlm_model: _lowerCamelCase : Any = "a bunch of [MASK] laying on a [MASK]." else: _lowerCamelCase : List[str] = "How many cats are there?" _lowerCamelCase : Union[str, Any] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Union[str, Any] = model(**_lowerCamelCase ) # Verify outputs if mlm_model: _lowerCamelCase : List[str] = torch.Size([1, 11, 30522] ) _lowerCamelCase : Dict = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify masked token prediction equals "cats" _lowerCamelCase : List[Any] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _lowerCamelCase : List[str] = torch.Size([1, 3129] ) _lowerCamelCase : List[str] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify vqa prediction equals "2" _lowerCamelCase : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _lowerCamelCase : List[str] = torch.Size([1, 2] ) _lowerCamelCase : Optional[Any] = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
46
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case_ : Any = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): UpperCAmelCase_ = StableDiffusionLatentUpscalePipeline UpperCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """height""", """width""", """cross_attention_kwargs""", """negative_prompt_embeds""", """prompt_embeds""", } UpperCAmelCase_ = PipelineTesterMixin.required_optional_params - {"""num_images_per_prompt"""} UpperCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCAmelCase_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCAmelCase_ = frozenset([] ) UpperCAmelCase_ = True @property def snake_case__ ( self): snake_case_ : Dict = 1 snake_case_ : int = 4 snake_case_ : int = (16, 16) snake_case_ : List[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(lowercase_) return image def snake_case__ ( self): torch.manual_seed(0) snake_case_ : str = UNetaDConditionModel( act_fn="gelu" , attention_head_dim=8 , norm_num_groups=lowercase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ) , in_channels=8 , mid_block_type=lowercase_ , only_cross_attention=lowercase_ , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , ) snake_case_ : Any = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) snake_case_ : List[str] = EulerDiscreteScheduler(prediction_type="sample") snake_case_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="quick_gelu" , projection_dim=5_12 , ) snake_case_ : List[str] = CLIPTextModel(lowercase_) snake_case_ : str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") snake_case_ : Optional[Any] = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def snake_case__ ( self , lowercase_ , lowercase_=0): if str(lowercase_).startswith("mps"): snake_case_ : str = torch.manual_seed(lowercase_) else: snake_case_ : Any = torch.Generator(device=lowercase_).manual_seed(lowercase_) snake_case_ : Tuple = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def snake_case__ ( self): snake_case_ : Tuple = "cpu" snake_case_ : Optional[int] = self.get_dummy_components() snake_case_ : Any = self.pipeline_class(**lowercase_) pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) snake_case_ : List[Any] = self.get_dummy_inputs(lowercase_) snake_case_ : int = pipe(**lowercase_).images snake_case_ : str = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3)) snake_case_ : int = np.array( [0.47_222_412, 0.41_921_633, 0.44_717_434, 0.46_874_192, 0.42_588_258, 0.46_150_726, 0.4_677_534, 0.45_583_832, 0.48_579_055]) snake_case_ : Tuple = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(lowercase_ , 1E-3) def snake_case__ ( self): super().test_attention_slicing_forward_pass(expected_max_diff=7E-3) def snake_case__ ( self): super().test_cpu_offload_forward_pass(expected_max_diff=3E-3) def snake_case__ ( self): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3) def snake_case__ ( self): super().test_inference_batch_single_identical(expected_max_diff=7E-3) def snake_case__ ( self): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3) def snake_case__ ( self): super().test_save_load_local(expected_max_difference=3E-3) def snake_case__ ( self): super().test_save_load_optional_components(expected_max_difference=3E-3) def snake_case__ ( self): snake_case_ : List[Any] = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] snake_case_ : List[str] = self.get_dummy_components() snake_case_ : List[str] = self.pipeline_class(**lowercase_) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=lowercase_) pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) snake_case_ : Optional[int] = self.get_dummy_inputs(lowercase_) snake_case_ : List[str] = 2 snake_case_ : int = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue snake_case_ : Optional[int] = getattr(lowercase_ , scheduler_enum.name) snake_case_ : Tuple = scheduler_cls.from_config(pipe.scheduler.config) snake_case_ : Dict = pipe(**lowercase_)[0] outputs.append(lowercase_) assert check_same_shape(lowercase_) @require_torch_gpu @slow class UpperCAmelCase_ ( unittest.TestCase ): def snake_case__ ( self): super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self): snake_case_ : int = torch.manual_seed(33) snake_case_ : int = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa) pipe.to("cuda") snake_case_ : str = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa) upscaler.to("cuda") snake_case_ : Dict = "a photo of an astronaut high resolution, unreal engine, ultra realistic" snake_case_ : Optional[int] = pipe(lowercase_ , generator=lowercase_ , output_type="latent").images snake_case_ : List[Any] = upscaler( prompt=lowercase_ , image=lowercase_ , num_inference_steps=20 , guidance_scale=0 , generator=lowercase_ , output_type="np" , ).images[0] snake_case_ : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy") assert np.abs((expected_image - image).mean()) < 5E-2 def snake_case__ ( self): snake_case_ : Union[str, Any] = torch.manual_seed(33) snake_case_ : Tuple = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa) upscaler.to("cuda") snake_case_ : Union[str, Any] = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" snake_case_ : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png") snake_case_ : Optional[Any] = upscaler( prompt=lowercase_ , image=lowercase_ , num_inference_steps=20 , guidance_scale=0 , generator=lowercase_ , output_type="np" , ).images[0] snake_case_ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy") assert np.abs((expected_image - image).max()) < 5E-2
92
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging a_ = logging.get_logger(__name__) def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case_ : List[Any] = r"\w+[.]\d+" snake_case_ : Tuple = re.findall(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) for pat in pats: snake_case_ : Union[str, Any] = key.replace(__SCREAMING_SNAKE_CASE, "_".join(pat.split("." ) ) ) return key def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case_ : Tuple = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): snake_case_ : int = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: snake_case_ : Dict = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: snake_case_ : List[Any] = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer snake_case_ : List[str] = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: snake_case_ : str = pt_tensor.transpose(2, 3, 1, 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer snake_case_ : str = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": snake_case_ : Any = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight snake_case_ : Union[str, Any] = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias snake_case_ : Union[str, Any] = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE=4_2 ): """simple docstring""" snake_case_ : int = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params snake_case_ : Optional[int] = flax_model.init_weights(PRNGKey(__SCREAMING_SNAKE_CASE ) ) snake_case_ : Union[str, Any] = flatten_dict(__SCREAMING_SNAKE_CASE ) snake_case_ : str = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): snake_case_ : List[str] = rename_key(__SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters snake_case_ , snake_case_ : Dict = rename_key_and_reshape_tensor(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' f'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # also add unexpected weight so that warning is thrown snake_case_ : Any = jnp.asarray(__SCREAMING_SNAKE_CASE ) return unflatten_dict(__SCREAMING_SNAKE_CASE )
92
1
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase ) -> str: """simple docstring""" __UpperCAmelCase : int = [] __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : Union[str, Any] = { "^": 3, "*": 2, "/": 2, "%": 2, "+": 1, "-": 1, } # Priority of each operator __UpperCAmelCase : List[Any] = len(UpperCamelCase ) if (len(UpperCamelCase ) > 7) else 7 # Print table header for output print( "Symbol".center(8 ) , "Stack".center(UpperCamelCase ) , "Postfix".center(UpperCamelCase ) , sep=" | " , ) print("-" * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(UpperCamelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(UpperCamelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(UpperCamelCase ) == 0: stack.append(UpperCamelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(UpperCamelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(UpperCamelCase ) # push x to stack print( x.center(8 ) , ("".join(UpperCamelCase )).ljust(UpperCamelCase ) , ("".join(UpperCamelCase )).ljust(UpperCamelCase ) , sep=" | " , ) # Output in tabular format while len(UpperCamelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( " ".center(8 ) , ("".join(UpperCamelCase )).ljust(UpperCamelCase ) , ("".join(UpperCamelCase )).ljust(UpperCamelCase ) , sep=" | " , ) # Output in tabular format return "".join(UpperCamelCase ) # return Postfix as str def _UpperCamelCase ( UpperCamelCase ) -> Optional[Any]: """simple docstring""" __UpperCAmelCase : Any = list(infix[::-1] ) # reverse the infix equation for i in range(len(UpperCamelCase ) ): if infix[i] == "(": __UpperCAmelCase : Optional[int] = ")" # change "(" to ")" elif infix[i] == ")": __UpperCAmelCase : int = "(" # change ")" to "(" return (infix_2_postfix("".join(UpperCamelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": A = input("""\nEnter an Infix Equation = """) # Input an Infix equation A = """""".join(Infix.split()) # Remove spaces from the input print("""\n\t""", Infix, """(Infix) -> """, infix_2_prefix(Infix), """(Prefix)""")
77
'''simple docstring''' from __future__ import annotations a_ : int = list[list[int]] # assigning initial values to the grid a_ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution a_ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def a_ ( __snake_case : Matrix , __snake_case : int , __snake_case : int , __snake_case : int ) -> bool: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def a_ ( __snake_case : Matrix ) -> tuple[int, int] | None: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def a_ ( __snake_case : Matrix ) -> Matrix | None: """simple docstring""" if location := find_empty_location(__snake_case ): lowerCamelCase_, lowerCamelCase_ =location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__snake_case , __snake_case , __snake_case , __snake_case ): lowerCamelCase_ =digit if sudoku(__snake_case ) is not None: return grid lowerCamelCase_ =0 return None def a_ ( __snake_case : Matrix ) -> None: """simple docstring""" for row in grid: for cell in row: print(__snake_case , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 20) print_solution(example_grid) print("""\nExample grid solution:""") a_ : Union[str, Any] = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
676
0
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class lowerCamelCase__ ( unittest.TestCase ): def _UpperCamelCase ( self ): UpperCAmelCase = inspect.getfile(accelerate.test_utils ) UpperCAmelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) UpperCAmelCase = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_distributed_data_loop.py"""] ) UpperCAmelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_ops.py"""] ) @require_multi_gpu def _UpperCamelCase ( self ): print(F'''Found {torch.cuda.device_count()} devices.''' ) UpperCAmelCase = ["""torchrun""", F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowercase ,env=os.environ.copy() ) @require_multi_gpu def _UpperCamelCase ( self ): print(F'''Found {torch.cuda.device_count()} devices.''' ) UpperCAmelCase = ["""torchrun""", F'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(F'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowercase ,env=os.environ.copy() ) @require_multi_gpu def _UpperCamelCase ( self ): UpperCAmelCase = ["""torchrun""", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowercase ,env=os.environ.copy() ) @require_multi_gpu def _UpperCamelCase ( self ): print(F'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) UpperCAmelCase = ["""torchrun""", F'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 ,cuda_visible_devices="""0,1""" ): execute_subprocess_async(__lowercase ,env=os.environ.copy() ) if __name__ == "__main__": _UpperCamelCase = Accelerator() _UpperCamelCase = (accelerator.state.process_index + 2, 10) _UpperCamelCase = torch.randint(0, 10, shape).to(accelerator.device) _UpperCamelCase = """""" _UpperCamelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _UpperCamelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _UpperCamelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
715
"""simple docstring""" _UpperCamelCase = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ _UpperCamelCase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _UpperCamelCase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
74
0
'''simple docstring''' def a ( UpperCamelCase_ : Optional[Any] ) -> Optional[Any]: snake_case__ =len(UpperCamelCase_ ) for i in range(length - 1 ): snake_case__ =i for k in range(i + 1 , UpperCamelCase_ ): if collection[k] < collection[least]: snake_case__ =k if least != i: snake_case__ , snake_case__ =(collection[i], collection[least]) return collection if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : str = input('''Enter numbers separated by a comma:\n''').strip() SCREAMING_SNAKE_CASE__ : str = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
538
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin SCREAMING_SNAKE_CASE__ : List[Any] = logging.get_logger(__name__) enable_full_determinism() class a__( snake_case__ , snake_case__ , unittest.TestCase ): a_ : Dict = UNetaDModel a_ : List[Any] = '''sample''' @property def _lowercase ( self ) -> Tuple: snake_case__ =4 snake_case__ =3 snake_case__ =(32, 32) snake_case__ =floats_tensor((batch_size, num_channels) + sizes ).to(_UpperCAmelCase ) snake_case__ =torch.tensor([10] ).to(_UpperCAmelCase ) return {"sample": noise, "timestep": time_step} @property def _lowercase ( self ) -> Optional[int]: return (3, 32, 32) @property def _lowercase ( self ) -> Optional[int]: return (3, 32, 32) def _lowercase ( self ) -> Union[str, Any]: snake_case__ ={ 'block_out_channels': (32, 64), 'down_block_types': ('DownBlock2D', 'AttnDownBlock2D'), 'up_block_types': ('AttnUpBlock2D', 'UpBlock2D'), 'attention_head_dim': 3, 'out_channels': 3, 'in_channels': 3, 'layers_per_block': 2, 'sample_size': 32, } snake_case__ =self.dummy_input return init_dict, inputs_dict class a__( snake_case__ , snake_case__ , unittest.TestCase ): a_ : Union[str, Any] = UNetaDModel a_ : Optional[Any] = '''sample''' @property def _lowercase ( self ) -> Union[str, Any]: snake_case__ =4 snake_case__ =4 snake_case__ =(32, 32) snake_case__ =floats_tensor((batch_size, num_channels) + sizes ).to(_UpperCAmelCase ) snake_case__ =torch.tensor([10] ).to(_UpperCAmelCase ) return {"sample": noise, "timestep": time_step} @property def _lowercase ( self ) -> Optional[int]: return (4, 32, 32) @property def _lowercase ( self ) -> Dict: return (4, 32, 32) def _lowercase ( self ) -> str: snake_case__ ={ 'sample_size': 32, 'in_channels': 4, 'out_channels': 4, 'layers_per_block': 2, 'block_out_channels': (32, 64), 'attention_head_dim': 32, 'down_block_types': ('DownBlock2D', 'DownBlock2D'), 'up_block_types': ('UpBlock2D', 'UpBlock2D'), } snake_case__ =self.dummy_input return init_dict, inputs_dict def _lowercase ( self ) -> Dict: snake_case__ , snake_case__ =UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(_UpperCAmelCase ) snake_case__ =model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def _lowercase ( self ) -> Optional[Any]: snake_case__ , snake_case__ =UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=_UpperCAmelCase ) model.to(_UpperCAmelCase ) snake_case__ =model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def _lowercase ( self ) -> Optional[Any]: # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` snake_case__ , snake_case__ =UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=_UpperCAmelCase ) model_accelerate.to(_UpperCAmelCase ) model_accelerate.eval() snake_case__ =torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) snake_case__ =noise.to(_UpperCAmelCase ) snake_case__ =torch.tensor([10] * noise.shape[0] ).to(_UpperCAmelCase ) snake_case__ =model_accelerate(_UpperCAmelCase , _UpperCAmelCase )['sample'] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() snake_case__ , snake_case__ =UNetaDModel.from_pretrained( 'fusing/unet-ldm-dummy-update' , output_loading_info=_UpperCAmelCase , low_cpu_mem_usage=_UpperCAmelCase ) model_normal_load.to(_UpperCAmelCase ) model_normal_load.eval() snake_case__ =model_normal_load(_UpperCAmelCase , _UpperCAmelCase )['sample'] assert torch_all_close(_UpperCAmelCase , _UpperCAmelCase , rtol=1E-3 ) def _lowercase ( self ) -> Optional[Any]: snake_case__ =UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ) model.eval() model.to(_UpperCAmelCase ) snake_case__ =torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) snake_case__ =noise.to(_UpperCAmelCase ) snake_case__ =torch.tensor([10] * noise.shape[0] ).to(_UpperCAmelCase ) with torch.no_grad(): snake_case__ =model(_UpperCAmelCase , _UpperCAmelCase ).sample snake_case__ =output[0, -1, -3:, -3:].flatten().cpu() # fmt: off snake_case__ =torch.tensor([-13.3_258, -20.1_100, -15.9_873, -17.6_617, -23.0_596, -17.9_419, -13.3_675, -16.1_889, -12.3_800] ) # fmt: on self.assertTrue(torch_all_close(_UpperCAmelCase , _UpperCAmelCase , rtol=1E-3 ) ) class a__( snake_case__ , snake_case__ , unittest.TestCase ): a_ : List[str] = UNetaDModel a_ : Optional[int] = '''sample''' @property def _lowercase ( self , _UpperCAmelCase=(32, 32) ) -> Tuple: snake_case__ =4 snake_case__ =3 snake_case__ =floats_tensor((batch_size, num_channels) + sizes ).to(_UpperCAmelCase ) snake_case__ =torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=_UpperCAmelCase ) return {"sample": noise, "timestep": time_step} @property def _lowercase ( self ) -> Union[str, Any]: return (3, 32, 32) @property def _lowercase ( self ) -> Optional[Any]: return (3, 32, 32) def _lowercase ( self ) -> str: snake_case__ ={ 'block_out_channels': [32, 64, 64, 64], 'in_channels': 3, 'layers_per_block': 1, 'out_channels': 3, 'time_embedding_type': 'fourier', 'norm_eps': 1E-6, 'mid_block_scale_factor': math.sqrt(2.0 ), 'norm_num_groups': None, 'down_block_types': [ 'SkipDownBlock2D', 'AttnSkipDownBlock2D', 'SkipDownBlock2D', 'SkipDownBlock2D', ], 'up_block_types': [ 'SkipUpBlock2D', 'SkipUpBlock2D', 'AttnSkipUpBlock2D', 'SkipUpBlock2D', ], } snake_case__ =self.dummy_input return init_dict, inputs_dict @slow def _lowercase ( self ) -> List[Any]: snake_case__ , snake_case__ =UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' , output_loading_info=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(_UpperCAmelCase ) snake_case__ =self.dummy_input snake_case__ =floats_tensor((4, 3) + (256, 256) ).to(_UpperCAmelCase ) snake_case__ =noise snake_case__ =model(**_UpperCAmelCase ) assert image is not None, "Make sure output is not None" @slow def _lowercase ( self ) -> Union[str, Any]: snake_case__ =UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' ) model.to(_UpperCAmelCase ) snake_case__ =4 snake_case__ =3 snake_case__ =(256, 256) snake_case__ =torch.ones((batch_size, num_channels) + sizes ).to(_UpperCAmelCase ) snake_case__ =torch.tensor(batch_size * [1E-4] ).to(_UpperCAmelCase ) with torch.no_grad(): snake_case__ =model(_UpperCAmelCase , _UpperCAmelCase ).sample snake_case__ =output[0, -3:, -3:, -1].flatten().cpu() # fmt: off snake_case__ =torch.tensor([-4_842.8_691, -6_499.6_631, -3_800.1_953, -7_978.2_686, -10_980.7_129, -20_028.8_535, 8_148.2_822, 2_342.2_905, 567.7_608] ) # fmt: on self.assertTrue(torch_all_close(_UpperCAmelCase , _UpperCAmelCase , rtol=1E-2 ) ) def _lowercase ( self ) -> List[Any]: snake_case__ =UNetaDModel.from_pretrained('fusing/ncsnpp-ffhq-ve-dummy-update' ) model.to(_UpperCAmelCase ) snake_case__ =4 snake_case__ =3 snake_case__ =(32, 32) snake_case__ =torch.ones((batch_size, num_channels) + sizes ).to(_UpperCAmelCase ) snake_case__ =torch.tensor(batch_size * [1E-4] ).to(_UpperCAmelCase ) with torch.no_grad(): snake_case__ =model(_UpperCAmelCase , _UpperCAmelCase ).sample snake_case__ =output[0, -3:, -3:, -1].flatten().cpu() # fmt: off snake_case__ =torch.tensor([-0.0_325, -0.0_900, -0.0_869, -0.0_332, -0.0_725, -0.0_270, -0.0_101, 0.0_227, 0.0_256] ) # fmt: on self.assertTrue(torch_all_close(_UpperCAmelCase , _UpperCAmelCase , rtol=1E-2 ) ) def _lowercase ( self ) -> Optional[Any]: # not required for this model pass
538
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = {"configuration_vit_mae": ["VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMAEConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMAEForPreTraining", "ViTMAELayer", "ViTMAEModel", "ViTMAEPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "TFViTMAEForPreTraining", "TFViTMAEModel", "TFViTMAEPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
140
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def lowercase ( a , a , a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :int = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") SCREAMING_SNAKE_CASE_ :Optional[Any] = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(a ): os.makedirs(a ) SCREAMING_SNAKE_CASE_ :List[str] = model.state_dict() def to_tf_var_name(a ): for patt, repl in iter(a ): SCREAMING_SNAKE_CASE_ :Optional[Any] = name.replace(a , a ) return F"bert/{name}" def create_tf_var(a , a , a ): SCREAMING_SNAKE_CASE_ :int = tf.dtypes.as_dtype(tensor.dtype ) SCREAMING_SNAKE_CASE_ :Tuple = tf.get_variable(dtype=a , shape=tensor.shape , name=a , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(a ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: SCREAMING_SNAKE_CASE_ :Any = to_tf_var_name(a ) SCREAMING_SNAKE_CASE_ :List[str] = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): SCREAMING_SNAKE_CASE_ :Tuple = torch_tensor.T SCREAMING_SNAKE_CASE_ :List[Any] = create_tf_var(tensor=a , name=a , session=a ) tf.keras.backend.set_value(a , a ) SCREAMING_SNAKE_CASE_ :Tuple = session.run(a ) print(F"Successfully created {tf_name}: {np.allclose(a , a )}" ) SCREAMING_SNAKE_CASE_ :List[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(a , os.path.join(a , model_name.replace("-" , "_" ) + ".ckpt" ) ) def lowercase ( a=None ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :Tuple = argparse.ArgumentParser() parser.add_argument("--model_name" , type=a , required=a , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=a , default=a , required=a , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=a , required=a , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=a , required=a , help="Directory in which to save tensorflow model" ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = parser.parse_args(a ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=a , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
140
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class _snake_case ( A__ ): _lowercase : int = '''naver-clova-ix/donut-base-finetuned-docvqa''' _lowercase : List[Any] = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) _lowercase : Optional[Any] = '''document_qa''' _lowercase : Tuple = AutoProcessor _lowercase : Tuple = VisionEncoderDecoderModel _lowercase : str = ['''image''', '''text'''] _lowercase : List[str] = ['''text'''] def __init__( self , *a , **a) -> List[Any]: if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.') super().__init__(*_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE__ ( self , a , a) -> Optional[int]: SCREAMING_SNAKE_CASE = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' SCREAMING_SNAKE_CASE = task_prompt.replace('{user_input}' , _UpperCAmelCase) SCREAMING_SNAKE_CASE = self.pre_processor.tokenizer( _UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors='pt').input_ids SCREAMING_SNAKE_CASE = self.pre_processor(_UpperCAmelCase , return_tensors='pt').pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def SCREAMING_SNAKE_CASE__ ( self , a) -> int: return self.model.generate( inputs['pixel_values'].to(self.device) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_UpperCAmelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_UpperCAmelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_UpperCAmelCase , ).sequences def SCREAMING_SNAKE_CASE__ ( self , a) -> Union[str, Any]: SCREAMING_SNAKE_CASE = self.pre_processor.batch_decode(_UpperCAmelCase)[0] SCREAMING_SNAKE_CASE = sequence.replace(self.pre_processor.tokenizer.eos_token , '') SCREAMING_SNAKE_CASE = sequence.replace(self.pre_processor.tokenizer.pad_token , '') SCREAMING_SNAKE_CASE = re.sub(R'<.*?>' , '' , _UpperCAmelCase , count=1).strip() # remove first task start token SCREAMING_SNAKE_CASE = self.pre_processor.tokenajson(_UpperCAmelCase) return sequence["answer"]
73
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): super().__init__() self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self , _UpperCAmelCase = 1 , _UpperCAmelCase = 2_000 , _UpperCAmelCase = None , _UpperCAmelCase = "pil" , _UpperCAmelCase = True , **_UpperCAmelCase , ): __snake_case : Union[str, Any] = self.unet.config.sample_size __snake_case : Optional[int] = (batch_size, 3, img_size, img_size) __snake_case : Union[str, Any] = self.unet __snake_case : List[Any] = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase ) * self.scheduler.init_noise_sigma __snake_case : str = sample.to(self.device ) self.scheduler.set_timesteps(_UpperCAmelCase ) self.scheduler.set_sigmas(_UpperCAmelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __snake_case : Dict = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __snake_case : Dict = self.unet(_UpperCAmelCase , _UpperCAmelCase ).sample __snake_case : Optional[int] = self.scheduler.step_correct(_UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample # prediction step __snake_case : Dict = model(_UpperCAmelCase , _UpperCAmelCase ).sample __snake_case : Any = self.scheduler.step_pred(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ) __snake_case , __snake_case : Union[str, Any] = output.prev_sample, output.prev_sample_mean __snake_case : Union[str, Any] = sample_mean.clamp(0 , 1 ) __snake_case : str = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __snake_case : List[str] = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_UpperCAmelCase )
576
0
'''simple docstring''' def _a ( _lowercase : int ): '''simple docstring''' __UpperCAmelCase : str = generate_pascal_triangle(_lowercase ) for row_idx in range(_lowercase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''' ) else: print(triangle[row_idx][col_idx] , end='''''' ) print() def _a ( _lowercase : int ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCAmelCase : list[list[int]] = [] for current_row_idx in range(_lowercase ): __UpperCAmelCase : Optional[Any] = populate_current_row(_lowercase , _lowercase ) triangle.append(_lowercase ) return triangle def _a ( _lowercase : list[list[int]] , _lowercase : int ): '''simple docstring''' __UpperCAmelCase : Optional[int] = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __UpperCAmelCase , __UpperCAmelCase : List[str] = 1, 1 for current_col_idx in range(1 , _lowercase ): calculate_current_element( _lowercase , _lowercase , _lowercase , _lowercase ) return current_row def _a ( _lowercase : list[list[int]] , _lowercase : list[int] , _lowercase : int , _lowercase : int , ): '''simple docstring''' __UpperCAmelCase : Optional[int] = triangle[current_row_idx - 1][current_col_idx - 1] __UpperCAmelCase : List[str] = triangle[current_row_idx - 1][current_col_idx] __UpperCAmelCase : int = above_to_left_elt + above_to_right_elt def _a ( _lowercase : int ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCAmelCase : list[list[int]] = [[1]] for row_index in range(1 , _lowercase ): __UpperCAmelCase : List[str] = [0] + result[-1] + [0] __UpperCAmelCase : Union[str, Any] = row_index + 1 # Calculate the number of distinct elements in a row __UpperCAmelCase : List[Any] = sum(divmod(_lowercase , 2 ) ) __UpperCAmelCase : Optional[int] = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __UpperCAmelCase : Optional[Any] = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __UpperCAmelCase : Dict = row_first_half + row_second_half result.append(_lowercase ) return result def _a ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(_lowercase : Callable , _lowercase : int ) -> None: __UpperCAmelCase : str = F'{func.__name__}({value})' __UpperCAmelCase : int = timeit(F'__main__.{call}' , setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'{call:38} -- {timing:.4f} seconds' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(_lowercase , _lowercase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
266
'''simple docstring''' import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): __UpperCAmelCase :Optional[Any] = True from torch.cuda.amp import autocast __UpperCAmelCase :Any = logging.getLogger(__name__) def _a ( _lowercase : List[str]=None , _lowercase : Union[str, Any]=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=_lowercase ) @dataclass class a : """simple docstring""" SCREAMING_SNAKE_CASE : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=_a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) SCREAMING_SNAKE_CASE : Optional[bool] = field( default=_a , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1 , metadata={"help": "The dropout ratio for the attention probabilities."} ) SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1 , metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1 , metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." } , ) SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1 , metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."} , ) SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.05 , metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) } , ) SCREAMING_SNAKE_CASE : Optional[float] = field(default=0.0 , metadata={"help": "The LayerDrop probability."} ) @dataclass class a : """simple docstring""" SCREAMING_SNAKE_CASE : Optional[str] = field( default=_a , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default="train+validation" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) SCREAMING_SNAKE_CASE : bool = field( default=_a , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=_a , metadata={"help": "The number of processes to use for the preprocessing."} , ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=_a , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) SCREAMING_SNAKE_CASE : Optional[int] = field( default=_a , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) } , ) SCREAMING_SNAKE_CASE : List[str] = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"] , metadata={"help": "A list of characters to remove from the transcripts."} , ) @dataclass class a : """simple docstring""" SCREAMING_SNAKE_CASE : WavaVecaProcessor SCREAMING_SNAKE_CASE : Union[bool, str] = True SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[int] = None def __call__( self : Any , snake_case : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods __UpperCAmelCase : List[Any] = [{'''input_values''': feature['''input_values''']} for feature in features] __UpperCAmelCase : List[str] = [{'''input_ids''': feature['''labels''']} for feature in features] __UpperCAmelCase : List[Any] = self.processor.pad( snake_case , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) __UpperCAmelCase : Union[str, Any] = self.processor.pad( labels=snake_case , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly __UpperCAmelCase : List[str] = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) __UpperCAmelCase : str = labels return batch class a ( _a ): """simple docstring""" def lowerCamelCase__ ( self : Optional[Any] , snake_case : nn.Module , snake_case : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: model.train() __UpperCAmelCase : Any = self._prepare_inputs(snake_case ) if self.use_amp: with autocast(): __UpperCAmelCase : Optional[Any] = self.compute_loss(snake_case , snake_case ) else: __UpperCAmelCase : int = self.compute_loss(snake_case , snake_case ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": __UpperCAmelCase : Any = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __UpperCAmelCase : Tuple = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(f'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']' ) if self.args.gradient_accumulation_steps > 1: __UpperCAmelCase : Optional[int] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(snake_case ).backward() elif self.use_apex: with amp.scale_loss(snake_case , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(snake_case ) else: loss.backward() return loss.detach() def _a ( ): '''simple docstring''' __UpperCAmelCase : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __UpperCAmelCase : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __UpperCAmelCase : int = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , _lowercase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: __UpperCAmelCase : str = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) __UpperCAmelCase : Union[str, Any] = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer __UpperCAmelCase : Dict = F'[{"".join(data_args.chars_to_ignore )}]' def remove_special_characters(_lowercase : Any ): __UpperCAmelCase : str = re.sub(_lowercase , '''''' , batch['''sentence'''] ).lower() + ''' ''' return batch __UpperCAmelCase : Dict = train_dataset.map(_lowercase , remove_columns=['''sentence'''] ) __UpperCAmelCase : Optional[Any] = eval_dataset.map(_lowercase , remove_columns=['''sentence'''] ) def extract_all_chars(_lowercase : List[Any] ): __UpperCAmelCase : Tuple = ''' '''.join(batch['''text'''] ) __UpperCAmelCase : List[Any] = list(set(_lowercase ) ) return {"vocab": [vocab], "all_text": [all_text]} __UpperCAmelCase : Dict = train_dataset.map( _lowercase , batched=_lowercase , batch_size=-1 , keep_in_memory=_lowercase , remove_columns=train_dataset.column_names , ) __UpperCAmelCase : Tuple = train_dataset.map( _lowercase , batched=_lowercase , batch_size=-1 , keep_in_memory=_lowercase , remove_columns=eval_dataset.column_names , ) __UpperCAmelCase : Any = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) __UpperCAmelCase : List[str] = {v: k for k, v in enumerate(_lowercase )} __UpperCAmelCase : str = vocab_dict[''' '''] del vocab_dict[" "] __UpperCAmelCase : Dict = len(_lowercase ) __UpperCAmelCase : Optional[Any] = len(_lowercase ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(_lowercase , _lowercase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase : Optional[Any] = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) __UpperCAmelCase : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=_lowercase , return_attention_mask=_lowercase ) __UpperCAmelCase : Dict = WavaVecaProcessor(feature_extractor=_lowercase , tokenizer=_lowercase ) __UpperCAmelCase : Tuple = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: __UpperCAmelCase : Any = min(len(_lowercase ) , data_args.max_train_samples ) __UpperCAmelCase : Any = train_dataset.select(range(_lowercase ) ) if data_args.max_val_samples is not None: __UpperCAmelCase : Optional[int] = eval_dataset.select(range(data_args.max_val_samples ) ) __UpperCAmelCase : List[Any] = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(_lowercase : List[Any] ): __UpperCAmelCase , __UpperCAmelCase : int = torchaudio.load(batch['''path'''] ) __UpperCAmelCase : Optional[int] = resampler(_lowercase ).squeeze().numpy() __UpperCAmelCase : Optional[int] = 16000 __UpperCAmelCase : Union[str, Any] = batch['''text'''] return batch __UpperCAmelCase : int = train_dataset.map( _lowercase , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) __UpperCAmelCase : Any = eval_dataset.map( _lowercase , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(_lowercase : Tuple ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), F'Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.' __UpperCAmelCase : int = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(_lowercase ) return batch __UpperCAmelCase : int = train_dataset.map( _lowercase , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , ) __UpperCAmelCase : Tuple = eval_dataset.map( _lowercase , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_lowercase , num_proc=data_args.preprocessing_num_workers , ) # Metric __UpperCAmelCase : List[Any] = datasets.load_metric('''wer''' ) def compute_metrics(_lowercase : Tuple ): __UpperCAmelCase : Optional[int] = pred.predictions __UpperCAmelCase : int = np.argmax(_lowercase , axis=-1 ) __UpperCAmelCase : str = processor.tokenizer.pad_token_id __UpperCAmelCase : Union[str, Any] = processor.batch_decode(_lowercase ) # we do not want to group tokens when computing the metrics __UpperCAmelCase : Tuple = processor.batch_decode(pred.label_ids , group_tokens=_lowercase ) __UpperCAmelCase : Optional[Any] = wer_metric.compute(predictions=_lowercase , references=_lowercase ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator __UpperCAmelCase : List[str] = DataCollatorCTCWithPadding(processor=_lowercase , padding=_lowercase ) # Initialize our Trainer __UpperCAmelCase : List[str] = CTCTrainer( model=_lowercase , data_collator=_lowercase , args=_lowercase , compute_metrics=_lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: __UpperCAmelCase : Optional[int] = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): __UpperCAmelCase : List[Any] = model_args.model_name_or_path else: __UpperCAmelCase : Optional[int] = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) __UpperCAmelCase : List[Any] = trainer.train(resume_from_checkpoint=_lowercase ) trainer.save_model() __UpperCAmelCase : Tuple = train_result.metrics __UpperCAmelCase : Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowercase ) ) __UpperCAmelCase : Tuple = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''train''' , _lowercase ) trainer.save_metrics('''train''' , _lowercase ) trainer.save_state() # Evaluation __UpperCAmelCase : Dict = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __UpperCAmelCase : Tuple = trainer.evaluate() __UpperCAmelCase : List[Any] = data_args.max_val_samples if data_args.max_val_samples is not None else len(_lowercase ) __UpperCAmelCase : List[str] = min(_lowercase , len(_lowercase ) ) trainer.log_metrics('''eval''' , _lowercase ) trainer.save_metrics('''eval''' , _lowercase ) return results if __name__ == "__main__": main()
266
1
"""simple docstring""" def __snake_case ( __A ) -> Tuple: lowercase : List[str] = [0] * len(__A ) lowercase : str = [] lowercase : Optional[int] = [] lowercase : List[str] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__A ) ): if indegree[i] == 0: queue.append(__A ) while queue: lowercase : List[Any] = queue.pop(0 ) cnt += 1 topo.append(__A ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(__A ) if cnt != len(__A ): print("""Cycle exists""" ) else: print(__A ) # Adjacency List of Graph lowerCAmelCase: Optional[Any] ={0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
607
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class lowerCamelCase__ ( __UpperCamelCase , unittest.TestCase ): __UpperCAmelCase = MvpTokenizer __UpperCAmelCase = MvpTokenizerFast __UpperCAmelCase = True __UpperCAmelCase = filter_roberta_detectors def _UpperCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" super().setUp() lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] lowercase : Optional[Any] = dict(zip(snake_case , range(len(snake_case ) ) ) ) lowercase : Dict = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowercase : int = {"""unk_token""": """<unk>"""} lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(snake_case ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(snake_case ) ) def _UpperCAmelCase ( self , **snake_case ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case ) def _UpperCAmelCase ( self , **snake_case ) -> Dict: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **snake_case ) def _UpperCAmelCase ( self , snake_case ) -> Optional[int]: """simple docstring""" return "lower newer", "lower newer" @cached_property def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" return MvpTokenizer.from_pretrained("""RUCAIBox/mvp""" ) @cached_property def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" return MvpTokenizerFast.from_pretrained("""RUCAIBox/mvp""" ) @require_torch def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" lowercase : str = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] lowercase : Dict = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : Union[str, Any] = tokenizer(snake_case , max_length=len(snake_case ) , padding=snake_case , return_tensors="""pt""" ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowercase : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(snake_case , snake_case ) # Test that special tokens are reset @require_torch def _UpperCAmelCase ( self ) -> Tuple: """simple docstring""" lowercase : List[str] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : Any = tokenizer(snake_case , padding=snake_case , return_tensors="""pt""" ) # check if input_ids are returned and no labels self.assertIn("""input_ids""" , snake_case ) self.assertIn("""attention_mask""" , snake_case ) self.assertNotIn("""labels""" , snake_case ) self.assertNotIn("""decoder_attention_mask""" , snake_case ) @require_torch def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" lowercase : Optional[int] = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : int = tokenizer(text_target=snake_case , max_length=3_2 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(3_2 , targets["""input_ids"""].shape[1] ) @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : str = tokenizer( ["""I am a small frog""" * 1_0_2_4, """I am a small frog"""] , padding=snake_case , truncation=snake_case , return_tensors="""pt""" ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual(batch.input_ids.shape , (2, 1_0_2_4) ) @require_torch def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" lowercase : List[Any] = ["""A long paragraph for summarization."""] lowercase : List[str] = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : List[str] = tokenizer(snake_case , text_target=snake_case , return_tensors="""pt""" ) lowercase : Union[str, Any] = inputs["""input_ids"""] lowercase : Optional[Any] = inputs["""labels"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def _UpperCAmelCase ( self ) -> int: """simple docstring""" pass def _UpperCAmelCase ( self ) -> Tuple: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase : List[str] = self.rust_tokenizer_class.from_pretrained(snake_case , **snake_case ) lowercase : Optional[Any] = self.tokenizer_class.from_pretrained(snake_case , **snake_case ) lowercase : str = """A, <mask> AllenNLP sentence.""" lowercase : int = tokenizer_r.encode_plus(snake_case , add_special_tokens=snake_case , return_token_type_ids=snake_case ) lowercase : str = tokenizer_p.encode_plus(snake_case , add_special_tokens=snake_case , return_token_type_ids=snake_case ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) lowercase : Tuple = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) lowercase : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( snake_case , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( snake_case , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
607
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : List[str] =['image_processor', 'tokenizer'] __lowerCamelCase : Tuple ='ViTImageProcessor' __lowerCamelCase : Optional[int] =('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : Optional[int] , __lowercase : int=None , __lowercase : Any=None , **__lowercase : Any ): '''simple docstring''' __a = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __lowercase , ) __a = kwargs.pop("""feature_extractor""" ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__lowercase , __lowercase ) def __call__( self : List[Any] , __lowercase : Optional[int]=None , __lowercase : Optional[int]=None , __lowercase : List[str]=None , __lowercase : Tuple=None , **__lowercase : Optional[int] ): '''simple docstring''' if text is None and visual_prompt is None and images is None: raise ValueError("""You have to specify either text, visual prompt or images.""" ) if text is not None and visual_prompt is not None: raise ValueError("""You have to specify exactly one type of prompt. Either text or visual prompt.""" ) if text is not None: __a = self.tokenizer(__lowercase , return_tensors=__lowercase , **__lowercase ) if visual_prompt is not None: __a = self.image_processor(__lowercase , return_tensors=__lowercase , **__lowercase ) if images is not None: __a = self.image_processor(__lowercase , return_tensors=__lowercase , **__lowercase ) if visual_prompt is not None and images is not None: __a = { """pixel_values""": image_features.pixel_values, """conditional_pixel_values""": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: __a = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: __a = { """conditional_pixel_values""": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**__lowercase ) , tensor_type=__lowercase ) def UpperCamelCase_ ( self : List[str] , *__lowercase : int , **__lowercase : List[str] ): '''simple docstring''' return self.tokenizer.batch_decode(*__lowercase , **__lowercase ) def UpperCamelCase_ ( self : Optional[Any] , *__lowercase : List[str] , **__lowercase : Any ): '''simple docstring''' return self.tokenizer.decode(*__lowercase , **__lowercase ) @property def UpperCamelCase_ ( self : Any ): '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __lowercase , ) return self.image_processor_class @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __lowercase , ) return self.image_processor
547
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset lowerCamelCase__ = random.Random() def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int=1.0 , _SCREAMING_SNAKE_CASE : Any=None , _SCREAMING_SNAKE_CASE : Any=None ): """simple docstring""" if rng is None: __a = global_rng __a = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Dict , __lowercase : Tuple , __lowercase : Tuple=7 , __lowercase : Optional[int]=400 , __lowercase : int=2000 , __lowercase : List[Any]=2048 , __lowercase : List[str]=128 , __lowercase : Union[str, Any]=1 , __lowercase : str=512 , __lowercase : List[str]=30 , __lowercase : Tuple=44100 , ): '''simple docstring''' __a = parent __a = batch_size __a = min_seq_length __a = max_seq_length __a = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __a = spectrogram_length __a = feature_size __a = num_audio_channels __a = hop_length __a = chunk_length __a = sampling_rate def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def UpperCamelCase_ ( self : Optional[int] , __lowercase : Optional[int]=False , __lowercase : Any=False ): '''simple docstring''' def _flatten(__lowercase : Tuple ): return list(itertools.chain(*__lowercase ) ) if equal_length: __a = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __a = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __a = [np.asarray(__lowercase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Dict =TvltFeatureExtractor def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = TvltFeatureExtractionTester(self ) def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(__lowercase , """spectrogram_length""" ) ) self.assertTrue(hasattr(__lowercase , """feature_size""" ) ) self.assertTrue(hasattr(__lowercase , """num_audio_channels""" ) ) self.assertTrue(hasattr(__lowercase , """hop_length""" ) ) self.assertTrue(hasattr(__lowercase , """chunk_length""" ) ) self.assertTrue(hasattr(__lowercase , """sampling_rate""" ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a = feat_extract_first.save_pretrained(__lowercase )[0] check_json_file_has_correct_format(__lowercase ) __a = self.feature_extraction_class.from_pretrained(__lowercase ) __a = feat_extract_first.to_dict() __a = feat_extract_second.to_dict() __a = dict_first.pop("""mel_filters""" ) __a = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(__lowercase , __lowercase ) ) self.assertEqual(__lowercase , __lowercase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' __a = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a = os.path.join(__lowercase , """feat_extract.json""" ) feat_extract_first.to_json_file(__lowercase ) __a = self.feature_extraction_class.from_json_file(__lowercase ) __a = feat_extract_first.to_dict() __a = feat_extract_second.to_dict() __a = dict_first.pop("""mel_filters""" ) __a = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(__lowercase , __lowercase ) ) self.assertEqual(__lowercase , __lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' # Initialize feature_extractor __a = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 __a = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __a = [np.asarray(__lowercase ) for speech_input in speech_inputs] # Test not batched input __a = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched __a = feature_extractor(__lowercase , return_tensors="""np""" , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking __a = feature_extractor( __lowercase , return_tensors="""np""" , sampling_rate=44100 , mask_audio=__lowercase ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. __a = [floats_list((1, x) )[0] for x in (800, 800, 800)] __a = np.asarray(__lowercase ) __a = feature_extractor(__lowercase , return_tensors="""np""" , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def UpperCamelCase_ ( self : Optional[int] , __lowercase : str ): '''simple docstring''' __a = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech __a = ds.sort("""id""" ).select(range(__lowercase ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = self._load_datasamples(1 ) __a = TvltFeatureExtractor() __a = feature_extractor(__lowercase , return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) __a = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , __lowercase , atol=1E-4 ) )
547
1
def lowerCAmelCase_ ( __lowerCamelCase ): stooge(__lowerCamelCase , 0 , len(__lowerCamelCase ) - 1 ) return arr def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: __snake_case , __snake_case : Any = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: __snake_case : List[str] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(__lowerCamelCase , __lowerCamelCase , (h - t) ) # Recursively sort last 2/3 elements stooge(__lowerCamelCase , i + t , (__lowerCamelCase) ) # Recursively sort first 2/3 elements stooge(__lowerCamelCase , __lowerCamelCase , (h - t) ) if __name__ == "__main__": _snake_case : List[Any] = input("Enter numbers separated by a comma:\n").strip() _snake_case : str = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
81
def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = [] __lowercase = set({"(", "[", "{"} ) __lowercase = set({")", "]", "}"} ) __lowercase = {"{": "}", "[": "]", "(": ")"} for i in range(len(_SCREAMING_SNAKE_CASE ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(_SCREAMING_SNAKE_CASE ) == 0 or (len(_SCREAMING_SNAKE_CASE ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(_SCREAMING_SNAKE_CASE ) == 0 def snake_case_ ( ): __lowercase = input("Enter sequence of brackets: " ) if is_balanced(_SCREAMING_SNAKE_CASE ): print(_SCREAMING_SNAKE_CASE , "is balanced" ) else: print(_SCREAMING_SNAKE_CASE , "is not balanced" ) if __name__ == "__main__": main()
402
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case = { """configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""], """tokenization_roberta""": ["""RobertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""RobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaForCausalLM""", """RobertaForMaskedLM""", """RobertaForMultipleChoice""", """RobertaForQuestionAnswering""", """RobertaForSequenceClassification""", """RobertaForTokenClassification""", """RobertaModel""", """RobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaForCausalLM""", """TFRobertaForMaskedLM""", """TFRobertaForMultipleChoice""", """TFRobertaForQuestionAnswering""", """TFRobertaForSequenceClassification""", """TFRobertaForTokenClassification""", """TFRobertaMainLayer""", """TFRobertaModel""", """TFRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """FlaxRobertaForCausalLM""", """FlaxRobertaForMaskedLM""", """FlaxRobertaForMultipleChoice""", """FlaxRobertaForQuestionAnswering""", """FlaxRobertaForSequenceClassification""", """FlaxRobertaForTokenClassification""", """FlaxRobertaModel""", """FlaxRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
488
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { """nvidia/segformer-b0-finetuned-ade-512-512""": ( """https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json""" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : str = '''segformer''' def __init__( self : List[Any] , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : List[str]=[2, 2, 2, 2] , UpperCAmelCase_ : Optional[int]=[8, 4, 2, 1] , UpperCAmelCase_ : Union[str, Any]=[32, 64, 160, 256] , UpperCAmelCase_ : int=[7, 3, 3, 3] , UpperCAmelCase_ : str=[4, 2, 2, 2] , UpperCAmelCase_ : List[str]=[1, 2, 5, 8] , UpperCAmelCase_ : List[Any]=[4, 4, 4, 4] , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=1E-6 , UpperCAmelCase_ : List[str]=256 , UpperCAmelCase_ : Dict=255 , **UpperCAmelCase_ : Dict , ): super().__init__(**UpperCAmelCase_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( "Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be" " removed, as the behaviour will default to that of reshape_last_stage = True." , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : Dict = num_channels SCREAMING_SNAKE_CASE : Any = num_encoder_blocks SCREAMING_SNAKE_CASE : Tuple = depths SCREAMING_SNAKE_CASE : Any = sr_ratios SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_sizes SCREAMING_SNAKE_CASE : int = patch_sizes SCREAMING_SNAKE_CASE : Optional[int] = strides SCREAMING_SNAKE_CASE : Tuple = mlp_ratios SCREAMING_SNAKE_CASE : Any = num_attention_heads SCREAMING_SNAKE_CASE : int = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = classifier_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Dict = drop_path_rate SCREAMING_SNAKE_CASE : Any = layer_norm_eps SCREAMING_SNAKE_CASE : Any = decoder_hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.get("reshape_last_stage" , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = version.parse('''1.11''' ) @property def _A ( self : Optional[Any] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _A ( self : List[str] ): return 1E-4 @property def _A ( self : Any ): return 12
488
1
from functools import reduce _UpperCamelCase = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def lowerCAmelCase__( lowercase : str = N ) -> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda lowercase , lowercase : str(int(lowercase ) * int(lowercase ) ) , n[i : i + 13] ) ) for i in range(len(lowercase ) - 12 ) ) if __name__ == "__main__": print(F'''{solution() = }''')
243
from functools import reduce _UpperCamelCase = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def lowerCAmelCase__( lowercase : str = N ) -> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda lowercase , lowercase : str(int(lowercase ) * int(lowercase ) ) , n[i : i + 13] ) ) for i in range(len(lowercase ) - 12 ) ) if __name__ == "__main__": print(F'''{solution() = }''')
243
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a__ = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = ['''PoolFormerFeatureExtractor'''] a__ = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
713
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( __a : Tuple ,__a : Dict ,__a : int=None ) -> Any: """simple docstring""" assert torch_layer.weight.shape == weight.shape, F"""{torch_layer} layer.weight does not match""" _a : int = nn.Parameter(__a ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F"""{torch_layer} layer.bias does not match""" _a : Tuple = nn.Parameter(__a ) def __UpperCAmelCase ( __a : List[Any] ,__a : List[str] ,__a : Optional[Any] ) -> Dict: """simple docstring""" _a : int = np.asarray(weights[0] ) _a : Union[str, Any] = np.asarray(weights[1] ) _a : List[str] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key ,torch.tensor(__a ).transpose(1 ,2 ).contiguous().view(-1 ,__a ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(__a ).transpose(1 ,2 ).contiguous().view(-1 ,__a ) ,) set_param( torch_layer.output.dense ,torch.tensor(__a ).view(-1 ,__a ).contiguous().transpose(0 ,1 ) ,) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Optional[Any] ,__a : Any ) -> Optional[Any]: """simple docstring""" _a : Union[str, Any] = np.asarray(weights[0] ) _a : Optional[Any] = np.asarray(weights[1] ) _a : Dict = np.asarray(weights[2] ) _a : Optional[Any] = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query ,torch.tensor(__a ).transpose(1 ,2 ).contiguous().view(-1 ,__a ) ,) set_param( torch_layer.self_attention.key ,torch.tensor(__a ).transpose(1 ,2 ).contiguous().view(-1 ,__a ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(__a ).transpose(1 ,2 ).contiguous().view(-1 ,__a ) ,) set_param( torch_layer.output.dense ,torch.tensor(__a ).view(-1 ,__a ).contiguous().transpose(0 ,1 ) ,) def __UpperCAmelCase ( __a : Tuple ,__a : Tuple ,__a : List[str] ) -> Dict: """simple docstring""" _a : Any = weights[0][0][0] _a : int = np.asarray(layer_norm_a[0] ) _a : List[Any] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm ,torch.tensor(__a ) ,torch.tensor(__a ) ,) # lsh weights + output _a : Tuple = weights[0][1] if len(__a ) < 4: set_layer_weights_in_torch_lsh(__a ,torch_block.attention ,__a ) else: set_layer_weights_in_torch_local(__a ,torch_block.attention ,__a ) # intermediate weighs _a : Dict = weights[2][0][1][2] # Chunked Feed Forward if len(__a ) == 4: _a : str = intermediate_weights[2] # layernorm 2 _a : Any = np.asarray(intermediate_weights[0][0] ) _a : Optional[Any] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm ,torch.tensor(__a ) ,torch.tensor(__a ) ,) # intermediate dense _a : List[str] = np.asarray(intermediate_weights[1][0] ) _a : Optional[Any] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense ,torch.tensor(__a ).transpose(0 ,1 ).contiguous() ,torch.tensor(__a ) ,) # intermediate out _a : Optional[int] = np.asarray(intermediate_weights[4][0] ) _a : Optional[Any] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense ,torch.tensor(__a ).transpose(0 ,1 ).contiguous() ,torch.tensor(__a ) ,) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Any ,__a : Union[str, Any] ) -> List[str]: """simple docstring""" _a : List[Any] = torch_model.reformer # word embeds _a : Dict = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings ,torch.tensor(__a ) ,) if isinstance(weights[3] ,__a ): _a : int = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _a : Tuple = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F"""{position_embeddings[emb_idx]} emb does not match""" _a : int = nn.Parameter(torch.tensor(__a ) ) _a : Optional[Any] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( __a ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _a : str = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(__a ,__a ,__a ) # output layer norm _a : Union[str, Any] = np.asarray(weights[7][0] ) _a : Optional[Any] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm ,torch.tensor(__a ) ,torch.tensor(__a ) ,) # output embeddings _a : Tuple = np.asarray(weights[9][0] ) _a : Union[str, Any] = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder ,torch.tensor(__a ).transpose(0 ,1 ).contiguous() ,torch.tensor(__a ) ,) def __UpperCAmelCase ( __a : int ,__a : Optional[Any] ,__a : int ) -> str: """simple docstring""" _a : List[str] = ReformerConfig.from_json_file(__a ) print(F"""Building PyTorch model from configuration: {config}""" ) _a : Optional[Any] = ReformerModelWithLMHead(__a ) with open(__a ,'''rb''' ) as f: _a : Optional[Any] = pickle.load(__a )['''weights'''] set_model_weights_in_torch(__a ,__a ,config.hidden_size ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() ,__a ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a__ = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
578
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : Optional[int] = { 'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json', # See all LeViT models at https://huggingface.co/models?filter=levit } class _UpperCamelCase ( lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE:Union[str, Any] = '''levit''' def __init__( self , _a=224 , _a=3 , _a=3 , _a=2 , _a=1 , _a=16 , _a=[128, 256, 384] , _a=[4, 8, 12] , _a=[4, 4, 4] , _a=[16, 16, 16] , _a=0 , _a=[2, 2, 2] , _a=[2, 2, 2] , _a=0.02 , **_a , ): """simple docstring""" super().__init__(**_a ) a__ = image_size a__ = num_channels a__ = kernel_size a__ = stride a__ = padding a__ = hidden_sizes a__ = num_attention_heads a__ = depths a__ = key_dim a__ = drop_path_rate a__ = patch_size a__ = attention_ratio a__ = mlp_ratio a__ = initializer_range a__ = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class _UpperCamelCase ( lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE:Optional[Any] = version.parse('1.11' ) @property def lowercase__ ( self ): """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowercase__ ( self ): """simple docstring""" return 1e-4
394
'''simple docstring''' from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ : str SCREAMING_SNAKE_CASE__ : str = None @staticmethod def __UpperCAmelCase ( ): """simple docstring""" raise NotImplementedError def __UpperCAmelCase ( self : int , snake_case : Dict , snake_case : int , snake_case : str , **snake_case : Optional[int] ): """simple docstring""" raise NotImplementedError def __UpperCAmelCase ( self : str , snake_case : Dict ): """simple docstring""" raise NotImplementedError def __UpperCAmelCase ( self : Any ): """simple docstring""" if not self.is_available(): raise RuntimeError( F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def __UpperCAmelCase ( cls : Union[str, Any] ): """simple docstring""" return F"""`pip install {cls.pip_package or cls.name}`""" class SCREAMING_SNAKE_CASE ( lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = '''optuna''' @staticmethod def __UpperCAmelCase ( ): """simple docstring""" return is_optuna_available() def __UpperCAmelCase ( self : Any , snake_case : Tuple , snake_case : int , snake_case : str , **snake_case : Optional[int] ): """simple docstring""" return run_hp_search_optuna(snake_case , snake_case , snake_case , **snake_case ) def __UpperCAmelCase ( self : Optional[Any] , snake_case : Dict ): """simple docstring""" return default_hp_space_optuna(snake_case ) class SCREAMING_SNAKE_CASE ( lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = '''ray''' SCREAMING_SNAKE_CASE__ : Optional[Any] = '''\'ray[tune]\'''' @staticmethod def __UpperCAmelCase ( ): """simple docstring""" return is_ray_available() def __UpperCAmelCase ( self : List[str] , snake_case : Tuple , snake_case : int , snake_case : str , **snake_case : str ): """simple docstring""" return run_hp_search_ray(snake_case , snake_case , snake_case , **snake_case ) def __UpperCAmelCase ( self : int , snake_case : Optional[Any] ): """simple docstring""" return default_hp_space_ray(snake_case ) class SCREAMING_SNAKE_CASE ( lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = '''sigopt''' @staticmethod def __UpperCAmelCase ( ): """simple docstring""" return is_sigopt_available() def __UpperCAmelCase ( self : int , snake_case : Optional[int] , snake_case : int , snake_case : str , **snake_case : Dict ): """simple docstring""" return run_hp_search_sigopt(snake_case , snake_case , snake_case , **snake_case ) def __UpperCAmelCase ( self : int , snake_case : List[Any] ): """simple docstring""" return default_hp_space_sigopt(snake_case ) class SCREAMING_SNAKE_CASE ( lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = '''wandb''' @staticmethod def __UpperCAmelCase ( ): """simple docstring""" return is_wandb_available() def __UpperCAmelCase ( self : Dict , snake_case : List[str] , snake_case : int , snake_case : str , **snake_case : Optional[Any] ): """simple docstring""" return run_hp_search_wandb(snake_case , snake_case , snake_case , **snake_case ) def __UpperCAmelCase ( self : Union[str, Any] , snake_case : int ): """simple docstring""" return default_hp_space_wandb(snake_case ) SCREAMING_SNAKE_CASE_ = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowerCamelCase__ ( ) -> str: """simple docstring""" _snake_case : Optional[Any] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(a__) > 0: _snake_case : Any = available_backends[0].name if len(a__) > 1: logger.info( F"""{len(a__)} hyperparameter search backends available. Using {name} as the default.""") return name raise RuntimeError( 'No hyperparameter search backend available.\n' + '\n'.join( F""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values()))
517
0
'''simple docstring''' _lowerCamelCase : Optional[Any] = { """A""": """.-""", """B""": """-...""", """C""": """-.-.""", """D""": """-..""", """E""": """.""", """F""": """..-.""", """G""": """--.""", """H""": """....""", """I""": """..""", """J""": """.---""", """K""": """-.-""", """L""": """.-..""", """M""": """--""", """N""": """-.""", """O""": """---""", """P""": """.--.""", """Q""": """--.-""", """R""": """.-.""", """S""": """...""", """T""": """-""", """U""": """..-""", """V""": """...-""", """W""": """.--""", """X""": """-..-""", """Y""": """-.--""", """Z""": """--..""", """1""": """.----""", """2""": """..---""", """3""": """...--""", """4""": """....-""", """5""": """.....""", """6""": """-....""", """7""": """--...""", """8""": """---..""", """9""": """----.""", """0""": """-----""", """&""": """.-...""", """@""": """.--.-.""", """:""": """---...""", """,""": """--..--""", """.""": """.-.-.-""", """'""": """.----.""", """\"""": """.-..-.""", """?""": """..--..""", """/""": """-..-.""", """=""": """-...-""", """+""": """.-.-.""", """-""": """-....-""", """(""": """-.--.""", """)""": """-.--.-""", """!""": """-.-.--""", """ """: """/""" } # Exclamation mark is not in ITU-R recommendation # fmt: on _lowerCamelCase : Optional[Any] = {value: key for key, value in MORSE_CODE_DICT.items()} def _lowerCAmelCase ( __a ) -> str: '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def _lowerCAmelCase ( __a ) -> str: '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def _lowerCAmelCase ( ) -> None: '''simple docstring''' _UpperCamelCase :Union[str, Any] ="""Morse code here!""" print(__a ) _UpperCamelCase :List[Any] =encrypt(__a ) print(__a ) _UpperCamelCase :Optional[int] =decrypt(__a ) print(__a ) if __name__ == "__main__": main()
704
'''simple docstring''' from graphs.minimum_spanning_tree_kruskal import kruskal def _lowerCAmelCase ( ) -> Dict: '''simple docstring''' _UpperCamelCase :int =9 _UpperCamelCase :Optional[int] =[ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _UpperCamelCase :Optional[int] =kruskal(__a , __a ) _UpperCamelCase :Union[str, Any] =[ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(__a ) == sorted(__a )
512
0
def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =len(lowercase__ ) print("The following activities are selected:" ) # The first activity is always selected UpperCAmelCase_ =0 print(lowercase__ , end="," ) # Consider rest of the activities for j in range(lowercase__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase__ , end="," ) UpperCAmelCase_ =j if __name__ == "__main__": import doctest doctest.testmod() __lowercase : Dict =[1, 3, 0, 5, 8, 5] __lowercase : List[str] =[2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
54
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if b == 0: return (1, 0) ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , a % b ) UpperCAmelCase_ =a // b return (y, x - k * y) def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) if b < 0: UpperCAmelCase_ =(b % n + n) % n return b def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =invert_modulo(lowercase__ , lowercase__ ), invert_modulo(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
54
1
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class __snake_case ( _lowercase , unittest.TestCase): snake_case__ : List[str] = MvpTokenizer snake_case__ : Optional[int] = MvpTokenizerFast snake_case__ : Union[str, Any] = True snake_case__ : Optional[Any] = filter_roberta_detectors def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" super().setUp() _lowerCamelCase : List[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _lowerCamelCase : str = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : List[str] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _lowerCamelCase : Optional[int] = {'''unk_token''': '''<unk>'''} _lowerCamelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : str , **__lowerCAmelCase : Any ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any , **__lowerCAmelCase : List[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : int ): """simple docstring""" return "lower newer", "lower newer" @cached_property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return MvpTokenizer.from_pretrained('''RUCAIBox/mvp''' ) @cached_property def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return MvpTokenizerFast.from_pretrained('''RUCAIBox/mvp''' ) @require_torch def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] _lowerCamelCase : Dict = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCamelCase : List[str] = tokenizer(__lowerCAmelCase , max_length=len(__lowerCAmelCase ) , padding=__lowerCAmelCase , return_tensors='''pt''' ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _lowerCamelCase : int = batch.input_ids.tolist()[0] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Test that special tokens are reset @require_torch def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : Optional[int] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCamelCase : int = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors='''pt''' ) # check if input_ids are returned and no labels self.assertIn('''input_ids''' , __lowerCAmelCase ) self.assertIn('''attention_mask''' , __lowerCAmelCase ) self.assertNotIn('''labels''' , __lowerCAmelCase ) self.assertNotIn('''decoder_attention_mask''' , __lowerCAmelCase ) @require_torch def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : int = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCamelCase : Optional[int] = tokenizer(text_target=__lowerCAmelCase , max_length=3_2 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(3_2 , targets['''input_ids'''].shape[1] ) @require_torch def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCamelCase : int = tokenizer( ['''I am a small frog''' * 1_0_2_4, '''I am a small frog'''] , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors='''pt''' ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(batch.input_ids.shape , (2, 1_0_2_4) ) @require_torch def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Any = ['''A long paragraph for summarization.'''] _lowerCamelCase : List[str] = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCamelCase : Union[str, Any] = tokenizer(__lowerCAmelCase , text_target=__lowerCAmelCase , return_tensors='''pt''' ) _lowerCamelCase : int = inputs['''input_ids'''] _lowerCamelCase : Optional[Any] = inputs['''labels'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCamelCase : int = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) _lowerCamelCase : List[str] = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) _lowerCamelCase : str = '''A, <mask> AllenNLP sentence.''' _lowerCamelCase : int = tokenizer_r.encode_plus(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer_p.encode_plus(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) _lowerCamelCase : Optional[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) _lowerCamelCase : str = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( __lowerCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __lowerCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
598
"""simple docstring""" import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def snake_case_ ( A_ : Union[str, Any], A_ : Optional[Any]="shi-labs/oneformer_demo" ): '''simple docstring''' with open(hf_hub_download(A_, A_, repo_type='''dataset''' ), '''r''' ) as f: _lowerCamelCase : Tuple = json.load(A_ ) _lowerCamelCase : int = {} _lowerCamelCase : Dict = [] _lowerCamelCase : Optional[Any] = [] for key, info in class_info.items(): _lowerCamelCase : Optional[int] = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(A_ ) ) _lowerCamelCase : List[Any] = thing_ids _lowerCamelCase : Any = class_names return metadata class __snake_case ( unittest.TestCase): def __init__( self : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Any=7 , __lowerCAmelCase : Any=3 , __lowerCAmelCase : Tuple=3_0 , __lowerCAmelCase : Optional[int]=4_0_0 , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Tuple=[0.5, 0.5, 0.5] , __lowerCAmelCase : List[Any]=[0.5, 0.5, 0.5] , __lowerCAmelCase : Union[str, Any]=1_0 , __lowerCAmelCase : str=False , __lowerCAmelCase : int=2_5_5 , __lowerCAmelCase : Dict="shi-labs/oneformer_demo" , __lowerCAmelCase : str="ade20k_panoptic.json" , __lowerCAmelCase : Dict=1_0 , ): """simple docstring""" _lowerCamelCase : List[str] = parent _lowerCamelCase : int = batch_size _lowerCamelCase : List[str] = num_channels _lowerCamelCase : int = min_resolution _lowerCamelCase : Tuple = max_resolution _lowerCamelCase : Dict = do_resize _lowerCamelCase : Dict = {'''shortest_edge''': 3_2, '''longest_edge''': 1_3_3_3} if size is None else size _lowerCamelCase : List[str] = do_normalize _lowerCamelCase : Optional[Any] = image_mean _lowerCamelCase : Optional[int] = image_std _lowerCamelCase : Any = class_info_file _lowerCamelCase : Any = prepare_metadata(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Tuple = num_text _lowerCamelCase : int = repo_path # for the post_process_functions _lowerCamelCase : int = 2 _lowerCamelCase : Union[str, Any] = 1_0 _lowerCamelCase : str = 1_0 _lowerCamelCase : Union[str, Any] = 3 _lowerCamelCase : List[Any] = 4 _lowerCamelCase : str = num_labels _lowerCamelCase : Any = do_reduce_labels _lowerCamelCase : Tuple = ignore_index def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int]=False ): """simple docstring""" if not batched: _lowerCamelCase : Tuple = image_inputs[0] if isinstance(__lowerCAmelCase , Image.Image ): _lowerCamelCase , _lowerCamelCase : List[str] = image.size else: _lowerCamelCase , _lowerCamelCase : int = image.shape[1], image.shape[2] if w < h: _lowerCamelCase : Any = int(self.size['''shortest_edge'''] * h / w ) _lowerCamelCase : Union[str, Any] = self.size['''shortest_edge'''] elif w > h: _lowerCamelCase : Union[str, Any] = self.size['''shortest_edge'''] _lowerCamelCase : Dict = int(self.size['''shortest_edge'''] * w / h ) else: _lowerCamelCase : int = self.size['''shortest_edge'''] _lowerCamelCase : Optional[Any] = self.size['''shortest_edge'''] else: _lowerCamelCase : Optional[Any] = [] for image in image_inputs: _lowerCamelCase , _lowerCamelCase : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCamelCase : Tuple = max(__lowerCAmelCase , key=lambda __lowerCAmelCase : item[0] )[0] _lowerCamelCase : Optional[int] = max(__lowerCAmelCase , key=lambda __lowerCAmelCase : item[1] )[1] return expected_height, expected_width def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class __snake_case ( _lowercase , unittest.TestCase): snake_case__ : List[str] = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string snake_case__ : List[str] = image_processing_class def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Dict = OneFormerImageProcessorTester(self ) @property def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" return self.image_processing_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''size''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''ignore_index''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''class_info_file''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''num_text''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''repo_path''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''metadata''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_reduce_labels''' ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input _lowerCamelCase : Optional[int] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase : Any = self.image_processing_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase , _lowerCamelCase : Dict = self.image_processing_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) _lowerCamelCase : int = image_processor( __lowerCAmelCase , ['''semantic'''] * len(__lowerCAmelCase ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase : Any = prepare_image_inputs(self.image_processing_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input _lowerCamelCase : Optional[int] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase : Optional[Any] = self.image_processing_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase , _lowerCamelCase : Tuple = self.image_processing_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) _lowerCamelCase : List[Any] = image_processor( __lowerCAmelCase , ['''semantic'''] * len(__lowerCAmelCase ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input _lowerCamelCase : Union[str, Any] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.image_processing_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.image_processing_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) _lowerCamelCase : int = image_processor( __lowerCAmelCase , ['''semantic'''] * len(__lowerCAmelCase ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : Dict=False , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[Any]="np" ): """simple docstring""" _lowerCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # prepare image and target _lowerCamelCase : Optional[Any] = self.image_processing_tester.num_labels _lowerCamelCase : List[str] = None _lowerCamelCase : Dict = None _lowerCamelCase : Any = prepare_image_inputs(self.image_processing_tester , equal_resolution=__lowerCAmelCase ) if with_segmentation_maps: _lowerCamelCase : int = num_labels if is_instance_map: _lowerCamelCase : List[Any] = list(range(__lowerCAmelCase ) ) * 2 _lowerCamelCase : Dict = dict(enumerate(__lowerCAmelCase ) ) _lowerCamelCase : Optional[int] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": _lowerCamelCase : str = [Image.fromarray(__lowerCAmelCase ) for annotation in annotations] _lowerCamelCase : List[str] = image_processor( __lowerCAmelCase , ['''semantic'''] * len(__lowerCAmelCase ) , __lowerCAmelCase , return_tensors='''pt''' , instance_id_to_semantic_id=__lowerCAmelCase , pad_and_return_pixel_mask=__lowerCAmelCase , ) return inputs def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" def common(__lowerCAmelCase : List[str]=False , __lowerCAmelCase : List[str]=None ): _lowerCamelCase : Dict = self.comm_get_image_processor_inputs( with_segmentation_maps=__lowerCAmelCase , is_instance_map=__lowerCAmelCase , segmentation_type=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = inputs['''mask_labels'''] _lowerCamelCase : Union[str, Any] = inputs['''class_labels'''] _lowerCamelCase : Dict = inputs['''pixel_values'''] _lowerCamelCase : int = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(__lowerCAmelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=__lowerCAmelCase ) common(is_instance_map=__lowerCAmelCase , segmentation_type='''pil''' ) common(is_instance_map=__lowerCAmelCase , segmentation_type='''pil''' ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Optional[int] = np.zeros((2_0, 5_0) ) _lowerCamelCase : Tuple = 1 _lowerCamelCase : Tuple = 1 _lowerCamelCase : Tuple = 1 _lowerCamelCase : int = binary_mask_to_rle(__lowerCAmelCase ) self.assertEqual(len(__lowerCAmelCase ) , 4 ) self.assertEqual(rle[0] , 2_1 ) self.assertEqual(rle[1] , 4_5 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) _lowerCamelCase : Any = self.image_processing_tester.get_fake_oneformer_outputs() _lowerCamelCase : int = fature_extractor.post_process_semantic_segmentation(__lowerCAmelCase ) self.assertEqual(len(__lowerCAmelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) _lowerCamelCase : Any = [(1, 4) for i in range(self.image_processing_tester.batch_size )] _lowerCamelCase : Dict = fature_extractor.post_process_semantic_segmentation(__lowerCAmelCase , target_sizes=__lowerCAmelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Union[str, Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) _lowerCamelCase : List[Any] = self.image_processing_tester.get_fake_oneformer_outputs() _lowerCamelCase : Optional[Any] = image_processor.post_process_instance_segmentation(__lowerCAmelCase , threshold=0 ) self.assertTrue(len(__lowerCAmelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , __lowerCAmelCase ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Dict = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) _lowerCamelCase : Union[str, Any] = self.image_processing_tester.get_fake_oneformer_outputs() _lowerCamelCase : Optional[Any] = image_processor.post_process_panoptic_segmentation(__lowerCAmelCase , threshold=0 ) self.assertTrue(len(__lowerCAmelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , __lowerCAmelCase ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
598
1
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.getLogger(__name__) SCREAMING_SNAKE_CASE__ : List[str] = """Hello world! cécé herlolip""" SCREAMING_SNAKE_CASE__ : Any = namedtuple( """BertAbsConfig""", [ """temp_dir""", """large""", """use_bert_emb""", """finetune_bert""", """encoder""", """share_emb""", """max_pos""", """enc_layers""", """enc_hidden_size""", """enc_heads""", """enc_ff_size""", """enc_dropout""", """dec_layers""", """dec_hidden_size""", """dec_heads""", """dec_ff_size""", """dec_dropout""", ], ) def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple: '''simple docstring''' UpperCAmelCase__ : List[Any] = BertAbsConfig( temp_dir=""".""" , finetune_bert=__lowerCamelCase , large=__lowerCamelCase , share_emb=__lowerCamelCase , use_bert_emb=__lowerCamelCase , encoder="""bert""" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) UpperCAmelCase__ : Any = torch.load(__lowerCamelCase , lambda __lowerCamelCase , __lowerCamelCase : storage ) UpperCAmelCase__ : int = AbsSummarizer(__lowerCamelCase , torch.device("""cpu""" ) , __lowerCamelCase ) original.eval() UpperCAmelCase__ : Tuple = BertAbsSummarizer(__lowerCamelCase , torch.device("""cpu""" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("""convert the model""" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("""Make sure that the models' outputs are identical""" ) UpperCAmelCase__ : Any = BertTokenizer.from_pretrained("""bert-base-uncased""" ) # prepare the model inputs UpperCAmelCase__ : List[Any] = tokenizer.encode("""This is sample éàalj'-.""" ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(__lowerCamelCase )) ) UpperCAmelCase__ : Any = torch.tensor(__lowerCamelCase ).unsqueeze(0 ) UpperCAmelCase__ : Tuple = tokenizer.encode("""This is sample 3 éàalj'-.""" ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(__lowerCamelCase )) ) UpperCAmelCase__ : Dict = torch.tensor(__lowerCamelCase ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass UpperCAmelCase__ : List[str] = encoder_input_ids UpperCAmelCase__ : List[str] = decoder_input_ids UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : Optional[int] = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical UpperCAmelCase__ : Any = original(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )[0] UpperCAmelCase__ : List[str] = original.generator(__lowerCamelCase ) UpperCAmelCase__ : List[Any] = new_model( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )[0] UpperCAmelCase__ : int = new_model.generator(__lowerCamelCase ) UpperCAmelCase__ : List[Any] = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(__lowerCamelCase ) ) UpperCAmelCase__ : Any = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(__lowerCamelCase ) ) UpperCAmelCase__ : str = torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) if are_identical: logging.info("""all weights are equal up to 1e-3""" ) else: raise ValueError("""the weights are different. The new model is likely different from the original one.""" ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("""saving the model's state dictionary""" ) torch.save( new_model.state_dict() , """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : str = argparse.ArgumentParser() parser.add_argument( """--bertabs_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""", ) SCREAMING_SNAKE_CASE__ : int = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
79
'''simple docstring''' from __future__ import annotations from collections.abc import Callable __magic_name__ : Dict = list[list[float | int]] def A__ ( A_ , A_ ) -> Matrix: _lowercase = len(A_ ) _lowercase = [[0 for _ in range(size + 1 )] for _ in range(A_ )] _lowercase = 42 _lowercase = 42 _lowercase = 42 _lowercase = 42 _lowercase = 42 _lowercase = 42 for row in range(A_ ): for col in range(A_ ): _lowercase = matrix[row][col] _lowercase = vector[row][0] _lowercase = 0 _lowercase = 0 while row < size and col < size: # pivoting _lowercase = max((abs(augmented[rowa][col] ), rowa) for rowa in range(A_ , A_ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowercase , _lowercase = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , A_ ): _lowercase = augmented[rowa][col] / augmented[row][col] _lowercase = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , A_ ): for row in range(A_ ): _lowercase = augmented[row][col] / augmented[col][col] for cola in range(A_ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(A_ ) ] def A__ ( A_ ) -> Callable[[int], int]: _lowercase = len(A_ ) _lowercase = [[0 for _ in range(A_ )] for _ in range(A_ )] _lowercase = [[0] for _ in range(A_ )] _lowercase = 42 _lowercase = 42 _lowercase = 42 _lowercase = 42 for x_val, y_val in enumerate(A_ ): for col in range(A_ ): _lowercase = (x_val + 1) ** (size - col - 1) _lowercase = y_val _lowercase = solve(A_ , A_ ) def interpolated_func(A_ ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(A_ ) ) return interpolated_func def A__ ( A_ ) -> int: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def A__ ( A_ = question_function , A_ = 10 ) -> int: _lowercase = [func(A_ ) for x_val in range(1 , order + 1 )] _lowercase = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _lowercase = 0 _lowercase = 42 _lowercase = 42 for poly in polynomials: _lowercase = 1 while func(A_ ) == poly(A_ ): x_val += 1 ret += poly(A_ ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
497
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor __A : str = logging.get_logger(__name__) class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" def __init__( self : str , *lowerCamelCase : int , **lowerCamelCase : Optional[int] ) -> None: warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
398
'''simple docstring''' import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class __snake_case ( unittest.TestCase): """simple docstring""" def __lowercase ( self : str ) -> Any: lowerCAmelCase_ : Union[str, Any] = ["""a""", """b""", """c"""] # Defaults to last layer if both are None lowerCAmelCase_, lowerCAmelCase_ : List[str] = get_aligned_output_features_output_indices(lowerCamelCase , lowerCamelCase , lowerCamelCase ) self.assertEqual(lowerCamelCase , ["""c"""] ) self.assertEqual(lowerCamelCase , [2] ) # Out indices set to match out features lowerCAmelCase_, lowerCAmelCase_ : List[str] = get_aligned_output_features_output_indices(["""a""", """c"""] , lowerCamelCase , lowerCamelCase ) self.assertEqual(lowerCamelCase , ["""a""", """c"""] ) self.assertEqual(lowerCamelCase , [0, 2] ) # Out features set to match out indices lowerCAmelCase_, lowerCAmelCase_ : List[str] = get_aligned_output_features_output_indices(lowerCamelCase , [0, 2] , lowerCamelCase ) self.assertEqual(lowerCamelCase , ["""a""", """c"""] ) self.assertEqual(lowerCamelCase , [0, 2] ) # Out features selected from negative indices lowerCAmelCase_, lowerCAmelCase_ : Any = get_aligned_output_features_output_indices(lowerCamelCase , [-3, -1] , lowerCamelCase ) self.assertEqual(lowerCamelCase , ["""a""", """c"""] ) self.assertEqual(lowerCamelCase , [-3, -1] ) def __lowercase ( self : List[str] ) -> Optional[int]: # Stage names must be set with self.assertRaises(lowerCamelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , lowerCamelCase ) # Out features must be a list with self.assertRaises(lowerCamelCase ): verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""] ) # Out features must be a subset of stage names with self.assertRaises(lowerCamelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""] ) # Out indices must be a list or tuple with self.assertRaises(lowerCamelCase ): verify_out_features_out_indices(lowerCamelCase , 0 , ["""a""", """b"""] ) # Out indices must be a subset of stage names with self.assertRaises(lowerCamelCase ): verify_out_features_out_indices(lowerCamelCase , (0, 1) , ["""a"""] ) # Out features and out indices must be the same length with self.assertRaises(lowerCamelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""] ) # Out features should match out indices with self.assertRaises(lowerCamelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""] ) # Out features and out indices should be in order with self.assertRaises(lowerCamelCase ): verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""] ) # Check passes with valid inputs verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""] ) def __lowercase ( self : Dict ) -> Union[str, Any]: lowerCAmelCase_ : List[str] = BackboneMixin() lowerCAmelCase_ : List[str] = ["""a""", """b""", """c"""] lowerCAmelCase_ : Tuple = ["""a""", """c"""] lowerCAmelCase_ : Optional[Any] = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["""a""", """c"""] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly lowerCAmelCase_ : int = ["""a""", """b"""] self.assertEqual(backbone.out_features , ["""a""", """b"""] ) self.assertEqual(backbone.out_indices , [0, 1] ) lowerCAmelCase_ : Dict = [-3, -1] self.assertEqual(backbone.out_features , ["""a""", """c"""] ) self.assertEqual(backbone.out_indices , [-3, -1] )
398
1
"""simple docstring""" import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _A = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def lowercase (_snake_case ) -> Dict: '''simple docstring''' __UpperCamelCase = test_results.split(" " ) __UpperCamelCase = 0 __UpperCamelCase = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. __UpperCamelCase = expressions[-2] if """=""" in expressions[-1] else expressions[-1] for i, expression in enumerate(_UpperCAmelCase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def lowercase (_snake_case ) -> Dict: '''simple docstring''' __UpperCamelCase = {} __UpperCamelCase = None __UpperCamelCase = False for line in failures_short_lines.split("\n" ): if re.search(r"_ \[doctest\]" ,_UpperCAmelCase ): __UpperCamelCase = True __UpperCamelCase = line.split(" " )[2] elif in_error and not line.split(" " )[0].isdigit(): __UpperCamelCase = line __UpperCamelCase = False return failures class __UpperCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , A_ : str , A_ : Dict )-> Dict: __UpperCamelCase = title __UpperCamelCase = doc_test_results["""time_spent"""].split("," )[0] __UpperCamelCase = doc_test_results["""success"""] __UpperCamelCase = doc_test_results["""failures"""] __UpperCamelCase = self.n_success + self.n_failures # Failures and success of the modeling tests __UpperCamelCase = doc_test_results @property def A ( self : Union[str, Any] )-> str: __UpperCamelCase = [self._time_spent] __UpperCamelCase = 0 for time in time_spent: __UpperCamelCase = time.split(":" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(A_ ) == 1: __UpperCamelCase = [0, 0, time_parts[0]] __UpperCamelCase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 36_00 + minutes * 60 + seconds __UpperCamelCase = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60 return f"""{int(A_ )}h{int(A_ )}m{int(A_ )}s""" @property def A ( self : Optional[int] )-> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def A ( self : Optional[Any] )-> Dict: return { "type": "section", "text": { "type": "plain_text", "text": f"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } @property def A ( self : Union[str, Any] )-> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( f"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in""" f""" {self.time}.""" ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } @property def A ( self : int )-> Dict: __UpperCamelCase = 40 __UpperCamelCase = {k: v["""failed"""] for k, v in doc_test_results.items() if isinstance(A_ , A_ )} __UpperCamelCase = """""" for category, failures in category_failures.items(): if len(A_ ) == 0: continue if report != "": report += "\n\n" report += f"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(A_ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"""The following examples had failures:\n\n\n{report}\n""", }, } @property def A ( self : str )-> str: __UpperCamelCase = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(A_ ) @staticmethod def A ( )-> int: __UpperCamelCase = [ { """type""": """section""", """text""": { """type""": """plain_text""", """text""": """There was an issue running the tests.""", }, """accessory""": { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """Check Action results""", """emoji""": True}, """url""": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } ] print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(A_ )} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=A_ , ) def A ( self : Optional[Any] )-> List[str]: print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(self.payload )} ) ) __UpperCamelCase = f"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else """All tests passed.""" __UpperCamelCase = client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=A_ , ) def A ( self : int , A_ : Union[str, Any] , A_ : int , A_ : List[Any] , A_ : Any )-> Any: __UpperCamelCase = """""" for key, value in failures.items(): __UpperCamelCase = value[:2_00] + """ [Truncated]""" if len(A_ ) > 2_50 else value failures_text += f"""*{key}*\n_{value}_\n\n""" __UpperCamelCase = job_name __UpperCamelCase = {"""type""": """section""", """text""": {"""type""": """mrkdwn""", """text""": text}} if job_link is not None: __UpperCamelCase = { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """GitHub Action job""", """emoji""": True}, """url""": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def A ( self : List[str] )-> Any: if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made." ) __UpperCamelCase = self.doc_test_results.pop("job_link" ) self.doc_test_results.pop("failures" ) self.doc_test_results.pop("success" ) self.doc_test_results.pop("time_spent" ) __UpperCamelCase = sorted(self.doc_test_results.items() , key=lambda A_ : t[0] ) for job, job_result in sorted_dict: if len(job_result["failures"] ): __UpperCamelCase = f"""*Num failures* :{len(job_result["failed"] )} \n""" __UpperCamelCase = job_result["""failures"""] __UpperCamelCase = self.get_reply_blocks(A_ , A_ , A_ , text=A_ ) print("Sending the following reply" ) print(json.dumps({"blocks": blocks} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=f"""Results for {job}""" , blocks=A_ , thread_ts=self.thread_ts["ts"] , ) time.sleep(1 ) def lowercase () -> Union[str, Any]: '''simple docstring''' __UpperCamelCase = os.environ["""GITHUB_RUN_ID"""] __UpperCamelCase = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100""" __UpperCamelCase = requests.get(_UpperCAmelCase ).json() __UpperCamelCase = {} try: jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) __UpperCamelCase = math.ceil((result["total_count"] - 100) / 100 ) for i in range(_UpperCAmelCase ): __UpperCamelCase = requests.get(url + f"""&page={i + 2}""" ).json() jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return jobs except Exception as e: print("Unknown error, could not fetch links." ,_UpperCAmelCase ) return {} def lowercase (_snake_case ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase = {} if os.path.exists(_UpperCAmelCase ): __UpperCamelCase = os.listdir(_UpperCAmelCase ) for file in files: try: with open(os.path.join(_UpperCAmelCase ,_UpperCAmelCase ) ,encoding="utf-8" ) as f: __UpperCamelCase = f.read() except UnicodeDecodeError as e: raise ValueError(f"""Could not open {os.path.join(_UpperCAmelCase ,_UpperCAmelCase )}.""" ) from e return _artifact def lowercase () -> str: '''simple docstring''' class __UpperCAmelCase : """simple docstring""" def __init__( self : List[Any] , A_ : str )-> List[Any]: __UpperCamelCase = name __UpperCamelCase = [] def __str__( self : Tuple )-> List[Any]: return self.name def A ( self : List[str] , A_ : str )-> List[str]: self.paths.append({"name": self.name, "path": path} ) __UpperCamelCase = {} __UpperCamelCase = filter(os.path.isdir ,os.listdir() ) for directory in directories: __UpperCamelCase = directory if artifact_name not in _available_artifacts: __UpperCamelCase = Artifact(_UpperCAmelCase ) _available_artifacts[artifact_name].add_path(_UpperCAmelCase ) return _available_artifacts if __name__ == "__main__": _A = get_job_links() _A = retrieve_available_artifacts() _A = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _A = { v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job _A = github_actions_job_links.get("run_doctests") _A = available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] _A = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: _A = handle_test_results(artifact["stats"]) _A = failed _A = success _A = time_spent[1:-1] + """, """ _A = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): _A = line.replace("FAILED ", "") _A = line.split()[0].replace("\n", "") if "::" in line: _A = line.split("::") else: _A = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _A = docs[file_regex] doc_test_results[category]["failed"].append(test) _A = all_failures[test] if test in all_failures else """N/A""" _A = failure break _A = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
505
from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP lowercase : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase : Any = """ Examples: ```py >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline >>> import torch >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\") >>> pipe_prior.to(\"cuda\") >>> prompt = \"red cat, 4k photo\" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> negative_image_emb = out.negative_image_embeds >>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\") >>> pipe.to(\"cuda\") >>> image = pipe( ... prompt, ... image_embeds=image_emb, ... negative_image_embeds=negative_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... ).images >>> image[0].save(\"cat.png\") ``` """ def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=8 ): lowerCamelCase_: Dict = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 lowerCamelCase_: int = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class a__ ( __SCREAMING_SNAKE_CASE ): def __init__( self : Any , A_ : MultilingualCLIP , A_ : XLMRobertaTokenizer , A_ : UNetaDConditionModel , A_ : Union[DDIMScheduler, DDPMScheduler] , A_ : VQModel , ) -> Tuple: """simple docstring""" super().__init__() self.register_modules( text_encoder=A_ , tokenizer=A_ , unet=A_ , scheduler=A_ , movq=A_ , ) lowerCamelCase_: List[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase ( self : Union[str, Any] , A_ : Dict , A_ : Any , A_ : Tuple , A_ : Tuple , A_ : Union[str, Any] , A_ : Optional[Any] ) -> Optional[Any]: """simple docstring""" if latents is None: lowerCamelCase_: Optional[Any] = randn_tensor(A_ , generator=A_ , device=A_ , dtype=A_ ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) lowerCamelCase_: Dict = latents.to(A_ ) lowerCamelCase_: Dict = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase ( self : List[str] , A_ : Union[str, Any] , A_ : Optional[Any] , A_ : int , A_ : List[str] , A_ : Any=None , ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_: int = len(A_ ) if isinstance(A_ , A_ ) else 1 # get prompt text embeddings lowerCamelCase_: Dict = self.tokenizer( A_ , padding="""max_length""" , truncation=A_ , max_length=77 , return_attention_mask=A_ , add_special_tokens=A_ , return_tensors="""pt""" , ) lowerCamelCase_: Union[str, Any] = text_inputs.input_ids lowerCamelCase_: List[Any] = self.tokenizer(A_ , padding="""longest""" , return_tensors="""pt""" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(A_ , A_ ): lowerCamelCase_: Optional[int] = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowerCamelCase_: List[Any] = text_input_ids.to(A_ ) lowerCamelCase_: Dict = text_inputs.attention_mask.to(A_ ) lowerCamelCase_ , lowerCamelCase_: Dict = self.text_encoder( input_ids=A_ , attention_mask=A_ ) lowerCamelCase_: Any = prompt_embeds.repeat_interleave(A_ , dim=0 ) lowerCamelCase_: Optional[Any] = text_encoder_hidden_states.repeat_interleave(A_ , dim=0 ) lowerCamelCase_: Tuple = text_mask.repeat_interleave(A_ , dim=0 ) if do_classifier_free_guidance: lowerCamelCase_: List[str] if negative_prompt is None: lowerCamelCase_: Dict = [""""""] * batch_size elif type(A_ ) is not type(A_ ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(A_ )} !=""" f""" {type(A_ )}.""" ) elif isinstance(A_ , A_ ): lowerCamelCase_: Optional[Any] = [negative_prompt] elif batch_size != len(A_ ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(A_ )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" """ the batch size of `prompt`.""" ) else: lowerCamelCase_: Tuple = negative_prompt lowerCamelCase_: Tuple = self.tokenizer( A_ , padding="""max_length""" , max_length=77 , truncation=A_ , return_attention_mask=A_ , add_special_tokens=A_ , return_tensors="""pt""" , ) lowerCamelCase_: Tuple = uncond_input.input_ids.to(A_ ) lowerCamelCase_: Union[str, Any] = uncond_input.attention_mask.to(A_ ) lowerCamelCase_ , lowerCamelCase_: int = self.text_encoder( input_ids=A_ , attention_mask=A_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCamelCase_: List[str] = negative_prompt_embeds.shape[1] lowerCamelCase_: Any = negative_prompt_embeds.repeat(1 , A_ ) lowerCamelCase_: Tuple = negative_prompt_embeds.view(batch_size * num_images_per_prompt , A_ ) lowerCamelCase_: str = uncond_text_encoder_hidden_states.shape[1] lowerCamelCase_: List[Any] = uncond_text_encoder_hidden_states.repeat(1 , A_ , 1 ) lowerCamelCase_: Optional[int] = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , A_ , -1 ) lowerCamelCase_: Tuple = uncond_text_mask.repeat_interleave(A_ , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase_: List[Any] = torch.cat([negative_prompt_embeds, prompt_embeds] ) lowerCamelCase_: int = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) lowerCamelCase_: Union[str, Any] = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def lowerCAmelCase ( self : str , A_ : Dict=0 ) -> List[str]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) lowerCamelCase_: Any = torch.device(f"""cuda:{gpu_id}""" ) lowerCamelCase_: List[str] = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A_ , A_ ) def lowerCAmelCase ( self : List[Any] , A_ : Union[str, Any]=0 ) -> Optional[Any]: """simple docstring""" if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) lowerCamelCase_: Any = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=A_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowerCamelCase_: int = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: lowerCamelCase_ , lowerCamelCase_: Dict = cpu_offload_with_hook(A_ , A_ , prev_module_hook=A_ ) if self.safety_checker is not None: lowerCamelCase_ , lowerCamelCase_: int = cpu_offload_with_hook(self.safety_checker , A_ , prev_module_hook=A_ ) # We'll offload the last model manually. lowerCamelCase_: Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(A_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A_ ) def __call__( self : Optional[Any] , A_ : Union[str, List[str]] , A_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A_ : Optional[Union[str, List[str]]] = None , A_ : int = 5_12 , A_ : int = 5_12 , A_ : int = 1_00 , A_ : float = 4.0 , A_ : int = 1 , A_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A_ : Optional[torch.FloatTensor] = None , A_ : Optional[str] = "pil" , A_ : bool = True , ) -> Any: """simple docstring""" if isinstance(A_ , A_ ): lowerCamelCase_: List[str] = 1 elif isinstance(A_ , A_ ): lowerCamelCase_: int = len(A_ ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(A_ )}""" ) lowerCamelCase_: int = self._execution_device lowerCamelCase_: Optional[int] = batch_size * num_images_per_prompt lowerCamelCase_: Optional[int] = guidance_scale > 1.0 lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_: int = self._encode_prompt( A_ , A_ , A_ , A_ , A_ ) if isinstance(A_ , A_ ): lowerCamelCase_: int = torch.cat(A_ , dim=0 ) if isinstance(A_ , A_ ): lowerCamelCase_: Tuple = torch.cat(A_ , dim=0 ) if do_classifier_free_guidance: lowerCamelCase_: List[str] = image_embeds.repeat_interleave(A_ , dim=0 ) lowerCamelCase_: Optional[int] = negative_image_embeds.repeat_interleave(A_ , dim=0 ) lowerCamelCase_: List[str] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=A_ ) self.scheduler.set_timesteps(A_ , device=A_ ) lowerCamelCase_: List[str] = self.scheduler.timesteps lowerCamelCase_: Union[str, Any] = self.unet.config.in_channels lowerCamelCase_ , lowerCamelCase_: List[str] = get_new_h_w(A_ , A_ , self.movq_scale_factor ) # create initial latent lowerCamelCase_: List[Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , A_ , A_ , A_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(A_ ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase_: List[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase_: Tuple = {"""text_embeds""": prompt_embeds, """image_embeds""": image_embeds} lowerCamelCase_: Optional[int] = self.unet( sample=A_ , timestep=A_ , encoder_hidden_states=A_ , added_cond_kwargs=A_ , return_dict=A_ , )[0] if do_classifier_free_guidance: lowerCamelCase_ , lowerCamelCase_: Any = noise_pred.split(latents.shape[1] , dim=1 ) lowerCamelCase_ , lowerCamelCase_: Any = noise_pred.chunk(2 ) lowerCamelCase_ , lowerCamelCase_: str = variance_pred.chunk(2 ) lowerCamelCase_: List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowerCamelCase_: Any = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowerCamelCase_ , lowerCamelCase_: Tuple = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase_: Optional[int] = self.scheduler.step( A_ , A_ , A_ , generator=A_ , ).prev_sample # post-processing lowerCamelCase_: Dict = self.movq.decode(A_ , force_not_quantize=A_ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: lowerCamelCase_: str = image * 0.5 + 0.5 lowerCamelCase_: str = image.clamp(0 , 1 ) lowerCamelCase_: Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCamelCase_: str = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
423
0
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() __lowerCAmelCase : List[str] = logging.get_logger(__name__) __lowerCAmelCase : Optional[int] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn.grep_linear': 'encoder.layers.*.attention.gru_rel_pos_linear', 'self_attn.relative_attention_bias': 'encoder.layers.*.attention.rel_attn_embed', 'self_attn.grep_a': 'encoder.layers.*.attention.gru_rel_pos_const', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } __lowerCAmelCase : Optional[Any] = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def a_ (_lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int )-> Union[str, Any]: for attribute in key.split(""".""" ): snake_case: List[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: snake_case: Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: snake_case: Dict = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": snake_case: Union[str, Any] = value elif weight_type == "weight_g": snake_case: Dict = value elif weight_type == "weight_v": snake_case: Optional[int] = value elif weight_type == "bias": snake_case: Dict = value else: snake_case: List[str] = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def a_ (_lowerCAmelCase : Optional[int] , _lowerCAmelCase : str )-> int: snake_case: Union[str, Any] = [] snake_case: Union[str, Any] = fairseq_model.state_dict() snake_case: str = hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case: List[str] = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case: Any = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case: Union[str, Any] = True if "*" in mapped_key: snake_case: int = name.split(_lowerCAmelCase )[0].split(""".""" )[-2] snake_case: Union[str, Any] = mapped_key.replace("""*""" , _lowerCAmelCase ) if "weight_g" in name: snake_case: List[Any] = """weight_g""" elif "weight_v" in name: snake_case: str = """weight_v""" elif "bias" in name and "relative_attention_bias" not in name: snake_case: Dict = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case: Any = """weight""" else: snake_case: List[str] = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(F"Unused weights: {unused_weights}" ) def a_ (_lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] )-> Union[str, Any]: snake_case: Any = full_name.split("""conv_layers.""" )[-1] snake_case: Optional[Any] = name.split(""".""" ) snake_case: Dict = int(items[0] ) snake_case: Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) snake_case: Dict = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) snake_case: str = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) snake_case: Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) snake_case: Optional[Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def a_ (_lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str=None )-> Union[str, Any]: # load the pre-trained checkpoints snake_case: str = torch.load(_lowerCAmelCase ) snake_case: List[str] = WavLMConfigOrig(checkpoint["""cfg"""] ) snake_case: Any = WavLMOrig(_lowerCAmelCase ) model.load_state_dict(checkpoint["""model"""] ) model.eval() if config_path is not None: snake_case: Tuple = WavLMConfig.from_pretrained(_lowerCAmelCase ) else: snake_case: Union[str, Any] = WavLMConfig() snake_case: str = WavLMModel(_lowerCAmelCase ) recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase ) hf_wavlm.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') __lowerCAmelCase : List[Any] = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
701
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): __lowerCAmelCase : List[Any] = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: __lowerCAmelCase : str = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def a_ (_lowerCAmelCase : Optional[Any] )-> Optional[int]: snake_case: Dict = (images / 2 + 0.5).clamp(0 , 1 ) snake_case: Optional[int] = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() snake_case: int = numpy_to_pil(_lowerCAmelCase ) return images def a_ (_lowerCAmelCase : Union[str, Any] )-> Dict: if images.ndim == 3: snake_case: List[Any] = images[None, ...] snake_case: str = (images * 255).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images snake_case: int = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: snake_case: Dict = [Image.fromarray(_lowerCAmelCase ) for image in images] return pil_images
164
0
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase_ ( __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] ) -> Dict: """simple docstring""" # Initialise PyTorch model _A = FunnelConfig.from_json_file(__UpperCamelCase ) print(F'Building PyTorch model from configuration: {config}' ) _A = FunnelBaseModel(__UpperCamelCase ) if base_model else FunnelModel(__UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , __UpperCamelCase ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether you want just the base model (no decoder) or not.""" ) lowerCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
292
'''simple docstring''' from __future__ import annotations def lowerCamelCase_ ( __UpperCamelCase : dict , __UpperCamelCase : str ) -> set[str]: """simple docstring""" _A , _A = set(__UpperCamelCase ), [start] while stack: _A = stack.pop() explored.add(__UpperCamelCase ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__UpperCamelCase ) return explored lowerCAmelCase = { """A""": ["""B""", """C""", """D"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F"""], """D""": ["""B""", """D"""], """E""": ["""B""", """F"""], """F""": ["""C""", """E""", """G"""], """G""": ["""F"""], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, """A"""))
292
1
'''simple docstring''' class _a : """simple docstring""" def __init__( self : Optional[int] ): '''simple docstring''' lowercase_ = """""" lowercase_ = """""" lowercase_ = [] def lowerCamelCase__ ( self : List[str] , lowercase_ : int , lowercase_ : int ): '''simple docstring''' if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: lowercase_ = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: lowercase_ = self.__min_dist_top_down_dp(lowercase_ , n - 1 ) lowercase_ = self.__min_dist_top_down_dp(m - 1 , lowercase_ ) lowercase_ = self.__min_dist_top_down_dp(m - 1 , n - 1 ) lowercase_ = 1 + min(lowercase_ , lowercase_ , lowercase_ ) return self.dp[m][n] def lowerCamelCase__ ( self : Optional[Any] , lowercase_ : str , lowercase_ : str ): '''simple docstring''' lowercase_ = worda lowercase_ = worda lowercase_ = [[-1 for _ in range(len(lowercase_ ) )] for _ in range(len(lowercase_ ) )] return self.__min_dist_top_down_dp(len(lowercase_ ) - 1 , len(lowercase_ ) - 1 ) def lowerCamelCase__ ( self : Tuple , lowercase_ : str , lowercase_ : str ): '''simple docstring''' lowercase_ = worda lowercase_ = worda lowercase_ = len(lowercase_ ) lowercase_ = len(lowercase_ ) lowercase_ = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty lowercase_ = j elif j == 0: # second string is empty lowercase_ = i elif worda[i - 1] == worda[j - 1]: # last characters are equal lowercase_ = self.dp[i - 1][j - 1] else: lowercase_ = self.dp[i][j - 1] lowercase_ = self.dp[i - 1][j] lowercase_ = self.dp[i - 1][j - 1] lowercase_ = 1 + min(lowercase_ , lowercase_ , lowercase_ ) return self.dp[m][n] if __name__ == "__main__": __snake_case = EditDistance() print("""****************** Testing Edit Distance DP Algorithm ******************""") print() __snake_case = input("""Enter the first string: """).strip() __snake_case = input("""Enter the second string: """).strip() print() print(f'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(f'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print("""*************** End of Testing Edit Distance DP Algorithm ***************""")
717
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __snake_case = { """configuration_data2vec_audio""": ["""DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecAudioConfig"""], """configuration_data2vec_text""": [ """DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecTextConfig""", """Data2VecTextOnnxConfig""", ], """configuration_data2vec_vision""": [ """DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecVisionConfig""", """Data2VecVisionOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecAudioForAudioFrameClassification""", """Data2VecAudioForCTC""", """Data2VecAudioForSequenceClassification""", """Data2VecAudioForXVector""", """Data2VecAudioModel""", """Data2VecAudioPreTrainedModel""", ] __snake_case = [ """DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecTextForCausalLM""", """Data2VecTextForMaskedLM""", """Data2VecTextForMultipleChoice""", """Data2VecTextForQuestionAnswering""", """Data2VecTextForSequenceClassification""", """Data2VecTextForTokenClassification""", """Data2VecTextModel""", """Data2VecTextPreTrainedModel""", ] __snake_case = [ """DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecVisionForImageClassification""", """Data2VecVisionForMaskedImageModeling""", """Data2VecVisionForSemanticSegmentation""", """Data2VecVisionModel""", """Data2VecVisionPreTrainedModel""", ] if is_tf_available(): __snake_case = [ """TFData2VecVisionForImageClassification""", """TFData2VecVisionForSemanticSegmentation""", """TFData2VecVisionModel""", """TFData2VecVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
603
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowercase = logging.getLogger(__name__) @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _lowerCamelCase: Optional[str] = field( default=_lowercase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _lowerCamelCase: Optional[str] = field( default='''NER''' , metadata={'''help''': '''Task type to fine tune in training (e.g. NER, POS, etc)'''} ) _lowerCamelCase: Optional[str] = field( default=_lowercase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _lowerCamelCase: bool = field(default=_lowercase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _lowerCamelCase: Optional[str] = field( default=_lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: str = field( metadata={'''help''': '''The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'''} ) _lowerCamelCase: Optional[str] = field( default=_lowercase , metadata={'''help''': '''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'''} , ) _lowerCamelCase: int = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowerCamelCase: bool = field( default=_lowercase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A , A , A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A , A , A = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) A = import_module('tasks' ) try: A = getattr(snake_case__ , model_args.task_type ) A = token_classification_task_clazz() except AttributeError: raise ValueError( F'Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ' F'Available tasks classes are: {TokenClassificationTask.__subclasses__()}' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , snake_case__ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task A = token_classification_task.get_labels(data_args.labels ) A = dict(enumerate(snake_case__ ) ) A = len(snake_case__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=snake_case__ , idalabel=snake_case__ , labelaid={label: i for i, label in enumerate(snake_case__ )} , cache_dir=model_args.cache_dir , ) A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) A = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=snake_case__ , cache_dir=model_args.cache_dir , ) # Get datasets A = ( TokenClassificationDataset( token_classification_task=snake_case__ , data_dir=data_args.data_dir , tokenizer=snake_case__ , labels=snake_case__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) A = ( TokenClassificationDataset( token_classification_task=snake_case__ , data_dir=data_args.data_dir , tokenizer=snake_case__ , labels=snake_case__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(snake_case__ : np.ndarray , snake_case__ : np.ndarray ) -> Tuple[List[int], List[int]]: A = np.argmax(snake_case__ , axis=2 ) A , A = preds.shape A = [[] for _ in range(snake_case__ )] A = [[] for _ in range(snake_case__ )] for i in range(snake_case__ ): for j in range(snake_case__ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(snake_case__ : EvalPrediction ) -> Dict: A , A = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(snake_case__ , snake_case__ ), "precision": precision_score(snake_case__ , snake_case__ ), "recall": recall_score(snake_case__ , snake_case__ ), "f1": fa_score(snake_case__ , snake_case__ ), } # Data collator A = DataCollatorWithPadding(snake_case__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer A = Trainer( model=snake_case__ , args=snake_case__ , train_dataset=snake_case__ , eval_dataset=snake_case__ , compute_metrics=snake_case__ , data_collator=snake_case__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation A = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) A = trainer.evaluate() A = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(snake_case__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , snake_case__ , snake_case__ ) writer.write('%s = %s\n' % (key, value) ) results.update(snake_case__ ) # Predict if training_args.do_predict: A = TokenClassificationDataset( token_classification_task=snake_case__ , data_dir=data_args.data_dir , tokenizer=snake_case__ , labels=snake_case__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) A , A , A = trainer.predict(snake_case__ ) A , A = align_predictions(snake_case__ , snake_case__ ) A = os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(snake_case__ , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , snake_case__ , snake_case__ ) writer.write('%s = %s\n' % (key, value) ) # Save predictions A = os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(snake_case__ , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(snake_case__ , snake_case__ , snake_case__ ) return results def _snake_case ( snake_case__ : Any ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
91
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = '''▁''' _lowercase = {'''vocab_file''': '''sentencepiece.bpe.model'''} _lowercase = { '''vocab_file''': { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model''' ), } } _lowercase = { '''xlm-roberta-base''': 5_12, '''xlm-roberta-large''': 5_12, '''xlm-roberta-large-finetuned-conll02-dutch''': 5_12, '''xlm-roberta-large-finetuned-conll02-spanish''': 5_12, '''xlm-roberta-large-finetuned-conll03-english''': 5_12, '''xlm-roberta-large-finetuned-conll03-german''': 5_12, } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = VOCAB_FILES_NAMES _lowerCamelCase: List[str] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase: Any = ['''input_ids''', '''attention_mask'''] def __init__( self : Union[str, Any] ,A_ : str ,A_ : str="<s>" ,A_ : Any="</s>" ,A_ : Tuple="</s>" ,A_ : Any="<s>" ,A_ : Optional[Any]="<unk>" ,A_ : int="<pad>" ,A_ : str="<mask>" ,A_ : Optional[Dict[str, Any]] = None ,**A_ : Optional[int] ,) -> None: # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(A_ ,lstrip=A_ ,rstrip=A_ ) if isinstance(A_ ,A_ ) else mask_token A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ ,eos_token=A_ ,unk_token=A_ ,sep_token=A_ ,cls_token=A_ ,pad_token=A_ ,mask_token=A_ ,sp_model_kwargs=self.sp_model_kwargs ,**A_ ,) A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A_ ) ) A = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token A = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab A = 1 A = len(self.sp_model ) + self.fairseq_offset A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Union[str, Any] ) -> Any: A = self.__dict__.copy() A = None A = self.sp_model.serialized_model_proto() return state def __setstate__( self : str ,A_ : str ) -> Optional[Any]: A = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): A = {} A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : List[int] ,A_ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A = [self.cls_token_id] A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[int] ,A_ : Optional[List[int]] = None ,A_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ ,token_ids_a=A_ ,already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[int] ,A_ : Optional[List[int]] = None ) -> List[int]: A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: A = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ) -> List[str]: return self.sp_model.encode(A_ ,out_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : List[Any] ) -> Tuple: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] A = self.sp_model.PieceToId(A_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ) -> int: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[Any] ) -> List[Any]: A = ''.join(A_ ).replace(A_ ,' ' ).strip() return out_string def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( A_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ ,'wb' ) as fi: A = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
91
1
'''simple docstring''' import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[int] , __snake_case : List[str] , __snake_case : List[Any]=99 , __snake_case : int=13 , __snake_case : Dict=7 , __snake_case : Tuple=9 , __snake_case : str=True , __snake_case : Any=True , __snake_case : int=False , __snake_case : Tuple=32 , __snake_case : List[Any]=5 , __snake_case : Optional[Any]=4 , __snake_case : Any=37 , __snake_case : Any=8 , __snake_case : str=0.1 , __snake_case : Tuple=0.0_02 , __snake_case : List[str]=1 , __snake_case : List[Any]=0 , __snake_case : List[str]=0 , __snake_case : Union[str, Any]=None , __snake_case : Dict=None , )-> Tuple: snake_case = parent snake_case = batch_size snake_case = encoder_seq_length snake_case = decoder_seq_length # For common tests snake_case = self.decoder_seq_length snake_case = is_training snake_case = use_attention_mask snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = d_ff snake_case = relative_attention_num_buckets snake_case = dropout_rate snake_case = initializer_factor snake_case = eos_token_id snake_case = pad_token_id snake_case = decoder_start_token_id snake_case = None snake_case = decoder_layers def lowerCAmelCase ( self : Any )-> List[str]: return TaConfig.from_pretrained("""google/umt5-base""" ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any]=None , __snake_case : Dict=None , __snake_case : Tuple=None , __snake_case : str=None , __snake_case : List[str]=None , )-> Any: if attention_mask is None: snake_case = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: snake_case = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: snake_case = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__snake_case ) if decoder_head_mask is None: snake_case = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__snake_case ) if cross_attn_head_mask is None: snake_case = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__snake_case ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def lowerCAmelCase ( self : Optional[int] )-> str: snake_case = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) snake_case = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input snake_case = input_ids.clamp(self.pad_token_id + 1 ) snake_case = decoder_input_ids.clamp(self.pad_token_id + 1 ) snake_case = self.get_config() snake_case = config.num_attention_heads snake_case = self.prepare_inputs_dict(__snake_case , __snake_case , __snake_case ) return config, input_dict def lowerCAmelCase ( self : Optional[int] )-> Union[str, Any]: snake_case , snake_case = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : Dict )-> Any: return TaConfig( vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowerCAmelCase ( self : Optional[Any] )-> Union[str, Any]: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowerCAmelCase ( self : List[str] , __snake_case : Optional[Any] , __snake_case : Optional[Any] , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Any , )-> Dict: snake_case = UMTaModel(config=__snake_case ) model.to(__snake_case ) model.eval() snake_case = model( input_ids=__snake_case , decoder_input_ids=__snake_case , attention_mask=__snake_case , decoder_attention_mask=__snake_case , ) snake_case = model(input_ids=__snake_case , decoder_input_ids=__snake_case ) snake_case = result.last_hidden_state snake_case = result.past_key_values snake_case = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__snake_case ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Any , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Dict , __snake_case : int , __snake_case : str , )-> str: snake_case = UMTaModel(config=__snake_case ).get_decoder().to(__snake_case ).eval() # first forward pass snake_case = model(__snake_case , use_cache=__snake_case ) snake_case = model(__snake_case ) snake_case = model(__snake_case , use_cache=__snake_case ) self.parent.assertTrue(len(__snake_case ) == len(__snake_case ) ) self.parent.assertTrue(len(__snake_case ) == len(__snake_case ) + 1 ) snake_case , snake_case = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and snake_case = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case = model(__snake_case )["""last_hidden_state"""] snake_case = model(__snake_case , past_key_values=__snake_case )["""last_hidden_state"""] # select random slice snake_case = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case = output_from_no_past[:, -1, random_slice_idx].detach() snake_case = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-3 ) ) def lowerCAmelCase ( self : int , __snake_case : Tuple , __snake_case : Dict , )-> Union[str, Any]: snake_case = UMTaModel(config=__snake_case ).to(__snake_case ).half().eval() snake_case = model(**__snake_case )["""last_hidden_state"""] self.parent.assertFalse(torch.isnan(__snake_case ).any().item() ) @require_torch class _lowerCAmelCase ( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" snake_case_ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) snake_case_ = (UMTaForConditionalGeneration,) if is_torch_available() else () snake_case_ = ( { "conversational": UMTaForConditionalGeneration, "feature-extraction": UMTaModel, "summarization": UMTaForConditionalGeneration, "text2text-generation": UMTaForConditionalGeneration, "translation": UMTaForConditionalGeneration, "question-answering": UMTaForQuestionAnswering, } if is_torch_available() else {} ) snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = True snake_case_ = True # The small UMT5 model needs higher percentages for CPU/MP tests snake_case_ = [0.8, 0.9] def lowerCAmelCase ( self : Any )-> int: snake_case = UMTaModelTester(self ) @unittest.skip("""Test has a segmentation fault on torch 1.8.0""" ) def lowerCAmelCase ( self : List[Any] )-> str: snake_case = self.model_tester.prepare_config_and_inputs() snake_case = UMTaModel(config_and_inputs[0] ).to(__snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __snake_case , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=__snake_case , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def lowerCAmelCase ( self : List[str] )-> List[Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__snake_case ) def lowerCAmelCase ( self : Any )-> List[str]: snake_case = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""] snake_case = self.model_tester.prepare_config_and_inputs() snake_case = config_and_inputs[0] snake_case = UMTaForConditionalGeneration(__snake_case ).eval() model.to(__snake_case ) snake_case = { """head_mask""": torch.zeros(config.num_layers , config.num_heads , device=__snake_case ), """decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=__snake_case ), """cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=__snake_case ), } for attn_name, (name, mask) in zip(__snake_case , head_masking.items() ): snake_case = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": snake_case = torch.ones( config.num_decoder_layers , config.num_heads , device=__snake_case ) snake_case = model.generate( config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=__snake_case , return_dict_in_generate=__snake_case , **__snake_case , ) # We check the state of decoder_attentions and cross_attentions just from the last step snake_case = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""" ) def lowerCAmelCase ( self : Optional[int] )-> Union[str, Any]: pass @require_torch @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip( """Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""" ) def lowerCAmelCase ( self : str )-> int: snake_case = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=__snake_case ).to(__snake_case ) snake_case = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=__snake_case , legacy=__snake_case ) snake_case = [ """Bonjour monsieur <extra_id_0> bien <extra_id_1>.""", """No se como puedo <extra_id_0>.""", """This is the reason why we <extra_id_0> them.""", """The <extra_id_0> walks in <extra_id_1>, seats""", """A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""", ] snake_case = tokenizer(__snake_case , return_tensors="""pt""" , padding=__snake_case ).input_ids # fmt: off snake_case = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ] ) # fmt: on torch.testing.assert_allclose(__snake_case , __snake_case ) snake_case = model.generate(input_ids.to(__snake_case ) ) snake_case = [ """<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>""", """<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", ] snake_case = tokenizer.batch_decode(__snake_case ) self.assertEqual(__snake_case , __snake_case )
517
'''simple docstring''' import argparse from collections import defaultdict import yaml _SCREAMING_SNAKE_CASE = "docs/source/en/_toctree.yml" def __lowerCamelCase ( __lowerCAmelCase : Tuple ) -> Optional[int]: snake_case = defaultdict(__lowerCAmelCase ) for doc in model_doc: counts[doc["local"]] += 1 snake_case = [key for key, value in counts.items() if value > 1] snake_case = [] for duplicate_key in duplicates: snake_case = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key} ) if len(__lowerCAmelCase ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1] ) # Sort return sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : s["title"].lower() ) def __lowerCamelCase ( __lowerCAmelCase : Any=False ) -> Optional[Any]: with open(__lowerCAmelCase , encoding="""utf-8""" ) as f: snake_case = yaml.safe_load(f.read() ) # Get to the API doc snake_case = 0 while content[api_idx]["title"] != "API": api_idx += 1 snake_case = content[api_idx]["""sections"""] # Then to the model doc snake_case = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 snake_case = api_doc[model_idx]["""sections"""] snake_case = [(idx, section) for idx, section in enumerate(__lowerCAmelCase ) if """sections""" in section] snake_case = False for idx, modality_doc in modalities_docs: snake_case = modality_doc["""sections"""] snake_case = clean_model_doc_toc(__lowerCAmelCase ) if old_modality_doc != new_modality_doc: snake_case = True if overwrite: snake_case = new_modality_doc if diff: if overwrite: snake_case = model_doc snake_case = api_doc with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(__lowerCAmelCase , allow_unicode=__lowerCAmelCase ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _SCREAMING_SNAKE_CASE = parser.parse_args() check_model_doc(args.fix_and_overwrite)
517
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _UpperCAmelCase ( UpperCamelCase: Any , UpperCamelCase: Union[str, Any]=0.999 , UpperCamelCase: Optional[Any]="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCamelCase: Optional[int] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCamelCase: List[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) __lowerCAmelCase = [] for i in range(UpperCamelCase ): __lowerCAmelCase = i / num_diffusion_timesteps __lowerCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCamelCase ) / alpha_bar_fn(UpperCamelCase ) , UpperCamelCase ) ) return torch.tensor(UpperCamelCase , dtype=torch.floataa ) class a ( __UpperCAmelCase , __UpperCAmelCase ): lowercase_ : str = [e.name for e in KarrasDiffusionSchedulers] lowercase_ : int = 2 @register_to_config def __init__( self : Optional[Any] , snake_case__ : int = 1_000 , snake_case__ : float = 0.0_0_0_8_5 , snake_case__ : float = 0.0_1_2 , snake_case__ : str = "linear" , snake_case__ : Optional[Union[np.ndarray, List[float]]] = None , snake_case__ : str = "epsilon" , snake_case__ : Optional[bool] = False , snake_case__ : Optional[bool] = False , snake_case__ : float = 1.0 , snake_case__ : str = "linspace" , snake_case__ : int = 0 , ): """simple docstring""" if trained_betas is not None: __lowerCAmelCase = torch.tensor(snake_case__ , dtype=torch.floataa ) elif beta_schedule == "linear": __lowerCAmelCase = torch.linspace(snake_case__ , snake_case__ , snake_case__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , snake_case__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCAmelCase = betas_for_alpha_bar(snake_case__ , alpha_transform_type="cosine" ) elif beta_schedule == "exp": __lowerCAmelCase = betas_for_alpha_bar(snake_case__ , alpha_transform_type="exp" ) else: raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}" ) __lowerCAmelCase = 1.0 - self.betas __lowerCAmelCase = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(snake_case__ , snake_case__ , snake_case__ ) __lowerCAmelCase = use_karras_sigmas def UpperCAmelCase__ ( self : Tuple , snake_case__ : List[str] , snake_case__ : Tuple=None ): """simple docstring""" if schedule_timesteps is None: __lowerCAmelCase = self.timesteps __lowerCAmelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __lowerCAmelCase = 1 if len(snake_case__ ) > 1 else 0 else: __lowerCAmelCase = timestep.cpu().item() if torch.is_tensor(snake_case__ ) else timestep __lowerCAmelCase = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCAmelCase__ ( self : List[Any] , snake_case__ : torch.FloatTensor , snake_case__ : Union[float, torch.FloatTensor] , ): """simple docstring""" __lowerCAmelCase = self.index_for_timestep(snake_case__ ) __lowerCAmelCase = self.sigmas[step_index] __lowerCAmelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCAmelCase__ ( self : Dict , snake_case__ : int , snake_case__ : Union[str, torch.device] = None , snake_case__ : Optional[int] = None , ): """simple docstring""" __lowerCAmelCase = num_inference_steps __lowerCAmelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __lowerCAmelCase = np.linspace(0 , num_train_timesteps - 1 , snake_case__ , dtype=snake_case__ )[::-1].copy() elif self.config.timestep_spacing == "leading": __lowerCAmelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCAmelCase = (np.arange(0 , snake_case__ ) * step_ratio).round()[::-1].copy().astype(snake_case__ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __lowerCAmelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCAmelCase = (np.arange(snake_case__ , 0 , -step_ratio )).round().copy().astype(snake_case__ ) timesteps -= 1 else: raise ValueError( F"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) __lowerCAmelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __lowerCAmelCase = np.log(snake_case__ ) __lowerCAmelCase = np.interp(snake_case__ , np.arange(0 , len(snake_case__ ) ) , snake_case__ ) if self.config.use_karras_sigmas: __lowerCAmelCase = self._convert_to_karras(in_sigmas=snake_case__ , num_inference_steps=self.num_inference_steps ) __lowerCAmelCase = np.array([self._sigma_to_t(snake_case__ , snake_case__ ) for sigma in sigmas] ) __lowerCAmelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __lowerCAmelCase = torch.from_numpy(snake_case__ ).to(device=snake_case__ ) __lowerCAmelCase = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) __lowerCAmelCase = torch.from_numpy(snake_case__ ) __lowerCAmelCase = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(snake_case__ ).startswith("mps" ): # mps does not support float64 __lowerCAmelCase = timesteps.to(snake_case__ , dtype=torch.floataa ) else: __lowerCAmelCase = timesteps.to(device=snake_case__ ) # empty dt and derivative __lowerCAmelCase = None __lowerCAmelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __lowerCAmelCase = defaultdict(snake_case__ ) def UpperCAmelCase__ ( self : List[str] , snake_case__ : int , snake_case__ : Union[str, Any] ): """simple docstring""" __lowerCAmelCase = np.log(snake_case__ ) # get distribution __lowerCAmelCase = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range __lowerCAmelCase = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) __lowerCAmelCase = low_idx + 1 __lowerCAmelCase = log_sigmas[low_idx] __lowerCAmelCase = log_sigmas[high_idx] # interpolate sigmas __lowerCAmelCase = (low - log_sigma) / (low - high) __lowerCAmelCase = np.clip(snake_case__ , 0 , 1 ) # transform interpolation to time range __lowerCAmelCase = (1 - w) * low_idx + w * high_idx __lowerCAmelCase = t.reshape(sigma.shape ) return t def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : torch.FloatTensor , snake_case__ : Optional[Any] ): """simple docstring""" __lowerCAmelCase = in_sigmas[-1].item() __lowerCAmelCase = in_sigmas[0].item() __lowerCAmelCase = 7.0 # 7.0 is the value used in the paper __lowerCAmelCase = np.linspace(0 , 1 , snake_case__ ) __lowerCAmelCase = sigma_min ** (1 / rho) __lowerCAmelCase = sigma_max ** (1 / rho) __lowerCAmelCase = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def UpperCAmelCase__ ( self : str ): """simple docstring""" return self.dt is None def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : Union[torch.FloatTensor, np.ndarray] , snake_case__ : Union[float, torch.FloatTensor] , snake_case__ : Union[torch.FloatTensor, np.ndarray] , snake_case__ : bool = True , ): """simple docstring""" __lowerCAmelCase = self.index_for_timestep(snake_case__ ) # advance index counter by 1 __lowerCAmelCase = timestep.cpu().item() if torch.is_tensor(snake_case__ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __lowerCAmelCase = self.sigmas[step_index] __lowerCAmelCase = self.sigmas[step_index + 1] else: # 2nd order / Heun's method __lowerCAmelCase = self.sigmas[step_index - 1] __lowerCAmelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __lowerCAmelCase = 0 __lowerCAmelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __lowerCAmelCase = sigma_hat if self.state_in_first_order else sigma_next __lowerCAmelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __lowerCAmelCase = sigma_hat if self.state_in_first_order else sigma_next __lowerCAmelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": __lowerCAmelCase = model_output else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.config.clip_sample: __lowerCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __lowerCAmelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __lowerCAmelCase = sigma_next - sigma_hat # store for 2nd order step __lowerCAmelCase = derivative __lowerCAmelCase = dt __lowerCAmelCase = sample else: # 2. 2nd order / Heun's method __lowerCAmelCase = (sample - pred_original_sample) / sigma_next __lowerCAmelCase = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample __lowerCAmelCase = self.dt __lowerCAmelCase = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case__ ) def UpperCAmelCase__ ( self : Any , snake_case__ : torch.FloatTensor , snake_case__ : torch.FloatTensor , snake_case__ : torch.FloatTensor , ): """simple docstring""" __lowerCAmelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(snake_case__ ): # mps does not support float64 __lowerCAmelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __lowerCAmelCase = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __lowerCAmelCase = self.timesteps.to(original_samples.device ) __lowerCAmelCase = timesteps.to(original_samples.device ) __lowerCAmelCase = [self.index_for_timestep(snake_case__ , snake_case__ ) for t in timesteps] __lowerCAmelCase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __lowerCAmelCase = sigma.unsqueeze(-1 ) __lowerCAmelCase = original_samples + noise * sigma return noisy_samples def __len__( self : Tuple ): """simple docstring""" return self.config.num_train_timesteps
611
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a : def __init__( self : str , snake_case__ : Dict , snake_case__ : Optional[int]=13 , snake_case__ : Any=30 , snake_case__ : int=2 , snake_case__ : List[Any]=3 , snake_case__ : List[str]=True , snake_case__ : Dict=True , snake_case__ : Dict=32 , snake_case__ : Union[str, Any]=5 , snake_case__ : Tuple=4 , snake_case__ : Tuple=37 , snake_case__ : Tuple="gelu" , snake_case__ : Any=0.1 , snake_case__ : str=0.1 , snake_case__ : Dict=10 , snake_case__ : List[str]=0.0_2 , snake_case__ : int=3 , snake_case__ : Tuple=None , snake_case__ : Any=2 , ): """simple docstring""" __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = scope __lowerCAmelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __lowerCAmelCase = (image_size // patch_size) ** 2 __lowerCAmelCase = num_patches + 2 def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Dict ): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase__ ( self : Tuple , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : List[str] ): """simple docstring""" __lowerCAmelCase = DeiTModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() __lowerCAmelCase = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Any ): """simple docstring""" __lowerCAmelCase = DeiTForMaskedImageModeling(config=snake_case__ ) model.to(snake_case__ ) model.eval() __lowerCAmelCase = model(snake_case__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = DeiTForMaskedImageModeling(snake_case__ ) model.to(snake_case__ ) model.eval() __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(snake_case__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase__ ( self : str , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[int] ): """simple docstring""" __lowerCAmelCase = self.type_sequence_label_size __lowerCAmelCase = DeiTForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() __lowerCAmelCase = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = DeiTForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__ ( self : int ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase_ : str = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) lowercase_ : int = ( { 'feature-extraction': DeiTModel, 'image-classification': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowercase_ : List[str] = False lowercase_ : Dict = False lowercase_ : str = False def UpperCAmelCase__ ( self : str ): """simple docstring""" __lowerCAmelCase = DeiTModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" pass def UpperCAmelCase__ ( self : int ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case__ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def UpperCAmelCase__ ( self : int ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case__ ) def UpperCAmelCase__ ( self : str ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def UpperCAmelCase__ ( self : Tuple , snake_case__ : Dict , snake_case__ : Union[str, Any] , snake_case__ : Tuple=False ): """simple docstring""" __lowerCAmelCase = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" if not self.model_tester.is_training: return __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(snake_case__ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue __lowerCAmelCase = model_class(snake_case__ ) model.to(snake_case__ ) model.train() __lowerCAmelCase = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) __lowerCAmelCase = model(**snake_case__ ).loss loss.backward() def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __lowerCAmelCase = False __lowerCAmelCase = True for model_class in self.all_model_classes: if model_class in get_values(snake_case__ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue __lowerCAmelCase = model_class(snake_case__ ) model.gradient_checkpointing_enable() model.to(snake_case__ ) model.train() __lowerCAmelCase = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) __lowerCAmelCase = model(**snake_case__ ).loss loss.backward() def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(snake_case__ ), *get_values(snake_case__ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}" ): __lowerCAmelCase = problem_type["title"] __lowerCAmelCase = problem_type["num_labels"] __lowerCAmelCase = model_class(snake_case__ ) model.to(snake_case__ ) model.train() __lowerCAmelCase = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if problem_type["num_labels"] > 1: __lowerCAmelCase = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) __lowerCAmelCase = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=snake_case__ ) as warning_list: __lowerCAmelCase = model(**snake_case__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = DeiTModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def _UpperCAmelCase ( ): """simple docstring""" __lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class a ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self : str ): """simple docstring""" __lowerCAmelCase = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ).to( snake_case__ ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**snake_case__ ) # verify the logits __lowerCAmelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) __lowerCAmelCase = torch.tensor([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __lowerCAmelCase = DeiTModel.from_pretrained( "facebook/deit-base-distilled-patch16-224" , torch_dtype=torch.floataa , device_map="auto" ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=snake_case__ , return_tensors="pt" ) __lowerCAmelCase = inputs.pixel_values.to(snake_case__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): __lowerCAmelCase = model(snake_case__ )
611
1
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE = """RegNetConfig""" # Base docstring SCREAMING_SNAKE_CASE = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE = [1, 1_088, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE = """tabby, tabby cat""" SCREAMING_SNAKE_CASE = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class __a ( nn.Module ): def __init__( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : Optional[str] = "relu" , )-> Any: """simple docstring""" super().__init__() UpperCamelCase = nn.Convad( UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=UpperCAmelCase_ , stride=UpperCAmelCase_ , padding=kernel_size // 2 , groups=UpperCAmelCase_ , bias=UpperCAmelCase_ , ) UpperCamelCase = nn.BatchNormad(UpperCAmelCase_ ) UpperCamelCase = ACTaFN[activation] if activation is not None else nn.Identity() def _SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase_ : List[str] )-> Optional[int]: """simple docstring""" UpperCamelCase = self.convolution(UpperCAmelCase_ ) UpperCamelCase = self.normalization(UpperCAmelCase_ ) UpperCamelCase = self.activation(UpperCAmelCase_ ) return hidden_state class __a ( nn.Module ): def __init__( self : str , UpperCAmelCase_ : RegNetConfig )-> str: """simple docstring""" super().__init__() UpperCamelCase = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) UpperCamelCase = config.num_channels def _SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase_ : List[Any] )-> str: """simple docstring""" UpperCamelCase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) UpperCamelCase = self.embedder(UpperCAmelCase_ ) return hidden_state class __a ( nn.Module ): def __init__( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 2 )-> Union[str, Any]: """simple docstring""" super().__init__() UpperCamelCase = nn.Convad(UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=1 , stride=UpperCAmelCase_ , bias=UpperCAmelCase_ ) UpperCamelCase = nn.BatchNormad(UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase_ : Tensor )-> Tensor: """simple docstring""" UpperCamelCase = self.convolution(UpperCAmelCase_ ) UpperCamelCase = self.normalization(UpperCAmelCase_ ) return hidden_state class __a ( nn.Module ): def __init__( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : int )-> Union[str, Any]: """simple docstring""" super().__init__() UpperCamelCase = nn.AdaptiveAvgPoolad((1, 1) ) UpperCamelCase = nn.Sequential( nn.Convad(UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=1 ) , nn.ReLU() , nn.Convad(UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=1 ) , nn.Sigmoid() , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase_ : Dict )-> int: """simple docstring""" # b c h w -> b c 1 1 UpperCamelCase = self.pooler(UpperCAmelCase_ ) UpperCamelCase = self.attention(UpperCAmelCase_ ) UpperCamelCase = hidden_state * attention return hidden_state class __a ( nn.Module ): def __init__( self : Optional[Any] , UpperCAmelCase_ : RegNetConfig , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 1 )-> int: """simple docstring""" super().__init__() UpperCamelCase = in_channels != out_channels or stride != 1 UpperCamelCase = max(1 , out_channels // config.groups_width ) UpperCamelCase = ( RegNetShortCut(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_ ) if should_apply_shortcut else nn.Identity() ) UpperCamelCase = nn.Sequential( RegNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_ , groups=UpperCAmelCase_ , activation=config.hidden_act ) , RegNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=1 , activation=UpperCAmelCase_ ) , ) UpperCamelCase = ACTaFN[config.hidden_act] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase_ : int )-> Dict: """simple docstring""" UpperCamelCase = hidden_state UpperCamelCase = self.layer(UpperCAmelCase_ ) UpperCamelCase = self.shortcut(UpperCAmelCase_ ) hidden_state += residual UpperCamelCase = self.activation(UpperCAmelCase_ ) return hidden_state class __a ( nn.Module ): def __init__( self : int , UpperCAmelCase_ : RegNetConfig , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 1 )-> int: """simple docstring""" super().__init__() UpperCamelCase = in_channels != out_channels or stride != 1 UpperCamelCase = max(1 , out_channels // config.groups_width ) UpperCamelCase = ( RegNetShortCut(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_ ) if should_apply_shortcut else nn.Identity() ) UpperCamelCase = nn.Sequential( RegNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_ , groups=UpperCAmelCase_ , activation=config.hidden_act ) , RegNetSELayer(UpperCAmelCase_ , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=1 , activation=UpperCAmelCase_ ) , ) UpperCamelCase = ACTaFN[config.hidden_act] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase_ : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCamelCase = hidden_state UpperCamelCase = self.layer(UpperCAmelCase_ ) UpperCamelCase = self.shortcut(UpperCAmelCase_ ) hidden_state += residual UpperCamelCase = self.activation(UpperCAmelCase_ ) return hidden_state class __a ( nn.Module ): def __init__( self : Dict , UpperCAmelCase_ : RegNetConfig , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 2 , )-> Tuple: """simple docstring""" super().__init__() UpperCamelCase = RegNetXLayer if config.layer_type == "x" else RegNetYLayer UpperCamelCase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_ , ) , *[layer(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) for _ in range(depth - 1 )] , ) def _SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase_ : List[str] )-> Optional[Any]: """simple docstring""" UpperCamelCase = self.layers(UpperCAmelCase_ ) return hidden_state class __a ( nn.Module ): def __init__( self : Dict , UpperCAmelCase_ : RegNetConfig )-> Tuple: """simple docstring""" super().__init__() UpperCamelCase = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( UpperCAmelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(UpperCAmelCase_ , config.depths[1:] ): self.stages.append(RegNetStage(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , depth=UpperCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase_ : Tensor , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = True )-> BaseModelOutputWithNoAttention: """simple docstring""" UpperCamelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCamelCase = hidden_states + (hidden_state,) UpperCamelCase = stage_module(UpperCAmelCase_ ) if output_hidden_states: UpperCamelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=UpperCAmelCase_ , hidden_states=UpperCAmelCase_ ) class __a ( _lowerCAmelCase ): UpperCamelCase_ : int = RegNetConfig UpperCamelCase_ : List[str] = '''regnet''' UpperCamelCase_ : Tuple = '''pixel_values''' UpperCamelCase_ : Optional[int] = True def _SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase_ : int )-> Optional[Any]: """simple docstring""" if isinstance(UpperCAmelCase_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu" ) elif isinstance(UpperCAmelCase_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def _SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=False )-> Any: """simple docstring""" if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCamelCase = value SCREAMING_SNAKE_CASE = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SCREAMING_SNAKE_CASE = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , _lowerCAmelCase , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __a ( _lowerCAmelCase ): def __init__( self : str , UpperCAmelCase_ : Any )-> Dict: """simple docstring""" super().__init__(UpperCAmelCase_ ) UpperCamelCase = config UpperCamelCase = RegNetEmbeddings(UpperCAmelCase_ ) UpperCamelCase = RegNetEncoder(UpperCAmelCase_ ) UpperCamelCase = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase_ : Tensor , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None )-> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.embedder(UpperCAmelCase_ ) UpperCamelCase = self.encoder( UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) UpperCamelCase = encoder_outputs[0] UpperCamelCase = self.pooler(UpperCAmelCase_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase_ , pooler_output=UpperCAmelCase_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , _lowerCAmelCase , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __a ( _lowerCAmelCase ): def __init__( self : Tuple , UpperCAmelCase_ : Tuple )-> Optional[Any]: """simple docstring""" super().__init__(UpperCAmelCase_ ) UpperCamelCase = config.num_labels UpperCamelCase = RegNetModel(UpperCAmelCase_ ) # classification head UpperCamelCase = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[torch.LongTensor] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None , )-> ImageClassifierOutputWithNoAttention: """simple docstring""" UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase = self.regnet(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) UpperCamelCase = outputs.pooler_output if return_dict else outputs[1] UpperCamelCase = self.classifier(UpperCAmelCase_ ) UpperCamelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCamelCase = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCamelCase = "single_label_classification" else: UpperCamelCase = "multi_label_classification" if self.config.problem_type == "regression": UpperCamelCase = MSELoss() if self.num_labels == 1: UpperCamelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCamelCase = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) elif self.config.problem_type == "single_label_classification": UpperCamelCase = CrossEntropyLoss() UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCamelCase = BCEWithLogitsLoss() UpperCamelCase = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) if not return_dict: UpperCamelCase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=UpperCAmelCase_ , logits=UpperCAmelCase_ , hidden_states=outputs.hidden_states )
556
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __a ( _lowerCAmelCase , unittest.TestCase ): UpperCamelCase_ : str = FunnelTokenizer UpperCamelCase_ : Any = FunnelTokenizerFast UpperCamelCase_ : Union[str, Any] = True UpperCamelCase_ : Tuple = True def _SCREAMING_SNAKE_CASE ( self : Tuple )-> Optional[int]: """simple docstring""" super().setUp() UpperCamelCase = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , **UpperCAmelCase_ : Optional[Any] )-> str: """simple docstring""" return FunnelTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Dict , **UpperCAmelCase_ : Any )-> Union[str, Any]: """simple docstring""" return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase_ : Tuple )-> str: """simple docstring""" UpperCamelCase = "UNwant\u00E9d,running" UpperCamelCase = "unwanted, running" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : str )-> List[str]: """simple docstring""" UpperCamelCase = self.tokenizer_class(self.vocab_file ) UpperCamelCase = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(UpperCAmelCase_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [7, 4, 5, 10, 8, 9] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] )-> Optional[int]: """simple docstring""" UpperCamelCase = self.get_tokenizers(do_lower_case=UpperCAmelCase_ ) for tokenizer in tokenizers: UpperCamelCase = tokenizer("UNwant\u00E9d,running" ) UpperCamelCase = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len ) UpperCamelCase = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len )
556
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) A__ : List[str] = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys A__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def a__ ( ) -> Tuple: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _UpperCamelCase = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching, '''os.path.join''', lowercase ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os, _PatchedModuleObj ) assert isinstance(_test_patching.os.path, _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path, _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os, _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path, _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path, _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def a__ ( ) -> Tuple: """simple docstring""" assert _test_patching.open is open _UpperCamelCase = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching, '''open''', lowercase ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def a__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching, '''pandas.read_csv''', lowercase ): pass def a__ ( ) -> Optional[int]: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching, '''len''', lowercase ) is None with patch_submodule(_test_patching, '''len''', lowercase ): assert _test_patching.len is mock assert _test_patching.len is len def a__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_start_and_stop_mock__''' _UpperCamelCase = patch_submodule(_test_patching, '''open''', lowercase ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def a__ ( ) -> List[str]: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _UpperCamelCase = '''__test_patch_submodule_successive_join__''' _UpperCamelCase = '''__test_patch_submodule_successive_dirname__''' _UpperCamelCase = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching, '''os.path.join''', lowercase ): with patch_submodule(_test_patching, '''os.rename''', lowercase ): with patch_submodule(_test_patching, '''os.path.dirname''', lowercase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching, '''os.rename''', lowercase ): with patch_submodule(_test_patching, '''os.path.join''', lowercase ): with patch_submodule(_test_patching, '''os.path.dirname''', lowercase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def a__ ( ) -> str: """simple docstring""" _UpperCamelCase = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching, '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''', lowercase ): pass with patch_submodule(_test_patching, '''os.__attribute_that_doesn_exist__''', lowercase ): pass
98
0
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py _snake_case = """src/transformers""" _snake_case = """docs/source/en""" _snake_case = """.""" def _A ( __magic_name__ , __magic_name__ , __magic_name__ ): with open(__magic_name__ , "r" , encoding="utf-8" , newline="\n" ) as f: lowercase__ = f.readlines() # Find the start prompt. lowercase__ = 0 while not lines[start_index].startswith(__magic_name__ ): start_index += 1 start_index += 1 lowercase__ = start_index while not lines[end_index].startswith(__magic_name__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | _snake_case = """Model|Encoder|Decoder|ForConditionalGeneration""" # Regexes that match TF/Flax/PT model names. _snake_case = re.compile(R"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") _snake_case = re.compile(R"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _snake_case = re.compile(R"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # This is to make sure the transformers module imported is the one in the repo. _snake_case = direct_transformers_import(TRANSFORMERS_PATH) def _A ( __magic_name__ ): lowercase__ = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" , __magic_name__ ) return [m.group(0 ) for m in matches] def _A ( __magic_name__ , __magic_name__ ): lowercase__ = 2 if text == "✅" or text == "❌" else len(__magic_name__ ) lowercase__ = (width - text_length) // 2 lowercase__ = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def _A ( ): lowercase__ = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowercase__ = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } lowercase__ = {name: config.replace("Config" , "" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. lowercase__ = collections.defaultdict(__magic_name__ ) lowercase__ = collections.defaultdict(__magic_name__ ) lowercase__ = collections.defaultdict(__magic_name__ ) lowercase__ = collections.defaultdict(__magic_name__ ) lowercase__ = collections.defaultdict(__magic_name__ ) # Let's lookup through all transformers object (once). for attr_name in dir(__magic_name__ ): lowercase__ = None if attr_name.endswith("Tokenizer" ): lowercase__ = slow_tokenizers lowercase__ = attr_name[:-9] elif attr_name.endswith("TokenizerFast" ): lowercase__ = fast_tokenizers lowercase__ = attr_name[:-13] elif _re_tf_models.match(__magic_name__ ) is not None: lowercase__ = tf_models lowercase__ = _re_tf_models.match(__magic_name__ ).groups()[0] elif _re_flax_models.match(__magic_name__ ) is not None: lowercase__ = flax_models lowercase__ = _re_flax_models.match(__magic_name__ ).groups()[0] elif _re_pt_models.match(__magic_name__ ) is not None: lowercase__ = pt_models lowercase__ = _re_pt_models.match(__magic_name__ ).groups()[0] if lookup_dict is not None: while len(__magic_name__ ) > 0: if attr_name in model_name_to_prefix.values(): lowercase__ = True break # Try again after removing the last word in the name lowercase__ = "".join(camel_case_split(__magic_name__ )[:-1] ) # Let's build that table! lowercase__ = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) lowercase__ = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). lowercase__ = [len(__magic_name__ ) + 2 for c in columns] lowercase__ = max([len(__magic_name__ ) for name in model_names] ) + 2 # Build the table per se lowercase__ = "|" + "|".join([_center_text(__magic_name__ , __magic_name__ ) for c, w in zip(__magic_name__ , __magic_name__ )] ) + "|\n" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths] ) + "|\n" lowercase__ = {True: "✅", False: "❌"} for name in model_names: lowercase__ = model_name_to_prefix[name] lowercase__ = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(__magic_name__ , __magic_name__ ) for l, w in zip(__magic_name__ , __magic_name__ )] ) + "|\n" return table def _A ( __magic_name__=False ): lowercase__ , lowercase__ , lowercase__ , lowercase__ = _find_text_in_file( filename=os.path.join(__magic_name__ , "index.md" ) , start_prompt="<!--This table is updated automatically from the auto modules" , end_prompt="<!-- End table-->" , ) lowercase__ = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(__magic_name__ , "index.md" ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( "The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") _snake_case = parser.parse_args() check_model_table(args.fix_and_overwrite)
611
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _snake_case = logging.get_logger(__name__) _snake_case = OrderedDict( [ ("""align""", """EfficientNetImageProcessor"""), ("""beit""", """BeitImageProcessor"""), ("""bit""", """BitImageProcessor"""), ("""blip""", """BlipImageProcessor"""), ("""blip-2""", """BlipImageProcessor"""), ("""bridgetower""", """BridgeTowerImageProcessor"""), ("""chinese_clip""", """ChineseCLIPImageProcessor"""), ("""clip""", """CLIPImageProcessor"""), ("""clipseg""", """ViTImageProcessor"""), ("""conditional_detr""", """ConditionalDetrImageProcessor"""), ("""convnext""", """ConvNextImageProcessor"""), ("""convnextv2""", """ConvNextImageProcessor"""), ("""cvt""", """ConvNextImageProcessor"""), ("""data2vec-vision""", """BeitImageProcessor"""), ("""deformable_detr""", """DeformableDetrImageProcessor"""), ("""deit""", """DeiTImageProcessor"""), ("""deta""", """DetaImageProcessor"""), ("""detr""", """DetrImageProcessor"""), ("""dinat""", """ViTImageProcessor"""), ("""donut-swin""", """DonutImageProcessor"""), ("""dpt""", """DPTImageProcessor"""), ("""efficientformer""", """EfficientFormerImageProcessor"""), ("""efficientnet""", """EfficientNetImageProcessor"""), ("""flava""", """FlavaImageProcessor"""), ("""focalnet""", """BitImageProcessor"""), ("""git""", """CLIPImageProcessor"""), ("""glpn""", """GLPNImageProcessor"""), ("""groupvit""", """CLIPImageProcessor"""), ("""imagegpt""", """ImageGPTImageProcessor"""), ("""instructblip""", """BlipImageProcessor"""), ("""layoutlmv2""", """LayoutLMv2ImageProcessor"""), ("""layoutlmv3""", """LayoutLMv3ImageProcessor"""), ("""levit""", """LevitImageProcessor"""), ("""mask2former""", """Mask2FormerImageProcessor"""), ("""maskformer""", """MaskFormerImageProcessor"""), ("""mgp-str""", """ViTImageProcessor"""), ("""mobilenet_v1""", """MobileNetV1ImageProcessor"""), ("""mobilenet_v2""", """MobileNetV2ImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevitv2""", """MobileViTImageProcessor"""), ("""nat""", """ViTImageProcessor"""), ("""oneformer""", """OneFormerImageProcessor"""), ("""owlvit""", """OwlViTImageProcessor"""), ("""perceiver""", """PerceiverImageProcessor"""), ("""pix2struct""", """Pix2StructImageProcessor"""), ("""poolformer""", """PoolFormerImageProcessor"""), ("""regnet""", """ConvNextImageProcessor"""), ("""resnet""", """ConvNextImageProcessor"""), ("""sam""", """SamImageProcessor"""), ("""segformer""", """SegformerImageProcessor"""), ("""swiftformer""", """ViTImageProcessor"""), ("""swin""", """ViTImageProcessor"""), ("""swin2sr""", """Swin2SRImageProcessor"""), ("""swinv2""", """ViTImageProcessor"""), ("""table-transformer""", """DetrImageProcessor"""), ("""timesformer""", """VideoMAEImageProcessor"""), ("""tvlt""", """TvltImageProcessor"""), ("""upernet""", """SegformerImageProcessor"""), ("""van""", """ConvNextImageProcessor"""), ("""videomae""", """VideoMAEImageProcessor"""), ("""vilt""", """ViltImageProcessor"""), ("""vit""", """ViTImageProcessor"""), ("""vit_hybrid""", """ViTHybridImageProcessor"""), ("""vit_mae""", """ViTImageProcessor"""), ("""vit_msn""", """ViTImageProcessor"""), ("""xclip""", """CLIPImageProcessor"""), ("""yolos""", """YolosImageProcessor"""), ] ) _snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def _A ( __magic_name__ ): for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: lowercase__ = model_type_to_module_name(__magic_name__ ) lowercase__ = importlib.import_module(f'''.{module_name}''' , "transformers.models" ) try: return getattr(__magic_name__ , __magic_name__ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(__magic_name__ , "__name__" , __magic_name__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowercase__ = importlib.import_module("transformers" ) if hasattr(__magic_name__ , __magic_name__ ): return getattr(__magic_name__ , __magic_name__ ) return None def _A ( __magic_name__ , __magic_name__ = None , __magic_name__ = False , __magic_name__ = False , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = False , **__magic_name__ , ): lowercase__ = get_file_from_repo( __magic_name__ , __magic_name__ , cache_dir=__magic_name__ , force_download=__magic_name__ , resume_download=__magic_name__ , proxies=__magic_name__ , use_auth_token=__magic_name__ , revision=__magic_name__ , local_files_only=__magic_name__ , ) if resolved_config_file is None: logger.info( "Could not locate the image processor configuration file, will try to use the model config instead." ) return {} with open(__magic_name__ , encoding="utf-8" ) as reader: return json.load(__magic_name__ ) class lowerCAmelCase : def __init__( self :List[Any] ): '''simple docstring''' raise EnvironmentError( "AutoImageProcessor is designed to be instantiated " "using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(_lowercase ) def UpperCAmelCase ( cls :Tuple , _lowercase :Any , **_lowercase :Union[str, Any] ): '''simple docstring''' lowercase__ = kwargs.pop("config" , _lowercase ) lowercase__ = kwargs.pop("trust_remote_code" , _lowercase ) lowercase__ = True lowercase__ , lowercase__ = ImageProcessingMixin.get_image_processor_dict(_lowercase , **_lowercase ) lowercase__ = config_dict.get("image_processor_type" , _lowercase ) lowercase__ = None if "AutoImageProcessor" in config_dict.get("auto_map" , {} ): lowercase__ = config_dict["auto_map"]["AutoImageProcessor"] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: lowercase__ = config_dict.pop("feature_extractor_type" , _lowercase ) if feature_extractor_class is not None: logger.warning( "Could not find image processor class in the image processor config or the model config. Loading" " based on pattern matching with the model's feature extractor configuration." ) lowercase__ = feature_extractor_class.replace("FeatureExtractor" , "ImageProcessor" ) if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): lowercase__ = config_dict["auto_map"]["AutoFeatureExtractor"] lowercase__ = feature_extractor_auto_map.replace("FeatureExtractor" , "ImageProcessor" ) logger.warning( "Could not find image processor auto map in the image processor config or the model config." " Loading based on pattern matching with the model's feature extractor configuration." ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(_lowercase , _lowercase ): lowercase__ = AutoConfig.from_pretrained(_lowercase , **_lowercase ) # It could be in `config.image_processor_type`` lowercase__ = getattr(_lowercase , "image_processor_type" , _lowercase ) if hasattr(_lowercase , "auto_map" ) and "AutoImageProcessor" in config.auto_map: lowercase__ = config.auto_map["AutoImageProcessor"] if image_processor_class is not None: lowercase__ = image_processor_class_from_name(_lowercase ) lowercase__ = image_processor_auto_map is not None lowercase__ = image_processor_class is not None or type(_lowercase ) in IMAGE_PROCESSOR_MAPPING lowercase__ = resolve_trust_remote_code( _lowercase , _lowercase , _lowercase , _lowercase ) if has_remote_code and trust_remote_code: lowercase__ = get_class_from_dynamic_module( _lowercase , _lowercase , **_lowercase ) lowercase__ = kwargs.pop("code_revision" , _lowercase ) if os.path.isdir(_lowercase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(_lowercase , **_lowercase ) elif image_processor_class is not None: return image_processor_class.from_dict(_lowercase , **_lowercase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(_lowercase ) in IMAGE_PROCESSOR_MAPPING: lowercase__ = IMAGE_PROCESSOR_MAPPING[type(_lowercase )] return image_processor_class.from_dict(_lowercase , **_lowercase ) raise ValueError( f'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' f'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' f'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def UpperCAmelCase ( _lowercase :Optional[int] , _lowercase :Dict ): '''simple docstring''' IMAGE_PROCESSOR_MAPPING.register(_lowercase , _lowercase )
611
1
def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = 0 # if input_string is "aba" than new_input_string become "a|b|a" lowerCamelCase_ = '''''' lowerCamelCase_ = '''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__snake_case ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring lowerCamelCase_ = 0, 0 # length[i] shows the length of palindromic substring with center i lowerCamelCase_ = [1 for i in range(len(__snake_case ) )] # for each character in new_string find corresponding palindromic string lowerCamelCase_ = 0 for j in range(len(__snake_case ) ): lowerCamelCase_ = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__snake_case ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 lowerCamelCase_ = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: lowerCamelCase_ = j - k + 1 # noqa: E741 lowerCamelCase_ = j + k - 1 # update max_length and start position if max_length < length[j]: lowerCamelCase_ = length[j] lowerCamelCase_ = j # create that string lowerCamelCase_ = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
70
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[Any] = logging.get_logger(__name__) __A : str = { '''facebook/timesformer''': '''https://huggingface.co/facebook/timesformer/resolve/main/config.json''', } class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Tuple = "timesformer" def __init__( self : Optional[Any] , A : Tuple=2_24 , A : Optional[int]=16 , A : Any=3 , A : str=8 , A : Optional[Any]=7_68 , A : Dict=12 , A : Optional[int]=12 , A : Optional[Any]=30_72 , A : Optional[Any]="gelu" , A : Union[str, Any]=0.0 , A : Dict=0.0 , A : str=0.02 , A : Union[str, Any]=1e-6 , A : Union[str, Any]=True , A : Dict="divided_space_time" , A : Optional[Any]=0 , **A : List[str] , ) -> Tuple: super().__init__(**A ) lowercase_ : Tuple = image_size lowercase_ : str = patch_size lowercase_ : Tuple = num_channels lowercase_ : Optional[Any] = num_frames lowercase_ : List[str] = hidden_size lowercase_ : Any = num_hidden_layers lowercase_ : Union[str, Any] = num_attention_heads lowercase_ : str = intermediate_size lowercase_ : Any = hidden_act lowercase_ : Optional[Any] = hidden_dropout_prob lowercase_ : List[Any] = attention_probs_dropout_prob lowercase_ : List[Any] = initializer_range lowercase_ : List[Any] = layer_norm_eps lowercase_ : List[str] = qkv_bias lowercase_ : Any = attention_type lowercase_ : Dict = drop_path_rate
231
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowercase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=True , _UpperCamelCase="pt" ): '''simple docstring''' __lowercase = {'''add_prefix_space''': True} if isinstance(_UpperCamelCase , _UpperCamelCase ) and not line.startswith(''' ''' ) else {} __lowercase = padding_side return tokenizer( [line] , max_length=_UpperCamelCase , padding='''max_length''' if pad_to_max_length else None , truncation=_UpperCamelCase , return_tensors=_UpperCamelCase , add_special_tokens=_UpperCamelCase , **_UpperCamelCase , ) def lowercase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , ): '''simple docstring''' __lowercase = input_ids.ne(_UpperCamelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class lowerCamelCase_ ( lowercase_ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_="train" , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_="" , ) -> List[str]: '''simple docstring''' super().__init__() __lowercase = Path(UpperCamelCase__ ).joinpath(type_path + '''.source''' ) __lowercase = Path(UpperCamelCase__ ).joinpath(type_path + '''.target''' ) __lowercase = self.get_char_lens(self.src_file ) __lowercase = max_source_length __lowercase = max_target_length assert min(self.src_lens ) > 0, F'found empty line in {self.src_file}' __lowercase = tokenizer __lowercase = prefix if n_obs is not None: __lowercase = self.src_lens[:n_obs] __lowercase = src_lang __lowercase = tgt_lang def __len__( self ) -> Tuple: '''simple docstring''' return len(self.src_lens ) def __getitem__( self , snake_case_ ) -> Union[str, Any]: '''simple docstring''' __lowercase = index + 1 # linecache starts at 1 __lowercase = self.prefix + linecache.getline(str(self.src_file ) , UpperCamelCase__ ).rstrip('''\n''' ) __lowercase = linecache.getline(str(self.tgt_file ) , UpperCamelCase__ ).rstrip('''\n''' ) assert source_line, F'empty source line for index {index}' assert tgt_line, F'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer , UpperCamelCase__ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __lowercase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , UpperCamelCase__ ) else self.tokenizer ) __lowercase = self.tokenizer.generator if isinstance(self.tokenizer , UpperCamelCase__ ) else self.tokenizer __lowercase = encode_line(UpperCamelCase__ , UpperCamelCase__ , self.max_source_length , '''right''' ) __lowercase = encode_line(UpperCamelCase__ , UpperCamelCase__ , self.max_target_length , '''right''' ) __lowercase = source_inputs['''input_ids'''].squeeze() __lowercase = target_inputs['''input_ids'''].squeeze() __lowercase = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def A ( snake_case_ ) -> List[str]: '''simple docstring''' return [len(UpperCamelCase__ ) for x in Path(UpperCamelCase__ ).open().readlines()] def A ( self , snake_case_ ) -> Union[str, Any]: '''simple docstring''' __lowercase = torch.stack([x['''input_ids'''] for x in batch] ) __lowercase = torch.stack([x['''attention_mask'''] for x in batch] ) __lowercase = torch.stack([x['''decoder_input_ids'''] for x in batch] ) __lowercase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , UpperCamelCase__ ) else self.tokenizer.pad_token_id ) __lowercase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , UpperCamelCase__ ) else self.tokenizer.pad_token_id ) __lowercase = trim_batch(UpperCamelCase__ , UpperCamelCase__ ) __lowercase , __lowercase = trim_batch(UpperCamelCase__ , UpperCamelCase__ , attention_mask=UpperCamelCase__ ) __lowercase = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch a : List[Any] = getLogger(__name__) def lowercase_ ( _UpperCamelCase ): '''simple docstring''' return list(itertools.chain.from_iterable(_UpperCamelCase ) ) def lowercase_ ( _UpperCamelCase ): '''simple docstring''' __lowercase = get_git_info() save_json(_UpperCamelCase , os.path.join(_UpperCamelCase , '''git_log.json''' ) ) def lowercase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=4 , **_UpperCamelCase ): '''simple docstring''' with open(_UpperCamelCase , '''w''' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase , indent=_UpperCamelCase , **_UpperCamelCase ) def lowercase_ ( _UpperCamelCase ): '''simple docstring''' with open(_UpperCamelCase ) as f: return json.load(_UpperCamelCase ) def lowercase_ ( ): '''simple docstring''' __lowercase = git.Repo(search_parent_directories=_UpperCamelCase ) __lowercase = { '''repo_id''': str(_UpperCamelCase ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def lowercase_ ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' return list(map(_UpperCamelCase , _UpperCamelCase ) ) def lowercase_ ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' with open(_UpperCamelCase , '''wb''' ) as f: return pickle.dump(_UpperCamelCase , _UpperCamelCase ) def lowercase_ ( _UpperCamelCase ): '''simple docstring''' def remove_articles(_UpperCamelCase ): return re.sub(r'''\b(a|an|the)\b''' , ''' ''' , _UpperCamelCase ) def white_space_fix(_UpperCamelCase ): return " ".join(text.split() ) def remove_punc(_UpperCamelCase ): __lowercase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCamelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCamelCase ) ) ) ) def lowercase_ ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowercase = normalize_answer(_UpperCamelCase ).split() __lowercase = normalize_answer(_UpperCamelCase ).split() __lowercase = Counter(_UpperCamelCase ) & Counter(_UpperCamelCase ) __lowercase = sum(common.values() ) if num_same == 0: return 0 __lowercase = 1.0 * num_same / len(_UpperCamelCase ) __lowercase = 1.0 * num_same / len(_UpperCamelCase ) __lowercase = (2 * precision * recall) / (precision + recall) return fa def lowercase_ ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' return normalize_answer(_UpperCamelCase ) == normalize_answer(_UpperCamelCase ) def lowercase_ ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' assert len(_UpperCamelCase ) == len(_UpperCamelCase ) __lowercase = 0 for hypo, pred in zip(_UpperCamelCase , _UpperCamelCase ): em += exact_match_score(_UpperCamelCase , _UpperCamelCase ) if len(_UpperCamelCase ) > 0: em /= len(_UpperCamelCase ) return {"em": em} def lowercase_ ( _UpperCamelCase ): '''simple docstring''' return model_prefix.startswith('''rag''' ) def lowercase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowercase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __lowercase = '''dropout_rate''' for p in extra_params: if getattr(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if not hasattr(_UpperCamelCase , _UpperCamelCase ) and not hasattr(_UpperCamelCase , equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(_UpperCamelCase ) ) delattr(_UpperCamelCase , _UpperCamelCase ) continue __lowercase = p if hasattr(_UpperCamelCase , _UpperCamelCase ) else equivalent_param[p] setattr(_UpperCamelCase , _UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) delattr(_UpperCamelCase , _UpperCamelCase ) return hparams, config
711
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase_ : '''simple docstring''' def __init__( self , snake_case_=2 , snake_case_=3 , snake_case_=6_4 , snake_case_=None ) -> List[str]: '''simple docstring''' __lowercase = np.random.default_rng(snake_case_ ) __lowercase = length __lowercase = rng.normal(size=(length,) ).astype(np.floataa ) __lowercase = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self ) -> Dict: '''simple docstring''' return self.length def __getitem__( self , snake_case_ ) -> Union[str, Any]: '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self , snake_case_=0 , snake_case_=0 , snake_case_=False ) -> Optional[Any]: '''simple docstring''' super().__init__() __lowercase = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __lowercase = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __lowercase = True def A ( self , snake_case_=None ) -> List[Any]: '''simple docstring''' if self.first_batch: print(F'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __lowercase = False return x * self.a[0] + self.b[0] class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self , snake_case_=0 , snake_case_=0 , snake_case_=False ) -> List[str]: '''simple docstring''' super().__init__() __lowercase = torch.nn.Parameter(torch.tensor(snake_case_ ).float() ) __lowercase = torch.nn.Parameter(torch.tensor(snake_case_ ).float() ) __lowercase = True def A ( self , snake_case_=None ) -> str: '''simple docstring''' if self.first_batch: print(F'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __lowercase = False return x * self.a + self.b def lowercase_ ( _UpperCamelCase , _UpperCamelCase = 16 ): '''simple docstring''' from datasets import load_dataset from transformers import AutoTokenizer __lowercase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __lowercase = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} __lowercase = load_dataset('''csv''' , data_files=_UpperCamelCase ) __lowercase = datasets['''train'''].unique('''label''' ) __lowercase = {v: i for i, v in enumerate(_UpperCamelCase )} def tokenize_function(_UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) __lowercase = tokenizer( examples['''sentence1'''] , examples['''sentence2'''] , truncation=_UpperCamelCase , max_length=_UpperCamelCase , padding='''max_length''' ) if "label" in examples: __lowercase = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowercase = datasets.map( _UpperCamelCase , batched=_UpperCamelCase , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , ) def collate_fn(_UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_UpperCamelCase , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''' ) return tokenizer.pad(_UpperCamelCase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __lowercase = DataLoader(tokenized_datasets['''train'''] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=2 ) __lowercase = DataLoader(tokenized_datasets['''validation'''] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=1 ) return train_dataloader, eval_dataloader
527
0
'''simple docstring''' import argparse import os import re import packaging.version lowerCamelCase = """examples/""" lowerCamelCase = { """examples""": (re.compile(R"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(R"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(R"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), R"""\1version=\"VERSION\","""), """doc""": (re.compile(R"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } lowerCamelCase = { """init""": """src/diffusers/__init__.py""", """setup""": """setup.py""", } lowerCamelCase = """README.md""" def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" with open(_lowerCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: __lowercase =f.read() __lowercase , __lowercase =REPLACE_PATTERNS[pattern] __lowercase =replace.replace('VERSION' , _lowerCAmelCase ) __lowercase =re_pattern.sub(_lowerCAmelCase , _lowerCAmelCase ) with open(_lowerCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(_lowerCAmelCase ) def _A ( _lowerCAmelCase ): """simple docstring""" for folder, directories, fnames in os.walk(_lowerCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , pattern='examples' ) def _A ( _lowerCAmelCase , _lowerCAmelCase=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not patch: update_version_in_examples(_lowerCAmelCase ) def _A ( ): """simple docstring""" __lowercase ='🤗 Transformers currently provides the following architectures' __lowercase ='1. Want to contribute a new model?' with open(_lowerCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: __lowercase =f.readlines() # Find the start of the list. __lowercase =0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __lowercase =start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): __lowercase =lines[index].replace( 'https://huggingface.co/docs/diffusers/main/model_doc' , 'https://huggingface.co/docs/diffusers/model_doc' , ) index += 1 with open(_lowerCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_lowerCAmelCase ) def _A ( ): """simple docstring""" with open(REPLACE_FILES['init'] , 'r' ) as f: __lowercase =f.read() __lowercase =REPLACE_PATTERNS['init'][0].search(_lowerCAmelCase ).groups()[0] return packaging.version.parse(_lowerCAmelCase ) def _A ( _lowerCAmelCase=False ): """simple docstring""" __lowercase =get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: __lowercase =default_version.base_version elif patch: __lowercase =f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: __lowercase =f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. __lowercase =input(f"""Which version are you releasing? [{default_version}]""" ) if len(_lowerCAmelCase ) == 0: __lowercase =default_version print(f"""Updating version to {version}.""" ) global_version_update(_lowerCAmelCase , patch=_lowerCAmelCase ) def _A ( ): """simple docstring""" __lowercase =get_version() __lowercase =f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" __lowercase =current_version.base_version # Check with the user we got that right. __lowercase =input(f"""Which version are we developing now? [{dev_version}]""" ) if len(_lowerCAmelCase ) == 0: __lowercase =dev_version print(f"""Updating version to {version}.""" ) global_version_update(_lowerCAmelCase ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") lowerCamelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
474
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCamelCase ( A , A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = StableDiffusionSAGPipeline lowerCAmelCase__ = TEXT_TO_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase__ = False def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' torch.manual_seed(0) __lowercase =UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , ) __lowercase =DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_lowerCAmelCase , set_alpha_to_one=_lowerCAmelCase , ) torch.manual_seed(0) __lowercase =AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0) __lowercase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) __lowercase =CLIPTextModel(_lowerCAmelCase) __lowercase =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') __lowercase ={ 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any]=0): '''simple docstring''' if str(_lowerCAmelCase).startswith('mps'): __lowercase =torch.manual_seed(_lowerCAmelCase) else: __lowercase =torch.Generator(device=_lowerCAmelCase).manual_seed(_lowerCAmelCase) __lowercase ={ 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCamelCase ( self : Dict): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4') __lowercase =sag_pipe.to(_lowerCAmelCase) sag_pipe.set_progress_bar_config(disable=_lowerCAmelCase) __lowercase ='.' __lowercase =torch.manual_seed(0) __lowercase =sag_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type='np') __lowercase =output.images __lowercase =image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase =np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2 def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase =StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base') __lowercase =sag_pipe.to(_lowerCAmelCase) sag_pipe.set_progress_bar_config(disable=_lowerCAmelCase) __lowercase ='.' __lowercase =torch.manual_seed(0) __lowercase =sag_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type='np') __lowercase =output.images __lowercase =image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase =np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2 def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base') __lowercase =sag_pipe.to(_lowerCAmelCase) sag_pipe.set_progress_bar_config(disable=_lowerCAmelCase) __lowercase ='.' __lowercase =torch.manual_seed(0) __lowercase =sag_pipe( [prompt] , width=7_6_8 , height=5_1_2 , generator=_lowerCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type='np' , ) __lowercase =output.images assert image.shape == (1, 5_1_2, 7_6_8, 3)
474
1
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( lowerCamelCase_ : list[int] , lowerCamelCase_ : int ): __lowercase = 0 __lowercase = len(UpperCAmelCase__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __lowercase = i + 1 else: __lowercase = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'''{two_pointer([2, 7, 1_1, 1_5], 9) = }''')
710
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _SCREAMING_SNAKE_CASE = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _SCREAMING_SNAKE_CASE = tuple[int, int] class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> None: '''simple docstring''' __lowercase = pos_x __lowercase = pos_y __lowercase = (pos_y, pos_x) __lowercase = goal_x __lowercase = goal_y __lowercase = g_cost __lowercase = parent __lowercase = self.calculate_heuristic() __lowercase = self.g_cost + self.h_cost def _UpperCAmelCase (self ) -> float: '''simple docstring''' __lowercase = self.pos_x - self.goal_x __lowercase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_lowerCamelCase ) + abs(_lowerCamelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__(self ,_lowerCamelCase ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> List[Any]: '''simple docstring''' __lowercase = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,0 ,_lowerCamelCase ) __lowercase = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,99999 ,_lowerCamelCase ) __lowercase = [self.start] __lowercase = [] __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowercase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(_lowerCamelCase ) self.closed_nodes.append(_lowerCamelCase ) __lowercase = self.get_successors(_lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = self.open_nodes.pop(self.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_lowerCamelCase ) else: self.open_nodes.append(_lowerCamelCase ) return [self.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[Node]: '''simple docstring''' __lowercase = [] for action in delta: __lowercase = parent.pos_x + action[1] __lowercase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _lowerCamelCase ,_lowerCamelCase ,self.target.pos_y ,self.target.pos_x ,parent.g_cost + 1 ,_lowerCamelCase ,) ) return successors def _UpperCAmelCase (self ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = node __lowercase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowercase = current_node.parent path.reverse() return path class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase ) -> None: '''simple docstring''' __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = AStar(_lowerCamelCase ,_lowerCamelCase ) __lowercase = False def _UpperCAmelCase (self ) -> list[TPosition]: '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __lowercase = self.fwd_astar.open_nodes.pop(0 ) __lowercase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _lowerCamelCase ,_lowerCamelCase ) self.fwd_astar.closed_nodes.append(_lowerCamelCase ) self.bwd_astar.closed_nodes.append(_lowerCamelCase ) __lowercase = current_bwd_node __lowercase = current_fwd_node __lowercase = { self.fwd_astar: self.fwd_astar.get_successors(_lowerCamelCase ), self.bwd_astar: self.bwd_astar.get_successors(_lowerCamelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_lowerCamelCase ) else: # retrieve the best current path __lowercase = astar.open_nodes.pop( astar.open_nodes.index(_lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_lowerCamelCase ) else: astar.open_nodes.append(_lowerCamelCase ) return [self.fwd_astar.start.pos] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> list[TPosition]: '''simple docstring''' __lowercase = self.fwd_astar.retrace_path(_lowerCamelCase ) __lowercase = self.bwd_astar.retrace_path(_lowerCamelCase ) bwd_path.pop() bwd_path.reverse() __lowercase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _SCREAMING_SNAKE_CASE = (0, 0) _SCREAMING_SNAKE_CASE = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = AStar(init, goal) _SCREAMING_SNAKE_CASE = a_star.search() _SCREAMING_SNAKE_CASE = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = BidirectionalAStar(init, goal) _SCREAMING_SNAKE_CASE = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
56
0
"""simple docstring""" import math def __A ( a_ : List[Any] )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = [True] * n SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : List[Any] = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): SCREAMING_SNAKE_CASE : Optional[int] = i * 2 while index < n: SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : Any = index + i SCREAMING_SNAKE_CASE : Optional[int] = [2] for i in range(3 , _lowerCAmelCase , 2 ): if is_prime[i]: primes.append(_lowerCAmelCase ) return primes def __A ( a_ : Optional[Any] = 99_99_66_66_33_33 )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = math.floor(math.sqrt(_lowerCAmelCase ) ) + 1_00 SCREAMING_SNAKE_CASE : int = prime_sieve(_lowerCAmelCase ) SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : int = primes[prime_index] while (last_prime**2) <= limit: SCREAMING_SNAKE_CASE : int = primes[prime_index + 1] SCREAMING_SNAKE_CASE : Optional[int] = last_prime**2 SCREAMING_SNAKE_CASE : str = next_prime**2 # Get numbers divisible by lps(current) SCREAMING_SNAKE_CASE : Optional[Any] = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) SCREAMING_SNAKE_CASE : str = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps SCREAMING_SNAKE_CASE : Dict = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair SCREAMING_SNAKE_CASE : Optional[Any] = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
698
'''simple docstring''' from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowerCamelCase = logging.get_logger(__name__) class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = ["""pixel_values"""] def __init__( self : List[str] , _lowerCAmelCase : bool = True , _lowerCAmelCase : Union[int, float] = 1 / 2_5_5 , _lowerCAmelCase : bool = True , _lowerCAmelCase : int = 8 , **_lowerCAmelCase : Union[str, Any] , ): '''simple docstring''' super().__init__(**_lowerCAmelCase) __lowercase =do_rescale __lowercase =rescale_factor __lowercase =do_pad __lowercase =pad_size def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : float , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : str): '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase) def __lowerCamelCase ( self : int , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None): '''simple docstring''' __lowercase , __lowercase =get_image_size(_lowerCAmelCase) __lowercase =(old_height // size + 1) * size - old_height __lowercase =(old_width // size + 1) * size - old_width return pad(_lowerCAmelCase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=_lowerCAmelCase) def __lowerCamelCase ( self : int , _lowerCAmelCase : ImageInput , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[float] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , _lowerCAmelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_lowerCAmelCase : Dict , ): '''simple docstring''' __lowercase =do_rescale if do_rescale is not None else self.do_rescale __lowercase =rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase =do_pad if do_pad is not None else self.do_pad __lowercase =pad_size if pad_size is not None else self.pad_size __lowercase =make_list_of_images(_lowerCAmelCase) if not valid_images(_lowerCAmelCase): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') # All transformations expect numpy arrays. __lowercase =[to_numpy_array(_lowerCAmelCase) for image in images] if do_rescale: __lowercase =[self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase) for image in images] if do_pad: __lowercase =[self.pad(_lowerCAmelCase , size=_lowerCAmelCase) for image in images] __lowercase =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase) for image in images] __lowercase ={'pixel_values': images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase)
474
0
from __future__ import annotations def lowercase ( a , a , a ): '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance < 0: raise ValueError("Resistance cannot be negative" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
715
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _UpperCAmelCase ( lowercase ): def _snake_case ( self : List[Any] , UpperCAmelCase : str): with open(UpperCAmelCase , encoding="utf-8") as input_file: SCREAMING_SNAKE_CASE_ :Optional[int] = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)") SCREAMING_SNAKE_CASE_ :Any = input_file.read() SCREAMING_SNAKE_CASE_ :Any = regexp.search(UpperCAmelCase) return match def _snake_case ( self : List[Any] , UpperCAmelCase : str): with open(UpperCAmelCase , encoding="utf-8") as input_file: SCREAMING_SNAKE_CASE_ :Optional[int] = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL) SCREAMING_SNAKE_CASE_ :Any = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` SCREAMING_SNAKE_CASE_ :Any = regexp.finditer(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Any = [match for match in matches if match is not None and match.group(1) is not None] return matches[0] if matches else None def _snake_case ( self : List[str]): SCREAMING_SNAKE_CASE_ :List[Any] = Path("./datasets") SCREAMING_SNAKE_CASE_ :Any = list(dataset_paths.absolute().glob("**/*.py")) for dataset in dataset_files: if self._no_encoding_on_file_open(str(UpperCAmelCase)): raise AssertionError(F"open(...) must use utf-8 encoding in {dataset}") def _snake_case ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ :Tuple = Path("./datasets") SCREAMING_SNAKE_CASE_ :int = list(dataset_paths.absolute().glob("**/*.py")) for dataset in dataset_files: if self._no_print_statements(str(UpperCAmelCase)): raise AssertionError(F"print statement found in {dataset}. Use datasets.logger/logging instead.")
140
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self : str ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) __UpperCAmelCase : Any = get_activation("""gelu""" ) self.assertTrue(torch.allclose(gelu_python(__lowercase ) , torch_builtin(__lowercase ) ) ) self.assertFalse(torch.allclose(gelu_python(__lowercase ) , gelu_new(__lowercase ) ) ) def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: __UpperCAmelCase : Tuple = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) __UpperCAmelCase : List[str] = get_activation("""gelu""" ) __UpperCAmelCase : Tuple = get_activation("""gelu_10""" ) __UpperCAmelCase : int = torch_builtin(__lowercase ) __UpperCAmelCase : Union[str, Any] = geluaa(__lowercase ) __UpperCAmelCase : Optional[Any] = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(__lowercase ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def UpperCAmelCase ( self : List[str] ) -> Optional[int]: get_activation("""gelu""" ) get_activation("""gelu_10""" ) get_activation("""gelu_fast""" ) get_activation("""gelu_new""" ) get_activation("""gelu_python""" ) get_activation("""gelu_pytorch_tanh""" ) get_activation("""linear""" ) get_activation("""mish""" ) get_activation("""quick_gelu""" ) get_activation("""relu""" ) get_activation("""sigmoid""" ) get_activation("""silu""" ) get_activation("""swish""" ) get_activation("""tanh""" ) with self.assertRaises(__lowercase ): get_activation("""bogus""" ) with self.assertRaises(__lowercase ): get_activation(__lowercase ) def UpperCAmelCase ( self : str ) -> int: __UpperCAmelCase : Tuple = get_activation("""gelu""" ) __UpperCAmelCase : Dict = 1 __UpperCAmelCase : Any = get_activation("""gelu""" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__lowercase ): __UpperCAmelCase : List[Any] = acta.a
63
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm a : Dict = logging.get_logger(__name__) @dataclass class a ( lowercase__ ): """simple docstring""" a : Dict = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self : List[Any] , **__lowercase : Dict ) -> Tuple: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __UpperCAmelCase : List[Any] = deprecated_arg[3:] setattr(self , __lowercase , not kwargs.pop(__lowercase ) ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no_{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) __UpperCAmelCase : str = kwargs.pop("""torchscript""" , self.torchscript ) __UpperCAmelCase : Union[str, Any] = kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics ) __UpperCAmelCase : Optional[Any] = kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level ) super().__init__(**__lowercase ) a : bool = field(default=lowercase__ , metadata={'help': 'Trace the models using torchscript'} ) a : bool = field(default=lowercase__ , metadata={'help': 'Print Xla/PyTorch tpu metrics'} ) a : str = field( default='O1' , metadata={ 'help': ( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ' 'See details at https://nvidia.github.io/apex/amp.html' ) } , ) @cached_property def UpperCAmelCase ( self : Any ) -> Tuple["torch.device", int]: requires_backends(self , ["""torch"""] ) logger.info("""PyTorch: setting up devices""" ) if not self.cuda: __UpperCAmelCase : str = torch.device("""cpu""" ) __UpperCAmelCase : int = 0 elif is_torch_tpu_available(): __UpperCAmelCase : Tuple = xm.xla_device() __UpperCAmelCase : int = 0 else: __UpperCAmelCase : Dict = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) __UpperCAmelCase : Optional[int] = torch.cuda.device_count() return device, n_gpu @property def UpperCAmelCase ( self : Optional[Any] ) -> str: return is_torch_tpu_available() and self.tpu @property def UpperCAmelCase ( self : List[str] ) -> int: requires_backends(self , ["""torch"""] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def UpperCAmelCase ( self : int ) -> "torch.device": requires_backends(self , ["""torch"""] ) return self._setup_devices[0] @property def UpperCAmelCase ( self : int ) -> List[Any]: requires_backends(self , ["""torch"""] ) return self._setup_devices[1] @property def UpperCAmelCase ( self : Tuple ) -> List[str]: return self.n_gpu > 0
63
1
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def A_ ( snake_case : Any=None , snake_case : Union[str, Any]=None ) -> Union[str, Any]: '''simple docstring''' return field(default_factory=lambda: default , metadata=snake_case ) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" _snake_case = field( metadata={'help': 'The csv file to plot.'} , ) _snake_case = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Whether to plot along batch size or sequence length. Defaults to sequence length.'} , ) _snake_case = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Whether the csv file has time results or memory results. Defaults to memory results.'} , ) _snake_case = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Disable logarithmic scale when plotting'} , ) _snake_case = field( default=SCREAMING_SNAKE_CASE_ , metadata={ 'help': 'Whether the csv file has training results or inference results. Defaults to inference results.' } , ) _snake_case = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Filename under which the plot will be saved. If unused no plot is saved.'} , ) _snake_case = list_field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'List of model names that are used instead of the ones in the csv file.'} ) def A_ ( snake_case : int ) -> int: '''simple docstring''' try: int(snake_case ) return True except ValueError: return False def A_ ( snake_case : int ) -> Any: '''simple docstring''' try: float(snake_case ) return True except ValueError: return False class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' __UpperCamelCase = args __UpperCamelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='''''' ) as csv_file: __UpperCamelCase = csv.DictReader(SCREAMING_SNAKE_CASE_ ) for row in reader: __UpperCamelCase = row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) ) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) ) if can_convert_to_int(row['''result'''] ): # value is not None __UpperCamelCase = int(row['''result'''] ) elif can_convert_to_float(row['''result'''] ): # value is not None __UpperCamelCase = float(row['''result'''] ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = plt.subplots() __UpperCamelCase = '''Time usage''' if self.args.is_time else '''Memory usage''' __UpperCamelCase = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''' ) ax.set_yscale('''log''' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): __UpperCamelCase = sorted(set(self.result_dict[model_name]['''bsz'''] ) ) __UpperCamelCase = sorted(set(self.result_dict[model_name]['''seq_len'''] ) ) __UpperCamelCase = self.result_dict[model_name]['''result'''] ((__UpperCamelCase) , (__UpperCamelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) __UpperCamelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: __UpperCamelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=SCREAMING_SNAKE_CASE_ , ) else: __UpperCamelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((__UpperCamelCase) , (__UpperCamelCase)) = ( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) __UpperCamelCase = np.asarray(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )[: len(SCREAMING_SNAKE_CASE_ )] plt.scatter( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , label=F"{label_model_name} - {inner_loop_label}: {inner_loop_value}" ) plt.plot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''--''' ) title_str += F" {label_model_name} vs." __UpperCamelCase = title_str[:-4] __UpperCamelCase = '''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(SCREAMING_SNAKE_CASE_ ) plt.xlabel(SCREAMING_SNAKE_CASE_ ) plt.ylabel(SCREAMING_SNAKE_CASE_ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def A_ ( ) -> Tuple: '''simple docstring''' __UpperCamelCase = HfArgumentParser(snake_case ) __UpperCamelCase = parser.parse_args_into_dataclasses()[0] __UpperCamelCase = Plot(args=snake_case ) plot.plot() if __name__ == "__main__": main()
451
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=24 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , )-> Optional[int]: '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = patch_size __UpperCamelCase = max_length __UpperCamelCase = num_mel_bins __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = scope __UpperCamelCase = frequency_stride __UpperCamelCase = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __UpperCamelCase = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 __UpperCamelCase = (self.max_length - self.patch_size) // self.time_stride + 1 __UpperCamelCase = frequency_out_dimension * time_out_dimension __UpperCamelCase = num_patches + 2 def A__ ( self )-> Dict: '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = self.get_config() return config, input_values, labels def A__ ( self )-> Optional[int]: '''simple docstring''' return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[Any]: '''simple docstring''' __UpperCamelCase = ASTModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = config_and_inputs __UpperCamelCase = {'''input_values''': input_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" _snake_case = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) _snake_case = ( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) _snake_case = False _snake_case = False _snake_case = False _snake_case = False def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = ASTModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def A__ ( self )-> Tuple: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''AST does not use inputs_embeds''' ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' pass def A__ ( self )-> List[Any]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['''input_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> List[Any]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) @slow def A__ ( self )-> Optional[Any]: '''simple docstring''' for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = ASTModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def A_ ( ) -> int: '''simple docstring''' __UpperCamelCase = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' ) __UpperCamelCase , __UpperCamelCase = torchaudio.load(snake_case ) return audio, sampling_rate @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self )-> List[str]: '''simple docstring''' return ( ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ) if is_torchaudio_available() else None ) @slow def A__ ( self )-> Dict: '''simple docstring''' __UpperCamelCase = self.default_feature_extractor __UpperCamelCase = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ).to(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.default_feature_extractor __UpperCamelCase , __UpperCamelCase = prepare_audio() __UpperCamelCase = audio.squeeze().numpy() __UpperCamelCase = feature_extractor(SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits __UpperCamelCase = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.tensor([-0.8_7_6_0, -7.0_0_4_2, -8.6_6_0_2] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
451
1
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : int , _lowerCAmelCase : List[str] ): SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 250 SCREAMING_SNAKE_CASE_ = ids_tensor((batch_size, length) , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.ones((batch_size, length) , device=_lowerCAmelCase , dtype=torch.float ) / length return input_ids, scores def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_tensors(5 ) SCREAMING_SNAKE_CASE_ = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_tensors(9 ) self.assertFalse(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_tensors(10 ) self.assertTrue(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = MaxLengthCriteria(max_length=10 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_tensors(5 ) self.assertFalse(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_tensors(9 ) self.assertFalse(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_tensors(10 ) self.assertTrue(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_tensors(5 ) self.assertFalse(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_tensors(9 ) self.assertFalse(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_tensors(10 ) self.assertTrue(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_tensors(5 ) SCREAMING_SNAKE_CASE_ = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(_lowerCAmelCase , _lowerCAmelCase ) ) def lowerCAmelCase_ ( self : str ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(_lowerCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) SCREAMING_SNAKE_CASE_ = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(_lowerCAmelCase ) , 1 )
31
UpperCAmelCase_ = {"""a""": ["""c""", """b"""], """b""": ["""d""", """e"""], """c""": [], """d""": [], """e""": []} UpperCAmelCase_ = ["""a""", """b""", """c""", """d""", """e"""] def __magic_name__ ( lowercase , lowercase , lowercase ) -> Union[str, Any]: """simple docstring""" lowercase_ : Tuple = start # add current to visited visited.append(lowercase ) lowercase_ : Any = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: lowercase_ : List[str] = topological_sort(lowercase , lowercase , lowercase ) # if all neighbors visited add current to sort sort.append(lowercase ) # if all vertices haven't been visited select a new one to visit if len(lowercase ) != len(lowercase ): for vertice in vertices: if vertice not in visited: lowercase_ : Optional[Any] = topological_sort(lowercase , lowercase , lowercase ) # return sort return sort if __name__ == "__main__": UpperCAmelCase_ = topological_sort("""a""", [], []) print(sort)
458
0
'''simple docstring''' def UpperCamelCase__ ( _lowercase : Any ) -> Tuple: return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
717
'''simple docstring''' from __future__ import annotations SCREAMING_SNAKE_CASE_ = 10 def UpperCamelCase__ ( _lowercase : list[int] ) -> list[int]: __UpperCAmelCase: Union[str, Any] = 1 __UpperCAmelCase: Optional[Any] = max(_lowercase ) while placement <= max_digit: # declare and initialize empty buckets __UpperCAmelCase: list[list] = [[] for _ in range(_lowercase )] # split list_of_ints between the buckets for i in list_of_ints: __UpperCAmelCase: Optional[Any] = int((i / placement) % RADIX ) buckets[tmp].append(_lowercase ) # put each buckets' contents into list_of_ints __UpperCAmelCase: Optional[int] = 0 for b in range(_lowercase ): for i in buckets[b]: __UpperCAmelCase: str = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
466
0
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCamelCase : Optional[Any] = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 128, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 50, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 10, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 10, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @classmethod def _lowercase ( cls : List[str] ): snake_case__ : Union[str, Any] = TOKEN HfFolder.save_token(__A ) @classmethod def _lowercase ( cls : Dict ): try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def _lowercase ( self : Any ): snake_case__ : List[str] = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub("test-config" , use_auth_token=self._token ) snake_case__ : str = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__A , repo_id="test-config" , push_to_hub=__A , use_auth_token=self._token ) snake_case__ : int = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def _lowercase ( self : Dict ): snake_case__ : Any = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) snake_case__ : Tuple = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __A , repo_id="valid_org/test-config-org" , push_to_hub=__A , use_auth_token=self._token ) snake_case__ : Optional[Any] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__A , getattr(__A , __A ) ) def _lowercase ( self : List[str] ): CustomConfig.register_for_auto_class() snake_case__ : Optional[Any] = CustomConfig(attribute=4_2 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) snake_case__ : Optional[Any] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''' , trust_remote_code=__A ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 4_2 ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Dict ): snake_case__ : int = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated snake_case__ : Union[str, Any] = c.n_embd + 1 # int snake_case__ : Tuple = c.resid_pdrop + 1.0 # float snake_case__ : Union[str, Any] = not c.scale_attn_weights # bool snake_case__ : Optional[int] = c.summary_type + "foo" # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(__A , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(__A , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(__A , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(__A , c.summary_type , "mismatch for key: summary_type" ) def _lowercase ( self : List[Any] ): snake_case__ : Dict = PretrainedConfig() snake_case__ : Optional[int] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __A , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) snake_case__ : Optional[Any] = [key for key, value in config_common_kwargs.items() if value == getattr(__A , __A )] if len(__A ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" f''' {', '.join(__A )}.''' ) def _lowercase ( self : Optional[int] ): with self.assertRaises(__A ): # config is in subfolder, the following should not work without specifying the subfolder snake_case__ : Optional[int] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) snake_case__ : Union[str, Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(__A ) def _lowercase ( self : List[str] ): # A mock response for an HTTP head request to emulate server down snake_case__ : Union[str, Any] = mock.Mock() snake_case__ : Union[str, Any] = 5_0_0 snake_case__ : int = {} snake_case__ : Any = HTTPError snake_case__ : Union[str, Any] = {} # Download this model to make sure it's in the cache. snake_case__ : int = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=__A ) as mock_head: snake_case__ : Dict = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def _lowercase ( self : Dict ): # This test is for deprecated behavior and can be removed in v5 snake_case__ : str = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def _lowercase ( self : str ): snake_case__ : List[str] = AutoConfig.from_pretrained("bert-base-cased" ) snake_case__ : int = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__A ) snake_case__ : int = 2 json.dump(configuration.to_dict() , open(os.path.join(__A , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 snake_case__ : Tuple = AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 snake_case__ : Dict = ["config.42.0.0.json"] snake_case__ : Optional[int] = 7_6_8 configuration.save_pretrained(__A ) shutil.move(os.path.join(__A , "config.4.0.0.json" ) , os.path.join(__A , "config.42.0.0.json" ) ) snake_case__ : Optional[Any] = AutoConfig.from_pretrained(__A ) self.assertEqual(new_configuration.hidden_size , 7_6_8 ) def _lowercase ( self : Any ): # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. snake_case__ : Any = "hf-internal-testing/test-two-configs" import transformers as new_transformers snake_case__ : Optional[Any] = "v4.0.0" snake_case__, snake_case__ : Optional[int] = new_transformers.models.auto.AutoConfig.from_pretrained( __A , return_unused_kwargs=__A ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__A , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers snake_case__ : Dict = "v3.0.0" snake_case__ : Dict = old_transformers.models.auto.AutoConfig.from_pretrained(__A ) self.assertEqual(old_configuration.hidden_size , 7_6_8 )
297
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float ): if (voltage, current, resistance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance < 0: raise ValueError("Resistance cannot be negative" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
297
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
283
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class _lowerCamelCase (__lowerCamelCase ): _snake_case = ["pixel_values"] def __init__( self : Optional[int] , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional[Dict[str, int]] = None , lowerCamelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCamelCase_ : bool = True , lowerCamelCase_ : Dict[str, int] = None , lowerCamelCase_ : bool = True , lowerCamelCase_ : Union[int, float] = 1 / 2_5_5 , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional[Union[float, List[float]]] = None , lowerCamelCase_ : Optional[Union[float, List[float]]] = None , **lowerCamelCase_ : int , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) _lowercase : Optional[Any] = size if size is not None else {'shortest_edge': 2_5_6} _lowercase : Optional[int] = get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) _lowercase : List[str] = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} _lowercase : Any = get_size_dict(lowerCamelCase_ ) _lowercase : Optional[int] = do_resize _lowercase : Optional[int] = size _lowercase : Union[str, Any] = resample _lowercase : Optional[Any] = do_center_crop _lowercase : Union[str, Any] = crop_size _lowercase : Any = do_rescale _lowercase : Tuple = rescale_factor _lowercase : Optional[int] = do_normalize _lowercase : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowercase : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : Dict[str, int] , lowerCamelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ : Tuple , ): """simple docstring""" _lowercase : Optional[Any] = get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _lowercase : Dict = get_resize_output_image_size(lowerCamelCase_ , size=size['shortest_edge'] , default_to_square=lowerCamelCase_ ) return resize(lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : Dict[str, int] , lowerCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ : str , ): """simple docstring""" _lowercase : Tuple = get_size_dict(lowerCamelCase_ ) return center_crop(lowerCamelCase_ , size=(size['height'], size['width']) , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : float , lowerCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ : Optional[Any] ): """simple docstring""" return rescale(lowerCamelCase_ , scale=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : Union[float, List[float]] , lowerCamelCase_ : Union[float, List[float]] , lowerCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ : List[Any] , ): """simple docstring""" return normalize(lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : ImageInput , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Dict[str, int] = None , lowerCamelCase_ : PILImageResampling = None , lowerCamelCase_ : bool = None , lowerCamelCase_ : Dict[str, int] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[float] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[Union[float, List[float]]] = None , lowerCamelCase_ : Optional[Union[float, List[float]]] = None , lowerCamelCase_ : Optional[Union[str, TensorType]] = None , lowerCamelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCamelCase_ : int , ): """simple docstring""" _lowercase : Optional[Any] = do_resize if do_resize is not None else self.do_resize _lowercase : List[Any] = size if size is not None else self.size _lowercase : Union[str, Any] = get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) _lowercase : Any = resample if resample is not None else self.resample _lowercase : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop _lowercase : List[Any] = crop_size if crop_size is not None else self.crop_size _lowercase : Tuple = get_size_dict(lowerCamelCase_ ) _lowercase : List[Any] = do_rescale if do_rescale is not None else self.do_rescale _lowercase : int = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase : int = do_normalize if do_normalize is not None else self.do_normalize _lowercase : str = image_mean if image_mean is not None else self.image_mean _lowercase : List[Any] = image_std if image_std is not None else self.image_std _lowercase : Union[str, Any] = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _lowercase : Optional[Any] = [to_numpy_array(lowerCamelCase_ ) for image in images] if do_resize: _lowercase : Optional[Any] = [self.resize(image=lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ ) for image in images] if do_center_crop: _lowercase : List[Any] = [self.center_crop(image=lowerCamelCase_ , size=lowerCamelCase_ ) for image in images] if do_rescale: _lowercase : str = [self.rescale(image=lowerCamelCase_ , scale=lowerCamelCase_ ) for image in images] if do_normalize: _lowercase : Any = [self.normalize(image=lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ ) for image in images] _lowercase : int = [to_channel_dimension_format(lowerCamelCase_ , lowerCamelCase_ ) for image in images] _lowercase : Tuple = {'pixel_values': images} return BatchFeature(data=lowerCamelCase_ , tensor_type=lowerCamelCase_ )
283
1
def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase): UpperCamelCase_ , UpperCamelCase_ = len(__lowercase), len(grid[0]) if ( min(__lowercase , __lowercase) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col)) UpperCamelCase_ = 0 count += depth_first_search(__lowercase , row + 1 , __lowercase , __lowercase) count += depth_first_search(__lowercase , row - 1 , __lowercase , __lowercase) count += depth_first_search(__lowercase , __lowercase , col + 1 , __lowercase) count += depth_first_search(__lowercase , __lowercase , col - 1 , __lowercase) visit.remove((row, col)) return count if __name__ == "__main__": import doctest doctest.testmod()
23
snake_case__ : int = '''Input must be a string of 8 numbers plus letter''' snake_case__ : Optional[int] = '''TRWAGMYFPDXBNJZSQVHLCKE''' def lowercase ( _lowerCAmelCase ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ = F'''Expected string as input, found {type(_lowerCAmelCase ).__name__}''' raise TypeError(_lowerCAmelCase ) UpperCAmelCase__ = spanish_id.replace("""-""" , """""" ).upper() if len(_lowerCAmelCase ) != 9: raise ValueError(_lowerCAmelCase ) try: UpperCAmelCase__ = int(spanish_id_clean[0:8] ) UpperCAmelCase__ = spanish_id_clean[8] except ValueError as ex: raise ValueError(_lowerCAmelCase ) from ex if letter.isdigit(): raise ValueError(_lowerCAmelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
392
0
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm A__: Optional[Any] = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex A__: Dict = 10 A__: str = 256 def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[str] ) -> Optional[MinHash]: if len(_UpperCAmelCase ) < MIN_NUM_TOKENS: return None _a : Optional[int] =MinHash(num_perm=_UpperCAmelCase ) for token in set(_UpperCAmelCase ): min_hash.update(token.encode() ) return min_hash def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ) -> Set[str]: return {t for t in NON_ALPHA.split(_UpperCAmelCase ) if len(t.strip() ) > 0} class A__ : def __init__( self :int , *, SCREAMING_SNAKE_CASE :float = 0.85 , ) -> str: '''simple docstring''' _a : Optional[Any] =duplication_jaccard_threshold _a : List[Any] =NUM_PERM _a : Optional[Any] =MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _a : List[Any] =defaultdict(SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :MinHash ) -> None: '''simple docstring''' _a : Tuple =self._index.query(SCREAMING_SNAKE_CASE ) if code_key in self._index.keys: print(f"Duplicate key {code_key}" ) return self._index.insert(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(SCREAMING_SNAKE_CASE ) break else: self._duplicate_clusters[close_duplicates[0]].add(SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Any ) -> List[List[Dict]]: '''simple docstring''' _a : Union[str, Any] =[] for base, duplicates in self._duplicate_clusters.items(): _a : Any =[base] + list(SCREAMING_SNAKE_CASE ) # reformat the cluster to be a list of dict _a : Optional[int] =[{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(SCREAMING_SNAKE_CASE ) return duplicate_clusters def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Optional[int] ) -> None: '''simple docstring''' _a : Optional[Any] =self.get_duplicate_clusters() with open(SCREAMING_SNAKE_CASE , """w""" ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Dict ) -> Union[str, Any]: _a , _a : Union[str, Any] =element _a : Tuple =get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Type[Dataset] ) -> Optional[int]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash ,ThreadedIterator(_UpperCAmelCase ,max_queue_size=10000 ) ,chunksize=100 ,): if data is not None: yield data def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Type[Dataset] ,_UpperCAmelCase : float ) -> str: _a : int =DuplicationIndex(duplication_jaccard_threshold=_UpperCAmelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_UpperCAmelCase ) ) ,max_queue_size=100 ) ): di.add(_UpperCAmelCase ,_UpperCAmelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : str ) -> float: _a : Optional[Any] =get_tokens(_UpperCAmelCase ) _a : int =get_tokens(_UpperCAmelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) A__: List[Any] = None def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : str ) -> Optional[Any]: _a : Optional[Any] =[] for elementa in cluster: _a : Optional[int] =_shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: _a : Optional[Any] =_shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(_UpperCAmelCase ,_UpperCAmelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: _a : Tuple =1 extremes.append(_UpperCAmelCase ) return extremes def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : List[Any] ) -> Any: global _shared_dataset _a : List[str] =dataset _a : Union[str, Any] =[] _a : Any =partial(_find_cluster_extremes_shared ,jaccard_threshold=_UpperCAmelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _UpperCAmelCase ,_UpperCAmelCase ,) ,total=len(_UpperCAmelCase ) ,): extremes_list.append(_UpperCAmelCase ) return extremes_list def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Type[Dataset] ,_UpperCAmelCase : float = 0.8_5 ) -> Tuple[Type[Dataset], List[List[Dict]]]: _a : List[Any] =make_duplicate_clusters(_UpperCAmelCase ,_UpperCAmelCase ) _a : int ={x["""base_index"""] for cluster in duplicate_clusters for x in cluster} _a : Union[str, Any] ={} _a : Optional[int] =find_extremes(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) for extremes in extremes_clusters: for element in extremes: _a : List[Any] =element _a : Union[str, Any] =duplicate_indices - set(extreme_dict.keys() ) _a : List[Any] =dataset.filter(lambda _UpperCAmelCase ,_UpperCAmelCase : idx not in remove_indices ,with_indices=_UpperCAmelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _a : Any =element["""base_index"""] in extreme_dict if element["is_extreme"]: _a : List[Any] =extreme_dict[element["""base_index"""]]["""copies"""] print(F"Original dataset size: {len(_UpperCAmelCase )}" ) print(F"Number of duplicate clusters: {len(_UpperCAmelCase )}" ) print(F"Files in duplicate cluster: {len(_UpperCAmelCase )}" ) print(F"Unique files in duplicate cluster: {len(_UpperCAmelCase )}" ) print(F"Filtered dataset size: {len(_UpperCAmelCase )}" ) return ds_filter, duplicate_clusters
506
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list ) -> float: _a : Union[str, Any] =0 while len(_UpperCAmelCase ) > 1: _a : Any =0 # Consider two files with minimum cost to be merged for _ in range(2 ): _a : Optional[int] =files.index(min(_UpperCAmelCase ) ) temp += files[min_index] files.pop(_UpperCAmelCase ) files.append(_UpperCAmelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
506
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( _lowerCamelCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = ["""pixel_values"""] def __init__( self : List[str] , lowercase : Union[str, Any] = True , lowercase : Union[str, Any] = None , lowercase : Tuple = PILImageResampling.BILINEAR , lowercase : Any = True , lowercase : Optional[int] = None , lowercase : Any = True , lowercase : int = 1 / 255 , lowercase : List[str] = True , lowercase : str = None , lowercase : Optional[Any] = None , **lowercase : Tuple , ): '''simple docstring''' super().__init__(**__a ) _snake_case = size if size is not None else {'shortest_edge': 256} _snake_case = get_size_dict(__a , default_to_square=__a ) _snake_case = crop_size if crop_size is not None else {'height': 224, 'width': 224} _snake_case = get_size_dict(__a ) _snake_case = do_resize _snake_case = size _snake_case = resample _snake_case = do_center_crop _snake_case = crop_size _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_normalize _snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD def A ( self : Any , lowercase : Dict , lowercase : List[str] , lowercase : Union[str, Any] = PILImageResampling.BICUBIC , lowercase : str = None , **lowercase : Dict , ): '''simple docstring''' _snake_case = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _snake_case = get_resize_output_image_size(__a , size=size['shortest_edge'] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def A ( self : int , lowercase : Any , lowercase : int , lowercase : List[Any] = None , **lowercase : Optional[int] , ): '''simple docstring''' _snake_case = get_size_dict(__a ) return center_crop(__a , size=(size['height'], size['width']) , data_format=__a , **__a ) def A ( self : Tuple , lowercase : Dict , lowercase : List[Any] , lowercase : Dict = None , **lowercase : List[Any] ): '''simple docstring''' return rescale(__a , scale=__a , data_format=__a , **__a ) def A ( self : Union[str, Any] , lowercase : Optional[int] , lowercase : int , lowercase : Tuple , lowercase : Tuple = None , **lowercase : Dict , ): '''simple docstring''' return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def A ( self : List[Any] , lowercase : Tuple , lowercase : int = None , lowercase : Optional[Any] = None , lowercase : int = None , lowercase : Dict = None , lowercase : Optional[int] = None , lowercase : Any = None , lowercase : int = None , lowercase : Any = None , lowercase : Union[str, Any] = None , lowercase : Dict = None , lowercase : Union[str, Any] = None , lowercase : Tuple = ChannelDimension.FIRST , **lowercase : Optional[Any] , ): '''simple docstring''' _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = size if size is not None else self.size _snake_case = get_size_dict(__a , default_to_square=__a ) _snake_case = resample if resample is not None else self.resample _snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case = crop_size if crop_size is not None else self.crop_size _snake_case = get_size_dict(__a ) _snake_case = do_rescale if do_rescale is not None else self.do_rescale _snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = image_mean if image_mean is not None else self.image_mean _snake_case = image_std if image_std is not None else self.image_std _snake_case = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _snake_case = [to_numpy_array(__a ) for image in images] if do_resize: _snake_case = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: _snake_case = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: _snake_case = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: _snake_case = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] _snake_case = [to_channel_dimension_format(__a , __a ) for image in images] _snake_case = {'pixel_values': images} return BatchFeature(data=__a , tensor_type=__a )
686
"""simple docstring""" from heapq import heappop, heappush import numpy as np def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,): A__ , A__ = grid.shape A__ = [-1, 1, 0, 0] A__ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] A__ , A__ = [(0, source)], set() A__ = np.full((rows, cols) ,np.inf ) A__ = 0 A__ = np.empty((rows, cols) ,dtype=lowerCAmelCase__ ) A__ = None while queue: ((A__) , (A__)) = heappop(lowerCAmelCase__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: A__ = [] while (x, y) != source: path.append((x, y) ) A__ , A__ = predecessors[x, y] path.append(lowerCAmelCase__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(lowerCAmelCase__ ) ): A__ , A__ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: A__ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(lowerCAmelCase__ ,(dist + 1, (nx, ny)) ) A__ = dist + 1 A__ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
260
0
'''simple docstring''' from collections.abc import Iterable from typing import Generic, TypeVar A__: int = TypeVar('''_T''') class A__ ( Generic[_T] ): def __init__( self :Optional[int] , SCREAMING_SNAKE_CASE :List[str] = None ) -> Any: '''simple docstring''' _a : list[_T] =list(iterable or [] ) _a : list[_T] =[] def __len__( self :Dict ) -> Optional[Any]: '''simple docstring''' return len(self._stacka ) + len(self._stacka ) def __repr__( self :List[str] ) -> Any: '''simple docstring''' return f"Queue({tuple(self._stacka[::-1] + self._stacka )})" def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :List[str] ) -> Optional[Any]: '''simple docstring''' self._stacka.append(UpperCamelCase_ ) def __UpperCAmelCase ( self :int ) -> int: '''simple docstring''' _a : str =self._stacka.pop _a : Union[str, Any] =self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("""Queue is empty""" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
710
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging A__: Any = logging.get_logger(__name__) class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Dict = ["pixel_values"] def __init__( self :List[Any] , SCREAMING_SNAKE_CASE :bool = True , SCREAMING_SNAKE_CASE :Optional[Dict[str, int]] = None , SCREAMING_SNAKE_CASE :PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE :bool = True , SCREAMING_SNAKE_CASE :Dict[str, int] = None , SCREAMING_SNAKE_CASE :bool = True , SCREAMING_SNAKE_CASE :Union[int, float] = 1 / 2_5_5 , SCREAMING_SNAKE_CASE :bool = True , SCREAMING_SNAKE_CASE :Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE :Optional[Union[float, List[float]]] = None , **SCREAMING_SNAKE_CASE :Optional[int] , ) -> None: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) _a : Any =size if size is not None else {"""shortest_edge""": 2_5_6} _a : int =get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} _a : Union[str, Any] =get_size_dict(SCREAMING_SNAKE_CASE ) _a : List[Any] =do_resize _a : Optional[int] =size _a : Union[str, Any] =resample _a : List[Any] =do_center_crop _a : Optional[Any] =crop_size _a : List[Any] =do_rescale _a : Optional[int] =rescale_factor _a : int =do_normalize _a : Tuple =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a : Any =image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :np.ndarray , SCREAMING_SNAKE_CASE :Dict[str, int] , SCREAMING_SNAKE_CASE :PILImageResampling = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE :Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE :Any , ) -> np.ndarray: '''simple docstring''' _a : Any =get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) _a : Union[str, Any] =get_resize_output_image_size(SCREAMING_SNAKE_CASE , size=size["""shortest_edge"""] , default_to_square=SCREAMING_SNAKE_CASE ) return resize(SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :np.ndarray , SCREAMING_SNAKE_CASE :Dict[str, int] , SCREAMING_SNAKE_CASE :Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE :Union[str, Any] , ) -> np.ndarray: '''simple docstring''' _a : List[str] =get_size_dict(SCREAMING_SNAKE_CASE ) return center_crop(SCREAMING_SNAKE_CASE , size=(size["""height"""], size["""width"""]) , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :np.ndarray , SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE :Optional[Any] ) -> np.ndarray: '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :np.ndarray , SCREAMING_SNAKE_CASE :Union[float, List[float]] , SCREAMING_SNAKE_CASE :Union[float, List[float]] , SCREAMING_SNAKE_CASE :Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE :List[Any] , ) -> np.ndarray: '''simple docstring''' return normalize(SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :ImageInput , SCREAMING_SNAKE_CASE :Optional[bool] = None , SCREAMING_SNAKE_CASE :Dict[str, int] = None , SCREAMING_SNAKE_CASE :PILImageResampling = None , SCREAMING_SNAKE_CASE :bool = None , SCREAMING_SNAKE_CASE :Dict[str, int] = None , SCREAMING_SNAKE_CASE :Optional[bool] = None , SCREAMING_SNAKE_CASE :Optional[float] = None , SCREAMING_SNAKE_CASE :Optional[bool] = None , SCREAMING_SNAKE_CASE :Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE :Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE :Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE :Union[str, ChannelDimension] = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE :Optional[Any] , ) -> Optional[Any]: '''simple docstring''' _a : Optional[Any] =do_resize if do_resize is not None else self.do_resize _a : int =size if size is not None else self.size _a : str =get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) _a : int =resample if resample is not None else self.resample _a : Optional[int] =do_center_crop if do_center_crop is not None else self.do_center_crop _a : Union[str, Any] =crop_size if crop_size is not None else self.crop_size _a : Any =get_size_dict(SCREAMING_SNAKE_CASE ) _a : Any =do_rescale if do_rescale is not None else self.do_rescale _a : List[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor _a : str =do_normalize if do_normalize is not None else self.do_normalize _a : Union[str, Any] =image_mean if image_mean is not None else self.image_mean _a : Optional[Any] =image_std if image_std is not None else self.image_std _a : List[Any] =make_list_of_images(SCREAMING_SNAKE_CASE ) if not valid_images(SCREAMING_SNAKE_CASE ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _a : int =[to_numpy_array(SCREAMING_SNAKE_CASE ) for image in images] if do_resize: _a : Tuple =[self.resize(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: _a : Union[str, Any] =[self.center_crop(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: _a : int =[self.rescale(image=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: _a : Any =[self.normalize(image=SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE ) for image in images] _a : Tuple =[to_channel_dimension_format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for image in images] _a : Any ={"""pixel_values""": images} return BatchFeature(data=SCREAMING_SNAKE_CASE , tensor_type=SCREAMING_SNAKE_CASE )
506
0
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :Optional[Any] ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :List[str] , lowerCamelCase_ :Dict ): '''simple docstring''' snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : str = TextDatasetReader(lowerCamelCase_ , cache_dir=lowerCamelCase_ , keep_in_memory=lowerCamelCase_ ).read() _check_text_dataset(lowerCamelCase_ , lowerCamelCase_ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[str] ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path / """cache""" snake_case_ : Optional[int] = {"""text""": """string"""} snake_case_ : Any = features.copy() if features else default_expected_features snake_case_ : Optional[int] = ( Features({feature: Value(lowerCamelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : List[str] = TextDatasetReader(lowerCamelCase_ , features=lowerCamelCase_ , cache_dir=lowerCamelCase_ ).read() _check_text_dataset(lowerCamelCase_ , lowerCamelCase_ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def UpperCAmelCase ( lowerCamelCase_ :List[Any] , lowerCamelCase_ :Dict , lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : Optional[int] = tmp_path / """cache""" snake_case_ : int = {"""text""": """string"""} snake_case_ : List[str] = TextDatasetReader(lowerCamelCase_ , cache_dir=lowerCamelCase_ , split=lowerCamelCase_ ).read() _check_text_dataset(lowerCamelCase_ , lowerCamelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def UpperCAmelCase ( lowerCamelCase_ :Tuple , lowerCamelCase_ :str , lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' if issubclass(lowerCamelCase_ , lowerCamelCase_ ): snake_case_ : Union[str, Any] = text_path elif issubclass(lowerCamelCase_ , lowerCamelCase_ ): snake_case_ : str = [text_path] snake_case_ : List[Any] = tmp_path / """cache""" snake_case_ : Tuple = {"""text""": """string"""} snake_case_ : Union[str, Any] = TextDatasetReader(lowerCamelCase_ , cache_dir=lowerCamelCase_ ).read() _check_text_dataset(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :List[Any]=("train",) ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) for split in splits: snake_case_ : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Optional[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = tmp_path / """cache""" snake_case_ : List[str] = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : List[str] = TextDatasetReader({"""train""": text_path} , cache_dir=lowerCamelCase_ , keep_in_memory=lowerCamelCase_ ).read() _check_text_datasetdict(lowerCamelCase_ , lowerCamelCase_ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def UpperCAmelCase ( lowerCamelCase_ :List[Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : Dict = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" snake_case_ : str = {"""text""": """string"""} snake_case_ : List[str] = features.copy() if features else default_expected_features snake_case_ : int = ( Features({feature: Value(lowerCamelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : List[str] = TextDatasetReader({"""train""": text_path} , features=lowerCamelCase_ , cache_dir=lowerCamelCase_ ).read() _check_text_datasetdict(lowerCamelCase_ , lowerCamelCase_ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def UpperCAmelCase ( lowerCamelCase_ :Dict , lowerCamelCase_ :Any , lowerCamelCase_ :Optional[int] ): '''simple docstring''' if split: snake_case_ : Union[str, Any] = {split: text_path} else: snake_case_ : List[str] = """train""" snake_case_ : List[Any] = {"""train""": text_path, """test""": text_path} snake_case_ : Dict = tmp_path / """cache""" snake_case_ : List[Any] = {"""text""": """string"""} snake_case_ : Dict = TextDatasetReader(lowerCamelCase_ , cache_dir=lowerCamelCase_ ).read() _check_text_datasetdict(lowerCamelCase_ , lowerCamelCase_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
334
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __A : List[Any] = [num for num in range(3, 100_001, 2) if not is_prime(num)] def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) snake_case_ : int = [] for num in range(len(lowerCamelCase_ ) ): snake_case_ : List[Any] = 0 while 2 * i * i <= odd_composites[num]: snake_case_ : List[str] = odd_composites[num] - 2 * i * i if is_prime(lowerCamelCase_ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowerCamelCase_ ) == n: return list_nums return [] def UpperCAmelCase ( ): '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F'{solution() = }')
334
1
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def _lowerCAmelCase ( __lowerCAmelCase ) -> Any: """simple docstring""" snake_case__ : List[Any] = torch.exp(__snake_case ) snake_case__ : Tuple = torch.sum(__snake_case , dim=1 ) # sum of exp(x_i) snake_case__ : Optional[int] = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(__snake_case ) - B / A class a ( nn.Module ): def __init__( self :int ,__lowercase :List[Any] ): super().__init__() snake_case__ : List[Any] = config.output_attentions snake_case__ : List[str] = config.output_hidden_states snake_case__ : List[Any] = nn.ModuleList([BertLayer(__lowerCAmelCase ) for _ in range(config.num_hidden_layers )] ) snake_case__ : Union[str, Any] = nn.ModuleList([BertHighway(__lowerCAmelCase ) for _ in range(config.num_hidden_layers )] ) snake_case__ : str = [-1 for _ in range(config.num_hidden_layers )] def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :Union[str, Any] ): if (type(__lowerCAmelCase ) is float) or (type(__lowerCAmelCase ) is int): for i in range(len(self.early_exit_entropy ) ): snake_case__ : Optional[int] = x else: snake_case__ : Optional[int] = x def __lowerCamelCase ( self :Optional[int] ,__lowercase :Tuple ): snake_case__ : Dict = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def __lowerCamelCase ( self :Dict ,__lowercase :Dict ,__lowercase :Tuple=None ,__lowercase :List[Any]=None ,__lowercase :Optional[Any]=None ,__lowercase :List[str]=None ,): snake_case__ : Optional[Any] = () snake_case__ : List[Any] = () snake_case__ : Tuple = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: snake_case__ : Tuple = all_hidden_states + (hidden_states,) snake_case__ : Dict = layer_module( __lowerCAmelCase ,__lowerCAmelCase ,head_mask[i] ,__lowerCAmelCase ,__lowerCAmelCase ) snake_case__ : Optional[Any] = layer_outputs[0] if self.output_attentions: snake_case__ : str = all_attentions + (layer_outputs[1],) snake_case__ : Optional[int] = (hidden_states,) if self.output_hidden_states: snake_case__ : Optional[Any] = current_outputs + (all_hidden_states,) if self.output_attentions: snake_case__ : List[str] = current_outputs + (all_attentions,) snake_case__ : Optional[int] = self.highway[i](__lowerCAmelCase ) # logits, pooled_output if not self.training: snake_case__ : Union[str, Any] = highway_exit[0] snake_case__ : List[str] = entropy(__lowerCAmelCase ) snake_case__ : Optional[Any] = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy snake_case__ : Dict = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: snake_case__ : Any = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(__lowerCAmelCase ,i + 1 ) else: snake_case__ : Tuple = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: snake_case__ : int = all_hidden_states + (hidden_states,) snake_case__ : Union[str, Any] = (hidden_states,) if self.output_hidden_states: snake_case__ : Union[str, Any] = outputs + (all_hidden_states,) if self.output_attentions: snake_case__ : str = outputs + (all_attentions,) snake_case__ : Union[str, Any] = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """ , __lowerCamelCase , ) class a ( __lowerCamelCase ): def __init__( self :List[Any] ,__lowercase :int ): super().__init__(__lowerCAmelCase ) snake_case__ : Optional[Any] = config snake_case__ : List[Any] = BertEmbeddings(__lowerCAmelCase ) snake_case__ : Union[str, Any] = DeeBertEncoder(__lowerCAmelCase ) snake_case__ : Optional[int] = BertPooler(__lowerCAmelCase ) self.init_weights() def __lowerCamelCase ( self :Optional[int] ): self.encoder.init_highway_pooler(self.pooler ) def __lowerCamelCase ( self :int ): return self.embeddings.word_embeddings def __lowerCamelCase ( self :int ,__lowercase :List[str] ): snake_case__ : Optional[Any] = value def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :List[Any] ): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(__lowerCAmelCase ) @add_start_docstrings_to_model_forward(__lowerCAmelCase ) def __lowerCamelCase ( self :Optional[int] ,__lowercase :List[Any]=None ,__lowercase :int=None ,__lowercase :Optional[int]=None ,__lowercase :Any=None ,__lowercase :Union[str, Any]=None ,__lowercase :Union[str, Any]=None ,__lowercase :Dict=None ,__lowercase :List[str]=None ,): if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: snake_case__ : List[Any] = input_ids.size() elif inputs_embeds is not None: snake_case__ : Union[str, Any] = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) snake_case__ : List[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: snake_case__ : int = torch.ones(__lowerCAmelCase ,device=__lowerCAmelCase ) if encoder_attention_mask is None: snake_case__ : Dict = torch.ones(__lowerCAmelCase ,device=__lowerCAmelCase ) if token_type_ids is None: snake_case__ : int = torch.zeros(__lowerCAmelCase ,dtype=torch.long ,device=__lowerCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. snake_case__ : str = self.get_extended_attention_mask(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: snake_case__ : str = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: snake_case__ : Optional[Any] = encoder_attention_mask[:, None, None, :] snake_case__ : Optional[int] = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility snake_case__ : List[Any] = (1.0 - encoder_extended_attention_mask) * -1_0_0_0_0.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] snake_case__ : str = self.get_head_mask(__lowerCAmelCase ,self.config.num_hidden_layers ) snake_case__ : List[Any] = self.embeddings( input_ids=__lowerCAmelCase ,position_ids=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,inputs_embeds=__lowerCAmelCase ) snake_case__ : Any = self.encoder( __lowerCAmelCase ,attention_mask=__lowerCAmelCase ,head_mask=__lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ,encoder_attention_mask=__lowerCAmelCase ,) snake_case__ : List[Any] = encoder_outputs[0] snake_case__ : Tuple = self.pooler(__lowerCAmelCase ) snake_case__ : Any = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class a ( __lowerCamelCase ): def __init__( self :str ,__lowercase :str ,__lowercase :Tuple ): snake_case__ : str = message snake_case__ : Any = exit_layer # start from 1! class a ( nn.Module ): def __init__( self :List[Any] ,__lowercase :Union[str, Any] ): super().__init__() snake_case__ : Optional[Any] = BertPooler(__lowerCAmelCase ) snake_case__ : Union[str, Any] = nn.Dropout(config.hidden_dropout_prob ) snake_case__ : List[str] = nn.Linear(config.hidden_size ,config.num_labels ) def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :List[Any] ): snake_case__ : Tuple = encoder_outputs[0] snake_case__ : Any = self.pooler(__lowerCAmelCase ) # "return" pooler_output # BertModel snake_case__ : int = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification snake_case__ : str = bmodel_output[1] snake_case__ : Any = self.dropout(__lowerCAmelCase ) snake_case__ : int = self.classifier(__lowerCAmelCase ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """ , __lowerCamelCase , ) class a ( __lowerCamelCase ): def __init__( self :str ,__lowercase :Tuple ): super().__init__(__lowerCAmelCase ) snake_case__ : List[Any] = config.num_labels snake_case__ : Optional[int] = config.num_hidden_layers snake_case__ : Any = DeeBertModel(__lowerCAmelCase ) snake_case__ : Tuple = nn.Dropout(config.hidden_dropout_prob ) snake_case__ : str = nn.Linear(config.hidden_size ,self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(__lowerCAmelCase ) def __lowerCamelCase ( self :Optional[Any] ,__lowercase :Any=None ,__lowercase :List[Any]=None ,__lowercase :Union[str, Any]=None ,__lowercase :Dict=None ,__lowercase :Union[str, Any]=None ,__lowercase :Tuple=None ,__lowercase :Optional[Any]=None ,__lowercase :Dict=-1 ,__lowercase :List[str]=False ,): snake_case__ : int = self.num_layers try: snake_case__ : Tuple = self.bert( __lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,position_ids=__lowerCAmelCase ,head_mask=__lowerCAmelCase ,inputs_embeds=__lowerCAmelCase ,) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits snake_case__ : str = outputs[1] snake_case__ : str = self.dropout(__lowerCAmelCase ) snake_case__ : Union[str, Any] = self.classifier(__lowerCAmelCase ) snake_case__ : Any = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: snake_case__ : List[str] = e.message snake_case__ : Tuple = e.exit_layer snake_case__ : List[Any] = outputs[0] if not self.training: snake_case__ : Any = entropy(__lowerCAmelCase ) snake_case__ : Dict = [] snake_case__ : int = [] if labels is not None: if self.num_labels == 1: # We are doing regression snake_case__ : List[Any] = MSELoss() snake_case__ : Optional[int] = loss_fct(logits.view(-1 ) ,labels.view(-1 ) ) else: snake_case__ : Optional[Any] = CrossEntropyLoss() snake_case__ : str = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) # work with highway exits snake_case__ : Any = [] for highway_exit in outputs[-1]: snake_case__ : str = highway_exit[0] if not self.training: highway_logits_all.append(__lowerCAmelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression snake_case__ : Tuple = MSELoss() snake_case__ : Union[str, Any] = loss_fct(highway_logits.view(-1 ) ,labels.view(-1 ) ) else: snake_case__ : int = CrossEntropyLoss() snake_case__ : Any = loss_fct(highway_logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) highway_losses.append(__lowerCAmelCase ) if train_highway: snake_case__ : str = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: snake_case__ : Tuple = (loss,) + outputs if not self.training: snake_case__ : Optional[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: snake_case__ : Tuple = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
707
def _lowerCAmelCase ( __lowerCAmelCase ) -> float: """simple docstring""" if edge <= 0 or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('''Length must be a positive.''' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def _lowerCAmelCase ( __lowerCAmelCase ) -> float: """simple docstring""" if edge <= 0 or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('''Length must be a positive.''' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
219
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] ): if isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__SCREAMING_SNAKE_CASE ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class UpperCamelCase ( lowercase_ ): lowercase = ['pixel_values'] def __init__( self ,__UpperCamelCase = True ,__UpperCamelCase = None ,__UpperCamelCase = PILImageResampling.BILINEAR ,__UpperCamelCase = True ,__UpperCamelCase = None ,__UpperCamelCase = True ,__UpperCamelCase = 1 / 255 ,__UpperCamelCase = True ,__UpperCamelCase = True ,__UpperCamelCase = None ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> None: '''simple docstring''' super().__init__(**_A ) lowercase_ : Dict = size if size is not None else {'''shortest_edge''': 256} lowercase_ : Dict = get_size_dict(_A ,default_to_square=_A ) lowercase_ : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase_ : Dict = get_size_dict(_A ,param_name='crop_size' ) lowercase_ : Union[str, Any] = do_resize lowercase_ : Union[str, Any] = size lowercase_ : Optional[Any] = do_center_crop lowercase_ : Dict = crop_size lowercase_ : Any = resample lowercase_ : Optional[int] = do_rescale lowercase_ : Dict = rescale_factor lowercase_ : Tuple = offset lowercase_ : Dict = do_normalize lowercase_ : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase_ : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = PILImageResampling.BILINEAR ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> np.ndarray: '''simple docstring''' lowercase_ : Dict = get_size_dict(_A ,default_to_square=_A ) if "shortest_edge" in size: lowercase_ : List[Any] = get_resize_output_image_size(_A ,size['shortest_edge'] ,default_to_square=_A ) elif "height" in size and "width" in size: lowercase_ : str = (size['''height'''], size['''width''']) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(_A ,size=_A ,resample=_A ,data_format=_A ,**_A ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> np.ndarray: '''simple docstring''' lowercase_ : int = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(_A ,size=(size['height'], size['width']) ,data_format=_A ,**_A ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = True ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> Tuple: '''simple docstring''' lowercase_ : str = image.astype(np.floataa ) if offset: lowercase_ : Optional[int] = image - (scale / 2) return rescale(_A ,scale=_A ,data_format=_A ,**_A ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> np.ndarray: '''simple docstring''' return normalize(_A ,mean=_A ,std=_A ,data_format=_A ,**_A ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = ChannelDimension.FIRST ,) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.' ) # All transformations expect numpy arrays. lowercase_ : List[Any] = to_numpy_array(_A ) if do_resize: lowercase_ : Optional[Any] = self.resize(image=_A ,size=_A ,resample=_A ) if do_center_crop: lowercase_ : int = self.center_crop(_A ,size=_A ) if do_rescale: lowercase_ : Any = self.rescale(image=_A ,scale=_A ,offset=_A ) if do_normalize: lowercase_ : Dict = self.normalize(image=_A ,mean=_A ,std=_A ) lowercase_ : Optional[Any] = to_channel_dimension_format(_A ,_A ) return image def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = ChannelDimension.FIRST ,**__UpperCamelCase ,) -> PIL.Image.Image: '''simple docstring''' lowercase_ : List[Any] = do_resize if do_resize is not None else self.do_resize lowercase_ : List[Any] = resample if resample is not None else self.resample lowercase_ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ : Dict = do_rescale if do_rescale is not None else self.do_rescale lowercase_ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ : Union[str, Any] = offset if offset is not None else self.offset lowercase_ : int = do_normalize if do_normalize is not None else self.do_normalize lowercase_ : Optional[int] = image_mean if image_mean is not None else self.image_mean lowercase_ : Tuple = image_std if image_std is not None else self.image_std lowercase_ : Dict = size if size is not None else self.size lowercase_ : List[Any] = get_size_dict(_A ,default_to_square=_A ) lowercase_ : List[Any] = crop_size if crop_size is not None else self.crop_size lowercase_ : Optional[Any] = get_size_dict(_A ,param_name='crop_size' ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) lowercase_ : Dict = make_batched(_A ) lowercase_ : int = [ [ self._preprocess_image( image=_A ,do_resize=_A ,size=_A ,resample=_A ,do_center_crop=_A ,crop_size=_A ,do_rescale=_A ,rescale_factor=_A ,offset=_A ,do_normalize=_A ,image_mean=_A ,image_std=_A ,data_format=_A ,) for img in video ] for video in videos ] lowercase_ : Optional[int] = {'''pixel_values''': videos} return BatchFeature(data=_A ,tensor_type=_A )
425
'''simple docstring''' from __future__ import annotations import os from collections.abc import Mapping _UpperCamelCase : Any = tuple[int, int] class snake_case__ : def __init__( self : List[str] , _A : set[int] , _A : Mapping[EdgeT, int] ) -> None: UpperCAmelCase_ : set[int] = vertices UpperCAmelCase_ : dict[EdgeT, int] = { (min(_A ), max(_A )): weight for edge, weight in edges.items() } def A ( self : Union[str, Any] , _A : EdgeT , _A : int ) -> None: self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) UpperCAmelCase_ : List[str] = weight def A ( self : str ) -> Graph: UpperCAmelCase_ : Graph = Graph({min(self.vertices )} , {} ) UpperCAmelCase_ : EdgeT UpperCAmelCase_ : int UpperCAmelCase_ : EdgeT UpperCAmelCase_ : int while len(subgraph.vertices ) < len(self.vertices ): UpperCAmelCase_ : Optional[Any] = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: UpperCAmelCase_ : Dict = edge UpperCAmelCase_ : Tuple = weight subgraph.add_edge(_A , _A ) return subgraph def __UpperCAmelCase ( A : str = "p107_network.txt" ) -> int: UpperCAmelCase_ : str = os.path.abspath(os.path.dirname(A ) ) UpperCAmelCase_ : str = os.path.join(A , A ) UpperCAmelCase_ : dict[EdgeT, int] = {} UpperCAmelCase_ : list[str] UpperCAmelCase_ : int UpperCAmelCase_ : int with open(A ) as f: UpperCAmelCase_ : int = f.read().strip().split('''\n''' ) UpperCAmelCase_ : Any = [line.split(''',''' ) for line in data] for edgea in range(1 , len(A ) ): for edgea in range(A ): if adjaceny_matrix[edgea][edgea] != "-": UpperCAmelCase_ : Optional[int] = int(adjaceny_matrix[edgea][edgea] ) UpperCAmelCase_ : Graph = Graph(set(range(len(A ) ) ) , A ) UpperCAmelCase_ : Graph = graph.prims_algorithm() UpperCAmelCase_ : int = sum(graph.edges.values() ) UpperCAmelCase_ : int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
541
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable __A : Optional[int] = list[list[float | int]] def lowerCamelCase_ ( lowercase__ , lowercase__): lowerCamelCase__ = len(__UpperCAmelCase) lowerCamelCase__ = [[0 for _ in range(size + 1)] for _ in range(__UpperCAmelCase)] lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 for row in range(__UpperCAmelCase): for col in range(__UpperCAmelCase): lowerCamelCase__ = matrix[row][col] lowerCamelCase__ = vector[row][0] lowerCamelCase__ = 0 lowerCamelCase__ = 0 while row < size and col < size: # pivoting lowerCamelCase__ = max((abs(augmented[rowa][col]), rowa) for rowa in range(__UpperCAmelCase , __UpperCAmelCase))[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: lowerCamelCase__ , lowerCamelCase__ = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __UpperCAmelCase): lowerCamelCase__ = augmented[rowa][col] / augmented[row][col] lowerCamelCase__ = 0 for cola in range(col + 1 , size + 1): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __UpperCAmelCase): for row in range(__UpperCAmelCase): lowerCamelCase__ = augmented[row][col] / augmented[col][col] for cola in range(__UpperCAmelCase , size + 1): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10)] for row in range(__UpperCAmelCase) ] def lowerCamelCase_ ( lowercase__): lowerCamelCase__ = len(__UpperCAmelCase) lowerCamelCase__ = [[0 for _ in range(__UpperCAmelCase)] for _ in range(__UpperCAmelCase)] lowerCamelCase__ = [[0] for _ in range(__UpperCAmelCase)] lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 for x_val, y_val in enumerate(__UpperCAmelCase): for col in range(__UpperCAmelCase): lowerCamelCase__ = (x_val + 1) ** (size - col - 1) lowerCamelCase__ = y_val lowerCamelCase__ = solve(__UpperCAmelCase , __UpperCAmelCase) def interpolated_func(lowercase__) -> int: return sum( round(coeffs[x_val][0]) * (var ** (size - x_val - 1)) for x_val in range(__UpperCAmelCase)) return interpolated_func def lowerCamelCase_ ( lowercase__): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCamelCase_ ( lowercase__ = question_function , lowercase__ = 10): lowerCamelCase__ = [func(__UpperCAmelCase) for x_val in range(1 , order + 1)] lowerCamelCase__ = [ interpolate(data_points[:max_coeff]) for max_coeff in range(1 , order + 1) ] lowerCamelCase__ = 0 lowerCamelCase__ = 42 lowerCamelCase__ = 42 for poly in polynomials: lowerCamelCase__ = 1 while func(__UpperCAmelCase) == poly(__UpperCAmelCase): x_val += 1 ret += poly(__UpperCAmelCase) return ret if __name__ == "__main__": print(F"""{solution() = }""")
713
'''simple docstring''' def lowerCamelCase_ ( lowercase__ , lowercase__ , lowercase__): return round(float(moles / volume) * nfactor) def lowerCamelCase_ ( lowercase__ , lowercase__ , lowercase__): return round(float((moles * 0.0_821 * temperature) / (volume))) def lowerCamelCase_ ( lowercase__ , lowercase__ , lowercase__): return round(float((moles * 0.0_821 * temperature) / (pressure))) def lowerCamelCase_ ( lowercase__ , lowercase__ , lowercase__): return round(float((pressure * volume) / (0.0_821 * moles))) if __name__ == "__main__": import doctest doctest.testmod()
187
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case ) class UpperCAmelCase_ ( snake_case ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization UpperCamelCase =field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) UpperCamelCase =Features({"text": Value("string" )} ) UpperCamelCase =Features({"labels": ClassLabel} ) UpperCamelCase ="text" UpperCamelCase ="labels" def _lowerCamelCase ( self , UpperCamelCase_ ) -> List[Any]: if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , UpperCamelCase_ ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) __lowercase : int = copy.deepcopy(self ) __lowercase : Union[str, Any] = self.label_schema.copy() __lowercase : int = features[self.label_column] __lowercase : List[str] = label_schema return task_template @property def _lowerCamelCase ( self ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
76
"""simple docstring""" a_ = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def __UpperCAmelCase ( __UpperCamelCase ): # Make sure the supplied data is a bytes-like object if not isinstance(__UpperCamelCase , __UpperCamelCase ): __lowercase : str = f"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(__UpperCamelCase ) __lowercase : Any = ''''''.join(bin(__UpperCamelCase )[2:].zfill(8 ) for byte in data ) __lowercase : List[str] = len(__UpperCamelCase ) % 6 != 0 if padding_needed: # The padding that will be added later __lowercase : int = B'''=''' * ((6 - len(__UpperCamelCase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(__UpperCamelCase ) % 6) else: __lowercase : Any = B'''''' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(__UpperCamelCase ) , 6 ) ).encode() + padding ) def __UpperCAmelCase ( __UpperCamelCase ): # Make sure encoded_data is either a string or a bytes-like object if not isinstance(__UpperCamelCase , __UpperCamelCase ) and not isinstance(__UpperCamelCase , __UpperCamelCase ): __lowercase : List[str] = ( '''argument should be a bytes-like object or ASCII string, ''' f"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(__UpperCamelCase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(__UpperCamelCase , __UpperCamelCase ): try: __lowercase : List[str] = encoded_data.decode('''utf-8''' ) except UnicodeDecodeError: raise ValueError('''base64 encoded data should only contain ASCII characters''' ) __lowercase : Dict = encoded_data.count('''=''' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(__UpperCamelCase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one __lowercase : Tuple = encoded_data[:-padding] __lowercase : str = ''''''.join( bin(B64_CHARSET.index(__UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: __lowercase : Any = ''''''.join( bin(B64_CHARSET.index(__UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data ) __lowercase : int = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(__UpperCamelCase ) , 8 ) ] return bytes(__UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
76
1
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _lowercase : int =2 class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : List[Any] , *, # begin keyword-only arguments SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="<unk>" , SCREAMING_SNAKE_CASE__ : int=None , ) -> List[Any]: A : Optional[Any] =bos, unk, pad, eos A : Dict =[] A : Union[str, Any] =[] A : Any ={} A : int =self.add_symbol(SCREAMING_SNAKE_CASE__ ) A : Any =self.add_symbol(SCREAMING_SNAKE_CASE__ ) A : List[Any] =self.add_symbol(SCREAMING_SNAKE_CASE__ ) A : List[str] =self.add_symbol(SCREAMING_SNAKE_CASE__ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(SCREAMING_SNAKE_CASE__ ) A : List[str] =len(self.symbols ) def __eq__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: return self.indices == other.indices def __getitem__( self : int , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : List[Any] ) -> Union[str, Any]: return len(self.symbols ) def __contains__( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Tuple: return sym in self.indices @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Any: A : Union[str, Any] =cls() d.add_from_file(SCREAMING_SNAKE_CASE__ ) return d def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any=1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> Any: if word in self.indices and not overwrite: A : int =self.indices[word] A : Union[str, Any] =self.count[idx] + n return idx else: A : Tuple =len(self.symbols ) A : str =idx self.symbols.append(SCREAMING_SNAKE_CASE__ ) self.count.append(SCREAMING_SNAKE_CASE__ ) return idx def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: return 0 def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): try: with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as fd: self.add_from_file(SCREAMING_SNAKE_CASE__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(SCREAMING_SNAKE_CASE__ ) ) return A : str =f.readlines() A : int =self._load_meta(SCREAMING_SNAKE_CASE__ ) for line in lines[indices_start_line:]: try: A : Optional[int] =line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": A : int =True A : Optional[Any] =line.rsplit(' ' , 1 ) else: A : Any =False A : Tuple =int(SCREAMING_SNAKE_CASE__ ) A : Optional[int] =line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(SCREAMING_SNAKE_CASE__ ) ) self.add_symbol(SCREAMING_SNAKE_CASE__ , n=SCREAMING_SNAKE_CASE__ , overwrite=SCREAMING_SNAKE_CASE__ ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def A__ ( lowercase: Union[str, Any] ) -> str: # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} A : int =dict((re.sub(r'@@$', '', lowercase ), v) if k.endswith('@@' ) else (re.sub(r'$', '</w>', lowercase ), v) for k, v in d.items() ) A : int ='<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] A : List[Any] =d[k] # restore return da def A__ ( lowercase: Optional[int], lowercase: Optional[Any] ) -> str: # prep if not os.path.exists(lowercase ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowercase, exist_ok=lowercase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models A : List[str] =os.path.join(lowercase, 'checkpoint.pt' ) if not os.path.isfile(lowercase ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) A : Optional[Any] =torch.load(lowercase, map_location='cpu' ) A : Any =chkpt['cfg']['model'] # dicts A : Any =os.path.join(lowercase, 'dict.txt' ) if not os.path.isfile(lowercase ): raise ValueError(F'path to the file {dict_file} does not exist!' ) A : Dict =Dictionary.load(lowercase ) A : Optional[Any] =rewrite_dict_keys(src_dict.indices ) A : Tuple =len(lowercase ) A : Any =os.path.join(lowercase, VOCAB_FILES_NAMES['vocab_file'] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowercase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) ) # merges_file (bpecodes) A : List[str] =os.path.join(lowercase, 'bpecodes' ) if not os.path.isfile(lowercase ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) A : List[str] =os.path.join(lowercase, VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(lowercase, lowercase ) # model config A : Tuple =os.path.join(lowercase, 'config.json' ) A : Tuple ={ 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1e-1_2, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(lowercase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) ) # tokenizer config A : int =os.path.join(lowercase, lowercase ) A : List[str] ={ 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1_024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(lowercase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) ) # model A : List[Any] =chkpt['model'] # remove unneeded keys A : List[Any] =[ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(lowercase, lowercase ) A : str =list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): A : Union[str, Any] =model_state_dict.pop(lowercase ) else: A : List[str] =model_state_dict.pop(lowercase ) A : Any =BioGptConfig.from_pretrained(lowercase ) A : str =BioGptForCausalLM(lowercase ) # check that it loads ok model_new.load_state_dict(lowercase ) # save A : Tuple =os.path.join(lowercase, lowercase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowercase, lowercase ) print('Conversion is done!' ) if __name__ == "__main__": _lowercase : Union[str, Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowercase : List[Any] =parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
702
import math def A__ ( lowercase: int ) -> list: A : Optional[Any] =[True] * n A : Tuple =False A : List[Any] =False A : Dict =True for i in range(3, int(n**0.5 + 1 ), 2 ): A : Dict =i * 2 while index < n: A : Dict =False A : Dict =index + i A : Tuple =[2] for i in range(3, lowercase, 2 ): if is_prime[i]: primes.append(lowercase ) return primes def A__ ( lowercase: int = 999_966_663_333 ) -> int: A : Optional[int] =math.floor(math.sqrt(lowercase ) ) + 100 A : Optional[int] =prime_sieve(lowercase ) A : Optional[Any] =0 A : List[Any] =0 A : Union[str, Any] =primes[prime_index] while (last_prime**2) <= limit: A : Tuple =primes[prime_index + 1] A : Optional[int] =last_prime**2 A : Tuple =next_prime**2 # Get numbers divisible by lps(current) A : int =lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) A : List[Any] =upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps A : Any =0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair A : List[str] =next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
661
0
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase ) -> bool: """simple docstring""" if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True __UpperCAmelCase : List[Any] = 4 __UpperCAmelCase : Union[str, Any] = (1 << p) - 1 for _ in range(p - 2 ): __UpperCAmelCase : str = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
77
"""simple docstring""" import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } a_ = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } a_ = { 'ctrl': 2_5_6, } a_ = { 'Pregnancy': 1_6_8_6_2_9, 'Christianity': 7_6_7_5, 'Explain': 1_0_6_4_2_3, 'Fitness': 6_3_4_4_0, 'Saving': 6_3_1_6_3, 'Ask': 2_7_1_7_1, 'Ass': 9_5_9_8_5, 'Joke': 1_6_3_5_0_9, 'Questions': 4_5_6_2_2, 'Thoughts': 4_9_6_0_5, 'Retail': 5_2_3_4_2, 'Feminism': 1_6_4_3_3_8, 'Writing': 1_1_9_9_2, 'Atheism': 1_9_2_2_6_3, 'Netflix': 4_8_6_1_6, 'Computing': 3_9_6_3_9, 'Opinion': 4_3_2_1_3, 'Alone': 4_4_9_6_7, 'Funny': 5_8_9_1_7, 'Gaming': 4_0_3_5_8, 'Human': 4_0_8_8, 'India': 1_3_3_1, 'Joker': 7_7_1_3_8, 'Diet': 3_6_2_0_6, 'Legal': 1_1_8_5_9, 'Norman': 4_9_3_9, 'Tip': 7_2_6_8_9, 'Weight': 5_2_3_4_3, 'Movies': 4_6_2_7_3, 'Running': 2_3_4_2_5, 'Science': 2_0_9_0, 'Horror': 3_7_7_9_3, 'Confession': 6_0_5_7_2, 'Finance': 1_2_2_5_0, 'Politics': 1_6_3_6_0, 'Scary': 1_9_1_9_8_5, 'Support': 1_2_6_5_4, 'Technologies': 3_2_5_1_6, 'Teenage': 6_6_1_6_0, 'Event': 3_2_7_6_9, 'Learned': 6_7_4_6_0, 'Notion': 1_8_2_7_7_0, 'Wikipedia': 3_7_5_8_3, 'Books': 6_6_6_5, 'Extract': 7_6_0_5_0, 'Confessions': 1_0_2_7_0_1, 'Conspiracy': 7_5_9_3_2, 'Links': 6_3_6_7_4, 'Narcissus': 1_5_0_4_2_5, 'Relationship': 5_4_7_6_6, 'Relationships': 1_3_4_7_9_6, 'Reviews': 4_1_6_7_1, 'News': 4_2_5_6, 'Translation': 2_6_8_2_0, 'multilingual': 1_2_8_4_0_6, } def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : Any = set() __lowercase : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowercase : Any = char __lowercase : List[Any] = set(__UpperCamelCase ) return pairs class UpperCAmelCase_ ( snake_case ): UpperCamelCase =VOCAB_FILES_NAMES UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase =CONTROL_CODES def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="<unk>" , **UpperCamelCase_ ) -> int: super().__init__(unk_token=UpperCamelCase_ , **UpperCamelCase_ ) with open(UpperCamelCase_ , encoding='''utf-8''' ) as vocab_handle: __lowercase : List[Any] = json.load(UpperCamelCase_ ) __lowercase : Any = {v: k for k, v in self.encoder.items()} with open(UpperCamelCase_ , encoding='''utf-8''' ) as merges_handle: __lowercase : Optional[Any] = merges_handle.read().split('''\n''' )[1:-1] __lowercase : Optional[Any] = [tuple(merge.split() ) for merge in merges] __lowercase : Optional[int] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __lowercase : Optional[Any] = {} @property def _lowerCamelCase ( self ) -> Union[str, Any]: return len(self.encoder ) def _lowerCamelCase ( self ) -> Tuple: return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> str: if token in self.cache: return self.cache[token] __lowercase : str = tuple(UpperCamelCase_ ) __lowercase : str = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) __lowercase : Optional[Any] = get_pairs(UpperCamelCase_ ) if not pairs: return token while True: __lowercase : Dict = min(UpperCamelCase_ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(UpperCamelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __lowercase ,__lowercase : Tuple = bigram __lowercase : int = [] __lowercase : Union[str, Any] = 0 while i < len(UpperCamelCase_ ): try: __lowercase : Optional[int] = word.index(UpperCamelCase_ , UpperCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase : Tuple = j if word[i] == first and i < len(UpperCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase : List[str] = tuple(UpperCamelCase_ ) __lowercase : str = new_word if len(UpperCamelCase_ ) == 1: break else: __lowercase : List[str] = get_pairs(UpperCamelCase_ ) __lowercase : Optional[Any] = '''@@ '''.join(UpperCamelCase_ ) __lowercase : Dict = word[:-4] __lowercase : str = word return word def _lowerCamelCase ( self , UpperCamelCase_ ) -> str: __lowercase : List[Any] = [] __lowercase : int = re.findall(R'''\S+\n?''' , UpperCamelCase_ ) for token in words: split_tokens.extend(list(self.bpe(UpperCamelCase_ ).split(''' ''' ) ) ) return split_tokens def _lowerCamelCase ( self , UpperCamelCase_ ) -> Optional[Any]: return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> int: return self.decoder.get(UpperCamelCase_ , self.unk_token ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> Optional[int]: __lowercase : Tuple = ''' '''.join(UpperCamelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> Tuple[str]: if not os.path.isdir(UpperCamelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase : Optional[Any] = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase : Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase_ , ensure_ascii=UpperCamelCase_ ) + '''\n''' ) __lowercase : List[str] = 0 with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) __lowercase : Union[str, Any] = token_index writer.write(''' '''.join(UpperCamelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
76
0
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowercase ( UpperCAmelCase__ ): def __init__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) -> Any: super().__init__() if hasattr(scheduler.config , 'steps_offset' ) and scheduler.config.steps_offset != 1: __a = ( f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " """to update the config accordingly as leaving `steps_offset` might led to incorrect results""" """ in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,""" """ it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`""" """ file""" ) deprecate('steps_offset!=1' , '1.0.0' , UpperCamelCase , standard_warn=UpperCamelCase ) __a = dict(scheduler.config ) __a = 1 __a = FrozenDict(UpperCamelCase ) if hasattr(scheduler.config , 'skip_prk_steps' ) and scheduler.config.skip_prk_steps is False: __a = ( f"The configuration file of this scheduler: {scheduler} has not set the configuration" """ `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make""" """ sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to""" """ incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face""" """ Hub, it would be very nice if you could open a Pull request for the""" """ `scheduler/scheduler_config.json` file""" ) deprecate('skip_prk_steps not set' , '1.0.0' , UpperCamelCase , standard_warn=UpperCamelCase ) __a = dict(scheduler.config ) __a = True __a = FrozenDict(UpperCamelCase ) if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( segmentation_model=UpperCamelCase , segmentation_processor=UpperCamelCase , vae=UpperCamelCase , text_encoder=UpperCamelCase , tokenizer=UpperCamelCase , unet=UpperCamelCase , scheduler=UpperCamelCase , safety_checker=UpperCamelCase , feature_extractor=UpperCamelCase , ) def UpperCamelCase__ ( self , UpperCamelCase = "auto" ) -> Union[str, Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCamelCase ) def UpperCamelCase__ ( self ) -> List[Any]: self.enable_attention_slicing(UpperCamelCase ) def UpperCamelCase__ ( self ) -> List[Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) __a = torch.device('cuda' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase , UpperCamelCase ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase__ ( self ) -> Union[str, Any]: if self.device != torch.device('meta' ) or not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = 512 , UpperCamelCase = 512 , UpperCamelCase = 50 , UpperCamelCase = 7.5 , UpperCamelCase = None , UpperCamelCase = 1 , UpperCamelCase = 0.0 , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = "pil" , UpperCamelCase = True , UpperCamelCase = None , UpperCamelCase = 1 , **UpperCamelCase , ) -> Optional[Any]: __a = self.segmentation_processor( text=[text] , images=[image] , padding='max_length' , return_tensors='pt' ).to(self.device ) __a = self.segmentation_model(**UpperCamelCase ) __a = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() __a = self.numpy_to_pil(UpperCamelCase )[0].resize(image.size ) # Run inpainting pipeline with the generated mask __a = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=UpperCamelCase , image=UpperCamelCase , mask_image=UpperCamelCase , height=UpperCamelCase , width=UpperCamelCase , num_inference_steps=UpperCamelCase , guidance_scale=UpperCamelCase , negative_prompt=UpperCamelCase , num_images_per_prompt=UpperCamelCase , eta=UpperCamelCase , generator=UpperCamelCase , latents=UpperCamelCase , output_type=UpperCamelCase , return_dict=UpperCamelCase , callback=UpperCamelCase , callback_steps=UpperCamelCase , )
714
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase_ = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } UpperCAmelCase_ = { "junnyu/roformer_chinese_small": 15_36, "junnyu/roformer_chinese_base": 15_36, "junnyu/roformer_chinese_char_small": 5_12, "junnyu/roformer_chinese_char_base": 5_12, "junnyu/roformer_small_discriminator": 1_28, "junnyu/roformer_small_generator": 1_28, } UpperCAmelCase_ = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class __lowercase ( __magic_name__ ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = PRETRAINED_INIT_CONFIGURATION _a = RoFormerTokenizer def __init__( self , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=True , UpperCamelCase="[UNK]" , UpperCamelCase="[SEP]" , UpperCamelCase="[PAD]" , UpperCamelCase="[CLS]" , UpperCamelCase="[MASK]" , UpperCamelCase=True , UpperCamelCase=None , **UpperCamelCase , ) -> int: super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) __a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , UpperCamelCase ) != do_lower_case or pre_tok_state.get('strip_accents' , UpperCamelCase ) != strip_accents ): __a = getattr(UpperCamelCase , pre_tok_state.pop('type' ) ) __a = do_lower_case __a = strip_accents __a = pre_tok_class(**UpperCamelCase ) __a = do_lower_case def __getstate__( self ) -> List[Any]: __a = self.__dict__.copy() __a = BertPreTokenizer() return state def __setstate__( self , UpperCamelCase ) -> Optional[int]: __a = d __a = self.__dict__['_tokenizer'].get_vocab() __a = PreTokenizer.custom(JiebaPreTokenizer(UpperCamelCase ) ) def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase=None ) -> int: __a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase = None ) -> List[int]: __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase = None ) -> Tuple[str]: __a = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase ) def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=False , **UpperCamelCase , ) -> List[Any]: __a = BertPreTokenizer() return super().save_pretrained(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase )
490
0
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): lowerCamelCase_ : int = SwinConfig(image_size=1_92 ) if "base" in model_name: lowerCamelCase_ : Dict = 6 lowerCamelCase_ : Any = 1_28 lowerCamelCase_ : List[Any] = (2, 2, 18, 2) lowerCamelCase_ : Dict = (4, 8, 16, 32) elif "large" in model_name: lowerCamelCase_ : List[Any] = 12 lowerCamelCase_ : List[Any] = 1_92 lowerCamelCase_ : Optional[Any] = (2, 2, 18, 2) lowerCamelCase_ : List[Any] = (6, 12, 24, 48) else: raise ValueError('Model not supported, only supports base and large variants' ) lowerCamelCase_ : str = window_size lowerCamelCase_ : Dict = embed_dim lowerCamelCase_ : List[str] = depths lowerCamelCase_ : Tuple = num_heads return config def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): if "encoder.mask_token" in name: lowerCamelCase_ : List[str] = name.replace('encoder.mask_token' ,'embeddings.mask_token' ) if "encoder.patch_embed.proj" in name: lowerCamelCase_ : Optional[int] = name.replace('encoder.patch_embed.proj' ,'embeddings.patch_embeddings.projection' ) if "encoder.patch_embed.norm" in name: lowerCamelCase_ : Optional[int] = name.replace('encoder.patch_embed.norm' ,'embeddings.norm' ) if "attn.proj" in name: lowerCamelCase_ : Union[str, Any] = name.replace('attn.proj' ,'attention.output.dense' ) if "attn" in name: lowerCamelCase_ : Union[str, Any] = name.replace('attn' ,'attention.self' ) if "norm1" in name: lowerCamelCase_ : Optional[int] = name.replace('norm1' ,'layernorm_before' ) if "norm2" in name: lowerCamelCase_ : Any = name.replace('norm2' ,'layernorm_after' ) if "mlp.fc1" in name: lowerCamelCase_ : List[str] = name.replace('mlp.fc1' ,'intermediate.dense' ) if "mlp.fc2" in name: lowerCamelCase_ : str = name.replace('mlp.fc2' ,'output.dense' ) if name == "encoder.norm.weight": lowerCamelCase_ : List[Any] = 'layernorm.weight' if name == "encoder.norm.bias": lowerCamelCase_ : Optional[Any] = 'layernorm.bias' if "decoder" in name: pass else: lowerCamelCase_ : Any = 'swin.' + name return name def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__ ): for key in orig_state_dict.copy().keys(): lowerCamelCase_ : Tuple = orig_state_dict.pop(lowerCAmelCase__ ) if "attn_mask" in key: pass elif "qkv" in key: lowerCamelCase_ : Any = key.split('.' ) lowerCamelCase_ : int = int(key_split[2] ) lowerCamelCase_ : Optional[Any] = int(key_split[4] ) lowerCamelCase_ : List[Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCamelCase_ : Optional[int] = val[:dim, :] lowerCamelCase_ : str = val[ dim : dim * 2, : ] lowerCamelCase_ : Optional[int] = val[-dim:, :] else: lowerCamelCase_ : Tuple = val[ :dim ] lowerCamelCase_ : List[str] = val[ dim : dim * 2 ] lowerCamelCase_ : Dict = val[ -dim: ] else: lowerCamelCase_ : List[str] = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ : Optional[Any] = torch.load(lowerCAmelCase__ ,map_location='cpu' )['model'] lowerCamelCase_ : Tuple = get_swin_config(lowerCAmelCase__ ) lowerCamelCase_ : Optional[Any] = SwinForMaskedImageModeling(lowerCAmelCase__ ) model.eval() lowerCamelCase_ : int = convert_state_dict(lowerCAmelCase__ ,lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) lowerCamelCase_ : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase_ : Any = ViTImageProcessor(size={'height': 1_92, 'width': 1_92} ) lowerCamelCase_ : int = Image.open(requests.get(lowerCAmelCase__ ,stream=lowerCAmelCase__ ).raw ) lowerCamelCase_ : Optional[int] = image_processor(images=lowerCAmelCase__ ,return_tensors='pt' ) with torch.no_grad(): lowerCamelCase_ : List[Any] = model(**lowerCAmelCase__ ).logits print(outputs.keys() ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(F"Pushing model and image processor for {model_name} to hub" ) model.push_to_hub(F"microsoft/{model_name}" ) image_processor.push_to_hub(F"microsoft/{model_name}" ) if __name__ == "__main__": _lowercase : Optional[int] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""swin-base-simmim-window6-192""", type=str, choices=["""swin-base-simmim-window6-192""", """swin-large-simmim-window12-192"""], help="""Name of the Swin SimMIM model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth""", type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowercase : int =parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
364
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration _lowercase : List[str] =5_0000 _lowercase : str =5000 _lowercase , _lowercase : List[str] =os.path.split(__file__) _lowercase : Union[str, Any] =os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__ ): for i in range(lowerCAmelCase__ ): lowerCamelCase_ : Tuple = dataset[i] @get_duration def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): for i in range(0 ,len(lowerCAmelCase__ ) ,lowerCAmelCase__ ): lowerCamelCase_ : Tuple = dataset[i : i + batch_size] @get_duration def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): with dataset.formatted_as(type=lowerCAmelCase__ ): for i in range(lowerCAmelCase__ ): lowerCamelCase_ : Tuple = dataset[i] @get_duration def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): with dataset.formatted_as(type=lowerCAmelCase__ ): for i in range(0 ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ : Optional[int] = dataset[i : i + batch_size] def _SCREAMING_SNAKE_CASE ( ): lowerCamelCase_ : Any = {'num examples': SPEED_TEST_N_EXAMPLES} lowerCamelCase_ : Optional[Any] = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_00}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10_00}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted, {'type': 'pandas', 'length': SMALL_TEST}), (read_formatted, {'type': 'torch', 'length': SMALL_TEST}), (read_formatted, {'type': 'tensorflow', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10_00}), ] lowerCamelCase_ : Optional[Any] = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_00}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10_00}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10_00}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('generating dataset' ) lowerCamelCase_ : List[Any] = datasets.Features( {'list': datasets.Sequence(datasets.Value('float32' ) ), 'numbers': datasets.Value('float32' )} ) lowerCamelCase_ : Union[str, Any] = generate_example_dataset( os.path.join(lowerCAmelCase__ ,'dataset.arrow' ) ,lowerCAmelCase__ ,num_examples=lowerCAmelCase__ ,seq_shapes={'list': (1_00,)} ,) print('first set of iterations' ) for func, kwargs in functions: print(func.__name__ ,str(lowerCAmelCase__ ) ) lowerCamelCase_ : Optional[int] = func(lowerCAmelCase__ ,**lowerCAmelCase__ ) print('shuffling dataset' ) lowerCamelCase_ : int = dataset.shuffle() print('Second set of iterations (after shuffling' ) for func, kwargs in functions_shuffled: print('shuffled ' ,func.__name__ ,str(lowerCAmelCase__ ) ) lowerCamelCase_ : Optional[Any] = func( lowerCAmelCase__ ,**lowerCAmelCase__ ) with open(lowerCAmelCase__ ,'wb' ) as f: f.write(json.dumps(lowerCAmelCase__ ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
364
1
'''simple docstring''' def snake_case ( a_ : str ) -> str: """simple docstring""" UpperCamelCase_ : int = 0 # if input_string is "aba" than new_input_string become "a|b|a" UpperCamelCase_ : Any = '''''' UpperCamelCase_ : str = '''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(a_ ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring UpperCamelCase_ : int = 0, 0 # length[i] shows the length of palindromic substring with center i UpperCamelCase_ : str = [1 for i in range(len(a_ ) )] # for each character in new_string find corresponding palindromic string UpperCamelCase_ : Optional[Any] = 0 for j in range(len(a_ ) ): UpperCamelCase_ : str = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(a_ ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 UpperCamelCase_ : Dict = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: UpperCamelCase_ : Tuple = j - k + 1 # noqa: E741 UpperCamelCase_ : List[str] = j + k - 1 # update max_length and start position if max_length < length[j]: UpperCamelCase_ : Optional[int] = length[j] UpperCamelCase_ : List[str] = j # create that string UpperCamelCase_ : Optional[Any] = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
718
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A ( unittest.TestCase ): """simple docstring""" def __init__( self , __lowerCAmelCase , __lowerCAmelCase=7 , __lowerCAmelCase=3 , __lowerCAmelCase=18 , __lowerCAmelCase=30 , __lowerCAmelCase=4_00 , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=True , ): UpperCamelCase_ : Dict = size if size is not None else {"""height""": 18, """width""": 18} UpperCamelCase_ : List[str] = parent UpperCamelCase_ : List[str] = batch_size UpperCamelCase_ : List[Any] = num_channels UpperCamelCase_ : List[str] = image_size UpperCamelCase_ : Tuple = min_resolution UpperCamelCase_ : List[str] = max_resolution UpperCamelCase_ : Optional[int] = do_resize UpperCamelCase_ : List[Any] = size UpperCamelCase_ : Any = apply_ocr def _UpperCAmelCase ( self ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class A ( SCREAMING_SNAKE_CASE__, unittest.TestCase ): """simple docstring""" __a : Optional[int] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _UpperCAmelCase ( self ): UpperCamelCase_ : int = LayoutLMvaImageProcessingTester(self ) @property def _UpperCAmelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ): UpperCamelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """size""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """apply_ocr""" ) ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) UpperCamelCase_ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def _UpperCAmelCase ( self ): pass def _UpperCAmelCase ( self ): # Initialize image_processing UpperCamelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input UpperCamelCase_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , __lowerCAmelCase ) self.assertIsInstance(encoding.boxes , __lowerCAmelCase ) # Test batched UpperCamelCase_ : List[str] = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def _UpperCAmelCase ( self ): # Initialize image_processing UpperCamelCase_ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input UpperCamelCase_ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched UpperCamelCase_ : List[str] = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def _UpperCAmelCase ( self ): # Initialize image_processing UpperCamelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input UpperCamelCase_ : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched UpperCamelCase_ : Union[str, Any] = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def _UpperCAmelCase ( self ): # with apply_OCR = True UpperCamelCase_ : Optional[int] = LayoutLMvaImageProcessor() from datasets import load_dataset UpperCamelCase_ : List[Any] = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) UpperCamelCase_ : int = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) UpperCamelCase_ : Union[str, Any] = image_processing(__lowerCAmelCase , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 UpperCamelCase_ : Optional[Any] = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 UpperCamelCase_ : List[Any] = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __lowerCAmelCase ) self.assertListEqual(encoding.boxes , __lowerCAmelCase ) # with apply_OCR = False UpperCamelCase_ : Optional[int] = LayoutLMvaImageProcessor(apply_ocr=__lowerCAmelCase ) UpperCamelCase_ : Optional[int] = image_processing(__lowerCAmelCase , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
543
0
from collections import defaultdict def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> bool: _lowercase : Any = first_str.lower().strip() _lowercase : List[str] = second_str.lower().strip() # Remove whitespace _lowercase : str = first_str.replace(' ' , '' ) _lowercase : List[Any] = second_str.replace(' ' , '' ) # Strings of different lengths are not anagrams if len(lowerCamelCase_ ) != len(lowerCamelCase_ ): return False # Default values for count should be 0 _lowercase : defaultdict[str, int] = defaultdict(lowerCamelCase_ ) # For each character in input strings, # increment count in the corresponding for i in range(len(lowerCamelCase_ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() SCREAMING_SNAKE_CASE : List[Any] = input("Enter the first string ").strip() SCREAMING_SNAKE_CASE : Any = input("Enter the second string ").strip() SCREAMING_SNAKE_CASE : int = check_anagrams(input_a, input_b) print(F"{input_a} and {input_b} are {'' if status else 'not '}anagrams.")
89
'''simple docstring''' import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : """simple docstring""" def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str=13 , __SCREAMING_SNAKE_CASE : int=7 , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Dict=99 , __SCREAMING_SNAKE_CASE : Optional[int]=24 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Any=6 , __SCREAMING_SNAKE_CASE : Optional[int]=37 , __SCREAMING_SNAKE_CASE : Optional[int]="gelu" , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=0.1 , __SCREAMING_SNAKE_CASE : int=512 , __SCREAMING_SNAKE_CASE : str=16 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : List[str]=0.02 , __SCREAMING_SNAKE_CASE : int=3 , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : List[Any]=1_000 , ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = scope __SCREAMING_SNAKE_CASE = range_bbox def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __SCREAMING_SNAKE_CASE = bbox[i, j, 3] __SCREAMING_SNAKE_CASE = bbox[i, j, 1] __SCREAMING_SNAKE_CASE = t if bbox[i, j, 2] < bbox[i, j, 0]: __SCREAMING_SNAKE_CASE = bbox[i, j, 2] __SCREAMING_SNAKE_CASE = bbox[i, j, 0] __SCREAMING_SNAKE_CASE = t __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase__ ( self : str ) -> int: """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = LiltModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[Any] , ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = LiltForTokenClassification(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = LiltForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , start_positions=__SCREAMING_SNAKE_CASE , end_positions=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : Dict ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase__ ( a , a , a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase__ = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int ) -> str: """simple docstring""" return True def UpperCAmelCase__ ( self : List[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = LiltModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def UpperCAmelCase__ ( self : int ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : int ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__ ( self : Dict ) -> int: """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = LiltModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @require_torch @slow class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.tensor([[1, 2]] , device=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(input_ids=__SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.Size([1, 2, 768] ) __SCREAMING_SNAKE_CASE = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=__SCREAMING_SNAKE_CASE , ) self.assertTrue(outputs.last_hidden_state.shape , __SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __SCREAMING_SNAKE_CASE , atol=1E-3 ) )
627
0
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __A : Optional[Any] = "pt" elif is_tf_available(): __A : Optional[Any] = "tf" else: __A : Tuple = "jax" class __lowerCAmelCase ( _UpperCamelCase , unittest.TestCase): '''simple docstring''' __magic_name__ : List[Any] = ByTaTokenizer __magic_name__ : Optional[Any] = False def _UpperCAmelCase ( self : int ): super().setUp() A__ : List[Any] =ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCAmelCase ( self : List[Any] ): return ByTaTokenizer.from_pretrained("google/byt5-small" ) def _UpperCAmelCase ( self : List[Any] , **UpperCamelCase__ : Union[str, Any] ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def _UpperCAmelCase ( self : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : List[Any]=20 , UpperCamelCase__ : Tuple=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. A__ : int =[] for i in range(len(UpperCamelCase__ ) ): try: A__ : str =tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCamelCase__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) A__ : Any =list(filter(lambda UpperCamelCase__ : re.match(R"^[ a-zA-Z]+$" , t[1] ) , UpperCamelCase__ ) ) A__ : str =list(filter(lambda UpperCamelCase__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCamelCase__ ) , UpperCamelCase__ ) ) if max_length is not None and len(UpperCamelCase__ ) > max_length: A__ : int =toks[:max_length] if min_length is not None and len(UpperCamelCase__ ) < min_length and len(UpperCamelCase__ ) > 0: while len(UpperCamelCase__ ) < min_length: A__ : List[Any] =toks + toks # toks_str = [t[1] for t in toks] A__ : str =[t[0] for t in toks] # Ensure consistency A__ : Optional[int] =tokenizer.decode(UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ ) if " " not in output_txt and len(UpperCamelCase__ ) > 1: A__ : List[Any] =( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCamelCase__ ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCamelCase__ ) ) if with_prefix_space: A__ : List[Any] =" " + output_txt A__ : Tuple =tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) return output_txt, output_ids def _UpperCAmelCase ( self : Union[str, Any] ): A__ : Any =self.ta_base_tokenizer A__ : str =tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] ) A__ : Any =tokenizer(["hi", "I went to the gym", ""] ) self.assertListEqual(batch_with_eos_added["input_ids"] , batch_without_eos_added["input_ids"] ) def _UpperCAmelCase ( self : List[Any] ): A__ : Optional[int] =self.ta_base_tokenizer A__ : Dict ="Unicode €." A__ : List[Any] =tokenizer(UpperCamelCase__ ) A__ : List[str] =[88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["input_ids"] , UpperCamelCase__ ) # decoding A__ : Tuple =tokenizer.decode(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , "Unicode €.</s>" ) A__ : Tuple =tokenizer("e è é ê ë" ) A__ : Tuple =[104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["input_ids"] , UpperCamelCase__ ) # decoding A__ : Union[str, Any] =tokenizer.decode(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , "e è é ê ë</s>" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "e è é ê ë</s>" ) def _UpperCAmelCase ( self : Dict ): A__ : Dict =self.ta_base_tokenizer A__ : Any =["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off A__ : Any =[68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on A__ : Union[str, Any] =tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) if FRAMEWORK != "jax": A__ : str =list(batch.input_ids.numpy()[0] ) else: A__ : int =list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _UpperCAmelCase ( self : Optional[Any] ): A__ : Any =self.ta_base_tokenizer A__ : List[Any] =["A long paragraph for summarization.", "Another paragraph for summarization."] A__ : Tuple =tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" , UpperCamelCase__ ) self.assertIn("attention_mask" , UpperCamelCase__ ) self.assertNotIn("decoder_input_ids" , UpperCamelCase__ ) self.assertNotIn("decoder_attention_mask" , UpperCamelCase__ ) def _UpperCAmelCase ( self : Optional[Any] ): A__ : Union[str, Any] =self.ta_base_tokenizer A__ : Union[str, Any] =[ "Summary of the text.", "Another summary.", ] A__ : Dict =tokenizer( text_target=UpperCamelCase__ , max_length=32 , padding="max_length" , truncation=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def _UpperCAmelCase ( self : List[str] ): A__ : Optional[int] =self.ta_base_tokenizer A__ : int =["A long paragraph for summarization. </s>"] A__ : str =["Summary of the text. </s>"] # fmt: off A__ : int =[68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] A__ : str =[86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on A__ : int =tokenizer(UpperCamelCase__ , text_target=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , batch["input_ids"][0] ) self.assertEqual(UpperCamelCase__ , batch["labels"][0] ) def _UpperCAmelCase ( self : List[Any] ): # safety check on max_len default value so we are sure the test works A__ : List[str] =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test A__ : List[Any] =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc A__ : Tuple =tempfile.mkdtemp() A__ : List[str] =" He is very happy, UNwant\u00E9d,running" A__ : str =tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) tokenizer.save_pretrained(UpperCamelCase__ ) A__ : Optional[Any] =tokenizer.__class__.from_pretrained(UpperCamelCase__ ) A__ : str =after_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) shutil.rmtree(UpperCamelCase__ ) A__ : int =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc A__ : str =tempfile.mkdtemp() A__ : Optional[Any] =" He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) A__ : Dict =tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) A__ : Tuple =tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) tokenizer.save_pretrained(UpperCamelCase__ ) A__ : List[str] =tokenizer.__class__.from_pretrained(UpperCamelCase__ ) A__ : List[str] =after_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) A__ : List[str] =tokenizer.__class__.from_pretrained(UpperCamelCase__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCamelCase__ ) def _UpperCAmelCase ( self : Dict ): A__ : List[str] =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: A__ : List[Any] =json.load(UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: A__ : Tuple =json.load(UpperCamelCase__ ) A__ : int =[F'''<extra_id_{i}>''' for i in range(125 )] A__ : int =added_tokens_extra_ids + [ "an_additional_special_token" ] A__ : Optional[Any] =added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(UpperCamelCase__ , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(UpperCamelCase__ , UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(UpperCamelCase__ , UpperCamelCase__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files A__ : Tuple =tokenizer_class.from_pretrained( UpperCamelCase__ , ) self.assertIn( "an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained A__ : Optional[int] =added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=UpperCamelCase__ )] A__ : Union[str, Any] =tokenizer_class.from_pretrained( UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , ) self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , ) def _UpperCAmelCase ( self : List[Any] ): A__ : str =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase__ ) A__ : Optional[int] =tokenizer_class.from_pretrained(UpperCamelCase__ ) self.assertTrue(tokenizer.decode([255] ) == "" ) def _UpperCAmelCase ( self : List[Any] ): pass def _UpperCAmelCase ( self : Optional[Any] ): pass def _UpperCAmelCase ( self : Optional[int] ): pass def _UpperCAmelCase ( self : Optional[int] ): pass def _UpperCAmelCase ( self : Any ): # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens A__ : Union[str, Any] =self.get_tokenizers(fast=UpperCamelCase__ , do_lower_case=UpperCamelCase__ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): A__ : Tuple =["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"] A__ : Optional[Any] =tokenizer.convert_tokens_to_string(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def _UpperCAmelCase ( self : List[str] ): A__ : Union[str, Any] =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): A__ : List[str] =[ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] A__ : List[Any] =0 A__ : List[Any] =tokenizer.convert_ids_to_tokens( UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) for attr in attributes_list: setattr(UpperCamelCase__ , attr + "_id" , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , attr + "_id" ) , UpperCamelCase__ ) setattr(UpperCamelCase__ , attr + "_id" , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , attr + "_id" ) , UpperCamelCase__ ) setattr(UpperCamelCase__ , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(UpperCamelCase__ , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(UpperCamelCase__ , "additional_special_tokens_ids" ) , [] ) setattr(UpperCamelCase__ , "additional_special_tokens_ids" , [token_id_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase__ , "additional_special_tokens" ) , [token_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase__ , "additional_special_tokens_ids" ) , [token_id_to_test_setters] )
595
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A : Tuple = logging.get_logger(__name__) def lowercase ( UpperCamelCase : Optional[Any] ): """simple docstring""" A__ : List[str] =DPTConfig() if "large" in checkpoint_url: A__ : List[Any] =1024 A__ : Union[str, Any] =4096 A__ : List[str] =24 A__ : Any =16 A__ : int =[5, 11, 17, 23] A__ : Union[str, Any] =[256, 512, 1024, 1024] A__ : Optional[Any] =(1, 384, 384) if "ade" in checkpoint_url: A__ : Tuple =True A__ : Any =150 A__ : Union[str, Any] ="huggingface/label-files" A__ : str ="ade20k-id2label.json" A__ : int =json.load(open(cached_download(hf_hub_url(UpperCamelCase , UpperCamelCase , repo_type="dataset" ) ) , "r" ) ) A__ : Dict ={int(UpperCamelCase ): v for k, v in idalabel.items()} A__ : Union[str, Any] =idalabel A__ : Tuple ={v: k for k, v in idalabel.items()} A__ : Dict =[1, 150, 480, 480] return config, expected_shape def lowercase ( UpperCamelCase : List[Any] ): """simple docstring""" A__ : Union[str, Any] =["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(UpperCamelCase , UpperCamelCase ) def lowercase ( UpperCamelCase : str ): """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): A__ : Tuple =name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: A__ : Union[str, Any] =name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: A__ : int =name.replace("patch_embed" , "patch_embeddings" ) if "pos_embed" in name: A__ : Union[str, Any] =name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: A__ : List[str] =name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: A__ : str =name.replace("proj" , "projection" ) if "blocks" in name: A__ : Dict =name.replace("blocks" , "layer" ) if "mlp.fc1" in name: A__ : List[str] =name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: A__ : Tuple =name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name: A__ : Optional[Any] =name.replace("norm1" , "layernorm_before" ) if "norm2" in name: A__ : Optional[int] =name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: A__ : Dict =name.replace("scratch.output_conv" , "head" ) if "scratch" in name: A__ : int =name.replace("scratch" , "neck" ) if "layer1_rn" in name: A__ : Tuple =name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: A__ : Optional[Any] =name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: A__ : str =name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: A__ : List[Any] =name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: A__ : str =int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 A__ : Any =name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: A__ : Union[str, Any] =name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: A__ : str =name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: A__ : Tuple =name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: A__ : Optional[int] =name.replace("conv1" , "convolution1" ) if "conv2" in name: A__ : List[str] =name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: A__ : Optional[int] =name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: A__ : List[Any] =name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: A__ : str =name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: A__ : Tuple =name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: A__ : Dict =name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: A__ : int =name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: A__ : Tuple =name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: A__ : Tuple =name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: A__ : Optional[int] =name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: A__ : Union[str, Any] =name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: A__ : Optional[int] =name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: A__ : str =name.replace("pretrained" , "dpt" ) if "bn" in name: A__ : Optional[Any] =name.replace("bn" , "batch_norm" ) if "head" in name: A__ : str =name.replace("head" , "head.head" ) if "encoder.norm" in name: A__ : List[Any] =name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: A__ : Dict =name.replace("auxlayer" , "auxiliary_head.head" ) return name def lowercase ( UpperCamelCase : Optional[int] , UpperCamelCase : str ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : int =state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) A__ : List[Any] =state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict A__ : Optional[Any] =in_proj_weight[: config.hidden_size, :] A__ : Dict =in_proj_bias[: config.hidden_size] A__ : Union[str, Any] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Tuple =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : Any =in_proj_weight[ -config.hidden_size :, : ] A__ : Union[str, Any] =in_proj_bias[-config.hidden_size :] def lowercase ( ): """simple docstring""" A__ : Optional[Any] ="http://images.cocodataset.org/val2017/000000039769.jpg" A__ : List[str] =Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ) return im @torch.no_grad() def lowercase ( UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : List[str] , UpperCamelCase : int ): """simple docstring""" A__ , A__ : List[str] =get_dpt_config(UpperCamelCase ) # load original state_dict from URL A__ : str =torch.hub.load_state_dict_from_url(UpperCamelCase , map_location="cpu" ) # remove certain keys remove_ignore_keys_(UpperCamelCase ) # rename keys for key in state_dict.copy().keys(): A__ : Dict =state_dict.pop(UpperCamelCase ) A__ : Optional[int] =val # read in qkv matrices read_in_q_k_v(UpperCamelCase , UpperCamelCase ) # load HuggingFace model A__ : Tuple =DPTForSemanticSegmentation(UpperCamelCase ) if "ade" in checkpoint_url else DPTForDepthEstimation(UpperCamelCase ) model.load_state_dict(UpperCamelCase ) model.eval() # Check outputs on an image A__ : Any =480 if "ade" in checkpoint_url else 384 A__ : Dict =DPTImageProcessor(size=UpperCamelCase ) A__ : List[str] =prepare_img() A__ : str =image_processor(UpperCamelCase , return_tensors="pt" ) # forward pass A__ : Tuple =model(**UpperCamelCase ).logits if "ade" in checkpoint_url else model(**UpperCamelCase ).predicted_depth # Assert logits A__ : Union[str, Any] =torch.tensor([[6.31_99, 6.36_29, 6.41_48], [6.38_50, 6.36_15, 6.41_66], [6.35_19, 6.31_76, 6.35_75]] ) if "ade" in checkpoint_url: A__ : Tuple =torch.tensor([[4.04_80, 4.24_20, 4.43_60], [4.31_24, 4.56_93, 4.82_61], [4.57_68, 4.89_65, 5.21_63]] ) assert outputs.shape == torch.Size(UpperCamelCase ) assert ( torch.allclose(outputs[0, 0, :3, :3] , UpperCamelCase , atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , UpperCamelCase ) ) Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCamelCase ) if push_to_hub: print("Pushing model to hub..." ) model.push_to_hub( repo_path_or_name=Path(UpperCamelCase , UpperCamelCase ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=UpperCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(UpperCamelCase , UpperCamelCase ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=UpperCamelCase , ) if __name__ == "__main__": __A : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) __A : Dict = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
595
1
'''simple docstring''' import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class lowerCamelCase ( _A ): def _lowerCamelCase ( self ): lowerCAmelCase : List[str] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(a_ , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(a_ , "num_attention_heads" ) ) self.parent.assertTrue(hasattr(a_ , "num_encoder_blocks" ) ) class lowerCamelCase : def __init__( self , a_ , a_=13 , a_=64 , a_=3 , a_=4 , a_=[2, 2, 2, 2] , a_=[8, 4, 2, 1] , a_=[16, 32, 64, 128] , a_=[1, 4, 8, 16] , a_=[1, 2, 4, 8] , a_=True , a_=True , a_="gelu" , a_=0.1 , a_=0.1 , a_=0.02 , a_=3 , a_=None , ): lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : str = batch_size lowerCAmelCase : int = image_size lowerCAmelCase : Tuple = num_channels lowerCAmelCase : Union[str, Any] = num_encoder_blocks lowerCAmelCase : Tuple = sr_ratios lowerCAmelCase : Any = depths lowerCAmelCase : List[Any] = hidden_sizes lowerCAmelCase : List[str] = downsampling_rates lowerCAmelCase : Dict = num_attention_heads lowerCAmelCase : Any = is_training lowerCAmelCase : Dict = use_labels lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : List[str] = hidden_dropout_prob lowerCAmelCase : Dict = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : List[str] = num_labels lowerCAmelCase : int = scope def _lowerCamelCase ( self ): lowerCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : str = None if self.use_labels: lowerCAmelCase : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCAmelCase : int = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self ): return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self , a_ , a_ , a_ ): lowerCAmelCase : Optional[int] = SegformerModel(config=a_ ) model.to(a_ ) model.eval() lowerCAmelCase : Tuple = model(a_ ) lowerCAmelCase : str = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def _lowerCamelCase ( self , a_ , a_ , a_ ): lowerCAmelCase : Dict = self.num_labels lowerCAmelCase : Any = SegformerForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() lowerCAmelCase : Any = model(a_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) lowerCAmelCase : Any = model(a_ , labels=a_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def _lowerCamelCase ( self , a_ , a_ , a_ ): lowerCAmelCase : Optional[int] = 1 lowerCAmelCase : Union[str, Any] = SegformerForSemanticSegmentation(config=a_ ) model.to(a_ ) model.eval() lowerCAmelCase : Dict = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(a_ ) lowerCAmelCase : Optional[int] = model(a_ , labels=a_ ) self.parent.assertGreater(result.loss , 0.0 ) def _lowerCamelCase ( self ): lowerCAmelCase : List[str] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = config_and_inputs lowerCAmelCase : List[str] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( _A , _A , unittest.TestCase ): snake_case_ = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) snake_case_ = ( { "feature-extraction": SegformerModel, "image-classification": SegformerForImageClassification, "image-segmentation": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = False def _lowerCamelCase ( self ): lowerCAmelCase : Optional[Any] = SegformerModelTester(self ) lowerCAmelCase : Optional[int] = SegformerConfigTester(self , config_class=a_ ) def _lowerCamelCase ( self ): self.config_tester.run_common_tests() def _lowerCamelCase ( self ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def _lowerCamelCase ( self ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*a_ ) def _lowerCamelCase ( self ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*a_ ) @unittest.skip("SegFormer does not use inputs_embeds" ) def _lowerCamelCase ( self ): pass @unittest.skip("SegFormer does not have get_input_embeddings method and get_output_embeddings methods" ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Optional[int] = model_class(a_ ) lowerCAmelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , a_ ) def _lowerCamelCase ( self ): lowerCAmelCase , lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : List[str] = True for model_class in self.all_model_classes: lowerCAmelCase : Any = True lowerCAmelCase : str = False lowerCAmelCase : Dict = True lowerCAmelCase : Dict = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): lowerCAmelCase : Optional[int] = model(**self._prepare_for_class(a_ , a_ ) ) lowerCAmelCase : Optional[Any] = outputs.attentions lowerCAmelCase : List[Any] = sum(self.model_tester.depths ) self.assertEqual(len(a_ ) , a_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Optional[int] = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): lowerCAmelCase : int = model(**self._prepare_for_class(a_ , a_ ) ) lowerCAmelCase : Optional[int] = outputs.attentions self.assertEqual(len(a_ ) , a_ ) # verify the first attentions (first block, first layer) lowerCAmelCase : List[Any] = (self.model_tester.image_size // 4) ** 2 lowerCAmelCase : List[Any] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) lowerCAmelCase : Dict = (self.model_tester.image_size // 32) ** 2 lowerCAmelCase : Dict = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) lowerCAmelCase : str = len(a_ ) # Check attention is always last and order is fine lowerCAmelCase : Any = True lowerCAmelCase : List[Any] = True lowerCAmelCase : List[Any] = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): lowerCAmelCase : Any = model(**self._prepare_for_class(a_ , a_ ) ) self.assertEqual(out_len + 1 , len(a_ ) ) lowerCAmelCase : int = outputs.attentions self.assertEqual(len(a_ ) , a_ ) # verify the first attentions (first block, first layer) lowerCAmelCase : Union[str, Any] = (self.model_tester.image_size // 4) ** 2 lowerCAmelCase : Optional[int] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def _lowerCamelCase ( self ): def check_hidden_states_output(a_ , a_ , a_ ): lowerCAmelCase : int = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(**self._prepare_for_class(a_ , a_ ) ) lowerCAmelCase : Optional[int] = outputs.hidden_states lowerCAmelCase : Tuple = self.model_tester.num_encoder_blocks self.assertEqual(len(a_ ) , a_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) lowerCAmelCase , lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Tuple = True check_hidden_states_output(a_ , a_ , a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : List[Any] = True check_hidden_states_output(a_ , a_ , a_ ) def _lowerCamelCase ( self ): if not self.model_tester.is_training: return lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : List[Any] = True for model_class in self.all_model_classes: if model_class in get_values(a_ ): continue lowerCAmelCase : Optional[Any] = model_class(a_ ) model.to(a_ ) model.train() lowerCAmelCase : Union[str, Any] = self._prepare_for_class(a_ , a_ , return_labels=a_ ) lowerCAmelCase : Optional[Any] = model(**a_ ).loss loss.backward() @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowerCamelCase ( self ): pass @slow def _lowerCamelCase ( self ): for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Any = SegformerModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def __A ( ): lowerCAmelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def _lowerCamelCase ( self ): # only resize + normalize lowerCAmelCase : int = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=a_ , align=a_ , do_random_crop=a_ ) lowerCAmelCase : str = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to( a_ ) lowerCAmelCase : List[Any] = prepare_img() lowerCAmelCase : Any = image_processor(images=a_ , return_tensors="pt" ) lowerCAmelCase : Optional[int] = encoded_inputs.pixel_values.to(a_ ) with torch.no_grad(): lowerCAmelCase : Union[str, Any] = model(a_ ) lowerCAmelCase : Union[str, Any] = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , a_ ) lowerCAmelCase : Optional[Any] = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , a_ , atol=1e-4 ) ) @slow def _lowerCamelCase ( self ): # only resize + normalize lowerCAmelCase : Tuple = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=a_ , align=a_ , do_random_crop=a_ ) lowerCAmelCase : Dict = SegformerForSemanticSegmentation.from_pretrained( "nvidia/segformer-b1-finetuned-cityscapes-1024-1024" ).to(a_ ) lowerCAmelCase : Optional[Any] = prepare_img() lowerCAmelCase : Any = image_processor(images=a_ , return_tensors="pt" ) lowerCAmelCase : Tuple = encoded_inputs.pixel_values.to(a_ ) with torch.no_grad(): lowerCAmelCase : Any = model(a_ ) lowerCAmelCase : Optional[Any] = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , a_ ) lowerCAmelCase : str = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , a_ , atol=1e-1 ) ) @slow def _lowerCamelCase ( self ): # only resize + normalize lowerCAmelCase : List[str] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=a_ , align=a_ , do_random_crop=a_ ) lowerCAmelCase : int = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to( a_ ) lowerCAmelCase : str = prepare_img() lowerCAmelCase : Optional[int] = image_processor(images=a_ , return_tensors="pt" ) lowerCAmelCase : Optional[Any] = encoded_inputs.pixel_values.to(a_ ) with torch.no_grad(): lowerCAmelCase : Tuple = model(a_ ) lowerCAmelCase : Dict = outputs.logits.detach().cpu() lowerCAmelCase : List[Any] = image_processor.post_process_semantic_segmentation(outputs=a_ , target_sizes=[(500, 300)] ) lowerCAmelCase : Dict = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , a_ ) lowerCAmelCase : Optional[int] = image_processor.post_process_semantic_segmentation(outputs=a_ ) lowerCAmelCase : Union[str, Any] = torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape , a_ )
525
'''simple docstring''' import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter lowerCAmelCase = True except ImportError: lowerCAmelCase = False lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def __A ( a_ : Namespace ): return AddNewModelCommand(args.testing ,args.testing_file ,path=args.path ) class lowerCamelCase ( _A ): @staticmethod def _lowerCamelCase ( a_ ): lowerCAmelCase : Optional[int] = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" , action="store_true" , help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" , type=a_ , help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" , type=a_ , help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=a_ ) def __init__( self , a_ , a_ , a_=None , *a_ ): lowerCAmelCase : Any = testing lowerCAmelCase : str = testing_file lowerCAmelCase : Optional[int] = path def _lowerCamelCase ( self ): warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory lowerCAmelCase : Optional[Any] = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(a_ ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) lowerCAmelCase : List[str] = ( Path(a_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) lowerCAmelCase : str = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(a_ ) ) else: with open(self._testing_file , "r" ) as configuration_file: lowerCAmelCase : Dict = json.load(a_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=a_ , extra_context=a_ , ) lowerCAmelCase : Optional[Any] = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json" , "r" ) as configuration_file: lowerCAmelCase : str = json.load(a_ ) lowerCAmelCase : List[str] = configuration["lowercase_modelname"] lowerCAmelCase : List[Any] = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(F'''{directory}/configuration.json''' ) lowerCAmelCase : Optional[int] = "PyTorch" in generate_tensorflow_pytorch_and_flax lowerCAmelCase : Optional[int] = "TensorFlow" in generate_tensorflow_pytorch_and_flax lowerCAmelCase : Optional[Any] = "Flax" in generate_tensorflow_pytorch_and_flax lowerCAmelCase : List[str] = F'''{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}''' os.makedirs(a_ , exist_ok=a_ ) os.makedirs(F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}''' , exist_ok=a_ ) # Tests require submodules as they have parent imports with open(F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py''' , "w" ): pass shutil.move( F'''{directory}/__init__.py''' , F'''{model_dir}/__init__.py''' , ) shutil.move( F'''{directory}/configuration_{lowercase_model_name}.py''' , F'''{model_dir}/configuration_{lowercase_model_name}.py''' , ) def remove_copy_lines(a_ ): with open(a_ , "r" ) as f: lowerCAmelCase : Dict = f.readlines() with open(a_ , "w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(a_ ) if output_pytorch: if not self._testing: remove_copy_lines(F'''{directory}/modeling_{lowercase_model_name}.py''' ) shutil.move( F'''{directory}/modeling_{lowercase_model_name}.py''' , F'''{model_dir}/modeling_{lowercase_model_name}.py''' , ) shutil.move( F'''{directory}/test_modeling_{lowercase_model_name}.py''' , F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py''' , ) else: os.remove(F'''{directory}/modeling_{lowercase_model_name}.py''' ) os.remove(F'''{directory}/test_modeling_{lowercase_model_name}.py''' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) shutil.move( F'''{directory}/modeling_tf_{lowercase_model_name}.py''' , F'''{model_dir}/modeling_tf_{lowercase_model_name}.py''' , ) shutil.move( F'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' , F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py''' , ) else: os.remove(F'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) os.remove(F'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' ) if output_flax: if not self._testing: remove_copy_lines(F'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) shutil.move( F'''{directory}/modeling_flax_{lowercase_model_name}.py''' , F'''{model_dir}/modeling_flax_{lowercase_model_name}.py''' , ) shutil.move( F'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' , F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py''' , ) else: os.remove(F'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) os.remove(F'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' ) shutil.move( F'''{directory}/{lowercase_model_name}.md''' , F'''{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md''' , ) shutil.move( F'''{directory}/tokenization_{lowercase_model_name}.py''' , F'''{model_dir}/tokenization_{lowercase_model_name}.py''' , ) shutil.move( F'''{directory}/tokenization_fast_{lowercase_model_name}.py''' , F'''{model_dir}/tokenization_{lowercase_model_name}_fast.py''' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(a_ , a_ , a_ ): # Create temp file lowerCAmelCase , lowerCAmelCase : Tuple = mkstemp() lowerCAmelCase : int = False with fdopen(a_ , "w" ) as new_file: with open(a_ ) as old_file: for line in old_file: new_file.write(a_ ) if line_to_copy_below in line: lowerCAmelCase : Optional[int] = True for line_to_copy in lines_to_copy: new_file.write(a_ ) if not line_found: raise ValueError(F'''Line {line_to_copy_below} was not found in file.''' ) # Copy the file permissions from the old file to the new file copymode(a_ , a_ ) # Remove original file remove(a_ ) # Move new file move(a_ , a_ ) def skip_units(a_ ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(a_ ): with open(a_ ) as datafile: lowerCAmelCase : Dict = [] lowerCAmelCase : Optional[int] = False lowerCAmelCase : List[Any] = False for line in datafile: if "# To replace in: " in line and "##" not in line: lowerCAmelCase : Optional[int] = line.split("\"" )[1] lowerCAmelCase : Tuple = skip_units(a_ ) elif "# Below: " in line and "##" not in line: lowerCAmelCase : Any = line.split("\"" )[1] lowerCAmelCase : List[str] = skip_units(a_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(a_ , a_ , a_ ) lowerCAmelCase : List[str] = [] elif "# Replace with" in line and "##" not in line: lowerCAmelCase : Any = [] elif "##" not in line: lines_to_copy.append(a_ ) remove(a_ ) replace_in_files(F'''{directory}/to_replace_{lowercase_model_name}.py''' ) os.rmdir(a_ )
525
1
'''simple docstring''' from __future__ import annotations import math def _UpperCAmelCase ( a : int ): if num <= 0: snake_case__ = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(a ) snake_case__ = [True] * (num + 1) snake_case__ = [] snake_case__ = 2 snake_case__ = int(math.sqrt(a ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(a ) # Set multiples of start be False for i in range(start * start , num + 1 , a ): if sieve[i] is True: snake_case__ = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(a ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
701
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = { """configuration_lilt""": ["""LILT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LiltConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """LILT_PRETRAINED_MODEL_ARCHIVE_LIST""", """LiltForQuestionAnswering""", """LiltForSequenceClassification""", """LiltForTokenClassification""", """LiltModel""", """LiltPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
99
0
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase_ = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCamelCase_ = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: Dict ,__UpperCamelCase: Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : int = SavedModel() SCREAMING_SNAKE_CASE : str = [] with open(os.path.join(__UpperCamelCase ,'utils' ,'tf_ops' ,'onnx.json' ) ) as f: SCREAMING_SNAKE_CASE : List[Any] = json.load(__UpperCamelCase )['opsets'] for i in range(1 ,opset + 1 ): onnx_ops.extend(onnx_opsets[str(__UpperCamelCase )] ) with open(__UpperCamelCase ,'rb' ) as f: saved_model.ParseFromString(f.read() ) SCREAMING_SNAKE_CASE : Dict = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want SCREAMING_SNAKE_CASE : Optional[int] = sorted(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(__UpperCamelCase ) if strict and len(__UpperCamelCase ) > 0: raise Exception(f"Found the following incompatible ops for the opset {opset}:\n" + incompatible_ops ) elif len(__UpperCamelCase ) > 0: print(f"Found the following incompatible ops for the opset {opset}:" ) print(*__UpperCamelCase ,sep='\n' ) else: print(f"The saved model {saved_model_path} can properly be converted with ONNX." ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=1_2, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) UpperCamelCase_ = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
28
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase_ = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } UpperCamelCase_ = { "distilbert-base-uncased": 5_1_2, "distilbert-base-uncased-distilled-squad": 5_1_2, "distilbert-base-cased": 5_1_2, "distilbert-base-cased-distilled-squad": 5_1_2, "distilbert-base-german-cased": 5_1_2, "distilbert-base-multilingual-cased": 5_1_2, } UpperCamelCase_ = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : List[Any] = VOCAB_FILES_NAMES A : Dict = PRETRAINED_VOCAB_FILES_MAP A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Optional[Any] = PRETRAINED_INIT_CONFIGURATION A : Optional[int] = ['''input_ids''', '''attention_mask'''] A : List[Any] = DistilBertTokenizer def __init__( self, A=None, A=None, A=True, A="[UNK]", A="[SEP]", A="[PAD]", A="[CLS]", A="[MASK]", A=True, A=None, **A, ): '''simple docstring''' super().__init__( A, tokenizer_file=A, do_lower_case=A, unk_token=A, sep_token=A, pad_token=A, cls_token=A, mask_token=A, tokenize_chinese_chars=A, strip_accents=A, **A, ) SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase', A ) != do_lower_case or normalizer_state.get('strip_accents', A ) != strip_accents or normalizer_state.get('handle_chinese_chars', A ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(A, normalizer_state.pop('type' ) ) SCREAMING_SNAKE_CASE : Optional[Any] = do_lower_case SCREAMING_SNAKE_CASE : List[str] = strip_accents SCREAMING_SNAKE_CASE : List[str] = tokenize_chinese_chars SCREAMING_SNAKE_CASE : Dict = normalizer_class(**A ) SCREAMING_SNAKE_CASE : Union[str, Any] = do_lower_case def UpperCamelCase_ ( self, A, A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id] SCREAMING_SNAKE_CASE : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self._tokenizer.model.save(A, name=A ) return tuple(A )
28
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings a_ = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_UpperCAmelCase) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[int] = """rag""" _A : Optional[Any] = True def __init__(self , lowercase__=None , lowercase__=True , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=" / " , lowercase__=" // " , lowercase__=5 , lowercase__=3_00 , lowercase__=7_68 , lowercase__=8 , lowercase__="wiki_dpr" , lowercase__="train" , lowercase__="compressed" , lowercase__=None , lowercase__=None , lowercase__=False , lowercase__=False , lowercase__=0.0 , lowercase__=True , lowercase__=False , lowercase__=False , lowercase__=False , lowercase__=True , lowercase__=None , **lowercase__ , ): super().__init__( bos_token_id=lowercase__ , pad_token_id=lowercase__ , eos_token_id=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , prefix=lowercase__ , vocab_size=lowercase__ , **lowercase__ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" snake_case_ : List[Any] = kwargs.pop("""question_encoder""" ) snake_case_ : Tuple = question_encoder_config.pop("""model_type""" ) snake_case_ : List[str] = kwargs.pop("""generator""" ) snake_case_ : List[str] = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig snake_case_ : List[str] = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : Tuple = AutoConfig.for_model(lowercase__ , **lowercase__ ) snake_case_ : int = reduce_loss snake_case_ : Optional[int] = label_smoothing snake_case_ : Dict = exclude_bos_score snake_case_ : Union[str, Any] = do_marginalize snake_case_ : Union[str, Any] = title_sep snake_case_ : int = doc_sep snake_case_ : int = n_docs snake_case_ : List[str] = max_combined_length snake_case_ : Tuple = dataset snake_case_ : int = dataset_split snake_case_ : str = index_name snake_case_ : List[str] = retrieval_vector_size snake_case_ : Dict = retrieval_batch_size snake_case_ : str = passages_path snake_case_ : Union[str, Any] = index_path snake_case_ : Tuple = use_dummy_dataset snake_case_ : Dict = output_retrieved snake_case_ : str = do_deduplication snake_case_ : Any = use_cache if self.forced_eos_token_id is None: snake_case_ : Any = getattr(self.generator , """forced_eos_token_id""" , lowercase__ ) @classmethod def __UpperCamelCase (cls , lowercase__ , lowercase__ , **lowercase__ ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[Any] = copy.deepcopy(self.__dict__ ) snake_case_ : Any = self.question_encoder.to_dict() snake_case_ : Dict = self.generator.to_dict() snake_case_ : Union[str, Any] = self.__class__.model_type return output
717
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a_ = None a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a_ = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off a_ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = VOCAB_FILES_NAMES _A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _A : str = ["""input_ids""", """attention_mask"""] _A : Tuple = MBartTokenizer _A : List[int] = [] _A : List[int] = [] def __init__(self , lowercase__=None , lowercase__=None , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=None , lowercase__=None , lowercase__=None , **lowercase__ , ): # Mask token behave like a normal word, i.e. include the space before it snake_case_ : int = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token super().__init__( vocab_file=lowercase__ , tokenizer_file=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , src_lang=lowercase__ , tgt_lang=lowercase__ , additional_special_tokens=lowercase__ , **lowercase__ , ) snake_case_ : Dict = vocab_file snake_case_ : Optional[int] = False if not self.vocab_file else True snake_case_ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) snake_case_ : Any = { lang_code: self.convert_tokens_to_ids(lowercase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } snake_case_ : Tuple = src_lang if src_lang is not None else """en_XX""" snake_case_ : Tuple = self.convert_tokens_to_ids(self._src_lang ) snake_case_ : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCamelCase (self ): return self._src_lang @src_lang.setter def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): snake_case_ : List[Any] = [self.sep_token_id] snake_case_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , **lowercase__ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) snake_case_ : int = src_lang snake_case_ : List[str] = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ ) snake_case_ : List[str] = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Union[str, Any] = tgt_lang_id return inputs def __UpperCamelCase (self , lowercase__ , lowercase__ = "en_XX" , lowercase__ = None , lowercase__ = "ro_RO" , **lowercase__ , ): snake_case_ : List[str] = src_lang snake_case_ : int = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ ) def __UpperCamelCase (self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase (self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : int = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Tuple = [] snake_case_ : List[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Tuple = self.convert_tokens_to_ids(lowercase__ ) snake_case_ : Optional[int] = [] snake_case_ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] snake_case_ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) snake_case_ : int = self.convert_ids_to_tokens(self.suffix_tokens ) snake_case_ : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowercase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return snake_case_ : List[str] = os.path.join( lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ): copyfile(self.vocab_file , lowercase__ ) return (out_vocab_file,)
48
0
"""simple docstring""" import sys def lowerCamelCase_ ( _lowerCamelCase : Dict ): lowerCamelCase_ = len(_lowerCamelCase ) lowerCamelCase_ = [[0 for x in range(_lowerCamelCase )] for x in range(_lowerCamelCase )] lowerCamelCase_ = [[0 for x in range(_lowerCamelCase )] for x in range(_lowerCamelCase )] for chain_length in range(2 , _lowerCamelCase ): for a in range(1 , n - chain_length + 1 ): lowerCamelCase_ = a + chain_length - 1 lowerCamelCase_ = sys.maxsize for c in range(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase_ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: lowerCamelCase_ = cost lowerCamelCase_ = c return matrix, sol def lowerCamelCase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : List[str] ): if i == j: print('''A''' + str(_lowerCamelCase ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(_lowerCamelCase , _lowerCamelCase , optimal_solution[i][j] ) print_optiomal_solution(_lowerCamelCase , optimal_solution[i][j] + 1 , _lowerCamelCase ) print(''')''' , end=''' ''' ) def lowerCamelCase_ ( ): lowerCamelCase_ = [3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] lowerCamelCase_ = len(_lowerCamelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 lowerCamelCase_ , lowerCamelCase_ = matrix_chain_order(_lowerCamelCase ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(_lowerCamelCase , 1 , n - 1 ) if __name__ == "__main__": main()
142
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path __lowercase : Dict = """src/transformers""" # Matches is_xxx_available() __lowercase : Tuple = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} __lowercase : Dict = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __lowercase : List[str] = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available __lowercase : Tuple = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") __lowercase : List[str] = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __lowercase : str = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", __lowercase : Union[str, Any] = re.compile("""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], __lowercase : Union[str, Any] = re.compile("""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo __lowercase : Optional[Any] = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: __lowercase : Optional[int] = re.compile(r"""^\s*try:""") # Catches a line with else: __lowercase : Union[str, Any] = re.compile(r"""^\s*else:""") def lowerCamelCase_ ( _lowerCamelCase : Dict ): if _re_test_backend.search(_lowerCamelCase ) is None: return None lowerCamelCase_ = [b[0] for b in _re_backend.findall(_lowerCamelCase )] backends.sort() return "_and_".join(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase : Tuple ): with open(_lowerCamelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCamelCase_ = f.readlines() lowerCamelCase_ = 0 while line_index < len(_lowerCamelCase ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_lowerCamelCase ): return None # First grab the objects without a specific backend in _import_structure lowerCamelCase_ = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: lowerCamelCase_ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_lowerCamelCase ): lowerCamelCase_ = _re_one_line_import_struct.search(_lowerCamelCase ).groups()[0] lowerCamelCase_ = re.findall('''\[([^\]]+)\]''' , _lowerCamelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue lowerCamelCase_ = _re_import_struct_key_value.search(_lowerCamelCase ) if single_line_import_search is not None: lowerCamelCase_ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_lowerCamelCase ) > 0] objects.extend(_lowerCamelCase ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 lowerCamelCase_ = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCamelCase_ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCamelCase_ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCamelCase_ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): lowerCamelCase_ = lines[line_index] if _re_import_struct_add_one.search(_lowerCamelCase ) is not None: objects.append(_re_import_struct_add_one.search(_lowerCamelCase ).groups()[0] ) elif _re_import_struct_add_many.search(_lowerCamelCase ) is not None: lowerCamelCase_ = _re_import_struct_add_many.search(_lowerCamelCase ).groups()[0].split(''', ''' ) lowerCamelCase_ = [obj[1:-1] for obj in imports if len(_lowerCamelCase ) > 0] objects.extend(_lowerCamelCase ) elif _re_between_brackets.search(_lowerCamelCase ) is not None: lowerCamelCase_ = _re_between_brackets.search(_lowerCamelCase ).groups()[0].split(''', ''' ) lowerCamelCase_ = [obj[1:-1] for obj in imports if len(_lowerCamelCase ) > 0] objects.extend(_lowerCamelCase ) elif _re_quote_object.search(_lowerCamelCase ) is not None: objects.append(_re_quote_object.search(_lowerCamelCase ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 1_2 + '''"''' ): objects.append(line[1_3:-3] ) line_index += 1 lowerCamelCase_ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCamelCase_ = [] while ( line_index < len(_lowerCamelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): lowerCamelCase_ = lines[line_index] lowerCamelCase_ = _re_import.search(_lowerCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCamelCase_ = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_lowerCamelCase ): # If the line is an if is_backend_available, we grab all objects associated. lowerCamelCase_ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCamelCase_ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCamelCase_ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): lowerCamelCase_ = lines[line_index] lowerCamelCase_ = _re_import.search(_lowerCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 1_2 ): objects.append(line[1_2:-2] ) line_index += 1 lowerCamelCase_ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def lowerCamelCase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : int ): def find_duplicates(_lowerCamelCase : List[Any] ): return [k for k, v in collections.Counter(_lowerCamelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCamelCase_ = [] for key in import_dict_objects.keys(): lowerCamelCase_ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) lowerCamelCase_ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCamelCase_ = '''base imports''' if key == '''none''' else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def lowerCamelCase_ ( ): lowerCamelCase_ = [] for root, _, files in os.walk(_lowerCamelCase ): if "__init__.py" in files: lowerCamelCase_ = os.path.join(_lowerCamelCase , '''__init__.py''' ) lowerCamelCase_ = parse_init(_lowerCamelCase ) if objects is not None: lowerCamelCase_ = analyze_results(*_lowerCamelCase ) if len(_lowerCamelCase ) > 0: lowerCamelCase_ = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('''\n'''.join(_lowerCamelCase ) ) if len(_lowerCamelCase ) > 0: raise ValueError('''\n\n'''.join(_lowerCamelCase ) ) def lowerCamelCase_ ( ): lowerCamelCase_ = [] for path, directories, files in os.walk(_lowerCamelCase ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_lowerCamelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_lowerCamelCase ) / folder).glob('''*.py''' ) ) ) == 0: continue lowerCamelCase_ = str((Path(_lowerCamelCase ) / folder).relative_to(_lowerCamelCase ) ) lowerCamelCase_ = short_path.replace(os.path.sep , '''.''' ) submodules.append(_lowerCamelCase ) for fname in files: if fname == "__init__.py": continue lowerCamelCase_ = str((Path(_lowerCamelCase ) / fname).relative_to(_lowerCamelCase ) ) lowerCamelCase_ = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_lowerCamelCase ) return submodules __lowercase : int = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", ] def lowerCamelCase_ ( ): # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase_ = importlib.util.spec_from_file_location( '''transformers''' , os.path.join(_lowerCamelCase , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCamelCase_ = spec.loader.load_module() lowerCamelCase_ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(_lowerCamelCase ) > 0: lowerCamelCase_ = '''\n'''.join(F"""- {module}""" for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' F"""{list_of_modules}\n""" '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
142
1
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ ): assert isinstance(__snake_case , __snake_case ), F"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: UpperCAmelCase : Any = F"""The input value of [n={number}] has to be > 0""" raise ValueError(__snake_case ) else: UpperCAmelCase : Any = sylvester(number - 1 ) UpperCAmelCase : List[str] = num - 1 UpperCAmelCase : Union[str, Any] = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
712
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowercase__ = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: lowercase__ = json.load(f) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict , lowercase_ : Dict ) -> Tuple: return FSMTTokenizer.from_pretrained(lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> Tuple: UpperCAmelCase : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(lowercase_ ).to(lowercase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def UpperCAmelCase_ ( self : List[str] , lowercase_ : int , lowercase_ : Any ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCAmelCase : List[str] = f"""facebook/wmt19-{pair}""" UpperCAmelCase : Optional[int] = self.get_tokenizer(lowercase_ ) UpperCAmelCase : int = self.get_model(lowercase_ ) UpperCAmelCase : List[Any] = bleu_data[pair]['src'] UpperCAmelCase : Optional[int] = bleu_data[pair]['tgt'] UpperCAmelCase : Any = tokenizer(lowercase_ , return_tensors='pt' , truncation=lowercase_ , padding='longest' ).to(lowercase_ ) UpperCAmelCase : List[Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) UpperCAmelCase : List[Any] = tokenizer.batch_decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) UpperCAmelCase : Any = calculate_bleu(lowercase_ , lowercase_ ) print(lowercase_ ) self.assertGreaterEqual(scores['bleu'] , lowercase_ )
695
0
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE : def __init__( self : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str=13 , UpperCAmelCase__ : Tuple=7 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Optional[Any]=99 , UpperCAmelCase__ : Any=16 , UpperCAmelCase__ : Optional[Any]=36 , UpperCAmelCase__ : str=6 , UpperCAmelCase__ : Any=6 , UpperCAmelCase__ : Optional[int]=6 , UpperCAmelCase__ : Any=37 , UpperCAmelCase__ : List[str]="gelu" , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : List[str]=512 , UpperCAmelCase__ : List[str]=16 , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : Any=0.02 , UpperCAmelCase__ : Union[str, Any]=3 , UpperCAmelCase__ : List[Any]=4 , UpperCAmelCase__ : Tuple=None , ): '''simple docstring''' lowercase : str =parent lowercase : int =batch_size lowercase : Any =seq_length lowercase : int =is_training lowercase : str =use_input_mask lowercase : int =use_token_type_ids lowercase : Dict =use_labels lowercase : int =vocab_size lowercase : str =embedding_size lowercase : Union[str, Any] =hidden_size lowercase : Tuple =num_hidden_layers lowercase : Any =num_hidden_groups lowercase : Union[str, Any] =num_attention_heads lowercase : Any =intermediate_size lowercase : Tuple =hidden_act lowercase : Optional[int] =hidden_dropout_prob lowercase : Union[str, Any] =attention_probs_dropout_prob lowercase : List[Any] =max_position_embeddings lowercase : int =type_vocab_size lowercase : int =type_sequence_label_size lowercase : Any =initializer_range lowercase : List[Any] =num_labels lowercase : int =num_choices lowercase : Optional[int] =scope def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : int =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Optional[int] =None if self.use_input_mask: lowercase : List[str] =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Dict =None if self.use_token_type_ids: lowercase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : Tuple =None lowercase : Any =None lowercase : Dict =None if self.use_labels: lowercase : int =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : str =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Optional[Any] =ids_tensor([self.batch_size] , self.num_choices ) lowercase : Any =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : str ): '''simple docstring''' lowercase : int =AlbertModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowercase : int =model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) lowercase : Dict =model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) lowercase : int =model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase_ ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple ): '''simple docstring''' lowercase : Tuple =AlbertForPreTraining(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowercase : int =model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , sentence_order_label=UpperCAmelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCamelCase_ ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int ): '''simple docstring''' lowercase : Tuple =AlbertForMaskedLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowercase : str =model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] ): '''simple docstring''' lowercase : List[str] =AlbertForQuestionAnswering(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowercase : List[str] =model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] ): '''simple docstring''' lowercase : Optional[Any] =self.num_labels lowercase : Any =AlbertForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowercase : Dict =model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict ): '''simple docstring''' lowercase : List[Any] =self.num_labels lowercase : str =AlbertForTokenClassification(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowercase : int =model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] ): '''simple docstring''' lowercase : Optional[int] =self.num_choices lowercase : List[Any] =AlbertForMultipleChoice(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowercase : List[Any] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : int =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : int =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : List[str] =model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self : int ): '''simple docstring''' lowercase : Union[str, Any] =self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Dict =config_and_inputs lowercase : Optional[Any] ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , unittest.TestCase ): lowerCamelCase_ = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase_ = ( { 'feature-extraction': AlbertModel, 'fill-mask': AlbertForMaskedLM, 'question-answering': AlbertForQuestionAnswering, 'text-classification': AlbertForSequenceClassification, 'token-classification': AlbertForTokenClassification, 'zero-shot': AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase_ = True def lowerCamelCase_ ( self : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int=False ): '''simple docstring''' lowercase : Optional[int] =super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__ ) if return_labels: if model_class in get_values(UpperCAmelCase__ ): lowercase : Any =torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCAmelCase__ ) lowercase : Any =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) return inputs_dict def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : Tuple =AlbertModelTester(self ) lowercase : Optional[Any] =ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37 ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' lowercase : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowercase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase__ ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowercase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def lowerCamelCase_ ( self : str ): '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase__ ) def lowerCamelCase_ ( self : int ): '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase__ ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase__ ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : Optional[int] =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase : Tuple =type self.model_tester.create_and_check_model(*UpperCAmelCase__ ) @slow def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : str =AlbertModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' lowercase : int =AlbertModel.from_pretrained('''albert-base-v2''' ) lowercase : Optional[int] =torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowercase : Any =torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase : Any =model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )[0] lowercase : int =torch.Size((1, 11, 768) ) self.assertEqual(output.shape , UpperCAmelCase__ ) lowercase : Union[str, Any] =torch.tensor( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase__ , atol=1E-4 ) )
92
'''simple docstring''' def _lowerCAmelCase ( __magic_name__ : int = 600851475143 ) -> int: try: lowercase : Any =int(__magic_name__ ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) lowercase : Optional[Any] =2 lowercase : Dict =0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 lowercase : Union[str, Any] =i while n % i == 0: lowercase : Optional[int] =n // i i += 1 return int(__magic_name__ ) if __name__ == "__main__": print(f'''{solution() = }''')
92
1
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __magic_name__ = logging.get_logger(__name__) class a__ ( _snake_case ): """simple docstring""" A__ : Union[str, Any] = ['''pixel_values'''] def __init__( self :Optional[int] , lowercase__ :bool = True , lowercase__ :Dict[str, int] = None , lowercase__ :PILImageResampling = PILImageResampling.BICUBIC , lowercase__ :bool = True , lowercase__ :Dict[str, int] = None , lowercase__ :bool = True , lowercase__ :Union[int, float] = 1 / 255 , lowercase__ :bool = True , lowercase__ :Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , lowercase__ :Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **lowercase__ :Dict , ): super().__init__(**lowercase__ ) lowercase = size if size is not None else {'shortest_edge': 224} lowercase = get_size_dict(lowercase__ , default_to_square=lowercase__ ) lowercase = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowercase = get_size_dict(lowercase__ , param_name='crop_size' ) lowercase = do_resize lowercase = size lowercase = resample lowercase = do_center_crop lowercase = crop_size lowercase = do_rescale lowercase = rescale_factor lowercase = do_normalize lowercase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __UpperCAmelCase ( self :List[str] , lowercase__ :np.ndarray , lowercase__ :Dict[str, int] , lowercase__ :PILImageResampling = PILImageResampling.BICUBIC , lowercase__ :Optional[Union[str, ChannelDimension]] = None , **lowercase__ :Tuple , ): lowercase = get_size_dict(lowercase__ , default_to_square=lowercase__ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowercase = int((256 / 224) * size['shortest_edge'] ) lowercase = get_resize_output_image_size(lowercase__ , size=lowercase__ , default_to_square=lowercase__ ) lowercase = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( lowercase__ , size=(size_dict['height'], size_dict['width']) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCAmelCase ( self :Dict , lowercase__ :np.ndarray , lowercase__ :Dict[str, int] , lowercase__ :Optional[Union[str, ChannelDimension]] = None , **lowercase__ :Optional[int] , ): lowercase = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(lowercase__ , size=(size['height'], size['width']) , data_format=lowercase__ , **lowercase__ ) def __UpperCAmelCase ( self :Optional[int] , lowercase__ :np.ndarray , lowercase__ :Union[int, float] , lowercase__ :Optional[Union[str, ChannelDimension]] = None , **lowercase__ :Dict , ): return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCAmelCase ( self :Optional[Any] , lowercase__ :np.ndarray , lowercase__ :Union[float, List[float]] , lowercase__ :Union[float, List[float]] , lowercase__ :Optional[Union[str, ChannelDimension]] = None , **lowercase__ :Union[str, Any] , ): return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCAmelCase ( self :Dict , lowercase__ :ImageInput , lowercase__ :Optional[bool] = None , lowercase__ :Optional[Dict[str, int]] = None , lowercase__ :PILImageResampling = None , lowercase__ :Optional[bool] = None , lowercase__ :Optional[Dict[str, int]] = None , lowercase__ :Optional[bool] = None , lowercase__ :Optional[float] = None , lowercase__ :Optional[bool] = None , lowercase__ :Optional[Union[float, Iterable[float]]] = None , lowercase__ :Optional[Union[float, Iterable[float]]] = None , lowercase__ :Optional[TensorType] = None , lowercase__ :ChannelDimension = ChannelDimension.FIRST , **lowercase__ :Union[str, Any] , ): lowercase = do_resize if do_resize is not None else self.do_resize lowercase = resample if resample is not None else self.resample lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase = do_rescale if do_rescale is not None else self.do_rescale lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase = do_normalize if do_normalize is not None else self.do_normalize lowercase = image_mean if image_mean is not None else self.image_mean lowercase = image_std if image_std is not None else self.image_std lowercase = size if size is not None else self.size lowercase = get_size_dict(lowercase__ , default_to_square=lowercase__ ) lowercase = crop_size if crop_size is not None else self.crop_size lowercase = get_size_dict(lowercase__ , param_name='crop_size' ) lowercase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowercase = [to_numpy_array(lowercase__ ) for image in images] if do_resize: lowercase = [self.resize(lowercase__ , lowercase__ , lowercase__ ) for image in images] if do_center_crop: lowercase = [self.center_crop(lowercase__ , lowercase__ ) for image in images] if do_rescale: lowercase = [self.rescale(lowercase__ , lowercase__ ) for image in images] if do_normalize: lowercase = [self.normalize(lowercase__ , lowercase__ , lowercase__ ) for image in images] lowercase = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] lowercase = {'pixel_values': images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
314
from collections import deque from math import floor from random import random from time import time class a__ : """simple docstring""" def __init__( self :Dict ): lowercase = {} def __UpperCAmelCase ( self :Dict , lowercase__ :str , lowercase__ :Optional[Any] , lowercase__ :int=1 ): if self.graph.get(lowercase__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: lowercase = [[w, v]] if not self.graph.get(lowercase__ ): lowercase = [] def __UpperCAmelCase ( self :List[str] ): return list(self.graph ) def __UpperCAmelCase ( self :Optional[Any] , lowercase__ :Any , lowercase__ :Dict ): if self.graph.get(lowercase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowercase__ ) def __UpperCAmelCase ( self :str , lowercase__ :Optional[Any]=-2 , lowercase__ :Any=-1 ): if s == d: return [] lowercase = [] lowercase = [] if s == -2: lowercase = list(self.graph )[0] stack.append(lowercase__ ) visited.append(lowercase__ ) lowercase = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowercase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowercase = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowercase__ ) != 0: lowercase = stack[len(lowercase__ ) - 1] else: lowercase = ss # check if se have reached the starting point if len(lowercase__ ) == 0: return visited def __UpperCAmelCase ( self :Optional[int] , lowercase__ :List[Any]=-1 ): if c == -1: lowercase = floor(random() * 1_0000 ) + 10 for i in range(lowercase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowercase = floor(random() * c ) + 1 if n != i: self.add_pair(lowercase__ , lowercase__ , 1 ) def __UpperCAmelCase ( self :int , lowercase__ :List[str]=-2 ): lowercase = deque() lowercase = [] if s == -2: lowercase = list(self.graph )[0] d.append(lowercase__ ) visited.append(lowercase__ ) while d: lowercase = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __UpperCAmelCase ( self :int , lowercase__ :int ): lowercase = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def __UpperCAmelCase ( self :List[Any] , lowercase__ :Optional[int] ): return len(self.graph[u] ) def __UpperCAmelCase ( self :str , lowercase__ :Optional[Any]=-2 ): lowercase = [] lowercase = [] if s == -2: lowercase = list(self.graph )[0] stack.append(lowercase__ ) visited.append(lowercase__ ) lowercase = s lowercase = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowercase__ ) != 0: lowercase = stack[len(lowercase__ ) - 1] else: lowercase = ss # check if se have reached the starting point if len(lowercase__ ) == 0: return sorted_nodes def __UpperCAmelCase ( self :int ): lowercase = [] lowercase = [] lowercase = list(self.graph )[0] stack.append(lowercase__ ) visited.append(lowercase__ ) lowercase = -2 lowercase = [] lowercase = s lowercase = False lowercase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase = len(lowercase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase = True if len(lowercase__ ) != 0: lowercase = stack[len(lowercase__ ) - 1] else: lowercase = False indirect_parents.append(lowercase__ ) lowercase = s lowercase = ss # check if se have reached the starting point if len(lowercase__ ) == 0: return list(lowercase__ ) def __UpperCAmelCase ( self :List[str] ): lowercase = [] lowercase = [] lowercase = list(self.graph )[0] stack.append(lowercase__ ) visited.append(lowercase__ ) lowercase = -2 lowercase = [] lowercase = s lowercase = False lowercase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase = len(lowercase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase = True if len(lowercase__ ) != 0: lowercase = stack[len(lowercase__ ) - 1] else: lowercase = False indirect_parents.append(lowercase__ ) lowercase = s lowercase = ss # check if se have reached the starting point if len(lowercase__ ) == 0: return False def __UpperCAmelCase ( self :int , lowercase__ :Tuple=-2 , lowercase__ :Any=-1 ): lowercase = time() self.dfs(lowercase__ , lowercase__ ) lowercase = time() return end - begin def __UpperCAmelCase ( self :str , lowercase__ :List[Any]=-2 ): lowercase = time() self.bfs(lowercase__ ) lowercase = time() return end - begin class a__ : """simple docstring""" def __init__( self :Optional[int] ): lowercase = {} def __UpperCAmelCase ( self :Union[str, Any] , lowercase__ :Tuple , lowercase__ :Tuple , lowercase__ :str=1 ): # check if the u exists if self.graph.get(lowercase__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist lowercase = [[w, v]] # add the other way if self.graph.get(lowercase__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist lowercase = [[w, u]] def __UpperCAmelCase ( self :Tuple , lowercase__ :Any , lowercase__ :List[Any] ): if self.graph.get(lowercase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowercase__ ) # the other way round if self.graph.get(lowercase__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowercase__ ) def __UpperCAmelCase ( self :List[str] , lowercase__ :Union[str, Any]=-2 , lowercase__ :List[str]=-1 ): if s == d: return [] lowercase = [] lowercase = [] if s == -2: lowercase = list(self.graph )[0] stack.append(lowercase__ ) visited.append(lowercase__ ) lowercase = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowercase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowercase = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowercase__ ) != 0: lowercase = stack[len(lowercase__ ) - 1] else: lowercase = ss # check if se have reached the starting point if len(lowercase__ ) == 0: return visited def __UpperCAmelCase ( self :Optional[Any] , lowercase__ :Union[str, Any]=-1 ): if c == -1: lowercase = floor(random() * 1_0000 ) + 10 for i in range(lowercase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowercase = floor(random() * c ) + 1 if n != i: self.add_pair(lowercase__ , lowercase__ , 1 ) def __UpperCAmelCase ( self :Optional[Any] , lowercase__ :str=-2 ): lowercase = deque() lowercase = [] if s == -2: lowercase = list(self.graph )[0] d.append(lowercase__ ) visited.append(lowercase__ ) while d: lowercase = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __UpperCAmelCase ( self :List[str] , lowercase__ :Optional[int] ): return len(self.graph[u] ) def __UpperCAmelCase ( self :List[Any] ): lowercase = [] lowercase = [] lowercase = list(self.graph )[0] stack.append(lowercase__ ) visited.append(lowercase__ ) lowercase = -2 lowercase = [] lowercase = s lowercase = False lowercase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase = len(lowercase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase = True if len(lowercase__ ) != 0: lowercase = stack[len(lowercase__ ) - 1] else: lowercase = False indirect_parents.append(lowercase__ ) lowercase = s lowercase = ss # check if se have reached the starting point if len(lowercase__ ) == 0: return list(lowercase__ ) def __UpperCAmelCase ( self :Any ): lowercase = [] lowercase = [] lowercase = list(self.graph )[0] stack.append(lowercase__ ) visited.append(lowercase__ ) lowercase = -2 lowercase = [] lowercase = s lowercase = False lowercase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase = len(lowercase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase = True if len(lowercase__ ) != 0: lowercase = stack[len(lowercase__ ) - 1] else: lowercase = False indirect_parents.append(lowercase__ ) lowercase = s lowercase = ss # check if se have reached the starting point if len(lowercase__ ) == 0: return False def __UpperCAmelCase ( self :str ): return list(self.graph ) def __UpperCAmelCase ( self :List[str] , lowercase__ :Tuple=-2 , lowercase__ :Union[str, Any]=-1 ): lowercase = time() self.dfs(lowercase__ , lowercase__ ) lowercase = time() return end - begin def __UpperCAmelCase ( self :Any , lowercase__ :Any=-2 ): lowercase = time() self.bfs(lowercase__ ) lowercase = time() return end - begin
314
1
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class A__ ( __snake_case ): '''simple docstring''' snake_case__ = 42 snake_case__ = 42 class A__ ( __snake_case , __snake_case ): '''simple docstring''' snake_case__ = 1 @register_to_config def __init__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : int = 2000 , _SCREAMING_SNAKE_CASE : float = 0.1_5 , _SCREAMING_SNAKE_CASE : float = 0.0_1 , _SCREAMING_SNAKE_CASE : float = 1_3_4_8.0 , _SCREAMING_SNAKE_CASE : float = 1E-5 , _SCREAMING_SNAKE_CASE : int = 1 , ): """simple docstring""" UpperCamelCase = sigma_max # setable values UpperCamelCase = None self.set_sigmas(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _SCREAMING_SNAKE_CASE : torch.FloatTensor , _SCREAMING_SNAKE_CASE : Optional[int] = None ): """simple docstring""" return sample def _SCREAMING_SNAKE_CASE ( self : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float = None , _SCREAMING_SNAKE_CASE : Union[str, torch.device] = None ): """simple docstring""" UpperCamelCase = sampling_eps if sampling_eps is not None else self.config.sampling_eps UpperCamelCase = torch.linspace(1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : List[str] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float = None , _SCREAMING_SNAKE_CASE : float = None , _SCREAMING_SNAKE_CASE : float = None ): """simple docstring""" UpperCamelCase = sigma_min if sigma_min is not None else self.config.sigma_min UpperCamelCase = sigma_max if sigma_max is not None else self.config.sigma_max UpperCamelCase = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) UpperCamelCase = torch.exp(torch.linspace(math.log(_SCREAMING_SNAKE_CASE ) , math.log(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def _SCREAMING_SNAKE_CASE ( self : Any , _SCREAMING_SNAKE_CASE : torch.FloatTensor , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : torch.FloatTensor , _SCREAMING_SNAKE_CASE : Optional[torch.Generator] = None , _SCREAMING_SNAKE_CASE : bool = True , ): """simple docstring""" if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) UpperCamelCase = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) UpperCamelCase = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda UpperCamelCase = timesteps.to(self.discrete_sigmas.device ) UpperCamelCase = self.discrete_sigmas[timesteps].to(sample.device ) UpperCamelCase = self.get_adjacent_sigma(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to(sample.device ) UpperCamelCase = torch.zeros_like(_SCREAMING_SNAKE_CASE ) UpperCamelCase = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods UpperCamelCase = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): UpperCamelCase = diffusion.unsqueeze(-1 ) UpperCamelCase = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of UpperCamelCase = randn_tensor( sample.shape , layout=sample.layout , generator=_SCREAMING_SNAKE_CASE , device=sample.device , dtype=sample.dtype ) UpperCamelCase = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? UpperCamelCase = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=_SCREAMING_SNAKE_CASE , prev_sample_mean=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Any , _SCREAMING_SNAKE_CASE : torch.FloatTensor , _SCREAMING_SNAKE_CASE : torch.FloatTensor , _SCREAMING_SNAKE_CASE : Optional[torch.Generator] = None , _SCREAMING_SNAKE_CASE : bool = True , ): """simple docstring""" if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction UpperCamelCase = randn_tensor(sample.shape , layout=sample.layout , generator=_SCREAMING_SNAKE_CASE ).to(sample.device ) # compute step size from the model_output, the noise, and the snr UpperCamelCase = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() UpperCamelCase = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() UpperCamelCase = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 UpperCamelCase = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term UpperCamelCase = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): UpperCamelCase = step_size.unsqueeze(-1 ) UpperCamelCase = sample + step_size * model_output UpperCamelCase = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : str , _SCREAMING_SNAKE_CASE : torch.FloatTensor , _SCREAMING_SNAKE_CASE : torch.FloatTensor , _SCREAMING_SNAKE_CASE : torch.FloatTensor , ): """simple docstring""" UpperCamelCase = timesteps.to(original_samples.device ) UpperCamelCase = self.discrete_sigmas.to(original_samples.device )[timesteps] UpperCamelCase = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(_SCREAMING_SNAKE_CASE ) * sigmas[:, None, None, None] ) UpperCamelCase = noise + original_samples return noisy_samples def __len__( self : Dict ): """simple docstring""" return self.config.num_train_timesteps
280
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __magic_name__ : Any = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __magic_name__ : Optional[Any] = 12_8022 __magic_name__ : Dict = 12_8028 @require_sentencepiece class A__ ( __snake_case , unittest.TestCase ): '''simple docstring''' snake_case__ = MaMaaaTokenizer snake_case__ = False snake_case__ = False snake_case__ = True def _SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" super().setUp() UpperCamelCase = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] UpperCamelCase = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase = Path(self.tmpdirname ) save_json(_SCREAMING_SNAKE_CASE , save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_SCREAMING_SNAKE_CASE , save_dir / VOCAB_FILES_NAMES['spm_file'] ) UpperCamelCase = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : str , **_SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" return ( "This is a test", "This is a test", ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" UpperCamelCase = '</s>' UpperCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.get_tokenizer() UpperCamelCase = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<s>' ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('Skip this test while all models are still to be uploaded.' ) def _SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" UpperCamelCase = self.get_tokenizer() UpperCamelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [2, 3, 4, 5, 6] , ) UpperCamelCase = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ['▁This', '▁is', '▁a', '▁t', 'est'] ) UpperCamelCase = tokenizer.convert_tokens_to_string(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , 'This is a test' ) @slow def _SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" UpperCamelCase = {'input_ids': [[12_8022, 11_0108, 397, 11, 3_8272, 2247, 12_4811, 285, 1_8105, 1586, 207, 7, 3_9534, 4428, 397, 1019, 1_8105, 1586, 207, 7, 4_1337, 1_6786, 241, 7, 2_0214, 17, 12_5690, 1_0398, 7, 4_4378, 5_8069, 6_8342, 7798, 7343, 11, 299, 3_3310, 4, 158, 3_7350, 9_4077, 4569, 299, 3_3310, 90, 4, 5_2840, 290, 4, 3_1270, 112, 299, 682, 4, 5_2840, 3_9953, 1_4079, 193, 5_2519, 9_0894, 1_7894, 12_0697, 11, 4_0445, 551, 17, 1019, 5_2519, 9_0894, 1_7756, 963, 11, 4_0445, 480, 17, 9792, 1120, 5173, 1393, 6240, 1_6786, 241, 12_0996, 28, 1245, 1393, 11_8240, 1_1123, 1019, 9_3612, 2691, 1_0618, 9_8058, 12_0409, 1928, 279, 4, 4_0683, 367, 178, 207, 1019, 103, 10_3121, 506, 6_5296, 5, 2], [12_8022, 2_1217, 367, 117, 12_5450, 128, 719, 7, 7308, 40, 9_3612, 1_2669, 1116, 1_6704, 71, 1_7785, 3699, 1_5592, 35, 144, 9584, 241, 1_1943, 713, 950, 799, 2247, 8_8427, 150, 149, 11_8813, 12_0706, 1019, 10_6906, 8_1518, 28, 1224, 2_2799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [12_8022, 1658, 12_3311, 5155, 5578, 4722, 279, 1_4947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name='facebook/m2m100_418M' , revision='c168bae485c864188cf9aa0e4108b0b6934dc91e' , ) @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): '''simple docstring''' snake_case__ = """facebook/m2m100_418M""" snake_case__ = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] snake_case__ = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off snake_case__ = [EN_CODE, 5_93, 19_49, 11_57_81, 4, 7_15_86, 42_34, 6_06_33, 12_62_33, 4_32, 12_38_08, 1_55_92, 11_97, 11_71_32, 12_06_18, 5, 2] @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any ): """simple docstring""" UpperCamelCase = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en' , tgt_lang='fr' ) UpperCamelCase = 1 return cls def _SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" self.assertEqual(self.tokenizer.get_lang_id('ar' ) , 12_8006 ) self.assertEqual(self.tokenizer.get_lang_id('en' ) , 12_8022 ) self.assertEqual(self.tokenizer.get_lang_id('ro' ) , 12_8076 ) self.assertEqual(self.tokenizer.get_lang_id('mr' ) , 12_8063 ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" UpperCamelCase = self.tokenizer.get_vocab() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.tokenizer.vocab_size ) self.assertEqual(vocab['<unk>'] , 3 ) self.assertIn(self.tokenizer.get_lang_token('en' ) , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = 'en' UpperCamelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" self.assertIn(_SCREAMING_SNAKE_CASE , self.tokenizer.all_special_ids ) # fmt: off UpperCamelCase = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 1_4028, 136, 3286, 9706, 6, 9_0797, 6, 14_4012, 162, 8_8128, 3_0061, 5, 2] # fmt: on UpperCamelCase = self.tokenizer.decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertNotIn(self.tokenizer.eos_token , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = MaMaaaTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertDictEqual(new_tok.lang_token_to_id , _SCREAMING_SNAKE_CASE ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = 'en' UpperCamelCase = 'fr' UpperCamelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) UpperCamelCase = shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: UpperCamelCase = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def _SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" UpperCamelCase = 'mr' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('mr' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) UpperCamelCase = 'zh' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('zh' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" UpperCamelCase = 'mr' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('mr' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) UpperCamelCase = 'zh' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('zh' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" UpperCamelCase = self.tokenizer._build_translation_inputs('A test' , return_tensors='pt' , src_lang='en' , tgt_lang='ar' ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , { # en_XX, A, test, EOS 'input_ids': [[12_8022, 58, 4183, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 12_8006, } , )
280
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : Tuple = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : List[Any] = '''markuplm''' def __init__( self : Optional[int] , _snake_case : Optional[int]=3_0522 , _snake_case : List[str]=768 , _snake_case : Optional[int]=12 , _snake_case : Tuple=12 , _snake_case : str=3072 , _snake_case : Union[str, Any]="gelu" , _snake_case : Any=0.1 , _snake_case : Optional[Any]=0.1 , _snake_case : Optional[Any]=512 , _snake_case : str=2 , _snake_case : List[str]=0.02 , _snake_case : str=1E-1_2 , _snake_case : Optional[Any]=0 , _snake_case : Tuple=0 , _snake_case : List[str]=2 , _snake_case : Tuple=256 , _snake_case : Optional[int]=1024 , _snake_case : Optional[Any]=216 , _snake_case : str=1001 , _snake_case : int=32 , _snake_case : int=50 , _snake_case : Optional[Any]="absolute" , _snake_case : List[Any]=True , _snake_case : Dict=None , **_snake_case : List[Any] , ): super().__init__( pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case , ) __lowercase : Any = vocab_size __lowercase : List[str] = hidden_size __lowercase : Union[str, Any] = num_hidden_layers __lowercase : List[str] = num_attention_heads __lowercase : Optional[Any] = hidden_act __lowercase : Dict = intermediate_size __lowercase : int = hidden_dropout_prob __lowercase : Dict = attention_probs_dropout_prob __lowercase : str = max_position_embeddings __lowercase : List[Any] = type_vocab_size __lowercase : int = initializer_range __lowercase : List[Any] = layer_norm_eps __lowercase : List[Any] = position_embedding_type __lowercase : Optional[Any] = use_cache __lowercase : Optional[Any] = classifier_dropout # additional properties __lowercase : int = max_depth __lowercase : Any = max_xpath_tag_unit_embeddings __lowercase : str = max_xpath_subs_unit_embeddings __lowercase : List[str] = tag_pad_id __lowercase : Union[str, Any] = subs_pad_id __lowercase : List[Any] = xpath_unit_hidden_size
284
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self : Optional[Any] ): __lowercase : Union[str, Any] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) __lowercase : Any = get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(_snake_case ) , torch_builtin(_snake_case ) ) ) self.assertFalse(torch.allclose(gelu_python(_snake_case ) , gelu_new(_snake_case ) ) ) def snake_case_ ( self : Dict ): __lowercase : Any = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) __lowercase : List[str] = get_activation('''gelu''' ) __lowercase : Optional[Any] = get_activation('''gelu_10''' ) __lowercase : Tuple = torch_builtin(_snake_case ) __lowercase : List[Any] = geluaa(_snake_case ) __lowercase : Tuple = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(_snake_case ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def snake_case_ ( self : Any ): get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(_snake_case ): get_activation('''bogus''' ) with self.assertRaises(_snake_case ): get_activation(_snake_case ) def snake_case_ ( self : Dict ): __lowercase : Union[str, Any] = get_activation('''gelu''' ) __lowercase : List[str] = 1 __lowercase : Union[str, Any] = get_activation('''gelu''' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(_snake_case ): __lowercase : Tuple = acta.a
284
1
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = ['a', 'b', 'c'] # Defaults to last layer if both are None SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices(a , a , a) self.assertEqual(a , ['c']) self.assertEqual(a , [2]) # Out indices set to match out features SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices(['a', 'c'] , a , a) self.assertEqual(a , ['a', 'c']) self.assertEqual(a , [0, 2]) # Out features set to match out indices SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices(a , [0, 2] , a) self.assertEqual(a , ['a', 'c']) self.assertEqual(a , [0, 2]) # Out features selected from negative indices SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices(a , [-3, -1] , a) self.assertEqual(a , ['a', 'c']) self.assertEqual(a , [-3, -1]) def SCREAMING_SNAKE_CASE__ ( self) -> int: # Stage names must be set with self.assertRaises(a): verify_out_features_out_indices(['a', 'b'] , (0, 1) , a) # Out features must be a list with self.assertRaises(a): verify_out_features_out_indices(('a', 'b') , (0, 1) , ['a', 'b']) # Out features must be a subset of stage names with self.assertRaises(a): verify_out_features_out_indices(['a', 'b'] , (0, 1) , ['a']) # Out indices must be a list or tuple with self.assertRaises(a): verify_out_features_out_indices(a , 0 , ['a', 'b']) # Out indices must be a subset of stage names with self.assertRaises(a): verify_out_features_out_indices(a , (0, 1) , ['a']) # Out features and out indices must be the same length with self.assertRaises(a): verify_out_features_out_indices(['a', 'b'] , (0,) , ['a', 'b', 'c']) # Out features should match out indices with self.assertRaises(a): verify_out_features_out_indices(['a', 'b'] , (0, 2) , ['a', 'b', 'c']) # Out features and out indices should be in order with self.assertRaises(a): verify_out_features_out_indices(['b', 'a'] , (0, 1) , ['a', 'b']) # Check passes with valid inputs verify_out_features_out_indices(['a', 'b', 'd'] , (0, 1, -1) , ['a', 'b', 'c', 'd']) def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = BackboneMixin() SCREAMING_SNAKE_CASE = ['a', 'b', 'c'] SCREAMING_SNAKE_CASE = ['a', 'c'] SCREAMING_SNAKE_CASE = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['a', 'c']) self.assertEqual(backbone.out_indices , [0, 2]) # Check out features and indices are updated correctly SCREAMING_SNAKE_CASE = ['a', 'b'] self.assertEqual(backbone.out_features , ['a', 'b']) self.assertEqual(backbone.out_indices , [0, 1]) SCREAMING_SNAKE_CASE = [-3, -1] self.assertEqual(backbone.out_features , ['a', 'c']) self.assertEqual(backbone.out_indices , [-3, -1])
73
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __snake_case = get_tests_dir('''fixtures''') class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = mock.Mock() __UpperCamelCase = 500 __UpperCamelCase = {} __UpperCamelCase = HTTPError __UpperCamelCase = {} # Download this model to make sure it's in the cache. __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request',return_value=A_ ) as mock_head: __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # This check we did call the fake head request mock_head.assert_called() def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' ) @is_staging_test class __lowerCamelCase (unittest.TestCase ): @classmethod def snake_case_ ( cls: Tuple ): '''simple docstring''' __UpperCamelCase = TOKEN HfFolder.save_token(A_ ) @classmethod def snake_case_ ( cls: Tuple ): '''simple docstring''' try: delete_repo(token=cls._token,repo_id='test-feature-extractor' ) except HTTPError: pass try: delete_repo(token=cls._token,repo_id='valid_org/test-feature-extractor-org' ) except HTTPError: pass try: delete_repo(token=cls._token,repo_id='test-dynamic-feature-extractor' ) except HTTPError: pass def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(A_ ) feature_extractor.push_to_hub('test-feature-extractor',use_auth_token=self._token ) __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_,getattr(A_,A_ ) ) # Reset repo delete_repo(token=self._token,repo_id='test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( A_,repo_id='test-feature-extractor',push_to_hub=A_,use_auth_token=self._token ) __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_,getattr(A_,A_ ) ) def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(A_ ) feature_extractor.push_to_hub('valid_org/test-feature-extractor',use_auth_token=self._token ) __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_,getattr(A_,A_ ) ) # Reset repo delete_repo(token=self._token,repo_id='valid_org/test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( A_,repo_id='valid_org/test-feature-extractor-org',push_to_hub=A_,use_auth_token=self._token ) __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_,getattr(A_,A_ ) ) def snake_case_ ( self: int ): '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() __UpperCamelCase = CustomFeatureExtractor.from_pretrained(A_ ) feature_extractor.push_to_hub('test-dynamic-feature-extractor',use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map,{'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'},) __UpperCamelCase = AutoFeatureExtractor.from_pretrained( F'''{USER}/test-dynamic-feature-extractor''',trust_remote_code=A_ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__,'CustomFeatureExtractor' )
1
0
'''simple docstring''' from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """dandelin/vilt-b32-finetuned-vqa""" __SCREAMING_SNAKE_CASE = ( """This is a tool that answers a question about an image. It takes an input named `image` which should be the """ """image containing the information, as well as a `question` which should be the question in English. It """ """returns a text that is the answer to the question.""" ) __SCREAMING_SNAKE_CASE = """image_qa""" __SCREAMING_SNAKE_CASE = AutoProcessor __SCREAMING_SNAKE_CASE = AutoModelForVisualQuestionAnswering __SCREAMING_SNAKE_CASE = ["""image""", """text"""] __SCREAMING_SNAKE_CASE = ["""text"""] def __init__( self : str , *a_ : Dict , **a_ : Dict ): """simple docstring""" requires_backends(self , ["vision"] ) super().__init__(*a_ , **a_ ) def A ( self : Tuple , a_ : "Image" , a_ : str ): """simple docstring""" return self.pre_processor(a_ , a_ , return_tensors="pt" ) def A ( self : Dict , a_ : Union[str, Any] ): """simple docstring""" with torch.no_grad(): return self.model(**a_ ).logits def A ( self : List[Any] , a_ : List[str] ): """simple docstring""" __snake_case = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
719
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : List[Any] = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """data2vec-text""" def __init__( self : List[str] , a_ : str=30_522 , a_ : Optional[int]=768 , a_ : Dict=12 , a_ : int=12 , a_ : Dict=3_072 , a_ : Dict="gelu" , a_ : Optional[Any]=0.1 , a_ : List[str]=0.1 , a_ : int=512 , a_ : Any=2 , a_ : int=0.02 , a_ : Dict=1e-12 , a_ : Dict=1 , a_ : Any=0 , a_ : Dict=2 , a_ : Optional[int]="absolute" , a_ : List[Any]=True , a_ : Dict=None , **a_ : List[str] , ): """simple docstring""" super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): @property def A ( self : Any ): """simple docstring""" if self.task == "multiple-choice": __snake_case = {0: "batch", 1: "choice", 2: "sequence"} else: __snake_case = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
680
0
"""simple docstring""" from __future__ import annotations __SCREAMING_SNAKE_CASE =list[list[int]] # assigning initial values to the grid __SCREAMING_SNAKE_CASE =[ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __SCREAMING_SNAKE_CASE =[ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowercase__( __SCREAMING_SNAKE_CASE : Matrix , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowercase__( __SCREAMING_SNAKE_CASE : Matrix ): for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowercase__( __SCREAMING_SNAKE_CASE : Matrix ): if location := find_empty_location(__SCREAMING_SNAKE_CASE ): lowercase_ , lowercase_ : List[str] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Optional[Any] = digit if sudoku(__SCREAMING_SNAKE_CASE ) is not None: return grid lowercase_ : Tuple = 0 return None def lowercase__( __SCREAMING_SNAKE_CASE : Matrix ): for row in grid: for cell in row: print(__SCREAMING_SNAKE_CASE , end=' ' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") __SCREAMING_SNAKE_CASE =sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
425
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def lowercase__( __SCREAMING_SNAKE_CASE : Any ): lowercase_ : Union[str, Any] = 3_84 lowercase_ : Union[str, Any] = 7 if "tiny" in model_name: lowercase_ : int = 96 lowercase_ : List[Any] = (2, 2, 6, 2) lowercase_ : Union[str, Any] = (3, 6, 12, 24) elif "small" in model_name: lowercase_ : Optional[int] = 96 lowercase_ : List[Any] = (2, 2, 18, 2) lowercase_ : List[Any] = (3, 6, 12, 24) elif "base" in model_name: lowercase_ : Any = 1_28 lowercase_ : Tuple = (2, 2, 18, 2) lowercase_ : Optional[int] = (4, 8, 16, 32) lowercase_ : Union[str, Any] = 12 lowercase_ : Optional[int] = 5_12 elif "large" in model_name: lowercase_ : Union[str, Any] = 1_92 lowercase_ : Any = (2, 2, 18, 2) lowercase_ : int = (6, 12, 24, 48) lowercase_ : Optional[Any] = 12 lowercase_ : Union[str, Any] = 7_68 # set label information lowercase_ : Union[str, Any] = 1_50 lowercase_ : Union[str, Any] = 'huggingface/label-files' lowercase_ : Any = 'ade20k-id2label.json' lowercase_ : Optional[int] = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase_ : Dict = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase_ : Any = {v: k for k, v in idalabel.items()} lowercase_ : Any = SwinConfig( embed_dim=__SCREAMING_SNAKE_CASE , depths=__SCREAMING_SNAKE_CASE , num_heads=__SCREAMING_SNAKE_CASE , window_size=__SCREAMING_SNAKE_CASE , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) lowercase_ : int = UperNetConfig( backbone_config=__SCREAMING_SNAKE_CASE , auxiliary_in_channels=__SCREAMING_SNAKE_CASE , num_labels=__SCREAMING_SNAKE_CASE , idalabel=__SCREAMING_SNAKE_CASE , labelaid=__SCREAMING_SNAKE_CASE , ) return config def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ : Tuple = [] # fmt: off # stem rename_keys.append(('backbone.patch_embed.projection.weight', 'backbone.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.projection.bias', 'backbone.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'backbone.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'backbone.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.stages.{i}.downsample.reduction.weight''', F'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.weight''', F'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.bias''', F'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ): lowercase_ : str = dct.pop(__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = val def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] ): lowercase_ : List[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowercase_ : int = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowercase_ : Dict = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) lowercase_ : List[Any] = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase_ : Union[str, Any] = in_proj_weight[:dim, :] lowercase_ : List[str] = in_proj_bias[: dim] lowercase_ : int = in_proj_weight[ dim : dim * 2, : ] lowercase_ : List[Any] = in_proj_bias[ dim : dim * 2 ] lowercase_ : Optional[Any] = in_proj_weight[ -dim :, : ] lowercase_ : Optional[Any] = in_proj_bias[-dim :] # fmt: on def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ , lowercase_ : List[Any] = x.shape lowercase_ : str = x.reshape(__SCREAMING_SNAKE_CASE , 4 , in_channel // 4 ) lowercase_ : Tuple = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return x def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] ): lowercase_ , lowercase_ : List[str] = x.shape lowercase_ : List[str] = x.reshape(__SCREAMING_SNAKE_CASE , in_channel // 4 , 4 ) lowercase_ : Optional[Any] = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return x def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ : List[str] = x.shape[0] lowercase_ : List[str] = x.reshape(4 , in_channel // 4 ) lowercase_ : str = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(__SCREAMING_SNAKE_CASE ) return x def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ : Tuple = x.shape[0] lowercase_ : List[str] = x.reshape(in_channel // 4 , 4 ) lowercase_ : Tuple = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(__SCREAMING_SNAKE_CASE ) return x def lowercase__( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] ): lowercase_ : int = { 'upernet-swin-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth', 'upernet-swin-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth', 'upernet-swin-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth', 'upernet-swin-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth', } lowercase_ : List[Any] = model_name_to_url[model_name] lowercase_ : Optional[Any] = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location='cpu' , file_name=__SCREAMING_SNAKE_CASE )[ 'state_dict' ] for name, param in state_dict.items(): print(__SCREAMING_SNAKE_CASE , param.shape ) lowercase_ : int = get_upernet_config(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = UperNetForSemanticSegmentation(__SCREAMING_SNAKE_CASE ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowercase_ : Any = state_dict.pop(__SCREAMING_SNAKE_CASE ) if "bn" in key: lowercase_ : List[Any] = key.replace('bn' , 'batch_norm' ) lowercase_ : Optional[Any] = val # rename keys lowercase_ : Tuple = create_rename_keys(__SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) read_in_q_k_v(__SCREAMING_SNAKE_CASE , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: lowercase_ : List[str] = reverse_correct_unfold_reduction_order(__SCREAMING_SNAKE_CASE ) if "norm" in key: lowercase_ : str = reverse_correct_unfold_norm_order(__SCREAMING_SNAKE_CASE ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) # verify on image lowercase_ : Optional[int] = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' lowercase_ : Union[str, Any] = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ).convert('RGB' ) lowercase_ : Any = SegformerImageProcessor() lowercase_ : str = processor(__SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values with torch.no_grad(): lowercase_ : Any = model(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = outputs.logits print(logits.shape ) print('First values of logits:' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": lowercase_ : Any = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ) elif model_name == "upernet-swin-small": lowercase_ : Tuple = torch.tensor( [[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] ) elif model_name == "upernet-swin-base": lowercase_ : Tuple = torch.tensor( [[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] ) elif model_name == "upernet-swin-large": lowercase_ : Tuple = torch.tensor( [[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-swin-tiny", type=str, choices=[F"upernet-swin-{size}" for size in ["tiny", "small", "base", "large"]], help="Name of the Swin + UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
425
1
"""simple docstring""" from collections import namedtuple lowerCAmelCase_ = namedtuple('from_to', 'from_ to') lowerCAmelCase_ = { 'cubicmeter': from_to(1, 1), 'litre': from_to(0.0_0_1, 1_000), 'kilolitre': from_to(1, 1), 'gallon': from_to(0.0_0_4_5_4, 2_6_4.1_7_2), 'cubicyard': from_to(0.7_6_4_5_5, 1.3_0_7_9_5), 'cubicfoot': from_to(0.0_2_8, 3_5.3_1_4_7), 'cup': from_to(0.0_0_0_2_3_6_5_8_8, 4_2_2_6.7_5), } def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + ''', '''.join(__lowerCamelCase ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + ''', '''.join(__lowerCamelCase ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
122
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : Any = SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) lowercase__ : Optional[Any] = DetaConfig( backbone_config=__lowerCamelCase , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=__lowerCamelCase , with_box_refine=__lowerCamelCase , two_stage=__lowerCamelCase , ) # set labels lowercase__ : Any = '''huggingface/label-files''' if "o365" in model_name: lowercase__ : Optional[Any] = 3_66 lowercase__ : List[Any] = '''object365-id2label.json''' else: lowercase__ : Union[str, Any] = 91 lowercase__ : Optional[int] = '''coco-detection-id2label.json''' lowercase__ : List[Any] = num_labels lowercase__ : str = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) ) , '''r''' ) ) lowercase__ : Union[str, Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Any = idalabel lowercase__ : Any = {v: k for k, v in idalabel.items()} return config def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : Tuple = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm1.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm1.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm2.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm2.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.reduction.weight""", f"""model.backbone.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.norm.weight""", f"""model.backbone.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.norm.bias""", f"""model.backbone.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight""", f"""model.encoder.layers.{i}.self_attn.sampling_offsets.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias""", f"""model.encoder.layers.{i}.self_attn.sampling_offsets.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.attention_weights.weight""", f"""model.encoder.layers.{i}.self_attn.attention_weights.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.attention_weights.bias""", f"""model.encoder.layers.{i}.self_attn.attention_weights.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.value_proj.weight""", f"""model.encoder.layers.{i}.self_attn.value_proj.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.value_proj.bias""", f"""model.encoder.layers.{i}.self_attn.value_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.output_proj.weight""", f"""model.encoder.layers.{i}.self_attn.output_proj.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.output_proj.bias""", f"""model.encoder.layers.{i}.self_attn.output_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.weight""", f"""model.encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""model.encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""model.encoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""model.encoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""model.encoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""model.encoder.layers.{i}.fc2.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""model.encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""model.encoder.layers.{i}.final_layer_norm.bias""") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight""", f"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias""", f"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.attention_weights.weight""", f"""model.decoder.layers.{i}.encoder_attn.attention_weights.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.attention_weights.bias""", f"""model.decoder.layers.{i}.encoder_attn.attention_weights.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.value_proj.weight""", f"""model.decoder.layers.{i}.encoder_attn.value_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.value_proj.bias""", f"""model.decoder.layers.{i}.encoder_attn.value_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.output_proj.weight""", f"""model.decoder.layers.{i}.encoder_attn.output_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.output_proj.bias""", f"""model.decoder.layers.{i}.encoder_attn.output_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.weight""", f"""model.decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""model.decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""model.decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""model.decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm2.weight""", f"""model.decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm2.bias""", f"""model.decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""model.decoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""model.decoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""model.decoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""model.decoder.layers.{i}.fc2.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""model.decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""model.decoder.layers.{i}.final_layer_norm.bias""") ) # fmt: on return rename_keys def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : Dict = dct.pop(__lowerCamelCase ) lowercase__ : Optional[int] = val def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[str]: lowercase__ : Optional[int] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowercase__ : int = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowercase__ : Optional[int] = state_dict.pop(f"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight""" ) lowercase__ : Optional[Any] = state_dict.pop(f"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase__ : List[Any] = in_proj_weight[:dim, :] lowercase__ : List[str] = in_proj_bias[: dim] lowercase__ : Dict = in_proj_weight[ dim : dim * 2, : ] lowercase__ : str = in_proj_bias[ dim : dim * 2 ] lowercase__ : str = in_proj_weight[ -dim :, : ] lowercase__ : List[str] = in_proj_bias[-dim :] # fmt: on def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: # transformer decoder self-attention layers lowercase__ : List[str] = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention lowercase__ : Any = state_dict.pop(f"""transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) lowercase__ : Dict = state_dict.pop(f"""transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase__ : Union[str, Any] = in_proj_weight[:hidden_size, :] lowercase__ : str = in_proj_bias[:hidden_size] lowercase__ : int = in_proj_weight[ hidden_size : hidden_size * 2, : ] lowercase__ : List[Any] = in_proj_bias[hidden_size : hidden_size * 2] lowercase__ : Union[str, Any] = in_proj_weight[-hidden_size:, :] lowercase__ : Union[str, Any] = in_proj_bias[-hidden_size:] def __UpperCAmelCase ( ) -> List[Any]: lowercase__ : Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ : Optional[Any] = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: lowercase__ : Dict = get_deta_config(__lowerCamelCase ) # load original state dict if model_name == "deta-swin-large": lowercase__ : List[str] = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": lowercase__ : Dict = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(f"""Model name {model_name} not supported""" ) lowercase__ : Optional[Any] = torch.load(__lowerCamelCase , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(__lowerCamelCase , param.shape ) # rename keys lowercase__ : List[Any] = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) read_in_swin_q_k_v(__lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(__lowerCamelCase , __lowerCamelCase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: lowercase__ : str = state_dict.pop(__lowerCamelCase ) lowercase__ : Dict = val if "input_proj" in key: lowercase__ : Any = state_dict.pop(__lowerCamelCase ) lowercase__ : int = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: lowercase__ : Tuple = state_dict.pop(__lowerCamelCase ) lowercase__ : int = val # finally, create HuggingFace model and load state dict lowercase__ : Any = DetaForObjectDetection(__lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) model.eval() lowercase__ : List[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(__lowerCamelCase ) # load image processor lowercase__ : Any = DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image lowercase__ : Dict = prepare_img() lowercase__ : Any = processor(images=__lowerCamelCase , return_tensors='''pt''' ) lowercase__ : str = encoding['''pixel_values'''] lowercase__ : Tuple = model(pixel_values.to(__lowerCamelCase ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": lowercase__ : Any = torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) lowercase__ : Any = torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": lowercase__ : Dict = torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) lowercase__ : int = torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__lowerCamelCase ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__lowerCamelCase ) , atol=1E-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f"""Saving PyTorch model and processor to {pytorch_dump_folder_path}...""" ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(f"""jozhang97/{model_name}""" ) processor.push_to_hub(f"""jozhang97/{model_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCAmelCase_ = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
122
1
"""simple docstring""" import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser lowercase__ :Union[str, Any] = re.compile(R'\s+') def lowerCamelCase_ ( UpperCAmelCase_ ) ->Any: """simple docstring""" return {"hash": hashlib.mda(re.sub(_UpperCamelCase , '''''' , example['''content'''] ).encode('''utf-8''' ) ).hexdigest()} def lowerCamelCase_ ( UpperCAmelCase_ ) ->Dict: """simple docstring""" __UpperCAmelCase : Tuple = [len(_UpperCamelCase ) for line in example['''content'''].splitlines()] return {"line_mean": np.mean(_UpperCamelCase ), "line_max": max(_UpperCamelCase )} def lowerCamelCase_ ( UpperCAmelCase_ ) ->str: """simple docstring""" __UpperCAmelCase : List[Any] = np.mean([c.isalnum() for c in example['''content''']] ) return {"alpha_frac": alpha_frac} def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ) ->Optional[int]: """simple docstring""" if example["hash"] in uniques: uniques.remove(example['''hash'''] ) return True else: return False def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_=5 ) ->Any: """simple docstring""" __UpperCAmelCase : Dict = ['''auto-generated''', '''autogenerated''', '''automatically generated'''] __UpperCAmelCase : List[Any] = example['''content'''].splitlines() for _, line in zip(range(_UpperCamelCase ) , _UpperCamelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_=5 , UpperCAmelCase_=0.05 ) ->str: """simple docstring""" __UpperCAmelCase : List[str] = ['''unit tests''', '''test file''', '''configuration file'''] __UpperCAmelCase : Optional[int] = example['''content'''].splitlines() __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : Union[str, Any] = 0 # first test for _, line in zip(range(_UpperCamelCase ) , _UpperCamelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test __UpperCAmelCase : Optional[int] = example['''content'''].count('''\n''' ) __UpperCAmelCase : Union[str, Any] = int(coeff * nlines ) for line in lines: count_config += line.lower().count('''config''' ) count_test += line.lower().count('''test''' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def lowerCamelCase_ ( UpperCAmelCase_ ) ->Union[str, Any]: """simple docstring""" __UpperCAmelCase : Optional[int] = ['''def ''', '''class ''', '''for ''', '''while '''] __UpperCAmelCase : str = example['''content'''].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_=4 ) ->Optional[int]: """simple docstring""" __UpperCAmelCase : Tuple = example['''content'''].splitlines() __UpperCAmelCase : Any = 0 for line in lines: counter += line.lower().count('''=''' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def lowerCamelCase_ ( UpperCAmelCase_ ) ->Union[str, Any]: """simple docstring""" __UpperCAmelCase : Dict = tokenizer(example['''content'''] , truncation=_UpperCamelCase )['''input_ids'''] __UpperCAmelCase : str = len(example['''content'''] ) / len(_UpperCamelCase ) return {"ratio": ratio} def lowerCamelCase_ ( UpperCAmelCase_ ) ->Union[str, Any]: """simple docstring""" __UpperCAmelCase : Dict = {} results.update(get_hash(_UpperCamelCase ) ) results.update(line_stats(_UpperCamelCase ) ) results.update(alpha_stats(_UpperCamelCase ) ) results.update(char_token_ratio(_UpperCamelCase ) ) results.update(is_autogenerated(_UpperCamelCase ) ) results.update(is_config_or_test(_UpperCamelCase ) ) results.update(has_no_keywords(_UpperCamelCase ) ) results.update(has_few_assignments(_UpperCamelCase ) ) return results def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->int: """simple docstring""" if not check_uniques(_UpperCamelCase , _UpperCamelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def lowerCamelCase_ ( UpperCAmelCase_ ) ->Optional[int]: """simple docstring""" with open(_UpperCamelCase , '''rb''' ) as f_in: with gzip.open(str(_UpperCamelCase ) + '''.gz''' , '''wb''' , compresslevel=6 ) as f_out: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) os.unlink(_UpperCamelCase ) # Settings lowercase__ :Dict = HfArgumentParser(PreprocessingArguments) lowercase__ :int = parser.parse_args() if args.num_workers is None: lowercase__ :Union[str, Any] = multiprocessing.cpu_count() lowercase__ :Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset lowercase__ :Union[str, Any] = time.time() lowercase__ :Union[str, Any] = load_dataset(args.dataset_name, split='train') print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing lowercase__ :Any = time.time() lowercase__ :Union[str, Any] = ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes lowercase__ :Any = set(ds.unique('hash')) lowercase__ :int = len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics lowercase__ :Tuple = time.time() lowercase__ :str = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: lowercase__ :int = time.time() lowercase__ :Tuple = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file lowercase__ :Tuple = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) lowercase__ :Union[str, Any] = output_dir / "data" data_dir.mkdir(exist_ok=True) lowercase__ :Any = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): lowercase__ :str = str(data_dir / f"""file-{file_number+1:012}.json""") lowercase__ :Tuple = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
522
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase ( metaclass=lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = ['''onnx'''] def __init__( self : List[Any] , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : Tuple ) ->Union[str, Any]: requires_backends(self , ['''onnx'''] ) @classmethod def lowerCAmelCase__ ( cls : List[Any] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : Optional[Any] ) ->Any: requires_backends(cls , ['''onnx'''] ) @classmethod def lowerCAmelCase__ ( cls : Any , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : List[Any] ) ->Optional[Any]: requires_backends(cls , ['''onnx'''] )
390
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __a: Optional[Any] = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: int = ["""MaskFormerFeatureExtractor"""] __a: str = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: Tuple = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] __a: Optional[int] = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys __a: str = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
428
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a: Tuple = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: int = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys __a: Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
428
1
from __future__ import annotations from decimal import Decimal from numpy import array def __a ( A__ : list[list[float]] ): SCREAMING_SNAKE_CASE = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(A__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix SCREAMING_SNAKE_CASE = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements SCREAMING_SNAKE_CASE = [[0.0, 0.0], [0.0, 0.0]] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = matrix[1][1], matrix[0][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(A__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(A__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule SCREAMING_SNAKE_CASE = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix SCREAMING_SNAKE_CASE = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] SCREAMING_SNAKE_CASE = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) SCREAMING_SNAKE_CASE = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) SCREAMING_SNAKE_CASE = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) SCREAMING_SNAKE_CASE = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) SCREAMING_SNAKE_CASE = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) SCREAMING_SNAKE_CASE = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) SCREAMING_SNAKE_CASE = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) SCREAMING_SNAKE_CASE = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) SCREAMING_SNAKE_CASE = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) SCREAMING_SNAKE_CASE = array(A__ ) for i in range(3 ): for j in range(3 ): SCREAMING_SNAKE_CASE = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix SCREAMING_SNAKE_CASE = array(A__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(A__ ) # Calculate the inverse of the matrix return [[float(d(A__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
16
'''simple docstring''' import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor snake_case_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__( self , *lowercase__ , **lowercase__ ): """simple docstring""" warnings.warn( "The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ChineseCLIPImageProcessor instead." , lowercase__ , ) super().__init__(*lowercase__ , **lowercase__ )
421
0
import string from math import logaa def lowerCamelCase__ ( _A , _A ): '''simple docstring''' snake_case_ = document.translate( str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" ) snake_case_ = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' snake_case_ = corpus.lower().translate( str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with '' snake_case_ = corpus_without_punctuation.split("\n" ) snake_case_ = term.lower() return (len([doc for doc in docs if term in doc] ), len(_A )) def lowerCamelCase__ ( _A , _A , _A=False ): '''simple docstring''' if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) , 3 ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' return round(tf * idf , 3 )
139
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class UpperCAmelCase : '''simple docstring''' lowerCAmelCase_ = 42 lowerCAmelCase_ = None lowerCAmelCase_ = None lowercase__ : Any = namedtuple("CoinsDistribResult", "moves excess") def lowerCamelCase__ ( _A ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(_A ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_A ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_A ) != count_coins(_A ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(_A ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) snake_case_ , snake_case_ = get_distrib(node.left ) snake_case_ , snake_case_ = get_distrib(node.right ) snake_case_ = 1 - left_distrib_excess snake_case_ = 1 - right_distrib_excess snake_case_ = ( left_distrib_moves + right_distrib_moves + abs(_A ) + abs(_A ) ) snake_case_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_A , _A ) return get_distrib(_A )[0] if __name__ == "__main__": import doctest doctest.testmod()
139
1
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> Tuple: '''simple docstring''' if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ): __SCREAMING_SNAKE_CASE = len(set_a.intersection(__UpperCAmelCase ) ) if alternative_union: __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) + len(__UpperCAmelCase ) else: __SCREAMING_SNAKE_CASE = len(set_a.union(__UpperCAmelCase ) ) return intersection / union if isinstance(__UpperCAmelCase , (list, tuple) ) and isinstance(__UpperCAmelCase , (list, tuple) ): __SCREAMING_SNAKE_CASE = [element for element in set_a if element in set_b] if alternative_union: __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) + len(__UpperCAmelCase ) return len(__UpperCAmelCase ) / union else: __SCREAMING_SNAKE_CASE = set_a + [element for element in set_b if element not in set_a] return len(__UpperCAmelCase ) / len(__UpperCAmelCase ) return len(__UpperCAmelCase ) / len(__UpperCAmelCase ) return None if __name__ == "__main__": a = {"a", "b", "c", "d", "e"} a = {"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
109
"""simple docstring""" from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration SCREAMING_SNAKE_CASE__:str = HfArgumentParser(InitializationArguments) SCREAMING_SNAKE_CASE__:List[str] = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization SCREAMING_SNAKE_CASE__:List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks SCREAMING_SNAKE_CASE__:Union[str, Any] = { """vocab_size""": len(tokenizer), """scale_attn_by_inverse_layer_idx""": True, """reorder_and_upcast_attn""": True, } # Load model config (GPT-2 large in this case) SCREAMING_SNAKE_CASE__:Optional[int] = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config SCREAMING_SNAKE_CASE__:Tuple = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
528
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer lowerCamelCase =logging.get_logger(__name__) lowerCamelCase ={"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCamelCase ={ "vocab_file": { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt", "bert-base-multilingual-uncased": ( "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt" ), "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt" ), "bert-base-cased-finetuned-mrpc": ( "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt" ), "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt", "bert-base-german-dbmdz-uncased": ( "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt" ), "wietsedv/bert-base-dutch-cased": ( "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json", "bert-base-multilingual-uncased": ( "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json" ), "bert-base-multilingual-cased": ( "https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json" ), "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json" ), "bert-base-cased-finetuned-mrpc": ( "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json" ), "bert-base-german-dbmdz-cased": ( "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json" ), "bert-base-german-dbmdz-uncased": ( "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json" ), "wietsedv/bert-base-dutch-cased": ( "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json" ), }, } lowerCamelCase ={ "bert-base-uncased": 5_1_2, "bert-large-uncased": 5_1_2, "bert-base-cased": 5_1_2, "bert-large-cased": 5_1_2, "bert-base-multilingual-uncased": 5_1_2, "bert-base-multilingual-cased": 5_1_2, "bert-base-chinese": 5_1_2, "bert-base-german-cased": 5_1_2, "bert-large-uncased-whole-word-masking": 5_1_2, "bert-large-cased-whole-word-masking": 5_1_2, "bert-large-uncased-whole-word-masking-finetuned-squad": 5_1_2, "bert-large-cased-whole-word-masking-finetuned-squad": 5_1_2, "bert-base-cased-finetuned-mrpc": 5_1_2, "bert-base-german-dbmdz-cased": 5_1_2, "bert-base-german-dbmdz-uncased": 5_1_2, "TurkuNLP/bert-base-finnish-cased-v1": 5_1_2, "TurkuNLP/bert-base-finnish-uncased-v1": 5_1_2, "wietsedv/bert-base-dutch-cased": 5_1_2, } lowerCamelCase ={ "bert-base-uncased": {"do_lower_case": True}, "bert-large-uncased": {"do_lower_case": True}, "bert-base-cased": {"do_lower_case": False}, "bert-large-cased": {"do_lower_case": False}, "bert-base-multilingual-uncased": {"do_lower_case": True}, "bert-base-multilingual-cased": {"do_lower_case": False}, "bert-base-chinese": {"do_lower_case": False}, "bert-base-german-cased": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking": {"do_lower_case": True}, "bert-large-cased-whole-word-masking": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True}, "bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False}, "bert-base-cased-finetuned-mrpc": {"do_lower_case": False}, "bert-base-german-dbmdz-cased": {"do_lower_case": False}, "bert-base-german-dbmdz-uncased": {"do_lower_case": True}, "TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False}, "TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True}, "wietsedv/bert-base-dutch-cased": {"do_lower_case": False}, } class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = BertTokenizer def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="[UNK]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[PAD]" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenize_chinese_chars=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get('''strip_accents''' , __SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): UpperCamelCase__ : Union[str, Any] = getattr(__SCREAMING_SNAKE_CASE , normalizer_state.pop('''type''' ) ) UpperCamelCase__ : int = do_lower_case UpperCamelCase__ : Optional[Any] = strip_accents UpperCamelCase__ : List[Any] = tokenize_chinese_chars UpperCamelCase__ : int = normalizer_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = do_lower_case def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) -> List[str]: """simple docstring""" UpperCamelCase__ : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) -> List[int]: """simple docstring""" UpperCamelCase__ : str = [self.sep_token_id] UpperCamelCase__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" UpperCamelCase__ : Tuple = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE )
462
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel lowerCamelCase =False lowerCamelCase =True lowerCamelCase =False if __name__ == "__main__": lowerCamelCase =argparse.ArgumentParser() parser.add_argument( "--repo_path", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") lowerCamelCase =parser.parse_args() lowerCamelCase ={ "image_size": "sample_size", "num_res_blocks": "layers_per_block", "block_channels": "block_out_channels", "down_blocks": "down_block_types", "up_blocks": "up_block_types", "downscale_freq_shift": "freq_shift", "resnet_num_groups": "norm_num_groups", "resnet_act_fn": "act_fn", "resnet_eps": "norm_eps", "num_head_channels": "attention_head_dim", } lowerCamelCase ={ "time_steps": "time_proj", "mid": "mid_block", "downsample_blocks": "down_blocks", "upsample_blocks": "up_blocks", } lowerCamelCase ="" if has_file(args.repo_path, "config.json") else "unet" with open(os.path.join(args.repo_path, subfolder, "config.json"), "r", encoding="utf-8") as reader: lowerCamelCase =reader.read() lowerCamelCase =json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, "config.json"): lowerCamelCase =UNetaDModel(**config) else: lowerCamelCase =UNetaDConditionModel if "ldm-text2im-large-256" in args.repo_path else UNetaDModel lowerCamelCase =class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) lowerCamelCase =dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: lowerCamelCase =config[key] del config[key] lowerCamelCase =[k.replace("UNetRes", "") for k in config["down_block_types"]] lowerCamelCase =[k.replace("UNetRes", "") for k in config["up_block_types"]] if do_only_weights: lowerCamelCase =torch.load(os.path.join(args.repo_path, subfolder, "diffusion_pytorch_model.bin")) lowerCamelCase ={} for param_key, param_value in state_dict.items(): if param_key.endswith(".op.bias") or param_key.endswith(".op.weight"): continue lowerCamelCase =False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(".")[0] == key: lowerCamelCase =param_value lowerCamelCase =True if not has_changed: lowerCamelCase =param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
462
1
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer A = '''bart''' A = True @st.cache(allow_output_mutation=a_) def __A ( ) -> Dict: if LOAD_DENSE_INDEX: __a : Optional[Any] = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''') __a : Dict = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''').to('''cuda:0''') __a : Union[str, Any] = qar_model.eval() else: __a , __a : Optional[int] = (None, None) if MODEL_TYPE == "bart": __a : List[Any] = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''') __a : Tuple = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''').to('''cuda:0''') __a : Optional[int] = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''') sas_model.load_state_dict(save_dict['''model''']) __a : List[Any] = sas_model.eval() else: __a , __a : List[str] = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''') return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=a_) def __A ( ) -> Optional[Any]: if LOAD_DENSE_INDEX: __a : str = faiss.StandardGpuResources() __a : Tuple = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''')['''train'''] __a : Dict = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 1_28) , ) __a : Dict = faiss.IndexFlatIP(1_28) __a : Optional[int] = faiss.index_cpu_to_gpu(a_ , 1 , a_) wikiaab_gpu_index_flat.add(a_) # TODO fix for larger GPU else: __a , __a : List[str] = (None, None) __a : int = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}]) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=a_) def __A ( ) -> Union[str, Any]: __a : Union[str, Any] = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''') __a : List[str] = elia['''train_eli5'''] __a : Tuple = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 1_28)) __a : Any = faiss.IndexFlatIP(1_28) eli5_train_q_index.add(a_) return (elia_train, eli5_train_q_index) A , A , A = load_indexes() A , A , A , A = load_models() A , A = load_train_data() def __A ( a_ :str , a_ :str=10) -> Dict: __a : List[Any] = embed_questions_for_retrieval([question] , a_ , a_) __a , __a : Tuple = eli5_train_q_index.search(a_ , a_) __a : Union[str, Any] = [elia_train[int(a_)] for i in I[0]] return nn_examples def __A ( a_ :List[Any] , a_ :int="wiki40b" , a_ :Any="dense" , a_ :Dict=10) -> Any: if source == "none": __a , __a : Any = (''' <P> '''.join(['''''' for _ in range(11)]).strip(), []) else: if method == "dense": __a , __a : Optional[Any] = query_qa_dense_index( a_ , a_ , a_ , a_ , a_ , a_) else: __a , __a : int = query_es_index( a_ , a_ , index_name='''english_wiki40b_snippets_100w''' , n_results=a_ , ) __a : Any = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] __a : Any = '''question: {} context: {}'''.format(a_ , a_) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda a_: None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a_: None), }) def __A ( a_ :Tuple , a_ :Any , a_ :Tuple , a_ :List[Any]=64 , a_ :int=2_56 , a_ :Any=False , a_ :Dict=2 , a_ :Dict=0.9_5 , a_ :List[Any]=0.8) -> List[Any]: with torch.no_grad(): __a : str = qa_sas_generate( a_ , a_ , a_ , num_answers=1 , num_beams=a_ , min_len=a_ , max_len=a_ , do_sample=a_ , temp=a_ , top_p=a_ , top_k=a_ , max_input_length=10_24 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar A = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' A = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia A = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) A = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] A = st.sidebar.checkbox('''Demo options''') if demo_options: A = st.sidebar.selectbox( '''''', action_list, index=3, ) A = action_list.index(action_st) A = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) A = show_type == '''Show full text of passages''' else: A = 3 A = True A = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: A = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) A = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) A = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: A = '''wiki40b''' A = '''dense''' A = '''beam''' A = 2 A = 64 A = 256 A = None A = None A = st.sidebar.checkbox('''Generation options''') if generate_options: A = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) A = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) A = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) A = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": A = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: A = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) A = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) A = None # start main text A = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] A = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": A = st.text_input('''Enter your question here:''', '''''') else: A = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": A , A = make_support(question, source=wiki_source, method='''dense''', n_results=10) A , A = make_support(question, source=wiki_source, method='''sparse''', n_results=10) A = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] A = support_list[:10] A = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: A , A = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: A , A = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): A = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) A = res[1].strip() if sec_titles == "": A = '''[{}]({})'''.format(res[0], wiki_url) else: A = sec_titles.split(''' & ''') A = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: A = find_nearest_training(question) A = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) A = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) A = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
52
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _SCREAMING_SNAKE_CASE ( __a ): __SCREAMING_SNAKE_CASE :Optional[int] = """ClapFeatureExtractor""" __SCREAMING_SNAKE_CASE :List[Any] = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self : Optional[Any] , a__ : Dict , a__ : Dict ): super().__init__(a__ , a__ ) def __call__( self : Dict , a__ : List[str]=None , a__ : List[Any]=None , a__ : Any=None , **a__ : Tuple ): __magic_name__ = kwargs.pop('''sampling_rate''' , a__ ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: __magic_name__ = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if audios is not None: __magic_name__ = self.feature_extractor( a__ , sampling_rate=a__ , return_tensors=a__ , **a__ ) if text is not None and audios is not None: __magic_name__ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def snake_case__ ( self : List[Any] , *a__ : str , **a__ : List[str] ): return self.tokenizer.batch_decode(*a__ , **a__ ) def snake_case__ ( self : int , *a__ : Tuple , **a__ : Tuple ): return self.tokenizer.decode(*a__ , **a__ ) @property def snake_case__ ( self : Any ): __magic_name__ = self.tokenizer.model_input_names __magic_name__ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
432
0
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class _SCREAMING_SNAKE_CASE : def __init__(self , UpperCAmelCase , UpperCAmelCase=1_3 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=9_9 , UpperCAmelCase=6_4 , UpperCAmelCase=3_2 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=3_7 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=1_6 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=None , ): '''simple docstring''' __UpperCAmelCase =parent __UpperCAmelCase =batch_size __UpperCAmelCase =seq_length __UpperCAmelCase =is_training __UpperCAmelCase =use_input_mask __UpperCAmelCase =use_token_type_ids __UpperCAmelCase =use_labels __UpperCAmelCase =vocab_size __UpperCAmelCase =hidden_size __UpperCAmelCase =embedding_size __UpperCAmelCase =num_hidden_layers __UpperCAmelCase =num_attention_heads __UpperCAmelCase =intermediate_size __UpperCAmelCase =hidden_act __UpperCAmelCase =hidden_dropout_prob __UpperCAmelCase =attention_probs_dropout_prob __UpperCAmelCase =max_position_embeddings __UpperCAmelCase =type_vocab_size __UpperCAmelCase =type_sequence_label_size __UpperCAmelCase =initializer_range __UpperCAmelCase =num_labels __UpperCAmelCase =num_choices __UpperCAmelCase =scope def A__ (self): '''simple docstring''' __UpperCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase =None if self.use_input_mask: __UpperCAmelCase =random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase =None if self.use_token_type_ids: __UpperCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None if self.use_labels: __UpperCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase =ids_tensor([self.batch_size] , self.num_choices) __UpperCAmelCase =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ (self): '''simple docstring''' return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , ) def A__ (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =MegatronBertModel(config=UpperCAmelCase) model.to(UpperCAmelCase) model.eval() __UpperCAmelCase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase) __UpperCAmelCase =model(UpperCAmelCase , token_type_ids=UpperCAmelCase) __UpperCAmelCase =model(UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def A__ (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =MegatronBertForMaskedLM(config=UpperCAmelCase) model.to(UpperCAmelCase) model.eval() __UpperCAmelCase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =MegatronBertForCausalLM(config=UpperCAmelCase) model.to(UpperCAmelCase) model.eval() __UpperCAmelCase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =MegatronBertForNextSentencePrediction(config=UpperCAmelCase) model.to(UpperCAmelCase) model.eval() __UpperCAmelCase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def A__ (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =MegatronBertForPreTraining(config=UpperCAmelCase) model.to(UpperCAmelCase) model.eval() __UpperCAmelCase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , next_sentence_label=UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def A__ (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =MegatronBertForQuestionAnswering(config=UpperCAmelCase) model.to(UpperCAmelCase) model.eval() __UpperCAmelCase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def A__ (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =self.num_labels __UpperCAmelCase =MegatronBertForSequenceClassification(UpperCAmelCase) model.to(UpperCAmelCase) model.eval() __UpperCAmelCase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =self.num_labels __UpperCAmelCase =MegatronBertForTokenClassification(config=UpperCAmelCase) model.to(UpperCAmelCase) model.eval() __UpperCAmelCase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A__ (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =self.num_choices __UpperCAmelCase =MegatronBertForMultipleChoice(config=UpperCAmelCase) model.to(UpperCAmelCase) model.eval() __UpperCAmelCase =input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __UpperCAmelCase =token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __UpperCAmelCase =input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __UpperCAmelCase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def A__ (self): '''simple docstring''' __UpperCAmelCase =self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) =config_and_inputs __UpperCAmelCase ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a_ : List[Any] = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) a_ : Union[str, Any] = ( { '''feature-extraction''': MegatronBertModel, '''fill-mask''': MegatronBertForMaskedLM, '''question-answering''': MegatronBertForQuestionAnswering, '''text-classification''': MegatronBertForSequenceClassification, '''text-generation''': MegatronBertForCausalLM, '''token-classification''': MegatronBertForTokenClassification, '''zero-shot''': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) a_ : Union[str, Any] = True # test_resize_embeddings = False a_ : str = False def A__ (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False): '''simple docstring''' __UpperCAmelCase =super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase) if return_labels: if model_class in get_values(UpperCAmelCase): __UpperCAmelCase =torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCAmelCase) __UpperCAmelCase =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase) return inputs_dict def A__ (self): '''simple docstring''' __UpperCAmelCase =MegatronBertModelTester(self) __UpperCAmelCase =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=3_7) def A__ (self): '''simple docstring''' self.config_tester.run_common_tests() def A__ (self): '''simple docstring''' __UpperCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*UpperCAmelCase) def A__ (self): '''simple docstring''' __UpperCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*UpperCAmelCase) def A__ (self): '''simple docstring''' __UpperCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*UpperCAmelCase) def A__ (self): '''simple docstring''' __UpperCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*UpperCAmelCase) def A__ (self): '''simple docstring''' __UpperCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*UpperCAmelCase) def A__ (self): '''simple docstring''' __UpperCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*UpperCAmelCase) def A__ (self): '''simple docstring''' __UpperCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*UpperCAmelCase) def A__ (self): '''simple docstring''' __UpperCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*UpperCAmelCase) def SCREAMING_SNAKE_CASE ( snake_case__ ) -> Optional[Any]: return torch.tensor( snake_case__ , dtype=torch.long , device=snake_case__ , ) UpperCamelCase_ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow @unittest.skip('''Model is not available.''') def A__ (self): '''simple docstring''' __UpperCAmelCase ='''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: __UpperCAmelCase =os.path.join(os.environ['''MYDIR'''] , UpperCAmelCase) __UpperCAmelCase =MegatronBertModel.from_pretrained(UpperCAmelCase) model.to(UpperCAmelCase) model.half() __UpperCAmelCase =_long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]]) with torch.no_grad(): __UpperCAmelCase =model(UpperCAmelCase)[0] __UpperCAmelCase =torch.Size((1, 9, 1_0_2_4)) self.assertEqual(output.shape , UpperCAmelCase) __UpperCAmelCase =[-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3): for jj in range(3): __UpperCAmelCase =output[0, ii, jj] __UpperCAmelCase =expected[3 * ii + jj] __UpperCAmelCase ='''ii={} jj={} a={} b={}'''.format(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase) self.assertTrue(math.isclose(UpperCAmelCase , UpperCAmelCase , rel_tol=UpperCAmelCase , abs_tol=UpperCAmelCase) , msg=UpperCAmelCase)
142
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCamelCase_ = logging.get_logger(__name__) logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ ) -> List[Any]: if "xprophetnet" in prophetnet_checkpoint_path: __UpperCAmelCase =XLMProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) __UpperCAmelCase , __UpperCAmelCase =XLMProphetNetForConditionalGeneration.from_pretrained( snake_case__ , output_loading_info=snake_case__ ) else: __UpperCAmelCase =ProphetNetForConditionalGenerationOld.from_pretrained(snake_case__ ) __UpperCAmelCase , __UpperCAmelCase =ProphetNetForConditionalGeneration.from_pretrained( snake_case__ , output_loading_info=snake_case__ ) __UpperCAmelCase =['''key_proj''', '''value_proj''', '''query_proj'''] __UpperCAmelCase ={ '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: __UpperCAmelCase =key.split('''.''' ) if attributes[0] == "lm_head": __UpperCAmelCase =prophet __UpperCAmelCase =prophet_old else: __UpperCAmelCase =prophet.prophetnet __UpperCAmelCase =prophet_old.model __UpperCAmelCase =False for attribute in attributes: if attribute in mapping: __UpperCAmelCase =mapping[attribute] if not hasattr(snake_case__ , snake_case__ ) and len(snake_case__ ) > 0: __UpperCAmelCase =attribute elif hasattr(snake_case__ , snake_case__ ): __UpperCAmelCase =attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __UpperCAmelCase =old_model.weight logger.info(f"""{attribute} is initialized.""" ) __UpperCAmelCase =True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __UpperCAmelCase =old_model.bias logger.info(f"""{attribute} is initialized""" ) __UpperCAmelCase =True break elif attribute in special_keys and hasattr(snake_case__ , '''in_proj_weight''' ): __UpperCAmelCase =old_model.in_proj_weight.shape[0] // 3 __UpperCAmelCase =getattr(snake_case__ , snake_case__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __UpperCAmelCase =nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __UpperCAmelCase =nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __UpperCAmelCase =nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __UpperCAmelCase =nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __UpperCAmelCase =nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __UpperCAmelCase =nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __UpperCAmelCase =True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __UpperCAmelCase =nn.Parameter(old_model.embed_positions.weight[:512, :] ) __UpperCAmelCase =True break if attribute.isdigit(): __UpperCAmelCase =model[int(snake_case__ )] __UpperCAmelCase =old_model[int(snake_case__ )] else: __UpperCAmelCase =getattr(snake_case__ , snake_case__ ) if old_attribute == "": __UpperCAmelCase =old_model else: if not hasattr(snake_case__ , snake_case__ ): raise ValueError(f"""{old_model} does not have {old_attribute}""" ) __UpperCAmelCase =getattr(snake_case__ , snake_case__ ) if not is_key_init: raise ValueError(f"""{key} was not correctly initialized!""" ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) prophet.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCamelCase_ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
142
1