repo_name
stringlengths 6
112
| path
stringlengths 4
204
| copies
stringlengths 1
3
| size
stringlengths 4
6
| content
stringlengths 714
810k
| license
stringclasses 15
values |
---|---|---|---|---|---|
nesterione/scikit-learn | sklearn/tests/test_base.py | 216 | 7045 | # Author: Gael Varoquaux
# License: BSD 3 clause
import numpy as np
import scipy.sparse as sp
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_true
from sklearn.utils.testing import assert_false
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_not_equal
from sklearn.utils.testing import assert_raises
from sklearn.base import BaseEstimator, clone, is_classifier
from sklearn.svm import SVC
from sklearn.pipeline import Pipeline
from sklearn.grid_search import GridSearchCV
from sklearn.utils import deprecated
#############################################################################
# A few test classes
class MyEstimator(BaseEstimator):
def __init__(self, l1=0, empty=None):
self.l1 = l1
self.empty = empty
class K(BaseEstimator):
def __init__(self, c=None, d=None):
self.c = c
self.d = d
class T(BaseEstimator):
def __init__(self, a=None, b=None):
self.a = a
self.b = b
class DeprecatedAttributeEstimator(BaseEstimator):
def __init__(self, a=None, b=None):
self.a = a
if b is not None:
DeprecationWarning("b is deprecated and renamed 'a'")
self.a = b
@property
@deprecated("Parameter 'b' is deprecated and renamed to 'a'")
def b(self):
return self._b
class Buggy(BaseEstimator):
" A buggy estimator that does not set its parameters right. "
def __init__(self, a=None):
self.a = 1
class NoEstimator(object):
def __init__(self):
pass
def fit(self, X=None, y=None):
return self
def predict(self, X=None):
return None
class VargEstimator(BaseEstimator):
"""Sklearn estimators shouldn't have vargs."""
def __init__(self, *vargs):
pass
#############################################################################
# The tests
def test_clone():
# Tests that clone creates a correct deep copy.
# We create an estimator, make a copy of its original state
# (which, in this case, is the current state of the estimator),
# and check that the obtained copy is a correct deep copy.
from sklearn.feature_selection import SelectFpr, f_classif
selector = SelectFpr(f_classif, alpha=0.1)
new_selector = clone(selector)
assert_true(selector is not new_selector)
assert_equal(selector.get_params(), new_selector.get_params())
selector = SelectFpr(f_classif, alpha=np.zeros((10, 2)))
new_selector = clone(selector)
assert_true(selector is not new_selector)
def test_clone_2():
# Tests that clone doesn't copy everything.
# We first create an estimator, give it an own attribute, and
# make a copy of its original state. Then we check that the copy doesn't
# have the specific attribute we manually added to the initial estimator.
from sklearn.feature_selection import SelectFpr, f_classif
selector = SelectFpr(f_classif, alpha=0.1)
selector.own_attribute = "test"
new_selector = clone(selector)
assert_false(hasattr(new_selector, "own_attribute"))
def test_clone_buggy():
# Check that clone raises an error on buggy estimators.
buggy = Buggy()
buggy.a = 2
assert_raises(RuntimeError, clone, buggy)
no_estimator = NoEstimator()
assert_raises(TypeError, clone, no_estimator)
varg_est = VargEstimator()
assert_raises(RuntimeError, clone, varg_est)
def test_clone_empty_array():
# Regression test for cloning estimators with empty arrays
clf = MyEstimator(empty=np.array([]))
clf2 = clone(clf)
assert_array_equal(clf.empty, clf2.empty)
clf = MyEstimator(empty=sp.csr_matrix(np.array([[0]])))
clf2 = clone(clf)
assert_array_equal(clf.empty.data, clf2.empty.data)
def test_clone_nan():
# Regression test for cloning estimators with default parameter as np.nan
clf = MyEstimator(empty=np.nan)
clf2 = clone(clf)
assert_true(clf.empty is clf2.empty)
def test_repr():
# Smoke test the repr of the base estimator.
my_estimator = MyEstimator()
repr(my_estimator)
test = T(K(), K())
assert_equal(
repr(test),
"T(a=K(c=None, d=None), b=K(c=None, d=None))"
)
some_est = T(a=["long_params"] * 1000)
assert_equal(len(repr(some_est)), 415)
def test_str():
# Smoke test the str of the base estimator
my_estimator = MyEstimator()
str(my_estimator)
def test_get_params():
test = T(K(), K())
assert_true('a__d' in test.get_params(deep=True))
assert_true('a__d' not in test.get_params(deep=False))
test.set_params(a__d=2)
assert_true(test.a.d == 2)
assert_raises(ValueError, test.set_params, a__a=2)
def test_get_params_deprecated():
# deprecated attribute should not show up as params
est = DeprecatedAttributeEstimator(a=1)
assert_true('a' in est.get_params())
assert_true('a' in est.get_params(deep=True))
assert_true('a' in est.get_params(deep=False))
assert_true('b' not in est.get_params())
assert_true('b' not in est.get_params(deep=True))
assert_true('b' not in est.get_params(deep=False))
def test_is_classifier():
svc = SVC()
assert_true(is_classifier(svc))
assert_true(is_classifier(GridSearchCV(svc, {'C': [0.1, 1]})))
assert_true(is_classifier(Pipeline([('svc', svc)])))
assert_true(is_classifier(Pipeline([('svc_cv',
GridSearchCV(svc, {'C': [0.1, 1]}))])))
def test_set_params():
# test nested estimator parameter setting
clf = Pipeline([("svc", SVC())])
# non-existing parameter in svc
assert_raises(ValueError, clf.set_params, svc__stupid_param=True)
# non-existing parameter of pipeline
assert_raises(ValueError, clf.set_params, svm__stupid_param=True)
# we don't currently catch if the things in pipeline are estimators
# bad_pipeline = Pipeline([("bad", NoEstimator())])
# assert_raises(AttributeError, bad_pipeline.set_params,
# bad__stupid_param=True)
def test_score_sample_weight():
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeRegressor
from sklearn import datasets
rng = np.random.RandomState(0)
# test both ClassifierMixin and RegressorMixin
estimators = [DecisionTreeClassifier(max_depth=2),
DecisionTreeRegressor(max_depth=2)]
sets = [datasets.load_iris(),
datasets.load_boston()]
for est, ds in zip(estimators, sets):
est.fit(ds.data, ds.target)
# generate random sample weights
sample_weight = rng.randint(1, 10, size=len(ds.target))
# check that the score with and without sample weights are different
assert_not_equal(est.score(ds.data, ds.target),
est.score(ds.data, ds.target,
sample_weight=sample_weight),
msg="Unweighted and weighted scores "
"are unexpectedly equal")
| bsd-3-clause |
xubenben/scikit-learn | benchmarks/bench_lasso.py | 297 | 3305 | """
Benchmarks of Lasso vs LassoLars
First, we fix a training set and increase the number of
samples. Then we plot the computation time as function of
the number of samples.
In the second benchmark, we increase the number of dimensions of the
training set. Then we plot the computation time as function of
the number of dimensions.
In both cases, only 10% of the features are informative.
"""
import gc
from time import time
import numpy as np
from sklearn.datasets.samples_generator import make_regression
def compute_bench(alpha, n_samples, n_features, precompute):
lasso_results = []
lars_lasso_results = []
it = 0
for ns in n_samples:
for nf in n_features:
it += 1
print('==================')
print('Iteration %s of %s' % (it, max(len(n_samples),
len(n_features))))
print('==================')
n_informative = nf // 10
X, Y, coef_ = make_regression(n_samples=ns, n_features=nf,
n_informative=n_informative,
noise=0.1, coef=True)
X /= np.sqrt(np.sum(X ** 2, axis=0)) # Normalize data
gc.collect()
print("- benchmarking Lasso")
clf = Lasso(alpha=alpha, fit_intercept=False,
precompute=precompute)
tstart = time()
clf.fit(X, Y)
lasso_results.append(time() - tstart)
gc.collect()
print("- benchmarking LassoLars")
clf = LassoLars(alpha=alpha, fit_intercept=False,
normalize=False, precompute=precompute)
tstart = time()
clf.fit(X, Y)
lars_lasso_results.append(time() - tstart)
return lasso_results, lars_lasso_results
if __name__ == '__main__':
from sklearn.linear_model import Lasso, LassoLars
import pylab as pl
alpha = 0.01 # regularization parameter
n_features = 10
list_n_samples = np.linspace(100, 1000000, 5).astype(np.int)
lasso_results, lars_lasso_results = compute_bench(alpha, list_n_samples,
[n_features], precompute=True)
pl.figure('scikit-learn LASSO benchmark results')
pl.subplot(211)
pl.plot(list_n_samples, lasso_results, 'b-',
label='Lasso')
pl.plot(list_n_samples, lars_lasso_results, 'r-',
label='LassoLars')
pl.title('precomputed Gram matrix, %d features, alpha=%s' % (n_features, alpha))
pl.legend(loc='upper left')
pl.xlabel('number of samples')
pl.ylabel('Time (s)')
pl.axis('tight')
n_samples = 2000
list_n_features = np.linspace(500, 3000, 5).astype(np.int)
lasso_results, lars_lasso_results = compute_bench(alpha, [n_samples],
list_n_features, precompute=False)
pl.subplot(212)
pl.plot(list_n_features, lasso_results, 'b-', label='Lasso')
pl.plot(list_n_features, lars_lasso_results, 'r-', label='LassoLars')
pl.title('%d samples, alpha=%s' % (n_samples, alpha))
pl.legend(loc='upper left')
pl.xlabel('number of features')
pl.ylabel('Time (s)')
pl.axis('tight')
pl.show()
| bsd-3-clause |
kunalghosh/BECS-114.1100-Computational-Science | exercise10/2d_example.py | 1 | 13693 | from __future__ import division
from itertools import combinations
import cPickle as pickle
import sys
import pylab
import numpy as np
class PLattice:
def __init__(self, dimension, initial_value, temperature, seed=None):
# create an array storing the values on the lattice and set them
# to initial_value
if seed is not None:
np.random.seed(seed)
rand_vals = np.random.random(dimension)*2-1 # scale the rand numbers between -1,1
self.lattice = np.floor(rand_vals) + np.ceil(rand_vals)
else:
np.random.seed(5555)
self.lattice = initial_value * pylab.ones(dimension)
self.dimension = dimension # dimension = (row,col)
self.length = np.prod(self.dimension)
self.row_max = self.dimension[0]
self.col_max = self.dimension[1]
self.J = 1
self.temp = temperature
self.indices = np.asarray([zip(np.ones(self.col_max).astype(int)*r,np.arange(self.col_max)) for r in xrange(self.row_max)])
l,b,h = self.indices.shape
self.indices = self.indices.reshape(l*b,h)
# compute the energy and magnetization of the initial configuration
self.energy = self.compute_energy()
self.magnetization = self.compute_magnetization()
def __get_indices__(self, idx):
# the modulus operator implements the periodic boundary
# (may not be the most efficient way but it's ok for this...)
# one should check that negative values of idx behave also as expected
# idx in this case is a Tuple OR a List of Tuples
# List of Tuples would allow us to vectorize operations.
retVal = None
if isinstance(idx,np.ndarray) or isinstance(idx,list):
new_rows,new_cols = np.asarray(zip(*idx))
new_rows = new_rows % self.row_max
new_cols = new_cols % self.col_max
retVal = np.asarray(zip(new_rows, new_cols))
elif isinstance(idx,tuple):
new_row = idx[0] % self.row_max
new_col = idx[1] % self.col_max
retVal = (new_row, new_col)
else:
raise ValueError("Only list of Tuples or Tuples accepted")
return retVal
# see below the flip method and the flip example in the main-part on how
# __getitem__ and __setitem__ work
def __get_left_idx(self,idx):
retVal = None
if isinstance(idx,np.ndarray) or isinstance(idx,list):
rows,cols = np.asarray(zip(*idx))
cols = (cols - 1) % self.col_max
retVal = np.asarray(zip(rows,cols))
elif isinstance(idx,tuple):
retVal = (idx[0],(idx[1]-1) % self.col_max)
else:
raise ValueError("Only list of Tuples or Tuples accepted")
return retVal
def __get_right_idx(self,idx):
retVal = None
if isinstance(idx,np.ndarray) or isinstance(idx,list):
rows,cols = np.asarray(zip(*idx))
cols = (cols + 1) % self.col_max
retVal = np.asarray(zip(rows,cols))
elif isinstance(idx,tuple):
retVal = (idx[0],(idx[1]+1) % self.col_max)
else:
raise ValueError("Only list of Tuples or Tuples accepted")
return retVal
def __get_top_idx(self,idx):
retVal = None
if isinstance(idx,np.ndarray) or isinstance(idx,list):
rows,cols = np.asarray(zip(*idx))
rows = (rows - 1) % self.row_max
retVal = np.asarray(zip(rows,cols))
elif isinstance(idx,tuple):
retVal = ((idx[0]-1) % self.row_max,idx[1])
else:
raise ValueError("Only list of Tuples or Tuples accepted")
return retVal
def __get_bottom_idx(self,idx):
retVal = None
if isinstance(idx,np.ndarray) or isinstance(idx,list):
rows,cols = np.asarray(zip(*idx))
rows = (rows + 1) % self.row_max
retVal = np.asarray(zip(rows,cols))
elif isinstance(idx,tuple):
retVal = ((idx[0]+1) % self.row_max,idx[1])
else:
raise ValueError("Only list of Tuples or Tuples accepted")
return retVal
def __getitem__(self, idx):
idxes = self.__get_indices__(idx)
retVal = None
if isinstance(idx,np.ndarray) or isinstance(idx,list):
retVal = self.lattice[zip(*idxes)]
elif isinstance(idx,tuple):
retVal = self.lattice[idxes]
else:
raise ValueError("Only list of Tuples or Tuples accepted")
return retVal
def __setitem__(self, idx, val):
# same here
self.lattice[self.__get_indices__(idx)] = val
def flip(self, idx, compute_energy=True):
# this is equal to self[idx] = -1 * self[idx]
# self[idx] causes call to either __getitem__ or __setitem__ (see below)
self[idx] *= -1
if compute_energy:
self.energy = self.compute_energy()
def compute_magnetization(self):
return np.sum(self.lattice)
def get_energy(self):
return self.energy
def get_energy_per_site(self):
return np.true_divide(self.get_energy(),self.length)
def get_magnetization(self):
return self.magnetization
def get_magnetization_per_site(self):
return np.true_divide(self.get_magnetization(),self.length)
def compute_energy(self):
# compute the energy here and return it
# get values of the right cell and the bottom cell and do this for each cell.
# this ensure that an i,j is not indexed twice
right_indices = self.__get_right_idx(self.indices)
bottom_indices = self.__get_bottom_idx(self.indices)
right_vals = self[right_indices]
bottom_vals = self[bottom_indices]
cell_vals = self[self.indices]
np.add(right_vals, bottom_vals, out=bottom_vals)
np.multiply(bottom_vals,cell_vals,out=cell_vals)
return np.sum(cell_vals) * -1
def __is_flip_accepted(self, idx):
retVal = None
deltaE = 2 * self[idx] * ( self[self.__get_bottom_idx(idx)]
+ self[self.__get_top_idx(idx)]
+ self[self.__get_left_idx(idx)]
+ self[self.__get_right_idx(idx)] )
if deltaE <= 0:
retVal = True
else:
w = np.exp((-1 * deltaE)/self.temp) # kB = 1
if np.random.random() < w:
retVal = True
else:
retVal = False
return retVal,deltaE
def do_montecarlo(self):
# we need max_row * max_col random indices
rand_row_indices = np.random.randint(low=0,high=self.row_max,size=self.length)
rand_col_indices = np.random.randint(low=0,high=self.col_max,size=self.length)
idxes = zip(rand_row_indices,rand_col_indices)
for idx in idxes:
result, deltaE = self.__is_flip_accepted(idx)
if result: # Flip Accepted
self.flip(idx,compute_energy=False)
self.energy += deltaE
self.magnetization += 2 * self[idx]
def print_lattice(self):
import pprint
pprint.pprint(self.lattice)
def get_lattice(self):
return self.lattice
def plot_lattice(lattice,fileName):
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm
fig = plt.figure()
x,y = lattice.shape
X = np.arange(0, x, 1)
Y = np.arange(0, y, 1)
X, Y = np.meshgrid(X, Y)
R = lattice[X,Y]
surf = plt.imshow(R,origin='lower', aspect='auto', extent=(1,x,1,y))
plt.savefig(fileName+".png")
plt.close()
if __name__ == "__main__":
# create the lattice object
l = PLattice((32,32), -1,temperature = 2.265, seed=None)
# print the energy
print l.energy
# print the values of the lattice at the left neighbor, current index and
# right neighbor to check that periodic boundary works...
# Code to check periodic boundary
# for i in xrange(l.col_max):
# print "Col = {} -- ".format(i),
# print l[0,i-1], l[0,i], l[0,i+1]
# for i in xrange(l.row_max):
# print "Row = {} -- ".format(i),
# print l[i-1,0], l[i,0], l[i+1,0]
# here's how the monte carlo simulation could be implemented
# you need to use e.g. lists to keep track of the energy etc.
# at each iteration...
runlength = 1000
lattice_shape = (32,32)
energies_per_temp = []
magnetizations_per_temp = []
lattices_per_temp = []
xvals = range(1,runlength+1)
seeds = [None,6000,7000,8000,9000,10000,11000]
colours = ["k","r","g","b","c","m","y"]
# For checking equlibriation
m_old,m_new = -200,200 # Mean magnetization
m_abs_old, m_abs_new = -200,200 # Mean abs magnetization
for temp in [2.1,3.5]:
energies = []
magnetizations = []
lattices = []
pylab.figure()
for idx,val in enumerate(zip(seeds,colours)):
run_seed,color = val
energy = []
magnetization = []
l = PLattice(lattice_shape, -1, temperature = temp, seed=run_seed)
for i in xrange(1, runlength+1):
# ... keep track of the interesting quantities
# print the progress in long runs
l.do_montecarlo()
energy.append(l.get_energy_per_site())
magnetization.append(l.get_magnetization_per_site())
if i % 100 == 0:
# print "Temp = %f , Seed = %d , %d MCS completed." % (temp, run_seed if run_seed is not None else -1, i)
m_old, m_new = m_new, np.mean(magnetization[-100:])
m_abs_old, m_abs_new = m_abs_new, np.mean(np.abs(magnetization[-100:]))
err_m, err_abs = np.abs(m_old-m_new) , np.abs(m_abs_old - m_abs_new)
if err_m < 0.01:
print "Temp = {} Run {} Convergence after {} MCS at M = {}, M_err = {}".format(temp, idx,i,m_new,err_m)
if err_abs < 0.01:
print "Temp = {} Run {} Convergence after {} MCS at abs(M) = {}, abs(M)err = {}".format(temp,idx,i,m_abs_new,err_abs)
print "Temp = {} Run {} Final Data after {} MCS at abs(M) = {}, abs(M)err = {}, abs(M) = {}, abs(M)err = {}".format(temp,idx,i,m_abs_new,err_abs,m_abs_new,err_abs)
energies.append(energy)
magnetizations.append(magnetization)
lattices.append(l.get_lattice())
plot_lattice(lattices[-1],"%d_run_%d"%(int(temp),idx))
pylab.plot(xvals,energy,marker=".",c=color,label="Run %d" % idx)
pylab.plot(xvals,magnetization,marker=".",c=color)
pylab.legend(framealpha=0.5,loc=10)
pylab.xlabel("Run Length")
pylab.title("2D Ising model Temp = %f L = %d \n (Magnetization on Top, Energy below)" % (temp,lattice_shape[0]))
pylab.savefig("energyVsmagnetization_%d.png"%int(temp))
pylab.show()
for idx,val in enumerate(zip(magnetizations,colours)):
m,c = val
pylab.plot(xvals, m, marker=".",c=c,label="Run %d" % idx)
pylab.legend(framealpha=0.5,loc=10)
pylab.xlabel("Run Length")
pylab.ylabel("Magnetization")
pylab.title("2D Ising model Temp = %f L = %d" % (temp,lattice_shape[0]))
pylab.savefig("magnetization_%d.png"%int(temp))
pylab.show()
energies_per_temp.append(energies)
magnetizations_per_temp.append(magnetizations)
lattices_per_temp.append(lattices)
with open('data.pkl', 'wb') as dat_dmp_file:
pickle.dump([energies_per_temp, magnetizations_per_temp, lattices_per_temp], dat_dmp_file)
temp = 2.265
runlength = 50000
xvals = range(1,runlength+1)
pylab.figure()
energies = []
magnetizations = []
lattices = []
for idx,val in enumerate(zip([seeds[1]],[colours[1]])):
run_seed,color = val
energy = []
magnetization = []
l = PLattice(lattice_shape, -1, temperature=temp, seed=run_seed)
for i in xrange(1, runlength+1):
l.do_montecarlo()
energy.append(l.get_energy_per_site())
magnetization.append(l.get_magnetization_per_site())
if i % 1000 == 0:
print "Temp = %f , Seed = %d , %d MCS completed." % (temp, run_seed if run_seed is not None else -1, i)
energies.append(energy)
magnetizations.append(magnetization)
lattices.append(l.get_lattice())
plot_lattice(lattices[-1],"50000_lattice")
# pylab.plot(xvals,energy,marker=".",c=color,label="Run %d" % idx)
try:
pylab.plot(xvals,magnetization,marker=".",c=color)
except:
pass
with open('data50000.pkl', 'wb') as dat_dmp_file:
pickle.dump([energies, magnetizations], dat_dmp_file)
#pickle.dump(magnetizations, dat_dmp_file)
pylab.legend(framealpha=0.5,loc=10)
pylab.xlabel("Run Length")
pylab.ylabel("Magnetization")
pylab.title("2D Ising model Temp = %f L = %d" % (temp,lattice_shape[0]))
pylab.savefig("magnetization5000_%d.png"%int(temp))
pylab.show()
| bsd-2-clause |
LuizArmesto/gastos_abertos | utils/import_contrato_urls.py | 1 | 1650 | # -*- coding: utf-8 -*-
''' Read a xls with Contracts and insert them in the DB.
Usage:
./import_contrato [FILE] [LINES_PER_INSERT]
./import_contrato (-h | --help)
Options:
-h --help Show this message.
'''
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import calendar
from sqlalchemy.sql.expression import insert
from sqlalchemy import update
from docopt import docopt
from gastosabertos import create_app
from gastosabertos.contratos.models import Contrato
def get_db():
from gastosabertos.extensions import db
app = create_app()
db.app = app
return db
def parse_money(money_string):
return str(money_string).replace('.', '').replace(',', '.')
def parse_date(date_string):
new_date = datetime.strptime(date_string, '%d/%m/%Y')
return new_date
def insert_rows(db, rows_data):
ins = insert(Contrato.__table__, rows_data)
db.session.execute(ins)
db.session.commit()
def insert_all(db, csv_file='../data/urls.csv', lines_per_insert=100):
data = pd.read_csv(csv_file)
for di, d in data[:10].iterrows():
stmt = update(Contrato).values({'file_url':d['file_url'], 'txt_file_url':d['file_txt']}).where(Contrato.numero == d['numero'])
db.session.execute(stmt)
db.session.commit()
if __name__ == '__main__':
arguments = docopt(__doc__)
args = {}
csv_file = arguments['FILE']
if csv_file:
args['csv_file'] = csv_file
lines_per_insert = arguments['LINES_PER_INSERT']
if lines_per_insert:
args['lines_per_insert'] = int(lines_per_insert)
db = get_db()
insert_all(db, **args)
| agpl-3.0 |
andyraib/data-storage | python_scripts/env/lib/python3.6/site-packages/matplotlib/tests/test_backend_bases.py | 5 | 3227 | from matplotlib.backend_bases import FigureCanvasBase
from matplotlib.backend_bases import RendererBase
from matplotlib.testing.decorators import image_comparison, cleanup
import matplotlib.pyplot as plt
import matplotlib.transforms as transforms
import matplotlib.path as path
from nose.tools import assert_equal
import numpy as np
import os
import shutil
import tempfile
def test_uses_per_path():
id = transforms.Affine2D()
paths = [path.Path.unit_regular_polygon(i) for i in range(3, 7)]
tforms = [id.rotate(i) for i in range(1, 5)]
offsets = np.arange(20).reshape((10, 2))
facecolors = ['red', 'green']
edgecolors = ['red', 'green']
def check(master_transform, paths, all_transforms,
offsets, facecolors, edgecolors):
rb = RendererBase()
raw_paths = list(rb._iter_collection_raw_paths(
master_transform, paths, all_transforms))
gc = rb.new_gc()
ids = [path_id for xo, yo, path_id, gc0, rgbFace in
rb._iter_collection(gc, master_transform, all_transforms,
range(len(raw_paths)), offsets,
transforms.IdentityTransform(),
facecolors, edgecolors, [], [], [False],
[], 'data')]
uses = rb._iter_collection_uses_per_path(
paths, all_transforms, offsets, facecolors, edgecolors)
seen = [0] * len(raw_paths)
for i in ids:
seen[i] += 1
for n in seen:
assert n in (uses-1, uses)
check(id, paths, tforms, offsets, facecolors, edgecolors)
check(id, paths[0:1], tforms, offsets, facecolors, edgecolors)
check(id, [], tforms, offsets, facecolors, edgecolors)
check(id, paths, tforms[0:1], offsets, facecolors, edgecolors)
check(id, paths, [], offsets, facecolors, edgecolors)
for n in range(0, offsets.shape[0]):
check(id, paths, tforms, offsets[0:n, :], facecolors, edgecolors)
check(id, paths, tforms, offsets, [], edgecolors)
check(id, paths, tforms, offsets, facecolors, [])
check(id, paths, tforms, offsets, [], [])
check(id, paths, tforms, offsets, facecolors[0:1], edgecolors)
@cleanup
def test_get_default_filename():
try:
test_dir = tempfile.mkdtemp()
plt.rcParams['savefig.directory'] = test_dir
fig = plt.figure()
canvas = FigureCanvasBase(fig)
filename = canvas.get_default_filename()
assert_equal(filename, 'image.png')
finally:
shutil.rmtree(test_dir)
@cleanup
def test_get_default_filename_already_exists():
# From #3068: Suggest non-existing default filename
try:
test_dir = tempfile.mkdtemp()
plt.rcParams['savefig.directory'] = test_dir
fig = plt.figure()
canvas = FigureCanvasBase(fig)
# create 'image.png' in figure's save dir
open(os.path.join(test_dir, 'image.png'), 'w').close()
filename = canvas.get_default_filename()
assert_equal(filename, 'image-1.png')
finally:
shutil.rmtree(test_dir)
if __name__ == "__main__":
import nose
nose.runmodule(argv=['-s', '--with-doctest'], exit=False)
| apache-2.0 |
sandeepkrjha/pgmpy | pgmpy/models/BayesianModel.py | 1 | 36803 | #!/usr/bin/env python3
import itertools
from collections import defaultdict
import logging
from operator import mul
import networkx as nx
import numpy as np
import pandas as pd
from pgmpy.base import DirectedGraph
from pgmpy.factors.discrete import TabularCPD, JointProbabilityDistribution, DiscreteFactor
from pgmpy.independencies import Independencies
from pgmpy.extern import six
from pgmpy.extern.six.moves import range, reduce
from pgmpy.models.MarkovModel import MarkovModel
class BayesianModel(DirectedGraph):
"""
Base class for bayesian model.
A models stores nodes and edges with conditional probability
distribution (cpd) and other attributes.
models hold directed edges. Self loops are not allowed neither
multiple (parallel) edges.
Nodes should be strings.
Edges are represented as links between nodes.
Parameters
----------
data : input graph
Data to initialize graph. If data=None (default) an empty
graph is created. The data can be an edge list, or any
NetworkX graph object.
Examples
--------
Create an empty bayesian model with no nodes and no edges.
>>> from pgmpy.models import BayesianModel
>>> G = BayesianModel()
G can be grown in several ways.
**Nodes:**
Add one node at a time:
>>> G.add_node('a')
Add the nodes from any container (a list, set or tuple or the nodes
from another graph).
>>> G.add_nodes_from(['a', 'b'])
**Edges:**
G can also be grown by adding edges.
Add one edge,
>>> G.add_edge('a', 'b')
a list of edges,
>>> G.add_edges_from([('a', 'b'), ('b', 'c')])
If some edges connect nodes not yet in the model, the nodes
are added automatically. There are no errors when adding
nodes or edges that already exist.
**Shortcuts:**
Many common graph features allow python syntax for speed reporting.
>>> 'a' in G # check if node in graph
True
>>> len(G) # number of nodes in graph
3
"""
def __init__(self, ebunch=None):
super(BayesianModel, self).__init__()
if ebunch:
self.add_edges_from(ebunch)
self.cpds = []
self.cardinalities = defaultdict(int)
def add_edge(self, u, v, **kwargs):
"""
Add an edge between u and v.
The nodes u and v will be automatically added if they are
not already in the graph
Parameters
----------
u,v : nodes
Nodes can be any hashable python object.
Examples
--------
>>> from pgmpy.models import BayesianModel/home/abinash/software_packages/numpy-1.7.1
>>> G = BayesianModel()
>>> G.add_nodes_from(['grade', 'intel'])
>>> G.add_edge('grade', 'intel')
"""
if u == v:
raise ValueError('Self loops are not allowed.')
if u in self.nodes() and v in self.nodes() and nx.has_path(self, v, u):
raise ValueError(
'Loops are not allowed. Adding the edge from (%s->%s) forms a loop.' % (u, v))
else:
super(BayesianModel, self).add_edge(u, v, **kwargs)
def remove_node(self, node):
"""
Remove node from the model.
Removing a node also removes all the associated edges, removes the CPD
of the node and marginalizes the CPDs of it's children.
Parameters
----------
node : node
Node which is to be removed from the model.
Returns
-------
None
Examples
--------
>>> import pandas as pd
>>> import numpy as np
>>> from pgmpy.models import BayesianModel
>>> model = BayesianModel([('A', 'B'), ('B', 'C'),
... ('A', 'D'), ('D', 'C')])
>>> values = pd.DataFrame(np.random.randint(low=0, high=2, size=(1000, 4)),
... columns=['A', 'B', 'C', 'D'])
>>> model.fit(values)
>>> model.get_cpds()
[<TabularCPD representing P(A:2) at 0x7f28248e2438>,
<TabularCPD representing P(B:2 | A:2) at 0x7f28248e23c8>,
<TabularCPD representing P(C:2 | B:2, D:2) at 0x7f28248e2748>,
<TabularCPD representing P(D:2 | A:2) at 0x7f28248e26a0>]
>>> model.remove_node('A')
>>> model.get_cpds()
[<TabularCPD representing P(B:2) at 0x7f28248e23c8>,
<TabularCPD representing P(C:2 | B:2, D:2) at 0x7f28248e2748>,
<TabularCPD representing P(D:2) at 0x7f28248e26a0>]
"""
affected_nodes = [v for u, v in self.edges() if u == node]
for affected_node in affected_nodes:
node_cpd = self.get_cpds(node=affected_node)
if node_cpd:
node_cpd.marginalize([node], inplace=True)
if self.get_cpds(node=node):
self.remove_cpds(node)
super(BayesianModel, self).remove_node(node)
def remove_nodes_from(self, nodes):
"""
Remove multiple nodes from the model.
Removing a node also removes all the associated edges, removes the CPD
of the node and marginalizes the CPDs of it's children.
Parameters
----------
nodes : list, set (iterable)
Nodes which are to be removed from the model.
Returns
-------
None
Examples
--------
>>> import pandas as pd
>>> import numpy as np
>>> from pgmpy.models import BayesianModel
>>> model = BayesianModel([('A', 'B'), ('B', 'C'),
... ('A', 'D'), ('D', 'C')])
>>> values = pd.DataFrame(np.random.randint(low=0, high=2, size=(1000, 4)),
... columns=['A', 'B', 'C', 'D'])
>>> model.fit(values)
>>> model.get_cpds()
[<TabularCPD representing P(A:2) at 0x7f28248e2438>,
<TabularCPD representing P(B:2 | A:2) at 0x7f28248e23c8>,
<TabularCPD representing P(C:2 | B:2, D:2) at 0x7f28248e2748>,
<TabularCPD representing P(D:2 | A:2) at 0x7f28248e26a0>]
>>> model.remove_nodes_from(['A', 'B'])
>>> model.get_cpds()
[<TabularCPD representing P(C:2 | D:2) at 0x7f28248e2a58>,
<TabularCPD representing P(D:2) at 0x7f28248e26d8>]
"""
for node in nodes:
self.remove_node(node)
def add_cpds(self, *cpds):
"""
Add CPD (Conditional Probability Distribution) to the Bayesian Model.
Parameters
----------
cpds : list, set, tuple (array-like)
List of CPDs which will be associated with the model
EXAMPLE
-------
>>> from pgmpy.models import BayesianModel
>>> from pgmpy.factors.discrete.CPD import TabularCPD
>>> student = BayesianModel([('diff', 'grades'), ('intel', 'grades')])
>>> grades_cpd = TabularCPD('grades', 3, [[0.1,0.1,0.1,0.1,0.1,0.1],
... [0.1,0.1,0.1,0.1,0.1,0.1],
... [0.8,0.8,0.8,0.8,0.8,0.8]],
... evidence=['diff', 'intel'], evidence_card=[2, 3])
>>> student.add_cpds(grades_cpd)
+------+-----------------------+---------------------+
|diff: | easy | hard |
+------+------+------+---------+------+------+-------+
|intel:| dumb | avg | smart | dumb | avg | smart |
+------+------+------+---------+------+------+-------+
|gradeA| 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
+------+------+------+---------+------+------+-------+
|gradeB| 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
+------+------+------+---------+------+------+-------+
|gradeC| 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 |
+------+------+------+---------+------+------+-------+
"""
for cpd in cpds:
if not isinstance(cpd, TabularCPD):
raise ValueError('Only TabularCPD can be added.')
if set(cpd.variables) - set(cpd.variables).intersection(
set(self.nodes())):
raise ValueError('CPD defined on variable not in the model', cpd)
for prev_cpd_index in range(len(self.cpds)):
if self.cpds[prev_cpd_index].variable == cpd.variable:
logging.warning("Replacing existing CPD for {var}".format(var=cpd.variable))
self.cpds[prev_cpd_index] = cpd
break
else:
self.cpds.append(cpd)
def get_cpds(self, node=None):
"""
Returns the cpd of the node. If node is not specified returns all the CPDs
that have been added till now to the graph
Parameter
---------
node: any hashable python object (optional)
The node whose CPD we want. If node not specified returns all the
CPDs added to the model.
Returns
-------
A list of TabularCPDs.
Examples
--------
>>> from pgmpy.models import BayesianModel
>>> from pgmpy.factors.discrete import TabularCPD
>>> student = BayesianModel([('diff', 'grade'), ('intel', 'grade')])
>>> cpd = TabularCPD('grade', 2, [[0.1, 0.9, 0.2, 0.7],
... [0.9, 0.1, 0.8, 0.3]],
... ['intel', 'diff'], [2, 2])
>>> student.add_cpds(cpd)
>>> student.get_cpds()
"""
if node:
if node not in self.nodes():
raise ValueError('Node not present in the Directed Graph')
for cpd in self.cpds:
if cpd.variable == node:
return cpd
raise ValueError("CPD not added for the node: {node}".format(node=node))
else:
return self.cpds
def remove_cpds(self, *cpds):
"""
Removes the cpds that are provided in the argument.
Parameters
----------
*cpds: TabularCPD object
A CPD object on any subset of the variables of the model which
is to be associated with the model.
Examples
--------
>>> from pgmpy.models import BayesianModel
>>> from pgmpy.factors.discrete import TabularCPD
>>> student = BayesianModel([('diff', 'grade'), ('intel', 'grade')])
>>> cpd = TabularCPD('grade', 2, [[0.1, 0.9, 0.2, 0.7],
... [0.9, 0.1, 0.8, 0.3]],
... ['intel', 'diff'], [2, 2])
>>> student.add_cpds(cpd)
>>> student.remove_cpds(cpd)
"""
for cpd in cpds:
if isinstance(cpd, six.string_types):
cpd = self.get_cpds(cpd)
self.cpds.remove(cpd)
def get_cardinality(self, node):
"""
Returns the cardinality of the node. Throws an error if the CPD for the
queried node hasn't been added to the network.
Parameters
----------
node: Any hashable python object.
Returns
-------
int: The cardinality of the node.
"""
return self.get_cpds(node).cardinality[0]
def check_model(self):
"""
Check the model for various errors. This method checks for the following
errors.
* Checks if the sum of the probabilities for each state is equal to 1 (tol=0.01).
* Checks if the CPDs associated with nodes are consistent with their parents.
Returns
-------
check: boolean
True if all the checks are passed
"""
for node in self.nodes():
cpd = self.get_cpds(node=node)
if isinstance(cpd, TabularCPD):
evidence = cpd.variables[:0:-1]
parents = self.get_parents(node)
if set(evidence if evidence else []) != set(parents if parents else []):
raise ValueError("CPD associated with %s doesn't have "
"proper parents associated with it." % node)
if not np.allclose(cpd.to_factor().marginalize([node], inplace=False).values.flatten('C'),
np.ones(np.product(cpd.cardinality[:0:-1])),
atol=0.01):
raise ValueError('Sum of probabilites of states for node %s'
' is not equal to 1.' % node)
return True
def _get_ancestors_of(self, obs_nodes_list):
"""
Returns a dictionary of all ancestors of all the observed nodes including the
node itself.
Parameters
----------
obs_nodes_list: string, list-type
name of all the observed nodes
Examples
--------
>>> from pgmpy.models import BayesianModel
>>> model = BayesianModel([('D', 'G'), ('I', 'G'), ('G', 'L'),
... ('I', 'L')])
>>> model._get_ancestors_of('G')
{'D', 'G', 'I'}
>>> model._get_ancestors_of(['G', 'I'])
{'D', 'G', 'I'}
"""
if not isinstance(obs_nodes_list, (list, tuple)):
obs_nodes_list = [obs_nodes_list]
for node in obs_nodes_list:
if node not in self.nodes():
raise ValueError('Node {s} not in not in graph'.format(s=node))
ancestors_list = set()
nodes_list = set(obs_nodes_list)
while nodes_list:
node = nodes_list.pop()
if node not in ancestors_list:
nodes_list.update(self.predecessors(node))
ancestors_list.add(node)
return ancestors_list
def active_trail_nodes(self, variables, observed=None):
"""
Returns a dictionary with the given variables as keys and all the nodes reachable
from that respective variable as values.
Parameters
----------
variables: str or array like
variables whose active trails are to be found.
observed : List of nodes (optional)
If given the active trails would be computed assuming these nodes to be observed.
Examples
--------
>>> from pgmpy.models import BayesianModel
>>> student = BayesianModel()
>>> student.add_nodes_from(['diff', 'intel', 'grades'])
>>> student.add_edges_from([('diff', 'grades'), ('intel', 'grades')])
>>> student.active_trail_nodes('diff')
{'diff': {'diff', 'grades'}}
>>> student.active_trail_nodes(['diff', 'intel'], observed='grades')
{'diff': {'diff', 'intel'}, 'intel': {'diff', 'intel'}}
References
----------
Details of the algorithm can be found in 'Probabilistic Graphical Model
Principles and Techniques' - Koller and Friedman
Page 75 Algorithm 3.1
"""
if observed:
observed_list = observed if isinstance(observed, (list, tuple)) else [observed]
else:
observed_list = []
ancestors_list = self._get_ancestors_of(observed_list)
# Direction of flow of information
# up -> from parent to child
# down -> from child to parent
active_trails = {}
for start in variables if isinstance(variables, (list, tuple)) else [variables]:
visit_list = set()
visit_list.add((start, 'up'))
traversed_list = set()
active_nodes = set()
while visit_list:
node, direction = visit_list.pop()
if (node, direction) not in traversed_list:
if node not in observed_list:
active_nodes.add(node)
traversed_list.add((node, direction))
if direction == 'up' and node not in observed_list:
for parent in self.predecessors(node):
visit_list.add((parent, 'up'))
for child in self.successors(node):
visit_list.add((child, 'down'))
elif direction == 'down':
if node not in observed_list:
for child in self.successors(node):
visit_list.add((child, 'down'))
if node in ancestors_list:
for parent in self.predecessors(node):
visit_list.add((parent, 'up'))
active_trails[start] = active_nodes
return active_trails
def local_independencies(self, variables):
"""
Returns an instance of Independencies containing the local independencies
of each of the variables.
Parameters
----------
variables: str or array like
variables whose local independencies are to be found.
Examples
--------
>>> from pgmpy.models import BayesianModel
>>> student = BayesianModel()
>>> student.add_edges_from([('diff', 'grade'), ('intel', 'grade'),
>>> ('grade', 'letter'), ('intel', 'SAT')])
>>> ind = student.local_independencies('grade')
>>> ind
(grade _|_ SAT | diff, intel)
"""
def dfs(node):
"""
Returns the descendents of node.
Since Bayesian Networks are acyclic, this is a very simple dfs
which does not remember which nodes it has visited.
"""
descendents = []
visit = [node]
while visit:
n = visit.pop()
neighbors = self.neighbors(n)
visit.extend(neighbors)
descendents.extend(neighbors)
return descendents
independencies = Independencies()
for variable in variables if isinstance(variables, (list, tuple)) else [variables]:
non_descendents = set(self.nodes()) - {variable} - set(dfs(variable))
parents = set(self.get_parents(variable))
if non_descendents - parents:
independencies.add_assertions([variable, non_descendents - parents, parents])
return independencies
def is_active_trail(self, start, end, observed=None):
"""
Returns True if there is any active trail between start and end node
Parameters
----------
start : Graph Node
end : Graph Node
observed : List of nodes (optional)
If given the active trail would be computed assuming these nodes to be observed.
additional_observed : List of nodes (optional)
If given the active trail would be computed assuming these nodes to be observed along with
the nodes marked as observed in the model.
Examples
--------
>>> from pgmpy.models import BayesianModel
>>> student = BayesianModel()
>>> student.add_nodes_from(['diff', 'intel', 'grades', 'letter', 'sat'])
>>> student.add_edges_from([('diff', 'grades'), ('intel', 'grades'), ('grades', 'letter'),
... ('intel', 'sat')])
>>> student.is_active_trail('diff', 'intel')
False
>>> student.is_active_trail('grades', 'sat')
True
"""
if end in self.active_trail_nodes(start, observed)[start]:
return True
else:
return False
def get_independencies(self, latex=False):
"""
Computes independencies in the Bayesian Network, by checking d-seperation.
Parameters
----------
latex: boolean
If latex=True then latex string of the independence assertion
would be created.
Examples
--------
>>> from pgmpy.models import BayesianModel
>>> chain = BayesianModel([('X', 'Y'), ('Y', 'Z')])
>>> chain.get_independencies()
(X _|_ Z | Y)
(Z _|_ X | Y)
"""
independencies = Independencies()
for start in (self.nodes()):
rest = set(self.nodes()) - {start}
for r in range(len(rest)):
for observed in itertools.combinations(rest, r):
d_seperated_variables = rest - set(observed) - set(
self.active_trail_nodes(start, observed=observed)[start])
if d_seperated_variables:
independencies.add_assertions([start, d_seperated_variables, observed])
independencies.reduce()
if not latex:
return independencies
else:
return independencies.latex_string()
def to_markov_model(self):
"""
Converts bayesian model to markov model. The markov model created would
be the moral graph of the bayesian model.
Examples
--------
>>> from pgmpy.models import BayesianModel
>>> G = BayesianModel([('diff', 'grade'), ('intel', 'grade'),
... ('intel', 'SAT'), ('grade', 'letter')])
>>> mm = G.to_markov_model()
>>> mm.nodes()
['diff', 'grade', 'intel', 'SAT', 'letter']
>>> mm.edges()
[('diff', 'intel'), ('diff', 'grade'), ('intel', 'grade'),
('intel', 'SAT'), ('grade', 'letter')]
"""
moral_graph = self.moralize()
mm = MarkovModel(moral_graph.edges())
mm.add_factors(*[cpd.to_factor() for cpd in self.cpds])
return mm
def to_junction_tree(self):
"""
Creates a junction tree (or clique tree) for a given bayesian model.
For converting a Bayesian Model into a Clique tree, first it is converted
into a Markov one.
For a given markov model (H) a junction tree (G) is a graph
1. where each node in G corresponds to a maximal clique in H
2. each sepset in G separates the variables strictly on one side of the
edge to other.
Examples
--------
>>> from pgmpy.models import BayesianModel
>>> from pgmpy.factors.discrete import TabularCPD
>>> G = BayesianModel([('diff', 'grade'), ('intel', 'grade'),
... ('intel', 'SAT'), ('grade', 'letter')])
>>> diff_cpd = TabularCPD('diff', 2, [[0.2], [0.8]])
>>> intel_cpd = TabularCPD('intel', 3, [[0.5], [0.3], [0.2]])
>>> grade_cpd = TabularCPD('grade', 3,
... [[0.1,0.1,0.1,0.1,0.1,0.1],
... [0.1,0.1,0.1,0.1,0.1,0.1],
... [0.8,0.8,0.8,0.8,0.8,0.8]],
... evidence=['diff', 'intel'],
... evidence_card=[2, 3])
>>> sat_cpd = TabularCPD('SAT', 2,
... [[0.1, 0.2, 0.7],
... [0.9, 0.8, 0.3]],
... evidence=['intel'], evidence_card=[3])
>>> letter_cpd = TabularCPD('letter', 2,
... [[0.1, 0.4, 0.8],
... [0.9, 0.6, 0.2]],
... evidence=['grade'], evidence_card=[3])
>>> G.add_cpds(diff_cpd, intel_cpd, grade_cpd, sat_cpd, letter_cpd)
>>> jt = G.to_junction_tree()
"""
mm = self.to_markov_model()
return mm.to_junction_tree()
def fit(self, data, estimator_type=None, state_names=[], complete_samples_only=True, **kwargs):
"""
Estimates the CPD for each variable based on a given data set.
Parameters
----------
data: pandas DataFrame object
DataFrame object with column names identical to the variable names of the network.
(If some values in the data are missing the data cells should be set to `numpy.NaN`.
Note that pandas converts each column containing `numpy.NaN`s to dtype `float`.)
estimator: Estimator class
One of:
- MaximumLikelihoodEstimator (default)
- BayesianEstimator: In this case, pass 'prior_type' and either 'pseudo_counts'
or 'equivalent_sample_size' as additional keyword arguments.
See `BayesianEstimator.get_parameters()` for usage.
state_names: dict (optional)
A dict indicating, for each variable, the discrete set of states
that the variable can take. If unspecified, the observed values
in the data set are taken to be the only possible states.
complete_samples_only: bool (default `True`)
Specifies how to deal with missing data, if present. If set to `True` all rows
that contain `np.Nan` somewhere are ignored. If `False` then, for each variable,
every row where neither the variable nor its parents are `np.NaN` is used.
Examples
--------
>>> import pandas as pd
>>> from pgmpy.models import BayesianModel
>>> from pgmpy.estimators import MaximumLikelihoodEstimator
>>> data = pd.DataFrame(data={'A': [0, 0, 1], 'B': [0, 1, 0], 'C': [1, 1, 0]})
>>> model = BayesianModel([('A', 'C'), ('B', 'C')])
>>> model.fit(data)
>>> model.get_cpds()
[<TabularCPD representing P(A:2) at 0x7fb98a7d50f0>,
<TabularCPD representing P(B:2) at 0x7fb98a7d5588>,
<TabularCPD representing P(C:2 | A:2, B:2) at 0x7fb98a7b1f98>]
"""
from pgmpy.estimators import MaximumLikelihoodEstimator, BayesianEstimator, BaseEstimator
if estimator_type is None:
estimator_type = MaximumLikelihoodEstimator
else:
if not issubclass(estimator_type, BaseEstimator):
raise TypeError("Estimator object should be a valid pgmpy estimator.")
estimator = estimator_type(self, data, state_names=state_names,
complete_samples_only=complete_samples_only)
cpds_list = estimator.get_parameters(**kwargs)
self.add_cpds(*cpds_list)
def predict(self, data):
"""
Predicts states of all the missing variables.
Parameters
----------
data : pandas DataFrame object
A DataFrame object with column names same as the variables in the model.
Examples
--------
>>> import numpy as np
>>> import pandas as pd
>>> from pgmpy.models import BayesianModel
>>> values = pd.DataFrame(np.random.randint(low=0, high=2, size=(1000, 5)),
... columns=['A', 'B', 'C', 'D', 'E'])
>>> train_data = values[:800]
>>> predict_data = values[800:]
>>> model = BayesianModel([('A', 'B'), ('C', 'B'), ('C', 'D'), ('B', 'E')])
>>> model.fit(values)
>>> predict_data = predict_data.copy()
>>> predict_data.drop('E', axis=1, inplace=True)
>>> y_pred = model.predict(predict_data)
>>> y_pred
E
800 0
801 1
802 1
803 1
804 0
... ...
993 0
994 0
995 1
996 1
997 0
998 0
999 0
"""
from pgmpy.inference import VariableElimination
if set(data.columns) == set(self.nodes()):
raise ValueError("No variable missing in data. Nothing to predict")
elif set(data.columns) - set(self.nodes()):
raise ValueError("Data has variables which are not in the model")
missing_variables = set(self.nodes()) - set(data.columns)
pred_values = defaultdict(list)
# Send state_names dict from one of the estimated CPDs to the inference class.
model_inference = VariableElimination(self, state_names=self.get_cpds()[0].state_names)
for index, data_point in data.iterrows():
states_dict = model_inference.map_query(variables=missing_variables, evidence=data_point.to_dict())
for k, v in states_dict.items():
pred_values[k].append(v)
return pd.DataFrame(pred_values, index=data.index)
def predict_probability(self, data):
"""
Predicts probabilities of all states of the missing variables.
Parameters
----------
data : pandas DataFrame object
A DataFrame object with column names same as the variables in the model.
Examples
--------
>>> import numpy as np
>>> import pandas as pd
>>> from pgmpy.models import BayesianModel
>>> values = pd.DataFrame(np.random.randint(low=0, high=2, size=(100, 5)),
... columns=['A', 'B', 'C', 'D', 'E'])
>>> train_data = values[:80]
>>> predict_data = values[80:]
>>> model = BayesianModel([('A', 'B'), ('C', 'B'), ('C', 'D'), ('B', 'E')])
>>> model.fit(values)
>>> predict_data = predict_data.copy()
>>> predict_data.drop('B', axis=1, inplace=True)
>>> y_prob = model.predict_probability(predict_data)
>>> y_prob
B_0 B_1
80 0.439178 0.560822
81 0.581970 0.418030
82 0.488275 0.511725
83 0.581970 0.418030
84 0.510794 0.489206
85 0.439178 0.560822
86 0.439178 0.560822
87 0.417124 0.582876
88 0.407978 0.592022
89 0.429905 0.570095
90 0.581970 0.418030
91 0.407978 0.592022
92 0.429905 0.570095
93 0.429905 0.570095
94 0.439178 0.560822
95 0.407978 0.592022
96 0.559904 0.440096
97 0.417124 0.582876
98 0.488275 0.511725
99 0.407978 0.592022
"""
from pgmpy.inference import VariableElimination
if set(data.columns) == set(self.nodes()):
raise ValueError("No variable missing in data. Nothing to predict")
elif set(data.columns) - set(self.nodes()):
raise ValueError("Data has variables which are not in the model")
missing_variables = set(self.nodes()) - set(data.columns)
pred_values = defaultdict(list)
model_inference = VariableElimination(self)
for index, data_point in data.iterrows():
states_dict = model_inference.query(variables=missing_variables, evidence=data_point.to_dict())
for k, v in states_dict.items():
for l in range(len(v.values)):
state = self.get_cpds(k).state_names[k][l]
pred_values[k + '_' + str(state)].append(v.values[l])
return pd.DataFrame(pred_values, index=data.index)
def get_factorized_product(self, latex=False):
# TODO: refer to IMap class for explanation why this is not implemented.
pass
def get_immoralities(self):
"""
Finds all the immoralities in the model
A v-structure X -> Z <- Y is an immorality if there is no direct edge between X and Y .
Returns
-------
set: A set of all the immoralities in the model
Examples
---------
>>> from pgmpy.models import BayesianModel
>>> student = BayesianModel()
>>> student.add_edges_from([('diff', 'grade'), ('intel', 'grade'),
... ('intel', 'SAT'), ('grade', 'letter')])
>>> student.get_immoralities()
{('diff','intel')}
"""
immoralities = set()
for node in self.nodes():
for parents in itertools.combinations(self.predecessors(node), 2):
if not self.has_edge(parents[0], parents[1]) and not self.has_edge(parents[1], parents[0]):
immoralities.add(tuple(sorted(parents)))
return immoralities
def is_iequivalent(self, model):
"""
Checks whether the given model is I-equivalent
Two graphs G1 and G2 are said to be I-equivalent if they have same skeleton
and have same set of immoralities.
Note: For same skeleton different names of nodes can work but for immoralities
names of nodes must be same
Parameters
----------
model : A Bayesian model object, for which you want to check I-equivalence
Returns
--------
boolean : True if both are I-equivalent, False otherwise
Examples
--------
>>> from pgmpy.models import BayesianModel
>>> G = BayesianModel()
>>> G.add_edges_from([('V', 'W'), ('W', 'X'),
... ('X', 'Y'), ('Z', 'Y')])
>>> G1 = BayesianModel()
>>> G1.add_edges_from([('W', 'V'), ('X', 'W'),
... ('X', 'Y'), ('Z', 'Y')])
>>> G.is_iequivalent(G1)
True
"""
if not isinstance(model, BayesianModel):
raise TypeError('model must be an instance of Bayesian Model')
skeleton = nx.algorithms.isomorphism.GraphMatcher(self.to_undirected(), model.to_undirected())
if skeleton.is_isomorphic() and self.get_immoralities() == model.get_immoralities():
return True
return False
def is_imap(self, JPD):
"""
Checks whether the bayesian model is Imap of given JointProbabilityDistribution
Parameters
-----------
JPD : An instance of JointProbabilityDistribution Class, for which you want to
check the Imap
Returns
--------
boolean : True if bayesian model is Imap for given Joint Probability Distribution
False otherwise
Examples
--------
>>> from pgmpy.models import BayesianModel
>>> from pgmpy.factors.discrete import TabularCPD
>>> from pgmpy.factors.discrete import JointProbabilityDistribution
>>> G = BayesianModel([('diff', 'grade'), ('intel', 'grade')])
>>> diff_cpd = TabularCPD('diff', 2, [[0.2], [0.8]])
>>> intel_cpd = TabularCPD('intel', 3, [[0.5], [0.3], [0.2]])
>>> grade_cpd = TabularCPD('grade', 3,
... [[0.1,0.1,0.1,0.1,0.1,0.1],
... [0.1,0.1,0.1,0.1,0.1,0.1],
... [0.8,0.8,0.8,0.8,0.8,0.8]],
... evidence=['diff', 'intel'],
... evidence_card=[2, 3])
>>> G.add_cpds(diff_cpd, intel_cpd, grade_cpd)
>>> val = [0.01, 0.01, 0.08, 0.006, 0.006, 0.048, 0.004, 0.004, 0.032,
0.04, 0.04, 0.32, 0.024, 0.024, 0.192, 0.016, 0.016, 0.128]
>>> JPD = JointProbabilityDistribution(['diff', 'intel', 'grade'], [2, 3, 3], val)
>>> G.is_imap(JPD)
True
"""
if not isinstance(JPD, JointProbabilityDistribution):
raise TypeError("JPD must be an instance of JointProbabilityDistribution")
factors = [cpd.to_factor() for cpd in self.get_cpds()]
factor_prod = reduce(mul, factors)
JPD_fact = DiscreteFactor(JPD.variables, JPD.cardinality, JPD.values)
if JPD_fact == factor_prod:
return True
else:
return False
def copy(self):
"""
Returns a copy of the model.
Returns
-------
BayesianModel: Copy of the model on which the method was called.
Examples
--------
>>> from pgmpy.models import BayesianModel
>>> from pgmpy.factors.discrete import TabularCPD
>>> model = BayesianModel([('A', 'B'), ('B', 'C')])
>>> cpd_a = TabularCPD('A', 2, [[0.2], [0.8]])
>>> cpd_b = TabularCPD('B', 2, [[0.3, 0.7], [0.7, 0.3]],
evidence=['A'],
evidence_card=[2])
>>> cpd_c = TabularCPD('C', 2, [[0.1, 0.9], [0.9, 0.1]],
evidence=['B'],
evidence_card=[2])
>>> model.add_cpds(cpd_a, cpd_b, cpd_c)
>>> copy_model = model.copy()
>>> copy_model.nodes()
['C', 'A', 'B']
>>> copy_model.edges()
[('A', 'B'), ('B', 'C')]
>>> copy_model.get_cpds()
[<TabularCPD representing P(A:2) at 0x7f2824930a58>,
<TabularCPD representing P(B:2 | A:2) at 0x7f2824930a90>,
<TabularCPD representing P(C:2 | B:2) at 0x7f2824944240>]
"""
model_copy = BayesianModel()
model_copy.add_nodes_from(self.nodes())
model_copy.add_edges_from(self.edges())
if self.cpds:
model_copy.add_cpds(*[cpd.copy() for cpd in self.cpds])
return model_copy
| mit |
jepio/pers_engine | persanalysis/fitengine.py | 1 | 1436 | """ Module for fitting graphs to file """
import matplotlib.pyplot as plt
from plotengine import PlotEngine
# pylint: disable=E1101
import numpy as np
from scipy.optimize import curve_fit
class FitEngine(PlotEngine):
""" Class that performs fitting and saving of plots. """
functions = {"lin": (lambda x, a, b: a * x + b, "A*x+B", ["A", "B"]),
"exp": (lambda x, a, b, c: a * np.exp(b * x) + c,
"A*exp(B*x)+C", ["A", "B", "C"])}
def __init__(self, data_tuple, name, func_name):
super(FitEngine, self).__init__(data_tuple, name)
self.func = FitEngine.functions[func_name]
self.fit()
def fit(self):
""" Fit function to data and plot. """
func_to_fit = self.func[0]
popt, pcov = curve_fit(func_to_fit, self.xval, self.yval,
sigma=self.yerr)
print "Function definition:"
print self.func[1]
if type(pcov) is float:
pcov = np.zeros((len(popt), len(popt)))
pcov = np.sqrt(np.abs(pcov))
for i, par_val in enumerate(popt):
string = "{0}: {1:.3g} +/- {2:.3g}".format(
self.func[2][i], par_val, pcov[i][i])
print string
xmin, xmax = plt.xlim()
ymin, ymax = plt.ylim()
xvals = np.linspace(xmin, xmax, num=100)
plt.plot(xvals, func_to_fit(xvals, *popt))
plt.ylim(ymin, ymax)
| gpl-2.0 |
robcarver17/pysystemtrade | systems/positionsizing.py | 1 | 18802 | import pandas as pd
from syscore.dateutils import ROOT_BDAYS_INYEAR
from syscore.objects import missing_data
from sysdata.config.configdata import Config
from sysdata.sim.sim_data import simData
from sysquant.estimators.vol import robust_vol_calc
from systems.stage import SystemStage
from systems.system_cache import input, diagnostic, output
from systems.forecast_combine import ForecastCombine
from systems.rawdata import RawData
class PositionSizing(SystemStage):
"""
Stage for position sizing (take combined forecast; turn into subsystem positions)
KEY INPUTS: a) system.combForecast.get_combined_forecast(instrument_code)
found in self.get_combined_forecast
b) system.rawdata.get_daily_percentage_volatility(instrument_code)
found in self.get_price_volatility(instrument_code)
If not found, uses system.data.daily_prices to calculate
c) system.rawdata.daily_denominator_price((instrument_code)
found in self.get_instrument_sizing_data(instrument_code)
If not found, uses system.data.daily_prices
d) system.data.get_value_of_block_price_move(instrument_code)
found in self.get_instrument_sizing_data(instrument_code)
e) system.data.get_fx_for_instrument(instrument_code, base_currency)
found in self.get_fx_rate(instrument_code)
KEY OUTPUT: system.positionSize.get_subsystem_position(instrument_code)
Name: positionSize
"""
@property
def name(self):
return "positionSize"
@output()
def get_subsystem_position(self, instrument_code: str) -> pd.Series:
"""
Get scaled position (assuming for now we trade our entire capital for one instrument)
KEY OUTPUT
:param instrument_code: instrument to get values for
:type instrument_code: str
:returns: Tx1 pd.DataFrame
>>> from systems.tests.testdata import get_test_object_futures_with_comb_forecasts
>>> from systems.basesystem import System
>>> (comb, fcs, rules, rawdata, data, config)=get_test_object_futures_with_comb_forecasts()
>>> system=System([rawdata, rules, fcs, comb, PositionSizing()], data, config)
>>>
>>> system.positionSize.get_subsystem_position("EDOLLAR").tail(2)
ss_position
2015-12-10 1.811465
2015-12-11 2.544598
>>>
>>> system2=System([rawdata, rules, fcs, comb, PositionSizing()], data, config)
>>> system2.positionSize.get_subsystem_position("EDOLLAR").tail(2)
ss_position
2015-12-10 1.811465
2015-12-11 2.544598
"""
self.log.msg(
"Calculating subsystem position for %s" % instrument_code,
instrument_code=instrument_code,
)
"""
We don't allow this to be changed in config
"""
avg_abs_forecast = self.avg_abs_forecast()
vol_scalar = self.get_volatility_scalar(instrument_code)
forecast = self.get_combined_forecast(instrument_code)
vol_scalar = vol_scalar.reindex(forecast.index).ffill()
subsystem_position = vol_scalar * forecast / avg_abs_forecast
return subsystem_position
def avg_abs_forecast(self) -> float:
return self.config.average_absolute_forecast
@property
def config(self) -> Config:
return self.parent.config
@diagnostic()
def get_volatility_scalar(self, instrument_code: str) -> pd.Series:
"""
Get ratio of required volatility vs volatility of instrument in instrument's own currency
:param instrument_code: instrument to get values for
:type instrument_code: str
:returns: Tx1 pd.DataFrame
>>> from systems.tests.testdata import get_test_object_futures_with_comb_forecasts
>>> from systems.basesystem import System
>>> (comb, fcs, rules, rawdata, data, config)=get_test_object_futures_with_comb_forecasts()
>>> system=System([rawdata, rules, fcs, comb, PositionSizing()], data, config)
>>>
>>> system.positionSize.get_volatility_scalar("EDOLLAR").tail(2)
vol_scalar
2015-12-10 11.187869
2015-12-11 10.332930
>>>
>>> ## without raw data
>>> system2=System([ rules, fcs, comb, PositionSizing()], data, config)
>>> system2.positionSize.get_volatility_scalar("EDOLLAR").tail(2)
vol_scalar
2015-12-10 11.180444
2015-12-11 10.344278
"""
self.log.msg(
"Calculating volatility scalar for %s" % instrument_code,
instrument_code=instrument_code,
)
instr_value_vol = self.get_instrument_value_vol(instrument_code)
cash_vol_target = self.get_daily_cash_vol_target()
vol_scalar = cash_vol_target / instr_value_vol
return vol_scalar
@diagnostic()
def get_instrument_value_vol(self, instrument_code: str) -> pd.Series:
"""
Get value of volatility of instrument in base currency (used for account value)
:param instrument_code: instrument to get values for
:type instrument_code: str
:returns: Tx1 pd.DataFrame
>>> from systems.tests.testdata import get_test_object_futures_with_comb_forecasts
>>> from systems.basesystem import System
>>> (comb, fcs, rules, rawdata, data, config)=get_test_object_futures_with_comb_forecasts()
>>> system=System([rawdata, rules, fcs, comb, PositionSizing()], data, config)
>>>
>>> system.positionSize.get_instrument_value_vol("EDOLLAR").tail(2)
ivv
2015-12-10 89.382530
2015-12-11 96.777975
>>>
>>> system2=System([rawdata, rules, fcs, comb, PositionSizing()], data, config)
>>> system2.positionSize.get_instrument_value_vol("EDOLLAR").tail(2)
ivv
2015-12-10 89.382530
2015-12-11 96.777975
"""
self.log.msg(
"Calculating instrument value vol for %s" % instrument_code,
instrument_code=instrument_code,
)
instr_ccy_vol = self.get_instrument_currency_vol(instrument_code)
fx_rate = self.get_fx_rate(instrument_code)
fx_rate = fx_rate.reindex(instr_ccy_vol.index, method="ffill")
instr_value_vol = instr_ccy_vol.ffill() * fx_rate
return instr_value_vol
@diagnostic()
def get_instrument_currency_vol(self, instrument_code: str) -> pd.Series:
"""
Get value of volatility of instrument in instrument's own currency
:param instrument_code: instrument to get values for
:type instrument_code: str
:returns: Tx1 pd.DataFrame
>>> from systems.tests.testdata import get_test_object_futures_with_comb_forecasts
>>> from systems.basesystem import System
>>> (comb, fcs, rules, rawdata, data, config)=get_test_object_futures_with_comb_forecasts()
>>> system=System([rawdata, rules, fcs, comb, PositionSizing()], data, config)
>>>
>>> system.positionSize.get_instrument_currency_vol("EDOLLAR").tail(2)
icv
2015-12-10 135.272415
2015-12-11 146.464756
>>>
>>> system2=System([ rules, fcs, comb, PositionSizing()], data, config)
>>> system2.positionSize.get_instrument_currency_vol("EDOLLAR").tail(2)
icv
2015-12-10 135.362246
2015-12-11 146.304072
"""
self.log.msg(
"Calculating instrument currency vol for %s" % instrument_code,
instrument_code=instrument_code,
)
block_value = self.get_block_value(instrument_code)
daily_perc_vol = self.get_price_volatility(instrument_code)
## FIXME WHY NOT RESAMPLE?
(block_value, daily_perc_vol) = block_value.align(
daily_perc_vol, join="inner")
instr_ccy_vol = block_value.ffill() * daily_perc_vol
return instr_ccy_vol
@diagnostic()
def get_block_value(self, instrument_code: str) -> pd.Series:
"""
Calculate block value for instrument_code
:param instrument_code: instrument to get values for
:type instrument_code: str
:returns: Tx1 pd.DataFrame
>>> from systems.tests.testdata import get_test_object_futures_with_comb_forecasts
>>> from systems.basesystem import System
>>> (comb, fcs, rules, rawdata, data, config)=get_test_object_futures_with_comb_forecasts()
>>> system=System([rawdata, rules, fcs, comb, PositionSizing()], data, config)
>>>
>>> system.positionSize.get_block_value("EDOLLAR").tail(2)
bvalue
2015-12-10 2447.0000
2015-12-11 2449.6875
>>>
>>> system=System([rules, fcs, comb, PositionSizing()], data, config)
>>> system.positionSize.get_block_value("EDOLLAR").tail(2)
bvalue
2015-12-10 2447.0000
2015-12-11 2449.6875
"""
underlying_price = self.get_underlying_price(
instrument_code)
value_of_price_move = self.parent.data.get_value_of_block_price_move(
instrument_code
)
block_value = underlying_price.ffill() * value_of_price_move * 0.01
return block_value
@diagnostic()
def get_underlying_price(self, instrument_code: str) -> pd.Series:
"""
Get various things from data and rawdata to calculate position sizes
KEY INPUT
:param instrument_code: instrument to get values for
:type instrument_code: str
:returns: Tx1 pd.DataFrame: underlying price [as used to work out % volatility],
>>> from systems.tests.testdata import get_test_object_futures_with_comb_forecasts
>>> from systems.basesystem import System
>>> (comb, fcs, rules, rawdata, data, config)=get_test_object_futures_with_comb_forecasts()
>>> system=System([rawdata, rules, fcs, comb, PositionSizing()], data, config)
>>>
>>> ans=system.positionSize.get_underlying_price("EDOLLAR")
>>> ans[0].tail(2)
price
2015-12-10 97.8800
2015-12-11 97.9875
>>>
>>> ans[1]
2500
>>>
>>> system=System([rules, fcs, comb, PositionSizing()], data, config)
>>>
>>> ans=system.positionSize.get_underlying_price("EDOLLAR")
>>> ans[0].tail(2)
price
2015-12-10 97.8800
2015-12-11 97.9875
>>>
>>> ans[1]
2500
"""
rawdata = self.rawdata_stage
if rawdata is missing_data:
underlying_price = self.data.daily_prices(instrument_code)
else:
underlying_price = self.rawdata_stage.daily_denominator_price(
instrument_code
)
return underlying_price
@property
def rawdata_stage(self) -> RawData:
rawdata_stage = getattr(self.parent, "rawdata", missing_data)
return rawdata_stage
@property
def data(self) -> simData:
return self.parent.data
@diagnostic()
def get_price_volatility(self, instrument_code: str) -> pd.Series:
"""
Get the daily % volatility; If a rawdata stage exists from there; otherwise work it out
:param instrument_code: instrument to get values for
:type instrument_code: str
:returns: Tx1 pd.DataFrame
KEY INPUT
Note as an exception to the normal rule we cache this, as it sometimes comes from data
>>> from systems.tests.testdata import get_test_object_futures_with_comb_forecasts
>>> from systems.basesystem import System
>>> (comb, fcs, rules, rawdata, data, config)=get_test_object_futures_with_comb_forecasts()
>>> system=System([rawdata, rules, fcs, comb, PositionSizing()], data, config)
>>>
>>> system.positionSize.get_price_volatility("EDOLLAR").tail(2)
vol
2015-12-10 0.055281
2015-12-11 0.059789
>>>
>>> system2=System([ rules, fcs, comb, PositionSizing()], data, config)
>>>
>>> system2.positionSize.get_price_volatility("EDOLLAR").tail(2)
vol
2015-12-10 0.055318
2015-12-11 0.059724
"""
rawdata = self.rawdata_stage
if rawdata is missing_data:
daily_perc_vol = self.calculate_daily_percentage_vol(instrument_code)
else:
daily_perc_vol = rawdata.get_daily_percentage_volatility(
instrument_code
)
return daily_perc_vol
@diagnostic()
def calculate_daily_percentage_vol(self, instrument_code: str) -> pd.Series:
# backadjusted prices can be negative
underlying_price = self.get_underlying_price(instrument_code)
return_vol = self.calculate_daily_returns_vol(instrument_code)
daily_vol_as_ratio = return_vol / underlying_price
daily_perc_vol = 100.0 * daily_vol_as_ratio
return daily_perc_vol
@diagnostic()
def calculate_daily_returns_vol(self, instrument_code: str) -> pd.Series:
price = self._daily_prices_direct_from_data(instrument_code)
returns_vol = robust_vol_calc(price.diff())
return returns_vol
@input
def _daily_prices_direct_from_data(self, instrument_code: str) -> pd.Series:
price = self.data.daily_prices(instrument_code)
return price
@diagnostic()
def get_vol_target_dict(self) -> dict:
# FIXME UGLY REPLACE WITH COMPONENTS
"""
Get the daily cash vol target
Requires: percentage_vol_target, notional_trading_capital, base_currency
To find these, look in (a) in system.config.parameters...
(b).... if not found, in systems.get_defaults.py
:Returns: tuple (str, float): str is base_currency, float is value
>>> from systems.tests.testdata import get_test_object_futures_with_comb_forecasts
>>> from systems.basesystem import System
>>> (comb, fcs, rules, rawdata, data, config)=get_test_object_futures_with_comb_forecasts()
>>> system=System([rawdata, rules, fcs, comb, PositionSizing()], data, config)
>>>
>>> ## from config
>>> system.positionSize.get_vol_target_dict()['base_currency']
'GBP'
>>>
>>> ## from defaults
>>> del(config.base_currency)
>>> system=System([rawdata, rules, fcs, comb, PositionSizing()], data, config)
>>> system.positionSize.get_vol_target_dict()['base_currency']
'USD'
>>>
"""
self.log.msg("Getting vol target")
percentage_vol_target = self.get_percentage_vol_target()
notional_trading_capital = self.get_notional_trading_capital()
base_currency = self.get_base_currency()
annual_cash_vol_target = self.annual_cash_vol_target()
daily_cash_vol_target = self.get_daily_cash_vol_target()
vol_target_dict = dict(
base_currency=base_currency,
percentage_vol_target=percentage_vol_target,
notional_trading_capital=notional_trading_capital,
annual_cash_vol_target=annual_cash_vol_target,
daily_cash_vol_target=daily_cash_vol_target,
)
return vol_target_dict
@diagnostic()
def get_daily_cash_vol_target(self) -> float:
annual_cash_vol_target = self.annual_cash_vol_target()
daily_cash_vol_target = annual_cash_vol_target / ROOT_BDAYS_INYEAR
return daily_cash_vol_target
@diagnostic()
def annual_cash_vol_target(self) -> float:
notional_trading_capital = self.get_notional_trading_capital()
percentage_vol_target = self.get_percentage_vol_target()
annual_cash_vol_target = (
notional_trading_capital * percentage_vol_target / 100.0
)
return annual_cash_vol_target
@input
def get_notional_trading_capital(self) -> float:
notional_trading_capital = float(
self.config.notional_trading_capital)
return notional_trading_capital
@input
def get_percentage_vol_target(self):
return float(self.config.percentage_vol_target)
@diagnostic()
def get_base_currency(self) -> str:
base_currency = self.config.base_currency
return base_currency
@input
def get_fx_rate(self, instrument_code: str) -> pd.Series:
"""
Get FX rate to translate instrument volatility into same currency as account value.
KEY INPUT
:param instrument_code: instrument to get values for
:type instrument_code: str
:returns: Tx1 pd.DataFrame: fx rate
>>> from systems.tests.testdata import get_test_object_futures_with_comb_forecasts
>>> from systems.basesystem import System
>>> (comb, fcs, rules, rawdata, data, config)=get_test_object_futures_with_comb_forecasts()
>>> system=System([rawdata, rules, fcs, comb, PositionSizing()], data, config)
>>>
>>> system.positionSize.get_fx_rate("EDOLLAR").tail(2)
fx
2015-12-09 0.664311
2015-12-10 0.660759
"""
base_currency = self.get_base_currency()
fx_rate = self.data.get_fx_for_instrument(
instrument_code, base_currency)
return fx_rate
@input
def get_combined_forecast(self, instrument_code: str) -> pd.Series:
"""
Get the combined forecast from previous module
:param instrument_code: instrument to get values for
:type instrument_code: str
:returns: Tx1 pd.DataFrame
KEY INPUT
>>> from systems.tests.testdata import get_test_object_futures_with_comb_forecasts
>>> from systems.basesystem import System
>>> (comb, fcs, rules, rawdata, data, config)=get_test_object_futures_with_comb_forecasts()
>>> system=System([rawdata, rules, fcs, comb, PositionSizing()], data, config)
>>>
>>> system.positionSize.get_combined_forecast("EDOLLAR").tail(2)
comb_forecast
2015-12-10 1.619134
2015-12-11 2.462610
"""
return self.comb_forecast_stage.get_combined_forecast(instrument_code)
@property
def comb_forecast_stage(self) -> ForecastCombine:
return self.parent.combForecast
if __name__ == "__main__":
import doctest
doctest.testmod()
| gpl-3.0 |
kernc/scikit-learn | doc/datasets/mldata_fixture.py | 367 | 1183 | """Fixture module to skip the datasets loading when offline
Mock urllib2 access to mldata.org and create a temporary data folder.
"""
from os import makedirs
from os.path import join
import numpy as np
import tempfile
import shutil
from sklearn import datasets
from sklearn.utils.testing import install_mldata_mock
from sklearn.utils.testing import uninstall_mldata_mock
def globs(globs):
# Create a temporary folder for the data fetcher
global custom_data_home
custom_data_home = tempfile.mkdtemp()
makedirs(join(custom_data_home, 'mldata'))
globs['custom_data_home'] = custom_data_home
return globs
def setup_module():
# setup mock urllib2 module to avoid downloading from mldata.org
install_mldata_mock({
'mnist-original': {
'data': np.empty((70000, 784)),
'label': np.repeat(np.arange(10, dtype='d'), 7000),
},
'iris': {
'data': np.empty((150, 4)),
},
'datasets-uci-iris': {
'double0': np.empty((150, 4)),
'class': np.empty((150,)),
},
})
def teardown_module():
uninstall_mldata_mock()
shutil.rmtree(custom_data_home)
| bsd-3-clause |
e-koch/TurbuStat | turbustat/statistics/dendrograms/dendro_stats.py | 2 | 34290 | # Licensed under an MIT open source license - see LICENSE
from __future__ import print_function, absolute_import, division
'''
Dendrogram statistics as described in Burkhart et al. (2013)
Two statistics are contained:
* number of leaves + branches vs. $\delta$ parameter
* statistical moments of the intensity histogram
Requires the astrodendro package (http://github.com/astrodendro/dendro-core)
'''
import numpy as np
from warnings import warn
import statsmodels.api as sm
from astropy.utils.console import ProgressBar
import warnings
try:
from astrodendro import Dendrogram, periodic_neighbours
astrodendro_flag = True
except ImportError:
Warning("Need to install astrodendro to use dendrogram statistics.")
astrodendro_flag = False
from ..stats_utils import hellinger, common_histogram_bins, standardize
from ..base_statistic import BaseStatisticMixIn
from ...io import common_types, threed_types, twod_types
from .mecdf import mecdf
class Dendrogram_Stats(BaseStatisticMixIn):
"""
Dendrogram statistics as described in Burkhart et al. (2013)
Two statistics are contained:
* number of leaves & branches vs. :math:`\delta` parameter
* statistical moments of the intensity histogram
Parameters
----------
data : %(dtypes)s
Data to create the dendrogram from.
min_deltas : {`~numpy.ndarray`, 'auto', None}, optional
Minimum deltas of leaves in the dendrogram. Multiple values must
be given in increasing order to correctly prune the dendrogram.
The default estimates delta levels from percentiles in the data.
dendro_params : dict
Further parameters for the dendrogram algorithm
(see www.dendrograms.org for more info).
num_deltas : int, optional
Number of min_delta values to use when `min_delta='auto'`.
"""
__doc__ %= {"dtypes": " or ".join(common_types + twod_types +
threed_types)}
def __init__(self, data, header=None, min_deltas='auto',
dendro_params=None, num_deltas=10):
super(Dendrogram_Stats, self).__init__()
if not astrodendro_flag:
raise ImportError("astrodendro must be installed to use "
"Dendrogram_Stats.")
self.input_data_header(data, header)
if dendro_params is None:
self.dendro_params = {"min_npix": 10,
"min_value": 0.001,
"min_delta": 0.1}
else:
self.dendro_params = dendro_params
if min_deltas == 'auto':
self.autoset_min_deltas(num=num_deltas)
else:
self.min_deltas = min_deltas
@property
def min_deltas(self):
'''
Array of min_delta values to compute the dendrogram.
'''
return self._min_deltas
@min_deltas.setter
def min_deltas(self, value):
# In the case where only one min_delta is given
if "min_delta" in self.dendro_params and value is None:
self._min_deltas = np.array([self.dendro_params["min_delta"]])
else:
# Multiple values given. Ensure they are in increasing order
if not (np.diff(value) > 0).all():
raise ValueError("Multiple values of min_delta must be given "
"in increasing order.")
if not isinstance(value, np.ndarray):
self._min_deltas = np.array([value])
else:
self._min_deltas = value
def autoset_min_deltas(self, num=10):
'''
Create an array delta values that the dendrogram will be pruned to.
Creates equally-spaced delta values between the minimum value set in
`~Dendrogram_Stats.dendro_params` and the maximum in the data. The last
delta (which would only occur at the peak in the data) is removed.
Parameters
----------
num : int, optional
Number of delta values to create.
'''
min_val = self.dendro_params.get('min_value', -np.inf)
min_delta = self.dendro_params.get('min_delta', 1e-5)
# Calculate the ptp above the min_val
ptp = np.nanmax(self.data[self.data > min_val]) - min_val
self.min_deltas = np.linspace(min_delta, ptp, num + 1)[:-1]
def compute_dendro(self, show_progress=False, save_dendro=False,
dendro_name=None, dendro_obj=None,
periodic_bounds=False):
'''
Compute the dendrogram and prune to the minimum deltas.
** min_deltas must be in ascending order! **
Parameters
----------
show_progress : optional, bool
Enables the progress bar in astrodendro.
save_dendro : optional, bool
Saves the dendrogram in HDF5 format. **Requires pyHDF5**
dendro_name : str, optional
Save name when save_dendro is enabled. ".hdf5" appended
automatically.
dendro_obj : Dendrogram, optional
Input a pre-computed dendrogram object. It is assumed that
the dendrogram has already been computed!
periodic_bounds : bool, optional
Enable when the data is periodic in the spatial dimensions.
'''
self._numfeatures = np.empty(self.min_deltas.shape, dtype=int)
self._values = []
if dendro_obj is None:
if periodic_bounds:
# Find the spatial dimensions
num_axes = self.data.ndim
spat_axes = []
for i, axis_type in enumerate(self._wcs.get_axis_types()):
if axis_type["coordinate_type"] == u"celestial":
spat_axes.append(num_axes - i - 1)
neighbours = periodic_neighbours(spat_axes)
else:
neighbours = None
d = Dendrogram.compute(self.data, verbose=show_progress,
min_delta=self.min_deltas[0],
min_value=self.dendro_params["min_value"],
min_npix=self.dendro_params["min_npix"],
neighbours=neighbours)
else:
d = dendro_obj
self._numfeatures[0] = len(d)
self._values.append(np.array([struct.vmax for struct in
d.all_structures]))
if len(self.min_deltas) > 1:
# Another progress bar for pruning steps
if show_progress:
print("Pruning steps.")
bar = ProgressBar(len(self.min_deltas[1:]))
for i, delta in enumerate(self.min_deltas[1:]):
d.prune(min_delta=delta)
self._numfeatures[i + 1] = len(d)
self._values.append(np.array([struct.vmax for struct in
d.all_structures]))
if show_progress:
bar.update(i + 1)
@property
def numfeatures(self):
'''
Number of branches and leaves at each value of min_delta
'''
return self._numfeatures
@property
def values(self):
'''
Array of peak intensity values of leaves and branches at all values of
min_delta.
'''
return self._values
def make_hists(self, min_number=10, **kwargs):
'''
Creates histograms based on values from the tree.
*Note:* These histograms are remade when calculating the distance to
ensure the proper form for the Hellinger distance.
Parameters
----------
min_number : int, optional
Minimum number of structures needed to create a histogram.
'''
hists = []
for value in self.values:
if len(value) < min_number:
hists.append([np.zeros((0, ))] * 2)
continue
if 'bins' not in kwargs:
bins = int(np.sqrt(len(value)))
else:
bins = kwargs['bins']
kwargs.pop('bins')
hist, bins = np.histogram(value, bins=bins, **kwargs)
bin_cents = (bins[:-1] + bins[1:]) / 2
hists.append([bin_cents, hist])
self._hists = hists
@property
def hists(self):
'''
Histogram values and bins computed from the peak intensity in all
structures. One set of values and bins are returned for each value
of `~Dendro_Statistics.min_deltas`
'''
return self._hists
def fit_numfeat(self, size=5, verbose=False):
'''
Fit a line to the power-law tail. The break is approximated using
a moving window, computing the standard deviation. A spike occurs at
the break point.
Parameters
----------
size : int. optional
Size of std. window. Passed to std_window.
verbose : bool, optional
Shows the model summary.
'''
if len(self.numfeatures) == 1:
raise ValueError("Multiple min_delta values must be provided to "
"perform fitting. Only one value was given.")
nums = self.numfeatures[self.numfeatures > 1]
deltas = self.min_deltas[self.numfeatures > 1]
# Find the position of the break
break_pos = std_window(nums, size=size)
self.break_pos = deltas[break_pos]
# Still enough point to fit to?
if len(deltas[break_pos:]) < 2:
raise ValueError("Too few points to fit. Try running with more "
"min_deltas or lowering the std. window size.")
# Remove points where there is only 1 feature or less.
self._fitvals = [np.log10(deltas[break_pos:]),
np.log10(nums[break_pos:])]
x = sm.add_constant(self.fitvals[0])
self._model = sm.OLS(self.fitvals[1], x).fit(cov_type='HC3')
if verbose:
print(self.model.summary())
errors = self.model.bse
self._tail_slope = self.model.params[-1]
self._tail_slope_err = errors[-1]
@property
def model(self):
'''
Power-law tail fit model.
'''
return self._model
@property
def fitvals(self):
'''
Log values of delta and number of structures used for the power-law
tail fit.
'''
return self._fitvals
@property
def tail_slope(self):
'''
Slope of power-law tail.
'''
return self._tail_slope
@property
def tail_slope_err(self):
'''
1-sigma error on slope of power-law tail.
'''
return self._tail_slope_err
@staticmethod
def load_dendrogram(hdf5_file, min_deltas=None):
'''
Load in a previously saved dendrogram. **Requires pyHDF5**
Parameters
----------
hdf5_file : str
Name of saved file.
min_deltas : numpy.ndarray or list
Minimum deltas of leaves in the dendrogram.
'''
dendro = Dendrogram.load_from(hdf5_file)
self = Dendrogram_Stats(dendro.data, min_deltas=min_deltas,
dendro_params=dendro.params)
return self
def plot_fit(self, save_name=None, show_hists=True, color='r',
fit_color='k', symbol='o'):
'''
Parameters
----------
save_name : str,optional
Save the figure when a file name is given.
xunit : u.Unit, optional
The unit to show the x-axis in.
show_hists : bool, optional
Plot the histograms of intensity. Requires
`~Dendrogram_Stats.make_hists` to be run first.
color : {str, RGB tuple}, optional
Color to show the delta-variance curve in.
fit_color : {str, RGB tuple}, optional
Color of the fitted line. Defaults to `color` when no input is
given.
'''
import matplotlib.pyplot as plt
if not show_hists:
ax1 = plt.subplot(111)
else:
ax1 = plt.subplot(121)
if fit_color is None:
fit_color = color
ax1.plot(self.fitvals[0], self.fitvals[1], symbol, color=color)
ax1.plot(self.fitvals[0], self.model.fittedvalues, color=fit_color)
plt.xlabel(r"log $\delta$")
plt.ylabel(r"log Number of Features")
if show_hists:
ax2 = plt.subplot(122)
if not hasattr(self, "_hists"):
raise ValueError("Histograms were not computed with "
"Dendrogram_Stats.make_hists. Cannot plot.")
for bins, vals in self.hists:
if bins.size < 1:
continue
bin_width = np.abs(bins[1] - bins[0])
ax2.bar(bins, vals, align="center",
width=bin_width, alpha=0.25,
color=color)
plt.xlabel("Data Value")
plt.tight_layout()
if save_name is not None:
plt.savefig(save_name)
plt.close()
else:
plt.show()
def run(self, periodic_bounds=False, verbose=False, save_name=None,
show_progress=True, dendro_obj=None, save_results=False,
output_name=None, fit_kwargs={}, make_hists=True, hist_kwargs={}):
'''
Compute dendrograms. Necessary to maintain the package format.
Parameters
----------
periodic_bounds : bool or list, optional
Enable when the data is periodic in the spatial dimensions. Passing
a two-element list can be used to individually set how the
boundaries are treated for the datasets.
verbose : optional, bool
Enable plotting of results.
save_name : str,optional
Save the figure when a file name is given.
show_progress : optional, bool
Enables progress bars while making the dendrogram.
dendro_obj : Dendrogram, optional
Pass a pre-computed dendrogram object. **MUST have min_delta set
at or below the smallest value in`~Dendro_Statistics.min_deltas`.**
save_results : bool, optional
Save the statistic results as a pickle file. See
`~Dendro_Statistics.save_results`.
output_name : str, optional
Filename used when `save_results` is enabled. Must be given when
saving.
fit_kwargs : dict, optional
Passed to `~Dendro_Statistics.fit_numfeat`.
make_hists : bool, optional
Enable computing histograms.
hist_kwargs : dict, optional
Passed to `~Dendro_Statistics.make_hists`.
'''
self.compute_dendro(show_progress=show_progress, dendro_obj=dendro_obj,
periodic_bounds=periodic_bounds)
self.fit_numfeat(verbose=verbose, **fit_kwargs)
if make_hists:
self.make_hists(**hist_kwargs)
if verbose:
self.plot_fit(save_name=save_name, show_hists=make_hists)
if save_results:
self.save_results(output_name=output_name)
class Dendrogram_Distance(object):
"""
Calculate the distance between 2 cubes using dendrograms. The number of
features vs. minimum delta is fit to a linear model, with an interaction
term to gauge the difference. The distance is the t-statistic of that
parameter. The Hellinger distance is computed for the histograms at each
minimum delta value. The distance is the average of the Hellinger
distances.
.. note:: When passing a computed `~DeltaVariance` class for `dataset1`
or `dataset2`, it may be necessary to recompute the
dendrogram if `~Dendrogram_Stats.min_deltas` does not equal
`min_deltas` generated here (or passed as kwarg).
Parameters
----------
dataset1 : %(dtypes)s or `~Dendrogram_Stats`
Data cube or 2D image. Or pass a
`~Dendrogram_Stats` class that may be pre-computed.
where the dendrogram statistics are saved.
dataset2 : %(dtypes)s or `~Dendrogram_Stats`
See `dataset1` above.
min_deltas : numpy.ndarray or list
Minimum deltas (branch heights) of leaves in the dendrogram. The set
of dendrograms must be computed with the same minimum branch heights.
nbins : str or float, optional
Number of bins for the histograms. 'best' sets
that number using the square root of the average
number of features between the histograms to be
compared.
min_features : int, optional
The minimum number of features (branches and leaves) for the histogram
be used in the histogram distance.
dendro_params : dict or list of dicts, optional
Further parameters for the dendrogram algorithm
(see the `astrodendro documentation <dendrograms.readthedocs.io>`_
for more info). If a list of dictionaries is
given, the first list entry should be the dictionary for `dataset1`,
and the second for `dataset2`.
dendro_kwargs : dict, optional
Passed to `~turbustat.statistics.Dendrogram_Stats.run`.
dendro2_kwargs : None, dict, optional
Passed to `~turbustat.statistics.Dendrogram_Stats.run` for `dataset2`.
When `None` is given, parameters given in `dendro_kwargs` will be used
for both datasets.
"""
__doc__ %= {"dtypes": " or ".join(common_types + twod_types +
threed_types)}
def __init__(self, dataset1, dataset2, min_deltas=None, nbins="best",
min_features=100, dendro_params=None,
dendro_kwargs={}, dendro2_kwargs=None):
if not astrodendro_flag:
raise ImportError("astrodendro must be installed to use "
"Dendrogram_Stats.")
self.nbins = nbins
if min_deltas is None:
# min_deltas = np.append(np.logspace(-1.5, -0.7, 8),
# np.logspace(-0.6, -0.35, 10))
warnings.warn("Using default min_deltas ranging from 10^-2.5 to"
"10^0.5. Check whether this range is appropriate"
" for your data.")
min_deltas = np.logspace(-2.5, 0.5, 100)
if dendro_params is not None:
if isinstance(dendro_params, list):
dendro_params1 = dendro_params[0]
dendro_params2 = dendro_params[1]
elif isinstance(dendro_params, dict):
dendro_params1 = dendro_params
dendro_params2 = dendro_params
else:
raise TypeError("dendro_params is a {}. It must be a dictionary"
", or a list containing a dictionary entries."
.format(type(dendro_params)))
else:
dendro_params1 = None
dendro_params2 = None
if dendro2_kwargs is None:
dendro2_kwargs = dendro_kwargs
# if fiducial_model is not None:
# self.dendro1 = fiducial_model
# elif isinstance(dataset1, str):
# self.dendro1 = Dendrogram_Stats.load_results(dataset1)
if isinstance(dataset1, Dendrogram_Stats):
self.dendro1 = dataset1
# Check if we need to re-run the stat
has_slope = hasattr(self.dendro1, "_tail_slope")
match_deltas = (self.dendro1.min_deltas == min_deltas).all()
if not has_slope or not match_deltas:
warn("Dendrogram_Stats needs to be re-run for dataset1 "
"to compute the slope or have the same set of "
"`min_deltas`.")
dendro_kwargs.pop('make_hists', None)
dendro_kwargs.pop('verbose', None)
self.dendro1.run(verbose=False, make_hists=False,
**dendro_kwargs)
else:
self.dendro1 = Dendrogram_Stats(dataset1, min_deltas=min_deltas,
dendro_params=dendro_params1)
dendro_kwargs.pop('make_hists', None)
dendro_kwargs.pop('verbose', None)
self.dendro1.run(verbose=False, make_hists=False,
**dendro_kwargs)
# if isinstance(dataset2, str):
# self.dendro2 = Dendrogram_Stats.load_results(dataset2)
if isinstance(dataset2, Dendrogram_Stats):
self.dendro2 = dataset2
# Check if we need to re-run the stat
has_slope = hasattr(self.dendro2, "_tail_slope")
match_deltas = (self.dendro2.min_deltas == min_deltas).all()
if not has_slope or not match_deltas:
warn("Dendrogram_Stats needs to be re-run for dataset2 "
"to compute the slope or have the same set of "
"`min_deltas`.")
dendro_kwargs.pop('make_hists', None)
dendro_kwargs.pop('verbose', None)
self.dendro2.run(verbose=False, make_hists=False,
**dendro2_kwargs)
else:
self.dendro2 = \
Dendrogram_Stats(dataset2, min_deltas=min_deltas,
dendro_params=dendro_params2)
dendro_kwargs.pop('make_hists', None)
dendro_kwargs.pop('verbose', None)
self.dendro2.run(verbose=False, make_hists=False,
**dendro2_kwargs)
# Set the minimum number of components to create a histogram
cutoff1 = np.argwhere(self.dendro1.numfeatures > min_features)
cutoff2 = np.argwhere(self.dendro2.numfeatures > min_features)
if cutoff1.any():
cutoff1 = cutoff1[-1]
else:
raise ValueError("The dendrogram from dataset1 does not contain the"
" necessary number of features, %s. Lower"
" min_features or alter min_deltas."
% (min_features))
if cutoff2.any():
cutoff2 = cutoff2[-1]
else:
raise ValueError("The dendrogram from dataset2 does not contain the"
" necessary number of features, %s. Lower"
" min_features or alter min_deltas."
% (min_features))
self.cutoff = np.min([cutoff1, cutoff2])
@property
def num_distance(self):
'''
Distance between slopes from the for to the
log Number of features vs. branch height.
'''
return self._num_distance
def numfeature_stat(self, verbose=False,
save_name=None, plot_kwargs1={},
plot_kwargs2={}):
'''
Calculate the distance based on the number of features statistic.
Parameters
----------
verbose : bool, optional
Enables plotting.
save_name : str, optional
Saves the plot when a filename is given.
plot_kwargs1 : dict, optional
Set the color, symbol, and label for dataset1
(e.g., plot_kwargs1={'color': 'b', 'symbol': 'D', 'label': '1'}).
plot_kwargs2 : dict, optional
Set the color, symbol, and label for dataset2.
'''
self._num_distance = \
np.abs(self.dendro1.tail_slope - self.dendro2.tail_slope) / \
np.sqrt(self.dendro1.tail_slope_err**2 +
self.dendro2.tail_slope_err**2)
if verbose:
import matplotlib.pyplot as plt
defaults1 = {'color': 'b', 'symbol': 'D', 'label': '1'}
defaults2 = {'color': 'g', 'symbol': 'o', 'label': '2'}
for key in defaults1:
if key not in plot_kwargs1:
plot_kwargs1[key] = defaults1[key]
for key in defaults2:
if key not in plot_kwargs2:
plot_kwargs2[key] = defaults2[key]
if 'xunit' in plot_kwargs1:
del plot_kwargs1['xunit']
if 'xunit' in plot_kwargs2:
del plot_kwargs2['xunit']
plt.figure()
# Dendrogram 1
plt.plot(self.dendro1.fitvals[0], self.dendro1.fitvals[1],
plot_kwargs1['symbol'], label=plot_kwargs1['label'],
color=plot_kwargs1['color'])
plt.plot(self.dendro1.fitvals[0], self.dendro1.model.fittedvalues,
plot_kwargs1['color'])
# Dendrogram 2
plt.plot(self.dendro2.fitvals[0], self.dendro2.fitvals[1],
plot_kwargs2['symbol'], label=plot_kwargs2['label'],
color=plot_kwargs2['color'])
plt.plot(self.dendro2.fitvals[0], self.dendro2.model.fittedvalues,
plot_kwargs2['color'])
plt.grid(True)
plt.xlabel(r"log $\delta$")
plt.ylabel("log Number of Features")
plt.legend(loc='best')
plt.tight_layout()
if save_name is not None:
plt.savefig(save_name)
plt.close()
else:
plt.show()
return self
@property
def histogram_distance(self):
return self._histogram_distance
def histogram_stat(self, verbose=False,
save_name=None,
plot_kwargs1={},
plot_kwargs2={}):
'''
Computes the distance using histograms.
Parameters
----------
verbose : bool, optional
Enables plotting.
save_name : str, optional
Saves the plot when a filename is given.
plot_kwargs1 : dict, optional
Set the color, symbol, and label for dataset1
(e.g., plot_kwargs1={'color': 'b', 'symbol': 'D', 'label': '1'}).
plot_kwargs2 : dict, optional
Set the color, symbol, and label for dataset2.
'''
if self.nbins == "best":
self.nbins = [np.floor(np.sqrt((n1 + n2) / 2.)) for n1, n2 in
zip(self.dendro1.numfeatures[:self.cutoff],
self.dendro2.numfeatures[:self.cutoff])]
else:
self.nbins = [self.nbins] * \
len(self.dendro1.numfeatures[:self.cutoff])
self.nbins = np.array(self.nbins, dtype=int)
self.histograms1 = \
np.empty((len(self.dendro1.numfeatures[:self.cutoff]),
np.max(self.nbins)))
self.histograms2 = \
np.empty((len(self.dendro2.numfeatures[:self.cutoff]),
np.max(self.nbins)))
self.bins = []
for n, (data1, data2, nbin) in enumerate(
zip(self.dendro1.values[:self.cutoff],
self.dendro2.values[:self.cutoff], self.nbins)):
stand_data1 = standardize(data1)
stand_data2 = standardize(data2)
bins = common_histogram_bins(stand_data1, stand_data2,
nbins=nbin + 1)
self.bins.append(bins)
hist1 = np.histogram(stand_data1, bins=bins,
density=True)[0]
self.histograms1[n, :] = \
np.append(hist1, (np.max(self.nbins) -
bins.size + 1) * [np.NaN])
hist2 = np.histogram(stand_data2, bins=bins,
density=True)[0]
self.histograms2[n, :] = \
np.append(hist2, (np.max(self.nbins) -
bins.size + 1) * [np.NaN])
# Normalize
self.histograms1[n, :] /= np.nansum(self.histograms1[n, :])
self.histograms2[n, :] /= np.nansum(self.histograms2[n, :])
self.mecdf1 = mecdf(self.histograms1)
self.mecdf2 = mecdf(self.histograms2)
self._histogram_distance = hellinger_stat(self.histograms1,
self.histograms2)
if verbose:
import matplotlib.pyplot as plt
defaults1 = {'color': 'b', 'symbol': 'D', 'label': '1'}
defaults2 = {'color': 'g', 'symbol': 'o', 'label': '2'}
for key in defaults1:
if key not in plot_kwargs1:
plot_kwargs1[key] = defaults1[key]
for key in defaults2:
if key not in plot_kwargs2:
plot_kwargs2[key] = defaults2[key]
if 'xunit' in plot_kwargs1:
del plot_kwargs1['xunit']
if 'xunit' in plot_kwargs2:
del plot_kwargs2['xunit']
plt.figure()
ax1 = plt.subplot(2, 2, 1)
ax1.set_title(plot_kwargs1['label'])
ax1.set_ylabel("ECDF")
for n in range(len(self.dendro1.min_deltas[:self.cutoff])):
ax1.plot((self.bins[n][:-1] + self.bins[n][1:]) / 2,
self.mecdf1[n, :][:self.nbins[n]],
plot_kwargs1['symbol'],
color=plot_kwargs1['color'])
ax1.axes.xaxis.set_ticklabels([])
ax2 = plt.subplot(2, 2, 2)
ax2.set_title(plot_kwargs2['label'])
ax2.axes.xaxis.set_ticklabels([])
ax2.axes.yaxis.set_ticklabels([])
for n in range(len(self.dendro2.min_deltas[:self.cutoff])):
ax2.plot((self.bins[n][:-1] + self.bins[n][1:]) / 2,
self.mecdf2[n, :][:self.nbins[n]],
plot_kwargs2['symbol'],
color=plot_kwargs2['color'])
ax3 = plt.subplot(2, 2, 3)
ax3.set_ylabel("PDF")
for n in range(len(self.dendro1.min_deltas[:self.cutoff])):
bin_width = self.bins[n][1] - self.bins[n][0]
ax3.bar((self.bins[n][:-1] + self.bins[n][1:]) / 2,
self.histograms1[n, :][:self.nbins[n]],
align="center", width=bin_width, alpha=0.25,
color=plot_kwargs1['color'])
ax3.set_xlabel("z-score")
ax4 = plt.subplot(2, 2, 4)
for n in range(len(self.dendro2.min_deltas[:self.cutoff])):
bin_width = self.bins[n][1] - self.bins[n][0]
ax4.bar((self.bins[n][:-1] + self.bins[n][1:]) / 2,
self.histograms2[n, :][:self.nbins[n]],
align="center", width=bin_width, alpha=0.25,
color=plot_kwargs2['color'])
ax4.set_xlabel("z-score")
ax4.axes.yaxis.set_ticklabels([])
plt.tight_layout()
if save_name is not None:
plt.savefig(save_name)
plt.close()
else:
plt.show()
return self
def distance_metric(self, verbose=False, save_name=None,
plot_kwargs1={}, plot_kwargs2={}):
'''
Calculate both distance metrics.
Parameters
----------
verbose : bool, optional
Enables plotting.
save_name : str, optional
Save plots by passing a file name. `hist_distance` and
`num_distance` will be appended to the file name to distinguish
the plots made with the two metrics.
plot_kwargs1 : dict, optional
Set the color, symbol, and label for dataset1
(e.g., plot_kwargs1={'color': 'b', 'symbol': 'D', 'label': '1'}).
plot_kwargs2 : dict, optional
Set the color, symbol, and label for dataset2.
'''
if save_name is not None:
import os
# Distinguish name for the two plots
base_name, extens = os.path.splitext(save_name)
save_name_hist = "{0}.hist_distance{1}".format(base_name, extens)
save_name_num = "{0}.num_distance{1}".format(base_name, extens)
else:
save_name_hist = None
save_name_num = None
self.histogram_stat(verbose=verbose, plot_kwargs1=plot_kwargs1,
plot_kwargs2=plot_kwargs2,
save_name=save_name_hist)
self.numfeature_stat(verbose=verbose, plot_kwargs1=plot_kwargs1,
plot_kwargs2=plot_kwargs2,
save_name=save_name_num)
return self
def DendroDistance(*args, **kwargs):
'''
Old name for the Dendrogram_Distance class.
'''
warn("Use the new 'Dendrogram_Distance' class. 'DendroDistance' is deprecated and will"
" be removed in a future release.", Warning)
return Dendrogram_Distance(*args, **kwargs)
def hellinger_stat(x, y):
'''
Compute the Hellinger statistic of multiple samples.
'''
assert x.shape == y.shape
if len(x.shape) == 1:
return hellinger(x, y)
else:
dists = np.empty((x.shape[0], 1))
for n in range(x.shape[0]):
dists[n, 0] = hellinger(x[n, :], y[n, :])
return np.mean(dists)
def std_window(y, size=5, return_results=False):
'''
Uses a moving standard deviation window to find where the powerlaw break
is.
Parameters
----------
y : np.ndarray
Data.
size : int, optional
Odd integer which sets the window size.
return_results : bool, optional
If enabled, returns the results of the window. Otherwise, only the
position of the break is returned.
'''
half_size = (size - 1) // 2
shape = max(y.shape)
stds = np.empty((shape - size + 1))
for i in range(half_size, shape - half_size):
stds[i - half_size] = np.std(y[i - half_size: i + half_size])
# Now find the max
break_pos = np.argmax(stds) + half_size
if return_results:
return break_pos, stds
return break_pos
| mit |
chanceraine/nupic.research | projects/sequence_prediction/discrete_sequences/lstm_old/predict_LSTM_2.py | 2 | 7108 | #!/usr/bin/env python
# ----------------------------------------------------------------------
# Numenta Platform for Intelligent Computing (NuPIC)
# Copyright (C) 2015, Numenta, Inc. Unless you have an agreement
# with Numenta, Inc., for a separate license for this software code, the
# following terms and conditions apply:
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero Public License version 3 as
# published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU Affero Public License for more details.
#
# You should have received a copy of the GNU Affero Public License
# along with this program. If not, see http://www.gnu.org/licenses.
#
# http://numenta.org/licenses/
# ----------------------------------------------------------------------
import operator
import random
import time
from matplotlib import pyplot as plt
import numpy as np
from pybrain.datasets import SequentialDataSet
from pybrain.tools.shortcuts import buildNetwork
from pybrain.structure.modules import LSTMLayer
from pybrain.supervised import RPropMinusTrainer
from predict import generateSequences
from plot import plotAccuracy
NUM_PREDICTIONS = 1
vectors = {}
def num2vec(num, nDim):
if num in vectors:
return vectors[num]
sample = np.random.random((1,nDim))
# if num < 100:
# vectors[num] = sample
vectors[num] = sample
return sample
def seq2vec(sequence, nDim):
nSample = len(sequence)
seq_vec = np.zeros((nSample, nDim))
for i in xrange(nSample):
seq_vec[i] = num2vec(sequence[i], nDim)
return seq_vec
def closest_node(node, nodes):
nodes = np.array(nodes)
dist_2 = np.sum((nodes - node)**2, axis=2)
return np.argmin(dist_2)
def classify(netActivation):
idx = closest_node(netActivation, vectors.values())
return vectors.keys()[idx]
def initializeLSTMnet(nDim, nLSTMcells=10):
# Build LSTM network with nDim input units, nLSTMcells hidden units (LSTM cells) and nDim output cells
net = buildNetwork(nDim, nLSTMcells, nDim,
hiddenclass=LSTMLayer, bias=True, outputbias=False, recurrent=True)
return net
if __name__ == "__main__":
sequences = generateSequences(NUM_PREDICTIONS)
# nDim = max([len(sequence) for sequence in sequences]) + 2 # TODO: Why 2?
nDim = 100
from pylab import rcParams
rcParams.update({'figure.autolayout': True})
rcParams.update({'figure.facecolor': 'white'})
rcParams.update({'ytick.labelsize': 8})
# for i in xrange(len(sequences)):
# sequence = sequences[i]
# print sequence
# seq_vec = seq2vec(sequence, nDim)
# for j in xrange(len(sequence)-1):
# ds.addSample(seq_vec[j], seq_vec[j+1])
# ds.newSequence()
rptPerSeqList = [1, 2, 5, 10, 20, 50, 100, 250, 500, 1000]
accuracyList = []
for rptNum in rptPerSeqList:
# train LSTM
# net = initializeLSTMnet(nDim, nLSTMcells=30)
# net.reset()
# trainer = RPropMinusTrainer(net)
# for _ in xrange(rptNum):
# # Batch training mode
# # print "generate a dataset of sequences"
# ds = SequentialDataSet(nDim, nDim)
# trainer.setData(ds)
# import random
# random.shuffle(sequences)
# concat_sequences = []
# for sequence in sequences:
# concat_sequences += sequence
# concat_sequences.append(random.randrange(100, 1000000))
# # concat_sequences = sum(sequences, [])
# for j in xrange(len(concat_sequences) - 1):
# ds.addSample(num2vec(concat_sequences[j], nDim), num2vec(concat_sequences[j+1], nDim))
# trainer.train()
net = initializeLSTMnet(nDim, nLSTMcells=50)
net.reset()
ds = SequentialDataSet(nDim, nDim)
trainer = RPropMinusTrainer(net)
trainer.setData(ds)
for _ in xrange(1000):
# Batch training mode
# print "generate a dataset of sequences"
import random
random.shuffle(sequences)
concat_sequences = []
for sequence in sequences:
concat_sequences += sequence
concat_sequences.append(random.randrange(100, 1000000))
for j in xrange(len(concat_sequences) - 1):
ds.addSample(num2vec(concat_sequences[j], nDim), num2vec(concat_sequences[j+1], nDim))
trainer.trainEpochs(rptNum)
print
print "test LSTM, repeats =", rptNum
# test LSTM
correct = []
for i in xrange(len(sequences)):
net.reset()
sequence = sequences[i]
sequence = sequence + [random.randrange(100, 1000000)]
print sequence
predictedInput = []
for j in xrange(len(sequence)):
sample = num2vec(sequence[j], nDim)
netActivation = net.activate(sample)
if j+1 < len(sequence) - 1:
predictedInput.append(classify(netActivation))
print " actual input: ", sequence[j+1], " predicted Input: ", predictedInput[j]
correct.append(predictedInput[j] == sequence[j+1])
# correct.append(predictedInput[-1] == sequence[-1])
accuracyList.append(sum(correct)/float(len(correct)))
print "Accuracy: ", accuracyList[-1]
plt.semilogx(np.array(rptPerSeqList), np.array(accuracyList), '-*')
plt.xlabel(' Repeat of entire batch')
plt.ylabel(' Accuracy ')
plt.show()
# online mode (does not work well)
# net = initializeLSTMnet(nDim, nLSTMcells=20)
# accuracyList = []
# for seq in xrange(5000):
# sequence = random.choice(sequences)
# print sequence
# seq_vec = seq2vec(sequence, nDim)
# ds = SequentialDataSet(nDim, nDim)
# for j in xrange(len(sequence)-1):
# ds.addSample(seq_vec[j], seq_vec[j+1])
#
# # test LSTM
# net.reset()
# predictedInput = []
# for i in xrange(len(sequence)-1):
# sample = num2vec(sequence[i], nDim)
# netActivation = net.activate(sample)
# predictedInput.append(np.argmax(netActivation))
# print " predicted Input: ", predictedInput[i], " actual input: ", sequence[i+1]
#
# accuracyList.append(predictedInput[-1] == sequence[-1])
#
# # train LSTM
# net.reset()
# trainer = RPropMinusTrainer(net, dataset=ds)
# trainer.trainEpochs(1)
#
# # test LSTM on the whole dataset
# # correct = []
# # for i in xrange(len(sequences)):
# # sequence = sequences[i]
# # print sequence
# # net.reset()
# # predictedInput = []
# # for j in xrange(len(sequence)-1):
# # sample = num2vec(sequence[j], nDim)
# # netActivation = net.activate(sample)
# # predictedInput.append(np.argmax(netActivation))
# # print " actual input: ", sequence[j+1], " predicted Input: ", predictedInput[j]
# #
# # correct.append(predictedInput[-1] == sequence[-1])
# # accuracyList.append(sum(correct)/float(len(correct)))
#
# if seq % 100 == 0:
# rcParams.update({'figure.figsize': (12, 6)})
# plt.figure(1)
# plt.clf()
# plotAccuracy(accuracyList)
# plt.draw()
| agpl-3.0 |
OspreyX/trading-with-python | historicDataDownloader/historicDataDownloader.py | 77 | 4526 | '''
Created on 4 aug. 2012
Copyright: Jev Kuznetsov
License: BSD
a module for downloading historic data from IB
'''
import ib
import pandas
from ib.ext.Contract import Contract
from ib.opt import ibConnection, message
from time import sleep
import tradingWithPython.lib.logger as logger
from pandas import DataFrame, Index
import datetime as dt
from timeKeeper import TimeKeeper
import time
timeFormat = "%Y%m%d %H:%M:%S"
class DataHandler(object):
''' handles incoming messages '''
def __init__(self,tws):
self._log = logger.getLogger('DH')
tws.register(self.msgHandler,message.HistoricalData)
self.reset()
def reset(self):
self._log.debug('Resetting data')
self.dataReady = False
self._timestamp = []
self._data = {'open':[],'high':[],'low':[],'close':[],'volume':[],'count':[],'WAP':[]}
def msgHandler(self,msg):
#print '[msg]', msg
if msg.date[:8] == 'finished':
self._log.debug('Data recieved')
self.dataReady = True
return
self._timestamp.append(dt.datetime.strptime(msg.date,timeFormat))
for k in self._data.keys():
self._data[k].append(getattr(msg, k))
@property
def data(self):
''' return downloaded data as a DataFrame '''
df = DataFrame(data=self._data,index=Index(self._timestamp))
return df
class Downloader(object):
def __init__(self,debug=False):
self._log = logger.getLogger('DLD')
self._log.debug('Initializing data dwonloader. Pandas version={0}, ibpy version:{1}'.format(pandas.__version__,ib.version))
self.tws = ibConnection()
self._dataHandler = DataHandler(self.tws)
if debug:
self.tws.registerAll(self._debugHandler)
self.tws.unregister(self._debugHandler,message.HistoricalData)
self._log.debug('Connecting to tws')
self.tws.connect()
self._timeKeeper = TimeKeeper() # keep track of past requests
self._reqId = 1 # current request id
def _debugHandler(self,msg):
print '[debug]', msg
def requestData(self,contract,endDateTime,durationStr='1800 S',barSizeSetting='1 secs',whatToShow='TRADES',useRTH=1,formatDate=1):
self._log.debug('Requesting data for %s end time %s.' % (contract.m_symbol,endDateTime))
while self._timeKeeper.nrRequests(timeSpan=600) > 59:
print 'Too many requests done. Waiting... '
time.sleep(1)
self._timeKeeper.addRequest()
self._dataHandler.reset()
self.tws.reqHistoricalData(self._reqId,contract,endDateTime,durationStr,barSizeSetting,whatToShow,useRTH,formatDate)
self._reqId+=1
#wait for data
startTime = time.time()
timeout = 3
while not self._dataHandler.dataReady and (time.time()-startTime < timeout):
sleep(2)
if not self._dataHandler.dataReady:
self._log.error('Data timeout')
print self._dataHandler.data
return self._dataHandler.data
def getIntradayData(self,contract, dateTuple ):
''' get full day data on 1-s interval
date: a tuple of (yyyy,mm,dd)
'''
openTime = dt.datetime(*dateTuple)+dt.timedelta(hours=16)
closeTime = dt.datetime(*dateTuple)+dt.timedelta(hours=22)
timeRange = pandas.date_range(openTime,closeTime,freq='30min')
datasets = []
for t in timeRange:
datasets.append(self.requestData(contract,t.strftime(timeFormat)))
return pandas.concat(datasets)
def disconnect(self):
self.tws.disconnect()
if __name__=='__main__':
dl = Downloader(debug=True)
c = Contract()
c.m_symbol = 'SPY'
c.m_secType = 'STK'
c.m_exchange = 'SMART'
c.m_currency = 'USD'
df = dl.getIntradayData(c, (2012,8,6))
df.to_csv('test.csv')
# df = dl.requestData(c, '20120803 22:00:00')
# df.to_csv('test1.csv')
# df = dl.requestData(c, '20120803 21:30:00')
# df.to_csv('test2.csv')
dl.disconnect()
print 'Done.' | bsd-3-clause |
MohMehrnia/TextBaseEmotionDetectionWithEnsembleMethod | TextEmotionDetection.py | 1 | 22843 | import numpy as np
import pandas as pd
import csv
import os.path
import warnings
from sklearn.preprocessing import LabelEncoder
from nltk.corpus import stopwords
from nltk.stem.porter import *
from nltk.tokenize import RegexpTokenizer
from collections import namedtuple
from hpsklearn import HyperoptEstimator, svc, knn, random_forest, decision_tree, gaussian_nb, pca
from sklearn import svm
from hyperopt import tpe
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import f1_score
from sklearn.metrics import accuracy_score
from sklearn.ensemble import VotingClassifier
from dbn.tensorflow import SupervisedDBNClassification
from nltk.stem import WordNetLemmatizer
warnings.filterwarnings(action='ignore', category=UserWarning, module='gensim')
from gensim.models.doc2vec import Doc2Vec
def readdata(train_set_path):
x = []
y = []
stop_words = set(stopwords.words('english'))
with open(train_set_path, encoding="utf8") as infile:
for line in infile:
data = []
data = line.split(",")
stemmer = PorterStemmer()
lemmatizer = WordNetLemmatizer()
if data[1] != "tweet_id":
content = re.sub(r"(?:\@|https?\://)\S+", "", data[3].lower())
toker = RegexpTokenizer(r'((?<=[^\w\s])\w(?=[^\w\s])|(\W))+', gaps=True)
word_tokens = toker.tokenize(content)
# filtered_sentence = [stemmer.stem(w) for w in word_tokens if not w in stop_words and w.isalpha()]
filtered_sentence = [lemmatizer.lemmatize(w) for w in word_tokens if not w in stop_words and w.isalpha()]
x.append(' '.join(filtered_sentence))
y.append(data[1])
x, y = np.array(x), np.array(y)
return x, y
def encode_label(label):
le = LabelEncoder()
label_encoded = le.fit(label).transform(label)
print(le.classes_)
return label_encoded
def loaddata(filename,instancecol):
file_reader = csv.reader(open(filename,'r'),delimiter=',')
x = []
y = []
for row in file_reader:
x.append(row[0:instancecol])
y.append(row[-1])
return np.array(x[1:]).astype(np.float32), np.array(y[1:]).astype(np.int)
def create_model(x, y, feature_count):
docs = []
dfs = []
features_vectors = pd.DataFrame()
analyzedDocument = namedtuple('AnalyzedDocument', 'words tags')
for i, text in enumerate(x):
words = text.lower().split()
tags = [i]
docs.append(analyzedDocument(words, tags))
model = Doc2Vec(docs, size=feature_count, window=300, min_count=1, workers=4)
for i in range(model.docvecs.__len__()):
dfs.append(model.docvecs[i].transpose())
features_vectors = pd.DataFrame(dfs)
features_vectors['label'] = y
return features_vectors, model
def extract_features(dataset_csv, feature_csv, instancecol):
if not os.path.exists(feature_csv):
print('Beginning Extract Features.......')
x, y = readdata(dataset_csv)
y = encode_label(y)
features_vactors, model = create_model(x, y, instancecol)
features_vactors.to_csv(feature_csv, mode='a', header=False, index=False)
print('Ending Extract Features.......')
else:
print('Loading Last Features.......')
x, y = loaddata(feature_csv, instancecol)
print('End Loading Last Features.......')
return x, y
def svm_model():
estim = svm.SVC()
estim.fit(x_train, y_train)
print("f1score", f1_score(estim.predict(x_test), y_test))
print("accuracy score", accuracy_score(estim.predict(x_test), y_test))
def svm_model_tpe():
estim = HyperoptEstimator(classifier=svc('my_clf',
kernels=['linear', 'sigmoid']),
preprocessing=[pca('my_pca')],
algo=tpe.suggest,
max_evals=150,
trial_timeout=60,
verbose=0)
estim.fit(x_train, y_train)
print("score", estim.score(x_test, y_test))
print("accuracy score", accuracy_score(estim.predict(x_test), y_test))
print(estim.best_model())
def knn_model():
estim = KNeighborsClassifier(n_neighbors=3)
estim.fit(x_train, y_train)
print("f1score", f1_score(estim.predict(x_test), y_test))
print("accuracy score", accuracy_score(estim.predict(x_test), y_test))
def knn_model_tpe():
estim = HyperoptEstimator(classifier=knn('my_clf'),
preprocessing=[pca('my_pca')],
algo=tpe.suggest,
max_evals=150,
trial_timeout=60,
verbose=0)
estim.fit(x_train, y_train)
print("f1score", f1_score(estim.predict(x_test), y_test))
print("accuracy score", accuracy_score(estim.predict(x_test), y_test))
print(estim.best_model())
def randomforest_model():
estim = RandomForestClassifier(max_depth=2, random_state=0)
estim.fit(x_train, y_train)
print("f1score", f1_score(estim.predict(x_test), y_test))
print("accuracy score", accuracy_score(estim.predict(x_test), y_test))
def randomforst_model_tpe():
estim = HyperoptEstimator(classifier=random_forest('my_clf'),
preprocessing=[pca('my_pca')],
algo=tpe.suggest,
max_evals=150,
trial_timeout=60,
verbose=0)
estim.fit(x_train, y_train)
print("f1score", f1_score(estim.predict(x_test), y_test))
print("accuracy score", accuracy_score(estim.predict(x_test), y_test))
print(estim.best_model())
def decisiontree_model():
estim = DecisionTreeClassifier(random_state=0)
estim.fit(x_train, y_train)
print("f1score", f1_score(estim.predict(x_test), y_test))
print("accuracy score", accuracy_score(estim.predict(x_test), y_test))
def decisiontree_model_tpe():
estim = HyperoptEstimator(classifier=decision_tree('my_clf', min_samples_leaf=0.2, min_samples_split=0.5),
preprocessing=[pca('my_pca')],
algo=tpe.suggest,
max_evals=150,
trial_timeout=60,
verbose=0)
estim.fit(x_train, y_train)
print("f1score", f1_score(estim.predict(x_test), y_test))
print("accuracy score", accuracy_score(estim.predict(x_test), y_test))
print(estim.best_model())
def gaussian_nb_model():
estim = GaussianNB()
estim.fit(x_train, y_train)
print("f1score", f1_score(estim.predict(x_test), y_test))
print("accuracy score", accuracy_score(estim.predict(x_test), y_test))
def gaussian_nb_model_tpe():
estim = HyperoptEstimator(classifier=gaussian_nb('my_clf'),
preprocessing=[pca('my_pca')],
algo=tpe.suggest,
max_evals=150,
trial_timeout=60,
verbose=0)
estim.fit(x_train, y_train)
print("f1score", f1_score(estim.predict(x_test), y_test))
print("accuracy score", accuracy_score(estim.predict(x_test), y_test))
print(estim.best_model())
def gaussian_nb_model():
estim = GaussianNB()
estim.fit(x_train, y_train)
print("f1score", f1_score(estim.predict(x_test), y_test))
print("accuracy score", accuracy_score(estim.predict(x_test), y_test))
def gaussian_nb_model_tpe():
estim = HyperoptEstimator(classifier=gaussian_nb('my_clf'),
preprocessing=[pca('my_pca')],
algo=tpe.suggest,
max_evals=150,
trial_timeout=60,
verbose=0)
estim.fit(x_train, y_train)
print("f1score", f1_score(estim.predict(x_test), y_test))
print("accuracy score", accuracy_score(estim.predict(x_test), y_test))
print(estim.best_model())
def dbn():
estim = SupervisedDBNClassification(hidden_layers_structure=[256, 256, 256, 256, 256, 256 ],
learning_rate_rbm=0.05,
learning_rate=0.1,
n_epochs_rbm=10,
n_iter_backprop=100,
batch_size=32,
activation_function='relu',
dropout_p=0.2,
verbose=0)
estim.fit(x_train, y_train)
print("f1score", f1_score(estim.predict(x_test), y_test))
print("accuracy score", accuracy_score(estim.predict(x_test), y_test))
return 0
def ensemble_group1_without_tpe():
clf1 = DecisionTreeClassifier(random_state=0)
clf2 = GaussianNB()
clf3 = KNeighborsClassifier(n_neighbors=3)
clf4 = RandomForestClassifier(max_depth=2, random_state=0)
clf5 = svm.SVC(probability=True)
estim = VotingClassifier(estimators=[('dt', clf1), ('GNB', clf2), ('KNN', clf3), ('RF', clf4), ('svm', clf5)],
voting='soft', weights=[97.98, 93.11, 99.05, 99.09, 99.09])
estim.fit(x_train, y_train)
print("f1score", f1_score(estim.predict(x_test), y_test, average='micro'))
print("accuracy score", accuracy_score(estim.predict(x_test), y_test))
def ensemble_group1():
clf1 = DecisionTreeClassifier(class_weight=None, criterion='entropy', max_depth=None,
max_features='log2', max_leaf_nodes=None,
min_samples_leaf=0.2, min_samples_split=0.5,
min_weight_fraction_leaf=0.0, presort=False, random_state=2,
splitter='random')
clf2 = GaussianNB(priors=None)
clf3 = KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='euclidean',
metric_params=None, n_jobs=1, n_neighbors=5, p=2,
weights='distance')
clf4 = RandomForestClassifier(bootstrap=True, class_weight=None, criterion='entropy',
max_depth=None, max_features=0.6933792121972574,
max_leaf_nodes=None,
min_samples_leaf=18,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=2078, n_jobs=1, oob_score=False, random_state=1,
verbose=False, warm_start=False)
clf5 = svm.SVC(C=1045.8970220658168, cache_size=512, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=1, gamma='auto', kernel='linear',
max_iter=14263117.0, random_state=3, shrinking=False, probability=True,
tol=5.3658140645203695e-05, verbose=False)
estim = VotingClassifier(estimators=[('dt', clf1), ('GNB', clf2), ('KNN', clf3), ('RF', clf4), ('svm', clf5)],
voting='soft', weights=[99.09, 99.05, 99.05, 99.09, 99.09])
estim.fit(x_train, y_train)
print("f1score", f1_score(estim.predict(x_test), y_test, average='micro'))
print("accuracy score", accuracy_score(estim.predict(x_test), y_test))
def ensemble_group2_without_tpe():
clf1 = DecisionTreeClassifier(random_state=0)
clf2 = GaussianNB()
clf3 = KNeighborsClassifier(n_neighbors=3)
clf4 = RandomForestClassifier(max_depth=2, random_state=0)
clf5 = svm.SVC(probability=True)
estim = VotingClassifier(estimators=[('dt', clf1), ('GNB', clf2), ('KNN', clf3)],
voting='soft', weights=[97.98, 93.11, 99.05])
estim.fit(x_train, y_train)
print("f1score", f1_score(estim.predict(x_test), y_test))
print("accuracy score", accuracy_score(estim.predict(x_test), y_test))
def ensemble_group2():
clf1 = DecisionTreeClassifier(class_weight=None, criterion='entropy', max_depth=None,
max_features='log2', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=0.2, min_samples_split=0.5,
min_weight_fraction_leaf=0.0, presort=False, random_state=2,
splitter='random')
clf2 = GaussianNB(priors=None)
clf3 = KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='euclidean',
metric_params=None, n_jobs=1, n_neighbors=5, p=2,
weights='distance')
clf4 = RandomForestClassifier(bootstrap=True, class_weight=None, criterion='entropy',
max_depth=None, max_features=0.6933792121972574,
max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, min_samples_leaf=18,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=2078, n_jobs=1, oob_score=False, random_state=1,
verbose=False, warm_start=False)
clf5 = svm.SVC(C=1045.8970220658168, cache_size=512, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=1, gamma='auto', kernel='linear',
max_iter=14263117.0, random_state=3, shrinking=False, probability=True,
tol=5.3658140645203695e-05, verbose=False)
estim = VotingClassifier(estimators=[('dt', clf1), ('GNB', clf2), ('KNN', clf3)],
voting='soft', weights=[99.09, 99.05, 99.05])
estim.fit(x_train, y_train)
print("f1score", f1_score(estim.predict(x_test), y_test))
print("accuracy score", accuracy_score(estim.predict(x_test), y_test))
def ensemble_group3_without_tpe():
clf1 = DecisionTreeClassifier(random_state=0)
clf2 = GaussianNB()
clf3 = KNeighborsClassifier(n_neighbors=3)
clf4 = RandomForestClassifier(max_depth=2, random_state=0)
clf5 = svm.SVC(probability=True)
estim = VotingClassifier(estimators=[('KNN', clf3), ('RF', clf4), ('svm', clf5)],
voting='soft', weights=[99.05, 99.09, 99.09])
estim.fit(x_train, y_train)
print("f1score", f1_score(estim.predict(x_test), y_test))
print("accuracy score", accuracy_score(estim.predict(x_test), y_test))
def ensemble_group3():
clf1 = DecisionTreeClassifier(class_weight=None, criterion='entropy', max_depth=None,
max_features='log2', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=0.2, min_samples_split=0.5,
min_weight_fraction_leaf=0.0, presort=False, random_state=2,
splitter='random')
clf2 = GaussianNB(priors=None)
clf3 = KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='euclidean',
metric_params=None, n_jobs=1, n_neighbors=5, p=2,
weights='distance')
clf4 = RandomForestClassifier(bootstrap=True, class_weight=None, criterion='entropy',
max_depth=None, max_features=0.6933792121972574,
max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, min_samples_leaf=18,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=2078, n_jobs=1, oob_score=False, random_state=1,
verbose=False, warm_start=False)
clf5 = svm.SVC(C=1045.8970220658168, cache_size=512, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=1, gamma='auto', kernel='linear',
max_iter=14263117.0, random_state=3, shrinking=False, probability=True,
tol=5.3658140645203695e-05, verbose=False)
estim = VotingClassifier(estimators=[('KNN', clf3), ('RF', clf4), ('svm', clf5)],
voting='soft', weights=[99.05, 99.09, 99.09])
estim.fit(x_train, y_train)
print("f1score", f1_score(estim.predict(x_test), y_test))
print("accuracy score", accuracy_score(estim.predict(x_test), y_test))
def ensemble_group4_without_tpe():
clf1 = DecisionTreeClassifier(random_state=0)
clf2 = GaussianNB()
clf3 = KNeighborsClassifier(n_neighbors=3)
clf4 = RandomForestClassifier(max_depth=2, random_state=0)
clf5 = svm.SVC(probability=True)
estim = VotingClassifier(estimators=[('GNB', clf2), ('RF', clf4), ('svm', clf5)],
voting='soft', weights=[93.11, 99.09, 99.09])
estim.fit(x_train, y_train)
print("f1score", f1_score(estim.predict(x_test), y_test))
print("accuracy score", accuracy_score(estim.predict(x_test), y_test))
def ensemble_group4():
clf1 = DecisionTreeClassifier(class_weight=None, criterion='entropy', max_depth=None,
max_features='log2', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=0.2, min_samples_split=0.5,
min_weight_fraction_leaf=0.0, presort=False, random_state=2,
splitter='random')
clf2 = GaussianNB(priors=None)
clf3 = KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='euclidean',
metric_params=None, n_jobs=1, n_neighbors=5, p=2,
weights='distance')
clf4 = RandomForestClassifier(bootstrap=True, class_weight=None, criterion='entropy',
max_depth=None, max_features=0.6933792121972574,
max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, min_samples_leaf=18,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=2078, n_jobs=1, oob_score=False, random_state=1,
verbose=False, warm_start=False)
clf5 = svm.SVC(C=1045.8970220658168, cache_size=512, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=1, gamma='auto', kernel='linear',
max_iter=14263117.0, random_state=3, shrinking=False, probability=True,
tol=5.3658140645203695e-05, verbose=False)
estim = VotingClassifier(estimators=[('GNB', clf2), ('RF', clf4), ('svm', clf5)],
voting='soft', weights=[99.05, 99.09, 99.09])
estim.fit(x_train, y_train)
print("f1score", f1_score(estim.predict(x_test), y_test))
print("accuracy score", accuracy_score(estim.predict(x_test), y_test))
def ensemble_group5_without_tpe():
clf1 = DecisionTreeClassifier(random_state=0)
clf2 = GaussianNB()
clf3 = KNeighborsClassifier(n_neighbors=3)
clf4 = RandomForestClassifier(max_depth=2, random_state=0)
clf5 = svm.SVC(probability=True)
estim = VotingClassifier(estimators=[('GNB', clf2), ('KNN', clf3), ('svm', clf5)],
voting='soft', weights=[93.11, 99.05, 99.09])
estim.fit(x_train, y_train)
print("f1score", f1_score(estim.predict(x_test), y_test))
print("accuracy score", accuracy_score(estim.predict(x_test), y_test))
def ensemble_group5():
clf1 = DecisionTreeClassifier(class_weight=None, criterion='entropy', max_depth=None,
max_features='log2', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=0.2, min_samples_split=0.5,
min_weight_fraction_leaf=0.0, presort=False, random_state=2,
splitter='random')
clf2 = GaussianNB(priors=None)
clf3 = KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='euclidean',
metric_params=None, n_jobs=1, n_neighbors=5, p=2,
weights='distance')
clf4 = RandomForestClassifier(bootstrap=True, class_weight=None, criterion='entropy',
max_depth=None, max_features=0.6933792121972574,
max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, min_samples_leaf=18,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=2078, n_jobs=1, oob_score=False, random_state=1,
verbose=False, warm_start=False)
clf5 = svm.SVC(C=1045.8970220658168, cache_size=512, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=1, gamma='auto', kernel='linear',
max_iter=14263117.0, random_state=3, shrinking=False, probability=True,
tol=5.3658140645203695e-05, verbose=False)
estim = VotingClassifier(estimators=[('GNB', clf2), ('KNN', clf3), ('svm', clf5)],
voting='soft', weights=[99.05, 99.05, 99.09])
estim.fit(x_train, y_train)
print("f1score", f1_score(estim.predict(x_test), y_test))
print("accuracy score", accuracy_score(estim.predict(x_test), y_test))
if __name__ == '__main__':
x_vectors, y_vectors = extract_features('D:\\My Source Codes\\Projects-Python'
'\\TextBaseEmotionDetectionWithEnsembleMethod\\Dataset\\'
'text_emotion_6class.csv',
'D:\\My Source Codes\\Projects-Python'
'\\TextBaseEmotionDetectionWithEnsembleMethod\\Dataset\\features6cl300le.csv',
100)
| apache-2.0 |
jakobworldpeace/scikit-learn | examples/linear_model/plot_sgd_iris.py | 58 | 2202 | """
========================================
Plot multi-class SGD on the iris dataset
========================================
Plot decision surface of multi-class SGD on iris dataset.
The hyperplanes corresponding to the three one-versus-all (OVA) classifiers
are represented by the dashed lines.
"""
print(__doc__)
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.linear_model import SGDClassifier
# import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features. We could
# avoid this ugly slicing by using a two-dim dataset
y = iris.target
colors = "bry"
# shuffle
idx = np.arange(X.shape[0])
np.random.seed(13)
np.random.shuffle(idx)
X = X[idx]
y = y[idx]
# standardize
mean = X.mean(axis=0)
std = X.std(axis=0)
X = (X - mean) / std
h = .02 # step size in the mesh
clf = SGDClassifier(alpha=0.001, n_iter=100).fit(X, y)
# create a mesh to plot in
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, x_max]x[y_min, y_max].
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)
plt.axis('tight')
# Plot also the training points
for i, color in zip(clf.classes_, colors):
idx = np.where(y == i)
plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i],
cmap=plt.cm.Paired)
plt.title("Decision surface of multi-class SGD")
plt.axis('tight')
# Plot the three one-against-all classifiers
xmin, xmax = plt.xlim()
ymin, ymax = plt.ylim()
coef = clf.coef_
intercept = clf.intercept_
def plot_hyperplane(c, color):
def line(x0):
return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1]
plt.plot([xmin, xmax], [line(xmin), line(xmax)],
ls="--", color=color)
for i, color in zip(clf.classes_, colors):
plot_hyperplane(i, color)
plt.legend()
plt.show()
| bsd-3-clause |
kingtaurus/cs224d | assignment3/codebase_release/rnn_pytorch.py | 1 | 6742 | import sys
import os
import random
import numpy as np
import matplotlib.pyplot as plt
import math
import time
import itertools
import shutil
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
from torch.nn.utils import clip_grad_norm
import tree as tr
from utils import Vocab
from collections import OrderedDict
import seaborn as sns
from random import shuffle
sns.set_style('whitegrid')
embed_size = 100
label_size = 2
early_stopping = 2
anneal_threshold = 0.99
anneal_by = 1.5
max_epochs = 30
lr = 0.01
l2 = 0.02
average_over = 700
train_size = 800
class RNN_Model(nn.Module):
def __init__(self, vocab, embed_size=100, label_size=2):
super(RNN_Model, self).__init__()
self.embed_size = embed_size
self.label_size = label_size
self.vocab = vocab
self.embedding = nn.Embedding(int(self.vocab.total_words), self.embed_size)
self.fcl = nn.Linear(self.embed_size, self.embed_size, bias=True)
self.fcr = nn.Linear(self.embed_size, self.embed_size, bias=True)
self.projection = nn.Linear(self.embed_size, self.label_size , bias=True)
self.activation = F.relu
self.node_list = []
def init_variables(self):
print("total_words = ", self.vocab.total_words)
def walk_tree(self, in_node):
if in_node.isLeaf:
word_id = torch.LongTensor((self.vocab.encode(in_node.word), ))
current_node = self.embedding(Variable(word_id))
self.node_list.append(self.projection(current_node).unsqueeze(0))
else:
left = self.walk_tree(in_node.left)
right = self.walk_tree(in_node.right)
current_node = self.activation(self.fcl(left) + self.fcl(right))
self.node_list.append(self.projection(current_node).unsqueeze(0))
return current_node
def forward(self, x):
"""
Forward function accepts input data and returns a Variable of output data
"""
self.node_list = []
root_node = self.walk_tree(x.root)
all_nodes = torch.cat(self.node_list)
#now I need to project out
return all_nodes
def main():
print("do nothing")
if __name__ == '__main__':
train_data, dev_data, test_data = tr.simplified_data(train_size, 100, 200)
vocab = Vocab()
train_sents = [t.get_words() for t in train_data]
vocab.construct(list(itertools.chain.from_iterable(train_sents)))
model = RNN_Model(vocab, embed_size=50)
main()
lr = 0.01
loss_history = []
optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9, dampening=0.0)
# params (iterable): iterable of parameters to optimize or dicts defining
# parameter groups
# lr (float): learning rate
# momentum (float, optional): momentum factor (default: 0)
# weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
#torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9, dampening=0, weight_decay=0)
# print(model.fcl._parameters['weight'])
for epoch in range(max_epochs):
print("epoch = ", epoch)
shuffle(train_data)
total_root_prediction = 0.
total_summed_accuracy = 0.
if (epoch % 10 == 0) and epoch > 0:
for param_group in optimizer.param_groups:
#update learning rate
print("Droping learning from %f to %f"%(param_group['lr'], 0.5 * param_group['lr']))
param_group['lr'] = 0.5 * param_group['lr']
for step, tree in enumerate(train_data):
# if step == 0:
# optimizer.zero_grad()
# objective_loss.backward()
# if step == len(train_data) - 1:
# optimizer.step()
all_nodes = model(tree)
labels = []
indices = []
for x,y in enumerate(tree.labels):
if y != 2:
labels.append(y)
indices.append(x)
torch_labels = torch.LongTensor([l for l in labels if l != 2])
logits = all_nodes.index_select(dim=0, index=Variable(torch.LongTensor(indices)))
logits_squeezed = logits.squeeze()
predictions = logits.max(dim=2)[1].squeeze()
correct = predictions.data == torch_labels
#so correctly predicted (root);
total_root_prediction += float(correct[-1])
total_summed_accuracy += float(correct.sum()) / len(labels)
objective_loss = F.cross_entropy(input=logits_squeezed, target=Variable(torch_labels))
if objective_loss.data[0] > 5 and epoch > 10:
#interested in phrase that have large loss (i.e. incorrectly classified)
print(' '.join(tree.get_words()))
loss_history.append(objective_loss.data[0])
if step % 20 == 0 and step > 0:
print("step %3d, last loss %0.3f, mean loss (%d steps) %0.3f" % (step, objective_loss.data[0], average_over, np.mean(loss_history[-average_over:])))
optimizer.zero_grad()
if np.isnan(objective_loss.data[0]):
print("object_loss was not a number")
sys.exit(1)
else:
objective_loss.backward()
clip_grad_norm(model.parameters(), 5, norm_type=2.)
#temp_grad += model.fcl._parameters['weight'].grad.data
# # Update weights using gradient descent; w1.data and w2.data are Tensors,
# # w1.grad and w2.grad are Variables and w1.grad.data and w2.grad.data are
# # Tensors.
# loss.backward()
# w1.data -= learning_rate * w1.grad.data
# w2.data -= learning_rate * w2.grad.data
optimizer.step()
print("total root predicted correctly = ", total_root_prediction/ float(train_size))
print("total node (including root) predicted correctly = ", total_summed_accuracy / float(train_size))
total_dev_loss = 0.
dev_correct_at_root = 0.
dev_correct_all = 0.
for step, dev_example in enumerate(dev_data):
all_nodes = model(dev_example)
labels = []
indices = []
for x,y in enumerate(dev_example.labels):
if y != 2:
labels.append(y)
indices.append(x)
torch_labels = torch.LongTensor([l for l in labels if l != 2])
logits = all_nodes.index_select(dim=0, index=Variable(torch.LongTensor(indices)))
logits_squeezed = logits.squeeze()
predictions = logits.max(dim=2)[1].squeeze()
correct = predictions.data == torch_labels
#so correctly predicted (root);
dev_correct_at_root += float(correct[-1])
dev_correct_all += float(correct.sum()) / len(labels)
objective_loss = F.cross_entropy(input=logits_squeezed, target=Variable(torch_labels))
total_dev_loss += objective_loss.data[0]
print("total_dev_loss = ", total_dev_loss)
print("correct (root) = ", dev_correct_at_root)
print("correct (all)= ", dev_correct_all)
# logits = logits.index_select(dim=0, index=Variable(torch.LongTensor(indices)))
plt.figure()
plt.plot(loss_history)
plt.show()
print("DONE!") | mit |
jl2922/hci | extrapolate_o3.py | 1 | 3771 | """ Obtain results from csv and extrapolate to CBS & FCI limit."""
import sys
import numpy as np
import pandas as pd
import statsmodels.api as sm
np.set_printoptions(precision=12)
def printCorrelationEnergy(statsResult):
coefs = statsResult.params.values
stdevs = statsResult.bse
print('Correlation Energy: ' + str(coefs[0]) + ' +- ' + str(stdevs[0]))
def BEWRegression(X, y, e, title):
augX = sm.add_constant(X)
# Backward elimination.
print('\n' + '#' * 80)
print('REG: ' + title)
print('-' * 80)
print('Backward elimination:')
results = sm.WLS(y, augX, weights=1.0 / np.square(e)).fit()
intercept = results.params.values[0]
variance = np.square(
np.dot(augX, np.abs(results.params.values)) + intercept) + np.square(e)
iteration = 0
while True:
results = sm.WLS(y, augX, weights=1.0 / variance).fit()
printCorrelationEnergy(results)
intercept = results.params.values[0]
variance = np.square(
np.dot(augX, np.abs(results.params.values)) + intercept) + np.square(e)
iteration = iteration + 1
if iteration < 5:
continue
maxPIndex = np.argmax(results.pvalues)
maxP = results.pvalues[maxPIndex]
if maxP < 0.5:
break
print('Eliminate: ' + maxPIndex)
print('P > |t|: ' + str(maxP))
augX.drop(maxPIndex, axis=1, inplace=True)
# Weighted OLS
print('\n[FINAL Weighted OLS]')
variance = np.square(
np.dot(augX, np.abs(results.params.values)) + intercept) + np.square(e)
results = sm.WLS(y, augX, weights=1.0 / variance).fit()
# print(results.summary())
printCorrelationEnergy(results)
def main():
"""main function"""
# Check and read res file.
res_file = 'pt_result.csv'
if len(sys.argv) == 2:
res_file = sys.argv[1]
parameters = ['n_orbs_var_inv', 'eps_var', 'n_orbs_pt_inv', 'eps_pt']
# Read raw data.
data = pd.read_csv(res_file)
# Add inverse terms.
data['n_orbs_var_inv'] = 1.0 / data['n_orbs_var']
data['n_orbs_pt_inv'] = 1.0 / data['n_orbs_pt']
# Remove parameters not enough for extrapolation.
for parameter in parameters:
if data[parameter].value_counts().size < 3:
parameters.remove(parameter)
# Add cross terms.
selectedParameters = parameters[:]
for i in range(len(parameters)):
for j in range(i, len(parameters)):
for k in range(j, len(parameters)):
column = parameters[i] + ' * ' + \
parameters[j] + ' * ' + parameters[k]
selectedParameters.append(column)
data[column] = data[parameters[i]] * \
data[parameters[j]] * data[parameters[k]]
# Estimate intercept.
X = data[selectedParameters]
y = data['energy_corr']
e = data['uncert']
BEWRegression(X, y, e, 'all data')
for i, parameter in enumerate(parameters):
maxValue = X.max()[i]
keep = X[parameter] != maxValue
X_rmax = X[keep]
y_rmax = y[keep]
e_rmax = e[keep]
BEWRegression(X_rmax, y_rmax, e_rmax, 'accu data')
for i, parameter in enumerate(parameters):
minValue = X.min()[i]
keep = X[parameter] != minValue
X_rmin = X[keep]
y_rmin = y[keep]
e_rmin = e[keep]
BEWRegression(X_rmin, y_rmin, e_rmin, 'verify data')
for i, parameter in enumerate(parameters):
maxValue = X_rmin.max()[i]
keep = X_rmin[parameter] != maxValue
X_rminmax = X_rmin[keep]
y_rminmax = y_rmin[keep]
e_rminmax = e_rmin[keep]
BEWRegression(X_rminmax, y_rminmax, e_rminmax, 'verify accu data')
if __name__ == '__main__':
main()
| mit |
linebp/pandas | pandas/tests/frame/test_subclass.py | 15 | 9524 | # -*- coding: utf-8 -*-
from __future__ import print_function
from warnings import catch_warnings
import numpy as np
from pandas import DataFrame, Series, MultiIndex, Panel
import pandas as pd
import pandas.util.testing as tm
from pandas.tests.frame.common import TestData
class TestDataFrameSubclassing(TestData):
def test_frame_subclassing_and_slicing(self):
# Subclass frame and ensure it returns the right class on slicing it
# In reference to PR 9632
class CustomSeries(Series):
@property
def _constructor(self):
return CustomSeries
def custom_series_function(self):
return 'OK'
class CustomDataFrame(DataFrame):
"""
Subclasses pandas DF, fills DF with simulation results, adds some
custom plotting functions.
"""
def __init__(self, *args, **kw):
super(CustomDataFrame, self).__init__(*args, **kw)
@property
def _constructor(self):
return CustomDataFrame
_constructor_sliced = CustomSeries
def custom_frame_function(self):
return 'OK'
data = {'col1': range(10),
'col2': range(10)}
cdf = CustomDataFrame(data)
# Did we get back our own DF class?
assert isinstance(cdf, CustomDataFrame)
# Do we get back our own Series class after selecting a column?
cdf_series = cdf.col1
assert isinstance(cdf_series, CustomSeries)
assert cdf_series.custom_series_function() == 'OK'
# Do we get back our own DF class after slicing row-wise?
cdf_rows = cdf[1:5]
assert isinstance(cdf_rows, CustomDataFrame)
assert cdf_rows.custom_frame_function() == 'OK'
# Make sure sliced part of multi-index frame is custom class
mcol = pd.MultiIndex.from_tuples([('A', 'A'), ('A', 'B')])
cdf_multi = CustomDataFrame([[0, 1], [2, 3]], columns=mcol)
assert isinstance(cdf_multi['A'], CustomDataFrame)
mcol = pd.MultiIndex.from_tuples([('A', ''), ('B', '')])
cdf_multi2 = CustomDataFrame([[0, 1], [2, 3]], columns=mcol)
assert isinstance(cdf_multi2['A'], CustomSeries)
def test_dataframe_metadata(self):
df = tm.SubclassedDataFrame({'X': [1, 2, 3], 'Y': [1, 2, 3]},
index=['a', 'b', 'c'])
df.testattr = 'XXX'
assert df.testattr == 'XXX'
assert df[['X']].testattr == 'XXX'
assert df.loc[['a', 'b'], :].testattr == 'XXX'
assert df.iloc[[0, 1], :].testattr == 'XXX'
# see gh-9776
assert df.iloc[0:1, :].testattr == 'XXX'
# see gh-10553
unpickled = tm.round_trip_pickle(df)
tm.assert_frame_equal(df, unpickled)
assert df._metadata == unpickled._metadata
assert df.testattr == unpickled.testattr
def test_indexing_sliced(self):
# GH 11559
df = tm.SubclassedDataFrame({'X': [1, 2, 3],
'Y': [4, 5, 6],
'Z': [7, 8, 9]},
index=['a', 'b', 'c'])
res = df.loc[:, 'X']
exp = tm.SubclassedSeries([1, 2, 3], index=list('abc'), name='X')
tm.assert_series_equal(res, exp)
assert isinstance(res, tm.SubclassedSeries)
res = df.iloc[:, 1]
exp = tm.SubclassedSeries([4, 5, 6], index=list('abc'), name='Y')
tm.assert_series_equal(res, exp)
assert isinstance(res, tm.SubclassedSeries)
res = df.loc[:, 'Z']
exp = tm.SubclassedSeries([7, 8, 9], index=list('abc'), name='Z')
tm.assert_series_equal(res, exp)
assert isinstance(res, tm.SubclassedSeries)
res = df.loc['a', :]
exp = tm.SubclassedSeries([1, 4, 7], index=list('XYZ'), name='a')
tm.assert_series_equal(res, exp)
assert isinstance(res, tm.SubclassedSeries)
res = df.iloc[1, :]
exp = tm.SubclassedSeries([2, 5, 8], index=list('XYZ'), name='b')
tm.assert_series_equal(res, exp)
assert isinstance(res, tm.SubclassedSeries)
res = df.loc['c', :]
exp = tm.SubclassedSeries([3, 6, 9], index=list('XYZ'), name='c')
tm.assert_series_equal(res, exp)
assert isinstance(res, tm.SubclassedSeries)
def test_to_panel_expanddim(self):
# GH 9762
with catch_warnings(record=True):
class SubclassedFrame(DataFrame):
@property
def _constructor_expanddim(self):
return SubclassedPanel
class SubclassedPanel(Panel):
pass
index = MultiIndex.from_tuples([(0, 0), (0, 1), (0, 2)])
df = SubclassedFrame({'X': [1, 2, 3], 'Y': [4, 5, 6]}, index=index)
result = df.to_panel()
assert isinstance(result, SubclassedPanel)
expected = SubclassedPanel([[[1, 2, 3]], [[4, 5, 6]]],
items=['X', 'Y'], major_axis=[0],
minor_axis=[0, 1, 2],
dtype='int64')
tm.assert_panel_equal(result, expected)
def test_subclass_attr_err_propagation(self):
# GH 11808
class A(DataFrame):
@property
def bar(self):
return self.i_dont_exist
with tm.assert_raises_regex(AttributeError, '.*i_dont_exist.*'):
A().bar
def test_subclass_align(self):
# GH 12983
df1 = tm.SubclassedDataFrame({'a': [1, 3, 5],
'b': [1, 3, 5]}, index=list('ACE'))
df2 = tm.SubclassedDataFrame({'c': [1, 2, 4],
'd': [1, 2, 4]}, index=list('ABD'))
res1, res2 = df1.align(df2, axis=0)
exp1 = tm.SubclassedDataFrame({'a': [1, np.nan, 3, np.nan, 5],
'b': [1, np.nan, 3, np.nan, 5]},
index=list('ABCDE'))
exp2 = tm.SubclassedDataFrame({'c': [1, 2, np.nan, 4, np.nan],
'd': [1, 2, np.nan, 4, np.nan]},
index=list('ABCDE'))
assert isinstance(res1, tm.SubclassedDataFrame)
tm.assert_frame_equal(res1, exp1)
assert isinstance(res2, tm.SubclassedDataFrame)
tm.assert_frame_equal(res2, exp2)
res1, res2 = df1.a.align(df2.c)
assert isinstance(res1, tm.SubclassedSeries)
tm.assert_series_equal(res1, exp1.a)
assert isinstance(res2, tm.SubclassedSeries)
tm.assert_series_equal(res2, exp2.c)
def test_subclass_align_combinations(self):
# GH 12983
df = tm.SubclassedDataFrame({'a': [1, 3, 5],
'b': [1, 3, 5]}, index=list('ACE'))
s = tm.SubclassedSeries([1, 2, 4], index=list('ABD'), name='x')
# frame + series
res1, res2 = df.align(s, axis=0)
exp1 = pd.DataFrame({'a': [1, np.nan, 3, np.nan, 5],
'b': [1, np.nan, 3, np.nan, 5]},
index=list('ABCDE'))
# name is lost when
exp2 = pd.Series([1, 2, np.nan, 4, np.nan],
index=list('ABCDE'), name='x')
assert isinstance(res1, tm.SubclassedDataFrame)
tm.assert_frame_equal(res1, exp1)
assert isinstance(res2, tm.SubclassedSeries)
tm.assert_series_equal(res2, exp2)
# series + frame
res1, res2 = s.align(df)
assert isinstance(res1, tm.SubclassedSeries)
tm.assert_series_equal(res1, exp2)
assert isinstance(res2, tm.SubclassedDataFrame)
tm.assert_frame_equal(res2, exp1)
def test_subclass_iterrows(self):
# GH 13977
df = tm.SubclassedDataFrame({'a': [1]})
for i, row in df.iterrows():
assert isinstance(row, tm.SubclassedSeries)
tm.assert_series_equal(row, df.loc[i])
def test_subclass_sparse_slice(self):
rows = [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]
ssdf = tm.SubclassedSparseDataFrame(rows)
ssdf.testattr = "testattr"
tm.assert_sp_frame_equal(ssdf.loc[:2],
tm.SubclassedSparseDataFrame(rows[:3]))
tm.assert_sp_frame_equal(ssdf.iloc[:2],
tm.SubclassedSparseDataFrame(rows[:2]))
tm.assert_sp_frame_equal(ssdf[:2],
tm.SubclassedSparseDataFrame(rows[:2]))
assert ssdf.loc[:2].testattr == "testattr"
assert ssdf.iloc[:2].testattr == "testattr"
assert ssdf[:2].testattr == "testattr"
tm.assert_sp_series_equal(ssdf.loc[1],
tm.SubclassedSparseSeries(rows[1]),
check_names=False)
tm.assert_sp_series_equal(ssdf.iloc[1],
tm.SubclassedSparseSeries(rows[1]),
check_names=False)
def test_subclass_sparse_transpose(self):
ossdf = tm.SubclassedSparseDataFrame([[1, 2, 3],
[4, 5, 6]])
essdf = tm.SubclassedSparseDataFrame([[1, 4],
[2, 5],
[3, 6]])
tm.assert_sp_frame_equal(ossdf.T, essdf)
| bsd-3-clause |
hhj0325/pystock | com/hhj/pystock/matplotlib_demo/pie_bar_demo.py | 1 | 1939 | import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.rcParams['axes.titlesize'] = 20
mpl.rcParams['xtick.labelsize'] = 16
mpl.rcParams['ytick.labelsize'] = 16
mpl.rcParams['axes.labelsize'] = 16
mpl.rcParams['xtick.major.size'] = 0
mpl.rcParams['ytick.major.size'] = 0
# 包含了狗,猫和猎豹的最高奔跑速度,还有对应的可视化颜色
speed_map = {
'dog': (48, '#7199cf'),
'cat': (45, '#4fc4aa'),
'cheetah': (120, '#e1a7a2')
}
# 整体图的标题
fig = plt.figure('Bar chart & Pie chart')
# 在整张图上加入一个子图,121的意思是在一个1行2列的子图中的第一张
ax = fig.add_subplot(121)
ax.set_title('Running speed - bar chart')
# 生成x轴每个元素的位置
xticks = np.arange(3)
# 定义柱状图每个柱的宽度
bar_width = 0.5
# 动物名称
animals = speed_map.keys()
# 奔跑速度
speeds = [x[0] for x in speed_map.values()]
# 对应颜色
colors = [x[1] for x in speed_map.values()]
# 画柱状图,横轴是动物标签的位置,纵轴是速度,定义柱的宽度,同时设置柱的边缘为透明
bars = ax.bar(xticks, speeds, width=bar_width, edgecolor='none')
# 设置y轴的标题
ax.set_ylabel('Speed(km/h)')
# x轴每个标签的具体位置,设置为每个柱的中央
ax.set_xticks(xticks+bar_width/2)
# 设置每个标签的名字
ax.set_xticklabels(animals)
# 设置x轴的范围
ax.set_xlim([bar_width/2-0.5, 3-bar_width/2])
# 设置y轴的范围
ax.set_ylim([0, 125])
# 给每个bar分配指定的颜色
for bar, color in zip(bars, colors):
bar.set_color(color)
# 在122位置加入新的图
ax = fig.add_subplot(122)
ax.set_title('Running speed - pie chart')
# 生成同时包含名称和速度的标签
labels = ['{}\n{} km/h'.format(animal, speed) for animal, speed in zip(animals, speeds)]
# 画饼状图,并指定标签和对应颜色
ax.pie(speeds, labels=labels, colors=colors)
plt.show()
| apache-2.0 |
AlexanderFabisch/scikit-learn | examples/linear_model/plot_sgd_loss_functions.py | 73 | 1232 | """
==========================
SGD: convex loss functions
==========================
A plot that compares the various convex loss functions supported by
:class:`sklearn.linear_model.SGDClassifier` .
"""
print(__doc__)
import numpy as np
import matplotlib.pyplot as plt
def modified_huber_loss(y_true, y_pred):
z = y_pred * y_true
loss = -4 * z
loss[z >= -1] = (1 - z[z >= -1]) ** 2
loss[z >= 1.] = 0
return loss
xmin, xmax = -4, 4
xx = np.linspace(xmin, xmax, 100)
lw = 2
plt.plot([xmin, 0, 0, xmax], [1, 1, 0, 0], color='gold', lw=lw,
label="Zero-one loss")
plt.plot(xx, np.where(xx < 1, 1 - xx, 0), color='teal', lw=lw,
label="Hinge loss")
plt.plot(xx, -np.minimum(xx, 0), color='yellowgreen', lw=lw,
label="Perceptron loss")
plt.plot(xx, np.log2(1 + np.exp(-xx)), color='cornflowerblue', lw=lw,
label="Log loss")
plt.plot(xx, np.where(xx < 1, 1 - xx, 0) ** 2, color='orange', lw=lw,
label="Squared hinge loss")
plt.plot(xx, modified_huber_loss(xx, 1), color='darkorchid', lw=lw,
linestyle='--', label="Modified Huber loss")
plt.ylim((0, 8))
plt.legend(loc="upper right")
plt.xlabel(r"Decision function $f(x)$")
plt.ylabel("$L(y, f(x))$")
plt.show()
| bsd-3-clause |
RobertArbon/YAMLP | SciFlow/FFtraversal.py | 1 | 2387 | import ImportData
import numpy as np
import CoulombMatrix
import cProfile, pstats, StringIO
import time
from datetime import datetime
import matplotlib.pyplot as plt
def fft_idx(X, k):
"""
This function does something.
:param X: parameter X
:param k: parameter k
:return: returns training indexes
"""
# Creating the matrix of the distances
dist_mat_glob = np.zeros(shape=(X.shape[0], X.shape[0]))
for i in range(X.shape[0] - 1):
for j in range(i + 1, X.shape[0]):
distvec = X[j, :] - X[i, :]
dist_mat_glob[i, j] = np.dot(distvec, distvec)
dist_mat_glob[j, i] = np.dot(distvec, distvec)
# print "Generated " + str(X.shape[0]) + " by " + str(X.shape[0]) + " distance matrix."
n_samples = X.shape[0]
train_set = []
idx = np.int32(np.random.uniform(n_samples))
train_set.append(idx)
for i in range(1, k):
dist_list = []
for index in train_set:
dist_list.append(dist_mat_glob[index, :])
dist_set = np.amin(dist_list, axis=0)
dist_idx = np.argmax(dist_set)
train_set.append(dist_idx)
# np.save("train_idx.npy",train_set)
return train_set
if __name__ == "__main__":
X, y, Q = ImportData.loadPd_q("/Users/walfits/Repositories/trainingNN/dataSets/PBE_B3LYP/pbe_b3lyp_partQ_rel.csv")
descript = CoulombMatrix.CoulombMatrix(X)
# X_coul, y_coul = descript.generatePRCM(y_data=y, numRep=2)
X_coul = descript.generateTrimmedCM()
print X_coul.shape
pr = cProfile.Profile()
pr.enable()
train_idx = fft_idx(X_coul[:5000, :], 4000)
pr.disable()
s = StringIO.StringIO()
sortby = 'cumulative'
ps = pstats.Stats(pr, stream=s).sort_stats(sortby)
ps.print_stats()
print s.getvalue()
# x = range(100, 1100, 100)
# y = []
#
# for i in range(100, 1100, 100):
# X_set = X_coul[:i, :]
# # Starting the timer
# startTime = time.time()
# fft_idx(X_coul[:i,:], int(i*0.8))
# # Ending the timer
# endTime = time.time()
# finalTime = endTime - startTime
# y.append(finalTime)
#
# fig2, ax2 = plt.subplots(figsize=(6, 6))
# ax2.scatter(x, y)
# ax2.set_xlabel('Data set size')
# ax2.set_ylabel('Time to split (s)')
# ax2.legend()
# plt.show()
#
# print x
# print y | mit |
fengzhyuan/scikit-learn | sklearn/covariance/robust_covariance.py | 198 | 29735 | """
Robust location and covariance estimators.
Here are implemented estimators that are resistant to outliers.
"""
# Author: Virgile Fritsch <[email protected]>
#
# License: BSD 3 clause
import warnings
import numbers
import numpy as np
from scipy import linalg
from scipy.stats import chi2
from . import empirical_covariance, EmpiricalCovariance
from ..utils.extmath import fast_logdet, pinvh
from ..utils import check_random_state, check_array
# Minimum Covariance Determinant
# Implementing of an algorithm by Rousseeuw & Van Driessen described in
# (A Fast Algorithm for the Minimum Covariance Determinant Estimator,
# 1999, American Statistical Association and the American Society
# for Quality, TECHNOMETRICS)
# XXX Is this really a public function? It's not listed in the docs or
# exported by sklearn.covariance. Deprecate?
def c_step(X, n_support, remaining_iterations=30, initial_estimates=None,
verbose=False, cov_computation_method=empirical_covariance,
random_state=None):
"""C_step procedure described in [Rouseeuw1984]_ aiming at computing MCD.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Data set in which we look for the n_support observations whose
scatter matrix has minimum determinant.
n_support : int, > n_samples / 2
Number of observations to compute the robust estimates of location
and covariance from.
remaining_iterations : int, optional
Number of iterations to perform.
According to [Rouseeuw1999]_, two iterations are sufficient to get
close to the minimum, and we never need more than 30 to reach
convergence.
initial_estimates : 2-tuple, optional
Initial estimates of location and shape from which to run the c_step
procedure:
- initial_estimates[0]: an initial location estimate
- initial_estimates[1]: an initial covariance estimate
verbose : boolean, optional
Verbose mode.
random_state : integer or numpy.RandomState, optional
The random generator used. If an integer is given, it fixes the
seed. Defaults to the global numpy random number generator.
cov_computation_method : callable, default empirical_covariance
The function which will be used to compute the covariance.
Must return shape (n_features, n_features)
Returns
-------
location : array-like, shape (n_features,)
Robust location estimates.
covariance : array-like, shape (n_features, n_features)
Robust covariance estimates.
support : array-like, shape (n_samples,)
A mask for the `n_support` observations whose scatter matrix has
minimum determinant.
References
----------
.. [Rouseeuw1999] A Fast Algorithm for the Minimum Covariance Determinant
Estimator, 1999, American Statistical Association and the American
Society for Quality, TECHNOMETRICS
"""
X = np.asarray(X)
random_state = check_random_state(random_state)
return _c_step(X, n_support, remaining_iterations=remaining_iterations,
initial_estimates=initial_estimates, verbose=verbose,
cov_computation_method=cov_computation_method,
random_state=random_state)
def _c_step(X, n_support, random_state, remaining_iterations=30,
initial_estimates=None, verbose=False,
cov_computation_method=empirical_covariance):
n_samples, n_features = X.shape
# Initialisation
support = np.zeros(n_samples, dtype=bool)
if initial_estimates is None:
# compute initial robust estimates from a random subset
support[random_state.permutation(n_samples)[:n_support]] = True
else:
# get initial robust estimates from the function parameters
location = initial_estimates[0]
covariance = initial_estimates[1]
# run a special iteration for that case (to get an initial support)
precision = pinvh(covariance)
X_centered = X - location
dist = (np.dot(X_centered, precision) * X_centered).sum(1)
# compute new estimates
support[np.argsort(dist)[:n_support]] = True
X_support = X[support]
location = X_support.mean(0)
covariance = cov_computation_method(X_support)
# Iterative procedure for Minimum Covariance Determinant computation
det = fast_logdet(covariance)
previous_det = np.inf
while (det < previous_det) and (remaining_iterations > 0):
# save old estimates values
previous_location = location
previous_covariance = covariance
previous_det = det
previous_support = support
# compute a new support from the full data set mahalanobis distances
precision = pinvh(covariance)
X_centered = X - location
dist = (np.dot(X_centered, precision) * X_centered).sum(axis=1)
# compute new estimates
support = np.zeros(n_samples, dtype=bool)
support[np.argsort(dist)[:n_support]] = True
X_support = X[support]
location = X_support.mean(axis=0)
covariance = cov_computation_method(X_support)
det = fast_logdet(covariance)
# update remaining iterations for early stopping
remaining_iterations -= 1
previous_dist = dist
dist = (np.dot(X - location, precision) * (X - location)).sum(axis=1)
# Catch computation errors
if np.isinf(det):
raise ValueError(
"Singular covariance matrix. "
"Please check that the covariance matrix corresponding "
"to the dataset is full rank and that MinCovDet is used with "
"Gaussian-distributed data (or at least data drawn from a "
"unimodal, symmetric distribution.")
# Check convergence
if np.allclose(det, previous_det):
# c_step procedure converged
if verbose:
print("Optimal couple (location, covariance) found before"
" ending iterations (%d left)" % (remaining_iterations))
results = location, covariance, det, support, dist
elif det > previous_det:
# determinant has increased (should not happen)
warnings.warn("Warning! det > previous_det (%.15f > %.15f)"
% (det, previous_det), RuntimeWarning)
results = previous_location, previous_covariance, \
previous_det, previous_support, previous_dist
# Check early stopping
if remaining_iterations == 0:
if verbose:
print('Maximum number of iterations reached')
results = location, covariance, det, support, dist
return results
def select_candidates(X, n_support, n_trials, select=1, n_iter=30,
verbose=False,
cov_computation_method=empirical_covariance,
random_state=None):
"""Finds the best pure subset of observations to compute MCD from it.
The purpose of this function is to find the best sets of n_support
observations with respect to a minimization of their covariance
matrix determinant. Equivalently, it removes n_samples-n_support
observations to construct what we call a pure data set (i.e. not
containing outliers). The list of the observations of the pure
data set is referred to as the `support`.
Starting from a random support, the pure data set is found by the
c_step procedure introduced by Rousseeuw and Van Driessen in
[Rouseeuw1999]_.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Data (sub)set in which we look for the n_support purest observations.
n_support : int, [(n + p + 1)/2] < n_support < n
The number of samples the pure data set must contain.
select : int, int > 0
Number of best candidates results to return.
n_trials : int, nb_trials > 0 or 2-tuple
Number of different initial sets of observations from which to
run the algorithm.
Instead of giving a number of trials to perform, one can provide a
list of initial estimates that will be used to iteratively run
c_step procedures. In this case:
- n_trials[0]: array-like, shape (n_trials, n_features)
is the list of `n_trials` initial location estimates
- n_trials[1]: array-like, shape (n_trials, n_features, n_features)
is the list of `n_trials` initial covariances estimates
n_iter : int, nb_iter > 0
Maximum number of iterations for the c_step procedure.
(2 is enough to be close to the final solution. "Never" exceeds 20).
random_state : integer or numpy.RandomState, default None
The random generator used. If an integer is given, it fixes the
seed. Defaults to the global numpy random number generator.
cov_computation_method : callable, default empirical_covariance
The function which will be used to compute the covariance.
Must return shape (n_features, n_features)
verbose : boolean, default False
Control the output verbosity.
See Also
---------
c_step
Returns
-------
best_locations : array-like, shape (select, n_features)
The `select` location estimates computed from the `select` best
supports found in the data set (`X`).
best_covariances : array-like, shape (select, n_features, n_features)
The `select` covariance estimates computed from the `select`
best supports found in the data set (`X`).
best_supports : array-like, shape (select, n_samples)
The `select` best supports found in the data set (`X`).
References
----------
.. [Rouseeuw1999] A Fast Algorithm for the Minimum Covariance Determinant
Estimator, 1999, American Statistical Association and the American
Society for Quality, TECHNOMETRICS
"""
random_state = check_random_state(random_state)
n_samples, n_features = X.shape
if isinstance(n_trials, numbers.Integral):
run_from_estimates = False
elif isinstance(n_trials, tuple):
run_from_estimates = True
estimates_list = n_trials
n_trials = estimates_list[0].shape[0]
else:
raise TypeError("Invalid 'n_trials' parameter, expected tuple or "
" integer, got %s (%s)" % (n_trials, type(n_trials)))
# compute `n_trials` location and shape estimates candidates in the subset
all_estimates = []
if not run_from_estimates:
# perform `n_trials` computations from random initial supports
for j in range(n_trials):
all_estimates.append(
_c_step(
X, n_support, remaining_iterations=n_iter, verbose=verbose,
cov_computation_method=cov_computation_method,
random_state=random_state))
else:
# perform computations from every given initial estimates
for j in range(n_trials):
initial_estimates = (estimates_list[0][j], estimates_list[1][j])
all_estimates.append(_c_step(
X, n_support, remaining_iterations=n_iter,
initial_estimates=initial_estimates, verbose=verbose,
cov_computation_method=cov_computation_method,
random_state=random_state))
all_locs_sub, all_covs_sub, all_dets_sub, all_supports_sub, all_ds_sub = \
zip(*all_estimates)
# find the `n_best` best results among the `n_trials` ones
index_best = np.argsort(all_dets_sub)[:select]
best_locations = np.asarray(all_locs_sub)[index_best]
best_covariances = np.asarray(all_covs_sub)[index_best]
best_supports = np.asarray(all_supports_sub)[index_best]
best_ds = np.asarray(all_ds_sub)[index_best]
return best_locations, best_covariances, best_supports, best_ds
def fast_mcd(X, support_fraction=None,
cov_computation_method=empirical_covariance,
random_state=None):
"""Estimates the Minimum Covariance Determinant matrix.
Read more in the :ref:`User Guide <robust_covariance>`.
Parameters
----------
X : array-like, shape (n_samples, n_features)
The data matrix, with p features and n samples.
support_fraction : float, 0 < support_fraction < 1
The proportion of points to be included in the support of the raw
MCD estimate. Default is None, which implies that the minimum
value of support_fraction will be used within the algorithm:
`[n_sample + n_features + 1] / 2`.
random_state : integer or numpy.RandomState, optional
The generator used to randomly subsample. If an integer is
given, it fixes the seed. Defaults to the global numpy random
number generator.
cov_computation_method : callable, default empirical_covariance
The function which will be used to compute the covariance.
Must return shape (n_features, n_features)
Notes
-----
The FastMCD algorithm has been introduced by Rousseuw and Van Driessen
in "A Fast Algorithm for the Minimum Covariance Determinant Estimator,
1999, American Statistical Association and the American Society
for Quality, TECHNOMETRICS".
The principle is to compute robust estimates and random subsets before
pooling them into a larger subsets, and finally into the full data set.
Depending on the size of the initial sample, we have one, two or three
such computation levels.
Note that only raw estimates are returned. If one is interested in
the correction and reweighting steps described in [Rouseeuw1999]_,
see the MinCovDet object.
References
----------
.. [Rouseeuw1999] A Fast Algorithm for the Minimum Covariance
Determinant Estimator, 1999, American Statistical Association
and the American Society for Quality, TECHNOMETRICS
.. [Butler1993] R. W. Butler, P. L. Davies and M. Jhun,
Asymptotics For The Minimum Covariance Determinant Estimator,
The Annals of Statistics, 1993, Vol. 21, No. 3, 1385-1400
Returns
-------
location : array-like, shape (n_features,)
Robust location of the data.
covariance : array-like, shape (n_features, n_features)
Robust covariance of the features.
support : array-like, type boolean, shape (n_samples,)
A mask of the observations that have been used to compute
the robust location and covariance estimates of the data set.
"""
random_state = check_random_state(random_state)
X = np.asarray(X)
if X.ndim == 1:
X = np.reshape(X, (1, -1))
warnings.warn("Only one sample available. "
"You may want to reshape your data array")
n_samples, n_features = X.shape
# minimum breakdown value
if support_fraction is None:
n_support = int(np.ceil(0.5 * (n_samples + n_features + 1)))
else:
n_support = int(support_fraction * n_samples)
# 1-dimensional case quick computation
# (Rousseeuw, P. J. and Leroy, A. M. (2005) References, in Robust
# Regression and Outlier Detection, John Wiley & Sons, chapter 4)
if n_features == 1:
if n_support < n_samples:
# find the sample shortest halves
X_sorted = np.sort(np.ravel(X))
diff = X_sorted[n_support:] - X_sorted[:(n_samples - n_support)]
halves_start = np.where(diff == np.min(diff))[0]
# take the middle points' mean to get the robust location estimate
location = 0.5 * (X_sorted[n_support + halves_start]
+ X_sorted[halves_start]).mean()
support = np.zeros(n_samples, dtype=bool)
X_centered = X - location
support[np.argsort(np.abs(X_centered), 0)[:n_support]] = True
covariance = np.asarray([[np.var(X[support])]])
location = np.array([location])
# get precision matrix in an optimized way
precision = pinvh(covariance)
dist = (np.dot(X_centered, precision) * (X_centered)).sum(axis=1)
else:
support = np.ones(n_samples, dtype=bool)
covariance = np.asarray([[np.var(X)]])
location = np.asarray([np.mean(X)])
X_centered = X - location
# get precision matrix in an optimized way
precision = pinvh(covariance)
dist = (np.dot(X_centered, precision) * (X_centered)).sum(axis=1)
# Starting FastMCD algorithm for p-dimensional case
if (n_samples > 500) and (n_features > 1):
# 1. Find candidate supports on subsets
# a. split the set in subsets of size ~ 300
n_subsets = n_samples // 300
n_samples_subsets = n_samples // n_subsets
samples_shuffle = random_state.permutation(n_samples)
h_subset = int(np.ceil(n_samples_subsets *
(n_support / float(n_samples))))
# b. perform a total of 500 trials
n_trials_tot = 500
# c. select 10 best (location, covariance) for each subset
n_best_sub = 10
n_trials = max(10, n_trials_tot // n_subsets)
n_best_tot = n_subsets * n_best_sub
all_best_locations = np.zeros((n_best_tot, n_features))
try:
all_best_covariances = np.zeros((n_best_tot, n_features,
n_features))
except MemoryError:
# The above is too big. Let's try with something much small
# (and less optimal)
all_best_covariances = np.zeros((n_best_tot, n_features,
n_features))
n_best_tot = 10
n_best_sub = 2
for i in range(n_subsets):
low_bound = i * n_samples_subsets
high_bound = low_bound + n_samples_subsets
current_subset = X[samples_shuffle[low_bound:high_bound]]
best_locations_sub, best_covariances_sub, _, _ = select_candidates(
current_subset, h_subset, n_trials,
select=n_best_sub, n_iter=2,
cov_computation_method=cov_computation_method,
random_state=random_state)
subset_slice = np.arange(i * n_best_sub, (i + 1) * n_best_sub)
all_best_locations[subset_slice] = best_locations_sub
all_best_covariances[subset_slice] = best_covariances_sub
# 2. Pool the candidate supports into a merged set
# (possibly the full dataset)
n_samples_merged = min(1500, n_samples)
h_merged = int(np.ceil(n_samples_merged *
(n_support / float(n_samples))))
if n_samples > 1500:
n_best_merged = 10
else:
n_best_merged = 1
# find the best couples (location, covariance) on the merged set
selection = random_state.permutation(n_samples)[:n_samples_merged]
locations_merged, covariances_merged, supports_merged, d = \
select_candidates(
X[selection], h_merged,
n_trials=(all_best_locations, all_best_covariances),
select=n_best_merged,
cov_computation_method=cov_computation_method,
random_state=random_state)
# 3. Finally get the overall best (locations, covariance) couple
if n_samples < 1500:
# directly get the best couple (location, covariance)
location = locations_merged[0]
covariance = covariances_merged[0]
support = np.zeros(n_samples, dtype=bool)
dist = np.zeros(n_samples)
support[selection] = supports_merged[0]
dist[selection] = d[0]
else:
# select the best couple on the full dataset
locations_full, covariances_full, supports_full, d = \
select_candidates(
X, n_support,
n_trials=(locations_merged, covariances_merged),
select=1,
cov_computation_method=cov_computation_method,
random_state=random_state)
location = locations_full[0]
covariance = covariances_full[0]
support = supports_full[0]
dist = d[0]
elif n_features > 1:
# 1. Find the 10 best couples (location, covariance)
# considering two iterations
n_trials = 30
n_best = 10
locations_best, covariances_best, _, _ = select_candidates(
X, n_support, n_trials=n_trials, select=n_best, n_iter=2,
cov_computation_method=cov_computation_method,
random_state=random_state)
# 2. Select the best couple on the full dataset amongst the 10
locations_full, covariances_full, supports_full, d = select_candidates(
X, n_support, n_trials=(locations_best, covariances_best),
select=1, cov_computation_method=cov_computation_method,
random_state=random_state)
location = locations_full[0]
covariance = covariances_full[0]
support = supports_full[0]
dist = d[0]
return location, covariance, support, dist
class MinCovDet(EmpiricalCovariance):
"""Minimum Covariance Determinant (MCD): robust estimator of covariance.
The Minimum Covariance Determinant covariance estimator is to be applied
on Gaussian-distributed data, but could still be relevant on data
drawn from a unimodal, symmetric distribution. It is not meant to be used
with multi-modal data (the algorithm used to fit a MinCovDet object is
likely to fail in such a case).
One should consider projection pursuit methods to deal with multi-modal
datasets.
Read more in the :ref:`User Guide <robust_covariance>`.
Parameters
----------
store_precision : bool
Specify if the estimated precision is stored.
assume_centered : Boolean
If True, the support of the robust location and the covariance
estimates is computed, and a covariance estimate is recomputed from
it, without centering the data.
Useful to work with data whose mean is significantly equal to
zero but is not exactly zero.
If False, the robust location and covariance are directly computed
with the FastMCD algorithm without additional treatment.
support_fraction : float, 0 < support_fraction < 1
The proportion of points to be included in the support of the raw
MCD estimate. Default is None, which implies that the minimum
value of support_fraction will be used within the algorithm:
[n_sample + n_features + 1] / 2
random_state : integer or numpy.RandomState, optional
The random generator used. If an integer is given, it fixes the
seed. Defaults to the global numpy random number generator.
Attributes
----------
raw_location_ : array-like, shape (n_features,)
The raw robust estimated location before correction and re-weighting.
raw_covariance_ : array-like, shape (n_features, n_features)
The raw robust estimated covariance before correction and re-weighting.
raw_support_ : array-like, shape (n_samples,)
A mask of the observations that have been used to compute
the raw robust estimates of location and shape, before correction
and re-weighting.
location_ : array-like, shape (n_features,)
Estimated robust location
covariance_ : array-like, shape (n_features, n_features)
Estimated robust covariance matrix
precision_ : array-like, shape (n_features, n_features)
Estimated pseudo inverse matrix.
(stored only if store_precision is True)
support_ : array-like, shape (n_samples,)
A mask of the observations that have been used to compute
the robust estimates of location and shape.
dist_ : array-like, shape (n_samples,)
Mahalanobis distances of the training set (on which `fit` is called)
observations.
References
----------
.. [Rouseeuw1984] `P. J. Rousseeuw. Least median of squares regression.
J. Am Stat Ass, 79:871, 1984.`
.. [Rouseeuw1999] `A Fast Algorithm for the Minimum Covariance Determinant
Estimator, 1999, American Statistical Association and the American
Society for Quality, TECHNOMETRICS`
.. [Butler1993] `R. W. Butler, P. L. Davies and M. Jhun,
Asymptotics For The Minimum Covariance Determinant Estimator,
The Annals of Statistics, 1993, Vol. 21, No. 3, 1385-1400`
"""
_nonrobust_covariance = staticmethod(empirical_covariance)
def __init__(self, store_precision=True, assume_centered=False,
support_fraction=None, random_state=None):
self.store_precision = store_precision
self.assume_centered = assume_centered
self.support_fraction = support_fraction
self.random_state = random_state
def fit(self, X, y=None):
"""Fits a Minimum Covariance Determinant with the FastMCD algorithm.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Training data, where n_samples is the number of samples
and n_features is the number of features.
y : not used, present for API consistence purpose.
Returns
-------
self : object
Returns self.
"""
X = check_array(X)
random_state = check_random_state(self.random_state)
n_samples, n_features = X.shape
# check that the empirical covariance is full rank
if (linalg.svdvals(np.dot(X.T, X)) > 1e-8).sum() != n_features:
warnings.warn("The covariance matrix associated to your dataset "
"is not full rank")
# compute and store raw estimates
raw_location, raw_covariance, raw_support, raw_dist = fast_mcd(
X, support_fraction=self.support_fraction,
cov_computation_method=self._nonrobust_covariance,
random_state=random_state)
if self.assume_centered:
raw_location = np.zeros(n_features)
raw_covariance = self._nonrobust_covariance(X[raw_support],
assume_centered=True)
# get precision matrix in an optimized way
precision = pinvh(raw_covariance)
raw_dist = np.sum(np.dot(X, precision) * X, 1)
self.raw_location_ = raw_location
self.raw_covariance_ = raw_covariance
self.raw_support_ = raw_support
self.location_ = raw_location
self.support_ = raw_support
self.dist_ = raw_dist
# obtain consistency at normal models
self.correct_covariance(X)
# re-weight estimator
self.reweight_covariance(X)
return self
def correct_covariance(self, data):
"""Apply a correction to raw Minimum Covariance Determinant estimates.
Correction using the empirical correction factor suggested
by Rousseeuw and Van Driessen in [Rouseeuw1984]_.
Parameters
----------
data : array-like, shape (n_samples, n_features)
The data matrix, with p features and n samples.
The data set must be the one which was used to compute
the raw estimates.
Returns
-------
covariance_corrected : array-like, shape (n_features, n_features)
Corrected robust covariance estimate.
"""
correction = np.median(self.dist_) / chi2(data.shape[1]).isf(0.5)
covariance_corrected = self.raw_covariance_ * correction
self.dist_ /= correction
return covariance_corrected
def reweight_covariance(self, data):
"""Re-weight raw Minimum Covariance Determinant estimates.
Re-weight observations using Rousseeuw's method (equivalent to
deleting outlying observations from the data set before
computing location and covariance estimates). [Rouseeuw1984]_
Parameters
----------
data : array-like, shape (n_samples, n_features)
The data matrix, with p features and n samples.
The data set must be the one which was used to compute
the raw estimates.
Returns
-------
location_reweighted : array-like, shape (n_features, )
Re-weighted robust location estimate.
covariance_reweighted : array-like, shape (n_features, n_features)
Re-weighted robust covariance estimate.
support_reweighted : array-like, type boolean, shape (n_samples,)
A mask of the observations that have been used to compute
the re-weighted robust location and covariance estimates.
"""
n_samples, n_features = data.shape
mask = self.dist_ < chi2(n_features).isf(0.025)
if self.assume_centered:
location_reweighted = np.zeros(n_features)
else:
location_reweighted = data[mask].mean(0)
covariance_reweighted = self._nonrobust_covariance(
data[mask], assume_centered=self.assume_centered)
support_reweighted = np.zeros(n_samples, dtype=bool)
support_reweighted[mask] = True
self._set_covariance(covariance_reweighted)
self.location_ = location_reweighted
self.support_ = support_reweighted
X_centered = data - self.location_
self.dist_ = np.sum(
np.dot(X_centered, self.get_precision()) * X_centered, 1)
return location_reweighted, covariance_reweighted, support_reweighted
| bsd-3-clause |
Aggieyixin/cjc2016 | code/tba/tutorials-scikit-learn-master/robustness.py | 5 | 2733 | import numpy as np
from matplotlib import pyplot as plt
from scipy import stats
from sklearn.tree import DecisionTreeClassifier
def plot_surface(model, X, y):
n_classes = 3
plot_colors = "ryb"
cmap = plt.cm.RdYlBu
plot_step = 0.02
plot_step_coarser = 0.5
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step),
np.arange(y_min, y_max, plot_step))
if isinstance(model, DecisionTreeClassifier):
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
cs = plt.contourf(xx, yy, Z, cmap=cmap)
else:
estimator_alpha = 1.0 / len(model.estimators_)
for tree in model.estimators_:
Z = tree.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
cs = plt.contourf(xx, yy, Z, alpha=estimator_alpha, cmap=cmap)
xx_coarser, yy_coarser = np.meshgrid(np.arange(x_min, x_max, plot_step_coarser),
np.arange(y_min, y_max, plot_step_coarser))
Z_points_coarser = model.predict(np.c_[xx_coarser.ravel(), yy_coarser.ravel()]).reshape(xx_coarser.shape)
cs_points = plt.scatter(xx_coarser, yy_coarser, s=15,
c=Z_points_coarser, cmap=cmap, edgecolors="none")
for i, c in zip(range(n_classes), plot_colors):
idx = np.where(y == i)
plt.scatter(X[idx, 0], X[idx, 1], c=c, cmap=cmap)
plt.show()
def plot_outlier_detector(clf, X, ground_truth):
n_outliers = (ground_truth == 0).sum()
outliers_fraction = 1. * n_outliers / len(ground_truth)
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.linspace(x_min, x_max, 500),
np.linspace(y_min, y_max, 500))
y_pred = clf.decision_function(X).ravel()
threshold = stats.scoreatpercentile(y_pred, 100 * outliers_fraction)
y_pred = y_pred > threshold
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, levels=np.linspace(Z.min(), threshold, 7),
cmap=plt.cm.Blues_r)
a = plt.contour(xx, yy, Z, levels=[threshold],
linewidths=2, colors='red')
plt.contourf(xx, yy, Z, levels=[threshold, Z.max()], colors='orange')
b = plt.scatter(X[:-n_outliers, 0], X[:-n_outliers, 1], c='white')
c = plt.scatter(X[-n_outliers:, 0], X[-n_outliers:, 1], c='black')
plt.legend(
[a.collections[0], b, c],
['Learned decision function', 'True inliers', 'True outliers'])
plt.show()
| mit |
goyalankit/po-compiler | object_files/networkx-1.8.1/examples/drawing/sampson.py | 40 | 1379 | #!/usr/bin/env python
"""
Sampson's monastery data.
Shows how to read data from a zip file and plot multiple frames.
"""
__author__ = """Aric Hagberg ([email protected])"""
# Copyright (C) 2010 by
# Aric Hagberg <[email protected]>
# Dan Schult <[email protected]>
# Pieter Swart <[email protected]>
# All rights reserved.
# BSD license.
import zipfile, cStringIO
import networkx as nx
import matplotlib.pyplot as plt
zf = zipfile.ZipFile('sampson_data.zip') # zipfile object
e1=cStringIO.StringIO(zf.read('samplike1.txt')) # read info file
e2=cStringIO.StringIO(zf.read('samplike2.txt')) # read info file
e3=cStringIO.StringIO(zf.read('samplike3.txt')) # read info file
G1=nx.read_edgelist(e1,delimiter='\t')
G2=nx.read_edgelist(e2,delimiter='\t')
G3=nx.read_edgelist(e3,delimiter='\t')
pos=nx.spring_layout(G3,iterations=100)
plt.clf()
plt.subplot(221)
plt.title('samplike1')
nx.draw(G1,pos,node_size=50,with_labels=False)
plt.subplot(222)
plt.title('samplike2')
nx.draw(G2,pos,node_size=50,with_labels=False)
plt.subplot(223)
plt.title('samplike3')
nx.draw(G3,pos,node_size=50,with_labels=False)
plt.subplot(224)
plt.title('samplike1,2,3')
nx.draw(G3,pos,edgelist=G3.edges(),node_size=50,with_labels=False)
nx.draw_networkx_edges(G1,pos,alpha=0.25)
nx.draw_networkx_edges(G2,pos,alpha=0.25)
plt.savefig("sampson.png") # save as png
plt.show() # display
| apache-2.0 |
google-research/google-research | persistent_es/plot_toy_regression.py | 1 | 5719 | # coding=utf-8
# Copyright 2021 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Plot loss curves from saved CSV files for the toy regression experiment.
Example:
--------
python plot_toy_regression.py
"""
import os
import csv
import ipdb
import pickle as pkl
from collections import defaultdict
import numpy as np
import scipy.ndimage
import matplotlib.pyplot as plt
import matplotlib.colors as colors
import seaborn as sns
sns.set_style('white')
sns.set_palette('bright')
# Darker colors
flatui = ["#E00072", "#00830B", "#2B1A7F", "#E06111", "#02D4F9", "#4F4C4B",]
sns.set_palette(flatui)
sns.palplot(sns.color_palette())
# Plotting from saved CSV files
def load_log(exp_dir, log_filename='train_log.csv'):
result_dict = defaultdict(list)
with open(os.path.join(exp_dir, log_filename), newline='') as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:
for key in row:
try:
if key in ['global_iteration', 'iteration', 'epoch']:
result_dict[key].append(int(row[key]))
else:
result_dict[key].append(float(row[key]))
except:
pass
return result_dict
def plot_heatmap(pkl_path,
xlabel,
ylabel,
smoothed=False,
sigma=5.0,
cmap=plt.cm.viridis,
colorbar=True,
figsize=(10,8)):
with open(pkl_path, 'rb') as f:
heatmap_data = pkl.load(f)
if smoothed:
smoothed_F_grid = scipy.ndimage.gaussian_filter(heatmap_data['L_grid'], sigma=sigma)
best_smoothed_theta = np.unravel_index(smoothed_F_grid.argmin(), smoothed_F_grid.shape)
best_smoothed_x = heatmap_data['xv'][best_smoothed_theta]
best_smoothed_y = heatmap_data['yv'][best_smoothed_theta]
plt.figure(figsize=figsize)
plt.pcolormesh(heatmap_data['xv'], heatmap_data['yv'], smoothed_F_grid, norm=colors.LogNorm(), cmap=cmap)
if colorbar:
plt.colorbar()
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.xlabel(xlabel, fontsize=22)
plt.ylabel(ylabel, fontsize=22)
else:
plt.figure(figsize=figsize)
plt.pcolormesh(heatmap_data['xv'], heatmap_data['yv'], heatmap_data['L_grid'], norm=colors.LogNorm(), cmap=cmap)
if colorbar:
plt.colorbar()
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.xlabel(xlabel, fontsize=22)
plt.ylabel(ylabel, fontsize=22)
if not os.path.exists('figures'):
os.makedirs('figures')
tbptt_k10 = load_log('saves/toy_regression/tbptt-s:linear-optim:adam-lr:0.01-T:100-K:10-N:100-sigma:1.0-seed:1', 'iteration.csv')
rtrl_k10 = load_log('saves/toy_regression/rtrl-s:linear-optim:adam-lr:0.01-T:100-K:10-N:100-sigma:1.0-seed:1', 'iteration.csv')
uoro_k10 = load_log('saves/toy_regression/uoro-s:linear-optim:adam-lr:0.01-T:100-K:10-N:100-sigma:1.0-seed:1', 'iteration.csv')
es_k10 = load_log('saves/toy_regression/es-s:linear-optim:adam-lr:0.01-T:100-K:10-N:100-sigma:1.0-seed:1', 'iteration.csv')
pes_k10 = load_log('saves/toy_regression/pes-s:linear-optim:adam-lr:0.01-T:100-K:10-N:100-sigma:1.0-seed:1', 'iteration.csv')
plot_heatmap('saves/toy_regression/sgd_lr:linear_sum_T_100_N_400_grid.pkl',
xlabel='Initial LR',
ylabel='Final LR',
smoothed=False,
cmap=plt.cm.Purples_r,
colorbar=False,
figsize=(7,5))
plt.plot(np.array(tbptt_k10['theta0']), np.array(tbptt_k10['theta1']), linewidth=3, label='TBPTT')
plt.plot(np.array(uoro_k10['theta0']), np.array(uoro_k10['theta1']), linewidth=3, label='UORO')
plt.plot(np.array(rtrl_k10['theta0']), np.array(rtrl_k10['theta1']), linewidth=3, label='RTRL')
plt.plot(np.array(es_k10['theta0']), np.array(es_k10['theta1']), linewidth=3, label='ES')
plt.plot(np.array(pes_k10['theta0']), np.array(pes_k10['theta1']), linewidth=3, label='PES')
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.xlabel('Initial LR', fontsize=24)
plt.ylabel('Final LR', fontsize=24)
plt.legend(fontsize=20, fancybox=True, framealpha=0.7)
plt.savefig('figures/toy_regression_heatmap.png', bbox_inches='tight', pad_inches=0, dpi=300)
# ================================================================================================
plt.figure(figsize=(6,4))
plt.plot(tbptt_k10['inner_problem_steps'], tbptt_k10['L'], linewidth=3, label='TBPTT')
plt.plot(uoro_k10['inner_problem_steps'], uoro_k10['L'], linewidth=3, label='UORO')
plt.plot(rtrl_k10['inner_problem_steps'], rtrl_k10['L'], linewidth=3, label='RTRL')
plt.plot(es_k10['inner_problem_steps'], es_k10['L'], linewidth=3, label='ES')
plt.plot(pes_k10['inner_problem_steps'], pes_k10['L'], linewidth=3, label='PES')
plt.xscale('log')
plt.xticks(fontsize=18)
plt.yticks([500, 1000, 1500, 2000, 2500], fontsize=18)
plt.xlabel('Inner Iterations', fontsize=20)
plt.ylabel('Meta Objective', fontsize=20)
plt.legend(fontsize=18, fancybox=True, framealpha=0.3)
sns.despine()
plt.savefig('figures/toy_regression_meta_obj.pdf', bbox_inches='tight', pad_inches=0)
| apache-2.0 |
timothydmorton/bokeh | examples/interactions/interactive_bubble/data.py | 49 | 1265 | import numpy as np
from bokeh.palettes import Spectral6
def process_data():
from bokeh.sampledata.gapminder import fertility, life_expectancy, population, regions
# Make the column names ints not strings for handling
columns = list(fertility.columns)
years = list(range(int(columns[0]), int(columns[-1])))
rename_dict = dict(zip(columns, years))
fertility = fertility.rename(columns=rename_dict)
life_expectancy = life_expectancy.rename(columns=rename_dict)
population = population.rename(columns=rename_dict)
regions = regions.rename(columns=rename_dict)
# Turn population into bubble sizes. Use min_size and factor to tweak.
scale_factor = 200
population_size = np.sqrt(population / np.pi) / scale_factor
min_size = 3
population_size = population_size.where(population_size >= min_size).fillna(min_size)
# Use pandas categories and categorize & color the regions
regions.Group = regions.Group.astype('category')
regions_list = list(regions.Group.cat.categories)
def get_color(r):
return Spectral6[regions_list.index(r.Group)]
regions['region_color'] = regions.apply(get_color, axis=1)
return fertility, life_expectancy, population_size, regions, years, regions_list
| bsd-3-clause |
RachitKansal/scikit-learn | examples/plot_johnson_lindenstrauss_bound.py | 127 | 7477 | r"""
=====================================================================
The Johnson-Lindenstrauss bound for embedding with random projections
=====================================================================
The `Johnson-Lindenstrauss lemma`_ states that any high dimensional
dataset can be randomly projected into a lower dimensional Euclidean
space while controlling the distortion in the pairwise distances.
.. _`Johnson-Lindenstrauss lemma`: http://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma
Theoretical bounds
==================
The distortion introduced by a random projection `p` is asserted by
the fact that `p` is defining an eps-embedding with good probability
as defined by:
.. math::
(1 - eps) \|u - v\|^2 < \|p(u) - p(v)\|^2 < (1 + eps) \|u - v\|^2
Where u and v are any rows taken from a dataset of shape [n_samples,
n_features] and p is a projection by a random Gaussian N(0, 1) matrix
with shape [n_components, n_features] (or a sparse Achlioptas matrix).
The minimum number of components to guarantees the eps-embedding is
given by:
.. math::
n\_components >= 4 log(n\_samples) / (eps^2 / 2 - eps^3 / 3)
The first plot shows that with an increasing number of samples ``n_samples``,
the minimal number of dimensions ``n_components`` increased logarithmically
in order to guarantee an ``eps``-embedding.
The second plot shows that an increase of the admissible
distortion ``eps`` allows to reduce drastically the minimal number of
dimensions ``n_components`` for a given number of samples ``n_samples``
Empirical validation
====================
We validate the above bounds on the the digits dataset or on the 20 newsgroups
text document (TF-IDF word frequencies) dataset:
- for the digits dataset, some 8x8 gray level pixels data for 500
handwritten digits pictures are randomly projected to spaces for various
larger number of dimensions ``n_components``.
- for the 20 newsgroups dataset some 500 documents with 100k
features in total are projected using a sparse random matrix to smaller
euclidean spaces with various values for the target number of dimensions
``n_components``.
The default dataset is the digits dataset. To run the example on the twenty
newsgroups dataset, pass the --twenty-newsgroups command line argument to this
script.
For each value of ``n_components``, we plot:
- 2D distribution of sample pairs with pairwise distances in original
and projected spaces as x and y axis respectively.
- 1D histogram of the ratio of those distances (projected / original).
We can see that for low values of ``n_components`` the distribution is wide
with many distorted pairs and a skewed distribution (due to the hard
limit of zero ratio on the left as distances are always positives)
while for larger values of n_components the distortion is controlled
and the distances are well preserved by the random projection.
Remarks
=======
According to the JL lemma, projecting 500 samples without too much distortion
will require at least several thousands dimensions, irrespective of the
number of features of the original dataset.
Hence using random projections on the digits dataset which only has 64 features
in the input space does not make sense: it does not allow for dimensionality
reduction in this case.
On the twenty newsgroups on the other hand the dimensionality can be decreased
from 56436 down to 10000 while reasonably preserving pairwise distances.
"""
print(__doc__)
import sys
from time import time
import numpy as np
import matplotlib.pyplot as plt
from sklearn.random_projection import johnson_lindenstrauss_min_dim
from sklearn.random_projection import SparseRandomProjection
from sklearn.datasets import fetch_20newsgroups_vectorized
from sklearn.datasets import load_digits
from sklearn.metrics.pairwise import euclidean_distances
# Part 1: plot the theoretical dependency between n_components_min and
# n_samples
# range of admissible distortions
eps_range = np.linspace(0.1, 0.99, 5)
colors = plt.cm.Blues(np.linspace(0.3, 1.0, len(eps_range)))
# range of number of samples (observation) to embed
n_samples_range = np.logspace(1, 9, 9)
plt.figure()
for eps, color in zip(eps_range, colors):
min_n_components = johnson_lindenstrauss_min_dim(n_samples_range, eps=eps)
plt.loglog(n_samples_range, min_n_components, color=color)
plt.legend(["eps = %0.1f" % eps for eps in eps_range], loc="lower right")
plt.xlabel("Number of observations to eps-embed")
plt.ylabel("Minimum number of dimensions")
plt.title("Johnson-Lindenstrauss bounds:\nn_samples vs n_components")
# range of admissible distortions
eps_range = np.linspace(0.01, 0.99, 100)
# range of number of samples (observation) to embed
n_samples_range = np.logspace(2, 6, 5)
colors = plt.cm.Blues(np.linspace(0.3, 1.0, len(n_samples_range)))
plt.figure()
for n_samples, color in zip(n_samples_range, colors):
min_n_components = johnson_lindenstrauss_min_dim(n_samples, eps=eps_range)
plt.semilogy(eps_range, min_n_components, color=color)
plt.legend(["n_samples = %d" % n for n in n_samples_range], loc="upper right")
plt.xlabel("Distortion eps")
plt.ylabel("Minimum number of dimensions")
plt.title("Johnson-Lindenstrauss bounds:\nn_components vs eps")
# Part 2: perform sparse random projection of some digits images which are
# quite low dimensional and dense or documents of the 20 newsgroups dataset
# which is both high dimensional and sparse
if '--twenty-newsgroups' in sys.argv:
# Need an internet connection hence not enabled by default
data = fetch_20newsgroups_vectorized().data[:500]
else:
data = load_digits().data[:500]
n_samples, n_features = data.shape
print("Embedding %d samples with dim %d using various random projections"
% (n_samples, n_features))
n_components_range = np.array([300, 1000, 10000])
dists = euclidean_distances(data, squared=True).ravel()
# select only non-identical samples pairs
nonzero = dists != 0
dists = dists[nonzero]
for n_components in n_components_range:
t0 = time()
rp = SparseRandomProjection(n_components=n_components)
projected_data = rp.fit_transform(data)
print("Projected %d samples from %d to %d in %0.3fs"
% (n_samples, n_features, n_components, time() - t0))
if hasattr(rp, 'components_'):
n_bytes = rp.components_.data.nbytes
n_bytes += rp.components_.indices.nbytes
print("Random matrix with size: %0.3fMB" % (n_bytes / 1e6))
projected_dists = euclidean_distances(
projected_data, squared=True).ravel()[nonzero]
plt.figure()
plt.hexbin(dists, projected_dists, gridsize=100, cmap=plt.cm.PuBu)
plt.xlabel("Pairwise squared distances in original space")
plt.ylabel("Pairwise squared distances in projected space")
plt.title("Pairwise distances distribution for n_components=%d" %
n_components)
cb = plt.colorbar()
cb.set_label('Sample pairs counts')
rates = projected_dists / dists
print("Mean distances rate: %0.2f (%0.2f)"
% (np.mean(rates), np.std(rates)))
plt.figure()
plt.hist(rates, bins=50, normed=True, range=(0., 2.))
plt.xlabel("Squared distances rate: projected / original")
plt.ylabel("Distribution of samples pairs")
plt.title("Histogram of pairwise distance rates for n_components=%d" %
n_components)
# TODO: compute the expected value of eps and add them to the previous plot
# as vertical lines / region
plt.show()
| bsd-3-clause |
aetilley/scikit-learn | sklearn/datasets/lfw.py | 50 | 19048 | """Loader for the Labeled Faces in the Wild (LFW) dataset
This dataset is a collection of JPEG pictures of famous people collected
over the internet, all details are available on the official website:
http://vis-www.cs.umass.edu/lfw/
Each picture is centered on a single face. The typical task is called
Face Verification: given a pair of two pictures, a binary classifier
must predict whether the two images are from the same person.
An alternative task, Face Recognition or Face Identification is:
given the picture of the face of an unknown person, identify the name
of the person by referring to a gallery of previously seen pictures of
identified persons.
Both Face Verification and Face Recognition are tasks that are typically
performed on the output of a model trained to perform Face Detection. The
most popular model for Face Detection is called Viola-Johns and is
implemented in the OpenCV library. The LFW faces were extracted by this face
detector from various online websites.
"""
# Copyright (c) 2011 Olivier Grisel <[email protected]>
# License: BSD 3 clause
from os import listdir, makedirs, remove
from os.path import join, exists, isdir
from sklearn.utils import deprecated
import logging
import numpy as np
try:
import urllib.request as urllib # for backwards compatibility
except ImportError:
import urllib
from .base import get_data_home, Bunch
from ..externals.joblib import Memory
from ..externals.six import b
logger = logging.getLogger(__name__)
BASE_URL = "http://vis-www.cs.umass.edu/lfw/"
ARCHIVE_NAME = "lfw.tgz"
FUNNELED_ARCHIVE_NAME = "lfw-funneled.tgz"
TARGET_FILENAMES = [
'pairsDevTrain.txt',
'pairsDevTest.txt',
'pairs.txt',
]
def scale_face(face):
"""Scale back to 0-1 range in case of normalization for plotting"""
scaled = face - face.min()
scaled /= scaled.max()
return scaled
#
# Common private utilities for data fetching from the original LFW website
# local disk caching, and image decoding.
#
def check_fetch_lfw(data_home=None, funneled=True, download_if_missing=True):
"""Helper function to download any missing LFW data"""
data_home = get_data_home(data_home=data_home)
lfw_home = join(data_home, "lfw_home")
if funneled:
archive_path = join(lfw_home, FUNNELED_ARCHIVE_NAME)
data_folder_path = join(lfw_home, "lfw_funneled")
archive_url = BASE_URL + FUNNELED_ARCHIVE_NAME
else:
archive_path = join(lfw_home, ARCHIVE_NAME)
data_folder_path = join(lfw_home, "lfw")
archive_url = BASE_URL + ARCHIVE_NAME
if not exists(lfw_home):
makedirs(lfw_home)
for target_filename in TARGET_FILENAMES:
target_filepath = join(lfw_home, target_filename)
if not exists(target_filepath):
if download_if_missing:
url = BASE_URL + target_filename
logger.warning("Downloading LFW metadata: %s", url)
urllib.urlretrieve(url, target_filepath)
else:
raise IOError("%s is missing" % target_filepath)
if not exists(data_folder_path):
if not exists(archive_path):
if download_if_missing:
logger.warning("Downloading LFW data (~200MB): %s", archive_url)
urllib.urlretrieve(archive_url, archive_path)
else:
raise IOError("%s is missing" % target_filepath)
import tarfile
logger.info("Decompressing the data archive to %s", data_folder_path)
tarfile.open(archive_path, "r:gz").extractall(path=lfw_home)
remove(archive_path)
return lfw_home, data_folder_path
def _load_imgs(file_paths, slice_, color, resize):
"""Internally used to load images"""
# Try to import imread and imresize from PIL. We do this here to prevent
# the whole sklearn.datasets module from depending on PIL.
try:
try:
from scipy.misc import imread
except ImportError:
from scipy.misc.pilutil import imread
from scipy.misc import imresize
except ImportError:
raise ImportError("The Python Imaging Library (PIL)"
" is required to load data from jpeg files")
# compute the portion of the images to load to respect the slice_ parameter
# given by the caller
default_slice = (slice(0, 250), slice(0, 250))
if slice_ is None:
slice_ = default_slice
else:
slice_ = tuple(s or ds for s, ds in zip(slice_, default_slice))
h_slice, w_slice = slice_
h = (h_slice.stop - h_slice.start) // (h_slice.step or 1)
w = (w_slice.stop - w_slice.start) // (w_slice.step or 1)
if resize is not None:
resize = float(resize)
h = int(resize * h)
w = int(resize * w)
# allocate some contiguous memory to host the decoded image slices
n_faces = len(file_paths)
if not color:
faces = np.zeros((n_faces, h, w), dtype=np.float32)
else:
faces = np.zeros((n_faces, h, w, 3), dtype=np.float32)
# iterate over the collected file path to load the jpeg files as numpy
# arrays
for i, file_path in enumerate(file_paths):
if i % 1000 == 0:
logger.info("Loading face #%05d / %05d", i + 1, n_faces)
face = np.asarray(imread(file_path)[slice_], dtype=np.float32)
face /= 255.0 # scale uint8 coded colors to the [0.0, 1.0] floats
if resize is not None:
face = imresize(face, resize)
if not color:
# average the color channels to compute a gray levels
# representaion
face = face.mean(axis=2)
faces[i, ...] = face
return faces
#
# Task #1: Face Identification on picture with names
#
def _fetch_lfw_people(data_folder_path, slice_=None, color=False, resize=None,
min_faces_per_person=0):
"""Perform the actual data loading for the lfw people dataset
This operation is meant to be cached by a joblib wrapper.
"""
# scan the data folder content to retain people with more that
# `min_faces_per_person` face pictures
person_names, file_paths = [], []
for person_name in sorted(listdir(data_folder_path)):
folder_path = join(data_folder_path, person_name)
if not isdir(folder_path):
continue
paths = [join(folder_path, f) for f in listdir(folder_path)]
n_pictures = len(paths)
if n_pictures >= min_faces_per_person:
person_name = person_name.replace('_', ' ')
person_names.extend([person_name] * n_pictures)
file_paths.extend(paths)
n_faces = len(file_paths)
if n_faces == 0:
raise ValueError("min_faces_per_person=%d is too restrictive" %
min_faces_per_person)
target_names = np.unique(person_names)
target = np.searchsorted(target_names, person_names)
faces = _load_imgs(file_paths, slice_, color, resize)
# shuffle the faces with a deterministic RNG scheme to avoid having
# all faces of the same person in a row, as it would break some
# cross validation and learning algorithms such as SGD and online
# k-means that make an IID assumption
indices = np.arange(n_faces)
np.random.RandomState(42).shuffle(indices)
faces, target = faces[indices], target[indices]
return faces, target, target_names
def fetch_lfw_people(data_home=None, funneled=True, resize=0.5,
min_faces_per_person=0, color=False,
slice_=(slice(70, 195), slice(78, 172)),
download_if_missing=True):
"""Loader for the Labeled Faces in the Wild (LFW) people dataset
This dataset is a collection of JPEG pictures of famous people
collected on the internet, all details are available on the
official website:
http://vis-www.cs.umass.edu/lfw/
Each picture is centered on a single face. Each pixel of each channel
(color in RGB) is encoded by a float in range 0.0 - 1.0.
The task is called Face Recognition (or Identification): given the
picture of a face, find the name of the person given a training set
(gallery).
The original images are 250 x 250 pixels, but the default slice and resize
arguments reduce them to 62 x 74.
Parameters
----------
data_home : optional, default: None
Specify another download and cache folder for the datasets. By default
all scikit learn data is stored in '~/scikit_learn_data' subfolders.
funneled : boolean, optional, default: True
Download and use the funneled variant of the dataset.
resize : float, optional, default 0.5
Ratio used to resize the each face picture.
min_faces_per_person : int, optional, default None
The extracted dataset will only retain pictures of people that have at
least `min_faces_per_person` different pictures.
color : boolean, optional, default False
Keep the 3 RGB channels instead of averaging them to a single
gray level channel. If color is True the shape of the data has
one more dimension than than the shape with color = False.
slice_ : optional
Provide a custom 2D slice (height, width) to extract the
'interesting' part of the jpeg files and avoid use statistical
correlation from the background
download_if_missing : optional, True by default
If False, raise a IOError if the data is not locally available
instead of trying to download the data from the source site.
Returns
-------
dataset : dict-like object with the following attributes:
dataset.data : numpy array of shape (13233, 2914)
Each row corresponds to a ravelled face image of original size 62 x 47
pixels. Changing the ``slice_`` or resize parameters will change the shape
of the output.
dataset.images : numpy array of shape (13233, 62, 47)
Each row is a face image corresponding to one of the 5749 people in
the dataset. Changing the ``slice_`` or resize parameters will change the shape
of the output.
dataset.target : numpy array of shape (13233,)
Labels associated to each face image. Those labels range from 0-5748
and correspond to the person IDs.
dataset.DESCR : string
Description of the Labeled Faces in the Wild (LFW) dataset.
"""
lfw_home, data_folder_path = check_fetch_lfw(
data_home=data_home, funneled=funneled,
download_if_missing=download_if_missing)
logger.info('Loading LFW people faces from %s', lfw_home)
# wrap the loader in a memoizing function that will return memmaped data
# arrays for optimal memory usage
m = Memory(cachedir=lfw_home, compress=6, verbose=0)
load_func = m.cache(_fetch_lfw_people)
# load and memoize the pairs as np arrays
faces, target, target_names = load_func(
data_folder_path, resize=resize,
min_faces_per_person=min_faces_per_person, color=color, slice_=slice_)
# pack the results as a Bunch instance
return Bunch(data=faces.reshape(len(faces), -1), images=faces,
target=target, target_names=target_names,
DESCR="LFW faces dataset")
#
# Task #2: Face Verification on pairs of face pictures
#
def _fetch_lfw_pairs(index_file_path, data_folder_path, slice_=None,
color=False, resize=None):
"""Perform the actual data loading for the LFW pairs dataset
This operation is meant to be cached by a joblib wrapper.
"""
# parse the index file to find the number of pairs to be able to allocate
# the right amount of memory before starting to decode the jpeg files
with open(index_file_path, 'rb') as index_file:
split_lines = [ln.strip().split(b('\t')) for ln in index_file]
pair_specs = [sl for sl in split_lines if len(sl) > 2]
n_pairs = len(pair_specs)
# interating over the metadata lines for each pair to find the filename to
# decode and load in memory
target = np.zeros(n_pairs, dtype=np.int)
file_paths = list()
for i, components in enumerate(pair_specs):
if len(components) == 3:
target[i] = 1
pair = (
(components[0], int(components[1]) - 1),
(components[0], int(components[2]) - 1),
)
elif len(components) == 4:
target[i] = 0
pair = (
(components[0], int(components[1]) - 1),
(components[2], int(components[3]) - 1),
)
else:
raise ValueError("invalid line %d: %r" % (i + 1, components))
for j, (name, idx) in enumerate(pair):
try:
person_folder = join(data_folder_path, name)
except TypeError:
person_folder = join(data_folder_path, str(name, 'UTF-8'))
filenames = list(sorted(listdir(person_folder)))
file_path = join(person_folder, filenames[idx])
file_paths.append(file_path)
pairs = _load_imgs(file_paths, slice_, color, resize)
shape = list(pairs.shape)
n_faces = shape.pop(0)
shape.insert(0, 2)
shape.insert(0, n_faces // 2)
pairs.shape = shape
return pairs, target, np.array(['Different persons', 'Same person'])
@deprecated("Function 'load_lfw_people' has been deprecated in 0.17 and will be "
"removed in 0.19."
"Use fetch_lfw_people(download_if_missing=False) instead.")
def load_lfw_people(download_if_missing=False, **kwargs):
"""Alias for fetch_lfw_people(download_if_missing=False)
Check fetch_lfw_people.__doc__ for the documentation and parameter list.
"""
return fetch_lfw_people(download_if_missing=download_if_missing, **kwargs)
def fetch_lfw_pairs(subset='train', data_home=None, funneled=True, resize=0.5,
color=False, slice_=(slice(70, 195), slice(78, 172)),
download_if_missing=True):
"""Loader for the Labeled Faces in the Wild (LFW) pairs dataset
This dataset is a collection of JPEG pictures of famous people
collected on the internet, all details are available on the
official website:
http://vis-www.cs.umass.edu/lfw/
Each picture is centered on a single face. Each pixel of each channel
(color in RGB) is encoded by a float in range 0.0 - 1.0.
The task is called Face Verification: given a pair of two pictures,
a binary classifier must predict whether the two images are from
the same person.
In the official `README.txt`_ this task is described as the
"Restricted" task. As I am not sure as to implement the
"Unrestricted" variant correctly, I left it as unsupported for now.
.. _`README.txt`: http://vis-www.cs.umass.edu/lfw/README.txt
The original images are 250 x 250 pixels, but the default slice and resize
arguments reduce them to 62 x 74.
Read more in the :ref:`User Guide <labeled_faces_in_the_wild>`.
Parameters
----------
subset : optional, default: 'train'
Select the dataset to load: 'train' for the development training
set, 'test' for the development test set, and '10_folds' for the
official evaluation set that is meant to be used with a 10-folds
cross validation.
data_home : optional, default: None
Specify another download and cache folder for the datasets. By
default all scikit learn data is stored in '~/scikit_learn_data'
subfolders.
funneled : boolean, optional, default: True
Download and use the funneled variant of the dataset.
resize : float, optional, default 0.5
Ratio used to resize the each face picture.
color : boolean, optional, default False
Keep the 3 RGB channels instead of averaging them to a single
gray level channel. If color is True the shape of the data has
one more dimension than than the shape with color = False.
slice_ : optional
Provide a custom 2D slice (height, width) to extract the
'interesting' part of the jpeg files and avoid use statistical
correlation from the background
download_if_missing : optional, True by default
If False, raise a IOError if the data is not locally available
instead of trying to download the data from the source site.
Returns
-------
The data is returned as a Bunch object with the following attributes:
data : numpy array of shape (2200, 5828)
Each row corresponds to 2 ravel'd face images of original size 62 x 47
pixels. Changing the ``slice_`` or resize parameters will change the shape
of the output.
pairs : numpy array of shape (2200, 2, 62, 47)
Each row has 2 face images corresponding to same or different person
from the dataset containing 5749 people. Changing the ``slice_`` or resize
parameters will change the shape of the output.
target : numpy array of shape (13233,)
Labels associated to each pair of images. The two label values being
different persons or the same person.
DESCR : string
Description of the Labeled Faces in the Wild (LFW) dataset.
"""
lfw_home, data_folder_path = check_fetch_lfw(
data_home=data_home, funneled=funneled,
download_if_missing=download_if_missing)
logger.info('Loading %s LFW pairs from %s', subset, lfw_home)
# wrap the loader in a memoizing function that will return memmaped data
# arrays for optimal memory usage
m = Memory(cachedir=lfw_home, compress=6, verbose=0)
load_func = m.cache(_fetch_lfw_pairs)
# select the right metadata file according to the requested subset
label_filenames = {
'train': 'pairsDevTrain.txt',
'test': 'pairsDevTest.txt',
'10_folds': 'pairs.txt',
}
if subset not in label_filenames:
raise ValueError("subset='%s' is invalid: should be one of %r" % (
subset, list(sorted(label_filenames.keys()))))
index_file_path = join(lfw_home, label_filenames[subset])
# load and memoize the pairs as np arrays
pairs, target, target_names = load_func(
index_file_path, data_folder_path, resize=resize, color=color,
slice_=slice_)
# pack the results as a Bunch instance
return Bunch(data=pairs.reshape(len(pairs), -1), pairs=pairs,
target=target, target_names=target_names,
DESCR="'%s' segment of the LFW pairs dataset" % subset)
@deprecated("Function 'load_lfw_pairs' has been deprecated in 0.17 and will be "
"removed in 0.19."
"Use fetch_lfw_pairs(download_if_missing=False) instead.")
def load_lfw_pairs(download_if_missing=False, **kwargs):
"""Alias for fetch_lfw_pairs(download_if_missing=False)
Check fetch_lfw_pairs.__doc__ for the documentation and parameter list.
"""
return fetch_lfw_pairs(download_if_missing=download_if_missing, **kwargs)
| bsd-3-clause |
songjs1993/DeepLearning | 3CNN/CNN_LeNet_5_cifar_dev.py | 1 | 15045 | # Auther: Alan
"""
实现AlexNet网络结构:但是实际上AlexNet网络结构的餐率领有60M,其实际的参数量比后来的几个网络结构都要多,这里不选择
但是尝试实现更深层的卷积网络来查看性能
这里一共整理了4层
"""
# Auther: Alan
"""
将LeNet5应用在Cifar数据集上
"""
import tensorflow as tf
import random
import os
import scipy.io as sio
import matplotlib.pyplot as plt # plt 用于显示图片
import matplotlib.image as mpimg # mpimg 用于读取图片
import numpy as np
# import Image
from PIL import Image
global max_row, max_col
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
# 这里完全可以用一个数组代替 tf.zeros(units[1])
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
# strides表示每一维度的步长
return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding="SAME")
def max_pool_2x2(x):
# ksize表示池化窗口的大小, 其中最前面的1和最后的1分别表示batch和channel(这里不考虑对不同batch做池化,所以设置为1)
# 另外一个任务:判断两张图片是否为同一个人,觉得可以将其当做不同channel,一起进行池化的操作
return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding="SAME")
def max_pool_3x3(x):
return tf.nn.max_pool(x, ksize=[1,3,3,1], strides=[1,3,3,1], padding="SAME")
def max_pool_5x5(x):
return tf.nn.max_pool(x, ksize=[1,5,5,1], strides=[1,5,5,1], padding="SAME")
def CNN_LeNet_5_Mnist(logs_path):
"""
LeNet对Mnist数据集进行测试
:return:
"""
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# print(mnist)
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
x_image = tf.reshape(x, [-1,28,28,1]) # 把向量重新整理成矩阵,最后一个表示通道个数
# 第一二参数值得卷积核尺寸大小,即patch,第三个参数是图像通道数,第四个参数是卷积核的数目,代表会出现多少个卷积特征
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64]) # 多通道卷积,卷积出64个特征
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
tf.summary.scalar("cross_entropy", cross_entropy)
correct_prediction = tf.equal(tf.arg_max(y_conv, 1), tf.arg_max(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
merged_summary_op = tf.summary.merge_all()
# 初始化变量
init_op = tf.global_variables_initializer()
# 开始训练
sess = tf.Session()
sess.run(init_op)
# iterate
# Xtrain, ytrain = get_batch(self.args, self.simrank, self.walks, minibatch * 100, self.tem_simrank) # 找一个大点的数据集测试效果
summary_writer = tf.summary.FileWriter(logs_path, graph=tf.get_default_graph())
# for i in range((int)(20000)):
num_examples = 12800*2 #这里暂时手动设置吧
minibatch = 128
for epoch in range(20):
print("iter:", epoch)
avg_cost = 0.
total_batch = int(num_examples / minibatch)
# Loop over all batches
for i in range(total_batch):
batchs = mnist.train.next_batch(minibatch)
batch_xs, batch_ys = batchs[0], batchs[1]
# batch_xs, batch_ys = next_batch(self.args, self.simrank, self.walks, minibatch, self.tem_simrank,
# num_examples)
# and summary nodes
_, c, summary = sess.run([train_step, cross_entropy, merged_summary_op], feed_dict={x: batch_xs, y_: batch_ys, keep_prob: 0.5})
# Write logs at every iteration
summary_writer.add_summary(summary, epoch * total_batch + i)
# Compute average loss
avg_cost += c / total_batch
if (i % 10 == 0):
print("i:", i, " current c:", c, " ave_cost:", avg_cost)
# Display logs per epoch step
# if (epoch + 1) % display_step == 0:
print("Epoch:", '%04d' % (epoch + 1), "cost=", "{:.9f}".format(avg_cost))
# 到达一定程度进行测试test输出
if epoch%1==0:
batchs = mnist.train.next_batch(minibatch)
print("test accuracy %g" % sess.run(accuracy, feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
# x: batchs[0], y_: batchs[1], keep_prob: 1.0}))
def get_one_hot(label, num):
y = []
for i in range(num): # 一共17个类别
if i == label:
y.append(1.0)
else:
y.append(0.0)
return y
from scipy.io import loadmat
def read_data_cifar(train_file, test_file):
"""
获取train/val/test数据集
:param input_path:
:param split_path:
:return:
"""
f1 = loadmat(train_file)
f2 = loadmat(test_file)
train_x = f1["data"]
train_y_ = f1["fine_labels"]
test_x = f2["data"]
test_y_ = f2["fine_labels"]
# 需要处理labels
train_y = []
for train in train_y_:
y = []
for i in range(100):
if i == int(train)-1:
y.append(1.0)
else:
y.append(0.0)
train_y.append(y)
test_y = []
for test in test_y_:
y = []
for i in range(100):
if i == int(test) - 1:
y.append(1.0)
else:
y.append(0.0)
test_y.append(y)
train_y = np.array(train_y)
test_y = np.array(test_y)
print(train_x.shape, train_y.shape, test_x.shape, test_y.shape)
train_X = []
test_X = []
for i in range(train_x.shape[0]):
batch = train_x[i]
if i%500==0:
print("get image i:", i)
# lena = Image.fromarray(np.reshape(np.reshape(batch, [3, 1024]).T, [32, 32, 3]))
# lena.save("temp_cifar.png")
train_X.append(np.reshape((np.reshape(np.reshape(batch, [3, 1024]).T, [32, 32, 3])), [-1]))
for i in range(test_x.shape[0]):
batch = test_x[i]
if i % 500 == 0:
print("get image i:", i)
# lena = Image.fromarray(np.reshape(np.reshape(batch, [3, 1024]).T, [32, 32, 3]))
test_X.append(np.reshape((np.reshape(np.reshape(batch, [3, 1024]).T, [32, 32, 3])), [-1]))
return np.array(train_X) / 255.0, train_y, np.array(test_X) / 255.0, test_y
def CNN_LeNet_5_dev(train_file, test_file, log_path):
trainX, trainY, testX, testY = read_data_cifar(train_file, test_file)
print("trainX.shape: ", trainX.shape, trainY.shape, testX.shape, testY.shape)
# 构建网络
x = tf.placeholder(tf.float32, [None, 1024*3])
y_ = tf.placeholder(tf.float32, [None, 100])
x_image = tf.reshape(x, [-1,32,32,3]) # 把向量重新整理成矩阵,最后一个表示通道个数
# 第一二参数值得卷积核尺寸大小,即patch,第三个参数是图像通道数,第四个参数是卷积核的数目,代表会出现多少个卷积特征
W_conv1 = weight_variable([3, 3, 3, 64])
b_conv1 = bias_variable([64])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1) # 16*16
W_conv2 = weight_variable([3, 3, 64, 64]) # 多通道卷积,卷积出64个特征
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2) # 8*8
W_conv3 = weight_variable([3, 3, 64, 128]) # 多通道卷积,卷积出64个特征
b_conv3 = bias_variable([128])
h_conv3 = tf.nn.relu(conv2d(h_pool2, W_conv3) + b_conv3)
h_pool3 = max_pool_2x2(h_conv3) # 4*4
W_conv4 = weight_variable([3, 3, 128, 128]) # 多通道卷积,卷积出64个特征
b_conv4 = bias_variable([128])
h_conv4 = tf.nn.relu(conv2d(h_pool3, W_conv4) + b_conv4)
h_pool4 = max_pool_2x2(h_conv4) # 2*2
W_fc1 = weight_variable([2*2*128, 2*128])
b_fc1 = bias_variable([2*128])
h_pool2_flat = tf.reshape(h_pool4, [-1, 2*2*128])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([2*128, 100])
b_fc2 = bias_variable([100])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
# cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y_conv, labels=y_)) #2/3/4/5
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv+1e-10), reduction_indices=[1])) #1
# learning_rate = 0.1
# global_step = 1000
# decay_steps = 0.95
# learning_rate = tf.train.exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=True)
# tf.summary.scalar('learning_rate', learning_rate)
# # Optimizer.
# grads = optimizer.compute_gradients(loss)
# op_gradients = optimizer.apply_gradients(grads, global_step=global_step)
global_step = 500
learning_rate = 1e-1
# train_step = tf.train.AdamOptimizer(1e-3).minimize(cross_entropy)
train_step = tf.train.GradientDescentOptimizer(1e-3).minimize(cross_entropy) #1/2
train_step = tf.train.GradientDescentOptimizer(1e-5).minimize(cross_entropy) # 3/4
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cross_entropy) # 5
# train_step = tf.train.AdamOptimizer(1e-3).minimize(cross_entropy)
momentum = 0.9
# train_step = tf.train.MomentumOptimizer(learning_rate, momentum).minimize(cross_entropy)
train_step_3 = tf.train.GradientDescentOptimizer(1e-3).minimize(cross_entropy)
# tf.summary.scalar("cross_entropy", cross_entropy)
correct_prediction = tf.equal(tf.arg_max(y_conv, 1), tf.arg_max(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
merged_summary_op = tf.summary.merge_all()
# 初始化变量
init_op = tf.global_variables_initializer()
# summary_writer = tf.summary.FileWriter(log_path, graph=tf.get_default_graph())
# 开始训练
drops = [1.0, 0.8, 0.6, 0.4, 0.2]
drops = [0.5]
drops = [0.4]
for i in range(len(drops)):
drop = drops[i]
log_path = log_path + str(i)
print("log_path: ", log_path, " drop:", drop)
sess = tf.Session()
sess.run(init_op)
# iterate
# Xtrain, ytrain = get_batch(self.args, self.simrank, self.walks, minibatch * 100, self.tem_simrank) # 找一个大点的数据集测试效果
# for i in range((int)(20000)):
num_examples = trainX.shape[0]
minibatch = 128
maxc = -1.0
for epoch in range(global_step):
print("iter:", epoch)
# if epoch > 400:
# train_step = train_step_3
avg_cost = 0.
total_batch = int(num_examples / minibatch)
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = next_batch(trainX, trainY, minibatch, num_examples)
# print(type(batch_xs),type(batch_ys))
# print(batch_xs.shape, batch_ys.shape)
# print(batch_xs[0])
# and summary nodes
# print(sess.run(h_pool4, feed_dict={x: batch_xs, y_: batch_ys, keep_prob: 0.8}))
# print(sess.run(y_conv, feed_dict={x: batch_xs, y_: batch_ys, keep_prob: 0.8}))
# print(sess.run(cross_entropy, feed_dict={x: batch_xs, y_: batch_ys, keep_prob: 0.8}))
# return
# _, c, summary = sess.run([train_step, cross_entropy, merged_summary_op],feed_dict={x: batch_xs, y_: batch_ys, keep_prob: drop})
_, c = sess.run([train_step, cross_entropy],
feed_dict={x: batch_xs, y_: batch_ys, keep_prob: drop})
# Write logs at every iteration
# summary_writer.add_summary(summary, epoch * total_batch + i)
# Compute average loss
avg_cost += c / total_batch
if (i % 1 == 0):
print("i:", i, " current c:", c, " ave_cost:", avg_cost)
# if i % 500 == 0:
# # batchs = mnist.train.next_batch(minibatch)
# print("test accuracy %g" % sess.run(accuracy, feed_dict={
# x: testX, y_: testY, keep_prob: 1.0}))
# Display logs per epoch step
print("Epoch:", '%04d' % (epoch + 1), "cost=", "{:.9f}".format(avg_cost))
# 到达一定程度进行测试test输出
if epoch % 1 == 0:
# batchs = mnist.train.next_batch(minibatch)
acc = sess.run(accuracy, feed_dict={x: testX, y_: testY, keep_prob: 1.0})
if acc > maxc:
maxc = acc
print("test accuracy %g" % acc)
# x: batchs[0], y_: batchs[1], keep_prob: 1.0}))
print("====================================================================")
sess.close()
print("max acc: ", maxc)
print("finish!")
print("finish all!")
def next_batch(trainX, trainY, minibatch, num_examples):
locations = random.sample([i for i in range(num_examples)], minibatch)
batch_xs = trainX[locations]
batch_ys = trainY[locations]
return batch_xs, batch_ys
# locations = random.sample([i for i in range(num_examples)], minibatch)
# batch_xs_ = trainX[locations]
# batch_ys = trainY[locations]
#
# batch_xs = []
# for batch in batch_xs_:
# # lena = Image.fromarray(np.reshape(np.reshape(batch, [3, 1024]).T, [32, 32, 3]))
# batch_xs.append(np.reshape((np.reshape(np.reshape(batch, [3, 1024]).T, [32, 32, 3])),[-1]))
# return np.array(batch_xs), batch_ys
if __name__ =="__main__":
# 尝试对LeNet网络加深结构,到5层卷积,尝试效果,这里使用默认的dropout比例0.4
CNN_LeNet_5_dev("./cifar_data/train.mat", "./cifar_data/test.mat", "./CNN/cifar")
| apache-2.0 |
siutanwong/scikit-learn | sklearn/preprocessing/__init__.py | 268 | 1319 | """
The :mod:`sklearn.preprocessing` module includes scaling, centering,
normalization, binarization and imputation methods.
"""
from ._function_transformer import FunctionTransformer
from .data import Binarizer
from .data import KernelCenterer
from .data import MinMaxScaler
from .data import MaxAbsScaler
from .data import Normalizer
from .data import RobustScaler
from .data import StandardScaler
from .data import add_dummy_feature
from .data import binarize
from .data import normalize
from .data import scale
from .data import robust_scale
from .data import maxabs_scale
from .data import minmax_scale
from .data import OneHotEncoder
from .data import PolynomialFeatures
from .label import label_binarize
from .label import LabelBinarizer
from .label import LabelEncoder
from .label import MultiLabelBinarizer
from .imputation import Imputer
__all__ = [
'Binarizer',
'FunctionTransformer',
'Imputer',
'KernelCenterer',
'LabelBinarizer',
'LabelEncoder',
'MultiLabelBinarizer',
'MinMaxScaler',
'MaxAbsScaler',
'Normalizer',
'OneHotEncoder',
'RobustScaler',
'StandardScaler',
'add_dummy_feature',
'PolynomialFeatures',
'binarize',
'normalize',
'scale',
'robust_scale',
'maxabs_scale',
'minmax_scale',
'label_binarize',
]
| bsd-3-clause |
architecture-building-systems/CityEnergyAnalyst | cea/technologies/network_layout/minimum_spanning_tree.py | 2 | 4015 | """
This script calculates the minimum spanning tree of a shapefile network
"""
import networkx as nx
import cea.inputlocator
from geopandas import GeoDataFrame as gdf
import cea.config
import os
__author__ = "Jimeno A. Fonseca"
__copyright__ = "Copyright 2017, Architecture and Building Systems - ETH Zurich"
__credits__ = ["Jimeno A. Fonseca"]
__license__ = "MIT"
__version__ = "0.1"
__maintainer__ = "Daren Thomas"
__email__ = "[email protected]"
__status__ = "Production"
def calc_minimum_spanning_tree(input_network_shp, output_network_folder, building_nodes_shp, output_edges, output_nodes,
weight_field, type_mat_default, pipe_diameter_default):
# read shapefile into networkx format into a directed graph
graph = nx.read_shp(input_network_shp)
# transform to an undirected graph
iterator_edges = graph.edges(data=True)
G = nx.Graph()
# plant = (11660.95859999981, 37003.7689999986)
for (x, y, data) in iterator_edges:
G.add_edge(x, y, weight=data[weight_field])
# calculate minimum spanning tree of undirected graph
mst_non_directed = nx.minimum_spanning_edges(G, data=False)
# transform back directed graph and save:
mst_directed = nx.DiGraph()
mst_directed.add_edges_from(mst_non_directed)
nx.write_shp(mst_directed, output_network_folder)
# populate fields Type_mat, Name, Pipe_Dn
mst_edges = gdf.from_file(output_edges)
mst_edges['Type_mat'] = type_mat_default
mst_edges['Pipe_DN'] = pipe_diameter_default
mst_edges['Name'] = ["PIPE" + str(x) for x in mst_edges['FID']]
mst_edges.drop("FID", axis=1, inplace=True)
mst_edges.crs = gdf.from_file(input_network_shp).crs # to add coordinate system
mst_edges.to_file(output_edges, driver='ESRI Shapefile')
# populate fields Building, Type, Name
mst_nodes = gdf.from_file(output_nodes)
buiding_nodes_df = gdf.from_file(building_nodes_shp)
mst_nodes.crs = buiding_nodes_df.crs # to add same coordinate system
buiding_nodes_df['coordinates'] = buiding_nodes_df['geometry'].apply(
lambda x: (round(x.coords[0][0], 4), round(x.coords[0][1], 4)))
mst_nodes['coordinates'] = mst_nodes['geometry'].apply(
lambda x: (round(x.coords[0][0], 4), round(x.coords[0][1], 4)))
names_temporary = ["NODE" + str(x) for x in mst_nodes['FID']]
new_mst_nodes = mst_nodes.merge(buiding_nodes_df, suffixes=['', '_y'], on="coordinates", how='outer')
new_mst_nodes.fillna(value="NONE", inplace=True)
new_mst_nodes['Building'] = new_mst_nodes['Name']
new_mst_nodes['Name'] = names_temporary
new_mst_nodes['Type'] = new_mst_nodes['Building'].apply(lambda x: 'CONSUMER' if x != "NONE" else x)
new_mst_nodes.drop(["FID", "coordinates", 'floors_bg', 'floors_ag', 'height_bg', 'height_ag', 'geometry_y'], axis=1,
inplace=True)
new_mst_nodes.to_file(output_nodes, driver='ESRI Shapefile')
def main(config):
assert os.path.exists(config.scenario), 'Scenario not found: %s' % config.scenario
locator = cea.inputlocator.InputLocator(scenario=config.scenario)
weight_field = 'Shape_Leng'
type_mat_default = config.network_layout.type_mat
pipe_diameter_default = config.network_layout.pipe_diameter
type_network = config.network_layout.network_type
building_nodes = locator.get_temporary_file("nodes_buildings.shp")
input_network_shp = locator.get_temporary_file("potential_network.shp") # shapefile, location of output.
output_edges = locator.get_network_layout_edges_shapefile(type_network,'')
output_nodes = locator.get_network_layout_nodes_shapefile(type_network,'')
output_network_folder = locator.get_input_network_folder(type_network,'')
calc_minimum_spanning_tree(input_network_shp, output_network_folder, building_nodes, output_edges,
output_nodes, weight_field, type_mat_default, pipe_diameter_default)
if __name__ == '__main__':
main(cea.config.Configuration())
| mit |
weixuanfu2016/tpot | tpot/config/regressor_mdr.py | 4 | 1737 | # -*- coding: utf-8 -*-
"""This file is part of the TPOT library.
TPOT was primarily developed at the University of Pennsylvania by:
- Randal S. Olson ([email protected])
- Weixuan Fu ([email protected])
- Daniel Angell ([email protected])
- and many more generous open source contributors
TPOT is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.
TPOT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with TPOT. If not, see <http://www.gnu.org/licenses/>.
"""
import numpy as np
# Check the TPOT documentation for information on the structure of config dicts
tpot_mdr_regressor_config_dict = {
# Regressors
'sklearn.linear_model.ElasticNetCV': {
'l1_ratio': np.arange(0.0, 1.01, 0.05),
'tol': [1e-5, 1e-4, 1e-3, 1e-2, 1e-1]
},
# Feature Constructors
'mdr.ContinuousMDR': {
'tie_break': [0, 1],
'default_label': [0, 1]
},
# Feature Selectors
'skrebate.ReliefF': {
'n_features_to_select': range(1, 6),
'n_neighbors': [2, 10, 50, 100, 250, 500]
},
'skrebate.SURF': {
'n_features_to_select': range(1, 6)
},
'skrebate.SURFstar': {
'n_features_to_select': range(1, 6)
},
'skrebate.MultiSURF': {
'n_features_to_select': range(1, 6)
}
}
| lgpl-3.0 |
kernc/scikit-learn | sklearn/preprocessing/__init__.py | 268 | 1319 | """
The :mod:`sklearn.preprocessing` module includes scaling, centering,
normalization, binarization and imputation methods.
"""
from ._function_transformer import FunctionTransformer
from .data import Binarizer
from .data import KernelCenterer
from .data import MinMaxScaler
from .data import MaxAbsScaler
from .data import Normalizer
from .data import RobustScaler
from .data import StandardScaler
from .data import add_dummy_feature
from .data import binarize
from .data import normalize
from .data import scale
from .data import robust_scale
from .data import maxabs_scale
from .data import minmax_scale
from .data import OneHotEncoder
from .data import PolynomialFeatures
from .label import label_binarize
from .label import LabelBinarizer
from .label import LabelEncoder
from .label import MultiLabelBinarizer
from .imputation import Imputer
__all__ = [
'Binarizer',
'FunctionTransformer',
'Imputer',
'KernelCenterer',
'LabelBinarizer',
'LabelEncoder',
'MultiLabelBinarizer',
'MinMaxScaler',
'MaxAbsScaler',
'Normalizer',
'OneHotEncoder',
'RobustScaler',
'StandardScaler',
'add_dummy_feature',
'PolynomialFeatures',
'binarize',
'normalize',
'scale',
'robust_scale',
'maxabs_scale',
'minmax_scale',
'label_binarize',
]
| bsd-3-clause |
samuel1208/scikit-learn | examples/neighbors/plot_approximate_nearest_neighbors_hyperparameters.py | 227 | 5170 | """
=================================================
Hyper-parameters of Approximate Nearest Neighbors
=================================================
This example demonstrates the behaviour of the
accuracy of the nearest neighbor queries of Locality Sensitive Hashing
Forest as the number of candidates and the number of estimators (trees)
vary.
In the first plot, accuracy is measured with the number of candidates. Here,
the term "number of candidates" refers to maximum bound for the number of
distinct points retrieved from each tree to calculate the distances. Nearest
neighbors are selected from this pool of candidates. Number of estimators is
maintained at three fixed levels (1, 5, 10).
In the second plot, the number of candidates is fixed at 50. Number of trees
is varied and the accuracy is plotted against those values. To measure the
accuracy, the true nearest neighbors are required, therefore
:class:`sklearn.neighbors.NearestNeighbors` is used to compute the exact
neighbors.
"""
from __future__ import division
print(__doc__)
# Author: Maheshakya Wijewardena <[email protected]>
#
# License: BSD 3 clause
###############################################################################
import numpy as np
from sklearn.datasets.samples_generator import make_blobs
from sklearn.neighbors import LSHForest
from sklearn.neighbors import NearestNeighbors
import matplotlib.pyplot as plt
# Initialize size of the database, iterations and required neighbors.
n_samples = 10000
n_features = 100
n_queries = 30
rng = np.random.RandomState(42)
# Generate sample data
X, _ = make_blobs(n_samples=n_samples + n_queries,
n_features=n_features, centers=10,
random_state=0)
X_index = X[:n_samples]
X_query = X[n_samples:]
# Get exact neighbors
nbrs = NearestNeighbors(n_neighbors=1, algorithm='brute',
metric='cosine').fit(X_index)
neighbors_exact = nbrs.kneighbors(X_query, return_distance=False)
# Set `n_candidate` values
n_candidates_values = np.linspace(10, 500, 5).astype(np.int)
n_estimators_for_candidate_value = [1, 5, 10]
n_iter = 10
stds_accuracies = np.zeros((len(n_estimators_for_candidate_value),
n_candidates_values.shape[0]),
dtype=float)
accuracies_c = np.zeros((len(n_estimators_for_candidate_value),
n_candidates_values.shape[0]), dtype=float)
# LSH Forest is a stochastic index: perform several iteration to estimate
# expected accuracy and standard deviation displayed as error bars in
# the plots
for j, value in enumerate(n_estimators_for_candidate_value):
for i, n_candidates in enumerate(n_candidates_values):
accuracy_c = []
for seed in range(n_iter):
lshf = LSHForest(n_estimators=value,
n_candidates=n_candidates, n_neighbors=1,
random_state=seed)
# Build the LSH Forest index
lshf.fit(X_index)
# Get neighbors
neighbors_approx = lshf.kneighbors(X_query,
return_distance=False)
accuracy_c.append(np.sum(np.equal(neighbors_approx,
neighbors_exact)) /
n_queries)
stds_accuracies[j, i] = np.std(accuracy_c)
accuracies_c[j, i] = np.mean(accuracy_c)
# Set `n_estimators` values
n_estimators_values = [1, 5, 10, 20, 30, 40, 50]
accuracies_trees = np.zeros(len(n_estimators_values), dtype=float)
# Calculate average accuracy for each value of `n_estimators`
for i, n_estimators in enumerate(n_estimators_values):
lshf = LSHForest(n_estimators=n_estimators, n_neighbors=1)
# Build the LSH Forest index
lshf.fit(X_index)
# Get neighbors
neighbors_approx = lshf.kneighbors(X_query, return_distance=False)
accuracies_trees[i] = np.sum(np.equal(neighbors_approx,
neighbors_exact))/n_queries
###############################################################################
# Plot the accuracy variation with `n_candidates`
plt.figure()
colors = ['c', 'm', 'y']
for i, n_estimators in enumerate(n_estimators_for_candidate_value):
label = 'n_estimators = %d ' % n_estimators
plt.plot(n_candidates_values, accuracies_c[i, :],
'o-', c=colors[i], label=label)
plt.errorbar(n_candidates_values, accuracies_c[i, :],
stds_accuracies[i, :], c=colors[i])
plt.legend(loc='upper left', fontsize='small')
plt.ylim([0, 1.2])
plt.xlim(min(n_candidates_values), max(n_candidates_values))
plt.ylabel("Accuracy")
plt.xlabel("n_candidates")
plt.grid(which='both')
plt.title("Accuracy variation with n_candidates")
# Plot the accuracy variation with `n_estimators`
plt.figure()
plt.scatter(n_estimators_values, accuracies_trees, c='k')
plt.plot(n_estimators_values, accuracies_trees, c='g')
plt.ylim([0, 1.2])
plt.xlim(min(n_estimators_values), max(n_estimators_values))
plt.ylabel("Accuracy")
plt.xlabel("n_estimators")
plt.grid(which='both')
plt.title("Accuracy variation with n_estimators")
plt.show()
| bsd-3-clause |
INM-6/Python-Module-of-the-Week | session20_NEST/snakemake/scripts/plotPhaseDiagram.py | 1 | 1399 | import os
import argparse
import numpy as np
import matplotlib.pyplot as plt
# parse command line parameters
parser = argparse.ArgumentParser(description='Plot phase diagram.')
parser.add_argument('spikefiles', type=str, nargs='+', help='input files')
parser.add_argument('plotfile', type=str, help='output file')
args = parser.parse_args()
# calculate CV for all simulation
g_list = []
nu_ex_list = []
CV_list = []
for sf in args.spikefiles:
# extract name of the file
fn = os.path.splitext(os.path.basename(sf))[0]
# extract parameters from filename
g_list.append(float(fn.split('_')[1]))
nu_ex_list.append(float(fn.split('_')[2]))
# load the spike file
ids, times = np.load(sf)
ids = ids.astype(np.int)
# calculate CV for current neuron
CV = 0.
unique_ids = set(ids)
if len(unique_ids) > 0:
for id in unique_ids:
ISIs = np.diff(times[ids == id])
if len(ISIs) > 1:
CV += np.std(ISIs) / np.mean(ISIs)
CV /= len(unique_ids)
CV_list.append(CV)
# make scatter plot, CV indicated by color
plt.scatter(g_list, nu_ex_list, c=CV_list, marker='s', s=500, vmin=0, vmax=1)
# set axis range and label
plt.xlim(0, 8)
plt.xlabel('$g$')
plt.ylim(0, 4)
plt.ylabel('$\\nu_{ext}/\\nu_{thr}$')
# add colorbar and title
plt.colorbar()
plt.title('Coefficient of Variation')
plt.savefig(args.plotfile)
| mit |
marcsans/cnn-physics-perception | phy/lib/python2.7/site-packages/numpy/lib/function_base.py | 15 | 150516 | from __future__ import division, absolute_import, print_function
import warnings
import sys
import collections
import operator
import numpy as np
import numpy.core.numeric as _nx
from numpy.core import linspace, atleast_1d, atleast_2d
from numpy.core.numeric import (
ones, zeros, arange, concatenate, array, asarray, asanyarray, empty,
empty_like, ndarray, around, floor, ceil, take, dot, where, intp,
integer, isscalar
)
from numpy.core.umath import (
pi, multiply, add, arctan2, frompyfunc, cos, less_equal, sqrt, sin,
mod, exp, log10
)
from numpy.core.fromnumeric import (
ravel, nonzero, sort, partition, mean, any, sum
)
from numpy.core.numerictypes import typecodes, number
from numpy.lib.twodim_base import diag
from .utils import deprecate
from numpy.core.multiarray import _insert, add_docstring
from numpy.core.multiarray import digitize, bincount, interp as compiled_interp
from numpy.core.umath import _add_newdoc_ufunc as add_newdoc_ufunc
from numpy.compat import long
from numpy.compat.py3k import basestring
# Force range to be a generator, for np.delete's usage.
if sys.version_info[0] < 3:
range = xrange
__all__ = [
'select', 'piecewise', 'trim_zeros', 'copy', 'iterable', 'percentile',
'diff', 'gradient', 'angle', 'unwrap', 'sort_complex', 'disp',
'extract', 'place', 'vectorize', 'asarray_chkfinite', 'average',
'histogram', 'histogramdd', 'bincount', 'digitize', 'cov', 'corrcoef',
'msort', 'median', 'sinc', 'hamming', 'hanning', 'bartlett',
'blackman', 'kaiser', 'trapz', 'i0', 'add_newdoc', 'add_docstring',
'meshgrid', 'delete', 'insert', 'append', 'interp', 'add_newdoc_ufunc'
]
def iterable(y):
"""
Check whether or not an object can be iterated over.
Parameters
----------
y : object
Input object.
Returns
-------
b : {0, 1}
Return 1 if the object has an iterator method or is a sequence,
and 0 otherwise.
Examples
--------
>>> np.iterable([1, 2, 3])
1
>>> np.iterable(2)
0
"""
try:
iter(y)
except:
return 0
return 1
def _hist_bin_sqrt(x):
"""
Square root histogram bin estimator.
Bin width is inversely proportional to the data size. Used by many
programs for its simplicity.
Parameters
----------
x : array_like
Input data that is to be histogrammed, trimmed to range. May not
be empty.
Returns
-------
h : An estimate of the optimal bin width for the given data.
"""
return x.ptp() / np.sqrt(x.size)
def _hist_bin_sturges(x):
"""
Sturges histogram bin estimator.
A very simplistic estimator based on the assumption of normality of
the data. This estimator has poor performance for non-normal data,
which becomes especially obvious for large data sets. The estimate
depends only on size of the data.
Parameters
----------
x : array_like
Input data that is to be histogrammed, trimmed to range. May not
be empty.
Returns
-------
h : An estimate of the optimal bin width for the given data.
"""
return x.ptp() / (np.log2(x.size) + 1.0)
def _hist_bin_rice(x):
"""
Rice histogram bin estimator.
Another simple estimator with no normality assumption. It has better
performance for large data than Sturges, but tends to overestimate
the number of bins. The number of bins is proportional to the cube
root of data size (asymptotically optimal). The estimate depends
only on size of the data.
Parameters
----------
x : array_like
Input data that is to be histogrammed, trimmed to range. May not
be empty.
Returns
-------
h : An estimate of the optimal bin width for the given data.
"""
return x.ptp() / (2.0 * x.size ** (1.0 / 3))
def _hist_bin_scott(x):
"""
Scott histogram bin estimator.
The binwidth is proportional to the standard deviation of the data
and inversely proportional to the cube root of data size
(asymptotically optimal).
Parameters
----------
x : array_like
Input data that is to be histogrammed, trimmed to range. May not
be empty.
Returns
-------
h : An estimate of the optimal bin width for the given data.
"""
return (24.0 * np.pi**0.5 / x.size)**(1.0 / 3.0) * np.std(x)
def _hist_bin_doane(x):
"""
Doane's histogram bin estimator.
Improved version of Sturges' formula which works better for
non-normal data. See
http://stats.stackexchange.com/questions/55134/doanes-formula-for-histogram-binning
Parameters
----------
x : array_like
Input data that is to be histogrammed, trimmed to range. May not
be empty.
Returns
-------
h : An estimate of the optimal bin width for the given data.
"""
if x.size > 2:
sg1 = np.sqrt(6.0 * (x.size - 2) / ((x.size + 1.0) * (x.size + 3)))
sigma = np.std(x)
if sigma > 0.0:
# These three operations add up to
# g1 = np.mean(((x - np.mean(x)) / sigma)**3)
# but use only one temp array instead of three
temp = x - np.mean(x)
np.true_divide(temp, sigma, temp)
np.power(temp, 3, temp)
g1 = np.mean(temp)
return x.ptp() / (1.0 + np.log2(x.size) +
np.log2(1.0 + np.absolute(g1) / sg1))
return 0.0
def _hist_bin_fd(x):
"""
The Freedman-Diaconis histogram bin estimator.
The Freedman-Diaconis rule uses interquartile range (IQR) to
estimate binwidth. It is considered a variation of the Scott rule
with more robustness as the IQR is less affected by outliers than
the standard deviation. However, the IQR depends on fewer points
than the standard deviation, so it is less accurate, especially for
long tailed distributions.
If the IQR is 0, this function returns 1 for the number of bins.
Binwidth is inversely proportional to the cube root of data size
(asymptotically optimal).
Parameters
----------
x : array_like
Input data that is to be histogrammed, trimmed to range. May not
be empty.
Returns
-------
h : An estimate of the optimal bin width for the given data.
"""
iqr = np.subtract(*np.percentile(x, [75, 25]))
return 2.0 * iqr * x.size ** (-1.0 / 3.0)
def _hist_bin_auto(x):
"""
Histogram bin estimator that uses the minimum width of the
Freedman-Diaconis and Sturges estimators.
The FD estimator is usually the most robust method, but its width
estimate tends to be too large for small `x`. The Sturges estimator
is quite good for small (<1000) datasets and is the default in the R
language. This method gives good off the shelf behaviour.
Parameters
----------
x : array_like
Input data that is to be histogrammed, trimmed to range. May not
be empty.
Returns
-------
h : An estimate of the optimal bin width for the given data.
See Also
--------
_hist_bin_fd, _hist_bin_sturges
"""
# There is no need to check for zero here. If ptp is, so is IQR and
# vice versa. Either both are zero or neither one is.
return min(_hist_bin_fd(x), _hist_bin_sturges(x))
# Private dict initialized at module load time
_hist_bin_selectors = {'auto': _hist_bin_auto,
'doane': _hist_bin_doane,
'fd': _hist_bin_fd,
'rice': _hist_bin_rice,
'scott': _hist_bin_scott,
'sqrt': _hist_bin_sqrt,
'sturges': _hist_bin_sturges}
def histogram(a, bins=10, range=None, normed=False, weights=None,
density=None):
r"""
Compute the histogram of a set of data.
Parameters
----------
a : array_like
Input data. The histogram is computed over the flattened array.
bins : int or sequence of scalars or str, optional
If `bins` is an int, it defines the number of equal-width
bins in the given range (10, by default). If `bins` is a
sequence, it defines the bin edges, including the rightmost
edge, allowing for non-uniform bin widths.
.. versionadded:: 1.11.0
If `bins` is a string from the list below, `histogram` will use
the method chosen to calculate the optimal bin width and
consequently the number of bins (see `Notes` for more detail on
the estimators) from the data that falls within the requested
range. While the bin width will be optimal for the actual data
in the range, the number of bins will be computed to fill the
entire range, including the empty portions. For visualisation,
using the 'auto' option is suggested. Weighted data is not
supported for automated bin size selection.
'auto'
Maximum of the 'sturges' and 'fd' estimators. Provides good
all round performance
'fd' (Freedman Diaconis Estimator)
Robust (resilient to outliers) estimator that takes into
account data variability and data size .
'doane'
An improved version of Sturges' estimator that works better
with non-normal datasets.
'scott'
Less robust estimator that that takes into account data
variability and data size.
'rice'
Estimator does not take variability into account, only data
size. Commonly overestimates number of bins required.
'sturges'
R's default method, only accounts for data size. Only
optimal for gaussian data and underestimates number of bins
for large non-gaussian datasets.
'sqrt'
Square root (of data size) estimator, used by Excel and
other programs for its speed and simplicity.
range : (float, float), optional
The lower and upper range of the bins. If not provided, range
is simply ``(a.min(), a.max())``. Values outside the range are
ignored. The first element of the range must be less than or
equal to the second. `range` affects the automatic bin
computation as well. While bin width is computed to be optimal
based on the actual data within `range`, the bin count will fill
the entire range including portions containing no data.
normed : bool, optional
This keyword is deprecated in Numpy 1.6 due to confusing/buggy
behavior. It will be removed in Numpy 2.0. Use the ``density``
keyword instead. If ``False``, the result will contain the
number of samples in each bin. If ``True``, the result is the
value of the probability *density* function at the bin,
normalized such that the *integral* over the range is 1. Note
that this latter behavior is known to be buggy with unequal bin
widths; use ``density`` instead.
weights : array_like, optional
An array of weights, of the same shape as `a`. Each value in
`a` only contributes its associated weight towards the bin count
(instead of 1). If `density` is True, the weights are
normalized, so that the integral of the density over the range
remains 1.
density : bool, optional
If ``False``, the result will contain the number of samples in
each bin. If ``True``, the result is the value of the
probability *density* function at the bin, normalized such that
the *integral* over the range is 1. Note that the sum of the
histogram values will not be equal to 1 unless bins of unity
width are chosen; it is not a probability *mass* function.
Overrides the ``normed`` keyword if given.
Returns
-------
hist : array
The values of the histogram. See `density` and `weights` for a
description of the possible semantics.
bin_edges : array of dtype float
Return the bin edges ``(length(hist)+1)``.
See Also
--------
histogramdd, bincount, searchsorted, digitize
Notes
-----
All but the last (righthand-most) bin is half-open. In other words,
if `bins` is::
[1, 2, 3, 4]
then the first bin is ``[1, 2)`` (including 1, but excluding 2) and
the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which
*includes* 4.
.. versionadded:: 1.11.0
The methods to estimate the optimal number of bins are well founded
in literature, and are inspired by the choices R provides for
histogram visualisation. Note that having the number of bins
proportional to :math:`n^{1/3}` is asymptotically optimal, which is
why it appears in most estimators. These are simply plug-in methods
that give good starting points for number of bins. In the equations
below, :math:`h` is the binwidth and :math:`n_h` is the number of
bins. All estimators that compute bin counts are recast to bin width
using the `ptp` of the data. The final bin count is obtained from
``np.round(np.ceil(range / h))`.
'Auto' (maximum of the 'Sturges' and 'FD' estimators)
A compromise to get a good value. For small datasets the Sturges
value will usually be chosen, while larger datasets will usually
default to FD. Avoids the overly conservative behaviour of FD
and Sturges for small and large datasets respectively.
Switchover point is usually :math:`a.size \approx 1000`.
'FD' (Freedman Diaconis Estimator)
.. math:: h = 2 \frac{IQR}{n^{1/3}}
The binwidth is proportional to the interquartile range (IQR)
and inversely proportional to cube root of a.size. Can be too
conservative for small datasets, but is quite good for large
datasets. The IQR is very robust to outliers.
'Scott'
.. math:: h = \sigma \sqrt[3]{\frac{24 * \sqrt{\pi}}{n}}
The binwidth is proportional to the standard deviation of the
data and inversely proportional to cube root of ``x.size``. Can
be too conservative for small datasets, but is quite good for
large datasets. The standard deviation is not very robust to
outliers. Values are very similar to the Freedman-Diaconis
estimator in the absence of outliers.
'Rice'
.. math:: n_h = 2n^{1/3}
The number of bins is only proportional to cube root of
``a.size``. It tends to overestimate the number of bins and it
does not take into account data variability.
'Sturges'
.. math:: n_h = \log _{2}n+1
The number of bins is the base 2 log of ``a.size``. This
estimator assumes normality of data and is too conservative for
larger, non-normal datasets. This is the default method in R's
``hist`` method.
'Doane'
.. math:: n_h = 1 + \log_{2}(n) +
\log_{2}(1 + \frac{|g_1|}{\sigma_{g_1})}
g_1 = mean[(\frac{x - \mu}{\sigma})^3]
\sigma_{g_1} = \sqrt{\frac{6(n - 2)}{(n + 1)(n + 3)}}
An improved version of Sturges' formula that produces better
estimates for non-normal datasets. This estimator attempts to
account for the skew of the data.
'Sqrt'
.. math:: n_h = \sqrt n
The simplest and fastest estimator. Only takes into account the
data size.
Examples
--------
>>> np.histogram([1, 2, 1], bins=[0, 1, 2, 3])
(array([0, 2, 1]), array([0, 1, 2, 3]))
>>> np.histogram(np.arange(4), bins=np.arange(5), density=True)
(array([ 0.25, 0.25, 0.25, 0.25]), array([0, 1, 2, 3, 4]))
>>> np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3])
(array([1, 4, 1]), array([0, 1, 2, 3]))
>>> a = np.arange(5)
>>> hist, bin_edges = np.histogram(a, density=True)
>>> hist
array([ 0.5, 0. , 0.5, 0. , 0. , 0.5, 0. , 0.5, 0. , 0.5])
>>> hist.sum()
2.4999999999999996
>>> np.sum(hist*np.diff(bin_edges))
1.0
.. versionadded:: 1.11.0
Automated Bin Selection Methods example, using 2 peak random data
with 2000 points:
>>> import matplotlib.pyplot as plt
>>> rng = np.random.RandomState(10) # deterministic random data
>>> a = np.hstack((rng.normal(size=1000),
... rng.normal(loc=5, scale=2, size=1000)))
>>> plt.hist(a, bins='auto') # plt.hist passes it's arguments to np.histogram
>>> plt.title("Histogram with 'auto' bins")
>>> plt.show()
"""
a = asarray(a)
if weights is not None:
weights = asarray(weights)
if np.any(weights.shape != a.shape):
raise ValueError(
'weights should have the same shape as a.')
weights = weights.ravel()
a = a.ravel()
# Do not modify the original value of range so we can check for `None`
if range is None:
if a.size == 0:
# handle empty arrays. Can't determine range, so use 0-1.
mn, mx = 0.0, 1.0
else:
mn, mx = a.min() + 0.0, a.max() + 0.0
else:
mn, mx = [mi + 0.0 for mi in range]
if mn > mx:
raise ValueError(
'max must be larger than min in range parameter.')
if not np.all(np.isfinite([mn, mx])):
raise ValueError(
'range parameter must be finite.')
if mn == mx:
mn -= 0.5
mx += 0.5
if isinstance(bins, basestring):
# if `bins` is a string for an automatic method,
# this will replace it with the number of bins calculated
if bins not in _hist_bin_selectors:
raise ValueError("{0} not a valid estimator for bins".format(bins))
if weights is not None:
raise TypeError("Automated estimation of the number of "
"bins is not supported for weighted data")
# Make a reference to `a`
b = a
# Update the reference if the range needs truncation
if range is not None:
keep = (a >= mn)
keep &= (a <= mx)
if not np.logical_and.reduce(keep):
b = a[keep]
if b.size == 0:
bins = 1
else:
# Do not call selectors on empty arrays
width = _hist_bin_selectors[bins](b)
if width:
bins = int(np.ceil((mx - mn) / width))
else:
# Width can be zero for some estimators, e.g. FD when
# the IQR of the data is zero.
bins = 1
# Histogram is an integer or a float array depending on the weights.
if weights is None:
ntype = np.dtype(np.intp)
else:
ntype = weights.dtype
# We set a block size, as this allows us to iterate over chunks when
# computing histograms, to minimize memory usage.
BLOCK = 65536
if not iterable(bins):
if np.isscalar(bins) and bins < 1:
raise ValueError(
'`bins` should be a positive integer.')
# At this point, if the weights are not integer, floating point, or
# complex, we have to use the slow algorithm.
if weights is not None and not (np.can_cast(weights.dtype, np.double) or
np.can_cast(weights.dtype, np.complex)):
bins = linspace(mn, mx, bins + 1, endpoint=True)
if not iterable(bins):
# We now convert values of a to bin indices, under the assumption of
# equal bin widths (which is valid here).
# Initialize empty histogram
n = np.zeros(bins, ntype)
# Pre-compute histogram scaling factor
norm = bins / (mx - mn)
# Compute the bin edges for potential correction.
bin_edges = linspace(mn, mx, bins + 1, endpoint=True)
# We iterate over blocks here for two reasons: the first is that for
# large arrays, it is actually faster (for example for a 10^8 array it
# is 2x as fast) and it results in a memory footprint 3x lower in the
# limit of large arrays.
for i in arange(0, len(a), BLOCK):
tmp_a = a[i:i+BLOCK]
if weights is None:
tmp_w = None
else:
tmp_w = weights[i:i + BLOCK]
# Only include values in the right range
keep = (tmp_a >= mn)
keep &= (tmp_a <= mx)
if not np.logical_and.reduce(keep):
tmp_a = tmp_a[keep]
if tmp_w is not None:
tmp_w = tmp_w[keep]
tmp_a_data = tmp_a.astype(float)
tmp_a = tmp_a_data - mn
tmp_a *= norm
# Compute the bin indices, and for values that lie exactly on mx we
# need to subtract one
indices = tmp_a.astype(np.intp)
indices[indices == bins] -= 1
# The index computation is not guaranteed to give exactly
# consistent results within ~1 ULP of the bin edges.
decrement = tmp_a_data < bin_edges[indices]
indices[decrement] -= 1
# The last bin includes the right edge. The other bins do not.
increment = (tmp_a_data >= bin_edges[indices + 1]) & (indices != bins - 1)
indices[increment] += 1
# We now compute the histogram using bincount
if ntype.kind == 'c':
n.real += np.bincount(indices, weights=tmp_w.real, minlength=bins)
n.imag += np.bincount(indices, weights=tmp_w.imag, minlength=bins)
else:
n += np.bincount(indices, weights=tmp_w, minlength=bins).astype(ntype)
# Rename the bin edges for return.
bins = bin_edges
else:
bins = asarray(bins)
if (np.diff(bins) < 0).any():
raise ValueError(
'bins must increase monotonically.')
# Initialize empty histogram
n = np.zeros(bins.shape, ntype)
if weights is None:
for i in arange(0, len(a), BLOCK):
sa = sort(a[i:i+BLOCK])
n += np.r_[sa.searchsorted(bins[:-1], 'left'),
sa.searchsorted(bins[-1], 'right')]
else:
zero = array(0, dtype=ntype)
for i in arange(0, len(a), BLOCK):
tmp_a = a[i:i+BLOCK]
tmp_w = weights[i:i+BLOCK]
sorting_index = np.argsort(tmp_a)
sa = tmp_a[sorting_index]
sw = tmp_w[sorting_index]
cw = np.concatenate(([zero, ], sw.cumsum()))
bin_index = np.r_[sa.searchsorted(bins[:-1], 'left'),
sa.searchsorted(bins[-1], 'right')]
n += cw[bin_index]
n = np.diff(n)
if density is not None:
if density:
db = array(np.diff(bins), float)
return n/db/n.sum(), bins
else:
return n, bins
else:
# deprecated, buggy behavior. Remove for Numpy 2.0
if normed:
db = array(np.diff(bins), float)
return n/(n*db).sum(), bins
else:
return n, bins
def histogramdd(sample, bins=10, range=None, normed=False, weights=None):
"""
Compute the multidimensional histogram of some data.
Parameters
----------
sample : array_like
The data to be histogrammed. It must be an (N,D) array or data
that can be converted to such. The rows of the resulting array
are the coordinates of points in a D dimensional polytope.
bins : sequence or int, optional
The bin specification:
* A sequence of arrays describing the bin edges along each dimension.
* The number of bins for each dimension (nx, ny, ... =bins)
* The number of bins for all dimensions (nx=ny=...=bins).
range : sequence, optional
A sequence of lower and upper bin edges to be used if the edges are
not given explicitly in `bins`. Defaults to the minimum and maximum
values along each dimension.
normed : bool, optional
If False, returns the number of samples in each bin. If True,
returns the bin density ``bin_count / sample_count / bin_volume``.
weights : (N,) array_like, optional
An array of values `w_i` weighing each sample `(x_i, y_i, z_i, ...)`.
Weights are normalized to 1 if normed is True. If normed is False,
the values of the returned histogram are equal to the sum of the
weights belonging to the samples falling into each bin.
Returns
-------
H : ndarray
The multidimensional histogram of sample x. See normed and weights
for the different possible semantics.
edges : list
A list of D arrays describing the bin edges for each dimension.
See Also
--------
histogram: 1-D histogram
histogram2d: 2-D histogram
Examples
--------
>>> r = np.random.randn(100,3)
>>> H, edges = np.histogramdd(r, bins = (5, 8, 4))
>>> H.shape, edges[0].size, edges[1].size, edges[2].size
((5, 8, 4), 6, 9, 5)
"""
try:
# Sample is an ND-array.
N, D = sample.shape
except (AttributeError, ValueError):
# Sample is a sequence of 1D arrays.
sample = atleast_2d(sample).T
N, D = sample.shape
nbin = empty(D, int)
edges = D*[None]
dedges = D*[None]
if weights is not None:
weights = asarray(weights)
try:
M = len(bins)
if M != D:
raise ValueError(
'The dimension of bins must be equal to the dimension of the '
' sample x.')
except TypeError:
# bins is an integer
bins = D*[bins]
# Select range for each dimension
# Used only if number of bins is given.
if range is None:
# Handle empty input. Range can't be determined in that case, use 0-1.
if N == 0:
smin = zeros(D)
smax = ones(D)
else:
smin = atleast_1d(array(sample.min(0), float))
smax = atleast_1d(array(sample.max(0), float))
else:
if not np.all(np.isfinite(range)):
raise ValueError(
'range parameter must be finite.')
smin = zeros(D)
smax = zeros(D)
for i in arange(D):
smin[i], smax[i] = range[i]
# Make sure the bins have a finite width.
for i in arange(len(smin)):
if smin[i] == smax[i]:
smin[i] = smin[i] - .5
smax[i] = smax[i] + .5
# avoid rounding issues for comparisons when dealing with inexact types
if np.issubdtype(sample.dtype, np.inexact):
edge_dt = sample.dtype
else:
edge_dt = float
# Create edge arrays
for i in arange(D):
if isscalar(bins[i]):
if bins[i] < 1:
raise ValueError(
"Element at index %s in `bins` should be a positive "
"integer." % i)
nbin[i] = bins[i] + 2 # +2 for outlier bins
edges[i] = linspace(smin[i], smax[i], nbin[i]-1, dtype=edge_dt)
else:
edges[i] = asarray(bins[i], edge_dt)
nbin[i] = len(edges[i]) + 1 # +1 for outlier bins
dedges[i] = diff(edges[i])
if np.any(np.asarray(dedges[i]) <= 0):
raise ValueError(
"Found bin edge of size <= 0. Did you specify `bins` with"
"non-monotonic sequence?")
nbin = asarray(nbin)
# Handle empty input.
if N == 0:
return np.zeros(nbin-2), edges
# Compute the bin number each sample falls into.
Ncount = {}
for i in arange(D):
Ncount[i] = digitize(sample[:, i], edges[i])
# Using digitize, values that fall on an edge are put in the right bin.
# For the rightmost bin, we want values equal to the right edge to be
# counted in the last bin, and not as an outlier.
for i in arange(D):
# Rounding precision
mindiff = dedges[i].min()
if not np.isinf(mindiff):
decimal = int(-log10(mindiff)) + 6
# Find which points are on the rightmost edge.
not_smaller_than_edge = (sample[:, i] >= edges[i][-1])
on_edge = (around(sample[:, i], decimal) ==
around(edges[i][-1], decimal))
# Shift these points one bin to the left.
Ncount[i][where(on_edge & not_smaller_than_edge)[0]] -= 1
# Flattened histogram matrix (1D)
# Reshape is used so that overlarge arrays
# will raise an error.
hist = zeros(nbin, float).reshape(-1)
# Compute the sample indices in the flattened histogram matrix.
ni = nbin.argsort()
xy = zeros(N, int)
for i in arange(0, D-1):
xy += Ncount[ni[i]] * nbin[ni[i+1:]].prod()
xy += Ncount[ni[-1]]
# Compute the number of repetitions in xy and assign it to the
# flattened histmat.
if len(xy) == 0:
return zeros(nbin-2, int), edges
flatcount = bincount(xy, weights)
a = arange(len(flatcount))
hist[a] = flatcount
# Shape into a proper matrix
hist = hist.reshape(sort(nbin))
for i in arange(nbin.size):
j = ni.argsort()[i]
hist = hist.swapaxes(i, j)
ni[i], ni[j] = ni[j], ni[i]
# Remove outliers (indices 0 and -1 for each dimension).
core = D*[slice(1, -1)]
hist = hist[core]
# Normalize if normed is True
if normed:
s = hist.sum()
for i in arange(D):
shape = ones(D, int)
shape[i] = nbin[i] - 2
hist = hist / dedges[i].reshape(shape)
hist /= s
if (hist.shape != nbin - 2).any():
raise RuntimeError(
"Internal Shape Error")
return hist, edges
def average(a, axis=None, weights=None, returned=False):
"""
Compute the weighted average along the specified axis.
Parameters
----------
a : array_like
Array containing data to be averaged. If `a` is not an array, a
conversion is attempted.
axis : int, optional
Axis along which to average `a`. If `None`, averaging is done over
the flattened array.
weights : array_like, optional
An array of weights associated with the values in `a`. Each value in
`a` contributes to the average according to its associated weight.
The weights array can either be 1-D (in which case its length must be
the size of `a` along the given axis) or of the same shape as `a`.
If `weights=None`, then all data in `a` are assumed to have a
weight equal to one.
returned : bool, optional
Default is `False`. If `True`, the tuple (`average`, `sum_of_weights`)
is returned, otherwise only the average is returned.
If `weights=None`, `sum_of_weights` is equivalent to the number of
elements over which the average is taken.
Returns
-------
average, [sum_of_weights] : array_type or double
Return the average along the specified axis. When returned is `True`,
return a tuple with the average as the first element and the sum
of the weights as the second element. The return type is `Float`
if `a` is of integer type, otherwise it is of the same type as `a`.
`sum_of_weights` is of the same type as `average`.
Raises
------
ZeroDivisionError
When all weights along axis are zero. See `numpy.ma.average` for a
version robust to this type of error.
TypeError
When the length of 1D `weights` is not the same as the shape of `a`
along axis.
See Also
--------
mean
ma.average : average for masked arrays -- useful if your data contains
"missing" values
Examples
--------
>>> data = range(1,5)
>>> data
[1, 2, 3, 4]
>>> np.average(data)
2.5
>>> np.average(range(1,11), weights=range(10,0,-1))
4.0
>>> data = np.arange(6).reshape((3,2))
>>> data
array([[0, 1],
[2, 3],
[4, 5]])
>>> np.average(data, axis=1, weights=[1./4, 3./4])
array([ 0.75, 2.75, 4.75])
>>> np.average(data, weights=[1./4, 3./4])
Traceback (most recent call last):
...
TypeError: Axis must be specified when shapes of a and weights differ.
"""
if not isinstance(a, np.matrix):
a = np.asarray(a)
if weights is None:
avg = a.mean(axis)
scl = avg.dtype.type(a.size/avg.size)
else:
a = a + 0.0
wgt = np.asarray(weights)
# Sanity checks
if a.shape != wgt.shape:
if axis is None:
raise TypeError(
"Axis must be specified when shapes of a and weights "
"differ.")
if wgt.ndim != 1:
raise TypeError(
"1D weights expected when shapes of a and weights differ.")
if wgt.shape[0] != a.shape[axis]:
raise ValueError(
"Length of weights not compatible with specified axis.")
# setup wgt to broadcast along axis
wgt = np.array(wgt, copy=0, ndmin=a.ndim).swapaxes(-1, axis)
scl = wgt.sum(axis=axis, dtype=np.result_type(a.dtype, wgt.dtype))
if (scl == 0.0).any():
raise ZeroDivisionError(
"Weights sum to zero, can't be normalized")
avg = np.multiply(a, wgt).sum(axis)/scl
if returned:
scl = np.multiply(avg, 0) + scl
return avg, scl
else:
return avg
def asarray_chkfinite(a, dtype=None, order=None):
"""Convert the input to an array, checking for NaNs or Infs.
Parameters
----------
a : array_like
Input data, in any form that can be converted to an array. This
includes lists, lists of tuples, tuples, tuples of tuples, tuples
of lists and ndarrays. Success requires no NaNs or Infs.
dtype : data-type, optional
By default, the data-type is inferred from the input data.
order : {'C', 'F'}, optional
Whether to use row-major (C-style) or
column-major (Fortran-style) memory representation.
Defaults to 'C'.
Returns
-------
out : ndarray
Array interpretation of `a`. No copy is performed if the input
is already an ndarray. If `a` is a subclass of ndarray, a base
class ndarray is returned.
Raises
------
ValueError
Raises ValueError if `a` contains NaN (Not a Number) or Inf (Infinity).
See Also
--------
asarray : Create and array.
asanyarray : Similar function which passes through subclasses.
ascontiguousarray : Convert input to a contiguous array.
asfarray : Convert input to a floating point ndarray.
asfortranarray : Convert input to an ndarray with column-major
memory order.
fromiter : Create an array from an iterator.
fromfunction : Construct an array by executing a function on grid
positions.
Examples
--------
Convert a list into an array. If all elements are finite
``asarray_chkfinite`` is identical to ``asarray``.
>>> a = [1, 2]
>>> np.asarray_chkfinite(a, dtype=float)
array([1., 2.])
Raises ValueError if array_like contains Nans or Infs.
>>> a = [1, 2, np.inf]
>>> try:
... np.asarray_chkfinite(a)
... except ValueError:
... print('ValueError')
...
ValueError
"""
a = asarray(a, dtype=dtype, order=order)
if a.dtype.char in typecodes['AllFloat'] and not np.isfinite(a).all():
raise ValueError(
"array must not contain infs or NaNs")
return a
def piecewise(x, condlist, funclist, *args, **kw):
"""
Evaluate a piecewise-defined function.
Given a set of conditions and corresponding functions, evaluate each
function on the input data wherever its condition is true.
Parameters
----------
x : ndarray
The input domain.
condlist : list of bool arrays
Each boolean array corresponds to a function in `funclist`. Wherever
`condlist[i]` is True, `funclist[i](x)` is used as the output value.
Each boolean array in `condlist` selects a piece of `x`,
and should therefore be of the same shape as `x`.
The length of `condlist` must correspond to that of `funclist`.
If one extra function is given, i.e. if
``len(funclist) - len(condlist) == 1``, then that extra function
is the default value, used wherever all conditions are false.
funclist : list of callables, f(x,*args,**kw), or scalars
Each function is evaluated over `x` wherever its corresponding
condition is True. It should take an array as input and give an array
or a scalar value as output. If, instead of a callable,
a scalar is provided then a constant function (``lambda x: scalar``) is
assumed.
args : tuple, optional
Any further arguments given to `piecewise` are passed to the functions
upon execution, i.e., if called ``piecewise(..., ..., 1, 'a')``, then
each function is called as ``f(x, 1, 'a')``.
kw : dict, optional
Keyword arguments used in calling `piecewise` are passed to the
functions upon execution, i.e., if called
``piecewise(..., ..., lambda=1)``, then each function is called as
``f(x, lambda=1)``.
Returns
-------
out : ndarray
The output is the same shape and type as x and is found by
calling the functions in `funclist` on the appropriate portions of `x`,
as defined by the boolean arrays in `condlist`. Portions not covered
by any condition have a default value of 0.
See Also
--------
choose, select, where
Notes
-----
This is similar to choose or select, except that functions are
evaluated on elements of `x` that satisfy the corresponding condition from
`condlist`.
The result is::
|--
|funclist[0](x[condlist[0]])
out = |funclist[1](x[condlist[1]])
|...
|funclist[n2](x[condlist[n2]])
|--
Examples
--------
Define the sigma function, which is -1 for ``x < 0`` and +1 for ``x >= 0``.
>>> x = np.linspace(-2.5, 2.5, 6)
>>> np.piecewise(x, [x < 0, x >= 0], [-1, 1])
array([-1., -1., -1., 1., 1., 1.])
Define the absolute value, which is ``-x`` for ``x <0`` and ``x`` for
``x >= 0``.
>>> np.piecewise(x, [x < 0, x >= 0], [lambda x: -x, lambda x: x])
array([ 2.5, 1.5, 0.5, 0.5, 1.5, 2.5])
"""
x = asanyarray(x)
n2 = len(funclist)
if (isscalar(condlist) or not (isinstance(condlist[0], list) or
isinstance(condlist[0], ndarray))):
condlist = [condlist]
condlist = array(condlist, dtype=bool)
n = len(condlist)
# This is a hack to work around problems with NumPy's
# handling of 0-d arrays and boolean indexing with
# numpy.bool_ scalars
zerod = False
if x.ndim == 0:
x = x[None]
zerod = True
if condlist.shape[-1] != 1:
condlist = condlist.T
if n == n2 - 1: # compute the "otherwise" condition.
totlist = np.logical_or.reduce(condlist, axis=0)
# Only able to stack vertically if the array is 1d or less
if x.ndim <= 1:
condlist = np.vstack([condlist, ~totlist])
else:
condlist = [asarray(c, dtype=bool) for c in condlist]
totlist = condlist[0]
for k in range(1, n):
totlist |= condlist[k]
condlist.append(~totlist)
n += 1
y = zeros(x.shape, x.dtype)
for k in range(n):
item = funclist[k]
if not isinstance(item, collections.Callable):
y[condlist[k]] = item
else:
vals = x[condlist[k]]
if vals.size > 0:
y[condlist[k]] = item(vals, *args, **kw)
if zerod:
y = y.squeeze()
return y
def select(condlist, choicelist, default=0):
"""
Return an array drawn from elements in choicelist, depending on conditions.
Parameters
----------
condlist : list of bool ndarrays
The list of conditions which determine from which array in `choicelist`
the output elements are taken. When multiple conditions are satisfied,
the first one encountered in `condlist` is used.
choicelist : list of ndarrays
The list of arrays from which the output elements are taken. It has
to be of the same length as `condlist`.
default : scalar, optional
The element inserted in `output` when all conditions evaluate to False.
Returns
-------
output : ndarray
The output at position m is the m-th element of the array in
`choicelist` where the m-th element of the corresponding array in
`condlist` is True.
See Also
--------
where : Return elements from one of two arrays depending on condition.
take, choose, compress, diag, diagonal
Examples
--------
>>> x = np.arange(10)
>>> condlist = [x<3, x>5]
>>> choicelist = [x, x**2]
>>> np.select(condlist, choicelist)
array([ 0, 1, 2, 0, 0, 0, 36, 49, 64, 81])
"""
# Check the size of condlist and choicelist are the same, or abort.
if len(condlist) != len(choicelist):
raise ValueError(
'list of cases must be same length as list of conditions')
# Now that the dtype is known, handle the deprecated select([], []) case
if len(condlist) == 0:
# 2014-02-24, 1.9
warnings.warn("select with an empty condition list is not possible"
"and will be deprecated",
DeprecationWarning)
return np.asarray(default)[()]
choicelist = [np.asarray(choice) for choice in choicelist]
choicelist.append(np.asarray(default))
# need to get the result type before broadcasting for correct scalar
# behaviour
dtype = np.result_type(*choicelist)
# Convert conditions to arrays and broadcast conditions and choices
# as the shape is needed for the result. Doing it separately optimizes
# for example when all choices are scalars.
condlist = np.broadcast_arrays(*condlist)
choicelist = np.broadcast_arrays(*choicelist)
# If cond array is not an ndarray in boolean format or scalar bool, abort.
deprecated_ints = False
for i in range(len(condlist)):
cond = condlist[i]
if cond.dtype.type is not np.bool_:
if np.issubdtype(cond.dtype, np.integer):
# A previous implementation accepted int ndarrays accidentally.
# Supported here deliberately, but deprecated.
condlist[i] = condlist[i].astype(bool)
deprecated_ints = True
else:
raise ValueError(
'invalid entry in choicelist: should be boolean ndarray')
if deprecated_ints:
# 2014-02-24, 1.9
msg = "select condlists containing integer ndarrays is deprecated " \
"and will be removed in the future. Use `.astype(bool)` to " \
"convert to bools."
warnings.warn(msg, DeprecationWarning)
if choicelist[0].ndim == 0:
# This may be common, so avoid the call.
result_shape = condlist[0].shape
else:
result_shape = np.broadcast_arrays(condlist[0], choicelist[0])[0].shape
result = np.full(result_shape, choicelist[-1], dtype)
# Use np.copyto to burn each choicelist array onto result, using the
# corresponding condlist as a boolean mask. This is done in reverse
# order since the first choice should take precedence.
choicelist = choicelist[-2::-1]
condlist = condlist[::-1]
for choice, cond in zip(choicelist, condlist):
np.copyto(result, choice, where=cond)
return result
def copy(a, order='K'):
"""
Return an array copy of the given object.
Parameters
----------
a : array_like
Input data.
order : {'C', 'F', 'A', 'K'}, optional
Controls the memory layout of the copy. 'C' means C-order,
'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous,
'C' otherwise. 'K' means match the layout of `a` as closely
as possible. (Note that this function and :meth:ndarray.copy are very
similar, but have different default values for their order=
arguments.)
Returns
-------
arr : ndarray
Array interpretation of `a`.
Notes
-----
This is equivalent to
>>> np.array(a, copy=True) #doctest: +SKIP
Examples
--------
Create an array x, with a reference y and a copy z:
>>> x = np.array([1, 2, 3])
>>> y = x
>>> z = np.copy(x)
Note that, when we modify x, y changes, but not z:
>>> x[0] = 10
>>> x[0] == y[0]
True
>>> x[0] == z[0]
False
"""
return array(a, order=order, copy=True)
# Basic operations
def gradient(f, *varargs, **kwargs):
"""
Return the gradient of an N-dimensional array.
The gradient is computed using second order accurate central differences
in the interior and either first differences or second order accurate
one-sides (forward or backwards) differences at the boundaries. The
returned gradient hence has the same shape as the input array.
Parameters
----------
f : array_like
An N-dimensional array containing samples of a scalar function.
varargs : scalar or list of scalar, optional
N scalars specifying the sample distances for each dimension,
i.e. `dx`, `dy`, `dz`, ... Default distance: 1.
single scalar specifies sample distance for all dimensions.
if `axis` is given, the number of varargs must equal the number of axes.
edge_order : {1, 2}, optional
Gradient is calculated using N\ :sup:`th` order accurate differences
at the boundaries. Default: 1.
.. versionadded:: 1.9.1
axis : None or int or tuple of ints, optional
Gradient is calculated only along the given axis or axes
The default (axis = None) is to calculate the gradient for all the axes of the input array.
axis may be negative, in which case it counts from the last to the first axis.
.. versionadded:: 1.11.0
Returns
-------
gradient : list of ndarray
Each element of `list` has the same shape as `f` giving the derivative
of `f` with respect to each dimension.
Examples
--------
>>> x = np.array([1, 2, 4, 7, 11, 16], dtype=np.float)
>>> np.gradient(x)
array([ 1. , 1.5, 2.5, 3.5, 4.5, 5. ])
>>> np.gradient(x, 2)
array([ 0.5 , 0.75, 1.25, 1.75, 2.25, 2.5 ])
For two dimensional arrays, the return will be two arrays ordered by
axis. In this example the first array stands for the gradient in
rows and the second one in columns direction:
>>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=np.float))
[array([[ 2., 2., -1.],
[ 2., 2., -1.]]), array([[ 1. , 2.5, 4. ],
[ 1. , 1. , 1. ]])]
>>> x = np.array([0, 1, 2, 3, 4])
>>> dx = np.gradient(x)
>>> y = x**2
>>> np.gradient(y, dx, edge_order=2)
array([-0., 2., 4., 6., 8.])
The axis keyword can be used to specify a subset of axes of which the gradient is calculated
>>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=np.float), axis=0)
array([[ 2., 2., -1.],
[ 2., 2., -1.]])
"""
f = np.asanyarray(f)
N = len(f.shape) # number of dimensions
axes = kwargs.pop('axis', None)
if axes is None:
axes = tuple(range(N))
# check axes to have correct type and no duplicate entries
if isinstance(axes, int):
axes = (axes,)
if not isinstance(axes, tuple):
raise TypeError("A tuple of integers or a single integer is required")
# normalize axis values:
axes = tuple(x + N if x < 0 else x for x in axes)
if max(axes) >= N or min(axes) < 0:
raise ValueError("'axis' entry is out of bounds")
if len(set(axes)) != len(axes):
raise ValueError("duplicate value in 'axis'")
n = len(varargs)
if n == 0:
dx = [1.0]*N
elif n == 1:
dx = [varargs[0]]*N
elif n == len(axes):
dx = list(varargs)
else:
raise SyntaxError(
"invalid number of arguments")
edge_order = kwargs.pop('edge_order', 1)
if kwargs:
raise TypeError('"{}" are not valid keyword arguments.'.format(
'", "'.join(kwargs.keys())))
if edge_order > 2:
raise ValueError("'edge_order' greater than 2 not supported")
# use central differences on interior and one-sided differences on the
# endpoints. This preserves second order-accuracy over the full domain.
outvals = []
# create slice objects --- initially all are [:, :, ..., :]
slice1 = [slice(None)]*N
slice2 = [slice(None)]*N
slice3 = [slice(None)]*N
slice4 = [slice(None)]*N
otype = f.dtype.char
if otype not in ['f', 'd', 'F', 'D', 'm', 'M']:
otype = 'd'
# Difference of datetime64 elements results in timedelta64
if otype == 'M':
# Need to use the full dtype name because it contains unit information
otype = f.dtype.name.replace('datetime', 'timedelta')
elif otype == 'm':
# Needs to keep the specific units, can't be a general unit
otype = f.dtype
# Convert datetime64 data into ints. Make dummy variable `y`
# that is a view of ints if the data is datetime64, otherwise
# just set y equal to the array `f`.
if f.dtype.char in ["M", "m"]:
y = f.view('int64')
else:
y = f
for i, axis in enumerate(axes):
if y.shape[axis] < 2:
raise ValueError(
"Shape of array too small to calculate a numerical gradient, "
"at least two elements are required.")
# Numerical differentiation: 1st order edges, 2nd order interior
if y.shape[axis] == 2 or edge_order == 1:
# Use first order differences for time data
out = np.empty_like(y, dtype=otype)
slice1[axis] = slice(1, -1)
slice2[axis] = slice(2, None)
slice3[axis] = slice(None, -2)
# 1D equivalent -- out[1:-1] = (y[2:] - y[:-2])/2.0
out[slice1] = (y[slice2] - y[slice3])/2.0
slice1[axis] = 0
slice2[axis] = 1
slice3[axis] = 0
# 1D equivalent -- out[0] = (y[1] - y[0])
out[slice1] = (y[slice2] - y[slice3])
slice1[axis] = -1
slice2[axis] = -1
slice3[axis] = -2
# 1D equivalent -- out[-1] = (y[-1] - y[-2])
out[slice1] = (y[slice2] - y[slice3])
# Numerical differentiation: 2st order edges, 2nd order interior
else:
# Use second order differences where possible
out = np.empty_like(y, dtype=otype)
slice1[axis] = slice(1, -1)
slice2[axis] = slice(2, None)
slice3[axis] = slice(None, -2)
# 1D equivalent -- out[1:-1] = (y[2:] - y[:-2])/2.0
out[slice1] = (y[slice2] - y[slice3])/2.0
slice1[axis] = 0
slice2[axis] = 0
slice3[axis] = 1
slice4[axis] = 2
# 1D equivalent -- out[0] = -(3*y[0] - 4*y[1] + y[2]) / 2.0
out[slice1] = -(3.0*y[slice2] - 4.0*y[slice3] + y[slice4])/2.0
slice1[axis] = -1
slice2[axis] = -1
slice3[axis] = -2
slice4[axis] = -3
# 1D equivalent -- out[-1] = (3*y[-1] - 4*y[-2] + y[-3])
out[slice1] = (3.0*y[slice2] - 4.0*y[slice3] + y[slice4])/2.0
# divide by step size
out /= dx[i]
outvals.append(out)
# reset the slice object in this dimension to ":"
slice1[axis] = slice(None)
slice2[axis] = slice(None)
slice3[axis] = slice(None)
slice4[axis] = slice(None)
if len(axes) == 1:
return outvals[0]
else:
return outvals
def diff(a, n=1, axis=-1):
"""
Calculate the n-th discrete difference along given axis.
The first difference is given by ``out[n] = a[n+1] - a[n]`` along
the given axis, higher differences are calculated by using `diff`
recursively.
Parameters
----------
a : array_like
Input array
n : int, optional
The number of times values are differenced.
axis : int, optional
The axis along which the difference is taken, default is the last axis.
Returns
-------
diff : ndarray
The n-th differences. The shape of the output is the same as `a`
except along `axis` where the dimension is smaller by `n`.
.
See Also
--------
gradient, ediff1d, cumsum
Examples
--------
>>> x = np.array([1, 2, 4, 7, 0])
>>> np.diff(x)
array([ 1, 2, 3, -7])
>>> np.diff(x, n=2)
array([ 1, 1, -10])
>>> x = np.array([[1, 3, 6, 10], [0, 5, 6, 8]])
>>> np.diff(x)
array([[2, 3, 4],
[5, 1, 2]])
>>> np.diff(x, axis=0)
array([[-1, 2, 0, -2]])
"""
if n == 0:
return a
if n < 0:
raise ValueError(
"order must be non-negative but got " + repr(n))
a = asanyarray(a)
nd = len(a.shape)
slice1 = [slice(None)]*nd
slice2 = [slice(None)]*nd
slice1[axis] = slice(1, None)
slice2[axis] = slice(None, -1)
slice1 = tuple(slice1)
slice2 = tuple(slice2)
if n > 1:
return diff(a[slice1]-a[slice2], n-1, axis=axis)
else:
return a[slice1]-a[slice2]
def interp(x, xp, fp, left=None, right=None, period=None):
"""
One-dimensional linear interpolation.
Returns the one-dimensional piecewise linear interpolant to a function
with given values at discrete data-points.
Parameters
----------
x : array_like
The x-coordinates of the interpolated values.
xp : 1-D sequence of floats
The x-coordinates of the data points, must be increasing if argument
`period` is not specified. Otherwise, `xp` is internally sorted after
normalizing the periodic boundaries with ``xp = xp % period``.
fp : 1-D sequence of floats
The y-coordinates of the data points, same length as `xp`.
left : float, optional
Value to return for `x < xp[0]`, default is `fp[0]`.
right : float, optional
Value to return for `x > xp[-1]`, default is `fp[-1]`.
period : None or float, optional
A period for the x-coordinates. This parameter allows the proper
interpolation of angular x-coordinates. Parameters `left` and `right`
are ignored if `period` is specified.
.. versionadded:: 1.10.0
Returns
-------
y : float or ndarray
The interpolated values, same shape as `x`.
Raises
------
ValueError
If `xp` and `fp` have different length
If `xp` or `fp` are not 1-D sequences
If `period == 0`
Notes
-----
Does not check that the x-coordinate sequence `xp` is increasing.
If `xp` is not increasing, the results are nonsense.
A simple check for increasing is::
np.all(np.diff(xp) > 0)
Examples
--------
>>> xp = [1, 2, 3]
>>> fp = [3, 2, 0]
>>> np.interp(2.5, xp, fp)
1.0
>>> np.interp([0, 1, 1.5, 2.72, 3.14], xp, fp)
array([ 3. , 3. , 2.5 , 0.56, 0. ])
>>> UNDEF = -99.0
>>> np.interp(3.14, xp, fp, right=UNDEF)
-99.0
Plot an interpolant to the sine function:
>>> x = np.linspace(0, 2*np.pi, 10)
>>> y = np.sin(x)
>>> xvals = np.linspace(0, 2*np.pi, 50)
>>> yinterp = np.interp(xvals, x, y)
>>> import matplotlib.pyplot as plt
>>> plt.plot(x, y, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.plot(xvals, yinterp, '-x')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.show()
Interpolation with periodic x-coordinates:
>>> x = [-180, -170, -185, 185, -10, -5, 0, 365]
>>> xp = [190, -190, 350, -350]
>>> fp = [5, 10, 3, 4]
>>> np.interp(x, xp, fp, period=360)
array([7.5, 5., 8.75, 6.25, 3., 3.25, 3.5, 3.75])
"""
if period is None:
if isinstance(x, (float, int, number)):
return compiled_interp([x], xp, fp, left, right).item()
elif isinstance(x, np.ndarray) and x.ndim == 0:
return compiled_interp([x], xp, fp, left, right).item()
else:
return compiled_interp(x, xp, fp, left, right)
else:
if period == 0:
raise ValueError("period must be a non-zero value")
period = abs(period)
left = None
right = None
return_array = True
if isinstance(x, (float, int, number)):
return_array = False
x = [x]
x = np.asarray(x, dtype=np.float64)
xp = np.asarray(xp, dtype=np.float64)
fp = np.asarray(fp, dtype=np.float64)
if xp.ndim != 1 or fp.ndim != 1:
raise ValueError("Data points must be 1-D sequences")
if xp.shape[0] != fp.shape[0]:
raise ValueError("fp and xp are not of the same length")
# normalizing periodic boundaries
x = x % period
xp = xp % period
asort_xp = np.argsort(xp)
xp = xp[asort_xp]
fp = fp[asort_xp]
xp = np.concatenate((xp[-1:]-period, xp, xp[0:1]+period))
fp = np.concatenate((fp[-1:], fp, fp[0:1]))
if return_array:
return compiled_interp(x, xp, fp, left, right)
else:
return compiled_interp(x, xp, fp, left, right).item()
def angle(z, deg=0):
"""
Return the angle of the complex argument.
Parameters
----------
z : array_like
A complex number or sequence of complex numbers.
deg : bool, optional
Return angle in degrees if True, radians if False (default).
Returns
-------
angle : ndarray or scalar
The counterclockwise angle from the positive real axis on
the complex plane, with dtype as numpy.float64.
See Also
--------
arctan2
absolute
Examples
--------
>>> np.angle([1.0, 1.0j, 1+1j]) # in radians
array([ 0. , 1.57079633, 0.78539816])
>>> np.angle(1+1j, deg=True) # in degrees
45.0
"""
if deg:
fact = 180/pi
else:
fact = 1.0
z = asarray(z)
if (issubclass(z.dtype.type, _nx.complexfloating)):
zimag = z.imag
zreal = z.real
else:
zimag = 0
zreal = z
return arctan2(zimag, zreal) * fact
def unwrap(p, discont=pi, axis=-1):
"""
Unwrap by changing deltas between values to 2*pi complement.
Unwrap radian phase `p` by changing absolute jumps greater than
`discont` to their 2*pi complement along the given axis.
Parameters
----------
p : array_like
Input array.
discont : float, optional
Maximum discontinuity between values, default is ``pi``.
axis : int, optional
Axis along which unwrap will operate, default is the last axis.
Returns
-------
out : ndarray
Output array.
See Also
--------
rad2deg, deg2rad
Notes
-----
If the discontinuity in `p` is smaller than ``pi``, but larger than
`discont`, no unwrapping is done because taking the 2*pi complement
would only make the discontinuity larger.
Examples
--------
>>> phase = np.linspace(0, np.pi, num=5)
>>> phase[3:] += np.pi
>>> phase
array([ 0. , 0.78539816, 1.57079633, 5.49778714, 6.28318531])
>>> np.unwrap(phase)
array([ 0. , 0.78539816, 1.57079633, -0.78539816, 0. ])
"""
p = asarray(p)
nd = len(p.shape)
dd = diff(p, axis=axis)
slice1 = [slice(None, None)]*nd # full slices
slice1[axis] = slice(1, None)
ddmod = mod(dd + pi, 2*pi) - pi
_nx.copyto(ddmod, pi, where=(ddmod == -pi) & (dd > 0))
ph_correct = ddmod - dd
_nx.copyto(ph_correct, 0, where=abs(dd) < discont)
up = array(p, copy=True, dtype='d')
up[slice1] = p[slice1] + ph_correct.cumsum(axis)
return up
def sort_complex(a):
"""
Sort a complex array using the real part first, then the imaginary part.
Parameters
----------
a : array_like
Input array
Returns
-------
out : complex ndarray
Always returns a sorted complex array.
Examples
--------
>>> np.sort_complex([5, 3, 6, 2, 1])
array([ 1.+0.j, 2.+0.j, 3.+0.j, 5.+0.j, 6.+0.j])
>>> np.sort_complex([1 + 2j, 2 - 1j, 3 - 2j, 3 - 3j, 3 + 5j])
array([ 1.+2.j, 2.-1.j, 3.-3.j, 3.-2.j, 3.+5.j])
"""
b = array(a, copy=True)
b.sort()
if not issubclass(b.dtype.type, _nx.complexfloating):
if b.dtype.char in 'bhBH':
return b.astype('F')
elif b.dtype.char == 'g':
return b.astype('G')
else:
return b.astype('D')
else:
return b
def trim_zeros(filt, trim='fb'):
"""
Trim the leading and/or trailing zeros from a 1-D array or sequence.
Parameters
----------
filt : 1-D array or sequence
Input array.
trim : str, optional
A string with 'f' representing trim from front and 'b' to trim from
back. Default is 'fb', trim zeros from both front and back of the
array.
Returns
-------
trimmed : 1-D array or sequence
The result of trimming the input. The input data type is preserved.
Examples
--------
>>> a = np.array((0, 0, 0, 1, 2, 3, 0, 2, 1, 0))
>>> np.trim_zeros(a)
array([1, 2, 3, 0, 2, 1])
>>> np.trim_zeros(a, 'b')
array([0, 0, 0, 1, 2, 3, 0, 2, 1])
The input data type is preserved, list/tuple in means list/tuple out.
>>> np.trim_zeros([0, 1, 2, 0])
[1, 2]
"""
first = 0
trim = trim.upper()
if 'F' in trim:
for i in filt:
if i != 0.:
break
else:
first = first + 1
last = len(filt)
if 'B' in trim:
for i in filt[::-1]:
if i != 0.:
break
else:
last = last - 1
return filt[first:last]
@deprecate
def unique(x):
"""
This function is deprecated. Use numpy.lib.arraysetops.unique()
instead.
"""
try:
tmp = x.flatten()
if tmp.size == 0:
return tmp
tmp.sort()
idx = concatenate(([True], tmp[1:] != tmp[:-1]))
return tmp[idx]
except AttributeError:
items = sorted(set(x))
return asarray(items)
def extract(condition, arr):
"""
Return the elements of an array that satisfy some condition.
This is equivalent to ``np.compress(ravel(condition), ravel(arr))``. If
`condition` is boolean ``np.extract`` is equivalent to ``arr[condition]``.
Note that `place` does the exact opposite of `extract`.
Parameters
----------
condition : array_like
An array whose nonzero or True entries indicate the elements of `arr`
to extract.
arr : array_like
Input array of the same size as `condition`.
Returns
-------
extract : ndarray
Rank 1 array of values from `arr` where `condition` is True.
See Also
--------
take, put, copyto, compress, place
Examples
--------
>>> arr = np.arange(12).reshape((3, 4))
>>> arr
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> condition = np.mod(arr, 3)==0
>>> condition
array([[ True, False, False, True],
[False, False, True, False],
[False, True, False, False]], dtype=bool)
>>> np.extract(condition, arr)
array([0, 3, 6, 9])
If `condition` is boolean:
>>> arr[condition]
array([0, 3, 6, 9])
"""
return _nx.take(ravel(arr), nonzero(ravel(condition))[0])
def place(arr, mask, vals):
"""
Change elements of an array based on conditional and input values.
Similar to ``np.copyto(arr, vals, where=mask)``, the difference is that
`place` uses the first N elements of `vals`, where N is the number of
True values in `mask`, while `copyto` uses the elements where `mask`
is True.
Note that `extract` does the exact opposite of `place`.
Parameters
----------
arr : ndarray
Array to put data into.
mask : array_like
Boolean mask array. Must have the same size as `a`.
vals : 1-D sequence
Values to put into `a`. Only the first N elements are used, where
N is the number of True values in `mask`. If `vals` is smaller
than N it will be repeated.
See Also
--------
copyto, put, take, extract
Examples
--------
>>> arr = np.arange(6).reshape(2, 3)
>>> np.place(arr, arr>2, [44, 55])
>>> arr
array([[ 0, 1, 2],
[44, 55, 44]])
"""
if not isinstance(arr, np.ndarray):
raise TypeError("argument 1 must be numpy.ndarray, "
"not {name}".format(name=type(arr).__name__))
return _insert(arr, mask, vals)
def disp(mesg, device=None, linefeed=True):
"""
Display a message on a device.
Parameters
----------
mesg : str
Message to display.
device : object
Device to write message. If None, defaults to ``sys.stdout`` which is
very similar to ``print``. `device` needs to have ``write()`` and
``flush()`` methods.
linefeed : bool, optional
Option whether to print a line feed or not. Defaults to True.
Raises
------
AttributeError
If `device` does not have a ``write()`` or ``flush()`` method.
Examples
--------
Besides ``sys.stdout``, a file-like object can also be used as it has
both required methods:
>>> from StringIO import StringIO
>>> buf = StringIO()
>>> np.disp('"Display" in a file', device=buf)
>>> buf.getvalue()
'"Display" in a file\\n'
"""
if device is None:
device = sys.stdout
if linefeed:
device.write('%s\n' % mesg)
else:
device.write('%s' % mesg)
device.flush()
return
class vectorize(object):
"""
vectorize(pyfunc, otypes='', doc=None, excluded=None, cache=False)
Generalized function class.
Define a vectorized function which takes a nested sequence
of objects or numpy arrays as inputs and returns a
numpy array as output. The vectorized function evaluates `pyfunc` over
successive tuples of the input arrays like the python map function,
except it uses the broadcasting rules of numpy.
The data type of the output of `vectorized` is determined by calling
the function with the first element of the input. This can be avoided
by specifying the `otypes` argument.
Parameters
----------
pyfunc : callable
A python function or method.
otypes : str or list of dtypes, optional
The output data type. It must be specified as either a string of
typecode characters or a list of data type specifiers. There should
be one data type specifier for each output.
doc : str, optional
The docstring for the function. If `None`, the docstring will be the
``pyfunc.__doc__``.
excluded : set, optional
Set of strings or integers representing the positional or keyword
arguments for which the function will not be vectorized. These will be
passed directly to `pyfunc` unmodified.
.. versionadded:: 1.7.0
cache : bool, optional
If `True`, then cache the first function call that determines the number
of outputs if `otypes` is not provided.
.. versionadded:: 1.7.0
Returns
-------
vectorized : callable
Vectorized function.
Examples
--------
>>> def myfunc(a, b):
... "Return a-b if a>b, otherwise return a+b"
... if a > b:
... return a - b
... else:
... return a + b
>>> vfunc = np.vectorize(myfunc)
>>> vfunc([1, 2, 3, 4], 2)
array([3, 4, 1, 2])
The docstring is taken from the input function to `vectorize` unless it
is specified
>>> vfunc.__doc__
'Return a-b if a>b, otherwise return a+b'
>>> vfunc = np.vectorize(myfunc, doc='Vectorized `myfunc`')
>>> vfunc.__doc__
'Vectorized `myfunc`'
The output type is determined by evaluating the first element of the input,
unless it is specified
>>> out = vfunc([1, 2, 3, 4], 2)
>>> type(out[0])
<type 'numpy.int32'>
>>> vfunc = np.vectorize(myfunc, otypes=[np.float])
>>> out = vfunc([1, 2, 3, 4], 2)
>>> type(out[0])
<type 'numpy.float64'>
The `excluded` argument can be used to prevent vectorizing over certain
arguments. This can be useful for array-like arguments of a fixed length
such as the coefficients for a polynomial as in `polyval`:
>>> def mypolyval(p, x):
... _p = list(p)
... res = _p.pop(0)
... while _p:
... res = res*x + _p.pop(0)
... return res
>>> vpolyval = np.vectorize(mypolyval, excluded=['p'])
>>> vpolyval(p=[1, 2, 3], x=[0, 1])
array([3, 6])
Positional arguments may also be excluded by specifying their position:
>>> vpolyval.excluded.add(0)
>>> vpolyval([1, 2, 3], x=[0, 1])
array([3, 6])
Notes
-----
The `vectorize` function is provided primarily for convenience, not for
performance. The implementation is essentially a for loop.
If `otypes` is not specified, then a call to the function with the
first argument will be used to determine the number of outputs. The
results of this call will be cached if `cache` is `True` to prevent
calling the function twice. However, to implement the cache, the
original function must be wrapped which will slow down subsequent
calls, so only do this if your function is expensive.
The new keyword argument interface and `excluded` argument support
further degrades performance.
"""
def __init__(self, pyfunc, otypes='', doc=None, excluded=None,
cache=False):
self.pyfunc = pyfunc
self.cache = cache
self._ufunc = None # Caching to improve default performance
if doc is None:
self.__doc__ = pyfunc.__doc__
else:
self.__doc__ = doc
if isinstance(otypes, str):
self.otypes = otypes
for char in self.otypes:
if char not in typecodes['All']:
raise ValueError(
"Invalid otype specified: %s" % (char,))
elif iterable(otypes):
self.otypes = ''.join([_nx.dtype(x).char for x in otypes])
else:
raise ValueError(
"Invalid otype specification")
# Excluded variable support
if excluded is None:
excluded = set()
self.excluded = set(excluded)
def __call__(self, *args, **kwargs):
"""
Return arrays with the results of `pyfunc` broadcast (vectorized) over
`args` and `kwargs` not in `excluded`.
"""
excluded = self.excluded
if not kwargs and not excluded:
func = self.pyfunc
vargs = args
else:
# The wrapper accepts only positional arguments: we use `names` and
# `inds` to mutate `the_args` and `kwargs` to pass to the original
# function.
nargs = len(args)
names = [_n for _n in kwargs if _n not in excluded]
inds = [_i for _i in range(nargs) if _i not in excluded]
the_args = list(args)
def func(*vargs):
for _n, _i in enumerate(inds):
the_args[_i] = vargs[_n]
kwargs.update(zip(names, vargs[len(inds):]))
return self.pyfunc(*the_args, **kwargs)
vargs = [args[_i] for _i in inds]
vargs.extend([kwargs[_n] for _n in names])
return self._vectorize_call(func=func, args=vargs)
def _get_ufunc_and_otypes(self, func, args):
"""Return (ufunc, otypes)."""
# frompyfunc will fail if args is empty
if not args:
raise ValueError('args can not be empty')
if self.otypes:
otypes = self.otypes
nout = len(otypes)
# Note logic here: We only *use* self._ufunc if func is self.pyfunc
# even though we set self._ufunc regardless.
if func is self.pyfunc and self._ufunc is not None:
ufunc = self._ufunc
else:
ufunc = self._ufunc = frompyfunc(func, len(args), nout)
else:
# Get number of outputs and output types by calling the function on
# the first entries of args. We also cache the result to prevent
# the subsequent call when the ufunc is evaluated.
# Assumes that ufunc first evaluates the 0th elements in the input
# arrays (the input values are not checked to ensure this)
inputs = [asarray(_a).flat[0] for _a in args]
outputs = func(*inputs)
# Performance note: profiling indicates that -- for simple
# functions at least -- this wrapping can almost double the
# execution time.
# Hence we make it optional.
if self.cache:
_cache = [outputs]
def _func(*vargs):
if _cache:
return _cache.pop()
else:
return func(*vargs)
else:
_func = func
if isinstance(outputs, tuple):
nout = len(outputs)
else:
nout = 1
outputs = (outputs,)
otypes = ''.join([asarray(outputs[_k]).dtype.char
for _k in range(nout)])
# Performance note: profiling indicates that creating the ufunc is
# not a significant cost compared with wrapping so it seems not
# worth trying to cache this.
ufunc = frompyfunc(_func, len(args), nout)
return ufunc, otypes
def _vectorize_call(self, func, args):
"""Vectorized call to `func` over positional `args`."""
if not args:
_res = func()
else:
ufunc, otypes = self._get_ufunc_and_otypes(func=func, args=args)
# Convert args to object arrays first
inputs = [array(_a, copy=False, subok=True, dtype=object)
for _a in args]
outputs = ufunc(*inputs)
if ufunc.nout == 1:
_res = array(outputs,
copy=False, subok=True, dtype=otypes[0])
else:
_res = tuple([array(_x, copy=False, subok=True, dtype=_t)
for _x, _t in zip(outputs, otypes)])
return _res
def cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None,
aweights=None):
"""
Estimate a covariance matrix, given data and weights.
Covariance indicates the level to which two variables vary together.
If we examine N-dimensional samples, :math:`X = [x_1, x_2, ... x_N]^T`,
then the covariance matrix element :math:`C_{ij}` is the covariance of
:math:`x_i` and :math:`x_j`. The element :math:`C_{ii}` is the variance
of :math:`x_i`.
See the notes for an outline of the algorithm.
Parameters
----------
m : array_like
A 1-D or 2-D array containing multiple variables and observations.
Each row of `m` represents a variable, and each column a single
observation of all those variables. Also see `rowvar` below.
y : array_like, optional
An additional set of variables and observations. `y` has the same form
as that of `m`.
rowvar : bool, optional
If `rowvar` is True (default), then each row represents a
variable, with observations in the columns. Otherwise, the relationship
is transposed: each column represents a variable, while the rows
contain observations.
bias : bool, optional
Default normalization (False) is by ``(N - 1)``, where ``N`` is the
number of observations given (unbiased estimate). If `bias` is True, then
normalization is by ``N``. These values can be overridden by using the
keyword ``ddof`` in numpy versions >= 1.5.
ddof : int, optional
If not ``None`` the default value implied by `bias` is overridden.
Note that ``ddof=1`` will return the unbiased estimate, even if both
`fweights` and `aweights` are specified, and ``ddof=0`` will return
the simple average. See the notes for the details. The default value
is ``None``.
.. versionadded:: 1.5
fweights : array_like, int, optional
1-D array of integer freguency weights; the number of times each
observation vector should be repeated.
.. versionadded:: 1.10
aweights : array_like, optional
1-D array of observation vector weights. These relative weights are
typically large for observations considered "important" and smaller for
observations considered less "important". If ``ddof=0`` the array of
weights can be used to assign probabilities to observation vectors.
.. versionadded:: 1.10
Returns
-------
out : ndarray
The covariance matrix of the variables.
See Also
--------
corrcoef : Normalized covariance matrix
Notes
-----
Assume that the observations are in the columns of the observation
array `m` and let ``f = fweights`` and ``a = aweights`` for brevity. The
steps to compute the weighted covariance are as follows::
>>> w = f * a
>>> v1 = np.sum(w)
>>> v2 = np.sum(w * a)
>>> m -= np.sum(m * w, axis=1, keepdims=True) / v1
>>> cov = np.dot(m * w, m.T) * v1 / (v1**2 - ddof * v2)
Note that when ``a == 1``, the normalization factor
``v1 / (v1**2 - ddof * v2)`` goes over to ``1 / (np.sum(f) - ddof)``
as it should.
Examples
--------
Consider two variables, :math:`x_0` and :math:`x_1`, which
correlate perfectly, but in opposite directions:
>>> x = np.array([[0, 2], [1, 1], [2, 0]]).T
>>> x
array([[0, 1, 2],
[2, 1, 0]])
Note how :math:`x_0` increases while :math:`x_1` decreases. The covariance
matrix shows this clearly:
>>> np.cov(x)
array([[ 1., -1.],
[-1., 1.]])
Note that element :math:`C_{0,1}`, which shows the correlation between
:math:`x_0` and :math:`x_1`, is negative.
Further, note how `x` and `y` are combined:
>>> x = [-2.1, -1, 4.3]
>>> y = [3, 1.1, 0.12]
>>> X = np.vstack((x,y))
>>> print(np.cov(X))
[[ 11.71 -4.286 ]
[ -4.286 2.14413333]]
>>> print(np.cov(x, y))
[[ 11.71 -4.286 ]
[ -4.286 2.14413333]]
>>> print(np.cov(x))
11.71
"""
# Check inputs
if ddof is not None and ddof != int(ddof):
raise ValueError(
"ddof must be integer")
# Handles complex arrays too
m = np.asarray(m)
if y is None:
dtype = np.result_type(m, np.float64)
else:
y = np.asarray(y)
dtype = np.result_type(m, y, np.float64)
X = array(m, ndmin=2, dtype=dtype)
if rowvar == 0 and X.shape[0] != 1:
X = X.T
if X.shape[0] == 0:
return np.array([]).reshape(0, 0)
if y is not None:
y = array(y, copy=False, ndmin=2, dtype=dtype)
if rowvar == 0 and y.shape[0] != 1:
y = y.T
X = np.vstack((X, y))
if ddof is None:
if bias == 0:
ddof = 1
else:
ddof = 0
# Get the product of frequencies and weights
w = None
if fweights is not None:
fweights = np.asarray(fweights, dtype=np.float)
if not np.all(fweights == np.around(fweights)):
raise TypeError(
"fweights must be integer")
if fweights.ndim > 1:
raise RuntimeError(
"cannot handle multidimensional fweights")
if fweights.shape[0] != X.shape[1]:
raise RuntimeError(
"incompatible numbers of samples and fweights")
if any(fweights < 0):
raise ValueError(
"fweights cannot be negative")
w = fweights
if aweights is not None:
aweights = np.asarray(aweights, dtype=np.float)
if aweights.ndim > 1:
raise RuntimeError(
"cannot handle multidimensional aweights")
if aweights.shape[0] != X.shape[1]:
raise RuntimeError(
"incompatible numbers of samples and aweights")
if any(aweights < 0):
raise ValueError(
"aweights cannot be negative")
if w is None:
w = aweights
else:
w *= aweights
avg, w_sum = average(X, axis=1, weights=w, returned=True)
w_sum = w_sum[0]
# Determine the normalization
if w is None:
fact = X.shape[1] - ddof
elif ddof == 0:
fact = w_sum
elif aweights is None:
fact = w_sum - ddof
else:
fact = w_sum - ddof*sum(w*aweights)/w_sum
if fact <= 0:
warnings.warn("Degrees of freedom <= 0 for slice", RuntimeWarning)
fact = 0.0
X -= avg[:, None]
if w is None:
X_T = X.T
else:
X_T = (X*w).T
c = dot(X, X_T.conj())
c *= 1. / np.float64(fact)
return c.squeeze()
def corrcoef(x, y=None, rowvar=1, bias=np._NoValue, ddof=np._NoValue):
"""
Return Pearson product-moment correlation coefficients.
Please refer to the documentation for `cov` for more detail. The
relationship between the correlation coefficient matrix, `R`, and the
covariance matrix, `C`, is
.. math:: R_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } }
The values of `R` are between -1 and 1, inclusive.
Parameters
----------
x : array_like
A 1-D or 2-D array containing multiple variables and observations.
Each row of `x` represents a variable, and each column a single
observation of all those variables. Also see `rowvar` below.
y : array_like, optional
An additional set of variables and observations. `y` has the same
shape as `x`.
rowvar : int, optional
If `rowvar` is non-zero (default), then each row represents a
variable, with observations in the columns. Otherwise, the relationship
is transposed: each column represents a variable, while the rows
contain observations.
bias : _NoValue, optional
Has no effect, do not use.
.. deprecated:: 1.10.0
ddof : _NoValue, optional
Has no effect, do not use.
.. deprecated:: 1.10.0
Returns
-------
R : ndarray
The correlation coefficient matrix of the variables.
See Also
--------
cov : Covariance matrix
Notes
-----
Due to floating point rounding the resulting array may not be Hermitian,
the diagonal elements may not be 1, and the elements may not satisfy the
inequality abs(a) <= 1. The real and imaginary parts are clipped to the
interval [-1, 1] in an attempt to improve on that situation but is not
much help in the complex case.
This function accepts but discards arguments `bias` and `ddof`. This is
for backwards compatibility with previous versions of this function. These
arguments had no effect on the return values of the function and can be
safely ignored in this and previous versions of numpy.
"""
if bias is not np._NoValue or ddof is not np._NoValue:
# 2015-03-15, 1.10
warnings.warn('bias and ddof have no effect and are deprecated',
DeprecationWarning)
c = cov(x, y, rowvar)
try:
d = diag(c)
except ValueError:
# scalar covariance
# nan if incorrect value (nan, inf, 0), 1 otherwise
return c / c
stddev = sqrt(d.real)
c /= stddev[:, None]
c /= stddev[None, :]
# Clip real and imaginary parts to [-1, 1]. This does not guarantee
# abs(a[i,j]) <= 1 for complex arrays, but is the best we can do without
# excessive work.
np.clip(c.real, -1, 1, out=c.real)
if np.iscomplexobj(c):
np.clip(c.imag, -1, 1, out=c.imag)
return c
def blackman(M):
"""
Return the Blackman window.
The Blackman window is a taper formed by using the first three
terms of a summation of cosines. It was designed to have close to the
minimal leakage possible. It is close to optimal, only slightly worse
than a Kaiser window.
Parameters
----------
M : int
Number of points in the output window. If zero or less, an empty
array is returned.
Returns
-------
out : ndarray
The window, with the maximum value normalized to one (the value one
appears only if the number of samples is odd).
See Also
--------
bartlett, hamming, hanning, kaiser
Notes
-----
The Blackman window is defined as
.. math:: w(n) = 0.42 - 0.5 \\cos(2\\pi n/M) + 0.08 \\cos(4\\pi n/M)
Most references to the Blackman window come from the signal processing
literature, where it is used as one of many windowing functions for
smoothing values. It is also known as an apodization (which means
"removing the foot", i.e. smoothing discontinuities at the beginning
and end of the sampled signal) or tapering function. It is known as a
"near optimal" tapering function, almost as good (by some measures)
as the kaiser window.
References
----------
Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra,
Dover Publications, New York.
Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing.
Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471.
Examples
--------
>>> np.blackman(12)
array([ -1.38777878e-17, 3.26064346e-02, 1.59903635e-01,
4.14397981e-01, 7.36045180e-01, 9.67046769e-01,
9.67046769e-01, 7.36045180e-01, 4.14397981e-01,
1.59903635e-01, 3.26064346e-02, -1.38777878e-17])
Plot the window and the frequency response:
>>> from numpy.fft import fft, fftshift
>>> window = np.blackman(51)
>>> plt.plot(window)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Blackman window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Amplitude")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Sample")
<matplotlib.text.Text object at 0x...>
>>> plt.show()
>>> plt.figure()
<matplotlib.figure.Figure object at 0x...>
>>> A = fft(window, 2048) / 25.5
>>> mag = np.abs(fftshift(A))
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(mag)
>>> response = np.clip(response, -100, 100)
>>> plt.plot(freq, response)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Frequency response of Blackman window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Magnitude [dB]")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Normalized frequency [cycles per sample]")
<matplotlib.text.Text object at 0x...>
>>> plt.axis('tight')
(-0.5, 0.5, -100.0, ...)
>>> plt.show()
"""
if M < 1:
return array([])
if M == 1:
return ones(1, float)
n = arange(0, M)
return 0.42 - 0.5*cos(2.0*pi*n/(M-1)) + 0.08*cos(4.0*pi*n/(M-1))
def bartlett(M):
"""
Return the Bartlett window.
The Bartlett window is very similar to a triangular window, except
that the end points are at zero. It is often used in signal
processing for tapering a signal, without generating too much
ripple in the frequency domain.
Parameters
----------
M : int
Number of points in the output window. If zero or less, an
empty array is returned.
Returns
-------
out : array
The triangular window, with the maximum value normalized to one
(the value one appears only if the number of samples is odd), with
the first and last samples equal to zero.
See Also
--------
blackman, hamming, hanning, kaiser
Notes
-----
The Bartlett window is defined as
.. math:: w(n) = \\frac{2}{M-1} \\left(
\\frac{M-1}{2} - \\left|n - \\frac{M-1}{2}\\right|
\\right)
Most references to the Bartlett window come from the signal
processing literature, where it is used as one of many windowing
functions for smoothing values. Note that convolution with this
window produces linear interpolation. It is also known as an
apodization (which means"removing the foot", i.e. smoothing
discontinuities at the beginning and end of the sampled signal) or
tapering function. The fourier transform of the Bartlett is the product
of two sinc functions.
Note the excellent discussion in Kanasewich.
References
----------
.. [1] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra",
Biometrika 37, 1-16, 1950.
.. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics",
The University of Alberta Press, 1975, pp. 109-110.
.. [3] A.V. Oppenheim and R.W. Schafer, "Discrete-Time Signal
Processing", Prentice-Hall, 1999, pp. 468-471.
.. [4] Wikipedia, "Window function",
http://en.wikipedia.org/wiki/Window_function
.. [5] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
"Numerical Recipes", Cambridge University Press, 1986, page 429.
Examples
--------
>>> np.bartlett(12)
array([ 0. , 0.18181818, 0.36363636, 0.54545455, 0.72727273,
0.90909091, 0.90909091, 0.72727273, 0.54545455, 0.36363636,
0.18181818, 0. ])
Plot the window and its frequency response (requires SciPy and matplotlib):
>>> from numpy.fft import fft, fftshift
>>> window = np.bartlett(51)
>>> plt.plot(window)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Bartlett window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Amplitude")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Sample")
<matplotlib.text.Text object at 0x...>
>>> plt.show()
>>> plt.figure()
<matplotlib.figure.Figure object at 0x...>
>>> A = fft(window, 2048) / 25.5
>>> mag = np.abs(fftshift(A))
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(mag)
>>> response = np.clip(response, -100, 100)
>>> plt.plot(freq, response)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Frequency response of Bartlett window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Magnitude [dB]")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Normalized frequency [cycles per sample]")
<matplotlib.text.Text object at 0x...>
>>> plt.axis('tight')
(-0.5, 0.5, -100.0, ...)
>>> plt.show()
"""
if M < 1:
return array([])
if M == 1:
return ones(1, float)
n = arange(0, M)
return where(less_equal(n, (M-1)/2.0), 2.0*n/(M-1), 2.0 - 2.0*n/(M-1))
def hanning(M):
"""
Return the Hanning window.
The Hanning window is a taper formed by using a weighted cosine.
Parameters
----------
M : int
Number of points in the output window. If zero or less, an
empty array is returned.
Returns
-------
out : ndarray, shape(M,)
The window, with the maximum value normalized to one (the value
one appears only if `M` is odd).
See Also
--------
bartlett, blackman, hamming, kaiser
Notes
-----
The Hanning window is defined as
.. math:: w(n) = 0.5 - 0.5cos\\left(\\frac{2\\pi{n}}{M-1}\\right)
\\qquad 0 \\leq n \\leq M-1
The Hanning was named for Julius von Hann, an Austrian meteorologist.
It is also known as the Cosine Bell. Some authors prefer that it be
called a Hann window, to help avoid confusion with the very similar
Hamming window.
Most references to the Hanning window come from the signal processing
literature, where it is used as one of many windowing functions for
smoothing values. It is also known as an apodization (which means
"removing the foot", i.e. smoothing discontinuities at the beginning
and end of the sampled signal) or tapering function.
References
----------
.. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power
spectra, Dover Publications, New York.
.. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics",
The University of Alberta Press, 1975, pp. 106-108.
.. [3] Wikipedia, "Window function",
http://en.wikipedia.org/wiki/Window_function
.. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
"Numerical Recipes", Cambridge University Press, 1986, page 425.
Examples
--------
>>> np.hanning(12)
array([ 0. , 0.07937323, 0.29229249, 0.57115742, 0.82743037,
0.97974649, 0.97974649, 0.82743037, 0.57115742, 0.29229249,
0.07937323, 0. ])
Plot the window and its frequency response:
>>> from numpy.fft import fft, fftshift
>>> window = np.hanning(51)
>>> plt.plot(window)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Hann window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Amplitude")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Sample")
<matplotlib.text.Text object at 0x...>
>>> plt.show()
>>> plt.figure()
<matplotlib.figure.Figure object at 0x...>
>>> A = fft(window, 2048) / 25.5
>>> mag = np.abs(fftshift(A))
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(mag)
>>> response = np.clip(response, -100, 100)
>>> plt.plot(freq, response)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Frequency response of the Hann window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Magnitude [dB]")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Normalized frequency [cycles per sample]")
<matplotlib.text.Text object at 0x...>
>>> plt.axis('tight')
(-0.5, 0.5, -100.0, ...)
>>> plt.show()
"""
if M < 1:
return array([])
if M == 1:
return ones(1, float)
n = arange(0, M)
return 0.5 - 0.5*cos(2.0*pi*n/(M-1))
def hamming(M):
"""
Return the Hamming window.
The Hamming window is a taper formed by using a weighted cosine.
Parameters
----------
M : int
Number of points in the output window. If zero or less, an
empty array is returned.
Returns
-------
out : ndarray
The window, with the maximum value normalized to one (the value
one appears only if the number of samples is odd).
See Also
--------
bartlett, blackman, hanning, kaiser
Notes
-----
The Hamming window is defined as
.. math:: w(n) = 0.54 - 0.46cos\\left(\\frac{2\\pi{n}}{M-1}\\right)
\\qquad 0 \\leq n \\leq M-1
The Hamming was named for R. W. Hamming, an associate of J. W. Tukey
and is described in Blackman and Tukey. It was recommended for
smoothing the truncated autocovariance function in the time domain.
Most references to the Hamming window come from the signal processing
literature, where it is used as one of many windowing functions for
smoothing values. It is also known as an apodization (which means
"removing the foot", i.e. smoothing discontinuities at the beginning
and end of the sampled signal) or tapering function.
References
----------
.. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power
spectra, Dover Publications, New York.
.. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The
University of Alberta Press, 1975, pp. 109-110.
.. [3] Wikipedia, "Window function",
http://en.wikipedia.org/wiki/Window_function
.. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
"Numerical Recipes", Cambridge University Press, 1986, page 425.
Examples
--------
>>> np.hamming(12)
array([ 0.08 , 0.15302337, 0.34890909, 0.60546483, 0.84123594,
0.98136677, 0.98136677, 0.84123594, 0.60546483, 0.34890909,
0.15302337, 0.08 ])
Plot the window and the frequency response:
>>> from numpy.fft import fft, fftshift
>>> window = np.hamming(51)
>>> plt.plot(window)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Hamming window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Amplitude")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Sample")
<matplotlib.text.Text object at 0x...>
>>> plt.show()
>>> plt.figure()
<matplotlib.figure.Figure object at 0x...>
>>> A = fft(window, 2048) / 25.5
>>> mag = np.abs(fftshift(A))
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(mag)
>>> response = np.clip(response, -100, 100)
>>> plt.plot(freq, response)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Frequency response of Hamming window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Magnitude [dB]")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Normalized frequency [cycles per sample]")
<matplotlib.text.Text object at 0x...>
>>> plt.axis('tight')
(-0.5, 0.5, -100.0, ...)
>>> plt.show()
"""
if M < 1:
return array([])
if M == 1:
return ones(1, float)
n = arange(0, M)
return 0.54 - 0.46*cos(2.0*pi*n/(M-1))
## Code from cephes for i0
_i0A = [
-4.41534164647933937950E-18,
3.33079451882223809783E-17,
-2.43127984654795469359E-16,
1.71539128555513303061E-15,
-1.16853328779934516808E-14,
7.67618549860493561688E-14,
-4.85644678311192946090E-13,
2.95505266312963983461E-12,
-1.72682629144155570723E-11,
9.67580903537323691224E-11,
-5.18979560163526290666E-10,
2.65982372468238665035E-9,
-1.30002500998624804212E-8,
6.04699502254191894932E-8,
-2.67079385394061173391E-7,
1.11738753912010371815E-6,
-4.41673835845875056359E-6,
1.64484480707288970893E-5,
-5.75419501008210370398E-5,
1.88502885095841655729E-4,
-5.76375574538582365885E-4,
1.63947561694133579842E-3,
-4.32430999505057594430E-3,
1.05464603945949983183E-2,
-2.37374148058994688156E-2,
4.93052842396707084878E-2,
-9.49010970480476444210E-2,
1.71620901522208775349E-1,
-3.04682672343198398683E-1,
6.76795274409476084995E-1
]
_i0B = [
-7.23318048787475395456E-18,
-4.83050448594418207126E-18,
4.46562142029675999901E-17,
3.46122286769746109310E-17,
-2.82762398051658348494E-16,
-3.42548561967721913462E-16,
1.77256013305652638360E-15,
3.81168066935262242075E-15,
-9.55484669882830764870E-15,
-4.15056934728722208663E-14,
1.54008621752140982691E-14,
3.85277838274214270114E-13,
7.18012445138366623367E-13,
-1.79417853150680611778E-12,
-1.32158118404477131188E-11,
-3.14991652796324136454E-11,
1.18891471078464383424E-11,
4.94060238822496958910E-10,
3.39623202570838634515E-9,
2.26666899049817806459E-8,
2.04891858946906374183E-7,
2.89137052083475648297E-6,
6.88975834691682398426E-5,
3.36911647825569408990E-3,
8.04490411014108831608E-1
]
def _chbevl(x, vals):
b0 = vals[0]
b1 = 0.0
for i in range(1, len(vals)):
b2 = b1
b1 = b0
b0 = x*b1 - b2 + vals[i]
return 0.5*(b0 - b2)
def _i0_1(x):
return exp(x) * _chbevl(x/2.0-2, _i0A)
def _i0_2(x):
return exp(x) * _chbevl(32.0/x - 2.0, _i0B) / sqrt(x)
def i0(x):
"""
Modified Bessel function of the first kind, order 0.
Usually denoted :math:`I_0`. This function does broadcast, but will *not*
"up-cast" int dtype arguments unless accompanied by at least one float or
complex dtype argument (see Raises below).
Parameters
----------
x : array_like, dtype float or complex
Argument of the Bessel function.
Returns
-------
out : ndarray, shape = x.shape, dtype = x.dtype
The modified Bessel function evaluated at each of the elements of `x`.
Raises
------
TypeError: array cannot be safely cast to required type
If argument consists exclusively of int dtypes.
See Also
--------
scipy.special.iv, scipy.special.ive
Notes
-----
We use the algorithm published by Clenshaw [1]_ and referenced by
Abramowitz and Stegun [2]_, for which the function domain is
partitioned into the two intervals [0,8] and (8,inf), and Chebyshev
polynomial expansions are employed in each interval. Relative error on
the domain [0,30] using IEEE arithmetic is documented [3]_ as having a
peak of 5.8e-16 with an rms of 1.4e-16 (n = 30000).
References
----------
.. [1] C. W. Clenshaw, "Chebyshev series for mathematical functions", in
*National Physical Laboratory Mathematical Tables*, vol. 5, London:
Her Majesty's Stationery Office, 1962.
.. [2] M. Abramowitz and I. A. Stegun, *Handbook of Mathematical
Functions*, 10th printing, New York: Dover, 1964, pp. 379.
http://www.math.sfu.ca/~cbm/aands/page_379.htm
.. [3] http://kobesearch.cpan.org/htdocs/Math-Cephes/Math/Cephes.html
Examples
--------
>>> np.i0([0.])
array(1.0)
>>> np.i0([0., 1. + 2j])
array([ 1.00000000+0.j , 0.18785373+0.64616944j])
"""
x = atleast_1d(x).copy()
y = empty_like(x)
ind = (x < 0)
x[ind] = -x[ind]
ind = (x <= 8.0)
y[ind] = _i0_1(x[ind])
ind2 = ~ind
y[ind2] = _i0_2(x[ind2])
return y.squeeze()
## End of cephes code for i0
def kaiser(M, beta):
"""
Return the Kaiser window.
The Kaiser window is a taper formed by using a Bessel function.
Parameters
----------
M : int
Number of points in the output window. If zero or less, an
empty array is returned.
beta : float
Shape parameter for window.
Returns
-------
out : array
The window, with the maximum value normalized to one (the value
one appears only if the number of samples is odd).
See Also
--------
bartlett, blackman, hamming, hanning
Notes
-----
The Kaiser window is defined as
.. math:: w(n) = I_0\\left( \\beta \\sqrt{1-\\frac{4n^2}{(M-1)^2}}
\\right)/I_0(\\beta)
with
.. math:: \\quad -\\frac{M-1}{2} \\leq n \\leq \\frac{M-1}{2},
where :math:`I_0` is the modified zeroth-order Bessel function.
The Kaiser was named for Jim Kaiser, who discovered a simple
approximation to the DPSS window based on Bessel functions. The Kaiser
window is a very good approximation to the Digital Prolate Spheroidal
Sequence, or Slepian window, which is the transform which maximizes the
energy in the main lobe of the window relative to total energy.
The Kaiser can approximate many other windows by varying the beta
parameter.
==== =======================
beta Window shape
==== =======================
0 Rectangular
5 Similar to a Hamming
6 Similar to a Hanning
8.6 Similar to a Blackman
==== =======================
A beta value of 14 is probably a good starting point. Note that as beta
gets large, the window narrows, and so the number of samples needs to be
large enough to sample the increasingly narrow spike, otherwise NaNs will
get returned.
Most references to the Kaiser window come from the signal processing
literature, where it is used as one of many windowing functions for
smoothing values. It is also known as an apodization (which means
"removing the foot", i.e. smoothing discontinuities at the beginning
and end of the sampled signal) or tapering function.
References
----------
.. [1] J. F. Kaiser, "Digital Filters" - Ch 7 in "Systems analysis by
digital computer", Editors: F.F. Kuo and J.F. Kaiser, p 218-285.
John Wiley and Sons, New York, (1966).
.. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The
University of Alberta Press, 1975, pp. 177-178.
.. [3] Wikipedia, "Window function",
http://en.wikipedia.org/wiki/Window_function
Examples
--------
>>> np.kaiser(12, 14)
array([ 7.72686684e-06, 3.46009194e-03, 4.65200189e-02,
2.29737120e-01, 5.99885316e-01, 9.45674898e-01,
9.45674898e-01, 5.99885316e-01, 2.29737120e-01,
4.65200189e-02, 3.46009194e-03, 7.72686684e-06])
Plot the window and the frequency response:
>>> from numpy.fft import fft, fftshift
>>> window = np.kaiser(51, 14)
>>> plt.plot(window)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Kaiser window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Amplitude")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Sample")
<matplotlib.text.Text object at 0x...>
>>> plt.show()
>>> plt.figure()
<matplotlib.figure.Figure object at 0x...>
>>> A = fft(window, 2048) / 25.5
>>> mag = np.abs(fftshift(A))
>>> freq = np.linspace(-0.5, 0.5, len(A))
>>> response = 20 * np.log10(mag)
>>> response = np.clip(response, -100, 100)
>>> plt.plot(freq, response)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Frequency response of Kaiser window")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Magnitude [dB]")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("Normalized frequency [cycles per sample]")
<matplotlib.text.Text object at 0x...>
>>> plt.axis('tight')
(-0.5, 0.5, -100.0, ...)
>>> plt.show()
"""
from numpy.dual import i0
if M == 1:
return np.array([1.])
n = arange(0, M)
alpha = (M-1)/2.0
return i0(beta * sqrt(1-((n-alpha)/alpha)**2.0))/i0(float(beta))
def sinc(x):
"""
Return the sinc function.
The sinc function is :math:`\\sin(\\pi x)/(\\pi x)`.
Parameters
----------
x : ndarray
Array (possibly multi-dimensional) of values for which to to
calculate ``sinc(x)``.
Returns
-------
out : ndarray
``sinc(x)``, which has the same shape as the input.
Notes
-----
``sinc(0)`` is the limit value 1.
The name sinc is short for "sine cardinal" or "sinus cardinalis".
The sinc function is used in various signal processing applications,
including in anti-aliasing, in the construction of a Lanczos resampling
filter, and in interpolation.
For bandlimited interpolation of discrete-time signals, the ideal
interpolation kernel is proportional to the sinc function.
References
----------
.. [1] Weisstein, Eric W. "Sinc Function." From MathWorld--A Wolfram Web
Resource. http://mathworld.wolfram.com/SincFunction.html
.. [2] Wikipedia, "Sinc function",
http://en.wikipedia.org/wiki/Sinc_function
Examples
--------
>>> x = np.linspace(-4, 4, 41)
>>> np.sinc(x)
array([ -3.89804309e-17, -4.92362781e-02, -8.40918587e-02,
-8.90384387e-02, -5.84680802e-02, 3.89804309e-17,
6.68206631e-02, 1.16434881e-01, 1.26137788e-01,
8.50444803e-02, -3.89804309e-17, -1.03943254e-01,
-1.89206682e-01, -2.16236208e-01, -1.55914881e-01,
3.89804309e-17, 2.33872321e-01, 5.04551152e-01,
7.56826729e-01, 9.35489284e-01, 1.00000000e+00,
9.35489284e-01, 7.56826729e-01, 5.04551152e-01,
2.33872321e-01, 3.89804309e-17, -1.55914881e-01,
-2.16236208e-01, -1.89206682e-01, -1.03943254e-01,
-3.89804309e-17, 8.50444803e-02, 1.26137788e-01,
1.16434881e-01, 6.68206631e-02, 3.89804309e-17,
-5.84680802e-02, -8.90384387e-02, -8.40918587e-02,
-4.92362781e-02, -3.89804309e-17])
>>> plt.plot(x, np.sinc(x))
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Sinc Function")
<matplotlib.text.Text object at 0x...>
>>> plt.ylabel("Amplitude")
<matplotlib.text.Text object at 0x...>
>>> plt.xlabel("X")
<matplotlib.text.Text object at 0x...>
>>> plt.show()
It works in 2-D as well:
>>> x = np.linspace(-4, 4, 401)
>>> xx = np.outer(x, x)
>>> plt.imshow(np.sinc(xx))
<matplotlib.image.AxesImage object at 0x...>
"""
x = np.asanyarray(x)
y = pi * where(x == 0, 1.0e-20, x)
return sin(y)/y
def msort(a):
"""
Return a copy of an array sorted along the first axis.
Parameters
----------
a : array_like
Array to be sorted.
Returns
-------
sorted_array : ndarray
Array of the same type and shape as `a`.
See Also
--------
sort
Notes
-----
``np.msort(a)`` is equivalent to ``np.sort(a, axis=0)``.
"""
b = array(a, subok=True, copy=True)
b.sort(0)
return b
def _ureduce(a, func, **kwargs):
"""
Internal Function.
Call `func` with `a` as first argument swapping the axes to use extended
axis on functions that don't support it natively.
Returns result and a.shape with axis dims set to 1.
Parameters
----------
a : array_like
Input array or object that can be converted to an array.
func : callable
Reduction function Kapable of receiving an axis argument.
It is is called with `a` as first argument followed by `kwargs`.
kwargs : keyword arguments
additional keyword arguments to pass to `func`.
Returns
-------
result : tuple
Result of func(a, **kwargs) and a.shape with axis dims set to 1
which can be used to reshape the result to the same shape a ufunc with
keepdims=True would produce.
"""
a = np.asanyarray(a)
axis = kwargs.get('axis', None)
if axis is not None:
keepdim = list(a.shape)
nd = a.ndim
try:
axis = operator.index(axis)
if axis >= nd or axis < -nd:
raise IndexError("axis %d out of bounds (%d)" % (axis, a.ndim))
keepdim[axis] = 1
except TypeError:
sax = set()
for x in axis:
if x >= nd or x < -nd:
raise IndexError("axis %d out of bounds (%d)" % (x, nd))
if x in sax:
raise ValueError("duplicate value in axis")
sax.add(x % nd)
keepdim[x] = 1
keep = sax.symmetric_difference(frozenset(range(nd)))
nkeep = len(keep)
# swap axis that should not be reduced to front
for i, s in enumerate(sorted(keep)):
a = a.swapaxes(i, s)
# merge reduced axis
a = a.reshape(a.shape[:nkeep] + (-1,))
kwargs['axis'] = -1
else:
keepdim = [1] * a.ndim
r = func(a, **kwargs)
return r, keepdim
def median(a, axis=None, out=None, overwrite_input=False, keepdims=False):
"""
Compute the median along the specified axis.
Returns the median of the array elements.
Parameters
----------
a : array_like
Input array or object that can be converted to an array.
axis : {int, sequence of int, None}, optional
Axis or axes along which the medians are computed. The default
is to compute the median along a flattened version of the array.
A sequence of axes is supported since version 1.9.0.
out : ndarray, optional
Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output,
but the type (of the output) will be cast if necessary.
overwrite_input : bool, optional
If True, then allow use of memory of input array `a` for
calculations. The input array will be modified by the call to
`median`. This will save memory when you do not need to preserve
the contents of the input array. Treat the input as undefined,
but it will probably be fully or partially sorted. Default is
False. If `overwrite_input` is ``True`` and `a` is not already an
`ndarray`, an error will be raised.
keepdims : bool, optional
If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original `arr`.
.. versionadded:: 1.9.0
Returns
-------
median : ndarray
A new array holding the result. If the input contains integers
or floats smaller than ``float64``, then the output data-type is
``np.float64``. Otherwise, the data-type of the output is the
same as that of the input. If `out` is specified, that array is
returned instead.
See Also
--------
mean, percentile
Notes
-----
Given a vector ``V`` of length ``N``, the median of ``V`` is the
middle value of a sorted copy of ``V``, ``V_sorted`` - i
e., ``V_sorted[(N-1)/2]``, when ``N`` is odd, and the average of the
two middle values of ``V_sorted`` when ``N`` is even.
Examples
--------
>>> a = np.array([[10, 7, 4], [3, 2, 1]])
>>> a
array([[10, 7, 4],
[ 3, 2, 1]])
>>> np.median(a)
3.5
>>> np.median(a, axis=0)
array([ 6.5, 4.5, 2.5])
>>> np.median(a, axis=1)
array([ 7., 2.])
>>> m = np.median(a, axis=0)
>>> out = np.zeros_like(m)
>>> np.median(a, axis=0, out=m)
array([ 6.5, 4.5, 2.5])
>>> m
array([ 6.5, 4.5, 2.5])
>>> b = a.copy()
>>> np.median(b, axis=1, overwrite_input=True)
array([ 7., 2.])
>>> assert not np.all(a==b)
>>> b = a.copy()
>>> np.median(b, axis=None, overwrite_input=True)
3.5
>>> assert not np.all(a==b)
"""
r, k = _ureduce(a, func=_median, axis=axis, out=out,
overwrite_input=overwrite_input)
if keepdims:
return r.reshape(k)
else:
return r
def _median(a, axis=None, out=None, overwrite_input=False):
# can't be reasonably be implemented in terms of percentile as we have to
# call mean to not break astropy
a = np.asanyarray(a)
# Set the partition indexes
if axis is None:
sz = a.size
else:
sz = a.shape[axis]
if sz % 2 == 0:
szh = sz // 2
kth = [szh - 1, szh]
else:
kth = [(sz - 1) // 2]
# Check if the array contains any nan's
if np.issubdtype(a.dtype, np.inexact):
kth.append(-1)
if overwrite_input:
if axis is None:
part = a.ravel()
part.partition(kth)
else:
a.partition(kth, axis=axis)
part = a
else:
part = partition(a, kth, axis=axis)
if part.shape == ():
# make 0-D arrays work
return part.item()
if axis is None:
axis = 0
indexer = [slice(None)] * part.ndim
index = part.shape[axis] // 2
if part.shape[axis] % 2 == 1:
# index with slice to allow mean (below) to work
indexer[axis] = slice(index, index+1)
else:
indexer[axis] = slice(index-1, index+1)
# Check if the array contains any nan's
if np.issubdtype(a.dtype, np.inexact) and sz > 0:
# warn and return nans like mean would
rout = mean(part[indexer], axis=axis, out=out)
part = np.rollaxis(part, axis, part.ndim)
n = np.isnan(part[..., -1])
if rout.ndim == 0:
if n == True:
warnings.warn("Invalid value encountered in median",
RuntimeWarning)
if out is not None:
out[...] = a.dtype.type(np.nan)
rout = out
else:
rout = a.dtype.type(np.nan)
elif np.count_nonzero(n.ravel()) > 0:
warnings.warn("Invalid value encountered in median for" +
" %d results" % np.count_nonzero(n.ravel()),
RuntimeWarning)
rout[n] = np.nan
return rout
else:
# if there are no nans
# Use mean in odd and even case to coerce data type
# and check, use out array.
return mean(part[indexer], axis=axis, out=out)
def percentile(a, q, axis=None, out=None,
overwrite_input=False, interpolation='linear', keepdims=False):
"""
Compute the qth percentile of the data along the specified axis.
Returns the qth percentile(s) of the array elements.
Parameters
----------
a : array_like
Input array or object that can be converted to an array.
q : float in range of [0,100] (or sequence of floats)
Percentile to compute, which must be between 0 and 100 inclusive.
axis : {int, sequence of int, None}, optional
Axis or axes along which the percentiles are computed. The
default is to compute the percentile(s) along a flattened
version of the array. A sequence of axes is supported since
version 1.9.0.
out : ndarray, optional
Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output,
but the type (of the output) will be cast if necessary.
overwrite_input : bool, optional
If True, then allow use of memory of input array `a`
calculations. The input array will be modified by the call to
`percentile`. This will save memory when you do not need to
preserve the contents of the input array. In this case you
should not make any assumptions about the contents of the input
`a` after this function completes -- treat it as undefined.
Default is False. If `a` is not already an array, this parameter
will have no effect as `a` will be converted to an array
internally regardless of the value of this parameter.
interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'}
This optional parameter specifies the interpolation method to
use when the desired quantile lies between two data points
``i < j``:
* linear: ``i + (j - i) * fraction``, where ``fraction``
is the fractional part of the index surrounded by ``i``
and ``j``.
* lower: ``i``.
* higher: ``j``.
* nearest: ``i`` or ``j``, whichever is nearest.
* midpoint: ``(i + j) / 2``.
.. versionadded:: 1.9.0
keepdims : bool, optional
If this is set to True, the axes which are reduced are left in
the result as dimensions with size one. With this option, the
result will broadcast correctly against the original array `a`.
.. versionadded:: 1.9.0
Returns
-------
percentile : scalar or ndarray
If `q` is a single percentile and `axis=None`, then the result
is a scalar. If multiple percentiles are given, first axis of
the result corresponds to the percentiles. The other axes are
the axes that remain after the reduction of `a`. If the input
contains integers or floats smaller than ``float64``, the output
data-type is ``float64``. Otherwise, the output data-type is the
same as that of the input. If `out` is specified, that array is
returned instead.
See Also
--------
mean, median, nanpercentile
Notes
-----
Given a vector ``V`` of length ``N``, the ``q``-th percentile of
``V`` is the value ``q/100`` of the way from the mimumum to the
maximum in in a sorted copy of ``V``. The values and distances of
the two nearest neighbors as well as the `interpolation` parameter
will determine the percentile if the normalized ranking does not
match the location of ``q`` exactly. This function is the same as
the median if ``q=50``, the same as the minimum if ``q=0`` and the
same as the maximum if ``q=100``.
Examples
--------
>>> a = np.array([[10, 7, 4], [3, 2, 1]])
>>> a
array([[10, 7, 4],
[ 3, 2, 1]])
>>> np.percentile(a, 50)
3.5
>>> np.percentile(a, 50, axis=0)
array([[ 6.5, 4.5, 2.5]])
>>> np.percentile(a, 50, axis=1)
array([ 7., 2.])
>>> np.percentile(a, 50, axis=1, keepdims=True)
array([[ 7.],
[ 2.]])
>>> m = np.percentile(a, 50, axis=0)
>>> out = np.zeros_like(m)
>>> np.percentile(a, 50, axis=0, out=out)
array([[ 6.5, 4.5, 2.5]])
>>> m
array([[ 6.5, 4.5, 2.5]])
>>> b = a.copy()
>>> np.percentile(b, 50, axis=1, overwrite_input=True)
array([ 7., 2.])
>>> assert not np.all(a == b)
"""
q = array(q, dtype=np.float64, copy=True)
r, k = _ureduce(a, func=_percentile, q=q, axis=axis, out=out,
overwrite_input=overwrite_input,
interpolation=interpolation)
if keepdims:
if q.ndim == 0:
return r.reshape(k)
else:
return r.reshape([len(q)] + k)
else:
return r
def _percentile(a, q, axis=None, out=None,
overwrite_input=False, interpolation='linear', keepdims=False):
a = asarray(a)
if q.ndim == 0:
# Do not allow 0-d arrays because following code fails for scalar
zerod = True
q = q[None]
else:
zerod = False
# avoid expensive reductions, relevant for arrays with < O(1000) elements
if q.size < 10:
for i in range(q.size):
if q[i] < 0. or q[i] > 100.:
raise ValueError("Percentiles must be in the range [0,100]")
q[i] /= 100.
else:
# faster than any()
if np.count_nonzero(q < 0.) or np.count_nonzero(q > 100.):
raise ValueError("Percentiles must be in the range [0,100]")
q /= 100.
# prepare a for partioning
if overwrite_input:
if axis is None:
ap = a.ravel()
else:
ap = a
else:
if axis is None:
ap = a.flatten()
else:
ap = a.copy()
if axis is None:
axis = 0
Nx = ap.shape[axis]
indices = q * (Nx - 1)
# round fractional indices according to interpolation method
if interpolation == 'lower':
indices = floor(indices).astype(intp)
elif interpolation == 'higher':
indices = ceil(indices).astype(intp)
elif interpolation == 'midpoint':
indices = 0.5 * (floor(indices) + ceil(indices))
elif interpolation == 'nearest':
indices = around(indices).astype(intp)
elif interpolation == 'linear':
pass # keep index as fraction and interpolate
else:
raise ValueError(
"interpolation can only be 'linear', 'lower' 'higher', "
"'midpoint', or 'nearest'")
n = np.array(False, dtype=bool) # check for nan's flag
if indices.dtype == intp: # take the points along axis
# Check if the array contains any nan's
if np.issubdtype(a.dtype, np.inexact):
indices = concatenate((indices, [-1]))
ap.partition(indices, axis=axis)
# ensure axis with qth is first
ap = np.rollaxis(ap, axis, 0)
axis = 0
# Check if the array contains any nan's
if np.issubdtype(a.dtype, np.inexact):
indices = indices[:-1]
n = np.isnan(ap[-1:, ...])
if zerod:
indices = indices[0]
r = take(ap, indices, axis=axis, out=out)
else: # weight the points above and below the indices
indices_below = floor(indices).astype(intp)
indices_above = indices_below + 1
indices_above[indices_above > Nx - 1] = Nx - 1
# Check if the array contains any nan's
if np.issubdtype(a.dtype, np.inexact):
indices_above = concatenate((indices_above, [-1]))
weights_above = indices - indices_below
weights_below = 1.0 - weights_above
weights_shape = [1, ] * ap.ndim
weights_shape[axis] = len(indices)
weights_below.shape = weights_shape
weights_above.shape = weights_shape
ap.partition(concatenate((indices_below, indices_above)), axis=axis)
# ensure axis with qth is first
ap = np.rollaxis(ap, axis, 0)
weights_below = np.rollaxis(weights_below, axis, 0)
weights_above = np.rollaxis(weights_above, axis, 0)
axis = 0
# Check if the array contains any nan's
if np.issubdtype(a.dtype, np.inexact):
indices_above = indices_above[:-1]
n = np.isnan(ap[-1:, ...])
x1 = take(ap, indices_below, axis=axis) * weights_below
x2 = take(ap, indices_above, axis=axis) * weights_above
# ensure axis with qth is first
x1 = np.rollaxis(x1, axis, 0)
x2 = np.rollaxis(x2, axis, 0)
if zerod:
x1 = x1.squeeze(0)
x2 = x2.squeeze(0)
if out is not None:
r = add(x1, x2, out=out)
else:
r = add(x1, x2)
if np.any(n):
warnings.warn("Invalid value encountered in percentile",
RuntimeWarning)
if zerod:
if ap.ndim == 1:
if out is not None:
out[...] = a.dtype.type(np.nan)
r = out
else:
r = a.dtype.type(np.nan)
else:
r[..., n.squeeze(0)] = a.dtype.type(np.nan)
else:
if r.ndim == 1:
r[:] = a.dtype.type(np.nan)
else:
r[..., n.repeat(q.size, 0)] = a.dtype.type(np.nan)
return r
def trapz(y, x=None, dx=1.0, axis=-1):
"""
Integrate along the given axis using the composite trapezoidal rule.
Integrate `y` (`x`) along given axis.
Parameters
----------
y : array_like
Input array to integrate.
x : array_like, optional
The sample points corresponding to the `y` values. If `x` is None,
the sample points are assumed to be evenly spaced `dx` apart. The
default is None.
dx : scalar, optional
The spacing between sample points when `x` is None. The default is 1.
axis : int, optional
The axis along which to integrate.
Returns
-------
trapz : float
Definite integral as approximated by trapezoidal rule.
See Also
--------
sum, cumsum
Notes
-----
Image [2]_ illustrates trapezoidal rule -- y-axis locations of points
will be taken from `y` array, by default x-axis distances between
points will be 1.0, alternatively they can be provided with `x` array
or with `dx` scalar. Return value will be equal to combined area under
the red lines.
References
----------
.. [1] Wikipedia page: http://en.wikipedia.org/wiki/Trapezoidal_rule
.. [2] Illustration image:
http://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png
Examples
--------
>>> np.trapz([1,2,3])
4.0
>>> np.trapz([1,2,3], x=[4,6,8])
8.0
>>> np.trapz([1,2,3], dx=2)
8.0
>>> a = np.arange(6).reshape(2, 3)
>>> a
array([[0, 1, 2],
[3, 4, 5]])
>>> np.trapz(a, axis=0)
array([ 1.5, 2.5, 3.5])
>>> np.trapz(a, axis=1)
array([ 2., 8.])
"""
y = asanyarray(y)
if x is None:
d = dx
else:
x = asanyarray(x)
if x.ndim == 1:
d = diff(x)
# reshape to correct shape
shape = [1]*y.ndim
shape[axis] = d.shape[0]
d = d.reshape(shape)
else:
d = diff(x, axis=axis)
nd = len(y.shape)
slice1 = [slice(None)]*nd
slice2 = [slice(None)]*nd
slice1[axis] = slice(1, None)
slice2[axis] = slice(None, -1)
try:
ret = (d * (y[slice1] + y[slice2]) / 2.0).sum(axis)
except ValueError:
# Operations didn't work, cast to ndarray
d = np.asarray(d)
y = np.asarray(y)
ret = add.reduce(d * (y[slice1]+y[slice2])/2.0, axis)
return ret
#always succeed
def add_newdoc(place, obj, doc):
"""
Adds documentation to obj which is in module place.
If doc is a string add it to obj as a docstring
If doc is a tuple, then the first element is interpreted as
an attribute of obj and the second as the docstring
(method, docstring)
If doc is a list, then each element of the list should be a
sequence of length two --> [(method1, docstring1),
(method2, docstring2), ...]
This routine never raises an error.
This routine cannot modify read-only docstrings, as appear
in new-style classes or built-in functions. Because this
routine never raises an error the caller must check manually
that the docstrings were changed.
"""
try:
new = getattr(__import__(place, globals(), {}, [obj]), obj)
if isinstance(doc, str):
add_docstring(new, doc.strip())
elif isinstance(doc, tuple):
add_docstring(getattr(new, doc[0]), doc[1].strip())
elif isinstance(doc, list):
for val in doc:
add_docstring(getattr(new, val[0]), val[1].strip())
except:
pass
# Based on scitools meshgrid
def meshgrid(*xi, **kwargs):
"""
Return coordinate matrices from coordinate vectors.
Make N-D coordinate arrays for vectorized evaluations of
N-D scalar/vector fields over N-D grids, given
one-dimensional coordinate arrays x1, x2,..., xn.
.. versionchanged:: 1.9
1-D and 0-D cases are allowed.
Parameters
----------
x1, x2,..., xn : array_like
1-D arrays representing the coordinates of a grid.
indexing : {'xy', 'ij'}, optional
Cartesian ('xy', default) or matrix ('ij') indexing of output.
See Notes for more details.
.. versionadded:: 1.7.0
sparse : bool, optional
If True a sparse grid is returned in order to conserve memory.
Default is False.
.. versionadded:: 1.7.0
copy : bool, optional
If False, a view into the original arrays are returned in order to
conserve memory. Default is True. Please note that
``sparse=False, copy=False`` will likely return non-contiguous
arrays. Furthermore, more than one element of a broadcast array
may refer to a single memory location. If you need to write to the
arrays, make copies first.
.. versionadded:: 1.7.0
Returns
-------
X1, X2,..., XN : ndarray
For vectors `x1`, `x2`,..., 'xn' with lengths ``Ni=len(xi)`` ,
return ``(N1, N2, N3,...Nn)`` shaped arrays if indexing='ij'
or ``(N2, N1, N3,...Nn)`` shaped arrays if indexing='xy'
with the elements of `xi` repeated to fill the matrix along
the first dimension for `x1`, the second for `x2` and so on.
Notes
-----
This function supports both indexing conventions through the indexing
keyword argument. Giving the string 'ij' returns a meshgrid with
matrix indexing, while 'xy' returns a meshgrid with Cartesian indexing.
In the 2-D case with inputs of length M and N, the outputs are of shape
(N, M) for 'xy' indexing and (M, N) for 'ij' indexing. In the 3-D case
with inputs of length M, N and P, outputs are of shape (N, M, P) for
'xy' indexing and (M, N, P) for 'ij' indexing. The difference is
illustrated by the following code snippet::
xv, yv = meshgrid(x, y, sparse=False, indexing='ij')
for i in range(nx):
for j in range(ny):
# treat xv[i,j], yv[i,j]
xv, yv = meshgrid(x, y, sparse=False, indexing='xy')
for i in range(nx):
for j in range(ny):
# treat xv[j,i], yv[j,i]
In the 1-D and 0-D case, the indexing and sparse keywords have no effect.
See Also
--------
index_tricks.mgrid : Construct a multi-dimensional "meshgrid"
using indexing notation.
index_tricks.ogrid : Construct an open multi-dimensional "meshgrid"
using indexing notation.
Examples
--------
>>> nx, ny = (3, 2)
>>> x = np.linspace(0, 1, nx)
>>> y = np.linspace(0, 1, ny)
>>> xv, yv = meshgrid(x, y)
>>> xv
array([[ 0. , 0.5, 1. ],
[ 0. , 0.5, 1. ]])
>>> yv
array([[ 0., 0., 0.],
[ 1., 1., 1.]])
>>> xv, yv = meshgrid(x, y, sparse=True) # make sparse output arrays
>>> xv
array([[ 0. , 0.5, 1. ]])
>>> yv
array([[ 0.],
[ 1.]])
`meshgrid` is very useful to evaluate functions on a grid.
>>> x = np.arange(-5, 5, 0.1)
>>> y = np.arange(-5, 5, 0.1)
>>> xx, yy = meshgrid(x, y, sparse=True)
>>> z = np.sin(xx**2 + yy**2) / (xx**2 + yy**2)
>>> h = plt.contourf(x,y,z)
"""
ndim = len(xi)
copy_ = kwargs.pop('copy', True)
sparse = kwargs.pop('sparse', False)
indexing = kwargs.pop('indexing', 'xy')
if kwargs:
raise TypeError("meshgrid() got an unexpected keyword argument '%s'"
% (list(kwargs)[0],))
if indexing not in ['xy', 'ij']:
raise ValueError(
"Valid values for `indexing` are 'xy' and 'ij'.")
s0 = (1,) * ndim
output = [np.asanyarray(x).reshape(s0[:i] + (-1,) + s0[i + 1::])
for i, x in enumerate(xi)]
shape = [x.size for x in output]
if indexing == 'xy' and ndim > 1:
# switch first and second axis
output[0].shape = (1, -1) + (1,)*(ndim - 2)
output[1].shape = (-1, 1) + (1,)*(ndim - 2)
shape[0], shape[1] = shape[1], shape[0]
if sparse:
if copy_:
return [x.copy() for x in output]
else:
return output
else:
# Return the full N-D matrix (not only the 1-D vector)
if copy_:
mult_fact = np.ones(shape, dtype=int)
return [x * mult_fact for x in output]
else:
return np.broadcast_arrays(*output)
def delete(arr, obj, axis=None):
"""
Return a new array with sub-arrays along an axis deleted. For a one
dimensional array, this returns those entries not returned by
`arr[obj]`.
Parameters
----------
arr : array_like
Input array.
obj : slice, int or array of ints
Indicate which sub-arrays to remove.
axis : int, optional
The axis along which to delete the subarray defined by `obj`.
If `axis` is None, `obj` is applied to the flattened array.
Returns
-------
out : ndarray
A copy of `arr` with the elements specified by `obj` removed. Note
that `delete` does not occur in-place. If `axis` is None, `out` is
a flattened array.
See Also
--------
insert : Insert elements into an array.
append : Append elements at the end of an array.
Notes
-----
Often it is preferable to use a boolean mask. For example:
>>> mask = np.ones(len(arr), dtype=bool)
>>> mask[[0,2,4]] = False
>>> result = arr[mask,...]
Is equivalent to `np.delete(arr, [0,2,4], axis=0)`, but allows further
use of `mask`.
Examples
--------
>>> arr = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
>>> arr
array([[ 1, 2, 3, 4],
[ 5, 6, 7, 8],
[ 9, 10, 11, 12]])
>>> np.delete(arr, 1, 0)
array([[ 1, 2, 3, 4],
[ 9, 10, 11, 12]])
>>> np.delete(arr, np.s_[::2], 1)
array([[ 2, 4],
[ 6, 8],
[10, 12]])
>>> np.delete(arr, [1,3,5], None)
array([ 1, 3, 5, 7, 8, 9, 10, 11, 12])
"""
wrap = None
if type(arr) is not ndarray:
try:
wrap = arr.__array_wrap__
except AttributeError:
pass
arr = asarray(arr)
ndim = arr.ndim
arrorder = 'F' if arr.flags.fnc else 'C'
if axis is None:
if ndim != 1:
arr = arr.ravel()
ndim = arr.ndim
axis = ndim - 1
if ndim == 0:
# 2013-09-24, 1.9
warnings.warn(
"in the future the special handling of scalars will be removed "
"from delete and raise an error", DeprecationWarning)
if wrap:
return wrap(arr)
else:
return arr.copy()
slobj = [slice(None)]*ndim
N = arr.shape[axis]
newshape = list(arr.shape)
if isinstance(obj, slice):
start, stop, step = obj.indices(N)
xr = range(start, stop, step)
numtodel = len(xr)
if numtodel <= 0:
if wrap:
return wrap(arr.copy())
else:
return arr.copy()
# Invert if step is negative:
if step < 0:
step = -step
start = xr[-1]
stop = xr[0] + 1
newshape[axis] -= numtodel
new = empty(newshape, arr.dtype, arrorder)
# copy initial chunk
if start == 0:
pass
else:
slobj[axis] = slice(None, start)
new[slobj] = arr[slobj]
# copy end chunck
if stop == N:
pass
else:
slobj[axis] = slice(stop-numtodel, None)
slobj2 = [slice(None)]*ndim
slobj2[axis] = slice(stop, None)
new[slobj] = arr[slobj2]
# copy middle pieces
if step == 1:
pass
else: # use array indexing.
keep = ones(stop-start, dtype=bool)
keep[:stop-start:step] = False
slobj[axis] = slice(start, stop-numtodel)
slobj2 = [slice(None)]*ndim
slobj2[axis] = slice(start, stop)
arr = arr[slobj2]
slobj2[axis] = keep
new[slobj] = arr[slobj2]
if wrap:
return wrap(new)
else:
return new
_obj = obj
obj = np.asarray(obj)
# After removing the special handling of booleans and out of
# bounds values, the conversion to the array can be removed.
if obj.dtype == bool:
warnings.warn(
"in the future insert will treat boolean arrays and array-likes "
"as boolean index instead of casting it to integer", FutureWarning)
obj = obj.astype(intp)
if isinstance(_obj, (int, long, integer)):
# optimization for a single value
obj = obj.item()
if (obj < -N or obj >= N):
raise IndexError(
"index %i is out of bounds for axis %i with "
"size %i" % (obj, axis, N))
if (obj < 0):
obj += N
newshape[axis] -= 1
new = empty(newshape, arr.dtype, arrorder)
slobj[axis] = slice(None, obj)
new[slobj] = arr[slobj]
slobj[axis] = slice(obj, None)
slobj2 = [slice(None)]*ndim
slobj2[axis] = slice(obj+1, None)
new[slobj] = arr[slobj2]
else:
if obj.size == 0 and not isinstance(_obj, np.ndarray):
obj = obj.astype(intp)
if not np.can_cast(obj, intp, 'same_kind'):
# obj.size = 1 special case always failed and would just
# give superfluous warnings.
# 2013-09-24, 1.9
warnings.warn(
"using a non-integer array as obj in delete will result in an "
"error in the future", DeprecationWarning)
obj = obj.astype(intp)
keep = ones(N, dtype=bool)
# Test if there are out of bound indices, this is deprecated
inside_bounds = (obj < N) & (obj >= -N)
if not inside_bounds.all():
# 2013-09-24, 1.9
warnings.warn(
"in the future out of bounds indices will raise an error "
"instead of being ignored by `numpy.delete`.",
DeprecationWarning)
obj = obj[inside_bounds]
positive_indices = obj >= 0
if not positive_indices.all():
warnings.warn(
"in the future negative indices will not be ignored by "
"`numpy.delete`.", FutureWarning)
obj = obj[positive_indices]
keep[obj, ] = False
slobj[axis] = keep
new = arr[slobj]
if wrap:
return wrap(new)
else:
return new
def insert(arr, obj, values, axis=None):
"""
Insert values along the given axis before the given indices.
Parameters
----------
arr : array_like
Input array.
obj : int, slice or sequence of ints
Object that defines the index or indices before which `values` is
inserted.
.. versionadded:: 1.8.0
Support for multiple insertions when `obj` is a single scalar or a
sequence with one element (similar to calling insert multiple
times).
values : array_like
Values to insert into `arr`. If the type of `values` is different
from that of `arr`, `values` is converted to the type of `arr`.
`values` should be shaped so that ``arr[...,obj,...] = values``
is legal.
axis : int, optional
Axis along which to insert `values`. If `axis` is None then `arr`
is flattened first.
Returns
-------
out : ndarray
A copy of `arr` with `values` inserted. Note that `insert`
does not occur in-place: a new array is returned. If
`axis` is None, `out` is a flattened array.
See Also
--------
append : Append elements at the end of an array.
concatenate : Join a sequence of arrays along an existing axis.
delete : Delete elements from an array.
Notes
-----
Note that for higher dimensional inserts `obj=0` behaves very different
from `obj=[0]` just like `arr[:,0,:] = values` is different from
`arr[:,[0],:] = values`.
Examples
--------
>>> a = np.array([[1, 1], [2, 2], [3, 3]])
>>> a
array([[1, 1],
[2, 2],
[3, 3]])
>>> np.insert(a, 1, 5)
array([1, 5, 1, 2, 2, 3, 3])
>>> np.insert(a, 1, 5, axis=1)
array([[1, 5, 1],
[2, 5, 2],
[3, 5, 3]])
Difference between sequence and scalars:
>>> np.insert(a, [1], [[1],[2],[3]], axis=1)
array([[1, 1, 1],
[2, 2, 2],
[3, 3, 3]])
>>> np.array_equal(np.insert(a, 1, [1, 2, 3], axis=1),
... np.insert(a, [1], [[1],[2],[3]], axis=1))
True
>>> b = a.flatten()
>>> b
array([1, 1, 2, 2, 3, 3])
>>> np.insert(b, [2, 2], [5, 6])
array([1, 1, 5, 6, 2, 2, 3, 3])
>>> np.insert(b, slice(2, 4), [5, 6])
array([1, 1, 5, 2, 6, 2, 3, 3])
>>> np.insert(b, [2, 2], [7.13, False]) # type casting
array([1, 1, 7, 0, 2, 2, 3, 3])
>>> x = np.arange(8).reshape(2, 4)
>>> idx = (1, 3)
>>> np.insert(x, idx, 999, axis=1)
array([[ 0, 999, 1, 2, 999, 3],
[ 4, 999, 5, 6, 999, 7]])
"""
wrap = None
if type(arr) is not ndarray:
try:
wrap = arr.__array_wrap__
except AttributeError:
pass
arr = asarray(arr)
ndim = arr.ndim
arrorder = 'F' if arr.flags.fnc else 'C'
if axis is None:
if ndim != 1:
arr = arr.ravel()
ndim = arr.ndim
axis = ndim - 1
else:
if ndim > 0 and (axis < -ndim or axis >= ndim):
raise IndexError(
"axis %i is out of bounds for an array of "
"dimension %i" % (axis, ndim))
if (axis < 0):
axis += ndim
if (ndim == 0):
# 2013-09-24, 1.9
warnings.warn(
"in the future the special handling of scalars will be removed "
"from insert and raise an error", DeprecationWarning)
arr = arr.copy()
arr[...] = values
if wrap:
return wrap(arr)
else:
return arr
slobj = [slice(None)]*ndim
N = arr.shape[axis]
newshape = list(arr.shape)
if isinstance(obj, slice):
# turn it into a range object
indices = arange(*obj.indices(N), **{'dtype': intp})
else:
# need to copy obj, because indices will be changed in-place
indices = np.array(obj)
if indices.dtype == bool:
# See also delete
warnings.warn(
"in the future insert will treat boolean arrays and "
"array-likes as a boolean index instead of casting it to "
"integer", FutureWarning)
indices = indices.astype(intp)
# Code after warning period:
#if obj.ndim != 1:
# raise ValueError('boolean array argument obj to insert '
# 'must be one dimensional')
#indices = np.flatnonzero(obj)
elif indices.ndim > 1:
raise ValueError(
"index array argument obj to insert must be one dimensional "
"or scalar")
if indices.size == 1:
index = indices.item()
if index < -N or index > N:
raise IndexError(
"index %i is out of bounds for axis %i with "
"size %i" % (obj, axis, N))
if (index < 0):
index += N
# There are some object array corner cases here, but we cannot avoid
# that:
values = array(values, copy=False, ndmin=arr.ndim, dtype=arr.dtype)
if indices.ndim == 0:
# broadcasting is very different here, since a[:,0,:] = ... behaves
# very different from a[:,[0],:] = ...! This changes values so that
# it works likes the second case. (here a[:,0:1,:])
values = np.rollaxis(values, 0, (axis % values.ndim) + 1)
numnew = values.shape[axis]
newshape[axis] += numnew
new = empty(newshape, arr.dtype, arrorder)
slobj[axis] = slice(None, index)
new[slobj] = arr[slobj]
slobj[axis] = slice(index, index+numnew)
new[slobj] = values
slobj[axis] = slice(index+numnew, None)
slobj2 = [slice(None)] * ndim
slobj2[axis] = slice(index, None)
new[slobj] = arr[slobj2]
if wrap:
return wrap(new)
return new
elif indices.size == 0 and not isinstance(obj, np.ndarray):
# Can safely cast the empty list to intp
indices = indices.astype(intp)
if not np.can_cast(indices, intp, 'same_kind'):
# 2013-09-24, 1.9
warnings.warn(
"using a non-integer array as obj in insert will result in an "
"error in the future", DeprecationWarning)
indices = indices.astype(intp)
indices[indices < 0] += N
numnew = len(indices)
order = indices.argsort(kind='mergesort') # stable sort
indices[order] += np.arange(numnew)
newshape[axis] += numnew
old_mask = ones(newshape[axis], dtype=bool)
old_mask[indices] = False
new = empty(newshape, arr.dtype, arrorder)
slobj2 = [slice(None)]*ndim
slobj[axis] = indices
slobj2[axis] = old_mask
new[slobj] = values
new[slobj2] = arr
if wrap:
return wrap(new)
return new
def append(arr, values, axis=None):
"""
Append values to the end of an array.
Parameters
----------
arr : array_like
Values are appended to a copy of this array.
values : array_like
These values are appended to a copy of `arr`. It must be of the
correct shape (the same shape as `arr`, excluding `axis`). If
`axis` is not specified, `values` can be any shape and will be
flattened before use.
axis : int, optional
The axis along which `values` are appended. If `axis` is not
given, both `arr` and `values` are flattened before use.
Returns
-------
append : ndarray
A copy of `arr` with `values` appended to `axis`. Note that
`append` does not occur in-place: a new array is allocated and
filled. If `axis` is None, `out` is a flattened array.
See Also
--------
insert : Insert elements into an array.
delete : Delete elements from an array.
Examples
--------
>>> np.append([1, 2, 3], [[4, 5, 6], [7, 8, 9]])
array([1, 2, 3, 4, 5, 6, 7, 8, 9])
When `axis` is specified, `values` must have the correct shape.
>>> np.append([[1, 2, 3], [4, 5, 6]], [[7, 8, 9]], axis=0)
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
>>> np.append([[1, 2, 3], [4, 5, 6]], [7, 8, 9], axis=0)
Traceback (most recent call last):
...
ValueError: arrays must have same number of dimensions
"""
arr = asanyarray(arr)
if axis is None:
if arr.ndim != 1:
arr = arr.ravel()
values = ravel(values)
axis = arr.ndim-1
return concatenate((arr, values), axis=axis)
| mit |
louispotok/pandas | pandas/tests/scalar/test_nat.py | 3 | 10360 | import pytest
from datetime import datetime, timedelta
import pytz
import numpy as np
from pandas import (NaT, Index, Timestamp, Timedelta, Period,
DatetimeIndex, PeriodIndex,
TimedeltaIndex, Series, isna)
from pandas.util import testing as tm
from pandas._libs.tslib import iNaT
from pandas.compat import callable
@pytest.mark.parametrize('nat, idx', [(Timestamp('NaT'), DatetimeIndex),
(Timedelta('NaT'), TimedeltaIndex),
(Period('NaT', freq='M'), PeriodIndex)])
def test_nat_fields(nat, idx):
for field in idx._field_ops:
# weekday is a property of DTI, but a method
# on NaT/Timestamp for compat with datetime
if field == 'weekday':
continue
result = getattr(NaT, field)
assert np.isnan(result)
result = getattr(nat, field)
assert np.isnan(result)
for field in idx._bool_ops:
result = getattr(NaT, field)
assert result is False
result = getattr(nat, field)
assert result is False
def test_nat_vector_field_access():
idx = DatetimeIndex(['1/1/2000', None, None, '1/4/2000'])
for field in DatetimeIndex._field_ops:
# weekday is a property of DTI, but a method
# on NaT/Timestamp for compat with datetime
if field == 'weekday':
continue
result = getattr(idx, field)
expected = Index([getattr(x, field) for x in idx])
tm.assert_index_equal(result, expected)
s = Series(idx)
for field in DatetimeIndex._field_ops:
# weekday is a property of DTI, but a method
# on NaT/Timestamp for compat with datetime
if field == 'weekday':
continue
result = getattr(s.dt, field)
expected = [getattr(x, field) for x in idx]
tm.assert_series_equal(result, Series(expected))
for field in DatetimeIndex._bool_ops:
result = getattr(s.dt, field)
expected = [getattr(x, field) for x in idx]
tm.assert_series_equal(result, Series(expected))
@pytest.mark.parametrize('klass', [Timestamp, Timedelta, Period])
def test_identity(klass):
assert klass(None) is NaT
result = klass(np.nan)
assert result is NaT
result = klass(None)
assert result is NaT
result = klass(iNaT)
assert result is NaT
result = klass(np.nan)
assert result is NaT
result = klass(float('nan'))
assert result is NaT
result = klass(NaT)
assert result is NaT
result = klass('NaT')
assert result is NaT
assert isna(klass('nat'))
@pytest.mark.parametrize('klass', [Timestamp, Timedelta, Period])
def test_equality(klass):
# nat
if klass is not Period:
klass('').value == iNaT
klass('nat').value == iNaT
klass('NAT').value == iNaT
klass(None).value == iNaT
klass(np.nan).value == iNaT
assert isna(klass('nat'))
@pytest.mark.parametrize('klass', [Timestamp, Timedelta])
def test_round_nat(klass):
# GH14940
ts = klass('nat')
for method in ["round", "floor", "ceil"]:
round_method = getattr(ts, method)
for freq in ["s", "5s", "min", "5min", "h", "5h"]:
assert round_method(freq) is ts
def test_NaT_methods():
# GH 9513
# GH 17329 for `timestamp`
raise_methods = ['astimezone', 'combine', 'ctime', 'dst',
'fromordinal', 'fromtimestamp', 'isocalendar',
'strftime', 'strptime', 'time', 'timestamp',
'timetuple', 'timetz', 'toordinal', 'tzname',
'utcfromtimestamp', 'utcnow', 'utcoffset',
'utctimetuple', 'timestamp']
nat_methods = ['date', 'now', 'replace', 'to_datetime', 'today',
'tz_convert', 'tz_localize']
nan_methods = ['weekday', 'isoweekday']
for method in raise_methods:
if hasattr(NaT, method):
with pytest.raises(ValueError):
getattr(NaT, method)()
for method in nan_methods:
if hasattr(NaT, method):
assert np.isnan(getattr(NaT, method)())
for method in nat_methods:
if hasattr(NaT, method):
# see gh-8254
exp_warning = None
if method == 'to_datetime':
exp_warning = FutureWarning
with tm.assert_produces_warning(
exp_warning, check_stacklevel=False):
assert getattr(NaT, method)() is NaT
# GH 12300
assert NaT.isoformat() == 'NaT'
def test_NaT_docstrings():
# GH#17327
nat_names = dir(NaT)
# NaT should have *most* of the Timestamp methods, with matching
# docstrings. The attributes that are not expected to be present in NaT
# are private methods plus `ts_expected` below.
ts_names = dir(Timestamp)
ts_missing = [x for x in ts_names if x not in nat_names and
not x.startswith('_')]
ts_missing.sort()
ts_expected = ['freqstr', 'normalize',
'to_julian_date',
'to_period', 'tz']
assert ts_missing == ts_expected
ts_overlap = [x for x in nat_names if x in ts_names and
not x.startswith('_') and
callable(getattr(Timestamp, x))]
for name in ts_overlap:
tsdoc = getattr(Timestamp, name).__doc__
natdoc = getattr(NaT, name).__doc__
assert tsdoc == natdoc
# NaT should have *most* of the Timedelta methods, with matching
# docstrings. The attributes that are not expected to be present in NaT
# are private methods plus `td_expected` below.
# For methods that are both Timestamp and Timedelta methods, the
# Timestamp docstring takes priority.
td_names = dir(Timedelta)
td_missing = [x for x in td_names if x not in nat_names and
not x.startswith('_')]
td_missing.sort()
td_expected = ['components', 'delta', 'is_populated',
'to_pytimedelta', 'to_timedelta64', 'view']
assert td_missing == td_expected
td_overlap = [x for x in nat_names if x in td_names and
x not in ts_names and # Timestamp __doc__ takes priority
not x.startswith('_') and
callable(getattr(Timedelta, x))]
assert td_overlap == ['total_seconds']
for name in td_overlap:
tddoc = getattr(Timedelta, name).__doc__
natdoc = getattr(NaT, name).__doc__
assert tddoc == natdoc
@pytest.mark.parametrize('klass', [Timestamp, Timedelta])
def test_isoformat(klass):
result = klass('NaT').isoformat()
expected = 'NaT'
assert result == expected
def test_nat_arithmetic():
# GH 6873
i = 2
f = 1.5
for (left, right) in [(NaT, i), (NaT, f), (NaT, np.nan)]:
assert left / right is NaT
assert left * right is NaT
assert right * left is NaT
with pytest.raises(TypeError):
right / left
# Timestamp / datetime
t = Timestamp('2014-01-01')
dt = datetime(2014, 1, 1)
for (left, right) in [(NaT, NaT), (NaT, t), (NaT, dt)]:
# NaT __add__ or __sub__ Timestamp-like (or inverse) returns NaT
assert right + left is NaT
assert left + right is NaT
assert left - right is NaT
assert right - left is NaT
# timedelta-like
# offsets are tested in test_offsets.py
delta = timedelta(3600)
td = Timedelta('5s')
for (left, right) in [(NaT, delta), (NaT, td)]:
# NaT + timedelta-like returns NaT
assert right + left is NaT
assert left + right is NaT
assert right - left is NaT
assert left - right is NaT
assert np.isnan(left / right)
assert np.isnan(right / left)
# GH 11718
t_utc = Timestamp('2014-01-01', tz='UTC')
t_tz = Timestamp('2014-01-01', tz='US/Eastern')
dt_tz = pytz.timezone('Asia/Tokyo').localize(dt)
for (left, right) in [(NaT, t_utc), (NaT, t_tz),
(NaT, dt_tz)]:
# NaT __add__ or __sub__ Timestamp-like (or inverse) returns NaT
assert right + left is NaT
assert left + right is NaT
assert left - right is NaT
assert right - left is NaT
# int addition / subtraction
for (left, right) in [(NaT, 2), (NaT, 0), (NaT, -3)]:
assert right + left is NaT
assert left + right is NaT
assert left - right is NaT
assert right - left is NaT
def test_nat_rfloordiv_timedelta():
# GH#18846
# See also test_timedelta.TestTimedeltaArithmetic.test_floordiv
td = Timedelta(hours=3, minutes=4)
assert td // np.nan is NaT
assert np.isnan(td // NaT)
assert np.isnan(td // np.timedelta64('NaT'))
def test_nat_arithmetic_index():
# GH 11718
dti = DatetimeIndex(['2011-01-01', '2011-01-02'], name='x')
exp = DatetimeIndex([NaT, NaT], name='x')
tm.assert_index_equal(dti + NaT, exp)
tm.assert_index_equal(NaT + dti, exp)
dti_tz = DatetimeIndex(['2011-01-01', '2011-01-02'],
tz='US/Eastern', name='x')
exp = DatetimeIndex([NaT, NaT], name='x', tz='US/Eastern')
tm.assert_index_equal(dti_tz + NaT, exp)
tm.assert_index_equal(NaT + dti_tz, exp)
exp = TimedeltaIndex([NaT, NaT], name='x')
for (left, right) in [(NaT, dti), (NaT, dti_tz)]:
tm.assert_index_equal(left - right, exp)
tm.assert_index_equal(right - left, exp)
# timedelta # GH#19124
tdi = TimedeltaIndex(['1 day', '2 day'], name='x')
tdi_nat = TimedeltaIndex([NaT, NaT], name='x')
tm.assert_index_equal(tdi + NaT, tdi_nat)
tm.assert_index_equal(NaT + tdi, tdi_nat)
tm.assert_index_equal(tdi - NaT, tdi_nat)
tm.assert_index_equal(NaT - tdi, tdi_nat)
@pytest.mark.parametrize('box, assert_func', [
(TimedeltaIndex, tm.assert_index_equal),
(Series, tm.assert_series_equal)
])
def test_nat_arithmetic_td64_vector(box, assert_func):
# GH#19124
vec = box(['1 day', '2 day'], dtype='timedelta64[ns]')
box_nat = box([NaT, NaT], dtype='timedelta64[ns]')
assert_func(vec + NaT, box_nat)
assert_func(NaT + vec, box_nat)
assert_func(vec - NaT, box_nat)
assert_func(NaT - vec, box_nat)
def test_nat_pinned_docstrings():
# GH17327
assert NaT.ctime.__doc__ == datetime.ctime.__doc__
| bsd-3-clause |
fredRos/pypmc | doc/conf.py | 1 | 8272 | # -*- coding: utf-8 -*-
#
# Note that not all possible configuration values are present in this
# autogenerated file.
#
# All configuration values have a default; values that are commented out
# serve to show the default.
import sys, os
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
sys.path.insert(0, os.path.abspath('..'))
# -- General configuration -----------------------------------------------------
# If your documentation needs a minimal Sphinx version, state it here.
#needs_sphinx = '1.0'
# Add any Sphinx extension module names here, as strings. They can be extensions
# coming with Sphinx (named 'sphinx.ext.*') or your custom ones.
extensions = ['sphinx.ext.autodoc', 'sphinx.ext.doctest',
'sphinx.ext.todo', 'sphinx.ext.coverage',
'sphinx.ext.viewcode', 'sphinx.ext.mathjax',
'matplotlib.sphinxext.plot_directive']
# Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']
# The suffix of source filenames.
source_suffix = '.rst'
# The encoding of source files.
#source_encoding = 'utf-8-sig'
# The master toctree document.
master_doc = 'index'
# General information about the project.
project = u'pypmc'
copyright = u'2019, Frederik Beaujean and Stephan Jahn'
# The version info for the project you're documenting, acts as replacement for
# |version| and |release|, also used in various other places throughout the
# built documents.
#
from pypmc import __version__ as pypmc_version
# The short X.Y version.
version = str(pypmc_version)
# The full version, including alpha/beta/rc tags.
release = str(pypmc_version)
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
#language = None
# There are two options for replacing |today|: either, you set today to some
# non-false value, then it is used:
#today = ''
# Else, today_fmt is used as the format for a strftime call.
#today_fmt = '%B %d, %Y'
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
exclude_patterns = ['_build']
# The reST default role (used for this markup: `text`) to use for all documents.
#default_role = None
# If true, '()' will be appended to :func: etc. cross-reference text.
add_function_parentheses = False
# If true, the current module name will be prepended to all description
# unit titles (such as .. function::).
#add_module_names = True
# If true, sectionauthor and moduleauthor directives will be shown in the
# output. They are ignored by default.
#show_authors = False
# The name of the Pygments (syntax highlighting) style to use.
pygments_style = 'sphinx'
# A list of ignored prefixes for module index sorting.
#modindex_common_prefix = []
# turn off flags by hand using :no-members:
autodoc_default_flags = ['members', 'show-inheritance', 'inherited-members']
# Show the code used to generate a plot with matplotlib
plot_include_source = True
# -- Options for HTML output ---------------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
html_theme = 'sphinxdoc'
# Theme options are theme-specific and customize the look and feel of a theme
# further. For a list of options available for each theme, see the
# documentation.
#html_theme_options = {}
# Add any paths that contain custom themes here, relative to this directory.
#html_theme_path = []
# The name for this set of Sphinx documents. If None, it defaults to
# "<project> v<release> documentation".
#html_title = None
# A shorter title for the navigation bar. Default is the same as html_title.
#html_short_title = None
# The name of an image file (relative to this directory) to place at the top
# of the sidebar.
#html_logo = None
# The name of an image file (within the static path) to use as favicon of the
# docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32
# pixels large.
#html_favicon = None
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['_static']
# If not '', a 'Last updated on:' timestamp is inserted at every page bottom,
# using the given strftime format.
#html_last_updated_fmt = '%b %d, %Y'
# If true, SmartyPants will be used to convert quotes and dashes to
# typographically correct entities.
#html_use_smartypants = True
# Custom sidebar templates, maps document names to template names.
#html_sidebars = {}
# Additional templates that should be rendered to pages, maps page names to
# template names.
#html_additional_pages = {}
# If false, no module index is generated.
#html_domain_indices = True
# If false, no index is generated.
#html_use_index = True
# If true, the index is split into individual pages for each letter.
#html_split_index = False
# If true, links to the reST sources are added to the pages.
#html_show_sourcelink = True
# If true, "Created using Sphinx" is shown in the HTML footer. Default is True.
#html_show_sphinx = True
# If true, "(C) Copyright ..." is shown in the HTML footer. Default is True.
#html_show_copyright = True
# If true, an OpenSearch description file will be output, and all pages will
# contain a <link> tag referring to it. The value of this option must be the
# base URL from which the finished HTML is served.
#html_use_opensearch = ''
# This is the file name suffix for HTML files (e.g. ".xhtml").
#html_file_suffix = None
# Output file base name for HTML help builder.
htmlhelp_basename = 'pypmcdoc'
# mathjax doesn't support preambles
pngmath_latex_preamble = r"""
\newcommand{\vecgamma}{\vec{\gamma}}
\newcommand{\vecth}{\vec{\theta}}
"""
# -- Options for LaTeX output --------------------------------------------------
latex_elements = {
# The paper size ('letterpaper' or 'a4paper').
'papersize': 'a4paper',
# The font size ('10pt', '11pt' or '12pt').
'pointsize': '12pt',
# reuse LaTeX preamble from html for pdf
'preamble':
r'\usepackage{mathpazo}' + '\n' +
pngmath_latex_preamble,
}
# Grouping the document tree into LaTeX files. List of tuples
# (source start file, target name, title, author, documentclass [howto/manual]).
latex_documents = [
('index', 'pypmc.tex', u'pypmc Documentation',
u'Frederik Beaujean, Stephan Jahn', 'manual'),
]
# The name of an image file (relative to this directory) to place at the top of
# the title page.
#latex_logo = None
# For "manual" documents, if this is true, then toplevel headings are parts,
# not chapters.
#latex_use_parts = False
# If true, show page references after internal links.
#latex_show_pagerefs = False
# If true, show URL addresses after external links.
#latex_show_urls = False
# Documents to append as an appendix to all manuals.
#latex_appendices = []
# If false, no module index is generated.
#latex_domain_indices = True
# -- Options for manual page output --------------------------------------------
# One entry per manual page. List of tuples
# (source start file, name, description, authors, manual section).
man_pages = [
('index', 'pypmc', u'pypmc Documentation',
[u'Frederik Beaujean, Stephan Jahn'], 1)
]
# If true, show URL addresses after external links.
#man_show_urls = False
# -- Options for Texinfo output ------------------------------------------------
# Grouping the document tree into Texinfo files. List of tuples
# (source start file, target name, title, author,
# dir menu entry, description, category)
texinfo_documents = [
('index', 'pypmc', u'pypmc Documentation',
u'Frederik Beaujean, Stephan Jahn', 'pypmc', 'One line description of project.',
'Miscellaneous'),
]
# Documents to append as an appendix to all manuals.
#texinfo_appendices = []
# If false, no module index is generated.
#texinfo_domain_indices = True
# How to display URL addresses: 'footnote', 'no', or 'inline'.
#texinfo_show_urls = 'footnote'
| gpl-2.0 |
jreback/pandas | pandas/tests/indexes/period/test_period.py | 2 | 19866 | import numpy as np
import pytest
from pandas._libs.tslibs.period import IncompatibleFrequency
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
DataFrame,
DatetimeIndex,
Index,
NaT,
Period,
PeriodIndex,
Series,
date_range,
offsets,
period_range,
)
import pandas._testing as tm
from ..datetimelike import DatetimeLike
class TestPeriodIndex(DatetimeLike):
_holder = PeriodIndex
@pytest.fixture(
params=[
tm.makePeriodIndex(10),
period_range("20130101", periods=10, freq="D")[::-1],
],
ids=["index_inc", "index_dec"],
)
def index(self, request):
return request.param
def create_index(self) -> PeriodIndex:
return period_range("20130101", periods=5, freq="D")
def test_pickle_compat_construction(self):
pass
@pytest.mark.parametrize("freq", ["D", "M", "A"])
def test_pickle_round_trip(self, freq):
idx = PeriodIndex(["2016-05-16", "NaT", NaT, np.NaN], freq=freq)
result = tm.round_trip_pickle(idx)
tm.assert_index_equal(result, idx)
def test_where(self):
# This is handled in test_indexing
pass
@pytest.mark.parametrize("use_numpy", [True, False])
@pytest.mark.parametrize(
"index",
[
period_range("2000-01-01", periods=3, freq="D"),
period_range("2001-01-01", periods=3, freq="2D"),
PeriodIndex(["2001-01", "NaT", "2003-01"], freq="M"),
],
)
def test_repeat_freqstr(self, index, use_numpy):
# GH10183
expected = PeriodIndex([p for p in index for _ in range(3)])
result = np.repeat(index, 3) if use_numpy else index.repeat(3)
tm.assert_index_equal(result, expected)
assert result.freqstr == index.freqstr
def test_no_millisecond_field(self):
msg = "type object 'DatetimeIndex' has no attribute 'millisecond'"
with pytest.raises(AttributeError, match=msg):
DatetimeIndex.millisecond
msg = "'DatetimeIndex' object has no attribute 'millisecond'"
with pytest.raises(AttributeError, match=msg):
DatetimeIndex([]).millisecond
def test_make_time_series(self):
index = period_range(freq="A", start="1/1/2001", end="12/1/2009")
series = Series(1, index=index)
assert isinstance(series, Series)
def test_shallow_copy_empty(self):
# GH13067
idx = PeriodIndex([], freq="M")
result = idx._shallow_copy()
expected = idx
tm.assert_index_equal(result, expected)
def test_shallow_copy_disallow_i8(self):
# GH-24391
pi = period_range("2018-01-01", periods=3, freq="2D")
with pytest.raises(AssertionError, match="ndarray"):
pi._shallow_copy(pi.asi8)
def test_shallow_copy_requires_disallow_period_index(self):
pi = period_range("2018-01-01", periods=3, freq="2D")
with pytest.raises(AssertionError, match="PeriodIndex"):
pi._shallow_copy(pi)
def test_view_asi8(self):
idx = PeriodIndex([], freq="M")
exp = np.array([], dtype=np.int64)
tm.assert_numpy_array_equal(idx.view("i8"), exp)
tm.assert_numpy_array_equal(idx.asi8, exp)
idx = PeriodIndex(["2011-01", NaT], freq="M")
exp = np.array([492, -9223372036854775808], dtype=np.int64)
tm.assert_numpy_array_equal(idx.view("i8"), exp)
tm.assert_numpy_array_equal(idx.asi8, exp)
exp = np.array([14975, -9223372036854775808], dtype=np.int64)
idx = PeriodIndex(["2011-01-01", NaT], freq="D")
tm.assert_numpy_array_equal(idx.view("i8"), exp)
tm.assert_numpy_array_equal(idx.asi8, exp)
def test_values(self):
idx = PeriodIndex([], freq="M")
exp = np.array([], dtype=object)
tm.assert_numpy_array_equal(idx.values, exp)
tm.assert_numpy_array_equal(idx.to_numpy(), exp)
exp = np.array([], dtype=np.int64)
tm.assert_numpy_array_equal(idx.asi8, exp)
idx = PeriodIndex(["2011-01", NaT], freq="M")
exp = np.array([Period("2011-01", freq="M"), NaT], dtype=object)
tm.assert_numpy_array_equal(idx.values, exp)
tm.assert_numpy_array_equal(idx.to_numpy(), exp)
exp = np.array([492, -9223372036854775808], dtype=np.int64)
tm.assert_numpy_array_equal(idx.asi8, exp)
idx = PeriodIndex(["2011-01-01", NaT], freq="D")
exp = np.array([Period("2011-01-01", freq="D"), NaT], dtype=object)
tm.assert_numpy_array_equal(idx.values, exp)
tm.assert_numpy_array_equal(idx.to_numpy(), exp)
exp = np.array([14975, -9223372036854775808], dtype=np.int64)
tm.assert_numpy_array_equal(idx.asi8, exp)
def test_period_index_length(self):
pi = period_range(freq="A", start="1/1/2001", end="12/1/2009")
assert len(pi) == 9
pi = period_range(freq="Q", start="1/1/2001", end="12/1/2009")
assert len(pi) == 4 * 9
pi = period_range(freq="M", start="1/1/2001", end="12/1/2009")
assert len(pi) == 12 * 9
start = Period("02-Apr-2005", "B")
i1 = period_range(start=start, periods=20)
assert len(i1) == 20
assert i1.freq == start.freq
assert i1[0] == start
end_intv = Period("2006-12-31", "W")
i1 = period_range(end=end_intv, periods=10)
assert len(i1) == 10
assert i1.freq == end_intv.freq
assert i1[-1] == end_intv
end_intv = Period("2006-12-31", "1w")
i2 = period_range(end=end_intv, periods=10)
assert len(i1) == len(i2)
assert (i1 == i2).all()
assert i1.freq == i2.freq
msg = "start and end must have same freq"
with pytest.raises(ValueError, match=msg):
period_range(start=start, end=end_intv)
end_intv = Period("2005-05-01", "B")
i1 = period_range(start=start, end=end_intv)
msg = (
"Of the three parameters: start, end, and periods, exactly two "
"must be specified"
)
with pytest.raises(ValueError, match=msg):
period_range(start=start)
# infer freq from first element
i2 = PeriodIndex([end_intv, Period("2005-05-05", "B")])
assert len(i2) == 2
assert i2[0] == end_intv
i2 = PeriodIndex(np.array([end_intv, Period("2005-05-05", "B")]))
assert len(i2) == 2
assert i2[0] == end_intv
# Mixed freq should fail
vals = [end_intv, Period("2006-12-31", "w")]
msg = r"Input has different freq=W-SUN from PeriodIndex\(freq=B\)"
with pytest.raises(IncompatibleFrequency, match=msg):
PeriodIndex(vals)
vals = np.array(vals)
with pytest.raises(ValueError, match=msg):
PeriodIndex(vals)
def test_fields(self):
# year, month, day, hour, minute
# second, weekofyear, week, dayofweek, weekday, dayofyear, quarter
# qyear
pi = period_range(freq="A", start="1/1/2001", end="12/1/2005")
self._check_all_fields(pi)
pi = period_range(freq="Q", start="1/1/2001", end="12/1/2002")
self._check_all_fields(pi)
pi = period_range(freq="M", start="1/1/2001", end="1/1/2002")
self._check_all_fields(pi)
pi = period_range(freq="D", start="12/1/2001", end="6/1/2001")
self._check_all_fields(pi)
pi = period_range(freq="B", start="12/1/2001", end="6/1/2001")
self._check_all_fields(pi)
pi = period_range(freq="H", start="12/31/2001", end="1/1/2002 23:00")
self._check_all_fields(pi)
pi = period_range(freq="Min", start="12/31/2001", end="1/1/2002 00:20")
self._check_all_fields(pi)
pi = period_range(
freq="S", start="12/31/2001 00:00:00", end="12/31/2001 00:05:00"
)
self._check_all_fields(pi)
end_intv = Period("2006-12-31", "W")
i1 = period_range(end=end_intv, periods=10)
self._check_all_fields(i1)
def _check_all_fields(self, periodindex):
fields = [
"year",
"month",
"day",
"hour",
"minute",
"second",
"weekofyear",
"week",
"dayofweek",
"day_of_week",
"dayofyear",
"day_of_year",
"quarter",
"qyear",
"days_in_month",
]
periods = list(periodindex)
s = Series(periodindex)
for field in fields:
field_idx = getattr(periodindex, field)
assert len(periodindex) == len(field_idx)
for x, val in zip(periods, field_idx):
assert getattr(x, field) == val
if len(s) == 0:
continue
field_s = getattr(s.dt, field)
assert len(periodindex) == len(field_s)
for x, val in zip(periods, field_s):
assert getattr(x, field) == val
def test_is_(self):
create_index = lambda: period_range(freq="A", start="1/1/2001", end="12/1/2009")
index = create_index()
assert index.is_(index)
assert not index.is_(create_index())
assert index.is_(index.view())
assert index.is_(index.view().view().view().view().view())
assert index.view().is_(index)
ind2 = index.view()
index.name = "Apple"
assert ind2.is_(index)
assert not index.is_(index[:])
assert not index.is_(index.asfreq("M"))
assert not index.is_(index.asfreq("A"))
assert not index.is_(index - 2)
assert not index.is_(index - 0)
def test_periods_number_check(self):
msg = (
"Of the three parameters: start, end, and periods, exactly two "
"must be specified"
)
with pytest.raises(ValueError, match=msg):
period_range("2011-1-1", "2012-1-1", "B")
def test_index_duplicate_periods(self):
# monotonic
idx = PeriodIndex([2000, 2007, 2007, 2009, 2009], freq="A-JUN")
ts = Series(np.random.randn(len(idx)), index=idx)
result = ts["2007"]
expected = ts[1:3]
tm.assert_series_equal(result, expected)
result[:] = 1
assert (ts[1:3] == 1).all()
# not monotonic
idx = PeriodIndex([2000, 2007, 2007, 2009, 2007], freq="A-JUN")
ts = Series(np.random.randn(len(idx)), index=idx)
result = ts["2007"]
expected = ts[idx == "2007"]
tm.assert_series_equal(result, expected)
def test_index_unique(self):
idx = PeriodIndex([2000, 2007, 2007, 2009, 2009], freq="A-JUN")
expected = PeriodIndex([2000, 2007, 2009], freq="A-JUN")
tm.assert_index_equal(idx.unique(), expected)
assert idx.nunique() == 3
def test_shift(self):
# This is tested in test_arithmetic
pass
@td.skip_if_32bit
def test_ndarray_compat_properties(self):
super().test_ndarray_compat_properties()
def test_negative_ordinals(self):
Period(ordinal=-1000, freq="A")
Period(ordinal=0, freq="A")
idx1 = PeriodIndex(ordinal=[-1, 0, 1], freq="A")
idx2 = PeriodIndex(ordinal=np.array([-1, 0, 1]), freq="A")
tm.assert_index_equal(idx1, idx2)
def test_pindex_fieldaccessor_nat(self):
idx = PeriodIndex(
["2011-01", "2011-02", "NaT", "2012-03", "2012-04"], freq="D", name="name"
)
exp = Index([2011, 2011, -1, 2012, 2012], dtype=np.int64, name="name")
tm.assert_index_equal(idx.year, exp)
exp = Index([1, 2, -1, 3, 4], dtype=np.int64, name="name")
tm.assert_index_equal(idx.month, exp)
def test_pindex_qaccess(self):
pi = PeriodIndex(["2Q05", "3Q05", "4Q05", "1Q06", "2Q06"], freq="Q")
s = Series(np.random.rand(len(pi)), index=pi).cumsum()
# Todo: fix these accessors!
assert s["05Q4"] == s[2]
def test_pindex_multiples(self):
expected = PeriodIndex(
["2011-01", "2011-03", "2011-05", "2011-07", "2011-09", "2011-11"],
freq="2M",
)
pi = period_range(start="1/1/11", end="12/31/11", freq="2M")
tm.assert_index_equal(pi, expected)
assert pi.freq == offsets.MonthEnd(2)
assert pi.freqstr == "2M"
pi = period_range(start="1/1/11", periods=6, freq="2M")
tm.assert_index_equal(pi, expected)
assert pi.freq == offsets.MonthEnd(2)
assert pi.freqstr == "2M"
def test_iteration(self):
index = period_range(start="1/1/10", periods=4, freq="B")
result = list(index)
assert isinstance(result[0], Period)
assert result[0].freq == index.freq
def test_is_full(self):
index = PeriodIndex([2005, 2007, 2009], freq="A")
assert not index.is_full
index = PeriodIndex([2005, 2006, 2007], freq="A")
assert index.is_full
index = PeriodIndex([2005, 2005, 2007], freq="A")
assert not index.is_full
index = PeriodIndex([2005, 2005, 2006], freq="A")
assert index.is_full
index = PeriodIndex([2006, 2005, 2005], freq="A")
with pytest.raises(ValueError, match="Index is not monotonic"):
index.is_full
assert index[:0].is_full
def test_with_multi_index(self):
# #1705
index = date_range("1/1/2012", periods=4, freq="12H")
index_as_arrays = [index.to_period(freq="D"), index.hour]
s = Series([0, 1, 2, 3], index_as_arrays)
assert isinstance(s.index.levels[0], PeriodIndex)
assert isinstance(s.index.values[0][0], Period)
def test_convert_array_of_periods(self):
rng = period_range("1/1/2000", periods=20, freq="D")
periods = list(rng)
result = Index(periods)
assert isinstance(result, PeriodIndex)
def test_append_concat(self):
# #1815
d1 = date_range("12/31/1990", "12/31/1999", freq="A-DEC")
d2 = date_range("12/31/2000", "12/31/2009", freq="A-DEC")
s1 = Series(np.random.randn(10), d1)
s2 = Series(np.random.randn(10), d2)
s1 = s1.to_period()
s2 = s2.to_period()
# drops index
result = pd.concat([s1, s2])
assert isinstance(result.index, PeriodIndex)
assert result.index[0] == s1.index[0]
def test_pickle_freq(self):
# GH2891
prng = period_range("1/1/2011", "1/1/2012", freq="M")
new_prng = tm.round_trip_pickle(prng)
assert new_prng.freq == offsets.MonthEnd()
assert new_prng.freqstr == "M"
def test_map(self):
# test_map_dictlike generally tests
index = PeriodIndex([2005, 2007, 2009], freq="A")
result = index.map(lambda x: x.ordinal)
exp = Index([x.ordinal for x in index])
tm.assert_index_equal(result, exp)
def test_insert(self):
# GH 18295 (test missing)
expected = PeriodIndex(["2017Q1", NaT, "2017Q2", "2017Q3", "2017Q4"], freq="Q")
for na in (np.nan, NaT, None):
result = period_range("2017Q1", periods=4, freq="Q").insert(1, na)
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize(
"msg, key",
[
(r"Period\('2019', 'A-DEC'\), 'foo', 'bar'", (Period(2019), "foo", "bar")),
(r"Period\('2019', 'A-DEC'\), 'y1', 'bar'", (Period(2019), "y1", "bar")),
(r"Period\('2019', 'A-DEC'\), 'foo', 'z1'", (Period(2019), "foo", "z1")),
(
r"Period\('2018', 'A-DEC'\), Period\('2016', 'A-DEC'\), 'bar'",
(Period(2018), Period(2016), "bar"),
),
(r"Period\('2018', 'A-DEC'\), 'foo', 'y1'", (Period(2018), "foo", "y1")),
(
r"Period\('2017', 'A-DEC'\), 'foo', Period\('2015', 'A-DEC'\)",
(Period(2017), "foo", Period(2015)),
),
(r"Period\('2017', 'A-DEC'\), 'z1', 'bar'", (Period(2017), "z1", "bar")),
],
)
def test_contains_raise_error_if_period_index_is_in_multi_index(self, msg, key):
# issue 20684
"""
parse_time_string return parameter if type not matched.
PeriodIndex.get_loc takes returned value from parse_time_string as a tuple.
If first argument is Period and a tuple has 3 items,
process go on not raise exception
"""
df = DataFrame(
{
"A": [Period(2019), "x1", "x2"],
"B": [Period(2018), Period(2016), "y1"],
"C": [Period(2017), "z1", Period(2015)],
"V1": [1, 2, 3],
"V2": [10, 20, 30],
}
).set_index(["A", "B", "C"])
with pytest.raises(KeyError, match=msg):
df.loc[key]
def test_format_empty(self):
# GH35712
empty_idx = self._holder([], freq="A")
assert empty_idx.format() == []
assert empty_idx.format(name=True) == [""]
def test_maybe_convert_timedelta():
pi = PeriodIndex(["2000", "2001"], freq="D")
offset = offsets.Day(2)
assert pi._maybe_convert_timedelta(offset) == 2
assert pi._maybe_convert_timedelta(2) == 2
offset = offsets.BusinessDay()
msg = r"Input has different freq=B from PeriodIndex\(freq=D\)"
with pytest.raises(ValueError, match=msg):
pi._maybe_convert_timedelta(offset)
def test_is_monotonic_with_nat():
# GH#31437
# PeriodIndex.is_monotonic should behave analogously to DatetimeIndex,
# in particular never be monotonic when we have NaT
dti = date_range("2016-01-01", periods=3)
pi = dti.to_period("D")
tdi = Index(dti.view("timedelta64[ns]"))
for obj in [pi, pi._engine, dti, dti._engine, tdi, tdi._engine]:
if isinstance(obj, Index):
# i.e. not Engines
assert obj.is_monotonic
assert obj.is_monotonic_increasing
assert not obj.is_monotonic_decreasing
assert obj.is_unique
dti1 = dti.insert(0, NaT)
pi1 = dti1.to_period("D")
tdi1 = Index(dti1.view("timedelta64[ns]"))
for obj in [pi1, pi1._engine, dti1, dti1._engine, tdi1, tdi1._engine]:
if isinstance(obj, Index):
# i.e. not Engines
assert not obj.is_monotonic
assert not obj.is_monotonic_increasing
assert not obj.is_monotonic_decreasing
assert obj.is_unique
dti2 = dti.insert(3, NaT)
pi2 = dti2.to_period("H")
tdi2 = Index(dti2.view("timedelta64[ns]"))
for obj in [pi2, pi2._engine, dti2, dti2._engine, tdi2, tdi2._engine]:
if isinstance(obj, Index):
# i.e. not Engines
assert not obj.is_monotonic
assert not obj.is_monotonic_increasing
assert not obj.is_monotonic_decreasing
assert obj.is_unique
@pytest.mark.parametrize("array", [True, False])
def test_dunder_array(array):
obj = PeriodIndex(["2000-01-01", "2001-01-01"], freq="D")
if array:
obj = obj._data
expected = np.array([obj[0], obj[1]], dtype=object)
result = np.array(obj)
tm.assert_numpy_array_equal(result, expected)
result = np.asarray(obj)
tm.assert_numpy_array_equal(result, expected)
expected = obj.asi8
for dtype in ["i8", "int64", np.int64]:
result = np.array(obj, dtype=dtype)
tm.assert_numpy_array_equal(result, expected)
result = np.asarray(obj, dtype=dtype)
tm.assert_numpy_array_equal(result, expected)
for dtype in ["float64", "int32", "uint64"]:
msg = "argument must be"
with pytest.raises(TypeError, match=msg):
np.array(obj, dtype=dtype)
with pytest.raises(TypeError, match=msg):
np.array(obj, dtype=getattr(np, dtype))
| bsd-3-clause |
skymanaditya1/numpy | doc/example.py | 81 | 3581 | """This is the docstring for the example.py module. Modules names should
have short, all-lowercase names. The module name may have underscores if
this improves readability.
Every module should have a docstring at the very top of the file. The
module's docstring may extend over multiple lines. If your docstring does
extend over multiple lines, the closing three quotation marks must be on
a line by itself, preferably preceeded by a blank line.
"""
from __future__ import division, absolute_import, print_function
import os # standard library imports first
# Do NOT import using *, e.g. from numpy import *
#
# Import the module using
#
# import numpy
#
# instead or import individual functions as needed, e.g
#
# from numpy import array, zeros
#
# If you prefer the use of abbreviated module names, we suggest the
# convention used by NumPy itself::
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
# These abbreviated names are not to be used in docstrings; users must
# be able to paste and execute docstrings after importing only the
# numpy module itself, unabbreviated.
from my_module import my_func, other_func
def foo(var1, var2, long_var_name='hi') :
r"""A one-line summary that does not use variable names or the
function name.
Several sentences providing an extended description. Refer to
variables using back-ticks, e.g. `var`.
Parameters
----------
var1 : array_like
Array_like means all those objects -- lists, nested lists, etc. --
that can be converted to an array. We can also refer to
variables like `var1`.
var2 : int
The type above can either refer to an actual Python type
(e.g. ``int``), or describe the type of the variable in more
detail, e.g. ``(N,) ndarray`` or ``array_like``.
Long_variable_name : {'hi', 'ho'}, optional
Choices in brackets, default first when optional.
Returns
-------
type
Explanation of anonymous return value of type ``type``.
describe : type
Explanation of return value named `describe`.
out : type
Explanation of `out`.
Other Parameters
----------------
only_seldom_used_keywords : type
Explanation
common_parameters_listed_above : type
Explanation
Raises
------
BadException
Because you shouldn't have done that.
See Also
--------
otherfunc : relationship (optional)
newfunc : Relationship (optional), which could be fairly long, in which
case the line wraps here.
thirdfunc, fourthfunc, fifthfunc
Notes
-----
Notes about the implementation algorithm (if needed).
This can have multiple paragraphs.
You may include some math:
.. math:: X(e^{j\omega } ) = x(n)e^{ - j\omega n}
And even use a greek symbol like :math:`omega` inline.
References
----------
Cite the relevant literature, e.g. [1]_. You may also cite these
references in the notes section above.
.. [1] O. McNoleg, "The integration of GIS, remote sensing,
expert systems and adaptive co-kriging for environmental habitat
modelling of the Highland Haggis using object-oriented, fuzzy-logic
and neural-network techniques," Computers & Geosciences, vol. 22,
pp. 585-588, 1996.
Examples
--------
These are written in doctest format, and should illustrate how to
use the function.
>>> a=[1,2,3]
>>> print [x + 3 for x in a]
[4, 5, 6]
>>> print "a\n\nb"
a
b
"""
pass
| bsd-3-clause |
zooniverse/aggregation | experimental/paper/errorCheck.py | 2 | 1134 | #!/usr/bin/env python
__author__ = 'greg'
import pymongo
from aggregation import base_directory
from penguinAggregation import PenguinAggregation
import os
import sys
import numpy as np
import matplotlib.pyplot as plt
import urllib
import matplotlib.cbook as cbook
# add the paths necessary for clustering algorithm and ibcc - currently only works on Greg's computer
if os.path.exists("/home/ggdhines"):
sys.path.append("/home/ggdhines/PycharmProjects/reduction/experimental/clusteringAlg")
elif os.path.exists("/Users/greg"):
sys.path.append("/Users/greg/Code/reduction/experimental/clusteringAlg")
else:
sys.path.append("/home/greg/github/reduction/experimental/clusteringAlg")
from divisiveKmeans import DivisiveKmeans
from zeroFix import ZeroFix
clusterAlg = DivisiveKmeans().__fit__
fixAlg = ZeroFix().__fix__
penguin = PenguinAggregation()
client = pymongo.MongoClient()
db = client['penguin_2015-01-18']
collection = db["penguin_classifications"]
subject_collection = db["penguin_subjects"]
accuracy = []
numGold = []
penguin.__readin_subject__("APZ00035nr")
penguin.__display_raw_markings__("APZ00035nr") | apache-2.0 |
krafczyk/spack | var/spack/repos/builtin/packages/py-sncosmo/package.py | 5 | 2131 | ##############################################################################
# Copyright (c) 2013-2018, Lawrence Livermore National Security, LLC.
# Produced at the Lawrence Livermore National Laboratory.
#
# This file is part of Spack.
# Created by Todd Gamblin, [email protected], All rights reserved.
# LLNL-CODE-647188
#
# For details, see https://github.com/spack/spack
# Please also see the NOTICE and LICENSE files for our notice and the LGPL.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License (as
# published by the Free Software Foundation) version 2.1, February 1999.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and
# conditions of the GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
##############################################################################
from spack import *
class PySncosmo(PythonPackage):
"""SNCosmo is a Python library for high-level supernova cosmology
analysis."""
homepage = "http://sncosmo.readthedocs.io/"
url = "https://pypi.io/packages/source/s/sncosmo/sncosmo-1.2.0.tar.gz"
version('1.2.0', '028e6d1dc84ab1c17d2f3b6378b2cb1e')
# Required dependencies
# py-sncosmo binaries are duplicates of those from py-astropy
extends('python', ignore=r'bin/.*')
depends_on('py-setuptools', type='build')
depends_on('py-numpy', type=('build', 'run'))
depends_on('py-scipy', type=('build', 'run'))
depends_on('py-astropy', type=('build', 'run'))
# Recommended dependencies
depends_on('py-matplotlib', type=('build', 'run'))
depends_on('py-iminuit', type=('build', 'run'))
depends_on('py-emcee', type=('build', 'run'))
depends_on('py-nestle', type=('build', 'run'))
| lgpl-2.1 |
vdods/heisenberg | heisenberg/self_similar/plot.py | 2 | 1058 | import matplotlib.pyplot as plt
import pathlib
import typing
class Plot:
def __init__ (self, *, row_count:int, col_count:int, size:float) -> None:
self.fig, self.axis_vv = plt.subplots(
row_count,
col_count,
squeeze=False,
figsize=(size*col_count,size*row_count),
)
def axis (self, row:int, col:int) -> typing.Any: # TODO: Real type
return self.axis_vv[row][col]
def savefig (self, plot_p:pathlib.Path, *, tight_layout_kwargs:typing.Dict[str,typing.Any]=dict()) -> None:
self.fig.tight_layout(**tight_layout_kwargs)
plot_p.parent.mkdir(parents=True, exist_ok=True)
plt.savefig(str(plot_p), bbox_inches='tight')
print(f'wrote to file "{plot_p}"')
# VERY important to do this -- otherwise your memory will slowly fill up!
# Not sure which one is actually sufficient -- apparently none of them are, YAY!
plt.clf()
plt.cla()
plt.close()
plt.close(self.fig)
#del fig
#del axis_vv
| mit |
kagayakidan/scikit-learn | sklearn/tests/test_isotonic.py | 230 | 11087 | import numpy as np
import pickle
from sklearn.isotonic import (check_increasing, isotonic_regression,
IsotonicRegression)
from sklearn.utils.testing import (assert_raises, assert_array_equal,
assert_true, assert_false, assert_equal,
assert_array_almost_equal,
assert_warns_message, assert_no_warnings)
from sklearn.utils import shuffle
def test_permutation_invariance():
# check that fit is permuation invariant.
# regression test of missing sorting of sample-weights
ir = IsotonicRegression()
x = [1, 2, 3, 4, 5, 6, 7]
y = [1, 41, 51, 1, 2, 5, 24]
sample_weight = [1, 2, 3, 4, 5, 6, 7]
x_s, y_s, sample_weight_s = shuffle(x, y, sample_weight, random_state=0)
y_transformed = ir.fit_transform(x, y, sample_weight=sample_weight)
y_transformed_s = ir.fit(x_s, y_s, sample_weight=sample_weight_s).transform(x)
assert_array_equal(y_transformed, y_transformed_s)
def test_check_increasing_up():
x = [0, 1, 2, 3, 4, 5]
y = [0, 1.5, 2.77, 8.99, 8.99, 50]
# Check that we got increasing=True and no warnings
is_increasing = assert_no_warnings(check_increasing, x, y)
assert_true(is_increasing)
def test_check_increasing_up_extreme():
x = [0, 1, 2, 3, 4, 5]
y = [0, 1, 2, 3, 4, 5]
# Check that we got increasing=True and no warnings
is_increasing = assert_no_warnings(check_increasing, x, y)
assert_true(is_increasing)
def test_check_increasing_down():
x = [0, 1, 2, 3, 4, 5]
y = [0, -1.5, -2.77, -8.99, -8.99, -50]
# Check that we got increasing=False and no warnings
is_increasing = assert_no_warnings(check_increasing, x, y)
assert_false(is_increasing)
def test_check_increasing_down_extreme():
x = [0, 1, 2, 3, 4, 5]
y = [0, -1, -2, -3, -4, -5]
# Check that we got increasing=False and no warnings
is_increasing = assert_no_warnings(check_increasing, x, y)
assert_false(is_increasing)
def test_check_ci_warn():
x = [0, 1, 2, 3, 4, 5]
y = [0, -1, 2, -3, 4, -5]
# Check that we got increasing=False and CI interval warning
is_increasing = assert_warns_message(UserWarning, "interval",
check_increasing,
x, y)
assert_false(is_increasing)
def test_isotonic_regression():
y = np.array([3, 7, 5, 9, 8, 7, 10])
y_ = np.array([3, 6, 6, 8, 8, 8, 10])
assert_array_equal(y_, isotonic_regression(y))
x = np.arange(len(y))
ir = IsotonicRegression(y_min=0., y_max=1.)
ir.fit(x, y)
assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y))
assert_array_equal(ir.transform(x), ir.predict(x))
# check that it is immune to permutation
perm = np.random.permutation(len(y))
ir = IsotonicRegression(y_min=0., y_max=1.)
assert_array_equal(ir.fit_transform(x[perm], y[perm]),
ir.fit_transform(x, y)[perm])
assert_array_equal(ir.transform(x[perm]), ir.transform(x)[perm])
# check we don't crash when all x are equal:
ir = IsotonicRegression()
assert_array_equal(ir.fit_transform(np.ones(len(x)), y), np.mean(y))
def test_isotonic_regression_ties_min():
# Setup examples with ties on minimum
x = [0, 1, 1, 2, 3, 4, 5]
y = [0, 1, 2, 3, 4, 5, 6]
y_true = [0, 1.5, 1.5, 3, 4, 5, 6]
# Check that we get identical results for fit/transform and fit_transform
ir = IsotonicRegression()
ir.fit(x, y)
assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y))
assert_array_equal(y_true, ir.fit_transform(x, y))
def test_isotonic_regression_ties_max():
# Setup examples with ties on maximum
x = [1, 2, 3, 4, 5, 5]
y = [1, 2, 3, 4, 5, 6]
y_true = [1, 2, 3, 4, 5.5, 5.5]
# Check that we get identical results for fit/transform and fit_transform
ir = IsotonicRegression()
ir.fit(x, y)
assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y))
assert_array_equal(y_true, ir.fit_transform(x, y))
def test_isotonic_regression_ties_secondary_():
"""
Test isotonic regression fit, transform and fit_transform
against the "secondary" ties method and "pituitary" data from R
"isotone" package, as detailed in: J. d. Leeuw, K. Hornik, P. Mair,
Isotone Optimization in R: Pool-Adjacent-Violators Algorithm
(PAVA) and Active Set Methods
Set values based on pituitary example and
the following R command detailed in the paper above:
> library("isotone")
> data("pituitary")
> res1 <- gpava(pituitary$age, pituitary$size, ties="secondary")
> res1$x
`isotone` version: 1.0-2, 2014-09-07
R version: R version 3.1.1 (2014-07-10)
"""
x = [8, 8, 8, 10, 10, 10, 12, 12, 12, 14, 14]
y = [21, 23.5, 23, 24, 21, 25, 21.5, 22, 19, 23.5, 25]
y_true = [22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222,
22.22222, 22.22222, 22.22222, 24.25, 24.25]
# Check fit, transform and fit_transform
ir = IsotonicRegression()
ir.fit(x, y)
assert_array_almost_equal(ir.transform(x), y_true, 4)
assert_array_almost_equal(ir.fit_transform(x, y), y_true, 4)
def test_isotonic_regression_reversed():
y = np.array([10, 9, 10, 7, 6, 6.1, 5])
y_ = IsotonicRegression(increasing=False).fit_transform(
np.arange(len(y)), y)
assert_array_equal(np.ones(y_[:-1].shape), ((y_[:-1] - y_[1:]) >= 0))
def test_isotonic_regression_auto_decreasing():
# Set y and x for decreasing
y = np.array([10, 9, 10, 7, 6, 6.1, 5])
x = np.arange(len(y))
# Create model and fit_transform
ir = IsotonicRegression(increasing='auto')
y_ = assert_no_warnings(ir.fit_transform, x, y)
# Check that relationship decreases
is_increasing = y_[0] < y_[-1]
assert_false(is_increasing)
def test_isotonic_regression_auto_increasing():
# Set y and x for decreasing
y = np.array([5, 6.1, 6, 7, 10, 9, 10])
x = np.arange(len(y))
# Create model and fit_transform
ir = IsotonicRegression(increasing='auto')
y_ = assert_no_warnings(ir.fit_transform, x, y)
# Check that relationship increases
is_increasing = y_[0] < y_[-1]
assert_true(is_increasing)
def test_assert_raises_exceptions():
ir = IsotonicRegression()
rng = np.random.RandomState(42)
assert_raises(ValueError, ir.fit, [0, 1, 2], [5, 7, 3], [0.1, 0.6])
assert_raises(ValueError, ir.fit, [0, 1, 2], [5, 7])
assert_raises(ValueError, ir.fit, rng.randn(3, 10), [0, 1, 2])
assert_raises(ValueError, ir.transform, rng.randn(3, 10))
def test_isotonic_sample_weight_parameter_default_value():
# check if default value of sample_weight parameter is one
ir = IsotonicRegression()
# random test data
rng = np.random.RandomState(42)
n = 100
x = np.arange(n)
y = rng.randint(-50, 50, size=(n,)) + 50. * np.log(1 + np.arange(n))
# check if value is correctly used
weights = np.ones(n)
y_set_value = ir.fit_transform(x, y, sample_weight=weights)
y_default_value = ir.fit_transform(x, y)
assert_array_equal(y_set_value, y_default_value)
def test_isotonic_min_max_boundaries():
# check if min value is used correctly
ir = IsotonicRegression(y_min=2, y_max=4)
n = 6
x = np.arange(n)
y = np.arange(n)
y_test = [2, 2, 2, 3, 4, 4]
y_result = np.round(ir.fit_transform(x, y))
assert_array_equal(y_result, y_test)
def test_isotonic_sample_weight():
ir = IsotonicRegression()
x = [1, 2, 3, 4, 5, 6, 7]
y = [1, 41, 51, 1, 2, 5, 24]
sample_weight = [1, 2, 3, 4, 5, 6, 7]
expected_y = [1, 13.95, 13.95, 13.95, 13.95, 13.95, 24]
received_y = ir.fit_transform(x, y, sample_weight=sample_weight)
assert_array_equal(expected_y, received_y)
def test_isotonic_regression_oob_raise():
# Set y and x
y = np.array([3, 7, 5, 9, 8, 7, 10])
x = np.arange(len(y))
# Create model and fit
ir = IsotonicRegression(increasing='auto', out_of_bounds="raise")
ir.fit(x, y)
# Check that an exception is thrown
assert_raises(ValueError, ir.predict, [min(x) - 10, max(x) + 10])
def test_isotonic_regression_oob_clip():
# Set y and x
y = np.array([3, 7, 5, 9, 8, 7, 10])
x = np.arange(len(y))
# Create model and fit
ir = IsotonicRegression(increasing='auto', out_of_bounds="clip")
ir.fit(x, y)
# Predict from training and test x and check that min/max match.
y1 = ir.predict([min(x) - 10, max(x) + 10])
y2 = ir.predict(x)
assert_equal(max(y1), max(y2))
assert_equal(min(y1), min(y2))
def test_isotonic_regression_oob_nan():
# Set y and x
y = np.array([3, 7, 5, 9, 8, 7, 10])
x = np.arange(len(y))
# Create model and fit
ir = IsotonicRegression(increasing='auto', out_of_bounds="nan")
ir.fit(x, y)
# Predict from training and test x and check that we have two NaNs.
y1 = ir.predict([min(x) - 10, max(x) + 10])
assert_equal(sum(np.isnan(y1)), 2)
def test_isotonic_regression_oob_bad():
# Set y and x
y = np.array([3, 7, 5, 9, 8, 7, 10])
x = np.arange(len(y))
# Create model and fit
ir = IsotonicRegression(increasing='auto', out_of_bounds="xyz")
# Make sure that we throw an error for bad out_of_bounds value
assert_raises(ValueError, ir.fit, x, y)
def test_isotonic_regression_oob_bad_after():
# Set y and x
y = np.array([3, 7, 5, 9, 8, 7, 10])
x = np.arange(len(y))
# Create model and fit
ir = IsotonicRegression(increasing='auto', out_of_bounds="raise")
# Make sure that we throw an error for bad out_of_bounds value in transform
ir.fit(x, y)
ir.out_of_bounds = "xyz"
assert_raises(ValueError, ir.transform, x)
def test_isotonic_regression_pickle():
y = np.array([3, 7, 5, 9, 8, 7, 10])
x = np.arange(len(y))
# Create model and fit
ir = IsotonicRegression(increasing='auto', out_of_bounds="clip")
ir.fit(x, y)
ir_ser = pickle.dumps(ir, pickle.HIGHEST_PROTOCOL)
ir2 = pickle.loads(ir_ser)
np.testing.assert_array_equal(ir.predict(x), ir2.predict(x))
def test_isotonic_duplicate_min_entry():
x = [0, 0, 1]
y = [0, 0, 1]
ir = IsotonicRegression(increasing=True, out_of_bounds="clip")
ir.fit(x, y)
all_predictions_finite = np.all(np.isfinite(ir.predict(x)))
assert_true(all_predictions_finite)
def test_isotonic_zero_weight_loop():
# Test from @ogrisel's issue:
# https://github.com/scikit-learn/scikit-learn/issues/4297
# Get deterministic RNG with seed
rng = np.random.RandomState(42)
# Create regression and samples
regression = IsotonicRegression()
n_samples = 50
x = np.linspace(-3, 3, n_samples)
y = x + rng.uniform(size=n_samples)
# Get some random weights and zero out
w = rng.uniform(size=n_samples)
w[5:8] = 0
regression.fit(x, y, sample_weight=w)
# This will hang in failure case.
regression.fit(x, y, sample_weight=w)
| bsd-3-clause |
enigmampc/catalyst | catalyst/data/treasuries_can.py | 15 | 5257 | #
# Copyright 2013 Quantopian, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pandas as pd
import six
from toolz import curry
from toolz.curried.operator import add as prepend
COLUMN_NAMES = {
"V39063": '1month',
"V39065": '3month',
"V39066": '6month',
"V39067": '1year',
"V39051": '2year',
"V39052": '3year',
"V39053": '5year',
"V39054": '7year',
"V39055": '10year',
# Bank of Canada refers to this as 'Long' Rate, approximately 30 years.
"V39056": '30year',
}
BILL_IDS = ['V39063', 'V39065', 'V39066', 'V39067']
BOND_IDS = ['V39051', 'V39052', 'V39053', 'V39054', 'V39055', 'V39056']
@curry
def _format_url(instrument_type,
instrument_ids,
start_date,
end_date,
earliest_allowed_date):
"""
Format a URL for loading data from Bank of Canada.
"""
return (
"http://www.bankofcanada.ca/stats/results/csv"
"?lP=lookup_{instrument_type}_yields.php"
"&sR={restrict}"
"&se={instrument_ids}"
"&dF={start}"
"&dT={end}".format(
instrument_type=instrument_type,
instrument_ids='-'.join(map(prepend("L_"), instrument_ids)),
restrict=earliest_allowed_date.strftime("%Y-%m-%d"),
start=start_date.strftime("%Y-%m-%d"),
end=end_date.strftime("%Y-%m-%d"),
)
)
format_bill_url = _format_url('tbill', BILL_IDS)
format_bond_url = _format_url('bond', BOND_IDS)
def load_frame(url, skiprows):
"""
Load a DataFrame of data from a Bank of Canada site.
"""
return pd.read_csv(
url,
skiprows=skiprows,
skipinitialspace=True,
na_values=["Bank holiday", "Not available"],
parse_dates=["Date"],
index_col="Date",
).dropna(how='all') \
.tz_localize('UTC') \
.rename(columns=COLUMN_NAMES)
def check_known_inconsistencies(bill_data, bond_data):
"""
There are a couple quirks in the data provided by Bank of Canada.
Check that no new quirks have been introduced in the latest download.
"""
inconsistent_dates = bill_data.index.sym_diff(bond_data.index)
known_inconsistencies = [
# bill_data has an entry for 2010-02-15, which bond_data doesn't.
# bond_data has an entry for 2006-09-04, which bill_data doesn't.
# Both of these dates are bank holidays (Flag Day and Labor Day,
# respectively).
pd.Timestamp('2006-09-04', tz='UTC'),
pd.Timestamp('2010-02-15', tz='UTC'),
# 2013-07-25 comes back as "Not available" from the bills endpoint.
# This date doesn't seem to be a bank holiday, but the previous
# calendar implementation dropped this entry, so we drop it as well.
# If someone cares deeply about the integrity of the Canadian trading
# calendar, they may want to consider forward-filling here rather than
# dropping the row.
pd.Timestamp('2013-07-25', tz='UTC'),
]
unexpected_inconsistences = inconsistent_dates.drop(known_inconsistencies)
if len(unexpected_inconsistences):
in_bills = bill_data.index.difference(bond_data.index).difference(
known_inconsistencies
)
in_bonds = bond_data.index.difference(bill_data.index).difference(
known_inconsistencies
)
raise ValueError(
"Inconsistent dates for Canadian treasury bills vs bonds. \n"
"Dates with bills but not bonds: {in_bills}.\n"
"Dates with bonds but not bills: {in_bonds}.".format(
in_bills=in_bills,
in_bonds=in_bonds,
)
)
def earliest_possible_date():
"""
The earliest date for which we can load data from this module.
"""
today = pd.Timestamp('now', tz='UTC').normalize()
# Bank of Canada only has the last 10 years of data at any given time.
return today.replace(year=today.year - 10)
def get_treasury_data(start_date, end_date):
bill_data = load_frame(
format_bill_url(start_date, end_date, start_date),
# We skip fewer rows here because we query for fewer bill fields,
# which makes the header smaller.
skiprows=18,
)
bond_data = load_frame(
format_bond_url(start_date, end_date, start_date),
skiprows=22,
)
check_known_inconsistencies(bill_data, bond_data)
# dropna('any') removes the rows for which we only had data for one of
# bills/bonds.
out = pd.concat([bond_data, bill_data], axis=1).dropna(how='any')
assert set(out.columns) == set(six.itervalues(COLUMN_NAMES))
# Multiply by 0.01 to convert from percentages to expected output format.
return out * 0.01
| apache-2.0 |
sandeep-n/incubator-systemml | src/main/python/tests/test_mllearn_df.py | 4 | 5381 | #!/usr/bin/python
#-------------------------------------------------------------
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
#-------------------------------------------------------------
# To run:
# - Python 2: `PYSPARK_PYTHON=python2 spark-submit --master local[*] --driver-class-path SystemML.jar test_mllearn_df.py`
# - Python 3: `PYSPARK_PYTHON=python3 spark-submit --master local[*] --driver-class-path SystemML.jar test_mllearn_df.py`
# Make the `systemml` package importable
import os
import sys
path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "../")
sys.path.insert(0, path)
import unittest
import numpy as np
from pyspark.context import SparkContext
from pyspark.ml import Pipeline
from pyspark.ml.feature import HashingTF, Tokenizer
from pyspark.sql import SparkSession
from sklearn import datasets, metrics, neighbors
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn import linear_model
from sklearn.metrics import accuracy_score, r2_score
from systemml.mllearn import LinearRegression, LogisticRegression, NaiveBayes, SVM
sc = SparkContext()
sparkSession = SparkSession.builder.getOrCreate()
# Currently not integrated with JUnit test
# ~/spark-1.6.1-scala-2.11/bin/spark-submit --master local[*] --driver-class-path SystemML.jar test.py
class TestMLLearn(unittest.TestCase):
def test_logistic_sk2(self):
digits = datasets.load_digits()
X_digits = digits.data
y_digits = digits.target
n_samples = len(X_digits)
X_train = X_digits[:int(.9 * n_samples)]
y_train = y_digits[:int(.9 * n_samples)]
X_test = X_digits[int(.9 * n_samples):]
y_test = y_digits[int(.9 * n_samples):]
# Convert to DataFrame for i/o: current way to transfer data
logistic = LogisticRegression(sparkSession, transferUsingDF=True)
logistic.fit(X_train, y_train)
mllearn_predicted = logistic.predict(X_test)
sklearn_logistic = linear_model.LogisticRegression()
sklearn_logistic.fit(X_train, y_train)
self.failUnless(accuracy_score(sklearn_logistic.predict(X_test), mllearn_predicted) > 0.95) # We are comparable to a similar algorithm in scikit learn
def test_linear_regression(self):
diabetes = datasets.load_diabetes()
diabetes_X = diabetes.data[:, np.newaxis, 2]
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]
regr = LinearRegression(sparkSession, solver='direct-solve', transferUsingDF=True)
regr.fit(diabetes_X_train, diabetes_y_train)
mllearn_predicted = regr.predict(diabetes_X_test)
sklearn_regr = linear_model.LinearRegression()
sklearn_regr.fit(diabetes_X_train, diabetes_y_train)
self.failUnless(r2_score(sklearn_regr.predict(diabetes_X_test), mllearn_predicted) > 0.95) # We are comparable to a similar algorithm in scikit learn
def test_linear_regression_cg(self):
diabetes = datasets.load_diabetes()
diabetes_X = diabetes.data[:, np.newaxis, 2]
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]
regr = LinearRegression(sparkSession, solver='newton-cg', transferUsingDF=True)
regr.fit(diabetes_X_train, diabetes_y_train)
mllearn_predicted = regr.predict(diabetes_X_test)
sklearn_regr = linear_model.LinearRegression()
sklearn_regr.fit(diabetes_X_train, diabetes_y_train)
self.failUnless(r2_score(sklearn_regr.predict(diabetes_X_test), mllearn_predicted) > 0.95) # We are comparable to a similar algorithm in scikit learn
def test_svm_sk2(self):
digits = datasets.load_digits()
X_digits = digits.data
y_digits = digits.target
n_samples = len(X_digits)
X_train = X_digits[:int(.9 * n_samples)]
y_train = y_digits[:int(.9 * n_samples)]
X_test = X_digits[int(.9 * n_samples):]
y_test = y_digits[int(.9 * n_samples):]
svm = SVM(sparkSession, is_multi_class=True, transferUsingDF=True)
mllearn_predicted = svm.fit(X_train, y_train).predict(X_test)
from sklearn import linear_model, svm
clf = svm.LinearSVC()
sklearn_predicted = clf.fit(X_train, y_train).predict(X_test)
self.failUnless(accuracy_score(sklearn_predicted, mllearn_predicted) > 0.95 )
if __name__ == '__main__':
unittest.main()
| apache-2.0 |
bendudson/BOUT | tools/pylib/post_bout/pb_nonlinear.py | 2 | 3020 | #some function to plot nonlinear stuff
from pb_corral import LinRes
from ListDict import ListDictKey, ListDictFilt
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
import matplotlib.artist as artist
import matplotlib.ticker as ticker
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.figure import Figure
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.backends.backend_pdf import PdfPages
from reportlab.platypus import *
from reportlab.lib.styles import getSampleStyleSheet
from reportlab.rl_config import defaultPageSize
from reportlab.lib.units import inch
from reportlab.graphics.charts.linecharts import HorizontalLineChart
from reportlab.graphics.shapes import Drawing
from reportlab.graphics.charts.lineplots import LinePlot
from reportlab.graphics.widgets.markers import makeMarker
from reportlab.lib import colors
from replab_x_vs_y import RL_Plot
from matplotlib.ticker import ScalarFormatter, FormatStrFormatter, MultipleLocator
class NLinResDraw(LinRes):
def __init__(self,alldb):
LinRes.__init__(self,alldb)
def plotnlrhs(self,pp,field='Ni',yscale='linear',clip=0,
xaxis='t',xscale='linear',xrange=1):
colors = ['b','g','r','c','m','y','k','b','g','r','c','m','y','k']
Modes = subset(self.db,'field',[field]) #pick field
comp ='ave'
fig1 = plt.figure()
adj = fig1.subplots_adjust(hspace=0.4,wspace=0.4)
fig1.suptitle('Nonlinear contribution for ' + field)
props = dict( alpha=0.8, edgecolors='none')
Nplots = self.nrun
k=0
for j in list(set(Modes.path).union()):
s = subset(Modes.db,'path',[j]) #pick a run folder - many modes
dz = s.dz[0]
data = s.ave[0]['nl']
x = np.array(range(data.size))
ax =fig1.add_subplot(round(Nplots/2.0 + 1.0),2,k+1)
ax.set_ylabel(r'$\frac{ddt_N}{ddt}$',fontsize=12,rotation='horizontal')
k+=1
ax.grid(True,linestyle='-',color='.75')
try:
ax.set_yscale(yscale,linthreshy=1e-13)
except:
ax.set_yscale('linear')
i=1
ax.plot(x,data.flatten(),
c=cm.jet(.2*i),linestyle='-')
#data = np.array(ListDictKey(s.db,comp)) #pick component should be ok for a fixed dz key
# we are not interested in looping over all modes
fig1.savefig(pp,format='pdf')
plt.close(fig1)
#return 0
class subset(NLinResDraw):
def __init__(self,alldb,key,valuelist,model=False):
selection = ListDictFilt(alldb,key,valuelist)
if len(selection) !=0:
LinRes.__init__(self,selection)
self.skey = key
if model==True:
self.model()
else:
LinRes.__init__(self,alldb)
if model==True:
self.model()
| gpl-3.0 |
fabianp/scikit-learn | sklearn/utils/arpack.py | 265 | 64837 | """
This contains a copy of the future version of
scipy.sparse.linalg.eigen.arpack.eigsh
It's an upgraded wrapper of the ARPACK library which
allows the use of shift-invert mode for symmetric matrices.
Find a few eigenvectors and eigenvalues of a matrix.
Uses ARPACK: http://www.caam.rice.edu/software/ARPACK/
"""
# Wrapper implementation notes
#
# ARPACK Entry Points
# -------------------
# The entry points to ARPACK are
# - (s,d)seupd : single and double precision symmetric matrix
# - (s,d,c,z)neupd: single,double,complex,double complex general matrix
# This wrapper puts the *neupd (general matrix) interfaces in eigs()
# and the *seupd (symmetric matrix) in eigsh().
# There is no Hermetian complex/double complex interface.
# To find eigenvalues of a Hermetian matrix you
# must use eigs() and not eigsh()
# It might be desirable to handle the Hermetian case differently
# and, for example, return real eigenvalues.
# Number of eigenvalues returned and complex eigenvalues
# ------------------------------------------------------
# The ARPACK nonsymmetric real and double interface (s,d)naupd return
# eigenvalues and eigenvectors in real (float,double) arrays.
# Since the eigenvalues and eigenvectors are, in general, complex
# ARPACK puts the real and imaginary parts in consecutive entries
# in real-valued arrays. This wrapper puts the real entries
# into complex data types and attempts to return the requested eigenvalues
# and eigenvectors.
# Solver modes
# ------------
# ARPACK and handle shifted and shift-inverse computations
# for eigenvalues by providing a shift (sigma) and a solver.
__docformat__ = "restructuredtext en"
__all__ = ['eigs', 'eigsh', 'svds', 'ArpackError', 'ArpackNoConvergence']
import warnings
from scipy.sparse.linalg.eigen.arpack import _arpack
import numpy as np
from scipy.sparse.linalg.interface import aslinearoperator, LinearOperator
from scipy.sparse import identity, isspmatrix, isspmatrix_csr
from scipy.linalg import lu_factor, lu_solve
from scipy.sparse.sputils import isdense
from scipy.sparse.linalg import gmres, splu
import scipy
from distutils.version import LooseVersion
_type_conv = {'f': 's', 'd': 'd', 'F': 'c', 'D': 'z'}
_ndigits = {'f': 5, 'd': 12, 'F': 5, 'D': 12}
DNAUPD_ERRORS = {
0: "Normal exit.",
1: "Maximum number of iterations taken. "
"All possible eigenvalues of OP has been found. IPARAM(5) "
"returns the number of wanted converged Ritz values.",
2: "No longer an informational error. Deprecated starting "
"with release 2 of ARPACK.",
3: "No shifts could be applied during a cycle of the "
"Implicitly restarted Arnoldi iteration. One possibility "
"is to increase the size of NCV relative to NEV. ",
-1: "N must be positive.",
-2: "NEV must be positive.",
-3: "NCV-NEV >= 2 and less than or equal to N.",
-4: "The maximum number of Arnoldi update iterations allowed "
"must be greater than zero.",
-5: " WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'",
-6: "BMAT must be one of 'I' or 'G'.",
-7: "Length of private work array WORKL is not sufficient.",
-8: "Error return from LAPACK eigenvalue calculation;",
-9: "Starting vector is zero.",
-10: "IPARAM(7) must be 1,2,3,4.",
-11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.",
-12: "IPARAM(1) must be equal to 0 or 1.",
-13: "NEV and WHICH = 'BE' are incompatible.",
-9999: "Could not build an Arnoldi factorization. "
"IPARAM(5) returns the size of the current Arnoldi "
"factorization. The user is advised to check that "
"enough workspace and array storage has been allocated."
}
SNAUPD_ERRORS = DNAUPD_ERRORS
ZNAUPD_ERRORS = DNAUPD_ERRORS.copy()
ZNAUPD_ERRORS[-10] = "IPARAM(7) must be 1,2,3."
CNAUPD_ERRORS = ZNAUPD_ERRORS
DSAUPD_ERRORS = {
0: "Normal exit.",
1: "Maximum number of iterations taken. "
"All possible eigenvalues of OP has been found.",
2: "No longer an informational error. Deprecated starting with "
"release 2 of ARPACK.",
3: "No shifts could be applied during a cycle of the Implicitly "
"restarted Arnoldi iteration. One possibility is to increase "
"the size of NCV relative to NEV. ",
-1: "N must be positive.",
-2: "NEV must be positive.",
-3: "NCV must be greater than NEV and less than or equal to N.",
-4: "The maximum number of Arnoldi update iterations allowed "
"must be greater than zero.",
-5: "WHICH must be one of 'LM', 'SM', 'LA', 'SA' or 'BE'.",
-6: "BMAT must be one of 'I' or 'G'.",
-7: "Length of private work array WORKL is not sufficient.",
-8: "Error return from trid. eigenvalue calculation; "
"Informational error from LAPACK routine dsteqr .",
-9: "Starting vector is zero.",
-10: "IPARAM(7) must be 1,2,3,4,5.",
-11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.",
-12: "IPARAM(1) must be equal to 0 or 1.",
-13: "NEV and WHICH = 'BE' are incompatible. ",
-9999: "Could not build an Arnoldi factorization. "
"IPARAM(5) returns the size of the current Arnoldi "
"factorization. The user is advised to check that "
"enough workspace and array storage has been allocated.",
}
SSAUPD_ERRORS = DSAUPD_ERRORS
DNEUPD_ERRORS = {
0: "Normal exit.",
1: "The Schur form computed by LAPACK routine dlahqr "
"could not be reordered by LAPACK routine dtrsen. "
"Re-enter subroutine dneupd with IPARAM(5)NCV and "
"increase the size of the arrays DR and DI to have "
"dimension at least dimension NCV and allocate at least NCV "
"columns for Z. NOTE: Not necessary if Z and V share "
"the same space. Please notify the authors if this error "
"occurs.",
-1: "N must be positive.",
-2: "NEV must be positive.",
-3: "NCV-NEV >= 2 and less than or equal to N.",
-5: "WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'",
-6: "BMAT must be one of 'I' or 'G'.",
-7: "Length of private work WORKL array is not sufficient.",
-8: "Error return from calculation of a real Schur form. "
"Informational error from LAPACK routine dlahqr .",
-9: "Error return from calculation of eigenvectors. "
"Informational error from LAPACK routine dtrevc.",
-10: "IPARAM(7) must be 1,2,3,4.",
-11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.",
-12: "HOWMNY = 'S' not yet implemented",
-13: "HOWMNY must be one of 'A' or 'P' if RVEC = .true.",
-14: "DNAUPD did not find any eigenvalues to sufficient "
"accuracy.",
-15: "DNEUPD got a different count of the number of converged "
"Ritz values than DNAUPD got. This indicates the user "
"probably made an error in passing data from DNAUPD to "
"DNEUPD or that the data was modified before entering "
"DNEUPD",
}
SNEUPD_ERRORS = DNEUPD_ERRORS.copy()
SNEUPD_ERRORS[1] = ("The Schur form computed by LAPACK routine slahqr "
"could not be reordered by LAPACK routine strsen . "
"Re-enter subroutine dneupd with IPARAM(5)=NCV and "
"increase the size of the arrays DR and DI to have "
"dimension at least dimension NCV and allocate at least "
"NCV columns for Z. NOTE: Not necessary if Z and V share "
"the same space. Please notify the authors if this error "
"occurs.")
SNEUPD_ERRORS[-14] = ("SNAUPD did not find any eigenvalues to sufficient "
"accuracy.")
SNEUPD_ERRORS[-15] = ("SNEUPD got a different count of the number of "
"converged Ritz values than SNAUPD got. This indicates "
"the user probably made an error in passing data from "
"SNAUPD to SNEUPD or that the data was modified before "
"entering SNEUPD")
ZNEUPD_ERRORS = {0: "Normal exit.",
1: "The Schur form computed by LAPACK routine csheqr "
"could not be reordered by LAPACK routine ztrsen. "
"Re-enter subroutine zneupd with IPARAM(5)=NCV and "
"increase the size of the array D to have "
"dimension at least dimension NCV and allocate at least "
"NCV columns for Z. NOTE: Not necessary if Z and V share "
"the same space. Please notify the authors if this error "
"occurs.",
-1: "N must be positive.",
-2: "NEV must be positive.",
-3: "NCV-NEV >= 1 and less than or equal to N.",
-5: "WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'",
-6: "BMAT must be one of 'I' or 'G'.",
-7: "Length of private work WORKL array is not sufficient.",
-8: "Error return from LAPACK eigenvalue calculation. "
"This should never happened.",
-9: "Error return from calculation of eigenvectors. "
"Informational error from LAPACK routine ztrevc.",
-10: "IPARAM(7) must be 1,2,3",
-11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.",
-12: "HOWMNY = 'S' not yet implemented",
-13: "HOWMNY must be one of 'A' or 'P' if RVEC = .true.",
-14: "ZNAUPD did not find any eigenvalues to sufficient "
"accuracy.",
-15: "ZNEUPD got a different count of the number of "
"converged Ritz values than ZNAUPD got. This "
"indicates the user probably made an error in passing "
"data from ZNAUPD to ZNEUPD or that the data was "
"modified before entering ZNEUPD"}
CNEUPD_ERRORS = ZNEUPD_ERRORS.copy()
CNEUPD_ERRORS[-14] = ("CNAUPD did not find any eigenvalues to sufficient "
"accuracy.")
CNEUPD_ERRORS[-15] = ("CNEUPD got a different count of the number of "
"converged Ritz values than CNAUPD got. This indicates "
"the user probably made an error in passing data from "
"CNAUPD to CNEUPD or that the data was modified before "
"entering CNEUPD")
DSEUPD_ERRORS = {
0: "Normal exit.",
-1: "N must be positive.",
-2: "NEV must be positive.",
-3: "NCV must be greater than NEV and less than or equal to N.",
-5: "WHICH must be one of 'LM', 'SM', 'LA', 'SA' or 'BE'.",
-6: "BMAT must be one of 'I' or 'G'.",
-7: "Length of private work WORKL array is not sufficient.",
-8: ("Error return from trid. eigenvalue calculation; "
"Information error from LAPACK routine dsteqr."),
-9: "Starting vector is zero.",
-10: "IPARAM(7) must be 1,2,3,4,5.",
-11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.",
-12: "NEV and WHICH = 'BE' are incompatible.",
-14: "DSAUPD did not find any eigenvalues to sufficient accuracy.",
-15: "HOWMNY must be one of 'A' or 'S' if RVEC = .true.",
-16: "HOWMNY = 'S' not yet implemented",
-17: ("DSEUPD got a different count of the number of converged "
"Ritz values than DSAUPD got. This indicates the user "
"probably made an error in passing data from DSAUPD to "
"DSEUPD or that the data was modified before entering "
"DSEUPD.")
}
SSEUPD_ERRORS = DSEUPD_ERRORS.copy()
SSEUPD_ERRORS[-14] = ("SSAUPD did not find any eigenvalues "
"to sufficient accuracy.")
SSEUPD_ERRORS[-17] = ("SSEUPD got a different count of the number of "
"converged "
"Ritz values than SSAUPD got. This indicates the user "
"probably made an error in passing data from SSAUPD to "
"SSEUPD or that the data was modified before entering "
"SSEUPD.")
_SAUPD_ERRORS = {'d': DSAUPD_ERRORS,
's': SSAUPD_ERRORS}
_NAUPD_ERRORS = {'d': DNAUPD_ERRORS,
's': SNAUPD_ERRORS,
'z': ZNAUPD_ERRORS,
'c': CNAUPD_ERRORS}
_SEUPD_ERRORS = {'d': DSEUPD_ERRORS,
's': SSEUPD_ERRORS}
_NEUPD_ERRORS = {'d': DNEUPD_ERRORS,
's': SNEUPD_ERRORS,
'z': ZNEUPD_ERRORS,
'c': CNEUPD_ERRORS}
# accepted values of parameter WHICH in _SEUPD
_SEUPD_WHICH = ['LM', 'SM', 'LA', 'SA', 'BE']
# accepted values of parameter WHICH in _NAUPD
_NEUPD_WHICH = ['LM', 'SM', 'LR', 'SR', 'LI', 'SI']
class ArpackError(RuntimeError):
"""
ARPACK error
"""
def __init__(self, info, infodict=_NAUPD_ERRORS):
msg = infodict.get(info, "Unknown error")
RuntimeError.__init__(self, "ARPACK error %d: %s" % (info, msg))
class ArpackNoConvergence(ArpackError):
"""
ARPACK iteration did not converge
Attributes
----------
eigenvalues : ndarray
Partial result. Converged eigenvalues.
eigenvectors : ndarray
Partial result. Converged eigenvectors.
"""
def __init__(self, msg, eigenvalues, eigenvectors):
ArpackError.__init__(self, -1, {-1: msg})
self.eigenvalues = eigenvalues
self.eigenvectors = eigenvectors
class _ArpackParams(object):
def __init__(self, n, k, tp, mode=1, sigma=None,
ncv=None, v0=None, maxiter=None, which="LM", tol=0):
if k <= 0:
raise ValueError("k must be positive, k=%d" % k)
if maxiter is None:
maxiter = n * 10
if maxiter <= 0:
raise ValueError("maxiter must be positive, maxiter=%d" % maxiter)
if tp not in 'fdFD':
raise ValueError("matrix type must be 'f', 'd', 'F', or 'D'")
if v0 is not None:
# ARPACK overwrites its initial resid, make a copy
self.resid = np.array(v0, copy=True)
info = 1
else:
self.resid = np.zeros(n, tp)
info = 0
if sigma is None:
#sigma not used
self.sigma = 0
else:
self.sigma = sigma
if ncv is None:
ncv = 2 * k + 1
ncv = min(ncv, n)
self.v = np.zeros((n, ncv), tp) # holds Ritz vectors
self.iparam = np.zeros(11, "int")
# set solver mode and parameters
ishfts = 1
self.mode = mode
self.iparam[0] = ishfts
self.iparam[2] = maxiter
self.iparam[3] = 1
self.iparam[6] = mode
self.n = n
self.tol = tol
self.k = k
self.maxiter = maxiter
self.ncv = ncv
self.which = which
self.tp = tp
self.info = info
self.converged = False
self.ido = 0
def _raise_no_convergence(self):
msg = "No convergence (%d iterations, %d/%d eigenvectors converged)"
k_ok = self.iparam[4]
num_iter = self.iparam[2]
try:
ev, vec = self.extract(True)
except ArpackError as err:
msg = "%s [%s]" % (msg, err)
ev = np.zeros((0,))
vec = np.zeros((self.n, 0))
k_ok = 0
raise ArpackNoConvergence(msg % (num_iter, k_ok, self.k), ev, vec)
class _SymmetricArpackParams(_ArpackParams):
def __init__(self, n, k, tp, matvec, mode=1, M_matvec=None,
Minv_matvec=None, sigma=None,
ncv=None, v0=None, maxiter=None, which="LM", tol=0):
# The following modes are supported:
# mode = 1:
# Solve the standard eigenvalue problem:
# A*x = lambda*x :
# A - symmetric
# Arguments should be
# matvec = left multiplication by A
# M_matvec = None [not used]
# Minv_matvec = None [not used]
#
# mode = 2:
# Solve the general eigenvalue problem:
# A*x = lambda*M*x
# A - symmetric
# M - symmetric positive definite
# Arguments should be
# matvec = left multiplication by A
# M_matvec = left multiplication by M
# Minv_matvec = left multiplication by M^-1
#
# mode = 3:
# Solve the general eigenvalue problem in shift-invert mode:
# A*x = lambda*M*x
# A - symmetric
# M - symmetric positive semi-definite
# Arguments should be
# matvec = None [not used]
# M_matvec = left multiplication by M
# or None, if M is the identity
# Minv_matvec = left multiplication by [A-sigma*M]^-1
#
# mode = 4:
# Solve the general eigenvalue problem in Buckling mode:
# A*x = lambda*AG*x
# A - symmetric positive semi-definite
# AG - symmetric indefinite
# Arguments should be
# matvec = left multiplication by A
# M_matvec = None [not used]
# Minv_matvec = left multiplication by [A-sigma*AG]^-1
#
# mode = 5:
# Solve the general eigenvalue problem in Cayley-transformed mode:
# A*x = lambda*M*x
# A - symmetric
# M - symmetric positive semi-definite
# Arguments should be
# matvec = left multiplication by A
# M_matvec = left multiplication by M
# or None, if M is the identity
# Minv_matvec = left multiplication by [A-sigma*M]^-1
if mode == 1:
if matvec is None:
raise ValueError("matvec must be specified for mode=1")
if M_matvec is not None:
raise ValueError("M_matvec cannot be specified for mode=1")
if Minv_matvec is not None:
raise ValueError("Minv_matvec cannot be specified for mode=1")
self.OP = matvec
self.B = lambda x: x
self.bmat = 'I'
elif mode == 2:
if matvec is None:
raise ValueError("matvec must be specified for mode=2")
if M_matvec is None:
raise ValueError("M_matvec must be specified for mode=2")
if Minv_matvec is None:
raise ValueError("Minv_matvec must be specified for mode=2")
self.OP = lambda x: Minv_matvec(matvec(x))
self.OPa = Minv_matvec
self.OPb = matvec
self.B = M_matvec
self.bmat = 'G'
elif mode == 3:
if matvec is not None:
raise ValueError("matvec must not be specified for mode=3")
if Minv_matvec is None:
raise ValueError("Minv_matvec must be specified for mode=3")
if M_matvec is None:
self.OP = Minv_matvec
self.OPa = Minv_matvec
self.B = lambda x: x
self.bmat = 'I'
else:
self.OP = lambda x: Minv_matvec(M_matvec(x))
self.OPa = Minv_matvec
self.B = M_matvec
self.bmat = 'G'
elif mode == 4:
if matvec is None:
raise ValueError("matvec must be specified for mode=4")
if M_matvec is not None:
raise ValueError("M_matvec must not be specified for mode=4")
if Minv_matvec is None:
raise ValueError("Minv_matvec must be specified for mode=4")
self.OPa = Minv_matvec
self.OP = lambda x: self.OPa(matvec(x))
self.B = matvec
self.bmat = 'G'
elif mode == 5:
if matvec is None:
raise ValueError("matvec must be specified for mode=5")
if Minv_matvec is None:
raise ValueError("Minv_matvec must be specified for mode=5")
self.OPa = Minv_matvec
self.A_matvec = matvec
if M_matvec is None:
self.OP = lambda x: Minv_matvec(matvec(x) + sigma * x)
self.B = lambda x: x
self.bmat = 'I'
else:
self.OP = lambda x: Minv_matvec(matvec(x)
+ sigma * M_matvec(x))
self.B = M_matvec
self.bmat = 'G'
else:
raise ValueError("mode=%i not implemented" % mode)
if which not in _SEUPD_WHICH:
raise ValueError("which must be one of %s"
% ' '.join(_SEUPD_WHICH))
if k >= n:
raise ValueError("k must be less than rank(A), k=%d" % k)
_ArpackParams.__init__(self, n, k, tp, mode, sigma,
ncv, v0, maxiter, which, tol)
if self.ncv > n or self.ncv <= k:
raise ValueError("ncv must be k<ncv<=n, ncv=%s" % self.ncv)
self.workd = np.zeros(3 * n, self.tp)
self.workl = np.zeros(self.ncv * (self.ncv + 8), self.tp)
ltr = _type_conv[self.tp]
if ltr not in ["s", "d"]:
raise ValueError("Input matrix is not real-valued.")
self._arpack_solver = _arpack.__dict__[ltr + 'saupd']
self._arpack_extract = _arpack.__dict__[ltr + 'seupd']
self.iterate_infodict = _SAUPD_ERRORS[ltr]
self.extract_infodict = _SEUPD_ERRORS[ltr]
self.ipntr = np.zeros(11, "int")
def iterate(self):
self.ido, self.resid, self.v, self.iparam, self.ipntr, self.info = \
self._arpack_solver(self.ido, self.bmat, self.which, self.k,
self.tol, self.resid, self.v, self.iparam,
self.ipntr, self.workd, self.workl, self.info)
xslice = slice(self.ipntr[0] - 1, self.ipntr[0] - 1 + self.n)
yslice = slice(self.ipntr[1] - 1, self.ipntr[1] - 1 + self.n)
if self.ido == -1:
# initialization
self.workd[yslice] = self.OP(self.workd[xslice])
elif self.ido == 1:
# compute y = Op*x
if self.mode == 1:
self.workd[yslice] = self.OP(self.workd[xslice])
elif self.mode == 2:
self.workd[xslice] = self.OPb(self.workd[xslice])
self.workd[yslice] = self.OPa(self.workd[xslice])
elif self.mode == 5:
Bxslice = slice(self.ipntr[2] - 1, self.ipntr[2] - 1 + self.n)
Ax = self.A_matvec(self.workd[xslice])
self.workd[yslice] = self.OPa(Ax + (self.sigma *
self.workd[Bxslice]))
else:
Bxslice = slice(self.ipntr[2] - 1, self.ipntr[2] - 1 + self.n)
self.workd[yslice] = self.OPa(self.workd[Bxslice])
elif self.ido == 2:
self.workd[yslice] = self.B(self.workd[xslice])
elif self.ido == 3:
raise ValueError("ARPACK requested user shifts. Assure ISHIFT==0")
else:
self.converged = True
if self.info == 0:
pass
elif self.info == 1:
self._raise_no_convergence()
else:
raise ArpackError(self.info, infodict=self.iterate_infodict)
def extract(self, return_eigenvectors):
rvec = return_eigenvectors
ierr = 0
howmny = 'A' # return all eigenvectors
sselect = np.zeros(self.ncv, 'int') # unused
d, z, ierr = self._arpack_extract(rvec, howmny, sselect, self.sigma,
self.bmat, self.which, self.k,
self.tol, self.resid, self.v,
self.iparam[0:7], self.ipntr,
self.workd[0:2 * self.n],
self.workl, ierr)
if ierr != 0:
raise ArpackError(ierr, infodict=self.extract_infodict)
k_ok = self.iparam[4]
d = d[:k_ok]
z = z[:, :k_ok]
if return_eigenvectors:
return d, z
else:
return d
class _UnsymmetricArpackParams(_ArpackParams):
def __init__(self, n, k, tp, matvec, mode=1, M_matvec=None,
Minv_matvec=None, sigma=None,
ncv=None, v0=None, maxiter=None, which="LM", tol=0):
# The following modes are supported:
# mode = 1:
# Solve the standard eigenvalue problem:
# A*x = lambda*x
# A - square matrix
# Arguments should be
# matvec = left multiplication by A
# M_matvec = None [not used]
# Minv_matvec = None [not used]
#
# mode = 2:
# Solve the generalized eigenvalue problem:
# A*x = lambda*M*x
# A - square matrix
# M - symmetric, positive semi-definite
# Arguments should be
# matvec = left multiplication by A
# M_matvec = left multiplication by M
# Minv_matvec = left multiplication by M^-1
#
# mode = 3,4:
# Solve the general eigenvalue problem in shift-invert mode:
# A*x = lambda*M*x
# A - square matrix
# M - symmetric, positive semi-definite
# Arguments should be
# matvec = None [not used]
# M_matvec = left multiplication by M
# or None, if M is the identity
# Minv_matvec = left multiplication by [A-sigma*M]^-1
# if A is real and mode==3, use the real part of Minv_matvec
# if A is real and mode==4, use the imag part of Minv_matvec
# if A is complex and mode==3,
# use real and imag parts of Minv_matvec
if mode == 1:
if matvec is None:
raise ValueError("matvec must be specified for mode=1")
if M_matvec is not None:
raise ValueError("M_matvec cannot be specified for mode=1")
if Minv_matvec is not None:
raise ValueError("Minv_matvec cannot be specified for mode=1")
self.OP = matvec
self.B = lambda x: x
self.bmat = 'I'
elif mode == 2:
if matvec is None:
raise ValueError("matvec must be specified for mode=2")
if M_matvec is None:
raise ValueError("M_matvec must be specified for mode=2")
if Minv_matvec is None:
raise ValueError("Minv_matvec must be specified for mode=2")
self.OP = lambda x: Minv_matvec(matvec(x))
self.OPa = Minv_matvec
self.OPb = matvec
self.B = M_matvec
self.bmat = 'G'
elif mode in (3, 4):
if matvec is None:
raise ValueError("matvec must be specified "
"for mode in (3,4)")
if Minv_matvec is None:
raise ValueError("Minv_matvec must be specified "
"for mode in (3,4)")
self.matvec = matvec
if tp in 'DF': # complex type
if mode == 3:
self.OPa = Minv_matvec
else:
raise ValueError("mode=4 invalid for complex A")
else: # real type
if mode == 3:
self.OPa = lambda x: np.real(Minv_matvec(x))
else:
self.OPa = lambda x: np.imag(Minv_matvec(x))
if M_matvec is None:
self.B = lambda x: x
self.bmat = 'I'
self.OP = self.OPa
else:
self.B = M_matvec
self.bmat = 'G'
self.OP = lambda x: self.OPa(M_matvec(x))
else:
raise ValueError("mode=%i not implemented" % mode)
if which not in _NEUPD_WHICH:
raise ValueError("Parameter which must be one of %s"
% ' '.join(_NEUPD_WHICH))
if k >= n - 1:
raise ValueError("k must be less than rank(A)-1, k=%d" % k)
_ArpackParams.__init__(self, n, k, tp, mode, sigma,
ncv, v0, maxiter, which, tol)
if self.ncv > n or self.ncv <= k + 1:
raise ValueError("ncv must be k+1<ncv<=n, ncv=%s" % self.ncv)
self.workd = np.zeros(3 * n, self.tp)
self.workl = np.zeros(3 * self.ncv * (self.ncv + 2), self.tp)
ltr = _type_conv[self.tp]
self._arpack_solver = _arpack.__dict__[ltr + 'naupd']
self._arpack_extract = _arpack.__dict__[ltr + 'neupd']
self.iterate_infodict = _NAUPD_ERRORS[ltr]
self.extract_infodict = _NEUPD_ERRORS[ltr]
self.ipntr = np.zeros(14, "int")
if self.tp in 'FD':
self.rwork = np.zeros(self.ncv, self.tp.lower())
else:
self.rwork = None
def iterate(self):
if self.tp in 'fd':
self.ido, self.resid, self.v, self.iparam, self.ipntr, self.info =\
self._arpack_solver(self.ido, self.bmat, self.which, self.k,
self.tol, self.resid, self.v, self.iparam,
self.ipntr, self.workd, self.workl,
self.info)
else:
self.ido, self.resid, self.v, self.iparam, self.ipntr, self.info =\
self._arpack_solver(self.ido, self.bmat, self.which, self.k,
self.tol, self.resid, self.v, self.iparam,
self.ipntr, self.workd, self.workl,
self.rwork, self.info)
xslice = slice(self.ipntr[0] - 1, self.ipntr[0] - 1 + self.n)
yslice = slice(self.ipntr[1] - 1, self.ipntr[1] - 1 + self.n)
if self.ido == -1:
# initialization
self.workd[yslice] = self.OP(self.workd[xslice])
elif self.ido == 1:
# compute y = Op*x
if self.mode in (1, 2):
self.workd[yslice] = self.OP(self.workd[xslice])
else:
Bxslice = slice(self.ipntr[2] - 1, self.ipntr[2] - 1 + self.n)
self.workd[yslice] = self.OPa(self.workd[Bxslice])
elif self.ido == 2:
self.workd[yslice] = self.B(self.workd[xslice])
elif self.ido == 3:
raise ValueError("ARPACK requested user shifts. Assure ISHIFT==0")
else:
self.converged = True
if self.info == 0:
pass
elif self.info == 1:
self._raise_no_convergence()
else:
raise ArpackError(self.info, infodict=self.iterate_infodict)
def extract(self, return_eigenvectors):
k, n = self.k, self.n
ierr = 0
howmny = 'A' # return all eigenvectors
sselect = np.zeros(self.ncv, 'int') # unused
sigmar = np.real(self.sigma)
sigmai = np.imag(self.sigma)
workev = np.zeros(3 * self.ncv, self.tp)
if self.tp in 'fd':
dr = np.zeros(k + 1, self.tp)
di = np.zeros(k + 1, self.tp)
zr = np.zeros((n, k + 1), self.tp)
dr, di, zr, ierr = \
self._arpack_extract(
return_eigenvectors, howmny, sselect, sigmar, sigmai,
workev, self.bmat, self.which, k, self.tol, self.resid,
self.v, self.iparam, self.ipntr, self.workd, self.workl,
self.info)
if ierr != 0:
raise ArpackError(ierr, infodict=self.extract_infodict)
nreturned = self.iparam[4] # number of good eigenvalues returned
# Build complex eigenvalues from real and imaginary parts
d = dr + 1.0j * di
# Arrange the eigenvectors: complex eigenvectors are stored as
# real,imaginary in consecutive columns
z = zr.astype(self.tp.upper())
# The ARPACK nonsymmetric real and double interface (s,d)naupd
# return eigenvalues and eigenvectors in real (float,double)
# arrays.
# Efficiency: this should check that return_eigenvectors == True
# before going through this construction.
if sigmai == 0:
i = 0
while i <= k:
# check if complex
if abs(d[i].imag) != 0:
# this is a complex conjugate pair with eigenvalues
# in consecutive columns
if i < k:
z[:, i] = zr[:, i] + 1.0j * zr[:, i + 1]
z[:, i + 1] = z[:, i].conjugate()
i += 1
else:
#last eigenvalue is complex: the imaginary part of
# the eigenvector has not been returned
#this can only happen if nreturned > k, so we'll
# throw out this case.
nreturned -= 1
i += 1
else:
# real matrix, mode 3 or 4, imag(sigma) is nonzero:
# see remark 3 in <s,d>neupd.f
# Build complex eigenvalues from real and imaginary parts
i = 0
while i <= k:
if abs(d[i].imag) == 0:
d[i] = np.dot(zr[:, i], self.matvec(zr[:, i]))
else:
if i < k:
z[:, i] = zr[:, i] + 1.0j * zr[:, i + 1]
z[:, i + 1] = z[:, i].conjugate()
d[i] = ((np.dot(zr[:, i],
self.matvec(zr[:, i]))
+ np.dot(zr[:, i + 1],
self.matvec(zr[:, i + 1])))
+ 1j * (np.dot(zr[:, i],
self.matvec(zr[:, i + 1]))
- np.dot(zr[:, i + 1],
self.matvec(zr[:, i]))))
d[i + 1] = d[i].conj()
i += 1
else:
#last eigenvalue is complex: the imaginary part of
# the eigenvector has not been returned
#this can only happen if nreturned > k, so we'll
# throw out this case.
nreturned -= 1
i += 1
# Now we have k+1 possible eigenvalues and eigenvectors
# Return the ones specified by the keyword "which"
if nreturned <= k:
# we got less or equal as many eigenvalues we wanted
d = d[:nreturned]
z = z[:, :nreturned]
else:
# we got one extra eigenvalue (likely a cc pair, but which?)
# cut at approx precision for sorting
rd = np.round(d, decimals=_ndigits[self.tp])
if self.which in ['LR', 'SR']:
ind = np.argsort(rd.real)
elif self.which in ['LI', 'SI']:
# for LI,SI ARPACK returns largest,smallest
# abs(imaginary) why?
ind = np.argsort(abs(rd.imag))
else:
ind = np.argsort(abs(rd))
if self.which in ['LR', 'LM', 'LI']:
d = d[ind[-k:]]
z = z[:, ind[-k:]]
if self.which in ['SR', 'SM', 'SI']:
d = d[ind[:k]]
z = z[:, ind[:k]]
else:
# complex is so much simpler...
d, z, ierr =\
self._arpack_extract(
return_eigenvectors, howmny, sselect, self.sigma, workev,
self.bmat, self.which, k, self.tol, self.resid, self.v,
self.iparam, self.ipntr, self.workd, self.workl,
self.rwork, ierr)
if ierr != 0:
raise ArpackError(ierr, infodict=self.extract_infodict)
k_ok = self.iparam[4]
d = d[:k_ok]
z = z[:, :k_ok]
if return_eigenvectors:
return d, z
else:
return d
def _aslinearoperator_with_dtype(m):
m = aslinearoperator(m)
if not hasattr(m, 'dtype'):
x = np.zeros(m.shape[1])
m.dtype = (m * x).dtype
return m
class SpLuInv(LinearOperator):
"""
SpLuInv:
helper class to repeatedly solve M*x=b
using a sparse LU-decopposition of M
"""
def __init__(self, M):
self.M_lu = splu(M)
LinearOperator.__init__(self, M.shape, self._matvec, dtype=M.dtype)
self.isreal = not np.issubdtype(self.dtype, np.complexfloating)
def _matvec(self, x):
# careful here: splu.solve will throw away imaginary
# part of x if M is real
if self.isreal and np.issubdtype(x.dtype, np.complexfloating):
return (self.M_lu.solve(np.real(x))
+ 1j * self.M_lu.solve(np.imag(x)))
else:
return self.M_lu.solve(x)
class LuInv(LinearOperator):
"""
LuInv:
helper class to repeatedly solve M*x=b
using an LU-decomposition of M
"""
def __init__(self, M):
self.M_lu = lu_factor(M)
LinearOperator.__init__(self, M.shape, self._matvec, dtype=M.dtype)
def _matvec(self, x):
return lu_solve(self.M_lu, x)
class IterInv(LinearOperator):
"""
IterInv:
helper class to repeatedly solve M*x=b
using an iterative method.
"""
def __init__(self, M, ifunc=gmres, tol=0):
if tol <= 0:
# when tol=0, ARPACK uses machine tolerance as calculated
# by LAPACK's _LAMCH function. We should match this
tol = np.finfo(M.dtype).eps
self.M = M
self.ifunc = ifunc
self.tol = tol
if hasattr(M, 'dtype'):
dtype = M.dtype
else:
x = np.zeros(M.shape[1])
dtype = (M * x).dtype
LinearOperator.__init__(self, M.shape, self._matvec, dtype=dtype)
def _matvec(self, x):
b, info = self.ifunc(self.M, x, tol=self.tol)
if info != 0:
raise ValueError("Error in inverting M: function "
"%s did not converge (info = %i)."
% (self.ifunc.__name__, info))
return b
class IterOpInv(LinearOperator):
"""
IterOpInv:
helper class to repeatedly solve [A-sigma*M]*x = b
using an iterative method
"""
def __init__(self, A, M, sigma, ifunc=gmres, tol=0):
if tol <= 0:
# when tol=0, ARPACK uses machine tolerance as calculated
# by LAPACK's _LAMCH function. We should match this
tol = np.finfo(A.dtype).eps
self.A = A
self.M = M
self.sigma = sigma
self.ifunc = ifunc
self.tol = tol
x = np.zeros(A.shape[1])
if M is None:
dtype = self.mult_func_M_None(x).dtype
self.OP = LinearOperator(self.A.shape,
self.mult_func_M_None,
dtype=dtype)
else:
dtype = self.mult_func(x).dtype
self.OP = LinearOperator(self.A.shape,
self.mult_func,
dtype=dtype)
LinearOperator.__init__(self, A.shape, self._matvec, dtype=dtype)
def mult_func(self, x):
return self.A.matvec(x) - self.sigma * self.M.matvec(x)
def mult_func_M_None(self, x):
return self.A.matvec(x) - self.sigma * x
def _matvec(self, x):
b, info = self.ifunc(self.OP, x, tol=self.tol)
if info != 0:
raise ValueError("Error in inverting [A-sigma*M]: function "
"%s did not converge (info = %i)."
% (self.ifunc.__name__, info))
return b
def get_inv_matvec(M, symmetric=False, tol=0):
if isdense(M):
return LuInv(M).matvec
elif isspmatrix(M):
if isspmatrix_csr(M) and symmetric:
M = M.T
return SpLuInv(M).matvec
else:
return IterInv(M, tol=tol).matvec
def get_OPinv_matvec(A, M, sigma, symmetric=False, tol=0):
if sigma == 0:
return get_inv_matvec(A, symmetric=symmetric, tol=tol)
if M is None:
#M is the identity matrix
if isdense(A):
if (np.issubdtype(A.dtype, np.complexfloating)
or np.imag(sigma) == 0):
A = np.copy(A)
else:
A = A + 0j
A.flat[::A.shape[1] + 1] -= sigma
return LuInv(A).matvec
elif isspmatrix(A):
A = A - sigma * identity(A.shape[0])
if symmetric and isspmatrix_csr(A):
A = A.T
return SpLuInv(A.tocsc()).matvec
else:
return IterOpInv(_aslinearoperator_with_dtype(A), M, sigma,
tol=tol).matvec
else:
if ((not isdense(A) and not isspmatrix(A)) or
(not isdense(M) and not isspmatrix(M))):
return IterOpInv(_aslinearoperator_with_dtype(A),
_aslinearoperator_with_dtype(M), sigma,
tol=tol).matvec
elif isdense(A) or isdense(M):
return LuInv(A - sigma * M).matvec
else:
OP = A - sigma * M
if symmetric and isspmatrix_csr(OP):
OP = OP.T
return SpLuInv(OP.tocsc()).matvec
def _eigs(A, k=6, M=None, sigma=None, which='LM', v0=None, ncv=None,
maxiter=None, tol=0, return_eigenvectors=True, Minv=None, OPinv=None,
OPpart=None):
"""
Find k eigenvalues and eigenvectors of the square matrix A.
Solves ``A * x[i] = w[i] * x[i]``, the standard eigenvalue problem
for w[i] eigenvalues with corresponding eigenvectors x[i].
If M is specified, solves ``A * x[i] = w[i] * M * x[i]``, the
generalized eigenvalue problem for w[i] eigenvalues
with corresponding eigenvectors x[i]
Parameters
----------
A : An N x N matrix, array, sparse matrix, or LinearOperator representing \
the operation A * x, where A is a real or complex square matrix.
k : int, default 6
The number of eigenvalues and eigenvectors desired.
`k` must be smaller than N. It is not possible to compute all
eigenvectors of a matrix.
return_eigenvectors : boolean, default True
Whether to return the eigenvectors along with the eigenvalues.
M : An N x N matrix, array, sparse matrix, or LinearOperator representing
the operation M*x for the generalized eigenvalue problem
``A * x = w * M * x``
M must represent a real symmetric matrix. For best results, M should
be of the same type as A. Additionally:
* If sigma==None, M is positive definite
* If sigma is specified, M is positive semi-definite
If sigma==None, eigs requires an operator to compute the solution
of the linear equation `M * x = b`. This is done internally via a
(sparse) LU decomposition for an explicit matrix M, or via an
iterative solver for a general linear operator. Alternatively,
the user can supply the matrix or operator Minv, which gives
x = Minv * b = M^-1 * b
sigma : real or complex
Find eigenvalues near sigma using shift-invert mode. This requires
an operator to compute the solution of the linear system
`[A - sigma * M] * x = b`, where M is the identity matrix if
unspecified. This is computed internally via a (sparse) LU
decomposition for explicit matrices A & M, or via an iterative
solver if either A or M is a general linear operator.
Alternatively, the user can supply the matrix or operator OPinv,
which gives x = OPinv * b = [A - sigma * M]^-1 * b.
For a real matrix A, shift-invert can either be done in imaginary
mode or real mode, specified by the parameter OPpart ('r' or 'i').
Note that when sigma is specified, the keyword 'which' (below)
refers to the shifted eigenvalues w'[i] where:
* If A is real and OPpart == 'r' (default),
w'[i] = 1/2 * [ 1/(w[i]-sigma) + 1/(w[i]-conj(sigma)) ]
* If A is real and OPpart == 'i',
w'[i] = 1/2i * [ 1/(w[i]-sigma) - 1/(w[i]-conj(sigma)) ]
* If A is complex,
w'[i] = 1/(w[i]-sigma)
v0 : array
Starting vector for iteration.
ncv : integer
The number of Lanczos vectors generated
`ncv` must be greater than `k`; it is recommended that ``ncv > 2*k``.
which : string ['LM' | 'SM' | 'LR' | 'SR' | 'LI' | 'SI']
Which `k` eigenvectors and eigenvalues to find:
- 'LM' : largest magnitude
- 'SM' : smallest magnitude
- 'LR' : largest real part
- 'SR' : smallest real part
- 'LI' : largest imaginary part
- 'SI' : smallest imaginary part
When sigma != None, 'which' refers to the shifted eigenvalues w'[i]
(see discussion in 'sigma', above). ARPACK is generally better
at finding large values than small values. If small eigenvalues are
desired, consider using shift-invert mode for better performance.
maxiter : integer
Maximum number of Arnoldi update iterations allowed
tol : float
Relative accuracy for eigenvalues (stopping criterion)
The default value of 0 implies machine precision.
return_eigenvectors : boolean
Return eigenvectors (True) in addition to eigenvalues
Minv : N x N matrix, array, sparse matrix, or linear operator
See notes in M, above.
OPinv : N x N matrix, array, sparse matrix, or linear operator
See notes in sigma, above.
OPpart : 'r' or 'i'.
See notes in sigma, above
Returns
-------
w : array
Array of k eigenvalues.
v : array
An array of `k` eigenvectors.
``v[:, i]`` is the eigenvector corresponding to the eigenvalue w[i].
Raises
------
ArpackNoConvergence
When the requested convergence is not obtained.
The currently converged eigenvalues and eigenvectors can be found
as ``eigenvalues`` and ``eigenvectors`` attributes of the exception
object.
See Also
--------
eigsh : eigenvalues and eigenvectors for symmetric matrix A
svds : singular value decomposition for a matrix A
Examples
--------
Find 6 eigenvectors of the identity matrix:
>>> from sklearn.utils.arpack import eigs
>>> id = np.identity(13)
>>> vals, vecs = eigs(id, k=6)
>>> vals
array([ 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j])
>>> vecs.shape
(13, 6)
Notes
-----
This function is a wrapper to the ARPACK [1]_ SNEUPD, DNEUPD, CNEUPD,
ZNEUPD, functions which use the Implicitly Restarted Arnoldi Method to
find the eigenvalues and eigenvectors [2]_.
References
----------
.. [1] ARPACK Software, http://www.caam.rice.edu/software/ARPACK/
.. [2] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK USERS GUIDE:
Solution of Large Scale Eigenvalue Problems by Implicitly Restarted
Arnoldi Methods. SIAM, Philadelphia, PA, 1998.
"""
if A.shape[0] != A.shape[1]:
raise ValueError('expected square matrix (shape=%s)' % (A.shape,))
if M is not None:
if M.shape != A.shape:
raise ValueError('wrong M dimensions %s, should be %s'
% (M.shape, A.shape))
if np.dtype(M.dtype).char.lower() != np.dtype(A.dtype).char.lower():
warnings.warn('M does not have the same type precision as A. '
'This may adversely affect ARPACK convergence')
n = A.shape[0]
if k <= 0 or k >= n:
raise ValueError("k must be between 1 and rank(A)-1")
if sigma is None:
matvec = _aslinearoperator_with_dtype(A).matvec
if OPinv is not None:
raise ValueError("OPinv should not be specified "
"with sigma = None.")
if OPpart is not None:
raise ValueError("OPpart should not be specified with "
"sigma = None or complex A")
if M is None:
#standard eigenvalue problem
mode = 1
M_matvec = None
Minv_matvec = None
if Minv is not None:
raise ValueError("Minv should not be "
"specified with M = None.")
else:
#general eigenvalue problem
mode = 2
if Minv is None:
Minv_matvec = get_inv_matvec(M, symmetric=True, tol=tol)
else:
Minv = _aslinearoperator_with_dtype(Minv)
Minv_matvec = Minv.matvec
M_matvec = _aslinearoperator_with_dtype(M).matvec
else:
#sigma is not None: shift-invert mode
if np.issubdtype(A.dtype, np.complexfloating):
if OPpart is not None:
raise ValueError("OPpart should not be specified "
"with sigma=None or complex A")
mode = 3
elif OPpart is None or OPpart.lower() == 'r':
mode = 3
elif OPpart.lower() == 'i':
if np.imag(sigma) == 0:
raise ValueError("OPpart cannot be 'i' if sigma is real")
mode = 4
else:
raise ValueError("OPpart must be one of ('r','i')")
matvec = _aslinearoperator_with_dtype(A).matvec
if Minv is not None:
raise ValueError("Minv should not be specified when sigma is")
if OPinv is None:
Minv_matvec = get_OPinv_matvec(A, M, sigma,
symmetric=False, tol=tol)
else:
OPinv = _aslinearoperator_with_dtype(OPinv)
Minv_matvec = OPinv.matvec
if M is None:
M_matvec = None
else:
M_matvec = _aslinearoperator_with_dtype(M).matvec
params = _UnsymmetricArpackParams(n, k, A.dtype.char, matvec, mode,
M_matvec, Minv_matvec, sigma,
ncv, v0, maxiter, which, tol)
while not params.converged:
params.iterate()
return params.extract(return_eigenvectors)
def _eigsh(A, k=6, M=None, sigma=None, which='LM', v0=None, ncv=None,
maxiter=None, tol=0, return_eigenvectors=True, Minv=None,
OPinv=None, mode='normal'):
"""
Find k eigenvalues and eigenvectors of the real symmetric square matrix
or complex hermitian matrix A.
Solves ``A * x[i] = w[i] * x[i]``, the standard eigenvalue problem for
w[i] eigenvalues with corresponding eigenvectors x[i].
If M is specified, solves ``A * x[i] = w[i] * M * x[i]``, the
generalized eigenvalue problem for w[i] eigenvalues
with corresponding eigenvectors x[i]
Parameters
----------
A : An N x N matrix, array, sparse matrix, or LinearOperator representing
the operation A * x, where A is a real symmetric matrix
For buckling mode (see below) A must additionally be positive-definite
k : integer
The number of eigenvalues and eigenvectors desired.
`k` must be smaller than N. It is not possible to compute all
eigenvectors of a matrix.
M : An N x N matrix, array, sparse matrix, or linear operator representing
the operation M * x for the generalized eigenvalue problem
``A * x = w * M * x``.
M must represent a real, symmetric matrix. For best results, M should
be of the same type as A. Additionally:
* If sigma == None, M is symmetric positive definite
* If sigma is specified, M is symmetric positive semi-definite
* In buckling mode, M is symmetric indefinite.
If sigma == None, eigsh requires an operator to compute the solution
of the linear equation `M * x = b`. This is done internally via a
(sparse) LU decomposition for an explicit matrix M, or via an
iterative solver for a general linear operator. Alternatively,
the user can supply the matrix or operator Minv, which gives
x = Minv * b = M^-1 * b
sigma : real
Find eigenvalues near sigma using shift-invert mode. This requires
an operator to compute the solution of the linear system
`[A - sigma * M] x = b`, where M is the identity matrix if
unspecified. This is computed internally via a (sparse) LU
decomposition for explicit matrices A & M, or via an iterative
solver if either A or M is a general linear operator.
Alternatively, the user can supply the matrix or operator OPinv,
which gives x = OPinv * b = [A - sigma * M]^-1 * b.
Note that when sigma is specified, the keyword 'which' refers to
the shifted eigenvalues w'[i] where:
- if mode == 'normal',
w'[i] = 1 / (w[i] - sigma)
- if mode == 'cayley',
w'[i] = (w[i] + sigma) / (w[i] - sigma)
- if mode == 'buckling',
w'[i] = w[i] / (w[i] - sigma)
(see further discussion in 'mode' below)
v0 : array
Starting vector for iteration.
ncv : integer
The number of Lanczos vectors generated
ncv must be greater than k and smaller than n;
it is recommended that ncv > 2*k
which : string ['LM' | 'SM' | 'LA' | 'SA' | 'BE']
If A is a complex hermitian matrix, 'BE' is invalid.
Which `k` eigenvectors and eigenvalues to find
- 'LM' : Largest (in magnitude) eigenvalues
- 'SM' : Smallest (in magnitude) eigenvalues
- 'LA' : Largest (algebraic) eigenvalues
- 'SA' : Smallest (algebraic) eigenvalues
- 'BE' : Half (k/2) from each end of the spectrum
When k is odd, return one more (k/2+1) from the high end
When sigma != None, 'which' refers to the shifted eigenvalues w'[i]
(see discussion in 'sigma', above). ARPACK is generally better
at finding large values than small values. If small eigenvalues are
desired, consider using shift-invert mode for better performance.
maxiter : integer
Maximum number of Arnoldi update iterations allowed
tol : float
Relative accuracy for eigenvalues (stopping criterion).
The default value of 0 implies machine precision.
Minv : N x N matrix, array, sparse matrix, or LinearOperator
See notes in M, above
OPinv : N x N matrix, array, sparse matrix, or LinearOperator
See notes in sigma, above.
return_eigenvectors : boolean
Return eigenvectors (True) in addition to eigenvalues
mode : string ['normal' | 'buckling' | 'cayley']
Specify strategy to use for shift-invert mode. This argument applies
only for real-valued A and sigma != None. For shift-invert mode,
ARPACK internally solves the eigenvalue problem
``OP * x'[i] = w'[i] * B * x'[i]``
and transforms the resulting Ritz vectors x'[i] and Ritz values w'[i]
into the desired eigenvectors and eigenvalues of the problem
``A * x[i] = w[i] * M * x[i]``.
The modes are as follows:
- 'normal' : OP = [A - sigma * M]^-1 * M
B = M
w'[i] = 1 / (w[i] - sigma)
- 'buckling' : OP = [A - sigma * M]^-1 * A
B = A
w'[i] = w[i] / (w[i] - sigma)
- 'cayley' : OP = [A - sigma * M]^-1 * [A + sigma * M]
B = M
w'[i] = (w[i] + sigma) / (w[i] - sigma)
The choice of mode will affect which eigenvalues are selected by
the keyword 'which', and can also impact the stability of
convergence (see [2] for a discussion)
Returns
-------
w : array
Array of k eigenvalues
v : array
An array of k eigenvectors
The v[i] is the eigenvector corresponding to the eigenvector w[i]
Raises
------
ArpackNoConvergence
When the requested convergence is not obtained.
The currently converged eigenvalues and eigenvectors can be found
as ``eigenvalues`` and ``eigenvectors`` attributes of the exception
object.
See Also
--------
eigs : eigenvalues and eigenvectors for a general (nonsymmetric) matrix A
svds : singular value decomposition for a matrix A
Notes
-----
This function is a wrapper to the ARPACK [1]_ SSEUPD and DSEUPD
functions which use the Implicitly Restarted Lanczos Method to
find the eigenvalues and eigenvectors [2]_.
Examples
--------
>>> from sklearn.utils.arpack import eigsh
>>> id = np.identity(13)
>>> vals, vecs = eigsh(id, k=6)
>>> vals # doctest: +SKIP
array([ 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j])
>>> print(vecs.shape)
(13, 6)
References
----------
.. [1] ARPACK Software, http://www.caam.rice.edu/software/ARPACK/
.. [2] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK USERS GUIDE:
Solution of Large Scale Eigenvalue Problems by Implicitly Restarted
Arnoldi Methods. SIAM, Philadelphia, PA, 1998.
"""
# complex hermitian matrices should be solved with eigs
if np.issubdtype(A.dtype, np.complexfloating):
if mode != 'normal':
raise ValueError("mode=%s cannot be used with "
"complex matrix A" % mode)
if which == 'BE':
raise ValueError("which='BE' cannot be used with complex matrix A")
elif which == 'LA':
which = 'LR'
elif which == 'SA':
which = 'SR'
ret = eigs(A, k, M=M, sigma=sigma, which=which, v0=v0,
ncv=ncv, maxiter=maxiter, tol=tol,
return_eigenvectors=return_eigenvectors, Minv=Minv,
OPinv=OPinv)
if return_eigenvectors:
return ret[0].real, ret[1]
else:
return ret.real
if A.shape[0] != A.shape[1]:
raise ValueError('expected square matrix (shape=%s)' % (A.shape,))
if M is not None:
if M.shape != A.shape:
raise ValueError('wrong M dimensions %s, should be %s'
% (M.shape, A.shape))
if np.dtype(M.dtype).char.lower() != np.dtype(A.dtype).char.lower():
warnings.warn('M does not have the same type precision as A. '
'This may adversely affect ARPACK convergence')
n = A.shape[0]
if k <= 0 or k >= n:
raise ValueError("k must be between 1 and rank(A)-1")
if sigma is None:
A = _aslinearoperator_with_dtype(A)
matvec = A.matvec
if OPinv is not None:
raise ValueError("OPinv should not be specified "
"with sigma = None.")
if M is None:
#standard eigenvalue problem
mode = 1
M_matvec = None
Minv_matvec = None
if Minv is not None:
raise ValueError("Minv should not be "
"specified with M = None.")
else:
#general eigenvalue problem
mode = 2
if Minv is None:
Minv_matvec = get_inv_matvec(M, symmetric=True, tol=tol)
else:
Minv = _aslinearoperator_with_dtype(Minv)
Minv_matvec = Minv.matvec
M_matvec = _aslinearoperator_with_dtype(M).matvec
else:
# sigma is not None: shift-invert mode
if Minv is not None:
raise ValueError("Minv should not be specified when sigma is")
# normal mode
if mode == 'normal':
mode = 3
matvec = None
if OPinv is None:
Minv_matvec = get_OPinv_matvec(A, M, sigma,
symmetric=True, tol=tol)
else:
OPinv = _aslinearoperator_with_dtype(OPinv)
Minv_matvec = OPinv.matvec
if M is None:
M_matvec = None
else:
M = _aslinearoperator_with_dtype(M)
M_matvec = M.matvec
# buckling mode
elif mode == 'buckling':
mode = 4
if OPinv is None:
Minv_matvec = get_OPinv_matvec(A, M, sigma,
symmetric=True, tol=tol)
else:
Minv_matvec = _aslinearoperator_with_dtype(OPinv).matvec
matvec = _aslinearoperator_with_dtype(A).matvec
M_matvec = None
# cayley-transform mode
elif mode == 'cayley':
mode = 5
matvec = _aslinearoperator_with_dtype(A).matvec
if OPinv is None:
Minv_matvec = get_OPinv_matvec(A, M, sigma,
symmetric=True, tol=tol)
else:
Minv_matvec = _aslinearoperator_with_dtype(OPinv).matvec
if M is None:
M_matvec = None
else:
M_matvec = _aslinearoperator_with_dtype(M).matvec
# unrecognized mode
else:
raise ValueError("unrecognized mode '%s'" % mode)
params = _SymmetricArpackParams(n, k, A.dtype.char, matvec, mode,
M_matvec, Minv_matvec, sigma,
ncv, v0, maxiter, which, tol)
while not params.converged:
params.iterate()
return params.extract(return_eigenvectors)
def _svds(A, k=6, ncv=None, tol=0):
"""Compute k singular values/vectors for a sparse matrix using ARPACK.
Parameters
----------
A : sparse matrix
Array to compute the SVD on
k : int, optional
Number of singular values and vectors to compute.
ncv : integer
The number of Lanczos vectors generated
ncv must be greater than k+1 and smaller than n;
it is recommended that ncv > 2*k
tol : float, optional
Tolerance for singular values. Zero (default) means machine precision.
Notes
-----
This is a naive implementation using an eigensolver on A.H * A or
A * A.H, depending on which one is more efficient.
"""
if not (isinstance(A, np.ndarray) or isspmatrix(A)):
A = np.asarray(A)
n, m = A.shape
if np.issubdtype(A.dtype, np.complexfloating):
herm = lambda x: x.T.conjugate()
eigensolver = eigs
else:
herm = lambda x: x.T
eigensolver = eigsh
if n > m:
X = A
XH = herm(A)
else:
XH = A
X = herm(A)
if hasattr(XH, 'dot'):
def matvec_XH_X(x):
return XH.dot(X.dot(x))
else:
def matvec_XH_X(x):
return np.dot(XH, np.dot(X, x))
XH_X = LinearOperator(matvec=matvec_XH_X, dtype=X.dtype,
shape=(X.shape[1], X.shape[1]))
# Ignore deprecation warnings here: dot on matrices is deprecated,
# but this code is a backport anyhow
with warnings.catch_warnings():
warnings.simplefilter('ignore', DeprecationWarning)
eigvals, eigvec = eigensolver(XH_X, k=k, tol=tol ** 2)
s = np.sqrt(eigvals)
if n > m:
v = eigvec
if hasattr(X, 'dot'):
u = X.dot(v) / s
else:
u = np.dot(X, v) / s
vh = herm(v)
else:
u = eigvec
if hasattr(X, 'dot'):
vh = herm(X.dot(u) / s)
else:
vh = herm(np.dot(X, u) / s)
return u, s, vh
# check if backport is actually needed:
if scipy.version.version >= LooseVersion('0.10'):
from scipy.sparse.linalg import eigs, eigsh, svds
else:
eigs, eigsh, svds = _eigs, _eigsh, _svds
| bsd-3-clause |
HolgerPeters/scikit-learn | examples/ensemble/plot_gradient_boosting_oob.py | 82 | 4768 | """
======================================
Gradient Boosting Out-of-Bag estimates
======================================
Out-of-bag (OOB) estimates can be a useful heuristic to estimate
the "optimal" number of boosting iterations.
OOB estimates are almost identical to cross-validation estimates but
they can be computed on-the-fly without the need for repeated model
fitting.
OOB estimates are only available for Stochastic Gradient Boosting
(i.e. ``subsample < 1.0``), the estimates are derived from the improvement
in loss based on the examples not included in the bootstrap sample
(the so-called out-of-bag examples).
The OOB estimator is a pessimistic estimator of the true
test loss, but remains a fairly good approximation for a small number of trees.
The figure shows the cumulative sum of the negative OOB improvements
as a function of the boosting iteration. As you can see, it tracks the test
loss for the first hundred iterations but then diverges in a
pessimistic way.
The figure also shows the performance of 3-fold cross validation which
usually gives a better estimate of the test loss
but is computationally more demanding.
"""
print(__doc__)
# Author: Peter Prettenhofer <[email protected]>
#
# License: BSD 3 clause
import numpy as np
import matplotlib.pyplot as plt
from sklearn import ensemble
from sklearn.model_selection import KFold
from sklearn.model_selection import train_test_split
# Generate data (adapted from G. Ridgeway's gbm example)
n_samples = 1000
random_state = np.random.RandomState(13)
x1 = random_state.uniform(size=n_samples)
x2 = random_state.uniform(size=n_samples)
x3 = random_state.randint(0, 4, size=n_samples)
p = 1 / (1.0 + np.exp(-(np.sin(3 * x1) - 4 * x2 + x3)))
y = random_state.binomial(1, p, size=n_samples)
X = np.c_[x1, x2, x3]
X = X.astype(np.float32)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5,
random_state=9)
# Fit classifier with out-of-bag estimates
params = {'n_estimators': 1200, 'max_depth': 3, 'subsample': 0.5,
'learning_rate': 0.01, 'min_samples_leaf': 1, 'random_state': 3}
clf = ensemble.GradientBoostingClassifier(**params)
clf.fit(X_train, y_train)
acc = clf.score(X_test, y_test)
print("Accuracy: {:.4f}".format(acc))
n_estimators = params['n_estimators']
x = np.arange(n_estimators) + 1
def heldout_score(clf, X_test, y_test):
"""compute deviance scores on ``X_test`` and ``y_test``. """
score = np.zeros((n_estimators,), dtype=np.float64)
for i, y_pred in enumerate(clf.staged_decision_function(X_test)):
score[i] = clf.loss_(y_test, y_pred)
return score
def cv_estimate(n_splits=3):
cv = KFold(n_splits=n_splits)
cv_clf = ensemble.GradientBoostingClassifier(**params)
val_scores = np.zeros((n_estimators,), dtype=np.float64)
for train, test in cv.split(X_train, y_train):
cv_clf.fit(X_train[train], y_train[train])
val_scores += heldout_score(cv_clf, X_train[test], y_train[test])
val_scores /= n_splits
return val_scores
# Estimate best n_estimator using cross-validation
cv_score = cv_estimate(3)
# Compute best n_estimator for test data
test_score = heldout_score(clf, X_test, y_test)
# negative cumulative sum of oob improvements
cumsum = -np.cumsum(clf.oob_improvement_)
# min loss according to OOB
oob_best_iter = x[np.argmin(cumsum)]
# min loss according to test (normalize such that first loss is 0)
test_score -= test_score[0]
test_best_iter = x[np.argmin(test_score)]
# min loss according to cv (normalize such that first loss is 0)
cv_score -= cv_score[0]
cv_best_iter = x[np.argmin(cv_score)]
# color brew for the three curves
oob_color = list(map(lambda x: x / 256.0, (190, 174, 212)))
test_color = list(map(lambda x: x / 256.0, (127, 201, 127)))
cv_color = list(map(lambda x: x / 256.0, (253, 192, 134)))
# plot curves and vertical lines for best iterations
plt.plot(x, cumsum, label='OOB loss', color=oob_color)
plt.plot(x, test_score, label='Test loss', color=test_color)
plt.plot(x, cv_score, label='CV loss', color=cv_color)
plt.axvline(x=oob_best_iter, color=oob_color)
plt.axvline(x=test_best_iter, color=test_color)
plt.axvline(x=cv_best_iter, color=cv_color)
# add three vertical lines to xticks
xticks = plt.xticks()
xticks_pos = np.array(xticks[0].tolist() +
[oob_best_iter, cv_best_iter, test_best_iter])
xticks_label = np.array(list(map(lambda t: int(t), xticks[0])) +
['OOB', 'CV', 'Test'])
ind = np.argsort(xticks_pos)
xticks_pos = xticks_pos[ind]
xticks_label = xticks_label[ind]
plt.xticks(xticks_pos, xticks_label)
plt.legend(loc='upper right')
plt.ylabel('normalized loss')
plt.xlabel('number of iterations')
plt.show()
| bsd-3-clause |
JarnoRFB/GENNN | builder/network_builder.py | 1 | 14253 | import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import json
from builder.helper import get_tensor_size
from tensorflow.examples.tutorials.mnist import input_data
import os
import datetime
import math
VALIDATION_SIZE = 5000
mnist = input_data.read_data_sets('MNIST_data', one_hot=False, reshape=False, validation_size=VALIDATION_SIZE)
class Network:
"""A nerual network build from a JSON specification."""
def __init__(self, json_network_spec, test=False):
self.network_spec = json.loads(json_network_spec)
if self.network_spec['max_number_of_iterations'] % self.network_spec['validate_each_n_steps'] != 0:
raise(ValueError('max_number_of_iterations is no multiple of validate_each_n_steps.'))
self.x = None
self.y_ = None
self.loss = None
self.accuracy = None
self.train_op = None
self._build_network()
self._test = test
def evaluate(self, get_weights=False):
"""Evaluate performance of network.
Returns:
The accuracy on the validation data.
"""
merged_summary = tf.summary.merge_all()
# Time when starting the training.
start_time = datetime.datetime.now()
# Arrays for storing intermediate results.
losses = np.zeros(self.network_spec['max_number_of_iterations'] // self.network_spec['validate_each_n_steps'])
accuracies = np.zeros(self.network_spec['max_number_of_iterations'] // self.network_spec['validate_each_n_steps'])
with tf.Session() as sess:
if(get_weights):
saver = tf.train.Saver()
writer = tf.summary.FileWriter(self.network_spec['logdir'], graph=sess.graph)
sess.run(tf.global_variables_initializer())
for i in range(self.network_spec['max_number_of_iterations']):
batch = mnist.train.next_batch(self.network_spec['hyperparameters']['batchsize'])
self.train_op.run(feed_dict={self.x: batch[0], self.y_: batch[1]})
if i % self.network_spec['validate_each_n_steps'] == 0:
# Write summary and save data for plots.
summary, accuracy_val, loss_val = sess.run([merged_summary, self.accuracy, self.loss],
feed_dict={self.x: batch[0], self.y_: batch[1]})
writer.add_summary(summary, global_step=i)
losses[int(i / self.network_spec['validate_each_n_steps'])] = loss_val
accuracies[int(i / self.network_spec['validate_each_n_steps'])] = accuracy_val
# Check whether training has taken too long.
if (datetime.datetime.now() - start_time).seconds // 60 > self.network_spec['max_runtime']:
break
writer.close()
# Since data is to big to fit in GPU, split data into chunks of 1000 and calculate the mean.
chunk_size = 1000
steps = int(VALIDATION_SIZE / chunk_size)
validation_accuracies = np.zeros(steps)
if not self._test:
for i in range(steps):
validation_accuracies[i] = sess.run(
self.accuracy,
feed_dict={self.x: mnist.validation.images[i * chunk_size:(i+1) * chunk_size],
self.y_: mnist.validation.labels[i * chunk_size:(i+1) * chunk_size]}
)
else:
for i in range(steps):
validation_accuracies = sess.run(
self.accuracy,
feed_dict={self.x: mnist.test.images,
self.y_: mnist.test.labels}
)
# Save plots for losses and accuracies.
self._plot(loss=losses, accuracy=accuracies)
# Get total number of weights.
n_weights = 0
for var in tf.trainable_variables():
n_weights += get_tensor_size(var)
extended_spec = self._extend_network_spec(accuracy=float(validation_accuracies.mean()),
n_weights=n_weights)
# Write extended to logdir.
self._write_to_logdir(extended_spec, 'network.json')
if(get_weights):
save_path = saver.save(sess, self.network_spec['logdir'] + "model.ckpt")
return extended_spec
def feedforward_layer(self, input_tensor, layer_number):
"""Build a feedforward layer ended with an activation function.
Args:
input_tensor: The output from the layer before.
layer_number (int): The number of the layer in the network.
Returns:
tensor: The activated output.
"""
layer_spec = self.network_spec['layers'][layer_number]
with tf.name_scope('feedforward' + str(layer_number)):
weighted = self._feedforward_step(input_tensor, layer_spec['size'])
activation = getattr(tf.nn, layer_spec['activation_function'])(weighted)
return activation
def conv_layer(self, input_tensor, layer_number):
"""Build a convolution layer ended with an activation function.
Args:
input_tensor: The output from the layer before.
layer_number (int): The number of the layer in the network.
Returns:
tensor: The activated output.
"""
inchannels, input_tensor = self._ensure_2d(input_tensor)
layer_spec = self.network_spec['layers'][layer_number]
filter_shape = (layer_spec['filter']['height'],
layer_spec['filter']['width'],
inchannels,
layer_spec['filter']['outchannels'])
filter_strides = (layer_spec['strides']['inchannels'],
layer_spec['strides']['x'],
layer_spec['strides']['y'],
layer_spec['strides']['batch'])
with tf.name_scope('conv' + str(layer_number)):
w = self._weight_variable(filter_shape, name='W')
b = self._bias_variable([layer_spec['filter']['outchannels']], name='b')
conv = tf.nn.conv2d(input_tensor, w, strides=filter_strides, padding='SAME')
activation = getattr(tf.nn, layer_spec['activation_function'])(conv + b, name='activation')
return activation
def maxpool_layer(self, input_tensor, layer_number):
"""Build a maxpooling layer.
Args:
input_tensor: The output from the layer before.
layer_number (int): The number of the layer in the network.
Returns:
tensor: The max pooled output.
"""
_, input_tensor = self._ensure_2d(input_tensor)
layer_spec = self.network_spec['layers'][layer_number]
kernel_shape = (1, # First number has to be one for ksize of maxpool layer.
layer_spec['kernel']['height'],
layer_spec['kernel']['width'],
layer_spec['kernel']['outchannels'])
kernel_strides = (layer_spec['strides']['inchannels'],
layer_spec['strides']['x'],
layer_spec['strides']['y'],
layer_spec['strides']['batch'])
with tf.name_scope('maxpool' + str(layer_number)):
pool = tf.nn.max_pool(input_tensor, ksize=kernel_shape,
strides=kernel_strides, padding='SAME', name='maxpool')
return pool
def _build_network(self):
"""Build network based on JSON specification.
Construct all layers according to the JSON specification. Then project
everything on a readout layer. Then build loss and the training op.
"""
# Write extended to logdir.
os.makedirs(self.network_spec['logdir'], exist_ok=True)
self._write_to_logdir(json.dumps(self.network_spec), 'network.json')
# Reset the old graphs from previous candidates.
tf.reset_default_graph()
self.x = tf.placeholder(tf.float32, shape=[None, 28, 28, 1], name='input')
self.y_ = tf.placeholder(tf.int32, shape=[None], name='labels')
current_tensor = self._build_layers(self.x)
readout = self._build_readout_layer(current_tensor, n_classes=10)
loss = self._build_loss(readout, self.y_)
self.train_op = self._build_train_op(loss)
def _build_layers(self, current_tensor):
"""Build layers based on the JSON specification.
Returns:
tensor: The output from the last layer.
"""
for i, layer_spec in enumerate(self.network_spec['layers']):
current_tensor = getattr(self, layer_spec['type'])(current_tensor, layer_number=i)
return current_tensor
def _build_readout_layer(self, input_tensor, n_classes):
"""Project into tensor onto readout layer with n classes."""
with tf.name_scope('readout'):
readout = self._feedforward_step(input_tensor, n_classes)
return readout
def _build_loss(self, readout, labels):
"""Build the layer including the loss and the accuracy.
Args:
readout (tensor): The readout layer. A probability distribution over the classes.
labels (tensor): Labels as integers.
Returns:
tensor: The loss tensor (cross entropy).
"""
with tf.name_scope('loss'):
self.loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=readout, labels=labels))
tf.summary.scalar('cross_entropy', self.loss)
correct_prediction = tf.nn.in_top_k(readout, labels, 1)
self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar('accuracy', self.accuracy)
return self.loss
def _build_train_op(self, loss):
"""Build the training op.
Args:
loss (tensor): The loss function to be optimized.
Returns:
The training op.
"""
with tf.name_scope('train'):
learning_rate = self.network_spec['hyperparameters']['learningrate']
optimizer = getattr(tf.train, self.network_spec['hyperparameters']['optimizer'])(learning_rate)
train_op = optimizer.minimize(loss)
return train_op
def _feedforward_step(self, input_tensor, size):
"""Project tensor on column of `size` many neurons.
Args:
input_tensor: The tensor to be projected.
size: The size of the feedforward layer.
Returns:
tensor: The forwarded tensor.
"""
# Flatten the input tensor.
flat_dim = get_tensor_size(input_tensor)
input_tensor_flat = tf.reshape(input_tensor, [-1, flat_dim], name='reshape')
w = self._weight_variable([flat_dim, size], name='W')
b = self._bias_variable([size], name='b')
weighted = tf.matmul(input_tensor_flat, w) + b
return weighted
def _ensure_2d(self, input_tensor):
"""Make sure that `input_tensor` can be used for convolution and maxpooling ops.
Args:
input_tensor (tensor): The tensor that potentially has to be converted to 2D.
Returns:
Number of inchannels for the next layer.
The `input_tensor` for the next layer.
"""
if len(input_tensor.get_shape()) > 2:
inchannels = int(input_tensor.get_shape()[-1]) # inchannels
else:
inchannels = 1
input_tensor = self._reshape_to_2d(input_tensor)
return inchannels, input_tensor
@staticmethod
def _reshape_to_2d(input_tensor):
# The length of the flat tensor.
flat_size = int(input_tensor.get_shape()[1])
side_length = math.ceil(math.sqrt(flat_size))
padding_size = (side_length ** 2) - flat_size
if padding_size != 0:
padding = tf.zeros(shape=[tf.shape(input_tensor)[0], (side_length ** 2) - flat_size], name='padding')
input_tensor = tf.concat([input_tensor, padding], axis=1)
input_tensor_2d = tf.reshape(input_tensor, [-1, side_length, side_length, 1], name='reshape')
return input_tensor_2d
@staticmethod
def _weight_variable(shape, name):
"""Initialize weights randomly with normal distribution."""
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial, name=name)
@staticmethod
def _bias_variable(shape, name):
"""Set all biases to 0.1"""
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial, name=name)
def _write_to_logdir(self, file_str, fname):
"""Write a string to a file in the logdir.
Args:
file_str: The string to be written to the file.
fname: The name of the file.
"""
file_loc = os.path.join(self.network_spec['logdir'], fname)
with open(file_loc, 'w') as fp:
fp.write(file_str)
def _extend_network_spec(self, **kwargs):
"""Write results into JSON."""
extended_spec = self.network_spec
extended_spec['results'] = kwargs
extended_json_spec = json.dumps(extended_spec)
return extended_json_spec
def _plot(self, **kwargs):
"""Save plots in logdir.
Keyword Args:
A mapping between a label and a numpy array to be plotted.
"""
steps = np.arange(
self.network_spec['max_number_of_iterations'] // self.network_spec['validate_each_n_steps']
) * self.network_spec['validate_each_n_steps']
for y_label, y_vals in kwargs.items():
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(steps, y_vals)
ax.set_xlabel('batch')
ax.set_ylabel(y_label)
fig.savefig(self.network_spec['logdir'] + y_label + '.png', format='png')
plt.clf()
plt.close(fig)
| mit |
simon-anders/htseq | python3/doc/tss3.py | 7 | 1263 | import HTSeq
import numpy
from matplotlib import pyplot
bamfile = HTSeq.BAM_Reader( "SRR001432_head.bam" )
gtffile = HTSeq.GFF_Reader( "Homo_sapiens.GRCh37.56_chrom1.gtf" )
halfwinwidth = 3000
fragmentsize = 200
tsspos = HTSeq.GenomicArrayOfSets( "auto", stranded=False )
for feature in gtffile:
if feature.type == "exon" and feature.attr["exon_number"] == "1":
p = feature.iv.start_d_as_pos
window = HTSeq.GenomicInterval( p.chrom, p.pos - halfwinwidth, p.pos + halfwinwidth, "." )
tsspos[ window ] += p
profile = numpy.zeros( 2*halfwinwidth, dtype="i" )
for almnt in bamfile:
if almnt.aligned:
almnt.iv.length = fragmentsize
s = set()
for step_iv, step_set in tsspos[ almnt.iv ].steps():
s |= step_set
for p in s:
if p.strand == "+":
start_in_window = almnt.iv.start - p.pos + halfwinwidth
end_in_window = almnt.iv.end - p.pos + halfwinwidth
else:
start_in_window = p.pos + halfwinwidth - almnt.iv.end
end_in_window = p.pos + halfwinwidth - almnt.iv.start
start_in_window = max( start_in_window, 0 )
end_in_window = min( end_in_window, 2*halfwinwidth )
profile[ start_in_window : end_in_window ] += 1
| gpl-3.0 |
michaelaye/scikit-image | doc/ext/plot2rst.py | 13 | 20439 | """
Example generation from python files.
Generate the rst files for the examples by iterating over the python
example files. Files that generate images should start with 'plot'.
To generate your own examples, add this extension to the list of
``extensions``in your Sphinx configuration file. In addition, make sure the
example directory(ies) in `plot2rst_paths` (see below) points to a directory
with examples named `plot_*.py` and include an `index.rst` file.
This code was adapted from scikit-image, which took it from scikit-learn.
Options
-------
The ``plot2rst`` extension accepts the following options:
plot2rst_paths : length-2 tuple, or list of tuples
Tuple or list of tuples of paths to (python plot, generated rst) files,
i.e. (source, destination). Note that both paths are relative to Sphinx
'source' directory. Defaults to ('../examples', 'auto_examples')
plot2rst_rcparams : dict
Matplotlib configuration parameters. See
http://matplotlib.sourceforge.net/users/customizing.html for details.
plot2rst_default_thumb : str
Path (relative to doc root) of default thumbnail image.
plot2rst_thumb_shape : float
Shape of thumbnail in pixels. The image is resized to fit within this shape
and the excess is filled with white pixels. This fixed size ensures that
that gallery images are displayed in a grid.
plot2rst_plot_tag : str
When this tag is found in the example file, the current plot is saved and
tag is replaced with plot path. Defaults to 'PLOT2RST.current_figure'.
Suggested CSS definitions
-------------------------
div.body h2 {
border-bottom: 1px solid #BBB;
clear: left;
}
/*---- example gallery ----*/
.gallery.figure {
float: left;
margin: 1em;
}
.gallery.figure img{
display: block;
margin-left: auto;
margin-right: auto;
width: 200px;
}
.gallery.figure .caption {
width: 200px;
text-align: center !important;
}
"""
import os
import re
import shutil
import token
import tokenize
import traceback
import itertools
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from skimage import io
from skimage import transform
from skimage.util.dtype import dtype_range
from notebook import Notebook
from docutils.core import publish_parts
from sphinx.domains.python import PythonDomain
LITERALINCLUDE = """
.. literalinclude:: {src_name}
:lines: {code_start}-
"""
CODE_LINK = """
**Python source code:** :download:`download <{0}>`
(generated using ``skimage`` |version|)
"""
NOTEBOOK_LINK = """
**IPython Notebook:** :download:`download <{0}>`
(generated using ``skimage`` |version|)
"""
TOCTREE_TEMPLATE = """
.. toctree::
:hidden:
%s
"""
IMAGE_TEMPLATE = """
.. image:: images/%s
:align: center
"""
GALLERY_IMAGE_TEMPLATE = """
.. figure:: %(thumb)s
:figclass: gallery
:target: ./%(source)s.html
:ref:`example_%(link_name)s`
"""
class Path(str):
"""Path object for manipulating directory and file paths."""
def __new__(self, path):
return str.__new__(self, path)
@property
def isdir(self):
return os.path.isdir(self)
@property
def exists(self):
"""Return True if path exists"""
return os.path.exists(self)
def pjoin(self, *args):
"""Join paths. `p` prefix prevents confusion with string method."""
return self.__class__(os.path.join(self, *args))
def psplit(self):
"""Split paths. `p` prefix prevents confusion with string method."""
return [self.__class__(p) for p in os.path.split(self)]
def makedirs(self):
if not self.exists:
os.makedirs(self)
def listdir(self):
return os.listdir(self)
def format(self, *args, **kwargs):
return self.__class__(super(Path, self).format(*args, **kwargs))
def __add__(self, other):
return self.__class__(super(Path, self).__add__(other))
def __iadd__(self, other):
return self.__add__(other)
def setup(app):
app.connect('builder-inited', generate_example_galleries)
app.add_config_value('plot2rst_paths',
('../examples', 'auto_examples'), True)
app.add_config_value('plot2rst_rcparams', {}, True)
app.add_config_value('plot2rst_default_thumb', None, True)
app.add_config_value('plot2rst_thumb_shape', (250, 300), True)
app.add_config_value('plot2rst_plot_tag', 'PLOT2RST.current_figure', True)
app.add_config_value('plot2rst_index_name', 'index', True)
def generate_example_galleries(app):
cfg = app.builder.config
if isinstance(cfg.source_suffix, list):
cfg.source_suffix_str = cfg.source_suffix[0]
else:
cfg.source_suffix_str = cfg.source_suffix
doc_src = Path(os.path.abspath(app.builder.srcdir)) # path/to/doc/source
if isinstance(cfg.plot2rst_paths, tuple):
cfg.plot2rst_paths = [cfg.plot2rst_paths]
for src_dest in cfg.plot2rst_paths:
plot_path, rst_path = [Path(p) for p in src_dest]
example_dir = doc_src.pjoin(plot_path)
rst_dir = doc_src.pjoin(rst_path)
generate_examples_and_gallery(example_dir, rst_dir, cfg)
def generate_examples_and_gallery(example_dir, rst_dir, cfg):
"""Generate rst from examples and create gallery to showcase examples."""
if not example_dir.exists:
print("No example directory found at", example_dir)
return
rst_dir.makedirs()
# we create an index.rst with all examples
gallery_index = open(rst_dir.pjoin('index'+cfg.source_suffix_str), 'w')
# Here we don't use an os.walk, but we recurse only twice: flat is
# better than nested.
write_gallery(gallery_index, example_dir, rst_dir, cfg)
for d in sorted(example_dir.listdir()):
example_sub = example_dir.pjoin(d)
if example_sub.isdir:
rst_sub = rst_dir.pjoin(d)
rst_sub.makedirs()
write_gallery(gallery_index, example_sub, rst_sub, cfg, depth=1)
gallery_index.flush()
def write_gallery(gallery_index, src_dir, rst_dir, cfg, depth=0):
"""Generate the rst files for an example directory, i.e. gallery.
Write rst files from python examples and add example links to gallery.
Parameters
----------
gallery_index : file
Index file for plot gallery.
src_dir : 'str'
Source directory for python examples.
rst_dir : 'str'
Destination directory for rst files generated from python examples.
cfg : config object
Sphinx config object created by Sphinx.
"""
index_name = cfg.plot2rst_index_name + cfg.source_suffix_str
gallery_template = src_dir.pjoin(index_name)
if not os.path.exists(gallery_template):
print(src_dir)
print(80*'_')
print('Example directory %s does not have a %s file'
% (src_dir, index_name))
print('Skipping this directory')
print(80*'_')
return
gallery_description = open(gallery_template).read()
gallery_index.write('\n\n%s\n\n' % gallery_description)
rst_dir.makedirs()
examples = [fname for fname in sorted(src_dir.listdir(), key=_plots_first)
if fname.endswith('py')]
ex_names = [ex[:-3] for ex in examples] # strip '.py' extension
if depth == 0:
sub_dir = Path('')
else:
sub_dir_list = src_dir.psplit()[-depth:]
sub_dir = Path('/'.join(sub_dir_list) + '/')
joiner = '\n %s' % sub_dir
gallery_index.write(TOCTREE_TEMPLATE % (sub_dir + joiner.join(ex_names)))
for src_name in examples:
try:
write_example(src_name, src_dir, rst_dir, cfg)
except Exception:
print("Exception raised while running:")
print("%s in %s" % (src_name, src_dir))
print('~' * 60)
traceback.print_exc()
print('~' * 60)
continue
link_name = sub_dir.pjoin(src_name)
link_name = link_name.replace(os.path.sep, '_')
if link_name.startswith('._'):
link_name = link_name[2:]
info = {}
info['thumb'] = sub_dir.pjoin('images/thumb', src_name[:-3] + '.png')
info['source'] = sub_dir + src_name[:-3]
info['link_name'] = link_name
gallery_index.write(GALLERY_IMAGE_TEMPLATE % info)
def _plots_first(fname):
"""Decorate filename so that examples with plots are displayed first."""
if not (fname.startswith('plot') and fname.endswith('.py')):
return 'zz' + fname
return fname
def write_example(src_name, src_dir, rst_dir, cfg):
"""Write rst file from a given python example.
Parameters
----------
src_name : str
Name of example file.
src_dir : 'str'
Source directory for python examples.
rst_dir : 'str'
Destination directory for rst files generated from python examples.
cfg : config object
Sphinx config object created by Sphinx.
"""
last_dir = src_dir.psplit()[-1]
# to avoid leading . in file names, and wrong names in links
if last_dir == '.' or last_dir == 'examples':
last_dir = Path('')
else:
last_dir += '_'
src_path = src_dir.pjoin(src_name)
example_file = rst_dir.pjoin(src_name)
shutil.copyfile(src_path, example_file)
image_dir = rst_dir.pjoin('images')
thumb_dir = image_dir.pjoin('thumb')
notebook_dir = rst_dir.pjoin('notebook')
image_dir.makedirs()
thumb_dir.makedirs()
notebook_dir.makedirs()
base_image_name = os.path.splitext(src_name)[0]
image_path = image_dir.pjoin(base_image_name + '_{0}.png')
basename, py_ext = os.path.splitext(src_name)
rst_path = rst_dir.pjoin(basename + cfg.source_suffix_str)
notebook_path = notebook_dir.pjoin(basename + '.ipynb')
if _plots_are_current(src_path, image_path) and rst_path.exists and \
notebook_path.exists:
return
print('plot2rst: %s' % basename)
blocks = split_code_and_text_blocks(example_file)
if blocks[0][2].startswith('#!'):
blocks.pop(0) # don't add shebang line to rst file.
rst_link = '.. _example_%s:\n\n' % (last_dir + src_name)
figure_list, rst = process_blocks(blocks, src_path, image_path, cfg)
has_inline_plots = any(cfg.plot2rst_plot_tag in b[2] for b in blocks)
if has_inline_plots:
example_rst = ''.join([rst_link, rst])
else:
# print first block of text, display all plots, then display code.
first_text_block = [b for b in blocks if b[0] == 'text'][0]
label, (start, end), content = first_text_block
figure_list = save_all_figures(image_path)
rst_blocks = [IMAGE_TEMPLATE % f.lstrip('/') for f in figure_list]
example_rst = rst_link
example_rst += eval(content)
example_rst += ''.join(rst_blocks)
code_info = dict(src_name=src_name, code_start=end)
example_rst += LITERALINCLUDE.format(**code_info)
example_rst += CODE_LINK.format(src_name)
ipnotebook_name = src_name.replace('.py', '.ipynb')
ipnotebook_name = './notebook/' + ipnotebook_name
example_rst += NOTEBOOK_LINK.format(ipnotebook_name)
f = open(rst_path, 'w')
f.write(example_rst)
f.flush()
thumb_path = thumb_dir.pjoin(src_name[:-3] + '.png')
first_image_file = image_dir.pjoin(figure_list[0].lstrip('/'))
if first_image_file.exists:
first_image = io.imread(first_image_file)
save_thumbnail(first_image, thumb_path, cfg.plot2rst_thumb_shape)
if not thumb_path.exists:
if cfg.plot2rst_default_thumb is None:
print("WARNING: No plots found and default thumbnail not defined.")
print("Specify 'plot2rst_default_thumb' in Sphinx config file.")
else:
shutil.copy(cfg.plot2rst_default_thumb, thumb_path)
# Export example to IPython notebook
nb = Notebook()
# Add sphinx roles to the examples, otherwise docutils
# cannot compile the ReST for the notebook
sphinx_roles = PythonDomain.roles.keys()
preamble = '\n'.join('.. role:: py:{0}(literal)\n'.format(role)
for role in sphinx_roles)
# Grab all references to inject them in cells where needed
ref_regexp = re.compile('\n(\.\. \[(\d+)\].*(?:\n[ ]{7,8}.*)+)')
math_role_regexp = re.compile(':math:`(.*?)`')
text = '\n'.join((content for (cell_type, _, content) in blocks
if cell_type != 'code'))
references = re.findall(ref_regexp, text)
for (cell_type, _, content) in blocks:
if cell_type == 'code':
nb.add_cell(content, cell_type='code')
else:
if content.startswith('r'):
content = content.replace('r"""', '')
escaped = False
else:
content = content.replace('"""', '')
escaped = True
if not escaped:
content = content.replace("\\", "\\\\")
content = content.replace('.. seealso::', '**See also:**')
content = re.sub(math_role_regexp, r'$\1$', content)
# Remove math directive when rendering notebooks
# until we implement a smarter way of capturing and replacing
# its content
content = content.replace('.. math::', '')
if not content.strip():
continue
content = (preamble + content).rstrip('\n')
content = '\n'.join([line for line in content.split('\n') if
not line.startswith('.. image')])
# Remove reference links until we can figure out a better way to
# preserve them
for (reference, ref_id) in references:
ref_tag = '[{0}]_'.format(ref_id)
if ref_tag in content:
content = content.replace(ref_tag, ref_tag[:-1])
html = publish_parts(content, writer_name='html')['html_body']
nb.add_cell(html, cell_type='markdown')
with open(notebook_path, 'w') as f:
f.write(nb.json())
def save_thumbnail(image, thumb_path, shape):
"""Save image as a thumbnail with the specified shape.
The image is first resized to fit within the specified shape and then
centered in an array of the specified shape before saving.
"""
rescale = min(float(w_1) / w_2 for w_1, w_2 in zip(shape, image.shape))
small_shape = (rescale * np.asarray(image.shape[:2])).astype(int)
small_image = transform.resize(image, small_shape)
if len(image.shape) == 3:
shape = shape + (image.shape[2],)
background_value = dtype_range[small_image.dtype.type][1]
thumb = background_value * np.ones(shape, dtype=small_image.dtype)
i = (shape[0] - small_shape[0]) // 2
j = (shape[1] - small_shape[1]) // 2
thumb[i:i+small_shape[0], j:j+small_shape[1]] = small_image
io.imsave(thumb_path, thumb)
def _plots_are_current(src_path, image_path):
first_image_file = Path(image_path.format(1))
needs_replot = (not first_image_file.exists or
_mod_time(first_image_file) <= _mod_time(src_path))
return not needs_replot
def _mod_time(file_path):
return os.stat(file_path).st_mtime
def split_code_and_text_blocks(source_file):
"""Return list with source file separated into code and text blocks.
Returns
-------
blocks : list of (label, (start, end+1), content)
List where each element is a tuple with the label ('text' or 'code'),
the (start, end+1) line numbers, and content string of block.
"""
block_edges, idx_first_text_block = get_block_edges(source_file)
with open(source_file) as f:
source_lines = f.readlines()
# Every other block should be a text block
idx_text_block = np.arange(idx_first_text_block, len(block_edges), 2)
blocks = []
slice_ranges = zip(block_edges[:-1], block_edges[1:])
for i, (start, end) in enumerate(slice_ranges):
block_label = 'text' if i in idx_text_block else 'code'
# subtract 1 from indices b/c line numbers start at 1, not 0
content = ''.join(source_lines[start-1:end-1])
blocks.append((block_label, (start, end), content))
return blocks
def get_block_edges(source_file):
"""Return starting line numbers of code and text blocks
Returns
-------
block_edges : list of int
Line number for the start of each block. Note the
idx_first_text_block : {0 | 1}
0 if first block is text then, else 1 (second block better be text).
"""
block_edges = []
with open(source_file) as f:
token_iter = tokenize.generate_tokens(f.readline)
for token_tuple in token_iter:
t_id, t_str, (srow, scol), (erow, ecol), src_line = token_tuple
if (token.tok_name[t_id] == 'STRING' and scol == 0):
# Add one point to line after text (for later slicing)
block_edges.extend((srow, erow+1))
idx_first_text_block = 0
# when example doesn't start with text block.
if not block_edges[0] == 1:
block_edges.insert(0, 1)
idx_first_text_block = 1
# when example doesn't end with text block.
if not block_edges[-1] == erow: # iffy: I'm using end state of loop
block_edges.append(erow)
return block_edges, idx_first_text_block
def process_blocks(blocks, src_path, image_path, cfg):
"""Run source, save plots as images, and convert blocks to rst.
Parameters
----------
blocks : list of block tuples
Code and text blocks from example. See `split_code_and_text_blocks`.
src_path : str
Path to example file.
image_path : str
Path where plots are saved (format string which accepts figure number).
cfg : config object
Sphinx config object created by Sphinx.
Returns
-------
figure_list : list
List of figure names saved by the example.
rst_text : str
Text with code wrapped code-block directives.
"""
src_dir, src_name = src_path.psplit()
if not src_name.startswith('plot'):
return [], ''
# index of blocks which have inline plots
inline_tag = cfg.plot2rst_plot_tag
idx_inline_plot = [i for i, b in enumerate(blocks)
if inline_tag in b[2]]
image_dir, image_fmt_str = image_path.psplit()
figure_list = []
plt.rcdefaults()
plt.rcParams.update(cfg.plot2rst_rcparams)
plt.close('all')
example_globals = {}
rst_blocks = []
fig_num = 1
for i, (blabel, brange, bcontent) in enumerate(blocks):
if blabel == 'code':
exec(bcontent, example_globals)
rst_blocks.append(codestr2rst(bcontent))
else:
if i in idx_inline_plot:
plt.savefig(image_path.format(fig_num))
figure_name = image_fmt_str.format(fig_num)
fig_num += 1
figure_list.append(figure_name)
figure_link = os.path.join('images', figure_name)
bcontent = bcontent.replace(inline_tag, figure_link)
rst_blocks.append(docstr2rst(bcontent))
return figure_list, '\n'.join(rst_blocks)
def codestr2rst(codestr):
"""Return reStructuredText code block from code string"""
code_directive = ".. code-block:: python\n\n"
indented_block = '\t' + codestr.replace('\n', '\n\t')
return code_directive + indented_block
def docstr2rst(docstr):
"""Return reStructuredText from docstring"""
idx_whitespace = len(docstr.rstrip()) - len(docstr)
whitespace = docstr[idx_whitespace:]
return eval(docstr) + whitespace
def save_all_figures(image_path):
"""Save all matplotlib figures.
Parameters
----------
image_path : str
Path where plots are saved (format string which accepts figure number).
"""
figure_list = []
image_dir, image_fmt_str = image_path.psplit()
fig_mngr = matplotlib._pylab_helpers.Gcf.get_all_fig_managers()
for fig_num in (m.num for m in fig_mngr):
# Set the fig_num figure as the current figure as we can't
# save a figure that's not the current figure.
plt.figure(fig_num)
plt.savefig(image_path.format(fig_num))
figure_list.append(image_fmt_str.format(fig_num))
return figure_list
| bsd-3-clause |
rvraghav93/scikit-learn | sklearn/learning_curve.py | 8 | 15418 | """Utilities to evaluate models with respect to a variable
"""
# Author: Alexander Fabisch <[email protected]>
#
# License: BSD 3 clause
import warnings
import numpy as np
from .base import is_classifier, clone
from .cross_validation import check_cv
from .externals.joblib import Parallel, delayed
from .cross_validation import _safe_split, _score, _fit_and_score
from .metrics.scorer import check_scoring
from .utils import indexable
warnings.warn("This module was deprecated in version 0.18 in favor of the "
"model_selection module into which all the functions are moved."
" This module will be removed in 0.20",
DeprecationWarning)
__all__ = ['learning_curve', 'validation_curve']
def learning_curve(estimator, X, y, train_sizes=np.linspace(0.1, 1.0, 5),
cv=None, scoring=None, exploit_incremental_learning=False,
n_jobs=1, pre_dispatch="all", verbose=0,
error_score='raise'):
"""Learning curve.
.. deprecated:: 0.18
This module will be removed in 0.20.
Use :func:`sklearn.model_selection.learning_curve` instead.
Determines cross-validated training and test scores for different training
set sizes.
A cross-validation generator splits the whole dataset k times in training
and test data. Subsets of the training set with varying sizes will be used
to train the estimator and a score for each training subset size and the
test set will be computed. Afterwards, the scores will be averaged over
all k runs for each training subset size.
Read more in the :ref:`User Guide <learning_curves>`.
Parameters
----------
estimator : object type that implements the "fit" and "predict" methods
An object of that type which is cloned for each validation.
X : array-like, shape (n_samples, n_features)
Training vector, where n_samples is the number of samples and
n_features is the number of features.
y : array-like, shape (n_samples) or (n_samples, n_features), optional
Target relative to X for classification or regression;
None for unsupervised learning.
train_sizes : array-like, shape (n_ticks,), dtype float or int
Relative or absolute numbers of training examples that will be used to
generate the learning curve. If the dtype is float, it is regarded as a
fraction of the maximum size of the training set (that is determined
by the selected validation method), i.e. it has to be within (0, 1].
Otherwise it is interpreted as absolute sizes of the training sets.
Note that for classification the number of samples usually have to
be big enough to contain at least one sample from each class.
(default: np.linspace(0.1, 1.0, 5))
cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 3-fold cross-validation,
- integer, to specify the number of folds.
- An object to be used as a cross-validation generator.
- An iterable yielding train/test splits.
For integer/None inputs, if the estimator is a classifier and ``y`` is
either binary or multiclass,
:class:`sklearn.model_selection.StratifiedKFold` is used. In all
other cases, :class:`sklearn.model_selection.KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
scoring : string, callable or None, optional, default: None
A string (see model evaluation documentation) or
a scorer callable object / function with signature
``scorer(estimator, X, y)``.
exploit_incremental_learning : boolean, optional, default: False
If the estimator supports incremental learning, this will be
used to speed up fitting for different training set sizes.
n_jobs : integer, optional
Number of jobs to run in parallel (default 1).
pre_dispatch : integer or string, optional
Number of predispatched jobs for parallel execution (default is
all). The option can reduce the allocated memory. The string can
be an expression like '2*n_jobs'.
verbose : integer, optional
Controls the verbosity: the higher, the more messages.
error_score : 'raise' (default) or numeric
Value to assign to the score if an error occurs in estimator fitting.
If set to 'raise', the error is raised. If a numeric value is given,
FitFailedWarning is raised. This parameter does not affect the refit
step, which will always raise the error.
Returns
-------
train_sizes_abs : array, shape = (n_unique_ticks,), dtype int
Numbers of training examples that has been used to generate the
learning curve. Note that the number of ticks might be less
than n_ticks because duplicate entries will be removed.
train_scores : array, shape (n_ticks, n_cv_folds)
Scores on training sets.
test_scores : array, shape (n_ticks, n_cv_folds)
Scores on test set.
Notes
-----
See :ref:`examples/model_selection/plot_learning_curve.py
<sphx_glr_auto_examples_model_selection_plot_learning_curve.py>`
"""
if exploit_incremental_learning and not hasattr(estimator, "partial_fit"):
raise ValueError("An estimator must support the partial_fit interface "
"to exploit incremental learning")
X, y = indexable(X, y)
# Make a list since we will be iterating multiple times over the folds
cv = list(check_cv(cv, X, y, classifier=is_classifier(estimator)))
scorer = check_scoring(estimator, scoring=scoring)
# HACK as long as boolean indices are allowed in cv generators
if cv[0][0].dtype == bool:
new_cv = []
for i in range(len(cv)):
new_cv.append((np.nonzero(cv[i][0])[0], np.nonzero(cv[i][1])[0]))
cv = new_cv
n_max_training_samples = len(cv[0][0])
# Because the lengths of folds can be significantly different, it is
# not guaranteed that we use all of the available training data when we
# use the first 'n_max_training_samples' samples.
train_sizes_abs = _translate_train_sizes(train_sizes,
n_max_training_samples)
n_unique_ticks = train_sizes_abs.shape[0]
if verbose > 0:
print("[learning_curve] Training set sizes: " + str(train_sizes_abs))
parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch,
verbose=verbose)
if exploit_incremental_learning:
classes = np.unique(y) if is_classifier(estimator) else None
out = parallel(delayed(_incremental_fit_estimator)(
clone(estimator), X, y, classes, train, test, train_sizes_abs,
scorer, verbose) for train, test in cv)
else:
out = parallel(delayed(_fit_and_score)(
clone(estimator), X, y, scorer, train[:n_train_samples], test,
verbose, parameters=None, fit_params=None, return_train_score=True,
error_score=error_score)
for train, test in cv for n_train_samples in train_sizes_abs)
out = np.array(out)[:, :2]
n_cv_folds = out.shape[0] // n_unique_ticks
out = out.reshape(n_cv_folds, n_unique_ticks, 2)
out = np.asarray(out).transpose((2, 1, 0))
return train_sizes_abs, out[0], out[1]
def _translate_train_sizes(train_sizes, n_max_training_samples):
"""Determine absolute sizes of training subsets and validate 'train_sizes'.
Examples:
_translate_train_sizes([0.5, 1.0], 10) -> [5, 10]
_translate_train_sizes([5, 10], 10) -> [5, 10]
Parameters
----------
train_sizes : array-like, shape (n_ticks,), dtype float or int
Numbers of training examples that will be used to generate the
learning curve. If the dtype is float, it is regarded as a
fraction of 'n_max_training_samples', i.e. it has to be within (0, 1].
n_max_training_samples : int
Maximum number of training samples (upper bound of 'train_sizes').
Returns
-------
train_sizes_abs : array, shape (n_unique_ticks,), dtype int
Numbers of training examples that will be used to generate the
learning curve. Note that the number of ticks might be less
than n_ticks because duplicate entries will be removed.
"""
train_sizes_abs = np.asarray(train_sizes)
n_ticks = train_sizes_abs.shape[0]
n_min_required_samples = np.min(train_sizes_abs)
n_max_required_samples = np.max(train_sizes_abs)
if np.issubdtype(train_sizes_abs.dtype, np.float):
if n_min_required_samples <= 0.0 or n_max_required_samples > 1.0:
raise ValueError("train_sizes has been interpreted as fractions "
"of the maximum number of training samples and "
"must be within (0, 1], but is within [%f, %f]."
% (n_min_required_samples,
n_max_required_samples))
train_sizes_abs = (train_sizes_abs * n_max_training_samples).astype(
dtype=np.int, copy=False)
train_sizes_abs = np.clip(train_sizes_abs, 1,
n_max_training_samples)
else:
if (n_min_required_samples <= 0 or
n_max_required_samples > n_max_training_samples):
raise ValueError("train_sizes has been interpreted as absolute "
"numbers of training samples and must be within "
"(0, %d], but is within [%d, %d]."
% (n_max_training_samples,
n_min_required_samples,
n_max_required_samples))
train_sizes_abs = np.unique(train_sizes_abs)
if n_ticks > train_sizes_abs.shape[0]:
warnings.warn("Removed duplicate entries from 'train_sizes'. Number "
"of ticks will be less than the size of "
"'train_sizes' %d instead of %d)."
% (train_sizes_abs.shape[0], n_ticks), RuntimeWarning)
return train_sizes_abs
def _incremental_fit_estimator(estimator, X, y, classes, train, test,
train_sizes, scorer, verbose):
"""Train estimator on training subsets incrementally and compute scores."""
train_scores, test_scores = [], []
partitions = zip(train_sizes, np.split(train, train_sizes)[:-1])
for n_train_samples, partial_train in partitions:
train_subset = train[:n_train_samples]
X_train, y_train = _safe_split(estimator, X, y, train_subset)
X_partial_train, y_partial_train = _safe_split(estimator, X, y,
partial_train)
X_test, y_test = _safe_split(estimator, X, y, test, train_subset)
if y_partial_train is None:
estimator.partial_fit(X_partial_train, classes=classes)
else:
estimator.partial_fit(X_partial_train, y_partial_train,
classes=classes)
train_scores.append(_score(estimator, X_train, y_train, scorer))
test_scores.append(_score(estimator, X_test, y_test, scorer))
return np.array((train_scores, test_scores)).T
def validation_curve(estimator, X, y, param_name, param_range, cv=None,
scoring=None, n_jobs=1, pre_dispatch="all", verbose=0):
"""Validation curve.
.. deprecated:: 0.18
This module will be removed in 0.20.
Use :func:`sklearn.model_selection.validation_curve` instead.
Determine training and test scores for varying parameter values.
Compute scores for an estimator with different values of a specified
parameter. This is similar to grid search with one parameter. However, this
will also compute training scores and is merely a utility for plotting the
results.
Read more in the :ref:`User Guide <validation_curve>`.
Parameters
----------
estimator : object type that implements the "fit" and "predict" methods
An object of that type which is cloned for each validation.
X : array-like, shape (n_samples, n_features)
Training vector, where n_samples is the number of samples and
n_features is the number of features.
y : array-like, shape (n_samples) or (n_samples, n_features), optional
Target relative to X for classification or regression;
None for unsupervised learning.
param_name : string
Name of the parameter that will be varied.
param_range : array-like, shape (n_values,)
The values of the parameter that will be evaluated.
cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 3-fold cross-validation,
- integer, to specify the number of folds.
- An object to be used as a cross-validation generator.
- An iterable yielding train/test splits.
For integer/None inputs, if the estimator is a classifier and ``y`` is
either binary or multiclass,
:class:`sklearn.model_selection.StratifiedKFold` is used. In all
other cases, :class:`sklearn.model_selection.KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
scoring : string, callable or None, optional, default: None
A string (see model evaluation documentation) or
a scorer callable object / function with signature
``scorer(estimator, X, y)``.
n_jobs : integer, optional
Number of jobs to run in parallel (default 1).
pre_dispatch : integer or string, optional
Number of predispatched jobs for parallel execution (default is
all). The option can reduce the allocated memory. The string can
be an expression like '2*n_jobs'.
verbose : integer, optional
Controls the verbosity: the higher, the more messages.
Returns
-------
train_scores : array, shape (n_ticks, n_cv_folds)
Scores on training sets.
test_scores : array, shape (n_ticks, n_cv_folds)
Scores on test set.
Notes
-----
See
:ref:`examples/model_selection/plot_validation_curve.py
<sphx_glr_auto_examples_model_selection_plot_validation_curve.py>`
"""
X, y = indexable(X, y)
cv = check_cv(cv, X, y, classifier=is_classifier(estimator))
scorer = check_scoring(estimator, scoring=scoring)
parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch,
verbose=verbose)
out = parallel(delayed(_fit_and_score)(
clone(estimator), X, y, scorer, train, test, verbose,
parameters={param_name: v}, fit_params=None, return_train_score=True)
for train, test in cv for v in param_range)
out = np.asarray(out)[:, :2]
n_params = len(param_range)
n_cv_folds = out.shape[0] // n_params
out = out.reshape(n_cv_folds, n_params, 2).transpose((2, 1, 0))
return out[0], out[1]
| bsd-3-clause |
drix00/microanalysis_file_format | pySpectrumFileFormat/OxfordInstruments/MapRaw/MapRawFormat.py | 1 | 7049 | #!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
.. py:currentmodule:: OxfordInstruments.MapRaw.MapRawFormat
:synopsis: Read Oxford Instruments map in the raw format.
.. moduleauthor:: Hendrix Demers <[email protected]>
Read Oxford Instruments map in the raw format.
"""
###############################################################################
# Copyright 2012 Hendrix Demers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
###############################################################################
# Standard library modules.
import os.path
import struct
import logging
# Third party modules.
import matplotlib.pyplot as plt
import numpy as np
# Local modules.
# Project modules.
import pySpectrumFileFormat.OxfordInstruments.MapRaw.ParametersFile as ParametersFile
# Globals and constants variables.
class MapRawFormat(object):
def __init__(self, rawFilepath):
logging.info("Raw file: %s", rawFilepath)
self._rawFilepath = rawFilepath
parametersFilepath = self._rawFilepath.replace('.raw', '.rpl')
self._parameters = ParametersFile.ParametersFile()
self._parameters.read(parametersFilepath)
self._format = self._generateFormat(self._parameters)
def _generateFormat(self, parameters):
spectrumFormat = ""
if parameters.byteOrder == ParametersFile.BYTE_ORDER_LITTLE_ENDIAN:
spectrumFormat += '<'
if parameters.dataLength_B == 1:
if parameters.dataType == ParametersFile.DATA_TYPE_SIGNED:
spectrumFormat += "b"
elif parameters.dataType == ParametersFile.DATA_TYPE_UNSIGNED:
spectrumFormat += "B"
elif parameters.dataLength_B == 2:
if parameters.dataType == ParametersFile.DATA_TYPE_SIGNED:
spectrumFormat += "h"
elif parameters.dataType == ParametersFile.DATA_TYPE_UNSIGNED:
spectrumFormat += "H"
elif parameters.dataLength_B == 4:
if parameters.dataType == ParametersFile.DATA_TYPE_SIGNED:
spectrumFormat += "i"
elif parameters.dataType == ParametersFile.DATA_TYPE_UNSIGNED:
spectrumFormat += "I"
logging.info("Format: %s", spectrumFormat)
return spectrumFormat
def _generateSumSpectraFormat(self, parameters):
spectrumFormat = ""
if parameters.byteOrder == ParametersFile.BYTE_ORDER_LITTLE_ENDIAN:
spectrumFormat += '<'
spectrumFormat += '%i' % (parameters.width*parameters.height)
if parameters.dataLength_B == 1:
if parameters.dataType == ParametersFile.DATA_TYPE_SIGNED:
spectrumFormat += "b"
elif parameters.dataType == ParametersFile.DATA_TYPE_UNSIGNED:
spectrumFormat += "B"
elif parameters.dataLength_B == 2:
if parameters.dataType == ParametersFile.DATA_TYPE_SIGNED:
spectrumFormat += "h"
elif parameters.dataType == ParametersFile.DATA_TYPE_UNSIGNED:
spectrumFormat += "H"
elif parameters.dataLength_B == 4:
if parameters.dataType == ParametersFile.DATA_TYPE_SIGNED:
spectrumFormat += "i"
elif parameters.dataType == ParametersFile.DATA_TYPE_UNSIGNED:
spectrumFormat += "I"
logging.info("Format: %s", spectrumFormat)
return spectrumFormat
def getSpectrum(self, pixelId):
logging.debug("Pixel ID: %i", pixelId)
imageOffset = self._parameters.width*self._parameters.height
logging.debug("File offset: %i", imageOffset)
logging.debug("Size: %i", struct.calcsize(self._format))
x = np.arange(0, self._parameters.depth)
y = np.zeros_like(x)
rawFile = open(self._rawFilepath, 'rb')
for channel in range(self._parameters.depth):
fileOffset = self._parameters.offset + (pixelId + channel*imageOffset)*self._parameters.dataLength_B
rawFile.seek(fileOffset)
fileBuffer = rawFile.read(struct.calcsize(self._format))
items = struct.unpack(self._format, fileBuffer)
y[channel] = float(items[0])
rawFile.close()
return x, y
def getSumSpectrum(self):
imageOffset = self._parameters.width*self._parameters.height
x = np.arange(0, self._parameters.depth)
y = np.zeros_like(x)
rawFile = open(self._rawFilepath, 'rb')
fileOffset = self._parameters.offset
rawFile.seek(fileOffset)
sumSpectrumformat = self._generateSumSpectraFormat(self._parameters)
for channel in range(self._parameters.depth):
logging.info("Channel: %i", channel)
fileBuffer = rawFile.read(struct.calcsize(sumSpectrumformat))
items = struct.unpack(sumSpectrumformat, fileBuffer)
y[channel] = np.sum(items)
rawFile.close()
return x, y
def getSumSpectrumOld(self):
numberPixels = self._parameters.width*self._parameters.height
logging.info("Numbe rof pixels: %i", numberPixels)
x = np.arange(0, self._parameters.depth)
ySum = np.zeros_like(x)
for pixelId in range(numberPixels):
_x, y = self.getSpectrum(pixelId)
ySum += y
return x, ySum
def run():
path = r"J:\hdemers\work\mcgill2012\results\experimental\McGill\su8000\others\exampleEDS"
#filename = "Map30kV.raw"
filename = "Project 1.raw"
filepath = os.path.join(path, filename)
mapRaw = MapRawFormat(filepath)
line = 150
column = 150
pixelId = line + column*512
xData, yData = mapRaw.getSpectrum(pixelId=pixelId)
plt.figure()
plt.plot(xData, yData)
xData, yData = mapRaw.getSumSpectrum()
plt.figure()
plt.plot(xData, yData)
plt.show()
def run20120307():
path = r"J:\hdemers\work\mcgill2012\results\experimental\McGill\su8000\hdemers\20120307\rareearthSample"
filename = "mapSOI_15.raw"
filepath = os.path.join(path, filename)
mapRaw = MapRawFormat(filepath)
line = 150
column = 150
pixelId = line + column*512
xData, yData = mapRaw.getSpectrum(pixelId=pixelId)
plt.figure()
plt.plot(xData, yData)
plt.show()
if __name__ == '__main__': # pragma: no cover
run()
| apache-2.0 |
dssg/wikienergy | disaggregator/build/pandas/pandas/tseries/resample.py | 1 | 16718 | from datetime import timedelta
import numpy as np
from pandas.core.groupby import BinGrouper, Grouper
from pandas.tseries.frequencies import to_offset, is_subperiod, is_superperiod
from pandas.tseries.index import DatetimeIndex, date_range
from pandas.tseries.tdi import TimedeltaIndex
from pandas.tseries.offsets import DateOffset, Tick, Day, _delta_to_nanoseconds
from pandas.tseries.period import PeriodIndex, period_range
import pandas.tseries.tools as tools
import pandas.core.common as com
import pandas.compat as compat
from pandas.lib import Timestamp
import pandas.lib as lib
import pandas.tslib as tslib
_DEFAULT_METHOD = 'mean'
class TimeGrouper(Grouper):
"""
Custom groupby class for time-interval grouping
Parameters
----------
freq : pandas date offset or offset alias for identifying bin edges
closed : closed end of interval; left or right
label : interval boundary to use for labeling; left or right
nperiods : optional, integer
convention : {'start', 'end', 'e', 's'}
If axis is PeriodIndex
Notes
-----
Use begin, end, nperiods to generate intervals that cannot be derived
directly from the associated object
"""
def __init__(self, freq='Min', closed=None, label=None, how='mean',
nperiods=None, axis=0,
fill_method=None, limit=None, loffset=None, kind=None,
convention=None, base=0, **kwargs):
freq = to_offset(freq)
end_types = set(['M', 'A', 'Q', 'BM', 'BA', 'BQ', 'W'])
rule = freq.rule_code
if (rule in end_types or
('-' in rule and rule[:rule.find('-')] in end_types)):
if closed is None:
closed = 'right'
if label is None:
label = 'right'
else:
if closed is None:
closed = 'left'
if label is None:
label = 'left'
self.closed = closed
self.label = label
self.nperiods = nperiods
self.kind = kind
self.convention = convention or 'E'
self.convention = self.convention.lower()
self.loffset = loffset
self.how = how
self.fill_method = fill_method
self.limit = limit
self.base = base
# always sort time groupers
kwargs['sort'] = True
super(TimeGrouper, self).__init__(freq=freq, axis=axis, **kwargs)
def resample(self, obj):
self._set_grouper(obj, sort=True)
ax = self.grouper
if isinstance(ax, DatetimeIndex):
rs = self._resample_timestamps()
elif isinstance(ax, PeriodIndex):
offset = to_offset(self.freq)
if offset.n > 1:
if self.kind == 'period': # pragma: no cover
print('Warning: multiple of frequency -> timestamps')
# Cannot have multiple of periods, convert to timestamp
self.kind = 'timestamp'
if self.kind is None or self.kind == 'period':
rs = self._resample_periods()
else:
obj = self.obj.to_timestamp(how=self.convention)
self._set_grouper(obj)
rs = self._resample_timestamps()
elif isinstance(ax, TimedeltaIndex):
rs = self._resample_timestamps(kind='timedelta')
elif len(ax) == 0:
return self.obj
else: # pragma: no cover
raise TypeError('Only valid with DatetimeIndex, TimedeltaIndex or PeriodIndex')
rs_axis = rs._get_axis(self.axis)
rs_axis.name = ax.name
return rs
def _get_grouper(self, obj):
self._set_grouper(obj)
return self._get_binner_for_resample()
def _get_binner_for_resample(self, kind=None):
# create the BinGrouper
# assume that self.set_grouper(obj) has already been called
ax = self.ax
if kind is None:
kind = self.kind
if kind is None or kind == 'timestamp':
self.binner, bins, binlabels = self._get_time_bins(ax)
elif kind == 'timedelta':
self.binner, bins, binlabels = self._get_time_delta_bins(ax)
else:
self.binner, bins, binlabels = self._get_time_period_bins(ax)
self.grouper = BinGrouper(bins, binlabels)
return self.binner, self.grouper, self.obj
def _get_binner_for_grouping(self, obj):
# return an ordering of the transformed group labels,
# suitable for multi-grouping, e.g the labels for
# the resampled intervals
ax = self._set_grouper(obj)
self._get_binner_for_resample()
# create the grouper
binner = self.binner
l = []
for key, group in self.grouper.get_iterator(ax):
l.extend([key]*len(group))
grouper = binner.__class__(l,freq=binner.freq,name=binner.name)
# since we may have had to sort
# may need to reorder groups here
if self.indexer is not None:
indexer = self.indexer.argsort(kind='quicksort')
grouper = grouper.take(indexer)
return grouper
def _get_time_bins(self, ax):
if not isinstance(ax, DatetimeIndex):
raise TypeError('axis must be a DatetimeIndex, but got '
'an instance of %r' % type(ax).__name__)
if len(ax) == 0:
binner = labels = DatetimeIndex(data=[], freq=self.freq, name=ax.name)
return binner, [], labels
first, last = ax.min(), ax.max()
first, last = _get_range_edges(first, last, self.freq, closed=self.closed,
base=self.base)
tz = ax.tz
binner = labels = DatetimeIndex(freq=self.freq,
start=first.replace(tzinfo=None),
end=last.replace(tzinfo=None),
tz=tz,
name=ax.name)
# a little hack
trimmed = False
if (len(binner) > 2 and binner[-2] == last and
self.closed == 'right'):
binner = binner[:-1]
trimmed = True
ax_values = ax.asi8
binner, bin_edges = self._adjust_bin_edges(binner, ax_values)
# general version, knowing nothing about relative frequencies
bins = lib.generate_bins_dt64(ax_values, bin_edges, self.closed, hasnans=ax.hasnans)
if self.closed == 'right':
labels = binner
if self.label == 'right':
labels = labels[1:]
elif not trimmed:
labels = labels[:-1]
else:
if self.label == 'right':
labels = labels[1:]
elif not trimmed:
labels = labels[:-1]
if ax.hasnans:
binner = binner.insert(0, tslib.NaT)
labels = labels.insert(0, tslib.NaT)
# if we end up with more labels than bins
# adjust the labels
# GH4076
if len(bins) < len(labels):
labels = labels[:len(bins)]
return binner, bins, labels
def _adjust_bin_edges(self, binner, ax_values):
# Some hacks for > daily data, see #1471, #1458, #1483
bin_edges = binner.asi8
if self.freq != 'D' and is_superperiod(self.freq, 'D'):
day_nanos = _delta_to_nanoseconds(timedelta(1))
if self.closed == 'right':
bin_edges = bin_edges + day_nanos - 1
# intraday values on last day
if bin_edges[-2] > ax_values.max():
bin_edges = bin_edges[:-1]
binner = binner[:-1]
return binner, bin_edges
def _get_time_delta_bins(self, ax):
if not isinstance(ax, TimedeltaIndex):
raise TypeError('axis must be a TimedeltaIndex, but got '
'an instance of %r' % type(ax).__name__)
if not len(ax):
binner = labels = TimedeltaIndex(data=[], freq=self.freq, name=ax.name)
return binner, [], labels
labels = binner = TimedeltaIndex(start=ax[0],
end=ax[-1],
freq=self.freq,
name=ax.name)
end_stamps = labels + 1
bins = ax.searchsorted(end_stamps, side='left')
return binner, bins, labels
def _get_time_period_bins(self, ax):
if not isinstance(ax, DatetimeIndex):
raise TypeError('axis must be a DatetimeIndex, but got '
'an instance of %r' % type(ax).__name__)
if not len(ax):
binner = labels = PeriodIndex(data=[], freq=self.freq, name=ax.name)
return binner, [], labels
labels = binner = PeriodIndex(start=ax[0],
end=ax[-1],
freq=self.freq,
name=ax.name)
end_stamps = (labels + 1).asfreq(self.freq, 's').to_timestamp()
if ax.tzinfo:
end_stamps = end_stamps.tz_localize(ax.tzinfo)
bins = ax.searchsorted(end_stamps, side='left')
return binner, bins, labels
@property
def _agg_method(self):
return self.how if self.how else _DEFAULT_METHOD
def _resample_timestamps(self, kind=None):
# assumes set_grouper(obj) already called
axlabels = self.ax
self._get_binner_for_resample(kind=kind)
grouper = self.grouper
binner = self.binner
obj = self.obj
# Determine if we're downsampling
if axlabels.freq is not None or axlabels.inferred_freq is not None:
if len(grouper.binlabels) < len(axlabels) or self.how is not None:
# downsample
grouped = obj.groupby(grouper, axis=self.axis)
result = grouped.aggregate(self._agg_method)
# GH2073
if self.fill_method is not None:
result = result.fillna(method=self.fill_method,
limit=self.limit)
else:
# upsampling shortcut
if self.axis:
raise AssertionError('axis must be 0')
if self.closed == 'right':
res_index = binner[1:]
else:
res_index = binner[:-1]
# if we have the same frequency as our axis, then we are equal sampling
# even if how is None
if self.fill_method is None and self.limit is None and to_offset(
axlabels.inferred_freq) == self.freq:
result = obj.copy()
result.index = res_index
else:
result = obj.reindex(res_index, method=self.fill_method,
limit=self.limit)
else:
# Irregular data, have to use groupby
grouped = obj.groupby(grouper, axis=self.axis)
result = grouped.aggregate(self._agg_method)
if self.fill_method is not None:
result = result.fillna(method=self.fill_method,
limit=self.limit)
loffset = self.loffset
if isinstance(loffset, compat.string_types):
loffset = to_offset(self.loffset)
if isinstance(loffset, (DateOffset, timedelta)):
if (isinstance(result.index, DatetimeIndex)
and len(result.index) > 0):
result.index = result.index + loffset
return result
def _resample_periods(self):
# assumes set_grouper(obj) already called
axlabels = self.ax
obj = self.obj
if len(axlabels) == 0:
new_index = PeriodIndex(data=[], freq=self.freq)
return obj.reindex(new_index)
else:
start = axlabels[0].asfreq(self.freq, how=self.convention)
end = axlabels[-1].asfreq(self.freq, how='end')
new_index = period_range(start, end, freq=self.freq)
# Start vs. end of period
memb = axlabels.asfreq(self.freq, how=self.convention)
if is_subperiod(axlabels.freq, self.freq) or self.how is not None:
# Downsampling
rng = np.arange(memb.values[0], memb.values[-1] + 1)
bins = memb.searchsorted(rng, side='right')
grouper = BinGrouper(bins, new_index)
grouped = obj.groupby(grouper, axis=self.axis)
return grouped.aggregate(self._agg_method)
elif is_superperiod(axlabels.freq, self.freq):
# Get the fill indexer
indexer = memb.get_indexer(new_index, method=self.fill_method,
limit=self.limit)
return _take_new_index(obj, indexer, new_index, axis=self.axis)
else:
raise ValueError('Frequency %s cannot be resampled to %s'
% (axlabels.freq, self.freq))
def _take_new_index(obj, indexer, new_index, axis=0):
from pandas.core.api import Series, DataFrame
if isinstance(obj, Series):
new_values = com.take_1d(obj.values, indexer)
return Series(new_values, index=new_index, name=obj.name)
elif isinstance(obj, DataFrame):
if axis == 1:
raise NotImplementedError
return DataFrame(obj._data.reindex_indexer(
new_axis=new_index, indexer=indexer, axis=1))
else:
raise NotImplementedError
def _get_range_edges(first, last, offset, closed='left', base=0):
if isinstance(offset, compat.string_types):
offset = to_offset(offset)
if isinstance(offset, Tick):
is_day = isinstance(offset, Day)
day_nanos = _delta_to_nanoseconds(timedelta(1))
# #1165
if (is_day and day_nanos % offset.nanos == 0) or not is_day:
return _adjust_dates_anchored(first, last, offset,
closed=closed, base=base)
if not isinstance(offset, Tick): # and first.time() != last.time():
# hack!
first = tools.normalize_date(first)
last = tools.normalize_date(last)
if closed == 'left':
first = Timestamp(offset.rollback(first))
else:
first = Timestamp(first - offset)
last = Timestamp(last + offset)
return first, last
def _adjust_dates_anchored(first, last, offset, closed='right', base=0):
from pandas.tseries.tools import normalize_date
# First and last offsets should be calculated from the start day to fix an
# error cause by resampling across multiple days when a one day period is
# not a multiple of the frequency.
#
# See https://github.com/pydata/pandas/issues/8683
start_day_nanos = Timestamp(normalize_date(first)).value
base_nanos = (base % offset.n) * offset.nanos // offset.n
start_day_nanos += base_nanos
foffset = (first.value - start_day_nanos) % offset.nanos
loffset = (last.value - start_day_nanos) % offset.nanos
if closed == 'right':
if foffset > 0:
# roll back
fresult = first.value - foffset
else:
fresult = first.value - offset.nanos
if loffset > 0:
# roll forward
lresult = last.value + (offset.nanos - loffset)
else:
# already the end of the road
lresult = last.value
else: # closed == 'left'
if foffset > 0:
fresult = first.value - foffset
else:
# start of the road
fresult = first.value
if loffset > 0:
# roll forward
lresult = last.value + (offset.nanos - loffset)
else:
lresult = last.value + offset.nanos
return (Timestamp(fresult, tz=first.tz),
Timestamp(lresult, tz=last.tz))
def asfreq(obj, freq, method=None, how=None, normalize=False):
"""
Utility frequency conversion method for Series/DataFrame
"""
if isinstance(obj.index, PeriodIndex):
if method is not None:
raise NotImplementedError
if how is None:
how = 'E'
new_index = obj.index.asfreq(freq, how=how)
new_obj = obj.copy()
new_obj.index = new_index
return new_obj
else:
if len(obj.index) == 0:
return obj.copy()
dti = date_range(obj.index[0], obj.index[-1], freq=freq)
rs = obj.reindex(dti, method=method)
if normalize:
rs.index = rs.index.normalize()
return rs
| mit |
imaculate/scikit-learn | examples/applications/plot_out_of_core_classification.py | 32 | 13829 | """
======================================================
Out-of-core classification of text documents
======================================================
This is an example showing how scikit-learn can be used for classification
using an out-of-core approach: learning from data that doesn't fit into main
memory. We make use of an online classifier, i.e., one that supports the
partial_fit method, that will be fed with batches of examples. To guarantee
that the features space remains the same over time we leverage a
HashingVectorizer that will project each example into the same feature space.
This is especially useful in the case of text classification where new
features (words) may appear in each batch.
The dataset used in this example is Reuters-21578 as provided by the UCI ML
repository. It will be automatically downloaded and uncompressed on first run.
The plot represents the learning curve of the classifier: the evolution
of classification accuracy over the course of the mini-batches. Accuracy is
measured on the first 1000 samples, held out as a validation set.
To limit the memory consumption, we queue examples up to a fixed amount before
feeding them to the learner.
"""
# Authors: Eustache Diemert <[email protected]>
# @FedericoV <https://github.com/FedericoV/>
# License: BSD 3 clause
from __future__ import print_function
from glob import glob
import itertools
import os.path
import re
import tarfile
import time
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rcParams
from sklearn.externals.six.moves import html_parser
from sklearn.externals.six.moves import urllib
from sklearn.datasets import get_data_home
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.linear_model import SGDClassifier
from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.linear_model import Perceptron
from sklearn.naive_bayes import MultinomialNB
def _not_in_sphinx():
# Hack to detect whether we are running by the sphinx builder
return '__file__' in globals()
###############################################################################
# Reuters Dataset related routines
###############################################################################
class ReutersParser(html_parser.HTMLParser):
"""Utility class to parse a SGML file and yield documents one at a time."""
def __init__(self, encoding='latin-1'):
html_parser.HTMLParser.__init__(self)
self._reset()
self.encoding = encoding
def handle_starttag(self, tag, attrs):
method = 'start_' + tag
getattr(self, method, lambda x: None)(attrs)
def handle_endtag(self, tag):
method = 'end_' + tag
getattr(self, method, lambda: None)()
def _reset(self):
self.in_title = 0
self.in_body = 0
self.in_topics = 0
self.in_topic_d = 0
self.title = ""
self.body = ""
self.topics = []
self.topic_d = ""
def parse(self, fd):
self.docs = []
for chunk in fd:
self.feed(chunk.decode(self.encoding))
for doc in self.docs:
yield doc
self.docs = []
self.close()
def handle_data(self, data):
if self.in_body:
self.body += data
elif self.in_title:
self.title += data
elif self.in_topic_d:
self.topic_d += data
def start_reuters(self, attributes):
pass
def end_reuters(self):
self.body = re.sub(r'\s+', r' ', self.body)
self.docs.append({'title': self.title,
'body': self.body,
'topics': self.topics})
self._reset()
def start_title(self, attributes):
self.in_title = 1
def end_title(self):
self.in_title = 0
def start_body(self, attributes):
self.in_body = 1
def end_body(self):
self.in_body = 0
def start_topics(self, attributes):
self.in_topics = 1
def end_topics(self):
self.in_topics = 0
def start_d(self, attributes):
self.in_topic_d = 1
def end_d(self):
self.in_topic_d = 0
self.topics.append(self.topic_d)
self.topic_d = ""
def stream_reuters_documents(data_path=None):
"""Iterate over documents of the Reuters dataset.
The Reuters archive will automatically be downloaded and uncompressed if
the `data_path` directory does not exist.
Documents are represented as dictionaries with 'body' (str),
'title' (str), 'topics' (list(str)) keys.
"""
DOWNLOAD_URL = ('http://archive.ics.uci.edu/ml/machine-learning-databases/'
'reuters21578-mld/reuters21578.tar.gz')
ARCHIVE_FILENAME = 'reuters21578.tar.gz'
if data_path is None:
data_path = os.path.join(get_data_home(), "reuters")
if not os.path.exists(data_path):
"""Download the dataset."""
print("downloading dataset (once and for all) into %s" %
data_path)
os.mkdir(data_path)
def progress(blocknum, bs, size):
total_sz_mb = '%.2f MB' % (size / 1e6)
current_sz_mb = '%.2f MB' % ((blocknum * bs) / 1e6)
if _not_in_sphinx():
print('\rdownloaded %s / %s' % (current_sz_mb, total_sz_mb),
end='')
archive_path = os.path.join(data_path, ARCHIVE_FILENAME)
urllib.request.urlretrieve(DOWNLOAD_URL, filename=archive_path,
reporthook=progress)
if _not_in_sphinx():
print('\r', end='')
print("untarring Reuters dataset...")
tarfile.open(archive_path, 'r:gz').extractall(data_path)
print("done.")
parser = ReutersParser()
for filename in glob(os.path.join(data_path, "*.sgm")):
for doc in parser.parse(open(filename, 'rb')):
yield doc
###############################################################################
# Main
###############################################################################
# Create the vectorizer and limit the number of features to a reasonable
# maximum
vectorizer = HashingVectorizer(decode_error='ignore', n_features=2 ** 18,
non_negative=True)
# Iterator over parsed Reuters SGML files.
data_stream = stream_reuters_documents()
# We learn a binary classification between the "acq" class and all the others.
# "acq" was chosen as it is more or less evenly distributed in the Reuters
# files. For other datasets, one should take care of creating a test set with
# a realistic portion of positive instances.
all_classes = np.array([0, 1])
positive_class = 'acq'
# Here are some classifiers that support the `partial_fit` method
partial_fit_classifiers = {
'SGD': SGDClassifier(),
'Perceptron': Perceptron(),
'NB Multinomial': MultinomialNB(alpha=0.01),
'Passive-Aggressive': PassiveAggressiveClassifier(),
}
def get_minibatch(doc_iter, size, pos_class=positive_class):
"""Extract a minibatch of examples, return a tuple X_text, y.
Note: size is before excluding invalid docs with no topics assigned.
"""
data = [(u'{title}\n\n{body}'.format(**doc), pos_class in doc['topics'])
for doc in itertools.islice(doc_iter, size)
if doc['topics']]
if not len(data):
return np.asarray([], dtype=int), np.asarray([], dtype=int)
X_text, y = zip(*data)
return X_text, np.asarray(y, dtype=int)
def iter_minibatches(doc_iter, minibatch_size):
"""Generator of minibatches."""
X_text, y = get_minibatch(doc_iter, minibatch_size)
while len(X_text):
yield X_text, y
X_text, y = get_minibatch(doc_iter, minibatch_size)
# test data statistics
test_stats = {'n_test': 0, 'n_test_pos': 0}
# First we hold out a number of examples to estimate accuracy
n_test_documents = 1000
tick = time.time()
X_test_text, y_test = get_minibatch(data_stream, 1000)
parsing_time = time.time() - tick
tick = time.time()
X_test = vectorizer.transform(X_test_text)
vectorizing_time = time.time() - tick
test_stats['n_test'] += len(y_test)
test_stats['n_test_pos'] += sum(y_test)
print("Test set is %d documents (%d positive)" % (len(y_test), sum(y_test)))
def progress(cls_name, stats):
"""Report progress information, return a string."""
duration = time.time() - stats['t0']
s = "%20s classifier : \t" % cls_name
s += "%(n_train)6d train docs (%(n_train_pos)6d positive) " % stats
s += "%(n_test)6d test docs (%(n_test_pos)6d positive) " % test_stats
s += "accuracy: %(accuracy).3f " % stats
s += "in %.2fs (%5d docs/s)" % (duration, stats['n_train'] / duration)
return s
cls_stats = {}
for cls_name in partial_fit_classifiers:
stats = {'n_train': 0, 'n_train_pos': 0,
'accuracy': 0.0, 'accuracy_history': [(0, 0)], 't0': time.time(),
'runtime_history': [(0, 0)], 'total_fit_time': 0.0}
cls_stats[cls_name] = stats
get_minibatch(data_stream, n_test_documents)
# Discard test set
# We will feed the classifier with mini-batches of 1000 documents; this means
# we have at most 1000 docs in memory at any time. The smaller the document
# batch, the bigger the relative overhead of the partial fit methods.
minibatch_size = 1000
# Create the data_stream that parses Reuters SGML files and iterates on
# documents as a stream.
minibatch_iterators = iter_minibatches(data_stream, minibatch_size)
total_vect_time = 0.0
# Main loop : iterate on mini-batches of examples
for i, (X_train_text, y_train) in enumerate(minibatch_iterators):
tick = time.time()
X_train = vectorizer.transform(X_train_text)
total_vect_time += time.time() - tick
for cls_name, cls in partial_fit_classifiers.items():
tick = time.time()
# update estimator with examples in the current mini-batch
cls.partial_fit(X_train, y_train, classes=all_classes)
# accumulate test accuracy stats
cls_stats[cls_name]['total_fit_time'] += time.time() - tick
cls_stats[cls_name]['n_train'] += X_train.shape[0]
cls_stats[cls_name]['n_train_pos'] += sum(y_train)
tick = time.time()
cls_stats[cls_name]['accuracy'] = cls.score(X_test, y_test)
cls_stats[cls_name]['prediction_time'] = time.time() - tick
acc_history = (cls_stats[cls_name]['accuracy'],
cls_stats[cls_name]['n_train'])
cls_stats[cls_name]['accuracy_history'].append(acc_history)
run_history = (cls_stats[cls_name]['accuracy'],
total_vect_time + cls_stats[cls_name]['total_fit_time'])
cls_stats[cls_name]['runtime_history'].append(run_history)
if i % 3 == 0:
print(progress(cls_name, cls_stats[cls_name]))
if i % 3 == 0:
print('\n')
###############################################################################
# Plot results
###############################################################################
def plot_accuracy(x, y, x_legend):
"""Plot accuracy as a function of x."""
x = np.array(x)
y = np.array(y)
plt.title('Classification accuracy as a function of %s' % x_legend)
plt.xlabel('%s' % x_legend)
plt.ylabel('Accuracy')
plt.grid(True)
plt.plot(x, y)
rcParams['legend.fontsize'] = 10
cls_names = list(sorted(cls_stats.keys()))
# Plot accuracy evolution
plt.figure()
for _, stats in sorted(cls_stats.items()):
# Plot accuracy evolution with #examples
accuracy, n_examples = zip(*stats['accuracy_history'])
plot_accuracy(n_examples, accuracy, "training examples (#)")
ax = plt.gca()
ax.set_ylim((0.8, 1))
plt.legend(cls_names, loc='best')
plt.figure()
for _, stats in sorted(cls_stats.items()):
# Plot accuracy evolution with runtime
accuracy, runtime = zip(*stats['runtime_history'])
plot_accuracy(runtime, accuracy, 'runtime (s)')
ax = plt.gca()
ax.set_ylim((0.8, 1))
plt.legend(cls_names, loc='best')
# Plot fitting times
plt.figure()
fig = plt.gcf()
cls_runtime = []
for cls_name, stats in sorted(cls_stats.items()):
cls_runtime.append(stats['total_fit_time'])
cls_runtime.append(total_vect_time)
cls_names.append('Vectorization')
bar_colors = ['b', 'g', 'r', 'c', 'm', 'y']
ax = plt.subplot(111)
rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5,
color=bar_colors)
ax.set_xticks(np.linspace(0.25, len(cls_names) - 0.75, len(cls_names)))
ax.set_xticklabels(cls_names, fontsize=10)
ymax = max(cls_runtime) * 1.2
ax.set_ylim((0, ymax))
ax.set_ylabel('runtime (s)')
ax.set_title('Training Times')
def autolabel(rectangles):
"""attach some text vi autolabel on rectangles."""
for rect in rectangles:
height = rect.get_height()
ax.text(rect.get_x() + rect.get_width() / 2.,
1.05 * height, '%.4f' % height,
ha='center', va='bottom')
autolabel(rectangles)
plt.show()
# Plot prediction times
plt.figure()
cls_runtime = []
cls_names = list(sorted(cls_stats.keys()))
for cls_name, stats in sorted(cls_stats.items()):
cls_runtime.append(stats['prediction_time'])
cls_runtime.append(parsing_time)
cls_names.append('Read/Parse\n+Feat.Extr.')
cls_runtime.append(vectorizing_time)
cls_names.append('Hashing\n+Vect.')
ax = plt.subplot(111)
rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5,
color=bar_colors)
ax.set_xticks(np.linspace(0.25, len(cls_names) - 0.75, len(cls_names)))
ax.set_xticklabels(cls_names, fontsize=8)
plt.setp(plt.xticks()[1], rotation=30)
ymax = max(cls_runtime) * 1.2
ax.set_ylim((0, ymax))
ax.set_ylabel('runtime (s)')
ax.set_title('Prediction Times (%d instances)' % n_test_documents)
autolabel(rectangles)
plt.show()
| bsd-3-clause |
toomanycats/IndeedScraper | compare.py | 1 | 4116 | from sklearn.feature_extraction.text import CountVectorizer
import indeed_scrape
import GrammarParser
import subprocess
import numpy as np
import logging
import os
from os import path
import numpy as np
data_dir = os.getenv('OPENSHIFT_DATA_DIR')
if data_dir is None:
data_dir = os.getenv('PWD')
logging = logging.getLogger(__name__)
grammar = GrammarParser.GrammarParser()
ind = indeed_scrape.Indeed('kw')
class MissingKeywords(object):
def __init__(self):
self.stop_words = 'resume affirmative cover letter equal religion sex disibility veteran status sexual orientation and work ability http https www gender com org the'
def pdf_to_text(self, infile):
logging.debug("pdf_to_text, infile:%s" % infile)
jar_file = os.path.join(data_dir, 'pdfbox-app-2.0.0-RC2.jar')
cmd = "java -jar %(jar)s ExtractText -console %(infile)s"
cmd = cmd % {'jar':jar_file,
'infile':infile
}
process = subprocess.Popen(cmd, shell=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
out, err = process.communicate()
errcode = process.returncode
if errcode > 0:
logging.error(err)
logging.error(out)
logging.error(errcode)
raise Exception
return out
def make_row(self, kw, ind_cnt, res_cnt):
row = '<tr><td>%s</td><td>%s</td><td>%s</td></tr>'
row = row %(kw, ind_cnt, res_cnt)
return row
def vectorizer(self, corpus, max_fea, n_min, n_max):
ind = indeed_scrape.Indeed(None)
ind.stop_words = self.stop_words
ind.add_stop_words()
stop_words = ind.stop_words
vectorizer = CountVectorizer(max_features=max_fea,
max_df=0.80,
min_df=5,
lowercase=True,
stop_words=stop_words,
ngram_range=(n_min, n_max),
analyzer='word',
decode_error='ignore',
strip_accents='unicode'
)
matrix = vectorizer.fit_transform(corpus)
features = vectorizer.get_feature_names()
return matrix, features, vectorizer
def _trans_ind_agg_to_perc(self, mat):
ind_mat = mat.toarray()
# recall: mat is docs x features
# we want count of features overall docs
ind_cnt = ind_mat.T.sum(axis=1)
# and really we want the percentage
ind_perc = ind_cnt / float(ind_mat.shape[0])
ind_perc = np.round(ind_perc, decimals=2)
return ind_perc
def main(self, resume_path, indeed_summaries):
res_text = self.pdf_to_text(resume_path)
bi_rows = self.bi_gram_analysis(res_text, indeed_summaries)
uni_rows = self.unigram_analysis(res_text, indeed_summaries)
return bi_rows, uni_rows
def unigram_analysis(self, res_text, indeed_summaries):
ind_mat, keywords, vec_obj = self.vectorizer(indeed_summaries, 10, 1, 1)
ind_perc = self._trans_ind_agg_to_perc(ind_mat)
res_mat = vec_obj.transform([res_text])
# resume matrix is a 1 dim so no need to sum
# or transpose
res_mat = res_mat.toarray().squeeze()
rows = self.make_rows(keywords, ind_perc, res_mat)
return rows
def bi_gram_analysis(self, res_text, indeed_summaries):
ind_mat, keywords, vec_obj = self.vectorizer(indeed_summaries, 20, 2, 2)
ind_perc = self._trans_ind_agg_to_perc(ind_mat)
res_mat = vec_obj.transform([res_text])
res_mat = res_mat.toarray().squeeze()
rows = self.make_rows(keywords, ind_perc, res_mat)
return rows
def make_rows(self, keywords, ind_perc, res_mat):
rows = ''
for i in range(len(ind_perc)):
rows += self.make_row(keywords[i], ind_perc[i], res_mat[i])
return rows
| mit |
guorendong/iridium-browser-ubuntu | native_client/site_scons/site_tools/naclsdk.py | 2 | 28784 | #!/usr/bin/python
# Copyright (c) 2012 The Native Client Authors. All rights reserved.
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
"""NaCl SDK tool SCons."""
import __builtin__
import re
import os
import shutil
import sys
import SCons.Scanner
import SCons.Script
import subprocess
import tempfile
NACL_TOOL_MAP = {
'arm': {
'32': {
'tooldir': 'arm-nacl',
'as_flag': '',
'cc_flag': '',
'ld_flag': '',
},
},
'x86': {
'32': {
'tooldir': 'i686-nacl',
'other_libdir': 'lib32',
'as_flag': '--32',
'cc_flag': '-m32',
'ld_flag': ' -melf_i386_nacl',
},
'64': {
'tooldir': 'x86_64-nacl',
'other_libdir': 'lib64',
'as_flag': '--64',
'cc_flag': '-m64',
'ld_flag': ' -melf_x86_64_nacl',
},
},
}
def _StubOutEnvToolsForBuiltElsewhere(env):
"""Stub out all tools so that they point to 'true'.
Some machines have their code built by another machine, they'll therefore
run 'true' instead of running the usual build tools.
Args:
env: The SCons environment in question.
"""
assert(env.Bit('built_elsewhere'))
env.Replace(CC='true', CXX='true', LINK='true', AR='true',
RANLIB='true', AS='true', ASPP='true', LD='true',
STRIP='true', OBJDUMP='true', OBJCOPY='true',
PNACLOPT='true', PNACLFINALIZE='true')
def _SetEnvForNativeSdk(env, sdk_path):
"""Initialize environment according to target architecture."""
bin_path = os.path.join(sdk_path, 'bin')
# NOTE: attempts to eliminate this PATH setting and use
# absolute path have been futile
env.PrependENVPath('PATH', bin_path)
tool_prefix = None
tool_map = NACL_TOOL_MAP[env['TARGET_ARCHITECTURE']]
subarch_spec = tool_map[env['TARGET_SUBARCH']]
tooldir = subarch_spec['tooldir']
# We need to pass it extra options for the subarch we are building.
as_mode_flag = subarch_spec['as_flag']
cc_mode_flag = subarch_spec['cc_flag']
ld_mode_flag = subarch_spec['ld_flag']
if os.path.exists(os.path.join(sdk_path, tooldir)):
# The tooldir for the build target exists.
# The tools there do the right thing without special options.
tool_prefix = tooldir
libdir = os.path.join(tooldir, 'lib')
else:
# We're building for a target for which there is no matching tooldir.
# For example, for x86-32 when only <sdk_path>/x86_64-nacl/ exists.
# Find a tooldir for a different subarch that does exist.
others_map = tool_map.copy()
del others_map[env['TARGET_SUBARCH']]
for subarch, tool_spec in others_map.iteritems():
tooldir = tool_spec['tooldir']
if os.path.exists(os.path.join(sdk_path, tooldir)):
# OK, this is the other subarch to use as tooldir.
tool_prefix = tooldir
# The lib directory may have an alternate name, i.e.
# 'lib32' in the x86_64-nacl tooldir.
libdir = os.path.join(tooldir, subarch_spec.get('other_libdir', 'lib'))
break
if tool_prefix is None:
raise Exception("Cannot find a toolchain for %s in %s" %
(env['TARGET_FULLARCH'], sdk_path))
cc = 'clang' if env.Bit('nacl_clang') else 'gcc'
cxx = 'clang++' if env.Bit('nacl_clang') else 'g++'
env.Replace(# Replace header and lib paths.
# where to put nacl extra sdk headers
# TODO(robertm): switch to using the mechanism that
# passes arguments to scons
NACL_SDK_INCLUDE='%s/%s/include' % (sdk_path, tool_prefix),
# where to find/put nacl generic extra sdk libraries
NACL_SDK_LIB='%s/%s' % (sdk_path, libdir),
# Replace the normal unix tools with the NaCl ones.
CC=os.path.join(bin_path, '%s-%s' % (tool_prefix, cc)),
CXX=os.path.join(bin_path, '%s-%s' % (tool_prefix, cxx)),
AR=os.path.join(bin_path, '%s-ar' % tool_prefix),
AS=os.path.join(bin_path, '%s-as' % tool_prefix),
ASPP=os.path.join(bin_path, '%s-%s' % (tool_prefix, cc)),
FILECHECK=os.path.join(bin_path, 'FileCheck'),
GDB=os.path.join(bin_path, '%s-gdb' % tool_prefix),
# NOTE: use g++ for linking so we can handle C AND C++.
LINK=os.path.join(bin_path, '%s-%s' % (tool_prefix, cxx)),
# Grrr... and sometimes we really need ld.
LD=os.path.join(bin_path, '%s-ld' % tool_prefix) + ld_mode_flag,
RANLIB=os.path.join(bin_path, '%s-ranlib' % tool_prefix),
NM=os.path.join(bin_path, '%s-nm' % tool_prefix),
OBJDUMP=os.path.join(bin_path, '%s-objdump' % tool_prefix),
OBJCOPY=os.path.join(bin_path, '%s-objcopy' % tool_prefix),
STRIP=os.path.join(bin_path, '%s-strip' % tool_prefix),
ADDR2LINE=os.path.join(bin_path, '%s-addr2line' % tool_prefix),
BASE_LINKFLAGS=[cc_mode_flag],
BASE_CFLAGS=[cc_mode_flag],
BASE_CXXFLAGS=[cc_mode_flag],
BASE_ASFLAGS=[as_mode_flag],
BASE_ASPPFLAGS=[cc_mode_flag],
CFLAGS=['-std=gnu99'],
CCFLAGS=['-O3',
'-Werror',
'-Wall',
'-Wno-variadic-macros',
'-Wswitch-enum',
'-g',
'-fno-stack-protector',
'-fdiagnostics-show-option',
'-pedantic',
'-D__linux__',
],
ASFLAGS=[],
)
# NaClSdk environment seems to be inherited from the host environment.
# On Linux host, this probably makes sense. On Windows and Mac, this
# introduces nothing except problems.
# For now, simply override the environment settings as in
# <scons>/engine/SCons/Platform/posix.py
env.Replace(LIBPREFIX='lib',
LIBSUFFIX='.a',
SHLIBPREFIX='$LIBPREFIX',
SHLIBSUFFIX='.so',
LIBPREFIXES=['$LIBPREFIX'],
LIBSUFFIXES=['$LIBSUFFIX', '$SHLIBSUFFIX'],
)
# Force -fPIC when compiling for shared libraries.
env.AppendUnique(SHCCFLAGS=['-fPIC'],
)
def _SetEnvForPnacl(env, root):
# All the PNaCl tools require Python to be in the PATH.
arch = env['TARGET_FULLARCH']
assert arch in ['arm', 'mips32', 'x86-32', 'x86-64']
if env.Bit('pnacl_unsandboxed'):
if env.Bit('host_linux'):
arch = '%s-linux' % arch
elif env.Bit('host_mac'):
arch = '%s-mac' % arch
if env.Bit('nonsfi_nacl'):
arch += '-nonsfi'
arch_flag = ' -arch %s' % arch
ld_arch_flag = '' if env.Bit('pnacl_generate_pexe') else arch_flag
llc_mtriple_flag = ''
if env.Bit('minsfi'):
llc_cpu = ''
if env.Bit('build_x86_32'):
llc_cpu = 'i686'
elif env.Bit('build_x86_64'):
llc_cpu = 'x86_64'
if env.Bit('host_linux'):
llc_mtriple_flag = ' -mtriple=%s-linux-gnu' % llc_cpu
elif env.Bit('host_mac'):
llc_mtriple_flag = ' -mtriple=%s-apple-darwin' % llc_cpu
translator_root = os.path.join(os.path.dirname(root), 'pnacl_translator')
binroot = os.path.join(root, 'bin')
binprefix = os.path.join(binroot, 'pnacl-')
binext = ''
if env.Bit('host_windows'):
binext = '.bat'
pnacl_ar = binprefix + 'ar' + binext
pnacl_as = binprefix + 'as' + binext
pnacl_nm = binprefix + 'nm' + binext
pnacl_ranlib = binprefix + 'ranlib' + binext
# Use the standalone sandboxed translator in sbtc mode
if env.Bit('use_sandboxed_translator'):
pnacl_translate = os.path.join(translator_root, 'bin',
'pnacl-translate' + binext)
else:
pnacl_translate = binprefix + 'translate' + binext
pnacl_cc = binprefix + 'clang' + binext
pnacl_cxx = binprefix + 'clang++' + binext
pnacl_ld = binprefix + 'ld' + binext
pnacl_disass = binprefix + 'dis' + binext
pnacl_filecheck = os.path.join(binroot, 'FileCheck')
pnacl_finalize = binprefix + 'finalize' + binext
pnacl_opt = binprefix + 'opt' + binext
pnacl_strip = binprefix + 'strip' + binext
pnacl_llc = binprefix + 'llc' + binext
# NOTE: XXX_flags start with space for easy concatenation
# The flags generated here get baked into the commands (CC, CXX, LINK)
# instead of CFLAGS etc to keep them from getting blown away by some
# tests. Don't add flags here unless they always need to be preserved.
pnacl_cxx_flags = ''
pnacl_cc_flags = ' -std=gnu99'
pnacl_ld_flags = ' ' + ' '.join(env['PNACL_BCLDFLAGS'])
pnacl_translate_flags = ''
pnacl_llc_flags = ''
sdk_base = os.path.join(root, 'le32-nacl')
bias_flags = ''
# The supported use cases for nonpexe mode (IRT building, nonsfi) use biased
# bitcode and native calling conventions, so inject the --target= flags to
# get that by default. The one exception to that rule is PNaCl zerocost EH,
# so put the flags in BASE_{C,CXX,LINK}FLAGS rather than in the commands
# directly, so that the test can override them. In addition to using the
# flags, we have to point NACL_SDK_{LIB,INCLUDE} to the toolchain directories
# containing the biased bitcode libraries.
if not env.Bit('pnacl_generate_pexe') and env['TARGET_FULLARCH'] != 'mips32':
bias_flags = ' '.join(env.BiasedBitcodeFlags())
archdir = {'x86-32': 'i686', 'x86-64': 'x86_64', 'arm': 'arm'}
sdk_base = os.path.join(root, archdir[env['TARGET_FULLARCH']] + '_bc-nacl')
if env.Bit('nacl_pic'):
pnacl_cc_flags += ' -fPIC'
pnacl_cxx_flags += ' -fPIC'
# NOTE: this is a special hack for the pnacl backend which
# does more than linking
pnacl_ld_flags += ' -fPIC'
pnacl_translate_flags += ' -fPIC'
if env.Bit('minsfi'):
pnacl_llc_flags += ' -relocation-model=pic -filetype=obj'
pnacl_ld_flags += ' -nostdlib -Wl,-r -L' + os.path.join(root, 'usr', 'lib')
if env.Bit('use_sandboxed_translator'):
sb_flags = ' --pnacl-sb'
pnacl_ld_flags += sb_flags
pnacl_translate_flags += sb_flags
if env.Bit('x86_64_zero_based_sandbox'):
pnacl_translate_flags += ' -sfi-zero-based-sandbox'
env.Replace(# Replace header and lib paths.
NACL_SDK_INCLUDE=os.path.join(root, sdk_base, 'include'),
NACL_SDK_LIB=os.path.join(root, sdk_base, 'lib'),
# Remove arch-specific flags (if any)
BASE_LINKFLAGS=bias_flags,
BASE_CFLAGS=bias_flags,
BASE_CXXFLAGS=bias_flags,
BASE_ASFLAGS='',
BASE_ASPPFLAGS='',
# Replace the normal unix tools with the PNaCl ones.
CC=pnacl_cc + pnacl_cc_flags,
CXX=pnacl_cxx + pnacl_cxx_flags,
ASPP=pnacl_cc + pnacl_cc_flags,
LIBPREFIX="lib",
SHLIBPREFIX="lib",
SHLIBSUFFIX=".so",
OBJSUFFIX=".bc",
LINK=pnacl_cxx + ld_arch_flag + pnacl_ld_flags,
# Although we are currently forced to produce native output
# for LINK, we are free to produce bitcode for SHLINK
# (SharedLibrary linking) because scons doesn't do anything
# with shared libraries except use them with the toolchain.
SHLINK=pnacl_cxx + ld_arch_flag + pnacl_ld_flags,
LD=pnacl_ld,
AR=pnacl_ar,
AS=pnacl_as + ld_arch_flag,
RANLIB=pnacl_ranlib,
FILECHECK=pnacl_filecheck,
DISASS=pnacl_disass,
OBJDUMP=pnacl_disass,
STRIP=pnacl_strip,
TRANSLATE=pnacl_translate + arch_flag + pnacl_translate_flags,
PNACLFINALIZE=pnacl_finalize,
PNACLOPT=pnacl_opt,
LLC=pnacl_llc + llc_mtriple_flag + pnacl_llc_flags,
)
if env.Bit('built_elsewhere'):
def FakeInstall(dest, source, env):
print 'Not installing', dest
_StubOutEnvToolsForBuiltElsewhere(env)
env.Replace(INSTALL=FakeInstall)
if env.Bit('translate_in_build_step'):
env.Replace(TRANSLATE='true')
env.Replace(PNACLFINALIZE='true')
def PNaClForceNative(env):
assert(env.Bit('bitcode'))
if env.Bit('pnacl_generate_pexe'):
env.Replace(CC='NO-NATIVE-CC-INVOCATION-ALLOWED',
CXX='NO-NATIVE-CXX-INVOCATION-ALLOWED')
return
env.Replace(OBJSUFFIX='.o',
SHLIBSUFFIX='.so')
arch_flag = ' -arch ${TARGET_FULLARCH}'
if env.Bit('nonsfi_nacl'):
arch_flag += '-nonsfi'
cc_flags = ' --pnacl-allow-native --pnacl-allow-translate'
env.Append(CC=arch_flag + cc_flags,
CXX=arch_flag + cc_flags,
ASPP=arch_flag + cc_flags,
LINK=cc_flags) # Already has -arch
env['LD'] = 'NO-NATIVE-LD-INVOCATION-ALLOWED'
env['SHLINK'] = '${LINK}'
if env.Bit('built_elsewhere'):
_StubOutEnvToolsForBuiltElsewhere(env)
# Get an environment for nacl-gcc when in PNaCl mode.
def PNaClGetNNaClEnv(env):
assert(env.Bit('bitcode'))
assert(not env.Bit('build_mips32'))
# This is kind of a hack. We clone the environment,
# clear the bitcode bit, and then reload naclsdk.py
native_env = env.Clone()
native_env.ClearBits('bitcode')
if env.Bit('built_elsewhere'):
_StubOutEnvToolsForBuiltElsewhere(env)
else:
native_env = native_env.Clone(tools=['naclsdk'])
if native_env.Bit('pnacl_generate_pexe'):
native_env.Replace(CC='NO-NATIVE-CC-INVOCATION-ALLOWED',
CXX='NO-NATIVE-CXX-INVOCATION-ALLOWED')
else:
# These are unfortunately clobbered by running Tool.
native_env.Replace(EXTRA_CFLAGS=env['EXTRA_CFLAGS'],
EXTRA_CXXFLAGS=env['EXTRA_CXXFLAGS'],
CCFLAGS=env['CCFLAGS'],
CFLAGS=env['CFLAGS'],
CXXFLAGS=env['CXXFLAGS'])
return native_env
# This adds architecture specific defines for the target architecture.
# These are normally omitted by PNaCl.
# For example: __i686__, __arm__, __mips__, __x86_64__
def AddBiasForPNaCl(env, temporarily_allow=True):
assert(env.Bit('bitcode'))
# re: the temporarily_allow flag -- that is for:
# BUG= http://code.google.com/p/nativeclient/issues/detail?id=1248
if env.Bit('pnacl_generate_pexe') and not temporarily_allow:
env.Replace(CC='NO-NATIVE-CC-INVOCATION-ALLOWED',
CXX='NO-NATIVE-CXX-INVOCATION-ALLOWED')
return
if env.Bit('build_arm'):
bias_flag = '--pnacl-bias=arm'
elif env.Bit('build_x86_32'):
bias_flag = '--pnacl-bias=x86-32'
elif env.Bit('build_x86_64'):
bias_flag = '--pnacl-bias=x86-64'
elif env.Bit('build_mips32'):
bias_flag = '--pnacl-bias=mips32'
else:
raise Exception("Unknown architecture!")
if env.Bit('nonsfi_nacl'):
bias_flag += '-nonsfi'
env.AppendUnique(CCFLAGS=[bias_flag],
ASPPFLAGS=[bias_flag])
def ValidateSdk(env):
checkables = ['${NACL_SDK_INCLUDE}/stdio.h']
for c in checkables:
if os.path.exists(env.subst(c)):
continue
# Windows build does not use cygwin and so can not see nacl subdirectory
# if it's cygwin's symlink - check for /include instead...
if os.path.exists(re.sub(r'(nacl64|nacl)/include/([^/]*)$',
r'include/\2',
env.subst(c))):
continue
# TODO(pasko): remove the legacy header presence test below.
if os.path.exists(re.sub(r'nacl/include/([^/]*)$',
r'nacl64/include/\1',
env.subst(c))):
continue
message = env.subst('''
ERROR: NativeClient toolchain does not seem present!,
Missing: %s
Configuration is:
NACL_SDK_INCLUDE=${NACL_SDK_INCLUDE}
NACL_SDK_LIB=${NACL_SDK_LIB}
CC=${CC}
CXX=${CXX}
AR=${AR}
AS=${AS}
ASPP=${ASPP}
LINK=${LINK}
RANLIB=${RANLIB}
Run: gclient runhooks --force or build the SDK yourself.
''' % c)
sys.stderr.write(message + "\n\n")
sys.exit(-1)
def ScanLinkerScript(node, env, libpath):
"""SCons scanner for linker script files.
This handles trivial linker scripts like those used for libc.so and libppapi.a.
These scripts just indicate more input files to be linked in, so we want
to produce dependencies on them.
A typical such linker script looks like:
/* Some comments. */
INPUT ( foo.a libbar.a libbaz.a )
or:
/* GNU ld script
Use the shared library, but some functions are only in
the static library, so try that secondarily. */
OUTPUT_FORMAT(elf64-x86-64)
GROUP ( /lib/libc.so.6 /usr/lib/libc_nonshared.a
AS_NEEDED ( /lib/ld-linux-x86-64.so.2 ) )
"""
contents = node.get_text_contents()
if contents.startswith('!<arch>\n') or contents.startswith('\177ELF'):
# An archive or ELF file is not a linker script.
return []
comment_pattern = re.compile(r'/\*.*?\*/', re.DOTALL | re.MULTILINE)
def remove_comments(text):
return re.sub(comment_pattern, '', text)
tokens = remove_comments(contents).split()
libs = []
while tokens:
token = tokens.pop()
if token.startswith('OUTPUT_FORMAT('):
pass
elif token == 'OUTPUT_FORMAT':
# Swallow the next three tokens: '(', 'xyz', ')'
del tokens[0:2]
elif token in ['(', ')', 'INPUT', 'GROUP', 'AS_NEEDED']:
pass
else:
libs.append(token)
# Find those items in the library path, ignoring ones we fail to find.
found = [SCons.Node.FS.find_file(lib, libpath) for lib in libs]
return [lib for lib in found if lib is not None]
# This is a modified copy of the class TempFileMunge in
# third_party/scons-2.0.1/engine/SCons/Platform/__init__.py.
# It differs in using quote_for_at_file (below) in place of
# SCons.Subst.quote_spaces.
class NaClTempFileMunge(object):
"""A callable class. You can set an Environment variable to this,
then call it with a string argument, then it will perform temporary
file substitution on it. This is used to circumvent the long command
line limitation.
Example usage:
env["TEMPFILE"] = TempFileMunge
env["LINKCOM"] = "${TEMPFILE('$LINK $TARGET $SOURCES')}"
By default, the name of the temporary file used begins with a
prefix of '@'. This may be configred for other tool chains by
setting '$TEMPFILEPREFIX'.
env["TEMPFILEPREFIX"] = '-@' # diab compiler
env["TEMPFILEPREFIX"] = '-via' # arm tool chain
"""
def __init__(self, cmd):
self.cmd = cmd
def __call__(self, target, source, env, for_signature):
if for_signature:
# If we're being called for signature calculation, it's
# because we're being called by the string expansion in
# Subst.py, which has the logic to strip any $( $) that
# may be in the command line we squirreled away. So we
# just return the raw command line and let the upper
# string substitution layers do their thing.
return self.cmd
# Now we're actually being called because someone is actually
# going to try to execute the command, so we have to do our
# own expansion.
cmd = env.subst_list(self.cmd, SCons.Subst.SUBST_CMD, target, source)[0]
try:
maxline = int(env.subst('$MAXLINELENGTH'))
except ValueError:
maxline = 2048
length = 0
for c in cmd:
length += len(c)
if length <= maxline:
return self.cmd
# We do a normpath because mktemp() has what appears to be
# a bug in Windows that will use a forward slash as a path
# delimiter. Windows's link mistakes that for a command line
# switch and barfs.
#
# We use the .lnk suffix for the benefit of the Phar Lap
# linkloc linker, which likes to append an .lnk suffix if
# none is given.
(fd, tmp) = tempfile.mkstemp('.lnk', text=True)
native_tmp = SCons.Util.get_native_path(os.path.normpath(tmp))
if env['SHELL'] and env['SHELL'] == 'sh':
# The sh shell will try to escape the backslashes in the
# path, so unescape them.
native_tmp = native_tmp.replace('\\', r'\\\\')
# In Cygwin, we want to use rm to delete the temporary
# file, because del does not exist in the sh shell.
rm = env.Detect('rm') or 'del'
else:
# Don't use 'rm' if the shell is not sh, because rm won't
# work with the Windows shells (cmd.exe or command.com) or
# Windows path names.
rm = 'del'
prefix = env.subst('$TEMPFILEPREFIX')
if not prefix:
prefix = '@'
# The @file is sometimes handled by a GNU tool itself, using
# the libiberty/argv.c code, and sometimes handled implicitly
# by Cygwin before the tool's own main even sees it. These
# two treat the contents differently, so there is no single
# perfect way to quote. The libiberty @file code uses a very
# regular scheme: a \ in any context is always swallowed and
# quotes the next character, whatever it is; '...' or "..."
# quote whitespace in ... and the outer quotes are swallowed.
# The Cygwin @file code uses a vaguely similar scheme, but its
# treatment of \ is much less consistent: a \ outside a quoted
# string is never stripped, and a \ inside a quoted string is
# only stripped when it quoted something (Cygwin's definition
# of "something" here is nontrivial). In our uses the only
# appearances of \ we expect are in Windows-style file names.
# Fortunately, an extra doubling of \\ that doesn't get
# stripped is harmless in the middle of a file name.
def quote_for_at_file(s):
s = str(s)
if ' ' in s or '\t' in s:
return '"' + re.sub('([ \t"])', r'\\\1', s) + '"'
return s.replace('\\', '\\\\')
args = list(map(quote_for_at_file, cmd[1:]))
os.write(fd, " ".join(args) + "\n")
os.close(fd)
# XXX Using the SCons.Action.print_actions value directly
# like this is bogus, but expedient. This class should
# really be rewritten as an Action that defines the
# __call__() and strfunction() methods and lets the
# normal action-execution logic handle whether or not to
# print/execute the action. The problem, though, is all
# of that is decided before we execute this method as
# part of expanding the $TEMPFILE construction variable.
# Consequently, refactoring this will have to wait until
# we get more flexible with allowing Actions to exist
# independently and get strung together arbitrarily like
# Ant tasks. In the meantime, it's going to be more
# user-friendly to not let obsession with architectural
# purity get in the way of just being helpful, so we'll
# reach into SCons.Action directly.
if SCons.Action.print_actions:
print("Using tempfile "+native_tmp+" for command line:\n"+
str(cmd[0]) + " " + " ".join(args))
return [ cmd[0], prefix + native_tmp + '\n' + rm, native_tmp ]
def generate(env):
"""SCons entry point for this tool.
Args:
env: The SCons environment in question.
NOTE: SCons requires the use of this name, which fails lint.
"""
# make these methods to the top level scons file
env.AddMethod(ValidateSdk)
env.AddMethod(AddBiasForPNaCl)
env.AddMethod(PNaClForceNative)
env.AddMethod(PNaClGetNNaClEnv)
# Invoke the various unix tools that the NativeClient SDK resembles.
env.Tool('g++')
env.Tool('gcc')
env.Tool('gnulink')
env.Tool('ar')
env.Tool('as')
if env.Bit('pnacl_generate_pexe'):
suffix = '.nonfinal.pexe'
else:
suffix = '.nexe'
env.Replace(
COMPONENT_LINKFLAGS=[''],
COMPONENT_LIBRARY_LINK_SUFFIXES=['.pso', '.so', '.a'],
_RPATH='',
COMPONENT_LIBRARY_DEBUG_SUFFIXES=[],
PROGSUFFIX=suffix,
# adding BASE_ AND EXTRA_ flags to common command lines
# The suggested usage pattern is:
# BASE_XXXFLAGS can only be set in this file
# EXTRA_XXXFLAGS can only be set in a ComponentXXX call
# NOTE: we also have EXTRA_LIBS which is handles separately in
# site_scons/site_tools/component_builders.py
# NOTE: the command lines were gleaned from:
# * ../third_party/scons-2.0.1/engine/SCons/Tool/cc.py
# * ../third_party/scons-2.0.1/engine/SCons/Tool/c++.py
# * etc.
CCCOM='$CC $BASE_CFLAGS $CFLAGS $EXTRA_CFLAGS ' +
'$CCFLAGS $_CCCOMCOM -c -o $TARGET $SOURCES',
SHCCCOM='$SHCC $BASE_CFLAGS $SHCFLAGS $EXTRA_CFLAGS ' +
'$SHCCFLAGS $_CCCOMCOM -c -o $TARGET $SOURCES',
CXXCOM='$CXX $BASE_CXXFLAGS $CXXFLAGS $EXTRA_CXXFLAGS ' +
'$CCFLAGS $_CCCOMCOM -c -o $TARGET $SOURCES',
SHCXXCOM='$SHCXX $BASE_CXXFLAGS $SHCXXFLAGS $EXTRA_CXXFLAGS ' +
'$SHCCFLAGS $_CCCOMCOM -c -o $TARGET $SOURCES',
LINKCOM='$LINK $BASE_LINKFLAGS $LINKFLAGS $EXTRA_LINKFLAGS ' +
'$SOURCES $_LIBDIRFLAGS $_LIBFLAGS -o $TARGET',
SHLINKCOM='$SHLINK $BASE_LINKFLAGS $SHLINKFLAGS $EXTRA_LINKFLAGS ' +
'$SOURCES $_LIBDIRFLAGS $_LIBFLAGS -o $TARGET',
ASCOM='$AS $BASE_ASFLAGS $ASFLAGS $EXTRA_ASFLAGS -o $TARGET $SOURCES',
ASPPCOM='$ASPP $BASE_ASPPFLAGS $ASPPFLAGS $EXTRA_ASPPFLAGS ' +
'$CPPFLAGS $_CPPDEFFLAGS $_CPPINCFLAGS -c -o $TARGET $SOURCES',
# Strip doesn't seem to be a first-class citizen in SCons country,
# so we have to add these *COM, *COMSTR manually.
# Note: it appears we cannot add this in component_setup.py
STRIPFLAGS=['--strip-all'],
STRIPCOM='${STRIP} ${STRIPFLAGS}',
TRANSLATECOM='${TRANSLATE} ${TRANSLATEFLAGS} ${SOURCES} -o ${TARGET}',
PNACLFINALIZEFLAGS=[],
PNACLFINALIZECOM='${PNACLFINALIZE} ${PNACLFINALIZEFLAGS} ' +
'${SOURCES} -o ${TARGET}',
)
# Windows has a small limit on the command line size. The linking and AR
# commands can get quite large. So bring in the SCons machinery to put
# most of a command line into a temporary file and pass it with
# @filename, which works with gcc.
if env['PLATFORM'] in ['win32', 'cygwin']:
env['TEMPFILE'] = NaClTempFileMunge
for com in ['LINKCOM', 'SHLINKCOM', 'ARCOM']:
env[com] = "${TEMPFILE('%s')}" % env[com]
# Get root of the SDK.
root = env.GetToolchainDir()
# if bitcode=1 use pnacl toolchain
if env.Bit('bitcode'):
_SetEnvForPnacl(env, root)
elif env.Bit('built_elsewhere'):
def FakeInstall(dest, source, env):
print 'Not installing', dest
_StubOutEnvToolsForBuiltElsewhere(env)
env.Replace(INSTALL=FakeInstall)
else:
_SetEnvForNativeSdk(env, root)
if (env.Bit('bitcode') or env.Bit('nacl_clang')) and env.Bit('build_x86'):
# Get GDB from the nacl-gcc toolchain even when using PNaCl.
# TODO(mseaborn): We really want the nacl-gdb binary to be in a
# separate tarball from the nacl-gcc toolchain, then this step
# will not be necessary.
# See http://code.google.com/p/nativeclient/issues/detail?id=2773
temp_env = env.Clone()
temp_env.ClearBits('bitcode', 'nacl_clang')
temp_root = temp_env.GetToolchainDir()
_SetEnvForNativeSdk(temp_env, temp_root)
env.Replace(GDB=temp_env['GDB'])
env.Prepend(LIBPATH='${NACL_SDK_LIB}')
# Install our scanner for (potential) linker scripts.
# It applies to "source" files ending in .a or .so.
# Dependency files it produces are to be found in ${LIBPATH}.
# It is applied recursively to those dependencies in case
# some of them are linker scripts too.
ldscript_scanner = SCons.Scanner.Base(
function=ScanLinkerScript,
skeys=['.a', '.so', '.pso'],
path_function=SCons.Scanner.FindPathDirs('LIBPATH'),
recursive=True
)
env.Append(SCANNERS=ldscript_scanner)
# Scons tests can check this version number to decide whether to
# enable tests for toolchain bug fixes or new features. See
# description in pnacl/build.sh.
if 'toolchain_feature_version' in SCons.Script.ARGUMENTS:
version = int(SCons.Script.ARGUMENTS['toolchain_feature_version'])
else:
version_file = os.path.join(root, 'FEATURE_VERSION')
# There is no pnacl_newlib toolchain on ARM, only a pnacl_translator, so
# use that if necessary. Otherwise use it if we are doing sandboxed
# translation.
if not os.path.exists(version_file) or env.Bit('use_sandboxed_translator'):
version_file = os.path.join(os.path.dirname(root), 'pnacl_translator',
'FEATURE_VERSION')
if os.path.exists(version_file):
with open(version_file, 'r') as fh:
version = int(fh.read())
else:
version = 0
env.Replace(TOOLCHAIN_FEATURE_VERSION=version)
| bsd-3-clause |
ameya30/IMaX_pole_data_scripts | my_scripts/snr_quiet_pulpo.py | 1 | 1119 | import numpy as np
from astropy.io import fits
from matplotlib import pyplot as plt
fima = fits.open('/scratch/prabhu/HollyWaller/IMaX_pole_data_scripts/primary_scripts/saves_Oct11/post_demod_tr2_output_21.fits')[0].data
st = int(input("Choose stokes: "))
stokes = {0:'I',1:'Q',2:'U',3:'V'}
dim = fima.shape
print(dim)
maif = np.zeros(shape=(dim[0],dim[1],dim[2],dim[3]))
print(maif.shape)
if st==0:
maif[st,:,:,:] = fima[st,:,:,:]/np.mean(fima[0,4,230:880,83:859])
up,down=1.5,0.5
elif st==1:
maif[st,:,:,:] = fima[st,:,:,:]/fima[0,4,:,:]
up,down=0.04,-0.04
elif st==2:
maif[st,:,:,:] = fima[st,:,:,:]/fima[0,4,:,:]
up,down=0.04,-0.04
else:
maif[st,:,:,:] = fima[st,:,:,:]/fima[0,4,:,:]
up,down=0.08,-0.08
fig = plt.figure(figsize=(12,12))
ax = plt.axes()
im = ax.imshow(maif[st,4,:,:],cmap='gray',vmax=up,vmin=down)
fig.colorbar(im)
fig.tight_layout(pad=1.8)
plt.gca().invert_yaxis()
plt.show()
y1 = 200
y2 = 280
x1 = 340
x2 = 500
std = np.std(maif[st,4,y1:y2,x1:x2])
meanie = np.mean(maif[st,4,y1:y2,x1:x2])
rms = std/meanie
print("rms is {}".format(rms))
print("std is {}".format(std)) | mit |
travc/paper-Predicted-MF-Quarantine-Length-Data-and-Code | data/MedFoes/collate_longrun_output.py | 1 | 3371 | #!/bin/env python3
import sys
import os
import glob
import numpy as np
import pandas as pd
from collections import OrderedDict
RUNSET = sys.argv[1].rstrip('/')
BASEDIR = './'
OUTDIR = 'out'
INTERPOLATION_METHOD = 'nearest'
STEP_FILENAME_GLOB = 'step_*'
MEDFOESP_DETAIL_FILE_GLOB = 'MED-FOESp_*_detail.txt'
DATA_OUT_FILENAME = RUNSET+'_collated_data_out.npz'
TFILE = os.path.join(BASEDIR, RUNSET, 'temperature_file.csv')
STEP_SIZE = 24*7 # Each step is one week
RUNS_PER_STEP = 2500
# read in the temperature file
tempdf = pd.read_csv(TFILE, index_col='datetime', parse_dates=True)
print("Read temperature file '{}'".format(TFILE))
# Get list of all the run directories
rootpath = os.path.join(BASEDIR, RUNSET, OUTDIR)
dirs = sorted([os.path.split(x)[1] for x in glob.glob(os.path.join(rootpath, STEP_FILENAME_GLOB))])
#print(rootpath)
#print(dirs)
# ensure step numbers make sense (consecutive starting from 1)
tmp = min(dirs).split('_')[1]
assert int(tmp) == 1, "ERROR?: First step number should be 1, right?"
num_steps = int(max(dirs).split('_')[1])
assert num_steps == len(dirs), "ERROR?: Last step number should be the number of steps... ie. no missing steps."
# determine the start datetime for each step
stepdir2startdate = {}
tempfile_startdt = tempdf.index[0]
task_nums = [int(x.split('_')[1]) for x in dirs]
date2step = pd.DataFrame(index=[tempfile_startdt+pd.Timedelta(hours=STEP_SIZE*(x-1)) for x in task_nums],
data=list(zip(task_nums, dirs)),
columns=['step_num','step_dir']).sort_index()
max_run_length = 0
prop_extinct = OrderedDict() # key is runset start datetime (value)
start_times = []
# For each step, read the medfoesp detail file
for start_time, row in date2step.iterrows():
step_dir = row['step_dir']
print(start_time, step_dir)
# find the medfoesp detail file for this step
mfpdetail_fn = glob.glob(os.path.join(BASEDIR,RUNSET,OUTDIR,step_dir,MEDFOESP_DETAIL_FILE_GLOB))
assert len(mfpdetail_fn) == 1, "Error: didn't find, or found more than one, MEDFOESP 'detial' file: {}".format(mfpdetail_fn)
mfpdetail_fn = mfpdetail_fn[0]
# read it
tmp = pd.read_csv(mfpdetail_fn, sep='\t')
# add an extirpation time column
tmp['ext_time'] = tmp['run_time']
tmp.loc[tmp['end_condition']!=0, 'ext_time'] = np.nan
# This is a space (and time) efficient way of computing the proportion of runs going extinct
# in the most accurate way possible... But it is overkill here
ext_cnts = tmp['ext_time'].dropna().value_counts(sort=False).sort_index()
if len(ext_cnts) == 0:
print("NO RUNS GOING TO EXTRIPATION FOR STEP "+step_dir)
break
cumcnt = np.cumsum(ext_cnts.values).astype(float)
#prop_extinct[run_start_datetime]
foo = np.array(list(zip(ext_cnts.index, cumcnt/cumcnt[-1])))
start_times.append(start_time)
prop_extinct[start_time] = foo
run_length_max = ext_cnts.index.max()
if max_run_length < run_length_max:
max_run_length = run_length_max
np.savez_compressed(DATA_OUT_FILENAME,
runset_name=os.path.join(BASEDIR, RUNSET),
max_run_length=max_run_length,
prop_extinct=prop_extinct,
step2startdate=stepdir2startdate,
)
print("Data saved to: '{}'".format(DATA_OUT_FILENAME))
| mit |
google/nerfactor | third_party/xiuminglib/xiuminglib/vis/pt.py | 1 | 6738 | from os.path import join, dirname
import numpy as np
from .. import const, os as xm_os
from .general import _savefig
from ..imprt import preset_import
from ..log import get_logger
logger = get_logger()
def scatter_on_img(pts, im, size=2, bgr=(0, 0, 255), outpath=None):
r"""Plots scatter on top of an image or just a white canvas, if you are
being creative by feeding in just a white image.
Args:
pts (array_like): Pixel coordinates of the scatter point(s), of length 2
for just one point or shape N-by-2 for multiple points.
Convention:
.. code-block:: none
+-----------> dim1
|
|
|
v dim0
im (numpy.ndarray): Image to scatter on. H-by-W (grayscale) or
H-by-W-by-3 (RGB) arrays of ``unint`` type.
size (float or array_like(float), optional): Size(s) of scatter
points. If *array_like*, must be of length N.
bgr (tuple or array_like(tuple), optional): BGR color(s) of scatter
points. Each element :math:`\in [0, 255]`. If *array_like*, must
be of shape N-by-3.
outpath (str, optional): Path to which the visualization is saved to.
``None`` means ``os.path.join(const.Dir.tmp,
'scatter_on_img.png')``.
Writes
- The scatter plot overlaid over the image.
"""
cv2 = preset_import('cv2', assert_success=True)
if outpath is None:
outpath = join(const.Dir.tmp, 'scatter_on_img.png')
thickness = -1 # for filled circles
# Standardize inputs
if im.ndim == 2: # grayscale
im = np.dstack((im, im, im)) # to BGR
pts = np.array(pts)
if pts.ndim == 1:
pts = pts.reshape(-1, 2)
n_pts = pts.shape[0]
if im.dtype != 'uint8' and im.dtype != 'uint16':
logger.warning("Input image type may cause obscure cv2 errors")
if isinstance(size, int):
size = np.array([size] * n_pts)
else:
size = np.array(size)
bgr = np.array(bgr)
if bgr.ndim == 1:
bgr = np.tile(bgr, (n_pts, 1))
# FIXME: necessary, probably due to OpenCV bugs?
im = im.copy()
# Put on scatter points
for i in range(pts.shape[0]):
xy = tuple(pts[i, ::-1].astype(int))
color = (int(bgr[i, 0]), int(bgr[i, 1]), int(bgr[i, 2]))
cv2.circle(im, xy, size[i], color, thickness)
# Make directory, if necessary
outdir = dirname(outpath)
xm_os.makedirs(outdir)
# Write to disk
cv2.imwrite(outpath, im) # TODO: switch to xm.io.img
def uv_on_texmap(uvs, texmap, ft=None, outpath=None, max_n_lines=None,
dotsize=4, dotcolor='r', linewidth=1, linecolor='b'):
"""Visualizes which points on texture map the vertices map to.
Args:
uvs (numpy.ndarray): N-by-2 array of UV coordinates. See
:func:`xiuminglib.blender.object.smart_uv_unwrap` for the UV
coordinate convention.
texmap (numpy.ndarray or str): Loaded texture map or its path. If
*numpy.ndarray*, can be H-by-W (grayscale) or H-by-W-by-3 (color).
ft (list(list(int)), optional): Texture faces used to connect the
UV points. Values start from 1, e.g., ``'[[1, 2, 3], [],
[2, 3, 4, 5], ...]'``.
outpath (str, optional): Path to which the visualization is saved to.
``None`` means
``os.path.join(const.Dir.tmp, 'uv_on_texmap.png')``.
max_n_lines (int, optional): Plotting a huge number of lines can be
slow, so set this to uniformly sample a subset to plot. Useless if
``ft`` is ``None``.
dotsize (int or list(int), optional): Size(s) of the UV dots.
dotcolor (str or list(str), optional): Their color(s).
linewidth (float, optional): Width of the lines connecting the dots.
linecolor (str, optional): Their color.
Writes
- An image of where the vertices map to on the texture map.
"""
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
from mpl_toolkits.axes_grid1 import make_axes_locatable
if outpath is None:
outpath = join(const.Dir.tmp, 'uv_on_texmap.png')
# Preprocess input
if isinstance(texmap, str):
cv2 = preset_import('cv2', assert_success=True)
texmap = cv2.imread( # TODO: switch to xm.io.img
texmap, cv2.IMREAD_UNCHANGED)[:, :, ::-1] # made RGB
if len(texmap.shape) == 2:
add_colorbar = True # for grayscale
elif len(texmap.shape) == 3:
add_colorbar = False # for color texture maps
else:
raise ValueError(
("texmap must be either H-by-W (grayscale) or H-by-W-by-3 "
"(color), or a path to such images"))
dpi = 96 # assumed
h, w = texmap.shape[:2]
w_in, h_in = w / dpi, h / dpi
fig = plt.figure(figsize=(w_in, h_in))
u, v = uvs[:, 0], uvs[:, 1]
# ^ v
# |
# +---> u
x, y = u * w, (1 - v) * h
# +---> x
# |
# v y
# UV dots
ax = fig.gca()
ax.set_xlim([min(0, min(x)), max(w, max(x))])
ax.set_ylim([max(h, max(y)), min(0, min(y))])
im = ax.imshow(texmap, cmap='gray')
ax.scatter(x, y, c=dotcolor, s=dotsize, zorder=2)
ax.set_aspect('equal')
# Connect these dots
if ft is not None:
lines = []
for vert_id in [x for x in ft if x]: # non-empty ones
assert min(vert_id) >= 1, "Indices in ft are 1-indexed"
# For each face
ind = [i - 1 for i in vert_id]
n_verts = len(ind)
for i in range(n_verts):
lines.append([
(x[ind[i]], y[ind[i]]),
(x[ind[(i + 1) % n_verts]], y[ind[(i + 1) % n_verts]])
]) # line start and end
if max_n_lines is not None:
lines = [lines[i] for i in np.linspace(
0, len(lines) - 1, num=max_n_lines, dtype=int)]
line_collection = LineCollection(
lines, linewidths=linewidth, colors=linecolor, zorder=1)
ax.add_collection(line_collection)
# Make directory, if necessary
outdir = dirname(outpath)
xm_os.makedirs(outdir)
# Colorbar
if add_colorbar:
# Create an axes on the right side of ax. The width of cax will be 2%
# of ax and the padding between cax and ax will be fixed at 0.1 inch.
cax = make_axes_locatable(ax).append_axes('right', size='2%', pad=0.2)
plt.colorbar(im, cax=cax)
# Save
contents_only = not add_colorbar
_savefig(outpath, contents_only=contents_only)
plt.close('all')
| apache-2.0 |
tta/gnuradio-tta | gnuradio-examples/python/pfb/chirp_channelize.py | 7 | 6936 | #!/usr/bin/env python
#
# Copyright 2009 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
from gnuradio import gr, blks2
import sys, time
try:
import scipy
from scipy import fftpack
except ImportError:
print "Error: Program requires scipy (see: www.scipy.org)."
sys.exit(1)
try:
import pylab
from pylab import mlab
except ImportError:
print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)."
sys.exit(1)
class pfb_top_block(gr.top_block):
def __init__(self):
gr.top_block.__init__(self)
self._N = 200000 # number of samples to use
self._fs = 9000 # initial sampling rate
self._M = 9 # Number of channels to channelize
# Create a set of taps for the PFB channelizer
self._taps = gr.firdes.low_pass_2(1, self._fs, 500, 20,
attenuation_dB=10, window=gr.firdes.WIN_BLACKMAN_hARRIS)
# Calculate the number of taps per channel for our own information
tpc = scipy.ceil(float(len(self._taps)) / float(self._M))
print "Number of taps: ", len(self._taps)
print "Number of channels: ", self._M
print "Taps per channel: ", tpc
repeated = True
if(repeated):
self.vco_input = gr.sig_source_f(self._fs, gr.GR_SIN_WAVE, 0.25, 110)
else:
amp = 100
data = scipy.arange(0, amp, amp/float(self._N))
self.vco_input = gr.vector_source_f(data, False)
# Build a VCO controlled by either the sinusoid or single chirp tone
# Then convert this to a complex signal
self.vco = gr.vco_f(self._fs, 225, 1)
self.f2c = gr.float_to_complex()
self.head = gr.head(gr.sizeof_gr_complex, self._N)
# Construct the channelizer filter
self.pfb = blks2.pfb_channelizer_ccf(self._M, self._taps)
# Construct a vector sink for the input signal to the channelizer
self.snk_i = gr.vector_sink_c()
# Connect the blocks
self.connect(self.vco_input, self.vco, self.f2c)
self.connect(self.f2c, self.head, self.pfb)
self.connect(self.f2c, self.snk_i)
# Create a vector sink for each of M output channels of the filter and connect it
self.snks = list()
for i in xrange(self._M):
self.snks.append(gr.vector_sink_c())
self.connect((self.pfb, i), self.snks[i])
def main():
tstart = time.time()
tb = pfb_top_block()
tb.run()
tend = time.time()
print "Run time: %f" % (tend - tstart)
if 1:
fig_in = pylab.figure(1, figsize=(16,9), facecolor="w")
fig1 = pylab.figure(2, figsize=(16,9), facecolor="w")
fig2 = pylab.figure(3, figsize=(16,9), facecolor="w")
fig3 = pylab.figure(4, figsize=(16,9), facecolor="w")
Ns = 650
Ne = 20000
fftlen = 8192
winfunc = scipy.blackman
fs = tb._fs
# Plot the input signal on its own figure
d = tb.snk_i.data()[Ns:Ne]
spin_f = fig_in.add_subplot(2, 1, 1)
X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
window = lambda d: d*winfunc(fftlen),
scale_by_freq=True)
X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
pin_f = spin_f.plot(f_in, X_in, "b")
spin_f.set_xlim([min(f_in), max(f_in)+1])
spin_f.set_ylim([-200.0, 50.0])
spin_f.set_title("Input Signal", weight="bold")
spin_f.set_xlabel("Frequency (Hz)")
spin_f.set_ylabel("Power (dBW)")
Ts = 1.0/fs
Tmax = len(d)*Ts
t_in = scipy.arange(0, Tmax, Ts)
x_in = scipy.array(d)
spin_t = fig_in.add_subplot(2, 1, 2)
pin_t = spin_t.plot(t_in, x_in.real, "b")
pin_t = spin_t.plot(t_in, x_in.imag, "r")
spin_t.set_xlabel("Time (s)")
spin_t.set_ylabel("Amplitude")
Ncols = int(scipy.floor(scipy.sqrt(tb._M)))
Nrows = int(scipy.floor(tb._M / Ncols))
if(tb._M % Ncols != 0):
Nrows += 1
# Plot each of the channels outputs. Frequencies on Figure 2 and
# time signals on Figure 3
fs_o = tb._fs / tb._M
Ts_o = 1.0/fs_o
Tmax_o = len(d)*Ts_o
for i in xrange(len(tb.snks)):
# remove issues with the transients at the beginning
# also remove some corruption at the end of the stream
# this is a bug, probably due to the corner cases
d = tb.snks[i].data()[Ns:Ne]
sp1_f = fig1.add_subplot(Nrows, Ncols, 1+i)
X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
window = lambda d: d*winfunc(fftlen),
scale_by_freq=True)
X_o = 10.0*scipy.log10(abs(X))
f_o = freq
p2_f = sp1_f.plot(f_o, X_o, "b")
sp1_f.set_xlim([min(f_o), max(f_o)+1])
sp1_f.set_ylim([-200.0, 50.0])
sp1_f.set_title(("Channel %d" % i), weight="bold")
sp1_f.set_xlabel("Frequency (Hz)")
sp1_f.set_ylabel("Power (dBW)")
x_o = scipy.array(d)
t_o = scipy.arange(0, Tmax_o, Ts_o)
sp2_o = fig2.add_subplot(Nrows, Ncols, 1+i)
p2_o = sp2_o.plot(t_o, x_o.real, "b")
p2_o = sp2_o.plot(t_o, x_o.imag, "r")
sp2_o.set_xlim([min(t_o), max(t_o)+1])
sp2_o.set_ylim([-2, 2])
sp2_o.set_title(("Channel %d" % i), weight="bold")
sp2_o.set_xlabel("Time (s)")
sp2_o.set_ylabel("Amplitude")
sp3 = fig3.add_subplot(1,1,1)
p3 = sp3.plot(t_o, x_o.real)
sp3.set_xlim([min(t_o), max(t_o)+1])
sp3.set_ylim([-2, 2])
sp3.set_title("All Channels")
sp3.set_xlabel("Time (s)")
sp3.set_ylabel("Amplitude")
pylab.show()
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
pass
| gpl-3.0 |
viswimmer1/PythonGenerator | data/python_files/34471319/plot_covariance.py | 1 | 1489 | import dataset;
import numpy as np
import scipy.io;
import matplotlib.cm as cm
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
import networkx as nx
import scipy.stats as ss
#z = scipy.io.loadmat('tmp.dat');
#ccfull = z['ccfull']
#sx,sy = ccfull.shape
##x = np.arange(sx)
##delta = 0.025
##X, Y = np.meshgrid(x, x)
##Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
##Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
##Z = Z2-Z1 # difference of Gaussians
#
#im = plt.imshow(ccfull, interpolation='bilinear',
# origin='lower', extent=[1,sx,1,sx])
#
#plt.savefig('corrcoeff.pdf')
#
#p = 1 - (ccfull*ccfull)
#
#im = plt.imshow(p, interpolation='bilinear',
# origin='lower', extent=[1,sx,1,sx])
#plt.savefig('corrcoef2.pdf')
#plt.show()
z = scipy.io.loadmat('tmp2');
mi = z['mi']
sx,sy = mi.shape
#im = plt.imshow(mi, interpolation='bilinear',
# origin='lower', extent=[1,sx,1,sx])
#plt.savefig('mi.pdf')
#plt.show()
print "MI Loaded"
mi = np.triu(mi)
a = mi.ravel();
print a
level = ss.scoreatpercentile(a,99.)
indexes = np.transpose(np.find(mi<level))
#mi[mi<level]=0
plt.savefig('mi2.pdf')
exit()
print level
print "MI prunned"
G = nx.Graph();
for r in indexes:
#for i in xrange(sx):
#if i % 100 == 0:
# print i
#for j in xrange(i):
# z = mi[i][j]
# if z > 0:
G.add_edge(r[0], r[1], weight=-mi[r]);
print "Graph built"
T = nx.minimum_spanning_tree(G);
print T
print "Tree found"
| gpl-2.0 |
matthewghgriffiths/nestedbasinsampling | examples/Gaussian/gaussian_system.py | 1 | 3374 |
import logging
import numpy as np
from pele.potentials import BasePotential
from nestedbasinsampling import (
NBS_system, vector_random_uniform_hypersphere, LOG_CONFIG)
class MyPot(BasePotential):
def __init__(self, M):
self.M = M
def getEnergy(self, coords):
return 0.5*np.dot(coords, coords*self.M)
def getGradient(self, coords):
return self.M*coords
def getEnergyGradient(self, coords):
G = self.getGradient(coords)
E = 0.5 * np.dot(coords, G)
return E, G
M = np.array([
11.63777605, 19.75825574, 22.2571117 , 24.41295908,
26.32612811, 31.30715704, 35.27360319, 37.34413361,
41.24811749, 42.66902559, 45.00513907, 48.71488414,
49.89979232, 53.0797042 , 55.39317634, 56.84512961,
60.77859882, 60.93608218, 62.49575527, 65.40116213,
69.59126898, 71.32244177, 71.59182786, 73.51372578,
81.19666404, 83.07758741, 84.5588217 , 86.37683242,
94.65859144, 95.40770789, 95.98119526, 102.45620344,
102.47916283, 104.40832154, 104.86404787, 112.80895254,
117.10380584, 123.6500204 , 124.0540132 , 132.17808513,
136.06966301, 136.60709658, 138.73165763, 141.45541009,
145.23595258, 150.31676718, 150.85458655, 155.15681296,
155.25203667, 155.87048385, 158.6880457 , 162.77205271,
164.92793349, 168.44191483, 171.4869683 , 186.92271992,
187.93659725, 199.78966333, 203.05115652, 205.41580397,
221.54815121, 232.16086835, 233.13187687, 238.45586414,
242.5562086 , 252.18391589, 264.91944949, 274.141751 ,
287.58508273, 291.47971184, 296.03725173, 307.39663841,
319.38453549, 348.68884953, 360.54506854, 363.87206193,
381.72011237, 384.1627136 , 396.94159259, 444.72185599,
446.48921839, 464.50930109, 485.99776331, 513.57334376,
680.97359437, 740.68419553, 793.64807121])
pot = MyPot(M)
n = len(M)
u = M
p = u > 1e-5
k = p.sum()
v = np.eye(n)
up = u[p]
vp = v[:,p]
up2 = (2./up)**0.5
def random_coords(E):
x = vector_random_uniform_hypersphere(k) * E**0.5
return vp.dot(up2 * x)
Ecut = 1000.
stepsize = 0.1
random_config = lambda : random_coords(Ecut)
system_kws = dict(
pot=pot, random_configuration=random_config, stepsize=stepsize,
sampler_kws=dict(max_depth=8, nsteps=30), nopt_kws=dict(iprint=10))
get_system = lambda : NBS_system(**system_kws)
if __name__ == '__main__':
import matplotlib.pyplot as plt
from tqdm import tqdm
system = get_system()
pot = system.pot
nuts = system.sampler
plt.ion()
Ecut=10000.
k = 87
epsilon = 0.02
nsamples = 1000
a = np.arange(nsamples) + 1
b = nsamples + 1 - a
l = np.log(a) - np.log(a+b)
l2 = l + np.log(a+1) - np.log(a+b+1)
lstd = np.log1p(np.sqrt(np.exp(l2 - 2 * l) - 1))
coords = random_coords(Ecut)
nuts_results = []
for i in tqdm(xrange(nsamples)):
nuts_results.append(nuts(Ecut, coords, stepsize=epsilon))
nEs = np.array([r.energies for r in nuts_results])
nEs.sort(0)
for i in xrange(4, nEs.shape[1],5):
Es = nEs.T[i]
plt.plot(
Es**(0.5*k), ((l - 0.5*k*(np.log(Es)-np.log(Ecut)))/lstd), label=i)
plt.legend()
plt.show()
| gpl-3.0 |
Qwertycal/19520-Eye-Tracker | Filtering/eyeTrackingDemoGUI.py | 1 | 5553 | #author: Rachel Hutchinson
#date created: 28th March
#description: shows 4 stages in the eye tracking
#process, and includes the code from the original main
#calls other mehtods from their seperate scripts
#Import necessary modules
import matplotlib
matplotlib.use("TkAgg")
from matplotlib import pyplot as plt
from Tkinter import *
from PIL import Image, ImageTk
import pyautogui
import numpy as np
import math
import cv2
import removeOutliersThresh as outliers
import bi_level_img_threshold as thresh
import edgeDetection as edgeDet
import imgThresholdVideo
import AllTogetherEdit as ATE
import getGazePoint as GGP
#Find the screen width & set the approprite size for each feed
screenwidth, screenheight = pyautogui.size()
vidWidth = (screenwidth/2) - 5
vidHeight = (screenheight/2) - 30
#Open the video file
global cap
cap = cv2.VideoCapture('Eye.mov')
#Set the frame counter, this determines when the video should be looped
global frame_counter
frame_counter = 0
#Solutions obtained from 'Eye.MOV'
aOriginal = [576.217396, -24.047559, 1.0915599, -0.221105357, -0.025469321, 0.037511114]
bOriginal = [995.77047, -1.67122664, 12.67059, 0.018357141, 0.028264854, 0.012302]
#Set mouse toggle
global mouseToggle
mouseToggle = True
#Toggles between the eye tracker controling mouse movements (mouseToggle = true)
# and the cursor control being manual (mouseToggle = false)
def mouseControlToggle(self):
global mouseToggle
if mouseToggle:
mouseToggle = False
print 'MCT false'
else:
mouseToggle = True
print 'MCT true'
#Set up the GUI
root = Tk()
root.title("Demo Mode")
root.bind('<Escape>', lambda e: root.destroy()) #esc key quits program
root.bind('m', mouseControlToggle) #'m' key toggles cursor control
win = Toplevel(root)
win.protocol('WM_DELETE_WINDOW', win.destroy)
root.attributes("-fullscreen", True)
#Create labels for each video feed to go in
videoStream1 = Label(root)
videoStream2 = Label(root)
videoStream3 = Label(root)
videoStream4 = Label(root)
#Put all of the elements into the GUI
videoStream1.grid(row = 0, column = 0)
videoStream2.grid(row = 0, column = 1)
videoStream3.grid(row = 1, column = 0)
videoStream4.grid(row = 1, column = 1)
#Show video feeds
def show_frame():
global frame_counter
global cap
#Detects when near the end of the video file, and loops it
if frame_counter >= (cap.get(cv2.CAP_PROP_FRAME_COUNT)-5):
print 'loop condition'
frame_counter = 0
cap = cv2.VideoCapture('Eye.MOV')
#Read the input feed, flip it, resize it and show it in the corresponding label
ret, frame = cap.read()
frame_counter += 1
flipFrame = cv2.flip(frame, 1)
cv2image = cv2.resize(flipFrame, (vidWidth, vidHeight))
img1 = Image.fromarray(cv2image)
imgtk1 = ImageTk.PhotoImage(image=img1)
videoStream1.imgtk1 = imgtk1
videoStream1.configure(image=imgtk1)
#Call the threholding function (altered for the video feed)
threshPupil, threshGlint = imgThresholdVideo.imgThresholdVideo(frame)
#Show the thresholded pupil, same method as above
frame_resized = cv2.resize(threshPupil, (vidWidth, vidHeight), interpolation = cv2.INTER_AREA)
frame_resized = cv2.flip(frame_resized, 1)
img2 = Image.fromarray(frame_resized)
imgtk2 = ImageTk.PhotoImage(image=img2)
videoStream2.imgtk2 = imgtk2
videoStream2.configure(image=imgtk2)
#Show the thresholded glint, same method as above
frameB_resized = cv2.resize(threshGlint, (vidWidth, vidHeight), interpolation = cv2.INTER_AREA)
frameB_resized = cv2.flip(frameB_resized, 1)
img3 = Image.fromarray(frameB_resized)
imgtk3 = ImageTk.PhotoImage(image=img3)
videoStream3.imgtk3 = imgtk3
videoStream3.configure(image=imgtk3)
# Call the edge detection of binary frame (altered for the video feed)
cpX,cpY,cp,ccX,ccY,cc,successfullyDetected = edgeDet.edgeDetectionAlgorithmVideo(threshPupil,threshGlint)
#Implement functionality that was used in main to draw around the pupil and glint
print('cpX: ', cpX, ' cpY: ', cpY, ' ccX: ', ccX, ' ccY: ', ccY)
print successfullyDetected
if cpX is None or cpY is None or ccX is None or ccY is None:
print('pupil or corneal not detected, skipping...')
else:
# Ellipse Fitting
frameCopy = frame.copy()
#draw pupil centre
cv2.circle(frameCopy, (cpX,cpY),3,(0,255,0),-1)
#draw pupil circumference
cv2.drawContours(frameCopy,cp,-1,(0,0,255),3)
#draw corneal centre
cv2.circle(frameCopy, (ccX,ccY),3,(0,255,0),-1)
#draw corneal circumference
cv2.drawContours(frameCopy,cc,-1,(0,0,255),3)
#If there is a frame to show, show it.
if(frameCopy != None):
frameC_resized = cv2.resize(frameCopy, (vidWidth, vidHeight), interpolation = cv2.INTER_AREA)
frameC_resized = cv2.flip(frameC_resized, 1)
img4 = Image.fromarray(frameC_resized)
imgtk4 = ImageTk.PhotoImage(image=img4)
videoStream4.imgtk4 = imgtk4
videoStream4.configure(image=imgtk4)
# Centre points of glint and pupil pass to vector
x, y = GGP.getGazePoint(aOriginal, bOriginal, cpX, cpY, ccX, ccY)
# Move to coordinates on screen, depending on mouseToggle
if mouseToggle:
ATE.move_mouse(x,y)
#Loop the show fram code
videoStream1.after(5, show_frame)
show_frame()
root.mainloop()
cap.release() | gpl-2.0 |
icdishb/scikit-learn | examples/applications/plot_tomography_l1_reconstruction.py | 45 | 5463 | """
======================================================================
Compressive sensing: tomography reconstruction with L1 prior (Lasso)
======================================================================
This example shows the reconstruction of an image from a set of parallel
projections, acquired along different angles. Such a dataset is acquired in
**computed tomography** (CT).
Without any prior information on the sample, the number of projections
required to reconstruct the image is of the order of the linear size
``l`` of the image (in pixels). For simplicity we consider here a sparse
image, where only pixels on the boundary of objects have a non-zero
value. Such data could correspond for example to a cellular material.
Note however that most images are sparse in a different basis, such as
the Haar wavelets. Only ``l/7`` projections are acquired, therefore it is
necessary to use prior information available on the sample (its
sparsity): this is an example of **compressive sensing**.
The tomography projection operation is a linear transformation. In
addition to the data-fidelity term corresponding to a linear regression,
we penalize the L1 norm of the image to account for its sparsity. The
resulting optimization problem is called the :ref:`lasso`. We use the
class :class:`sklearn.linear_model.Lasso`, that uses the coordinate descent
algorithm. Importantly, this implementation is more computationally efficient
on a sparse matrix, than the projection operator used here.
The reconstruction with L1 penalization gives a result with zero error
(all pixels are successfully labeled with 0 or 1), even if noise was
added to the projections. In comparison, an L2 penalization
(:class:`sklearn.linear_model.Ridge`) produces a large number of labeling
errors for the pixels. Important artifacts are observed on the
reconstructed image, contrary to the L1 penalization. Note in particular
the circular artifact separating the pixels in the corners, that have
contributed to fewer projections than the central disk.
"""
print(__doc__)
# Author: Emmanuelle Gouillart <[email protected]>
# License: BSD 3 clause
import numpy as np
from scipy import sparse
from scipy import ndimage
from sklearn.linear_model import Lasso
from sklearn.linear_model import Ridge
import matplotlib.pyplot as plt
def _weights(x, dx=1, orig=0):
x = np.ravel(x)
floor_x = np.floor((x - orig) / dx)
alpha = (x - orig - floor_x * dx) / dx
return np.hstack((floor_x, floor_x + 1)), np.hstack((1 - alpha, alpha))
def _generate_center_coordinates(l_x):
l_x = float(l_x)
X, Y = np.mgrid[:l_x, :l_x]
center = l_x / 2.
X += 0.5 - center
Y += 0.5 - center
return X, Y
def build_projection_operator(l_x, n_dir):
""" Compute the tomography design matrix.
Parameters
----------
l_x : int
linear size of image array
n_dir : int
number of angles at which projections are acquired.
Returns
-------
p : sparse matrix of shape (n_dir l_x, l_x**2)
"""
X, Y = _generate_center_coordinates(l_x)
angles = np.linspace(0, np.pi, n_dir, endpoint=False)
data_inds, weights, camera_inds = [], [], []
data_unravel_indices = np.arange(l_x ** 2)
data_unravel_indices = np.hstack((data_unravel_indices,
data_unravel_indices))
for i, angle in enumerate(angles):
Xrot = np.cos(angle) * X - np.sin(angle) * Y
inds, w = _weights(Xrot, dx=1, orig=X.min())
mask = np.logical_and(inds >= 0, inds < l_x)
weights += list(w[mask])
camera_inds += list(inds[mask] + i * l_x)
data_inds += list(data_unravel_indices[mask])
proj_operator = sparse.coo_matrix((weights, (camera_inds, data_inds)))
return proj_operator
def generate_synthetic_data():
""" Synthetic binary data """
rs = np.random.RandomState(0)
n_pts = 36.
x, y = np.ogrid[0:l, 0:l]
mask_outer = (x - l / 2) ** 2 + (y - l / 2) ** 2 < (l / 2) ** 2
mask = np.zeros((l, l))
points = l * rs.rand(2, n_pts)
mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1
mask = ndimage.gaussian_filter(mask, sigma=l / n_pts)
res = np.logical_and(mask > mask.mean(), mask_outer)
return res - ndimage.binary_erosion(res)
# Generate synthetic images, and projections
l = 128
proj_operator = build_projection_operator(l, l / 7.)
data = generate_synthetic_data()
proj = proj_operator * data.ravel()[:, np.newaxis]
proj += 0.15 * np.random.randn(*proj.shape)
# Reconstruction with L2 (Ridge) penalization
rgr_ridge = Ridge(alpha=0.2)
rgr_ridge.fit(proj_operator, proj.ravel())
rec_l2 = rgr_ridge.coef_.reshape(l, l)
# Reconstruction with L1 (Lasso) penalization
# the best value of alpha was determined using cross validation
# with LassoCV
rgr_lasso = Lasso(alpha=0.001)
rgr_lasso.fit(proj_operator, proj.ravel())
rec_l1 = rgr_lasso.coef_.reshape(l, l)
plt.figure(figsize=(8, 3.3))
plt.subplot(131)
plt.imshow(data, cmap=plt.cm.gray, interpolation='nearest')
plt.axis('off')
plt.title('original image')
plt.subplot(132)
plt.imshow(rec_l2, cmap=plt.cm.gray, interpolation='nearest')
plt.title('L2 penalization')
plt.axis('off')
plt.subplot(133)
plt.imshow(rec_l1, cmap=plt.cm.gray, interpolation='nearest')
plt.title('L1 penalization')
plt.axis('off')
plt.subplots_adjust(hspace=0.01, wspace=0.01, top=1, bottom=0, left=0,
right=1)
plt.show()
| bsd-3-clause |
maxlikely/scikit-learn | sklearn/metrics/pairwise.py | 1 | 28395 | # -*- coding: utf-8 -*-
"""
The :mod:`sklearn.metrics.pairwise` submodule implements utilities to evaluate
pairwise distances or affinity of sets of samples.
This module contains both distance metrics and kernels. A brief summary is
given on the two here.
Distance metrics are a function d(a, b) such that d(a, b) < d(a, c) if objects
a and b are considered "more similar" to objects a and c. Two objects exactly
alike would have a distance of zero.
One of the most popular examples is Euclidean distance.
To be a 'true' metric, it must obey the following four conditions::
1. d(a, b) >= 0, for all a and b
2. d(a, b) == 0, if and only if a = b, positive definiteness
3. d(a, b) == d(b, a), symmetry
4. d(a, c) <= d(a, b) + d(b, c), the triangle inequality
Kernels are measures of similarity, i.e. ``s(a, b) > s(a, c)``
if objects ``a`` and ``b`` are considered "more similar" to objects
``a`` and ``c``. A kernel must also be positive semi-definite.
There are a number of ways to convert between a distance metric and a
similarity measure, such as a kernel. Let D be the distance, and S be the
kernel:
1. ``S = np.exp(-D * gamma)``, where one heuristic for choosing
``gamma`` is ``1 / num_features``
2. ``S = 1. / (D / np.max(D))``
"""
# Authors: Alexandre Gramfort <[email protected]>
# Mathieu Blondel <[email protected]>
# Robert Layton <[email protected]>
# Andreas Mueller <[email protected]>
# License: BSD Style.
import numpy as np
from scipy.spatial import distance
from scipy.sparse import csr_matrix
from scipy.sparse import issparse
from ..utils import atleast2d_or_csr
from ..utils import gen_even_slices
from ..utils.extmath import safe_sparse_dot
from ..utils.validation import array2d
from ..preprocessing import normalize
from ..externals.joblib import Parallel
from ..externals.joblib import delayed
from ..externals.joblib.parallel import cpu_count
from .pairwise_fast import _chi2_kernel_fast
# Utility Functions
def check_pairwise_arrays(X, Y):
""" Set X and Y appropriately and checks inputs
If Y is None, it is set as a pointer to X (i.e. not a copy).
If Y is given, this does not happen.
All distance metrics should use this function first to assert that the
given parameters are correct and safe to use.
Specifically, this function first ensures that both X and Y are arrays,
then checks that they are at least two dimensional while ensuring that
their elements are floats. Finally, the function checks that the size
of the second dimension of the two arrays is equal.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples_a, n_features]
Y : {array-like, sparse matrix}, shape = [n_samples_b, n_features]
Returns
-------
safe_X : {array-like, sparse matrix}, shape = [n_samples_a, n_features]
An array equal to X, guarenteed to be a numpy array.
safe_Y : {array-like, sparse matrix}, shape = [n_samples_b, n_features]
An array equal to Y if Y was not None, guarenteed to be a numpy array.
If Y was None, safe_Y will be a pointer to X.
"""
if Y is X or Y is None:
X = Y = atleast2d_or_csr(X, dtype=np.float)
else:
X = atleast2d_or_csr(X, dtype=np.float)
Y = atleast2d_or_csr(Y, dtype=np.float)
if X.shape[1] != Y.shape[1]:
raise ValueError("Incompatible dimension for X and Y matrices: "
"X.shape[1] == %d while Y.shape[1] == %d" % (
X.shape[1], Y.shape[1]))
return X, Y
# Distances
def euclidean_distances(X, Y=None, Y_norm_squared=None, squared=False):
"""
Considering the rows of X (and Y=X) as vectors, compute the
distance matrix between each pair of vectors.
For efficiency reasons, the euclidean distance between a pair of row
vector x and y is computed as::
dist(x, y) = sqrt(dot(x, x) - 2 * dot(x, y) + dot(y, y))
This formulation has two main advantages. First, it is computationally
efficient when dealing with sparse data. Second, if x varies but y
remains unchanged, then the right-most dot-product `dot(y, y)` can be
pre-computed.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples_1, n_features]
Y : {array-like, sparse matrix}, shape = [n_samples_2, n_features]
Y_norm_squared : array-like, shape = [n_samples_2], optional
Pre-computed dot-products of vectors in Y (e.g.,
``(Y**2).sum(axis=1)``)
squared : boolean, optional
Return squared Euclidean distances.
Returns
-------
distances : {array, sparse matrix}, shape = [n_samples_1, n_samples_2]
Examples
--------
>>> from sklearn.metrics.pairwise import euclidean_distances
>>> X = [[0, 1], [1, 1]]
>>> # distance between rows of X
>>> euclidean_distances(X, X)
array([[ 0., 1.],
[ 1., 0.]])
>>> # get distance to origin
>>> euclidean_distances(X, [[0, 0]])
array([[ 1. ],
[ 1.41421356]])
"""
# should not need X_norm_squared because if you could precompute that as
# well as Y, then you should just pre-compute the output and not even
# call this function.
X, Y = check_pairwise_arrays(X, Y)
if issparse(X):
XX = X.multiply(X).sum(axis=1)
else:
XX = np.sum(X * X, axis=1)[:, np.newaxis]
if X is Y: # shortcut in the common case euclidean_distances(X, X)
YY = XX.T
elif Y_norm_squared is None:
if issparse(Y):
# scipy.sparse matrices don't have element-wise scalar
# exponentiation, and tocsr has a copy kwarg only on CSR matrices.
YY = Y.copy() if isinstance(Y, csr_matrix) else Y.tocsr()
YY.data **= 2
YY = np.asarray(YY.sum(axis=1)).T
else:
YY = np.sum(Y ** 2, axis=1)[np.newaxis, :]
else:
YY = atleast2d_or_csr(Y_norm_squared)
if YY.shape != (1, Y.shape[0]):
raise ValueError(
"Incompatible dimensions for Y and Y_norm_squared")
# TODO: a faster Cython implementation would do the clipping of negative
# values in a single pass over the output matrix.
distances = safe_sparse_dot(X, Y.T, dense_output=True)
distances *= -2
distances += XX
distances += YY
np.maximum(distances, 0, distances)
if X is Y:
# Ensure that distances between vectors and themselves are set to 0.0.
# This may not be the case due to floating point rounding errors.
distances.flat[::distances.shape[0] + 1] = 0.0
return distances if squared else np.sqrt(distances)
def manhattan_distances(X, Y=None, sum_over_features=True):
""" Compute the L1 distances between the vectors in X and Y.
With sum_over_features equal to False it returns the componentwise
distances.
Parameters
----------
X : array_like
An array with shape (n_samples_X, n_features).
Y : array_like, optional
An array with shape (n_samples_Y, n_features).
sum_over_features : bool, default=True
If True the function returns the pairwise distance matrix
else it returns the componentwise L1 pairwise-distances.
Returns
-------
D : array
If sum_over_features is False shape is
(n_samples_X * n_samples_Y, n_features) and D contains the
componentwise L1 pairwise-distances (ie. absolute difference),
else shape is (n_samples_X, n_samples_Y) and D contains
the pairwise l1 distances.
Examples
--------
>>> from sklearn.metrics.pairwise import manhattan_distances
>>> manhattan_distances(3, 3)#doctest:+ELLIPSIS
array([[ 0.]])
>>> manhattan_distances(3, 2)#doctest:+ELLIPSIS
array([[ 1.]])
>>> manhattan_distances(2, 3)#doctest:+ELLIPSIS
array([[ 1.]])
>>> manhattan_distances([[1, 2], [3, 4]],\
[[1, 2], [0, 3]])#doctest:+ELLIPSIS
array([[ 0., 2.],
[ 4., 4.]])
>>> import numpy as np
>>> X = np.ones((1, 2))
>>> y = 2 * np.ones((2, 2))
>>> manhattan_distances(X, y, sum_over_features=False)#doctest:+ELLIPSIS
array([[ 1., 1.],
[ 1., 1.]]...)
"""
if issparse(X) or issparse(Y):
raise ValueError("manhattan_distance does not support sparse"
" matrices.")
X, Y = check_pairwise_arrays(X, Y)
D = np.abs(X[:, np.newaxis, :] - Y[np.newaxis, :, :])
if sum_over_features:
D = np.sum(D, axis=2)
else:
D = D.reshape((-1, X.shape[1]))
return D
# Kernels
def linear_kernel(X, Y=None):
"""
Compute the linear kernel between X and Y.
Parameters
----------
X : array of shape (n_samples_1, n_features)
Y : array of shape (n_samples_2, n_features)
Returns
-------
Gram matrix : array of shape (n_samples_1, n_samples_2)
"""
X, Y = check_pairwise_arrays(X, Y)
return safe_sparse_dot(X, Y.T, dense_output=True)
def polynomial_kernel(X, Y=None, degree=3, gamma=None, coef0=1):
"""
Compute the polynomial kernel between X and Y::
K(X, Y) = (gamma <X, Y> + coef0)^degree
Parameters
----------
X : array of shape (n_samples_1, n_features)
Y : array of shape (n_samples_2, n_features)
degree : int
Returns
-------
Gram matrix : array of shape (n_samples_1, n_samples_2)
"""
X, Y = check_pairwise_arrays(X, Y)
if gamma is None:
gamma = 1.0 / X.shape[1]
K = linear_kernel(X, Y)
K *= gamma
K += coef0
K **= degree
return K
def sigmoid_kernel(X, Y=None, gamma=None, coef0=1):
"""
Compute the sigmoid kernel between X and Y::
K(X, Y) = tanh(gamma <X, Y> + coef0)
Parameters
----------
X : array of shape (n_samples_1, n_features)
Y : array of shape (n_samples_2, n_features)
degree : int
Returns
-------
Gram matrix: array of shape (n_samples_1, n_samples_2)
"""
X, Y = check_pairwise_arrays(X, Y)
if gamma is None:
gamma = 1.0 / X.shape[1]
K = linear_kernel(X, Y)
K *= gamma
K += coef0
np.tanh(K, K) # compute tanh in-place
return K
def rbf_kernel(X, Y=None, gamma=None):
"""
Compute the rbf (gaussian) kernel between X and Y::
K(x, y) = exp(-γ ||x-y||²)
for each pair of rows x in X and y in Y.
Parameters
----------
X : array of shape (n_samples_X, n_features)
Y : array of shape (n_samples_Y, n_features)
gamma : float
Returns
-------
kernel_matrix : array of shape (n_samples_X, n_samples_Y)
"""
X, Y = check_pairwise_arrays(X, Y)
if gamma is None:
gamma = 1.0 / X.shape[1]
K = euclidean_distances(X, Y, squared=True)
K *= -gamma
np.exp(K, K) # exponentiate K in-place
return K
def cosine_similarity(X, Y=None):
"""Compute cosine similarity between samples in X and Y.
Cosine similarity, or the cosine kernel, computes similarity as the
normalized dot product of X and Y:
K(X, Y) = <X, Y> / (||X||*||Y||)
On L2-normalized data, this function is equivalent to linear_kernel.
Parameters
----------
X : array_like, sparse matrix
with shape (n_samples_X, n_features).
Y : array_like, sparse matrix (optional)
with shape (n_samples_Y, n_features).
Returns
-------
kernel matrix : array_like
An array with shape (n_samples_X, n_samples_Y).
"""
# to avoid recursive import
X, Y = check_pairwise_arrays(X, Y)
X_normalized = normalize(X, copy=True)
if X is Y:
Y_normalized = X_normalized
else:
Y_normalized = normalize(Y, copy=True)
K = linear_kernel(X_normalized, Y_normalized)
return K
def additive_chi2_kernel(X, Y=None):
"""Computes the additive chi-squared kernel between observations in X and Y
The chi-squared kernel is computed between each pair of rows in X and Y. X
and Y have to be non-negative. This kernel is most commonly applied to
histograms.
The chi-squared kernel is given by::
k(x, y) = -∑ᵢ [(xᵢ - yᵢ)² / (xᵢ + yᵢ)]
It can be interpreted as a weighted difference per entry.
Notes
-----
As the negative of a distance, this kernel is only conditionally positive
definite.
Parameters
----------
X : array-like of shape (n_samples_X, n_features)
Y : array of shape (n_samples_Y, n_features)
Returns
-------
kernel_matrix : array of shape (n_samples_X, n_samples_Y)
References
----------
* Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C.
Local features and kernels for classification of texture and object
categories: A comprehensive study
International Journal of Computer Vision 2007
http://eprints.pascal-network.org/archive/00002309/01/Zhang06-IJCV.pdf
See also
--------
chi2_kernel : The exponentiated version of the kernel, which is usually
preferrable.
sklearn.kernel_approximation.AdditiveChi2Sampler : A Fourier approximation
to this kernel.
"""
if issparse(X) or issparse(Y):
raise ValueError("additive_chi2 does not support sparse matrices.")
### we don't use check_pairwise to preserve float32.
if Y is None:
# optimize this case!
X = array2d(X)
if X.dtype != np.float32:
X.astype(np.float)
Y = X
if (X < 0).any():
raise ValueError("X contains negative values.")
else:
X = array2d(X)
Y = array2d(Y)
if X.shape[1] != Y.shape[1]:
raise ValueError("Incompatible dimension for X and Y matrices: "
"X.shape[1] == %d while Y.shape[1] == %d" % (
X.shape[1], Y.shape[1]))
if X.dtype != np.float32 or Y.dtype != np.float32:
# if not both are 32bit float, convert to 64bit float
X = X.astype(np.float)
Y = Y.astype(np.float)
if (X < 0).any():
raise ValueError("X contains negative values.")
if (Y < 0).any():
raise ValueError("Y contains negative values.")
result = np.zeros((X.shape[0], Y.shape[0]), dtype=X.dtype)
_chi2_kernel_fast(X, Y, result)
return result
def chi2_kernel(X, Y=None, gamma=1.):
"""Computes the exponential chi-squared kernel X and Y.
The chi-squared kernel is computed between each pair of rows in X and Y. X
and Y have to be non-negative. This kernel is most commonly applied to
histograms.
The chi-squared kernel is given by::
k(x, y) = exp(-γ ∑ᵢ [(xᵢ - yᵢ)² / (xᵢ + yᵢ)])
It can be interpreted as a weighted difference per entry.
Parameters
----------
X : array-like of shape (n_samples_X, n_features)
Y : array of shape (n_samples_Y, n_features)
gamma : float, default=1.
Scaling parameter of the chi2 kernel.
Returns
-------
kernel_matrix : array of shape (n_samples_X, n_samples_Y)
References
----------
* Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C.
Local features and kernels for classification of texture and object
categories: A comprehensive study
International Journal of Computer Vision 2007
http://eprints.pascal-network.org/archive/00002309/01/Zhang06-IJCV.pdf
See also
--------
additive_chi2_kernel : The additive version of this kernel
sklearn.kernel_approximation.AdditiveChi2Sampler : A Fourier approximation
to the additive version of this kernel.
"""
K = additive_chi2_kernel(X, Y)
K *= gamma
return np.exp(K, K)
# Helper functions - distance
PAIRWISE_DISTANCE_FUNCTIONS = {
# If updating this dictionary, update the doc in both distance_metrics()
# and also in pairwise_distances()!
'euclidean': euclidean_distances,
'l2': euclidean_distances,
'l1': manhattan_distances,
'manhattan': manhattan_distances,
'cityblock': manhattan_distances, }
def distance_metrics():
"""Valid metrics for pairwise_distances.
This function simply returns the valid pairwise distance metrics.
It exists to allow for a description of the mapping for
each of the valid strings.
The valid distance metrics, and the function they map to, are:
============ ====================================
metric Function
============ ====================================
'cityblock' metrics.pairwise.manhattan_distances
'euclidean' metrics.pairwise.euclidean_distances
'l1' metrics.pairwise.manhattan_distances
'l2' metrics.pairwise.euclidean_distances
'manhattan' metrics.pairwise.manhattan_distances
============ ====================================
"""
return PAIRWISE_DISTANCE_FUNCTIONS
def _parallel_pairwise(X, Y, func, n_jobs, **kwds):
"""Break the pairwise matrix in n_jobs even slices
and compute them in parallel"""
if n_jobs < 0:
n_jobs = max(cpu_count() + 1 + n_jobs, 1)
if Y is None:
Y = X
ret = Parallel(n_jobs=n_jobs, verbose=0)(
delayed(func)(X, Y[s], **kwds)
for s in gen_even_slices(Y.shape[0], n_jobs))
return np.hstack(ret)
def pairwise_distances(X, Y=None, metric="euclidean", n_jobs=1, **kwds):
""" Compute the distance matrix from a vector array X and optional Y.
This method takes either a vector array or a distance matrix, and returns
a distance matrix. If the input is a vector array, the distances are
computed. If the input is a distances matrix, it is returned instead.
This method provides a safe way to take a distance matrix as input, while
preserving compatability with many other algorithms that take a vector
array.
If Y is given (default is None), then the returned matrix is the pairwise
distance between the arrays from both X and Y.
Please note that support for sparse matrices is currently limited to those
metrics listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS.
Valid values for metric are:
- from scikit-learn: ['euclidean', 'l2', 'l1', 'manhattan', 'cityblock']
- from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev',
'correlation', 'cosine', 'dice', 'hamming', 'jaccard', 'kulsinski',
'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao',
'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule']
See the documentation for scipy.spatial.distance for details on these
metrics.
Note in the case of 'euclidean' and 'cityblock' (which are valid
scipy.spatial.distance metrics), the values will use the scikit-learn
implementation, which is faster and has support for sparse matrices.
For a verbose description of the metrics from scikit-learn, see the
__doc__ of the sklearn.pairwise.distance_metrics function.
Parameters
----------
X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \
[n_samples_a, n_features] otherwise
Array of pairwise distances between samples, or a feature array.
Y : array [n_samples_b, n_features]
A second feature array only if X has shape [n_samples_a, n_features].
metric : string, or callable
The metric to use when calculating distance between instances in a
feature array. If metric is a string, it must be one of the options
allowed by scipy.spatial.distance.pdist for its metric parameter, or
a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS.
If metric is "precomputed", X is assumed to be a distance matrix.
Alternatively, if metric is a callable function, it is called on each
pair of instances (rows) and the resulting value recorded. The callable
should take two arrays from X as input and return a value indicating
the distance between them.
n_jobs : int
The number of jobs to use for the computation. This works by breaking
down the pairwise matrix into n_jobs even slices and computing them in
parallel.
If -1 all CPUs are used. If 1 is given, no parallel computing code is
used at all, which is useful for debuging. For n_jobs below -1,
(n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one
are used.
`**kwds` : optional keyword parameters
Any further parameters are passed directly to the distance function.
If using a scipy.spatial.distance metric, the parameters are still
metric dependent. See the scipy docs for usage examples.
Returns
-------
D : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b]
A distance matrix D such that D_{i, j} is the distance between the
ith and jth vectors of the given matrix X, if Y is None.
If Y is not None, then D_{i, j} is the distance between the ith array
from X and the jth array from Y.
"""
if metric == "precomputed":
return X
elif metric in PAIRWISE_DISTANCE_FUNCTIONS:
func = PAIRWISE_DISTANCE_FUNCTIONS[metric]
if n_jobs == 1:
return func(X, Y, **kwds)
else:
return _parallel_pairwise(X, Y, func, n_jobs, **kwds)
elif callable(metric):
# Check matrices first (this is usually done by the metric).
X, Y = check_pairwise_arrays(X, Y)
n_x, n_y = X.shape[0], Y.shape[0]
# Calculate distance for each element in X and Y.
# FIXME: can use n_jobs here too
D = np.zeros((n_x, n_y), dtype='float')
for i in range(n_x):
start = 0
if X is Y:
start = i
for j in range(start, n_y):
# distance assumed to be symmetric.
D[i][j] = metric(X[i], Y[j], **kwds)
if X is Y:
D[j][i] = D[i][j]
return D
else:
# Note: the distance module doesn't support sparse matrices!
if type(X) is csr_matrix:
raise TypeError("scipy distance metrics do not"
" support sparse matrices.")
if Y is None:
return distance.squareform(distance.pdist(X, metric=metric,
**kwds))
else:
if type(Y) is csr_matrix:
raise TypeError("scipy distance metrics do not"
" support sparse matrices.")
return distance.cdist(X, Y, metric=metric, **kwds)
# Helper functions - distance
PAIRWISE_KERNEL_FUNCTIONS = {
# If updating this dictionary, update the doc in both distance_metrics()
# and also in pairwise_distances()!
'additive_chi2': additive_chi2_kernel,
'chi2': chi2_kernel,
'linear': linear_kernel,
'polynomial': polynomial_kernel,
'poly': polynomial_kernel,
'rbf': rbf_kernel,
'sigmoid': sigmoid_kernel,
'cosine': cosine_similarity, }
def kernel_metrics():
""" Valid metrics for pairwise_kernels
This function simply returns the valid pairwise distance metrics.
It exists, however, to allow for a verbose description of the mapping for
each of the valid strings.
The valid distance metrics, and the function they map to, are:
=============== ========================================
metric Function
=============== ========================================
'additive_chi2' sklearn.pairwise.additive_chi2_kernel
'chi2' sklearn.pairwise.chi2_kernel
'linear' sklearn.pairwise.linear_kernel
'poly' sklearn.pairwise.polynomial_kernel
'polynomial' sklearn.pairwise.polynomial_kernel
'rbf' sklearn.pairwise.rbf_kernel
'sigmoid' sklearn.pairwise.sigmoid_kernel
'cosine' sklearn.pairwise.cosine_similarity
=============== ========================================
"""
return PAIRWISE_KERNEL_FUNCTIONS
KERNEL_PARAMS = {
"chi2": (),
"exp_chi2": set(("gamma", )),
"linear": (),
"rbf": set(("gamma",)),
"sigmoid": set(("gamma", "coef0")),
"polynomial": set(("gamma", "degree", "coef0")),
"poly": set(("gamma", "degree", "coef0")),
"cosine": set(), }
def pairwise_kernels(X, Y=None, metric="linear", filter_params=False,
n_jobs=1, **kwds):
""" Compute the kernel between arrays X and optional array Y.
This method takes either a vector array or a kernel matrix, and returns
a kernel matrix. If the input is a vector array, the kernels are
computed. If the input is a kernel matrix, it is returned instead.
This method provides a safe way to take a kernel matrix as input, while
preserving compatability with many other algorithms that take a vector
array.
If Y is given (default is None), then the returned matrix is the pairwise
kernel between the arrays from both X and Y.
Valid values for metric are::
['rbf', 'sigmoid', 'polynomial', 'poly', 'linear', 'cosine']
Parameters
----------
X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \
[n_samples_a, n_features] otherwise
Array of pairwise kernels between samples, or a feature array.
Y : array [n_samples_b, n_features]
A second feature array only if X has shape [n_samples_a, n_features].
metric : string, or callable
The metric to use when calculating kernel between instances in a
feature array. If metric is a string, it must be one of the metrics
in pairwise.PAIRWISE_KERNEL_FUNCTIONS.
If metric is "precomputed", X is assumed to be a kernel matrix.
Alternatively, if metric is a callable function, it is called on each
pair of instances (rows) and the resulting value recorded. The callable
should take two arrays from X as input and return a value indicating
the distance between them.
n_jobs : int
The number of jobs to use for the computation. This works by breaking
down the pairwise matrix into n_jobs even slices and computing them in
parallel.
If -1 all CPUs are used. If 1 is given, no parallel computing code is
used at all, which is useful for debuging. For n_jobs below -1,
(n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one
are used.
filter_params: boolean
Whether to filter invalid parameters or not.
`**kwds` : optional keyword parameters
Any further parameters are passed directly to the kernel function.
Returns
-------
K : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b]
A kernel matrix K such that K_{i, j} is the kernel between the
ith and jth vectors of the given matrix X, if Y is None.
If Y is not None, then K_{i, j} is the kernel between the ith array
from X and the jth array from Y.
Notes
-----
If metric is 'precomputed', Y is ignored and X is returned.
"""
if metric == "precomputed":
return X
elif metric in PAIRWISE_KERNEL_FUNCTIONS:
if filter_params:
kwds = dict((k, kwds[k]) for k in kwds
if k in KERNEL_PARAMS[metric])
func = PAIRWISE_KERNEL_FUNCTIONS[metric]
if n_jobs == 1:
return func(X, Y, **kwds)
else:
return _parallel_pairwise(X, Y, func, n_jobs, **kwds)
elif callable(metric):
# Check matrices first (this is usually done by the metric).
X, Y = check_pairwise_arrays(X, Y)
n_x, n_y = X.shape[0], Y.shape[0]
# Calculate kernel for each element in X and Y.
K = np.zeros((n_x, n_y), dtype='float')
for i in range(n_x):
start = 0
if X is Y:
start = i
for j in range(start, n_y):
# Kernel assumed to be symmetric.
K[i][j] = metric(X[i], Y[j], **kwds)
if X is Y:
K[j][i] = K[i][j]
return K
else:
raise AttributeError("Unknown metric %s" % metric)
| bsd-3-clause |
gclenaghan/scikit-learn | sklearn/decomposition/tests/test_incremental_pca.py | 297 | 8265 | """Tests for Incremental PCA."""
import numpy as np
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_raises
from sklearn import datasets
from sklearn.decomposition import PCA, IncrementalPCA
iris = datasets.load_iris()
def test_incremental_pca():
# Incremental PCA on dense arrays.
X = iris.data
batch_size = X.shape[0] // 3
ipca = IncrementalPCA(n_components=2, batch_size=batch_size)
pca = PCA(n_components=2)
pca.fit_transform(X)
X_transformed = ipca.fit_transform(X)
np.testing.assert_equal(X_transformed.shape, (X.shape[0], 2))
assert_almost_equal(ipca.explained_variance_ratio_.sum(),
pca.explained_variance_ratio_.sum(), 1)
for n_components in [1, 2, X.shape[1]]:
ipca = IncrementalPCA(n_components, batch_size=batch_size)
ipca.fit(X)
cov = ipca.get_covariance()
precision = ipca.get_precision()
assert_array_almost_equal(np.dot(cov, precision),
np.eye(X.shape[1]))
def test_incremental_pca_check_projection():
# Test that the projection of data is correct.
rng = np.random.RandomState(1999)
n, p = 100, 3
X = rng.randn(n, p) * .1
X[:10] += np.array([3, 4, 5])
Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5])
# Get the reconstruction of the generated data X
# Note that Xt has the same "components" as X, just separated
# This is what we want to ensure is recreated correctly
Yt = IncrementalPCA(n_components=2).fit(X).transform(Xt)
# Normalize
Yt /= np.sqrt((Yt ** 2).sum())
# Make sure that the first element of Yt is ~1, this means
# the reconstruction worked as expected
assert_almost_equal(np.abs(Yt[0][0]), 1., 1)
def test_incremental_pca_inverse():
# Test that the projection of data can be inverted.
rng = np.random.RandomState(1999)
n, p = 50, 3
X = rng.randn(n, p) # spherical data
X[:, 1] *= .00001 # make middle component relatively small
X += [5, 4, 3] # make a large mean
# same check that we can find the original data from the transformed
# signal (since the data is almost of rank n_components)
ipca = IncrementalPCA(n_components=2, batch_size=10).fit(X)
Y = ipca.transform(X)
Y_inverse = ipca.inverse_transform(Y)
assert_almost_equal(X, Y_inverse, decimal=3)
def test_incremental_pca_validation():
# Test that n_components is >=1 and <= n_features.
X = [[0, 1], [1, 0]]
for n_components in [-1, 0, .99, 3]:
assert_raises(ValueError, IncrementalPCA(n_components,
batch_size=10).fit, X)
def test_incremental_pca_set_params():
# Test that components_ sign is stable over batch sizes.
rng = np.random.RandomState(1999)
n_samples = 100
n_features = 20
X = rng.randn(n_samples, n_features)
X2 = rng.randn(n_samples, n_features)
X3 = rng.randn(n_samples, n_features)
ipca = IncrementalPCA(n_components=20)
ipca.fit(X)
# Decreasing number of components
ipca.set_params(n_components=10)
assert_raises(ValueError, ipca.partial_fit, X2)
# Increasing number of components
ipca.set_params(n_components=15)
assert_raises(ValueError, ipca.partial_fit, X3)
# Returning to original setting
ipca.set_params(n_components=20)
ipca.partial_fit(X)
def test_incremental_pca_num_features_change():
# Test that changing n_components will raise an error.
rng = np.random.RandomState(1999)
n_samples = 100
X = rng.randn(n_samples, 20)
X2 = rng.randn(n_samples, 50)
ipca = IncrementalPCA(n_components=None)
ipca.fit(X)
assert_raises(ValueError, ipca.partial_fit, X2)
def test_incremental_pca_batch_signs():
# Test that components_ sign is stable over batch sizes.
rng = np.random.RandomState(1999)
n_samples = 100
n_features = 3
X = rng.randn(n_samples, n_features)
all_components = []
batch_sizes = np.arange(10, 20)
for batch_size in batch_sizes:
ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X)
all_components.append(ipca.components_)
for i, j in zip(all_components[:-1], all_components[1:]):
assert_almost_equal(np.sign(i), np.sign(j), decimal=6)
def test_incremental_pca_batch_values():
# Test that components_ values are stable over batch sizes.
rng = np.random.RandomState(1999)
n_samples = 100
n_features = 3
X = rng.randn(n_samples, n_features)
all_components = []
batch_sizes = np.arange(20, 40, 3)
for batch_size in batch_sizes:
ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X)
all_components.append(ipca.components_)
for i, j in zip(all_components[:-1], all_components[1:]):
assert_almost_equal(i, j, decimal=1)
def test_incremental_pca_partial_fit():
# Test that fit and partial_fit get equivalent results.
rng = np.random.RandomState(1999)
n, p = 50, 3
X = rng.randn(n, p) # spherical data
X[:, 1] *= .00001 # make middle component relatively small
X += [5, 4, 3] # make a large mean
# same check that we can find the original data from the transformed
# signal (since the data is almost of rank n_components)
batch_size = 10
ipca = IncrementalPCA(n_components=2, batch_size=batch_size).fit(X)
pipca = IncrementalPCA(n_components=2, batch_size=batch_size)
# Add one to make sure endpoint is included
batch_itr = np.arange(0, n + 1, batch_size)
for i, j in zip(batch_itr[:-1], batch_itr[1:]):
pipca.partial_fit(X[i:j, :])
assert_almost_equal(ipca.components_, pipca.components_, decimal=3)
def test_incremental_pca_against_pca_iris():
# Test that IncrementalPCA and PCA are approximate (to a sign flip).
X = iris.data
Y_pca = PCA(n_components=2).fit_transform(X)
Y_ipca = IncrementalPCA(n_components=2, batch_size=25).fit_transform(X)
assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1)
def test_incremental_pca_against_pca_random_data():
# Test that IncrementalPCA and PCA are approximate (to a sign flip).
rng = np.random.RandomState(1999)
n_samples = 100
n_features = 3
X = rng.randn(n_samples, n_features) + 5 * rng.rand(1, n_features)
Y_pca = PCA(n_components=3).fit_transform(X)
Y_ipca = IncrementalPCA(n_components=3, batch_size=25).fit_transform(X)
assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1)
def test_explained_variances():
# Test that PCA and IncrementalPCA calculations match
X = datasets.make_low_rank_matrix(1000, 100, tail_strength=0.,
effective_rank=10, random_state=1999)
prec = 3
n_samples, n_features = X.shape
for nc in [None, 99]:
pca = PCA(n_components=nc).fit(X)
ipca = IncrementalPCA(n_components=nc, batch_size=100).fit(X)
assert_almost_equal(pca.explained_variance_, ipca.explained_variance_,
decimal=prec)
assert_almost_equal(pca.explained_variance_ratio_,
ipca.explained_variance_ratio_, decimal=prec)
assert_almost_equal(pca.noise_variance_, ipca.noise_variance_,
decimal=prec)
def test_whitening():
# Test that PCA and IncrementalPCA transforms match to sign flip.
X = datasets.make_low_rank_matrix(1000, 10, tail_strength=0.,
effective_rank=2, random_state=1999)
prec = 3
n_samples, n_features = X.shape
for nc in [None, 9]:
pca = PCA(whiten=True, n_components=nc).fit(X)
ipca = IncrementalPCA(whiten=True, n_components=nc,
batch_size=250).fit(X)
Xt_pca = pca.transform(X)
Xt_ipca = ipca.transform(X)
assert_almost_equal(np.abs(Xt_pca), np.abs(Xt_ipca), decimal=prec)
Xinv_ipca = ipca.inverse_transform(Xt_ipca)
Xinv_pca = pca.inverse_transform(Xt_pca)
assert_almost_equal(X, Xinv_ipca, decimal=prec)
assert_almost_equal(X, Xinv_pca, decimal=prec)
assert_almost_equal(Xinv_pca, Xinv_ipca, decimal=prec)
| bsd-3-clause |
courtarro/gnuradio | gr-filter/examples/channelize.py | 58 | 7003 | #!/usr/bin/env python
#
# Copyright 2009,2012,2013 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
from gnuradio import gr
from gnuradio import blocks
from gnuradio import filter
import sys, time
try:
from gnuradio import analog
except ImportError:
sys.stderr.write("Error: Program requires gr-analog.\n")
sys.exit(1)
try:
import scipy
from scipy import fftpack
except ImportError:
sys.stderr.write("Error: Program requires scipy (see: www.scipy.org).\n")
sys.exit(1)
try:
import pylab
from pylab import mlab
except ImportError:
sys.stderr.write("Error: Program requires matplotlib (see: matplotlib.sourceforge.net).\n")
sys.exit(1)
class pfb_top_block(gr.top_block):
def __init__(self):
gr.top_block.__init__(self)
self._N = 2000000 # number of samples to use
self._fs = 1000 # initial sampling rate
self._M = M = 9 # Number of channels to channelize
self._ifs = M*self._fs # initial sampling rate
# Create a set of taps for the PFB channelizer
self._taps = filter.firdes.low_pass_2(1, self._ifs, 475.50, 50,
attenuation_dB=100,
window=filter.firdes.WIN_BLACKMAN_hARRIS)
# Calculate the number of taps per channel for our own information
tpc = scipy.ceil(float(len(self._taps)) / float(self._M))
print "Number of taps: ", len(self._taps)
print "Number of channels: ", self._M
print "Taps per channel: ", tpc
# Create a set of signals at different frequencies
# freqs lists the frequencies of the signals that get stored
# in the list "signals", which then get summed together
self.signals = list()
self.add = blocks.add_cc()
freqs = [-70, -50, -30, -10, 10, 20, 40, 60, 80]
for i in xrange(len(freqs)):
f = freqs[i] + (M/2-M+i+1)*self._fs
self.signals.append(analog.sig_source_c(self._ifs, analog.GR_SIN_WAVE, f, 1))
self.connect(self.signals[i], (self.add,i))
self.head = blocks.head(gr.sizeof_gr_complex, self._N)
# Construct the channelizer filter
self.pfb = filter.pfb.channelizer_ccf(self._M, self._taps, 1)
# Construct a vector sink for the input signal to the channelizer
self.snk_i = blocks.vector_sink_c()
# Connect the blocks
self.connect(self.add, self.head, self.pfb)
self.connect(self.add, self.snk_i)
# Use this to play with the channel mapping
#self.pfb.set_channel_map([5,6,7,8,0,1,2,3,4])
# Create a vector sink for each of M output channels of the filter and connect it
self.snks = list()
for i in xrange(self._M):
self.snks.append(blocks.vector_sink_c())
self.connect((self.pfb, i), self.snks[i])
def main():
tstart = time.time()
tb = pfb_top_block()
tb.run()
tend = time.time()
print "Run time: %f" % (tend - tstart)
if 1:
fig_in = pylab.figure(1, figsize=(16,9), facecolor="w")
fig1 = pylab.figure(2, figsize=(16,9), facecolor="w")
fig2 = pylab.figure(3, figsize=(16,9), facecolor="w")
Ns = 1000
Ne = 10000
fftlen = 8192
winfunc = scipy.blackman
fs = tb._ifs
# Plot the input signal on its own figure
d = tb.snk_i.data()[Ns:Ne]
spin_f = fig_in.add_subplot(2, 1, 1)
X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
window = lambda d: d*winfunc(fftlen),
scale_by_freq=True)
X_in = 10.0*scipy.log10(abs(X))
f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
pin_f = spin_f.plot(f_in, X_in, "b")
spin_f.set_xlim([min(f_in), max(f_in)+1])
spin_f.set_ylim([-200.0, 50.0])
spin_f.set_title("Input Signal", weight="bold")
spin_f.set_xlabel("Frequency (Hz)")
spin_f.set_ylabel("Power (dBW)")
Ts = 1.0/fs
Tmax = len(d)*Ts
t_in = scipy.arange(0, Tmax, Ts)
x_in = scipy.array(d)
spin_t = fig_in.add_subplot(2, 1, 2)
pin_t = spin_t.plot(t_in, x_in.real, "b")
pin_t = spin_t.plot(t_in, x_in.imag, "r")
spin_t.set_xlabel("Time (s)")
spin_t.set_ylabel("Amplitude")
Ncols = int(scipy.floor(scipy.sqrt(tb._M)))
Nrows = int(scipy.floor(tb._M / Ncols))
if(tb._M % Ncols != 0):
Nrows += 1
# Plot each of the channels outputs. Frequencies on Figure 2 and
# time signals on Figure 3
fs_o = tb._fs
Ts_o = 1.0/fs_o
Tmax_o = len(d)*Ts_o
for i in xrange(len(tb.snks)):
# remove issues with the transients at the beginning
# also remove some corruption at the end of the stream
# this is a bug, probably due to the corner cases
d = tb.snks[i].data()[Ns:Ne]
sp1_f = fig1.add_subplot(Nrows, Ncols, 1+i)
X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
window = lambda d: d*winfunc(fftlen),
scale_by_freq=True)
X_o = 10.0*scipy.log10(abs(X))
f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size))
p2_f = sp1_f.plot(f_o, X_o, "b")
sp1_f.set_xlim([min(f_o), max(f_o)+1])
sp1_f.set_ylim([-200.0, 50.0])
sp1_f.set_title(("Channel %d" % i), weight="bold")
sp1_f.set_xlabel("Frequency (Hz)")
sp1_f.set_ylabel("Power (dBW)")
x_o = scipy.array(d)
t_o = scipy.arange(0, Tmax_o, Ts_o)
sp2_o = fig2.add_subplot(Nrows, Ncols, 1+i)
p2_o = sp2_o.plot(t_o, x_o.real, "b")
p2_o = sp2_o.plot(t_o, x_o.imag, "r")
sp2_o.set_xlim([min(t_o), max(t_o)+1])
sp2_o.set_ylim([-2, 2])
sp2_o.set_title(("Channel %d" % i), weight="bold")
sp2_o.set_xlabel("Time (s)")
sp2_o.set_ylabel("Amplitude")
pylab.show()
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
pass
| gpl-3.0 |
rhiever/bokeh | examples/plotting/file/glucose.py | 18 | 1552 | import pandas as pd
from bokeh.sampledata.glucose import data
from bokeh.plotting import figure, show, output_file, vplot
output_file("glucose.html", title="glucose.py example")
TOOLS = "pan,wheel_zoom,box_zoom,reset,save"
p1 = figure(x_axis_type="datetime", tools=TOOLS)
p1.line(data.index, data['glucose'], color='red', legend='glucose')
p1.line(data.index, data['isig'], color='blue', legend='isig')
p1.title = "Glucose Measurements"
p1.xaxis.axis_label = 'Date'
p1.yaxis.axis_label = 'Value'
day = data.ix['2010-10-06']
highs = day[day['glucose'] > 180]
lows = day[day['glucose'] < 80]
p2 = figure(x_axis_type="datetime", tools=TOOLS)
p2.line(day.index.to_series(), day['glucose'],
line_color="gray", line_dash="4 4", line_width=1, legend="glucose")
p2.circle(highs.index, highs['glucose'], size=6, color='tomato', legend="high")
p2.circle(lows.index, lows['glucose'], size=6, color='navy', legend="low")
p2.title = "Glucose Range"
p2.xgrid[0].grid_line_color=None
p2.ygrid[0].grid_line_alpha=0.5
p2.xaxis.axis_label = 'Time'
p2.yaxis.axis_label = 'Value'
data['inrange'] = (data['glucose'] < 180) & (data['glucose'] > 80)
window = 30.5*288 #288 is average number of samples in a month
inrange = pd.rolling_sum(data.inrange, window)
inrange = inrange.dropna()
inrange = inrange/float(window)
p3 = figure(x_axis_type="datetime", tools=TOOLS)
p3.line(inrange.index, inrange, line_color="navy")
p3.title = "Glucose In-Range Rolling Sum"
p3.xaxis.axis_label = 'Date'
p3.yaxis.axis_label = 'Proportion In-Range'
show(vplot(p1,p2,p3))
| bsd-3-clause |
kuntzer/SALSA-public | 3c_angle_usage.py | 1 | 2662 | ''' 3c_angle_usage.py
=========================
AIM: Plots the diagonistic angle usage of the PST in SALSA. Requires the monitor_angle_usage=True in 1_compute_<p>.py and log_all_data = .true. in straylight_<orbit_id>_<p>/CODE/parameter.
INPUT: files: - <orbit_id>_misc/orbits.dat
- <orbit_id>_flux/angles_<orbit_number>.dat
variables: see section PARAMETERS (below)
OUTPUT: in <orbit_id>_misc/ : file one stat file
in <orbit_id>_figures/ : step distribution, step in function of time
CMD: python 3b_angle_usage.py
ISSUES: <none known>
REQUIRES:- LATEX, epstopdf, pdfcrop, standard python libraries, specific libraries in resources/
- Structure of the root folder:
* <orbit_id>_flux/ --> flux files
* <orbit_id>_figures/ --> figures
* <orbit_id>_misc/ --> storages of data
* all_figures/ --> comparison figures
REMARKS: This is a better version than the 3b_angle_usage.py
'''
###########################################################################
### INCLUDES
import numpy as np
import pylab as plt
from resources.routines import *
from resources.TimeStepping import *
import resources.figures as figures
from matplotlib import cm
###########################################################################
orbit_id = 704
sl_angle = 35
fancy = True
show = True
save = True
# Bins and their legends
orbit_ini = [1,441,891,1331,1771,2221,2661,3111,3551,3991,4441,4881,1]
orbit_end = [441,891,1331,1771,2221,2661,3111,3551,3991,4441,4881,5322,5322]
legends = ['Jan','Feb','Mar','Avr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec','Year']
###########################################################################
if fancy: figures.set_fancy()
# Formatted folders definitions
folder_flux, folder_figures, folder_misc = init_folders(orbit_id)
fig, ax = plt.subplots(1)
ii = 0.
size = len(orbit_ini)
minv=100
maxv=0
for ini, end,label in zip(orbit_ini,orbit_end,legends):
print ini, end, label
c = cm.rainbow(ii/float(size))
fname = '%sangle_usage_%d_%d_%d-%d.dat' % (folder_misc,orbit_id,sl_angle,ini,end)
values = np.loadtxt(fname)
plt.plot(values[:,0], values[:,1],label=label, lw=2, c=c)
if np.min(values[:,1]) < minv: minv = np.min(values[:,1])
if np.max(values[:,1]) > maxv: maxv = np.max(values[:,1])
ii += 1
plt.ylim( [ np.floor(minv), np.ceil(maxv) ] )
plt.xlabel(r'$\theta\ \mathrm{Angular}\ \mathrm{distance}\ \mathrm{to}\ \mathrm{limb}\ \mathrm{[deg]}$')
plt.ylabel('\% of calls')
plt.legend(loc=2,prop={'size':14}, ncol=2)
plt.grid()
if show: plt.show()
# Saves the figure
if save:
fname = '%stot_angle_usage_%d_%d' % (folder_figures,orbit_id,sl_angle)
figures.savefig(fname,fig,fancy)
| bsd-3-clause |
MechCoder/scikit-learn | benchmarks/bench_plot_omp_lars.py | 72 | 4514 | """Benchmarks of orthogonal matching pursuit (:ref:`OMP`) versus least angle
regression (:ref:`least_angle_regression`)
The input data is mostly low rank but is a fat infinite tail.
"""
from __future__ import print_function
import gc
import sys
from time import time
import six
import numpy as np
from sklearn.linear_model import lars_path, orthogonal_mp
from sklearn.datasets.samples_generator import make_sparse_coded_signal
def compute_bench(samples_range, features_range):
it = 0
results = dict()
lars = np.empty((len(features_range), len(samples_range)))
lars_gram = lars.copy()
omp = lars.copy()
omp_gram = lars.copy()
max_it = len(samples_range) * len(features_range)
for i_s, n_samples in enumerate(samples_range):
for i_f, n_features in enumerate(features_range):
it += 1
n_informative = n_features / 10
print('====================')
print('Iteration %03d of %03d' % (it, max_it))
print('====================')
# dataset_kwargs = {
# 'n_train_samples': n_samples,
# 'n_test_samples': 2,
# 'n_features': n_features,
# 'n_informative': n_informative,
# 'effective_rank': min(n_samples, n_features) / 10,
# #'effective_rank': None,
# 'bias': 0.0,
# }
dataset_kwargs = {
'n_samples': 1,
'n_components': n_features,
'n_features': n_samples,
'n_nonzero_coefs': n_informative,
'random_state': 0
}
print("n_samples: %d" % n_samples)
print("n_features: %d" % n_features)
y, X, _ = make_sparse_coded_signal(**dataset_kwargs)
X = np.asfortranarray(X)
gc.collect()
print("benchmarking lars_path (with Gram):", end='')
sys.stdout.flush()
tstart = time()
G = np.dot(X.T, X) # precomputed Gram matrix
Xy = np.dot(X.T, y)
lars_path(X, y, Xy=Xy, Gram=G, max_iter=n_informative)
delta = time() - tstart
print("%0.3fs" % delta)
lars_gram[i_f, i_s] = delta
gc.collect()
print("benchmarking lars_path (without Gram):", end='')
sys.stdout.flush()
tstart = time()
lars_path(X, y, Gram=None, max_iter=n_informative)
delta = time() - tstart
print("%0.3fs" % delta)
lars[i_f, i_s] = delta
gc.collect()
print("benchmarking orthogonal_mp (with Gram):", end='')
sys.stdout.flush()
tstart = time()
orthogonal_mp(X, y, precompute=True,
n_nonzero_coefs=n_informative)
delta = time() - tstart
print("%0.3fs" % delta)
omp_gram[i_f, i_s] = delta
gc.collect()
print("benchmarking orthogonal_mp (without Gram):", end='')
sys.stdout.flush()
tstart = time()
orthogonal_mp(X, y, precompute=False,
n_nonzero_coefs=n_informative)
delta = time() - tstart
print("%0.3fs" % delta)
omp[i_f, i_s] = delta
results['time(LARS) / time(OMP)\n (w/ Gram)'] = (lars_gram / omp_gram)
results['time(LARS) / time(OMP)\n (w/o Gram)'] = (lars / omp)
return results
if __name__ == '__main__':
samples_range = np.linspace(1000, 5000, 5).astype(np.int)
features_range = np.linspace(1000, 5000, 5).astype(np.int)
results = compute_bench(samples_range, features_range)
max_time = max(np.max(t) for t in results.values())
import matplotlib.pyplot as plt
fig = plt.figure('scikit-learn OMP vs. LARS benchmark results')
for i, (label, timings) in enumerate(sorted(six.iteritems(results))):
ax = fig.add_subplot(1, 2, i+1)
vmax = max(1 - timings.min(), -1 + timings.max())
plt.matshow(timings, fignum=False, vmin=1 - vmax, vmax=1 + vmax)
ax.set_xticklabels([''] + [str(each) for each in samples_range])
ax.set_yticklabels([''] + [str(each) for each in features_range])
plt.xlabel('n_samples')
plt.ylabel('n_features')
plt.title(label)
plt.subplots_adjust(0.1, 0.08, 0.96, 0.98, 0.4, 0.63)
ax = plt.axes([0.1, 0.08, 0.8, 0.06])
plt.colorbar(cax=ax, orientation='horizontal')
plt.show()
| bsd-3-clause |
datapythonista/pandas | pandas/tests/arrays/boolean/test_logical.py | 7 | 8486 | import operator
import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.arrays import BooleanArray
from pandas.tests.extension.base import BaseOpsUtil
class TestLogicalOps(BaseOpsUtil):
def test_numpy_scalars_ok(self, all_logical_operators):
a = pd.array([True, False, None], dtype="boolean")
op = getattr(a, all_logical_operators)
tm.assert_extension_array_equal(op(True), op(np.bool_(True)))
tm.assert_extension_array_equal(op(False), op(np.bool_(False)))
def get_op_from_name(self, op_name):
short_opname = op_name.strip("_")
short_opname = short_opname if "xor" in short_opname else short_opname + "_"
try:
op = getattr(operator, short_opname)
except AttributeError:
# Assume it is the reverse operator
rop = getattr(operator, short_opname[1:])
op = lambda x, y: rop(y, x)
return op
def test_empty_ok(self, all_logical_operators):
a = pd.array([], dtype="boolean")
op_name = all_logical_operators
result = getattr(a, op_name)(True)
tm.assert_extension_array_equal(a, result)
result = getattr(a, op_name)(False)
tm.assert_extension_array_equal(a, result)
# FIXME: dont leave commented-out
# TODO: pd.NA
# result = getattr(a, op_name)(pd.NA)
# tm.assert_extension_array_equal(a, result)
def test_logical_length_mismatch_raises(self, all_logical_operators):
op_name = all_logical_operators
a = pd.array([True, False, None], dtype="boolean")
msg = "Lengths must match to compare"
with pytest.raises(ValueError, match=msg):
getattr(a, op_name)([True, False])
with pytest.raises(ValueError, match=msg):
getattr(a, op_name)(np.array([True, False]))
with pytest.raises(ValueError, match=msg):
getattr(a, op_name)(pd.array([True, False], dtype="boolean"))
def test_logical_nan_raises(self, all_logical_operators):
op_name = all_logical_operators
a = pd.array([True, False, None], dtype="boolean")
msg = "Got float instead"
with pytest.raises(TypeError, match=msg):
getattr(a, op_name)(np.nan)
@pytest.mark.parametrize("other", ["a", 1])
def test_non_bool_or_na_other_raises(self, other, all_logical_operators):
a = pd.array([True, False], dtype="boolean")
with pytest.raises(TypeError, match=str(type(other).__name__)):
getattr(a, all_logical_operators)(other)
def test_kleene_or(self):
# A clear test of behavior.
a = pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
b = pd.array([True, False, None] * 3, dtype="boolean")
result = a | b
expected = pd.array(
[True, True, True, True, False, None, True, None, None], dtype="boolean"
)
tm.assert_extension_array_equal(result, expected)
result = b | a
tm.assert_extension_array_equal(result, expected)
# ensure we haven't mutated anything inplace
tm.assert_extension_array_equal(
a, pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
)
tm.assert_extension_array_equal(
b, pd.array([True, False, None] * 3, dtype="boolean")
)
@pytest.mark.parametrize(
"other, expected",
[
(pd.NA, [True, None, None]),
(True, [True, True, True]),
(np.bool_(True), [True, True, True]),
(False, [True, False, None]),
(np.bool_(False), [True, False, None]),
],
)
def test_kleene_or_scalar(self, other, expected):
# TODO: test True & False
a = pd.array([True, False, None], dtype="boolean")
result = a | other
expected = pd.array(expected, dtype="boolean")
tm.assert_extension_array_equal(result, expected)
result = other | a
tm.assert_extension_array_equal(result, expected)
# ensure we haven't mutated anything inplace
tm.assert_extension_array_equal(
a, pd.array([True, False, None], dtype="boolean")
)
def test_kleene_and(self):
# A clear test of behavior.
a = pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
b = pd.array([True, False, None] * 3, dtype="boolean")
result = a & b
expected = pd.array(
[True, False, None, False, False, False, None, False, None], dtype="boolean"
)
tm.assert_extension_array_equal(result, expected)
result = b & a
tm.assert_extension_array_equal(result, expected)
# ensure we haven't mutated anything inplace
tm.assert_extension_array_equal(
a, pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
)
tm.assert_extension_array_equal(
b, pd.array([True, False, None] * 3, dtype="boolean")
)
@pytest.mark.parametrize(
"other, expected",
[
(pd.NA, [None, False, None]),
(True, [True, False, None]),
(False, [False, False, False]),
(np.bool_(True), [True, False, None]),
(np.bool_(False), [False, False, False]),
],
)
def test_kleene_and_scalar(self, other, expected):
a = pd.array([True, False, None], dtype="boolean")
result = a & other
expected = pd.array(expected, dtype="boolean")
tm.assert_extension_array_equal(result, expected)
result = other & a
tm.assert_extension_array_equal(result, expected)
# ensure we haven't mutated anything inplace
tm.assert_extension_array_equal(
a, pd.array([True, False, None], dtype="boolean")
)
def test_kleene_xor(self):
a = pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
b = pd.array([True, False, None] * 3, dtype="boolean")
result = a ^ b
expected = pd.array(
[False, True, None, True, False, None, None, None, None], dtype="boolean"
)
tm.assert_extension_array_equal(result, expected)
result = b ^ a
tm.assert_extension_array_equal(result, expected)
# ensure we haven't mutated anything inplace
tm.assert_extension_array_equal(
a, pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
)
tm.assert_extension_array_equal(
b, pd.array([True, False, None] * 3, dtype="boolean")
)
@pytest.mark.parametrize(
"other, expected",
[
(pd.NA, [None, None, None]),
(True, [False, True, None]),
(np.bool_(True), [False, True, None]),
(np.bool_(False), [True, False, None]),
],
)
def test_kleene_xor_scalar(self, other, expected):
a = pd.array([True, False, None], dtype="boolean")
result = a ^ other
expected = pd.array(expected, dtype="boolean")
tm.assert_extension_array_equal(result, expected)
result = other ^ a
tm.assert_extension_array_equal(result, expected)
# ensure we haven't mutated anything inplace
tm.assert_extension_array_equal(
a, pd.array([True, False, None], dtype="boolean")
)
@pytest.mark.parametrize("other", [True, False, pd.NA, [True, False, None] * 3])
def test_no_masked_assumptions(self, other, all_logical_operators):
# The logical operations should not assume that masked values are False!
a = pd.arrays.BooleanArray(
np.array([True, True, True, False, False, False, True, False, True]),
np.array([False] * 6 + [True, True, True]),
)
b = pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
if isinstance(other, list):
other = pd.array(other, dtype="boolean")
result = getattr(a, all_logical_operators)(other)
expected = getattr(b, all_logical_operators)(other)
tm.assert_extension_array_equal(result, expected)
if isinstance(other, BooleanArray):
other._data[other._mask] = True
a._data[a._mask] = False
result = getattr(a, all_logical_operators)(other)
expected = getattr(b, all_logical_operators)(other)
tm.assert_extension_array_equal(result, expected)
| bsd-3-clause |
zasdfgbnm/tensorflow | tensorflow/contrib/learn/python/learn/estimators/__init__.py | 34 | 12484 | # Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""An estimator is a rule for calculating an estimate of a given quantity.
# Estimators
* **Estimators** are used to train and evaluate TensorFlow models.
They support regression and classification problems.
* **Classifiers** are functions that have discrete outcomes.
* **Regressors** are functions that predict continuous values.
## Choosing the correct estimator
* For **Regression** problems use one of the following:
* `LinearRegressor`: Uses linear model.
* `DNNRegressor`: Uses DNN.
* `DNNLinearCombinedRegressor`: Uses Wide & Deep.
* `TensorForestEstimator`: Uses RandomForest.
See tf.contrib.tensor_forest.client.random_forest.TensorForestEstimator.
* `Estimator`: Use when you need a custom model.
* For **Classification** problems use one of the following:
* `LinearClassifier`: Multiclass classifier using Linear model.
* `DNNClassifier`: Multiclass classifier using DNN.
* `DNNLinearCombinedClassifier`: Multiclass classifier using Wide & Deep.
* `TensorForestEstimator`: Uses RandomForest.
See tf.contrib.tensor_forest.client.random_forest.TensorForestEstimator.
* `SVM`: Binary classifier using linear SVMs.
* `LogisticRegressor`: Use when you need custom model for binary
classification.
* `Estimator`: Use when you need custom model for N class classification.
## Pre-canned Estimators
Pre-canned estimators are machine learning estimators premade for general
purpose problems. If you need more customization, you can always write your
own custom estimator as described in the section below.
Pre-canned estimators are tested and optimized for speed and quality.
### Define the feature columns
Here are some possible types of feature columns used as inputs to a pre-canned
estimator.
Feature columns may vary based on the estimator used. So you can see which
feature columns are fed to each estimator in the below section.
```python
sparse_feature_a = sparse_column_with_keys(
column_name="sparse_feature_a", keys=["AB", "CD", ...])
embedding_feature_a = embedding_column(
sparse_id_column=sparse_feature_a, dimension=3, combiner="sum")
sparse_feature_b = sparse_column_with_hash_bucket(
column_name="sparse_feature_b", hash_bucket_size=1000)
embedding_feature_b = embedding_column(
sparse_id_column=sparse_feature_b, dimension=16, combiner="sum")
crossed_feature_a_x_b = crossed_column(
columns=[sparse_feature_a, sparse_feature_b], hash_bucket_size=10000)
real_feature = real_valued_column("real_feature")
real_feature_buckets = bucketized_column(
source_column=real_feature,
boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65])
```
### Create the pre-canned estimator
DNNClassifier, DNNRegressor, and DNNLinearCombinedClassifier are all pretty
similar to each other in how you use them. You can easily plug in an
optimizer and/or regularization to those estimators.
#### DNNClassifier
A classifier for TensorFlow DNN models.
```python
my_features = [embedding_feature_a, embedding_feature_b]
estimator = DNNClassifier(
feature_columns=my_features,
hidden_units=[1024, 512, 256],
optimizer=tf.train.ProximalAdagradOptimizer(
learning_rate=0.1,
l1_regularization_strength=0.001
))
```
#### DNNRegressor
A regressor for TensorFlow DNN models.
```python
my_features = [embedding_feature_a, embedding_feature_b]
estimator = DNNRegressor(
feature_columns=my_features,
hidden_units=[1024, 512, 256])
# Or estimator using the ProximalAdagradOptimizer optimizer with
# regularization.
estimator = DNNRegressor(
feature_columns=my_features,
hidden_units=[1024, 512, 256],
optimizer=tf.train.ProximalAdagradOptimizer(
learning_rate=0.1,
l1_regularization_strength=0.001
))
```
#### DNNLinearCombinedClassifier
A classifier for TensorFlow Linear and DNN joined training models.
* Wide and deep model
* Multi class (2 by default)
```python
my_linear_features = [crossed_feature_a_x_b]
my_deep_features = [embedding_feature_a, embedding_feature_b]
estimator = DNNLinearCombinedClassifier(
# Common settings
n_classes=n_classes,
weight_column_name=weight_column_name,
# Wide settings
linear_feature_columns=my_linear_features,
linear_optimizer=tf.train.FtrlOptimizer(...),
# Deep settings
dnn_feature_columns=my_deep_features,
dnn_hidden_units=[1000, 500, 100],
dnn_optimizer=tf.train.AdagradOptimizer(...))
```
#### LinearClassifier
Train a linear model to classify instances into one of multiple possible
classes. When number of possible classes is 2, this is binary classification.
```python
my_features = [sparse_feature_b, crossed_feature_a_x_b]
estimator = LinearClassifier(
feature_columns=my_features,
optimizer=tf.train.FtrlOptimizer(
learning_rate=0.1,
l1_regularization_strength=0.001
))
```
#### LinearRegressor
Train a linear regression model to predict a label value given observation of
feature values.
```python
my_features = [sparse_feature_b, crossed_feature_a_x_b]
estimator = LinearRegressor(
feature_columns=my_features)
```
### LogisticRegressor
Logistic regression estimator for binary classification.
```python
# See tf.contrib.learn.Estimator(...) for details on model_fn structure
def my_model_fn(...):
pass
estimator = LogisticRegressor(model_fn=my_model_fn)
# Input builders
def input_fn_train:
pass
estimator.fit(input_fn=input_fn_train)
estimator.predict(x=x)
```
#### SVM - Support Vector Machine
Support Vector Machine (SVM) model for binary classification.
Currently only linear SVMs are supported.
```python
my_features = [real_feature, sparse_feature_a]
estimator = SVM(
example_id_column='example_id',
feature_columns=my_features,
l2_regularization=10.0)
```
#### DynamicRnnEstimator
An `Estimator` that uses a recurrent neural network with dynamic unrolling.
```python
problem_type = ProblemType.CLASSIFICATION # or REGRESSION
prediction_type = PredictionType.SINGLE_VALUE # or MULTIPLE_VALUE
estimator = DynamicRnnEstimator(problem_type,
prediction_type,
my_feature_columns)
```
### Use the estimator
There are two main functions for using estimators, one of which is for
training, and one of which is for evaluation.
You can specify different data sources for each one in order to use different
datasets for train and eval.
```python
# Input builders
def input_fn_train: # returns x, Y
...
estimator.fit(input_fn=input_fn_train)
def input_fn_eval: # returns x, Y
...
estimator.evaluate(input_fn=input_fn_eval)
estimator.predict(x=x)
```
## Creating Custom Estimator
To create a custom `Estimator`, provide a function to `Estimator`'s
constructor that builds your model (`model_fn`, below):
```python
estimator = tf.contrib.learn.Estimator(
model_fn=model_fn,
model_dir=model_dir) # Where the model's data (e.g., checkpoints)
# are saved.
```
Here is a skeleton of this function, with descriptions of its arguments and
return values in the accompanying tables:
```python
def model_fn(features, targets, mode, params):
# Logic to do the following:
# 1. Configure the model via TensorFlow operations
# 2. Define the loss function for training/evaluation
# 3. Define the training operation/optimizer
# 4. Generate predictions
return predictions, loss, train_op
```
You may use `mode` and check against
`tf.contrib.learn.ModeKeys.{TRAIN, EVAL, INFER}` to parameterize `model_fn`.
In the Further Reading section below, there is an end-to-end TensorFlow
tutorial for building a custom estimator.
## Additional Estimators
There is an additional estimators under
`tensorflow.contrib.factorization.python.ops`:
* Gaussian mixture model (GMM) clustering
## Further reading
For further reading, there are several tutorials with relevant topics,
including:
* [Overview of linear models](../../../tutorials/linear/overview.md)
* [Linear model tutorial](../../../tutorials/wide/index.md)
* [Wide and deep learning tutorial](../../../tutorials/wide_and_deep/index.md)
* [Custom estimator tutorial](../../../tutorials/estimators/index.md)
* [Building input functions](../../../tutorials/input_fn/index.md)
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.contrib.learn.python.learn.estimators._sklearn import NotFittedError
from tensorflow.contrib.learn.python.learn.estimators.constants import ProblemType
from tensorflow.contrib.learn.python.learn.estimators.dnn import DNNClassifier
from tensorflow.contrib.learn.python.learn.estimators.dnn import DNNEstimator
from tensorflow.contrib.learn.python.learn.estimators.dnn import DNNRegressor
from tensorflow.contrib.learn.python.learn.estimators.dnn_linear_combined import DNNLinearCombinedClassifier
from tensorflow.contrib.learn.python.learn.estimators.dnn_linear_combined import DNNLinearCombinedEstimator
from tensorflow.contrib.learn.python.learn.estimators.dnn_linear_combined import DNNLinearCombinedRegressor
from tensorflow.contrib.learn.python.learn.estimators.dynamic_rnn_estimator import DynamicRnnEstimator
from tensorflow.contrib.learn.python.learn.estimators.estimator import BaseEstimator
from tensorflow.contrib.learn.python.learn.estimators.estimator import Estimator
from tensorflow.contrib.learn.python.learn.estimators.estimator import GraphRewriteSpec
from tensorflow.contrib.learn.python.learn.estimators.estimator import infer_real_valued_columns_from_input
from tensorflow.contrib.learn.python.learn.estimators.estimator import infer_real_valued_columns_from_input_fn
from tensorflow.contrib.learn.python.learn.estimators.estimator import SKCompat
from tensorflow.contrib.learn.python.learn.estimators.head import binary_svm_head
from tensorflow.contrib.learn.python.learn.estimators.head import Head
from tensorflow.contrib.learn.python.learn.estimators.head import loss_only_head
from tensorflow.contrib.learn.python.learn.estimators.head import multi_class_head
from tensorflow.contrib.learn.python.learn.estimators.head import multi_head
from tensorflow.contrib.learn.python.learn.estimators.head import multi_label_head
from tensorflow.contrib.learn.python.learn.estimators.head import no_op_train_fn
from tensorflow.contrib.learn.python.learn.estimators.head import poisson_regression_head
from tensorflow.contrib.learn.python.learn.estimators.head import regression_head
from tensorflow.contrib.learn.python.learn.estimators.kmeans import KMeansClustering
from tensorflow.contrib.learn.python.learn.estimators.linear import LinearClassifier
from tensorflow.contrib.learn.python.learn.estimators.linear import LinearEstimator
from tensorflow.contrib.learn.python.learn.estimators.linear import LinearRegressor
from tensorflow.contrib.learn.python.learn.estimators.logistic_regressor import LogisticRegressor
from tensorflow.contrib.learn.python.learn.estimators.metric_key import MetricKey
from tensorflow.contrib.learn.python.learn.estimators.model_fn import ModeKeys
from tensorflow.contrib.learn.python.learn.estimators.model_fn import ModelFnOps
from tensorflow.contrib.learn.python.learn.estimators.prediction_key import PredictionKey
from tensorflow.contrib.learn.python.learn.estimators.rnn_common import PredictionType
from tensorflow.contrib.learn.python.learn.estimators.run_config import ClusterConfig
from tensorflow.contrib.learn.python.learn.estimators.run_config import Environment
from tensorflow.contrib.learn.python.learn.estimators.run_config import RunConfig
from tensorflow.contrib.learn.python.learn.estimators.run_config import TaskType
from tensorflow.contrib.learn.python.learn.estimators.svm import SVM
| apache-2.0 |
thaihungle/deepexp | drl/qdl.py | 1 | 7102 | import gym
import numpy as np
import random
import tensorflow as tf
import matplotlib.pyplot as plt
# Create model
def multilayer_perceptron(x, weights, biases):
#somehow drl performs worse with complex layers
# Hidden layer with RELU activation
layer_1 = tf.matmul(x, weights['h1'])
layer_1 = tf.nn.relu(layer_1)
# Hidden layer with RELU activation
layer_2 = tf.matmul(layer_1, weights['h2'])
layer_2 = tf.nn.relu(layer_2)
# Output layer with linear activation
out_layer = tf.matmul(x, weights['out']) #+ biases['out']
return out_layer
def build_model(env):
tf.reset_default_graph() # always call it first
inputs1 = tf.placeholder(shape=[1, env.observation_space.n], dtype=tf.float32) # tensor symbol for input state
# Store layers weight & bias
n_input = env.observation_space.n
n_hidden_1 = 10
n_hidden_2 = 10
weights = {
'h1': tf.Variable(tf.random_uniform([n_input, n_hidden_1], -0.01, 0.01)),
'h2': tf.Variable(tf.random_uniform([n_hidden_1, n_hidden_2], -0.01, 0.01)),
'out': tf.Variable(tf.random_uniform([n_input, env.action_space.n], -0.01, 0.01)),
}
biases = {
'b1': tf.Variable(tf.random_uniform([n_hidden_1], -0.01, 0.01)),
'b2': tf.Variable(tf.random_uniform([n_hidden_2], -0.01, 0.01)),
'out': tf.Variable(tf.random_uniform([env.action_space.n], -0.01, 0.01))
}
Qout = multilayer_perceptron(inputs1, weights, biases)
predict = tf.argmax(Qout, 1) # given input_state, get best action id
# Below we obtain the loss by taking the sum of squares difference between the target and prediction Q values.
nextQ = tf.placeholder(shape=[1, env.action_space.n], dtype=tf.float32) # tensor symbol for input Q
loss = tf.reduce_sum(tf.square(nextQ - Qout)) # mean square loss function
updateModel = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(loss)
return inputs1, nextQ, Qout, predict, updateModel, weights, biases
def q_deep_learning(env, sess, inputs1, nextQ, Qout, predict, updateModel, weights, biases,
y = .99, e = 0.1, num_episodes = 2000):
# create lists to contain total rewards and steps per episode
jList = []
rList = []
numlost = numwin = 0
for i in range(num_episodes):
# Reset environment and get first new observation
s = env.reset()
rAll = 0
# d = False
j = 0
stop = False
# The Q-Network
while j < 99:
j += 1
# Choose an action by greedily (with e chance of random action) from the Q-network
# predict, Qout need input1 --> need feed_dict, s1 is id of state -->get onehot vector 1 at that id
# get Qout as variable filled with values allQ --> Q values given current state
a, allQ = sess.run([predict, Qout], feed_dict={inputs1: np.identity(env.observation_space.n)[s:s + 1]})
if np.random.rand(1) < e:
a[0] = env.action_space.sample()# random action still
# Get new state and reward from environment
s1, r, d, _ = env.step(a[0])# index 0 is index of max action
# Obtain the Q' values by feeding the new state through our network
# Q values given new state
Q1 = sess.run(Qout, feed_dict={inputs1: np.identity(env.observation_space.n)[s1:s1 + 1]})
# Obtain maxQ' and set our target value for chosen action.
maxQ1 = np.max(Q1)
targetQ = allQ
targetQ[0, a[0]] = r + y * maxQ1 # assume model follow the rule --> next q values of (next state)
# follow reward rules --> NN must predict q values of current state match this real value
# if match --> Q converge --> reinforcement learning done!!!
# Train our network using target and predicted Q values
sess.run([updateModel], feed_dict={inputs1: np.identity(env.observation_space.n)[s:s + 1],
nextQ: targetQ})
rAll += r
s = s1
if d:
# Reduce chance of random action as we train the model.
e = 1. / ((i / 50) + 10)
if r == 0:
numlost += 1
else:
numwin += 1
stop = True
break
jList.append(j)
rList.append(rAll/j)
if not stop:
numlost += 1
print("Score over time: " + str(sum(rList) / num_episodes))
print("Num win {} vs lost {} ".format(numwin / num_episodes, numlost / num_episodes))
return updateModel
def q_table_learning(Q, env, lr = .5, y = .99, num_episodes = 2000):
# Initialize table with all zeros
# Set learning parameters
# create lists to contain total rewards and steps per episode
# jList = []
rList = []
numwin = 0
numlost = 0
for i in range(num_episodes):
# Reset environment and get first new observation
s = env.reset()
rAll = 0
j = 0
stop=False
# The Q-Table learning algorithm
while j < 99:
j += 1
# Choose an action by greedily (with noise) picking from Q table
a = np.argmax(Q[s, :] + np.random.randn(1, env.action_space.n) * (1. / (i + 1)))
# Get new state and reward from environment
s1, r, d, _ = env.step(a)
# Update Q-Table with new knowledge
Q[s, a] = Q[s, a] + lr * (r + y * np.max(Q[s1, :]) - Q[s, a])
rAll += r
s = s1
if d:
if r==0:
numlost+=1
else:
numwin+=1
stop=True
break
if not stop:
numlost+=1
rList.append(rAll/j)
# jList.append(j)
print("Score over time: " + str(sum(rList) / num_episodes))
print("Num win {} vs lost {} ".format(numwin / num_episodes, numlost / num_episodes))
# print("Step to win over time: " + str(sum(jList) / num_episodes))
def test_qtable():
env = gym.make('FrozenLake-v0')
numloop = 100
Q = np.zeros([env.observation_space.n, env.action_space.n])
print('start q table learning...')
for i in range(numloop):
print('============Loop: {} / {}================'.format(i, numloop))
q_table_learning(Q, env)
def test_qdl():
env = gym.make('FrozenLake-v0')
inputs1, nextQ, Qout, predict, updateModel, weights, bias = build_model(env)
init = tf.global_variables_initializer() # auto init for all variable appear in tensorflow
with tf.Session() as sess:# tensorflow run is based on session
sess.run(init)
numloop = 100
print('start q deep learning...')
for i in range(numloop):
print('============Loop: {} / {}================'.format(i, numloop))
q_deep_learning(env, sess, inputs1, nextQ, Qout, predict, updateModel, weights, bias)
if __name__ == '__main__':
#test_qtable()
test_qdl()
| mit |
PyPSA/PyPSA | setup.py | 1 | 1531 | from __future__ import absolute_import
from setuptools import setup, find_packages
from codecs import open
with open('README.rst', encoding='utf-8') as f:
long_description = f.read()
setup(
name='pypsa',
version='0.17.1',
author='Tom Brown (FIAS, KIT), Jonas Hoersch (FIAS, KIT), Fabian Hofmann (FIAS), Fabian Neumann (KIT), David Schlachtberger (FIAS)',
author_email='[email protected]',
description='Python for Power Systems Analysis',
long_description=long_description,
long_description_content_type='text/x-rst',
url='https://github.com/PyPSA/PyPSA',
license='GPLv3',
packages=find_packages(exclude=['doc', 'test']),
include_package_data=True,
python_requires='>=3.6',
install_requires=[
'numpy',
'scipy',
'pandas>=0.24.0',
'xarray',
'netcdf4',
'tables',
'pyomo>=5.7',
'matplotlib',
'networkx>=1.10',
'deprecation'
],
extras_require = {
"dev": ["pytest", "pypower", "pandapower"],
"cartopy": ['cartopy>=0.16'],
"docs": ["numpydoc", "sphinx", "sphinx_rtd_theme", "nbsphinx", "nbsphinx-link"],
'gurobipy':['gurobipy']
},
classifiers=[
'Development Status :: 3 - Alpha',
'Environment :: Console',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: GNU General Public License v3 or later (GPLv3+)',
'Natural Language :: English',
'Operating System :: OS Independent',
])
| gpl-3.0 |
makokal/funzo | examples/gridworld/gridworld_planning.py | 1 | 1745 | from __future__ import division
import argparse
import matplotlib
matplotlib.use('Qt4Agg')
from matplotlib import pyplot as plt
plt.style.use('fivethirtyeight')
import numpy as np
from funzo.domains.gridworld import GridWorld, GridWorldMDP
from funzo.domains.gridworld import GReward, GRewardLFA, GTransition
from funzo.planners.dp import PolicyIteration, ValueIteration
def main(map_name, planner):
gmap = np.loadtxt(map_name)
with GridWorld(gmap=gmap) as world:
# R = GReward(rmax=1.0)
R = GRewardLFA(weights=[-0.01, -10.0, 1.0], rmax=1.0)
T = GTransition(wind=0.1)
g_mdp = GridWorldMDP(reward=R, transition=T, discount=0.95)
# ------------------------
mdp_planner = PolicyIteration(max_iter=200, random_state=None)
if planner == 'VI':
mdp_planner = ValueIteration(verbose=2)
res = mdp_planner.solve(g_mdp)
V = res['V']
print('Policy: ', res['pi'])
fig = plt.figure(figsize=(8, 8))
ax = fig.gca()
ax = world.visualize(ax, policy=res['pi'])
plt.figure(figsize=(8, 8))
plt.imshow(V.reshape(gmap.shape),
interpolation='nearest', cmap='viridis', origin='lower',
vmin=np.min(V), vmax=np.max(V))
plt.grid(False)
plt.title('Value function')
plt.colorbar(orientation='horizontal')
plt.show()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--map", type=str, required=True,
help="Grid Map file")
parser.add_argument("-p", "--planner", type=str, default="PI",
help="Planner to use: [PI, VI], default: PI")
args = parser.parse_args()
main(args.map, args.planner)
| mit |
andrewcbennett/iris | lib/iris/tests/test_analysis.py | 3 | 50729 | # (C) British Crown Copyright 2010 - 2015, Met Office
#
# This file is part of Iris.
#
# Iris is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the
# Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Iris is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with Iris. If not, see <http://www.gnu.org/licenses/>.
from __future__ import (absolute_import, division, print_function)
from six.moves import (filter, input, map, range, zip) # noqa
import six
# import iris tests first so that some things can be initialised before importing anything else
import iris.tests as tests
import cartopy.crs as ccrs
import cf_units
import numpy as np
import numpy.ma as ma
import iris
import iris.analysis.cartography
import iris.analysis.maths
import iris.coord_systems
import iris.coords
import iris.cube
import iris.tests.stock
# Run tests in no graphics mode if matplotlib is not available.
if tests.MPL_AVAILABLE:
import matplotlib
import matplotlib.pyplot as plt
class TestAnalysisCubeCoordComparison(tests.IrisTest):
def assertComparisonDict(self, comparison_dict, reference_filename):
string = ''
for key in sorted(comparison_dict):
coord_groups = comparison_dict[key]
string += ('%40s ' % key)
names = [[coord.name() if coord is not None else 'None'
for coord in coords]
for coords in coord_groups]
string += str(sorted(names))
string += '\n'
self.assertString(string, reference_filename)
def test_coord_comparison(self):
cube1 = iris.cube.Cube(np.zeros((41, 41)))
lonlat_cs = iris.coord_systems.GeogCS(6371229)
lon_points1 = -180 + 4.5 * np.arange(41, dtype=np.float32)
lat_points = -90 + 4.5 * np.arange(41, dtype=np.float32)
cube1.add_dim_coord(iris.coords.DimCoord(lon_points1, 'longitude', units='degrees', coord_system=lonlat_cs), 0)
cube1.add_dim_coord(iris.coords.DimCoord(lat_points, 'latitude', units='degrees', coord_system=lonlat_cs), 1)
cube1.add_aux_coord(iris.coords.AuxCoord(0, long_name='z'))
cube1.add_aux_coord(iris.coords.AuxCoord(['foobar'], long_name='f', units='no_unit'))
cube2 = iris.cube.Cube(np.zeros((41, 41, 5)))
lonlat_cs = iris.coord_systems.GeogCS(6371229)
lon_points2 = -160 + 4.5 * np.arange(41, dtype=np.float32)
cube2.add_dim_coord(iris.coords.DimCoord(lon_points2, 'longitude', units='degrees', coord_system=lonlat_cs), 0)
cube2.add_dim_coord(iris.coords.DimCoord(lat_points, 'latitude', units='degrees', coord_system=lonlat_cs), 1)
cube2.add_dim_coord(iris.coords.DimCoord([5, 7, 9, 11, 13], long_name='z'), 2)
cube3 = cube1.copy()
lon = cube3.coord("longitude")
lat = cube3.coord("latitude")
cube3.remove_coord(lon)
cube3.remove_coord(lat)
cube3.add_dim_coord(lon, 1)
cube3.add_dim_coord(lat, 0)
cube3.coord('z').points = [20]
cube4 = cube2.copy()
lon = cube4.coord("longitude")
lat = cube4.coord("latitude")
cube4.remove_coord(lon)
cube4.remove_coord(lat)
cube4.add_dim_coord(lon, 1)
cube4.add_dim_coord(lat, 0)
coord_comparison = iris.analysis.coord_comparison
self.assertComparisonDict(coord_comparison(cube1, cube1), ('analysis', 'coord_comparison', 'cube1_cube1.txt'))
self.assertComparisonDict(coord_comparison(cube1, cube2), ('analysis', 'coord_comparison', 'cube1_cube2.txt'))
self.assertComparisonDict(coord_comparison(cube1, cube3), ('analysis', 'coord_comparison', 'cube1_cube3.txt'))
self.assertComparisonDict(coord_comparison(cube1, cube4), ('analysis', 'coord_comparison', 'cube1_cube4.txt'))
self.assertComparisonDict(coord_comparison(cube2, cube3), ('analysis', 'coord_comparison', 'cube2_cube3.txt'))
self.assertComparisonDict(coord_comparison(cube2, cube4), ('analysis', 'coord_comparison', 'cube2_cube4.txt'))
self.assertComparisonDict(coord_comparison(cube3, cube4), ('analysis', 'coord_comparison', 'cube3_cube4.txt'))
self.assertComparisonDict(coord_comparison(cube1, cube1, cube1), ('analysis', 'coord_comparison', 'cube1_cube1_cube1.txt'))
self.assertComparisonDict(coord_comparison(cube1, cube2, cube1), ('analysis', 'coord_comparison', 'cube1_cube2_cube1.txt'))
# get a coord comparison result and check that we are getting back what was expected
coord_group = coord_comparison(cube1, cube2)['grouped_coords'][0]
self.assertIsInstance(coord_group, iris.analysis._CoordGroup)
self.assertIsInstance(list(coord_group)[0], iris.coords.Coord)
class TestAnalysisWeights(tests.IrisTest):
def test_weighted_mean_little(self):
data = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float32)
weights = np.array([[9, 8, 7], [6, 5, 4], [3, 2, 1]], dtype=np.float32)
cube = iris.cube.Cube(data, long_name="test_data", units="1")
hcs = iris.coord_systems.GeogCS(6371229)
lat_coord = iris.coords.DimCoord(np.array([1, 2, 3], dtype=np.float32), long_name="lat", units="1", coord_system=hcs)
lon_coord = iris.coords.DimCoord(np.array([1, 2, 3], dtype=np.float32), long_name="lon", units="1", coord_system=hcs)
cube.add_dim_coord(lat_coord, 0)
cube.add_dim_coord(lon_coord, 1)
cube.add_aux_coord(iris.coords.AuxCoord(np.arange(3, dtype=np.float32), long_name="dummy", units=1), 1)
self.assertCML(cube, ('analysis', 'weighted_mean_source.cml'))
a = cube.collapsed('lat', iris.analysis.MEAN, weights=weights)
self.assertCMLApproxData(a, ('analysis', 'weighted_mean_lat.cml'))
b = cube.collapsed(lon_coord, iris.analysis.MEAN, weights=weights)
b.data = np.asarray(b.data)
self.assertCMLApproxData(b, ('analysis', 'weighted_mean_lon.cml'))
self.assertEqual(b.coord('dummy').shape, (1, ))
# test collapsing multiple coordinates (and the fact that one of the coordinates isn't the same coordinate instance as on the cube)
c = cube.collapsed([lat_coord[:], lon_coord], iris.analysis.MEAN, weights=weights)
self.assertCMLApproxData(c, ('analysis', 'weighted_mean_latlon.cml'))
self.assertEqual(c.coord('dummy').shape, (1, ))
# Check new coord bounds - made from points
self.assertArrayEqual(c.coord('lat').bounds, [[1, 3]])
# Check new coord bounds - made from bounds
cube.coord('lat').bounds = [[0.5, 1.5], [1.5, 2.5], [2.5, 3.5]]
c = cube.collapsed(['lat', 'lon'], iris.analysis.MEAN, weights=weights)
self.assertArrayEqual(c.coord('lat').bounds, [[0.5, 3.5]])
cube.coord('lat').bounds = None
# Check there was no residual change
self.assertCML(cube, ('analysis', 'weighted_mean_source.cml'))
@tests.skip_data
def test_weighted_mean(self):
### compare with pp_area_avg - which collapses both lat and lon
#
# pp = ppa('/data/local/dataZoo/PP/simple_pp/global.pp', 0)
# print, pp_area(pp, /box)
# print, pp_area_avg(pp, /box) #287.927
# ;gives an answer of 287.927
#
###
e = iris.tests.stock.simple_pp()
self.assertCML(e, ('analysis', 'weighted_mean_original.cml'))
e.coord('latitude').guess_bounds()
e.coord('longitude').guess_bounds()
area_weights = iris.analysis.cartography.area_weights(e)
e.coord('latitude').bounds = None
e.coord('longitude').bounds = None
f, collapsed_area_weights = e.collapsed('latitude', iris.analysis.MEAN, weights=area_weights, returned=True)
g = f.collapsed('longitude', iris.analysis.MEAN, weights=collapsed_area_weights)
# check it's a 0d, scalar cube
self.assertEqual(g.shape, ())
# check the value - pp_area_avg's result of 287.927 differs by factor of 1.00002959
np.testing.assert_approx_equal(g.data, 287.935, significant=5)
#check we get summed weights even if we don't give any
h, summed_weights = e.collapsed('latitude', iris.analysis.MEAN, returned=True)
assert(summed_weights is not None)
# Check there was no residual change
e.coord('latitude').bounds = None
e.coord('longitude').bounds = None
self.assertCML(e, ('analysis', 'weighted_mean_original.cml'))
# Test collapsing of missing coord
self.assertRaises(iris.exceptions.CoordinateNotFoundError, e.collapsed, 'platitude', iris.analysis.MEAN)
# Test collpasing of non data coord
self.assertRaises(iris.exceptions.CoordinateCollapseError, e.collapsed, 'pressure', iris.analysis.MEAN)
@tests.skip_data
class TestAnalysisBasic(tests.IrisTest):
def setUp(self):
file = tests.get_data_path(('PP', 'aPProt1', 'rotatedMHtimecube.pp'))
cubes = iris.load(file)
self.cube = cubes[0]
self.assertCML(self.cube, ('analysis', 'original.cml'))
def _common(self, name, aggregate, original_name='original_common.cml', *args, **kwargs):
self.cube.data = self.cube.data.astype(np.float64)
self.assertCML(self.cube, ('analysis', original_name))
a = self.cube.collapsed('grid_latitude', aggregate)
self.assertCMLApproxData(a, ('analysis', '%s_latitude.cml' % name), *args, **kwargs)
b = a.collapsed('grid_longitude', aggregate)
self.assertCMLApproxData(b, ('analysis', '%s_latitude_longitude.cml' % name), *args, **kwargs)
c = self.cube.collapsed(['grid_latitude', 'grid_longitude'], aggregate)
self.assertCMLApproxData(c, ('analysis', '%s_latitude_longitude_1call.cml' % name), *args, **kwargs)
# Check there was no residual change
self.assertCML(self.cube, ('analysis', original_name))
def test_mean(self):
self._common('mean', iris.analysis.MEAN, decimal=1)
def test_std_dev(self):
# as the numbers are so high, trim off some trailing digits & compare to 0dp
self._common('std_dev', iris.analysis.STD_DEV, decimal=1)
def test_hmean(self):
# harmonic mean requires data > 0
self.cube.data *= self.cube.data
self._common('hmean', iris.analysis.HMEAN, 'original_hmean.cml', decimal=1)
def test_gmean(self):
self._common('gmean', iris.analysis.GMEAN, decimal=1)
def test_variance(self):
# as the numbers are so high, trim off some trailing digits & compare to 0dp
self._common('variance', iris.analysis.VARIANCE, decimal=1)
def test_median(self):
self._common('median', iris.analysis.MEDIAN)
def test_sum(self):
# as the numbers are so high, trim off some trailing digits & compare to 0dp
self._common('sum', iris.analysis.SUM, decimal=1)
def test_max(self):
self._common('max', iris.analysis.MAX)
def test_min(self):
self._common('min', iris.analysis.MIN)
def test_rms(self):
self._common('rms', iris.analysis.RMS)
def test_duplicate_coords(self):
self.assertRaises(ValueError, tests.stock.track_1d, duplicate_x=True)
class TestMissingData(tests.IrisTest):
def setUp(self):
self.cube_with_nan = tests.stock.simple_2d()
data = self.cube_with_nan.data.astype(np.float32)
self.cube_with_nan.data = data.copy()
self.cube_with_nan.data[1, 0] = np.nan
self.cube_with_nan.data[2, 2] = np.nan
self.cube_with_nan.data[2, 3] = np.nan
self.cube_with_mask = tests.stock.simple_2d()
self.cube_with_mask.data = ma.array(self.cube_with_nan.data,
mask=np.isnan(self.cube_with_nan.data))
def test_max(self):
cube = self.cube_with_nan.collapsed('foo', iris.analysis.MAX)
np.testing.assert_array_equal(cube.data, np.array([3, np.nan, np.nan]))
cube = self.cube_with_mask.collapsed('foo', iris.analysis.MAX)
np.testing.assert_array_equal(cube.data, np.array([3, 7, 9]))
def test_min(self):
cube = self.cube_with_nan.collapsed('foo', iris.analysis.MIN)
np.testing.assert_array_equal(cube.data, np.array([0, np.nan, np.nan]))
cube = self.cube_with_mask.collapsed('foo', iris.analysis.MIN)
np.testing.assert_array_equal(cube.data, np.array([0, 5, 8]))
def test_sum(self):
cube = self.cube_with_nan.collapsed('foo', iris.analysis.SUM)
np.testing.assert_array_equal(cube.data, np.array([6, np.nan, np.nan]))
cube = self.cube_with_mask.collapsed('foo', iris.analysis.SUM)
np.testing.assert_array_equal(cube.data, np.array([6, 18, 17]))
class TestAggregator_mdtol_keyword(tests.IrisTest):
def setUp(self):
data = ma.array([[1, 2], [4, 5]], dtype=np.float32,
mask=[[False, True], [False, True]])
cube = iris.cube.Cube(data, long_name="test_data", units="1")
lat_coord = iris.coords.DimCoord(np.array([1, 2], dtype=np.float32),
long_name="lat", units="1")
lon_coord = iris.coords.DimCoord(np.array([3, 4], dtype=np.float32),
long_name="lon", units="1")
cube.add_dim_coord(lat_coord, 0)
cube.add_dim_coord(lon_coord, 1)
self.cube = cube
def test_single_coord_no_mdtol(self):
collapsed = self.cube.collapsed(
self.cube.coord('lat'), iris.analysis.MEAN)
t = ma.array([2.5, 5.], mask=[False, True])
self.assertMaskedArrayEqual(collapsed.data, t)
def test_single_coord_mdtol(self):
self.cube.data.mask = np.array([[False, True], [False, False]])
collapsed = self.cube.collapsed(
self.cube.coord('lat'), iris.analysis.MEAN, mdtol=0.5)
t = ma.array([2.5, 5], mask=[False, False])
self.assertMaskedArrayEqual(collapsed.data, t)
def test_single_coord_mdtol_alt(self):
self.cube.data.mask = np.array([[False, True], [False, False]])
collapsed = self.cube.collapsed(
self.cube.coord('lat'), iris.analysis.MEAN, mdtol=0.4)
t = ma.array([2.5, 5], mask=[False, True])
self.assertMaskedArrayEqual(collapsed.data, t)
def test_multi_coord_no_mdtol(self):
collapsed = self.cube.collapsed(
[self.cube.coord('lat'), self.cube.coord('lon')],
iris.analysis.MEAN)
t = np.array(2.5)
self.assertArrayEqual(collapsed.data, t)
def test_multi_coord_mdtol(self):
collapsed = self.cube.collapsed(
[self.cube.coord('lat'), self.cube.coord('lon')],
iris.analysis.MEAN, mdtol=0.4)
t = ma.array(2.5, mask=True)
self.assertMaskedArrayEqual(collapsed.data, t)
class TestAggregators(tests.IrisTest):
def test_percentile_1d(self):
cube = tests.stock.simple_1d()
first_quartile = cube.collapsed('foo', iris.analysis.PERCENTILE,
percent=25)
np.testing.assert_array_almost_equal(first_quartile.data,
np.array([2.5], dtype=np.float32))
self.assertCML(first_quartile, ('analysis',
'first_quartile_foo_1d.cml'),
checksum=False)
third_quartile = cube.collapsed('foo', iris.analysis.PERCENTILE,
percent=75)
np.testing.assert_array_almost_equal(third_quartile.data,
np.array([7.5],
dtype=np.float32))
self.assertCML(third_quartile,
('analysis', 'third_quartile_foo_1d.cml'),
checksum=False)
def test_percentile_2d(self):
cube = tests.stock.simple_2d()
first_quartile = cube.collapsed('foo', iris.analysis.PERCENTILE,
percent=25)
np.testing.assert_array_almost_equal(first_quartile.data,
np.array([0.75, 4.75, 8.75],
dtype=np.float32))
self.assertCML(first_quartile, ('analysis',
'first_quartile_foo_2d.cml'),
checksum=False)
first_quartile = cube.collapsed(('foo', 'bar'),
iris.analysis.PERCENTILE, percent=25)
np.testing.assert_array_almost_equal(first_quartile.data,
np.array([2.75],
dtype=np.float32))
self.assertCML(first_quartile, ('analysis',
'first_quartile_foo_bar_2d.cml'),
checksum=False)
def test_percentile_3d(self):
array_3d = np.arange(24, dtype=np.int32).reshape((2, 3, 4))
last_quartile = iris.analysis._percentile(array_3d, 0, 50)
np.testing.assert_array_almost_equal(last_quartile,
np.array([[6., 7., 8., 9.],
[10., 11., 12., 13.],
[14., 15., 16., 17.]],
dtype=np.float32))
def test_percentile_3d_axis_one(self):
array_3d = np.arange(24, dtype=np.int32).reshape((2, 3, 4))
last_quartile = iris.analysis._percentile(array_3d, 1, 50)
np.testing.assert_array_almost_equal(last_quartile,
np.array([[4., 5., 6., 7.],
[16., 17., 18., 19.]],
dtype=np.float32))
def test_percentile_3d_axis_two(self):
array_3d = np.arange(24, dtype=np.int32).reshape((2, 3, 4))
last_quartile = iris.analysis._percentile(array_3d, 2, 50)
np.testing.assert_array_almost_equal(last_quartile,
np.array([[1.5, 5.5, 9.5],
[13.5, 17.5, 21.5]],
dtype=np.float32))
def test_percentile_3d_masked(self):
cube = tests.stock.simple_3d_mask()
last_quartile = cube.collapsed('wibble',
iris.analysis.PERCENTILE, percent=75)
np.testing.assert_array_almost_equal(last_quartile.data,
np.array([[12., 13., 14., 15.],
[16., 17., 18., 19.],
[20., 18., 19., 20.]],
dtype=np.float32))
self.assertCML(last_quartile, ('analysis',
'last_quartile_foo_3d_masked.cml'),
checksum=False)
def test_percentile_3d_notmasked(self):
cube = tests.stock.simple_3d()
last_quartile = cube.collapsed('wibble',
iris.analysis.PERCENTILE, percent=75)
np.testing.assert_array_almost_equal(last_quartile.data,
np.array([[9., 10., 11., 12.],
[13., 14., 15., 16.],
[17., 18., 19., 20.]],
dtype=np.float32))
self.assertCML(last_quartile, ('analysis',
'last_quartile_foo_3d_notmasked.cml'),
checksum=False)
def test_proportion(self):
cube = tests.stock.simple_1d()
r = cube.data >= 5
gt5 = cube.collapsed('foo', iris.analysis.PROPORTION, function=lambda val: val >= 5)
np.testing.assert_array_almost_equal(gt5.data, np.array([6 / 11.]))
self.assertCML(gt5, ('analysis', 'proportion_foo_1d.cml'), checksum=False)
def test_proportion_2d(self):
cube = tests.stock.simple_2d()
gt6 = cube.collapsed('foo', iris.analysis.PROPORTION, function=lambda val: val >= 6)
np.testing.assert_array_almost_equal(gt6.data, np.array([0, 0.5, 1], dtype=np.float32))
self.assertCML(gt6, ('analysis', 'proportion_foo_2d.cml'), checksum=False)
gt6 = cube.collapsed('bar', iris.analysis.PROPORTION, function=lambda val: val >= 6)
np.testing.assert_array_almost_equal(gt6.data, np.array([1 / 3, 1 / 3, 2 / 3, 2 / 3], dtype=np.float32))
self.assertCML(gt6, ('analysis', 'proportion_bar_2d.cml'), checksum=False)
gt6 = cube.collapsed(('foo', 'bar'), iris.analysis.PROPORTION, function=lambda val: val >= 6)
np.testing.assert_array_almost_equal(gt6.data, np.array([0.5], dtype=np.float32))
self.assertCML(gt6, ('analysis', 'proportion_foo_bar_2d.cml'), checksum=False)
# mask the data
cube.data = ma.array(cube.data, mask=cube.data % 2)
cube.data.mask[1, 2] = True
gt6_masked = cube.collapsed('bar', iris.analysis.PROPORTION, function=lambda val: val >= 6)
np.testing.assert_array_almost_equal(gt6_masked.data, ma.array([1 / 3, None, 1 / 2, None],
mask=[False, True, False, True],
dtype=np.float32))
self.assertCML(gt6_masked, ('analysis', 'proportion_foo_2d_masked.cml'), checksum=False)
def test_count(self):
cube = tests.stock.simple_1d()
gt5 = cube.collapsed('foo', iris.analysis.COUNT, function=lambda val: val >= 5)
np.testing.assert_array_almost_equal(gt5.data, np.array([6]))
gt5.data = gt5.data.astype('i8')
self.assertCML(gt5, ('analysis', 'count_foo_1d.cml'), checksum=False)
def test_count_2d(self):
cube = tests.stock.simple_2d()
gt6 = cube.collapsed('foo', iris.analysis.COUNT, function=lambda val: val >= 6)
np.testing.assert_array_almost_equal(gt6.data, np.array([0, 2, 4], dtype=np.float32))
gt6.data = gt6.data.astype('i8')
self.assertCML(gt6, ('analysis', 'count_foo_2d.cml'), checksum=False)
gt6 = cube.collapsed('bar', iris.analysis.COUNT, function=lambda val: val >= 6)
np.testing.assert_array_almost_equal(gt6.data, np.array([1, 1, 2, 2], dtype=np.float32))
gt6.data = gt6.data.astype('i8')
self.assertCML(gt6, ('analysis', 'count_bar_2d.cml'), checksum=False)
gt6 = cube.collapsed(('foo', 'bar'), iris.analysis.COUNT, function=lambda val: val >= 6)
np.testing.assert_array_almost_equal(gt6.data, np.array([6], dtype=np.float32))
gt6.data = gt6.data.astype('i8')
self.assertCML(gt6, ('analysis', 'count_foo_bar_2d.cml'), checksum=False)
def test_weighted_sum_consistency(self):
# weighted sum with unit weights should be the same as a sum
cube = tests.stock.simple_1d()
normal_sum = cube.collapsed('foo', iris.analysis.SUM)
weights = np.ones_like(cube.data)
weighted_sum = cube.collapsed('foo', iris.analysis.SUM, weights=weights)
self.assertArrayAlmostEqual(normal_sum.data, weighted_sum.data)
def test_weighted_sum_1d(self):
# verify 1d weighted sum is correct
cube = tests.stock.simple_1d()
weights = np.array([.05, .05, .1, .1, .2, .3, .2, .1, .1, .05, .05])
result = cube.collapsed('foo', iris.analysis.SUM, weights=weights)
self.assertAlmostEqual(result.data, 6.5)
self.assertCML(result, ('analysis', 'sum_weighted_1d.cml'),
checksum=False)
def test_weighted_sum_2d(self):
# verify 2d weighted sum is correct
cube = tests.stock.simple_2d()
weights = np.array([.3, .4, .3])
weights = iris.util.broadcast_to_shape(weights, cube.shape, [0])
result = cube.collapsed('bar', iris.analysis.SUM, weights=weights)
self.assertArrayAlmostEqual(result.data, np.array([4., 5., 6., 7.]))
self.assertCML(result, ('analysis', 'sum_weighted_2d.cml'),
checksum=False)
def test_weighted_rms(self):
cube = tests.stock.simple_2d()
# modify cube data so that the results are nice numbers
cube.data = np.array([[4, 7, 10, 8],
[21, 30, 12, 24],
[14, 16, 20, 8]],
dtype=np.float64)
weights = np.array([[1, 4, 3, 2],
[6, 4.5, 1.5, 3],
[2, 1, 1.5, 0.5]],
dtype=np.float64)
expected_result = np.array([8.0, 24.0, 16.0])
result = cube.collapsed('foo', iris.analysis.RMS, weights=weights)
self.assertArrayAlmostEqual(result.data, expected_result)
self.assertCML(result, ('analysis', 'rms_weighted_2d.cml'),
checksum=False)
@tests.skip_data
class TestRotatedPole(tests.GraphicsTest):
@tests.skip_plot
def _check_both_conversions(self, cube):
rlons, rlats = iris.analysis.cartography.get_xy_grids(cube)
rcs = cube.coord_system('RotatedGeogCS')
x, y = iris.analysis.cartography.unrotate_pole(
rlons, rlats, rcs.grid_north_pole_longitude,
rcs.grid_north_pole_latitude)
plt.scatter(x, y)
self.check_graphic()
plt.scatter(rlons, rlats)
self.check_graphic()
def test_all(self):
path = tests.get_data_path(('PP', 'ukVorog', 'ukv_orog_refonly.pp'))
master_cube = iris.load_cube(path)
# Check overall behaviour.
cube = master_cube[::10, ::10]
self._check_both_conversions(cube)
# Check numerical stability.
cube = master_cube[210:238, 424:450]
self._check_both_conversions(cube)
def test_unrotate_nd(self):
rlons = np.array([[350., 352.], [350., 352.]])
rlats = np.array([[-5., -0.], [-4., -1.]])
resx, resy = iris.analysis.cartography.unrotate_pole(rlons, rlats,
178.0, 38.0)
# Solutions derived by proj4 direct.
solx = np.array([[-16.42176094, -14.85892262],
[-16.71055023, -14.58434624]])
soly = np.array([[ 46.00724251, 51.29188893],
[ 46.98728486, 50.30706042]])
self.assertArrayAlmostEqual(resx, solx)
self.assertArrayAlmostEqual(resy, soly)
def test_unrotate_1d(self):
rlons = np.array([350., 352., 354., 356.])
rlats = np.array([-5., -0., 5., 10.])
resx, resy = iris.analysis.cartography.unrotate_pole(
rlons.flatten(), rlats.flatten(), 178.0, 38.0)
# Solutions derived by proj4 direct.
solx = np.array([-16.42176094, -14.85892262,
-12.88946157, -10.35078336])
soly = np.array([46.00724251, 51.29188893,
56.55031485, 61.77015703])
self.assertArrayAlmostEqual(resx, solx)
self.assertArrayAlmostEqual(resy, soly)
def test_rotate_nd(self):
rlons = np.array([[350., 351.], [352., 353.]])
rlats = np.array([[10., 15.], [20., 25.]])
resx, resy = iris.analysis.cartography.rotate_pole(rlons, rlats,
20., 80.)
# Solutions derived by proj4 direct.
solx = np.array([[148.69672569, 149.24727087],
[149.79067025, 150.31754368]])
soly = np.array([[18.60905789, 23.67749384],
[28.74419024, 33.8087963 ]])
self.assertArrayAlmostEqual(resx, solx)
self.assertArrayAlmostEqual(resy, soly)
def test_rotate_1d(self):
rlons = np.array([350., 351., 352., 353.])
rlats = np.array([10., 15., 20., 25.])
resx, resy = iris.analysis.cartography.rotate_pole(rlons.flatten(),
rlats.flatten(), 20., 80.)
# Solutions derived by proj4 direct.
solx = np.array([148.69672569, 149.24727087,
149.79067025, 150.31754368])
soly = np.array([18.60905789, 23.67749384,
28.74419024, 33.8087963 ])
self.assertArrayAlmostEqual(resx, solx)
self.assertArrayAlmostEqual(resy, soly)
@tests.skip_data
class TestAreaWeights(tests.IrisTest):
def test_area_weights(self):
small_cube = iris.tests.stock.simple_pp()
# Get offset, subsampled region: small enough to test against literals
small_cube = small_cube[10:, 35:]
small_cube = small_cube[::8, ::8]
small_cube = small_cube[:5, :4]
# pre-check non-data properties
self.assertCML(small_cube, ('analysis', 'areaweights_original.cml'),
checksum=False)
# check area-weights values
small_cube.coord('latitude').guess_bounds()
small_cube.coord('longitude').guess_bounds()
area_weights = iris.analysis.cartography.area_weights(small_cube)
expected_results = np.array(
[[3.11955916e+12, 3.11956058e+12, 3.11955916e+12, 3.11956058e+12],
[5.21950793e+12, 5.21951031e+12, 5.21950793e+12, 5.21951031e+12],
[6.68991432e+12, 6.68991737e+12, 6.68991432e+12, 6.68991737e+12],
[7.35341320e+12, 7.35341655e+12, 7.35341320e+12, 7.35341655e+12],
[7.12998265e+12, 7.12998589e+12, 7.12998265e+12, 7.12998589e+12]],
dtype=np.float64)
self.assertArrayAllClose(area_weights, expected_results, rtol=1e-8)
# Check there was no residual change
small_cube.coord('latitude').bounds = None
small_cube.coord('longitude').bounds = None
self.assertCML(small_cube, ('analysis', 'areaweights_original.cml'),
checksum=False)
class TestAreaWeightGeneration(tests.IrisTest):
def setUp(self):
self.cube = iris.tests.stock.realistic_4d()
def test_area_weights_std(self):
# weights for stock 4d data
weights = iris.analysis.cartography.area_weights(self.cube)
self.assertEqual(weights.shape, self.cube.shape)
def test_area_weights_order(self):
# weights for data with dimensions in a different order
order = [3, 2, 1, 0] # (lon, lat, level, time)
self.cube.transpose(order)
weights = iris.analysis.cartography.area_weights(self.cube)
self.assertEqual(weights.shape, self.cube.shape)
def test_area_weights_non_adjacent(self):
# weights for cube with non-adjacent latitude/longitude dimensions
order = [0, 3, 1, 2] # (time, lon, level, lat)
self.cube.transpose(order)
weights = iris.analysis.cartography.area_weights(self.cube)
self.assertEqual(weights.shape, self.cube.shape)
def test_area_weights_scalar_latitude(self):
# weights for cube with a scalar latitude dimension
cube = self.cube[:, :, 0, :]
weights = iris.analysis.cartography.area_weights(cube)
self.assertEqual(weights.shape, cube.shape)
def test_area_weights_scalar_longitude(self):
# weights for cube with a scalar longitude dimension
cube = self.cube[:, :, :, 0]
weights = iris.analysis.cartography.area_weights(cube)
self.assertEqual(weights.shape, cube.shape)
def test_area_weights_scalar(self):
# weights for cube with scalar latitude and longitude dimensions
cube = self.cube[:, :, 0, 0]
weights = iris.analysis.cartography.area_weights(cube)
self.assertEqual(weights.shape, cube.shape)
def test_area_weights_singleton_latitude(self):
# singleton (1-point) latitude dimension
cube = self.cube[:, :, 0:1, :]
weights = iris.analysis.cartography.area_weights(cube)
self.assertEqual(weights.shape, cube.shape)
def test_area_weights_singleton_longitude(self):
# singleton (1-point) longitude dimension
cube = self.cube[:, :, :, 0:1]
weights = iris.analysis.cartography.area_weights(cube)
self.assertEqual(weights.shape, cube.shape)
def test_area_weights_singletons(self):
# singleton (1-point) latitude and longitude dimensions
cube = self.cube[:, :, 0:1, 0:1]
weights = iris.analysis.cartography.area_weights(cube)
self.assertEqual(weights.shape, cube.shape)
def test_area_weights_normalized(self):
# normalized area weights must sum to one over lat/lon dimensions.
weights = iris.analysis.cartography.area_weights(self.cube,
normalize=True)
sumweights = weights.sum(axis=3).sum(axis=2) # sum over lon and lat
self.assertArrayAlmostEqual(sumweights, 1)
def test_area_weights_non_contiguous(self):
# Slice the cube so that we have non-contiguous longitude
# bounds.
ind = (0, 1, 2, -3, -2, -1)
cube = self.cube[..., ind]
weights = iris.analysis.cartography.area_weights(cube)
expected = iris.analysis.cartography.area_weights(self.cube)[..., ind]
self.assertArrayEqual(weights, expected)
def test_area_weights_no_lon_bounds(self):
self.cube.coord('grid_longitude').bounds = None
with self.assertRaises(ValueError):
iris.analysis.cartography.area_weights(self.cube)
def test_area_weights_no_lat_bounds(self):
self.cube.coord('grid_latitude').bounds = None
with self.assertRaises(ValueError):
iris.analysis.cartography.area_weights(self.cube)
@tests.skip_data
class TestLatitudeWeightGeneration(tests.IrisTest):
def setUp(self):
path = iris.tests.get_data_path(['NetCDF', 'rotated', 'xyt',
'small_rotPole_precipitation.nc'])
self.cube = iris.load_cube(path)
self.cube_dim_lat = self.cube.copy()
self.cube_dim_lat.remove_coord('latitude')
self.cube_dim_lat.remove_coord('longitude')
# The 2d cubes are unrealistic, you would not want to weight by
# anything other than grid latitude in real-world scenarios. However,
# the technical details are suitable for testing purposes, providing
# a nice analog for a 2d latitude coordinate from a curvilinear grid.
self.cube_aux_lat = self.cube.copy()
self.cube_aux_lat.remove_coord('grid_latitude')
self.cube_aux_lat.remove_coord('grid_longitude')
self.lat1d = self.cube.coord('grid_latitude').points
self.lat2d = self.cube.coord('latitude').points
def test_cosine_latitude_weights_range(self):
# check the range of returned values, needs a cube that spans the full
# latitude range
lat_coord = iris.coords.DimCoord(np.linspace(-90, 90, 73),
standard_name='latitude',
units=cf_units.Unit('degrees_north'))
cube = iris.cube.Cube(np.ones([73], dtype=np.float64),
long_name='test_cube', units='1')
cube.add_dim_coord(lat_coord, 0)
weights = iris.analysis.cartography.cosine_latitude_weights(cube)
self.assertTrue(weights.max() <= 1)
self.assertTrue(weights.min() >= 0)
def test_cosine_latitude_weights_0d(self):
# 0d latitude dimension (scalar coordinate)
weights = iris.analysis.cartography.cosine_latitude_weights(
self.cube_dim_lat[:, 0, :])
self.assertEqual(weights.shape, self.cube_dim_lat[:, 0, :].shape)
self.assertAlmostEqual(weights[0, 0],
np.cos(np.deg2rad(self.lat1d[0])))
def test_cosine_latitude_weights_1d_singleton(self):
# singleton (1-point) 1d latitude coordinate (time, lat, lon)
cube = self.cube_dim_lat[:, 0:1, :]
weights = iris.analysis.cartography.cosine_latitude_weights(cube)
self.assertEqual(weights.shape, cube.shape)
self.assertAlmostEqual(weights[0, 0, 0],
np.cos(np.deg2rad(self.lat1d[0])))
def test_cosine_latitude_weights_1d(self):
# 1d latitude coordinate (time, lat, lon)
weights = iris.analysis.cartography.cosine_latitude_weights(
self.cube_dim_lat)
self.assertEqual(weights.shape, self.cube.shape)
self.assertArrayAlmostEqual(weights[0, :, 0],
np.cos(np.deg2rad(self.lat1d)))
def test_cosine_latitude_weights_1d_latitude_first(self):
# 1d latitude coordinate with latitude first (lat, time, lon)
order = [1, 0, 2] # (lat, time, lon)
self.cube_dim_lat.transpose(order)
weights = iris.analysis.cartography.cosine_latitude_weights(
self.cube_dim_lat)
self.assertEqual(weights.shape, self.cube_dim_lat.shape)
self.assertArrayAlmostEqual(weights[:, 0, 0],
np.cos(np.deg2rad(self.lat1d)))
def test_cosine_latitude_weights_1d_latitude_last(self):
# 1d latitude coordinate with latitude last (time, lon, lat)
order = [0, 2, 1] # (time, lon, lat)
self.cube_dim_lat.transpose(order)
weights = iris.analysis.cartography.cosine_latitude_weights(
self.cube_dim_lat)
self.assertEqual(weights.shape, self.cube_dim_lat.shape)
self.assertArrayAlmostEqual(weights[0, 0, :],
np.cos(np.deg2rad(self.lat1d)))
def test_cosine_latitude_weights_2d_singleton1(self):
# 2d latitude coordinate with first dimension singleton
cube = self.cube_aux_lat[:, 0:1, :]
weights = iris.analysis.cartography.cosine_latitude_weights(cube)
self.assertEqual(weights.shape, cube.shape)
self.assertArrayAlmostEqual(weights[0, :, :],
np.cos(np.deg2rad(self.lat2d[0:1, :])))
def test_cosine_latitude_weights_2d_singleton2(self):
# 2d latitude coordinate with second dimension singleton
cube = self.cube_aux_lat[:, :, 0:1]
weights = iris.analysis.cartography.cosine_latitude_weights(cube)
self.assertEqual(weights.shape, cube.shape)
self.assertArrayAlmostEqual(weights[0, :, :],
np.cos(np.deg2rad(self.lat2d[:, 0:1])))
def test_cosine_latitude_weights_2d_singleton3(self):
# 2d latitude coordinate with both dimensions singleton
cube = self.cube_aux_lat[:, 0:1, 0:1]
weights = iris.analysis.cartography.cosine_latitude_weights(cube)
self.assertEqual(weights.shape, cube.shape)
self.assertArrayAlmostEqual(weights[0, :, :],
np.cos(np.deg2rad(self.lat2d[0:1, 0:1])))
def test_cosine_latitude_weights_2d(self):
# 2d latitude coordinate (time, lat, lon)
weights = iris.analysis.cartography.cosine_latitude_weights(
self.cube_aux_lat)
self.assertEqual(weights.shape, self.cube_aux_lat.shape)
self.assertArrayAlmostEqual(weights[0, :, :],
np.cos(np.deg2rad(self.lat2d)))
def test_cosine_latitude_weights_2d_latitude_first(self):
# 2d latitude coordinate with latitude first (lat, time, lon)
order = [1, 0, 2] # (lat, time, lon)
self.cube_aux_lat.transpose(order)
weights = iris.analysis.cartography.cosine_latitude_weights(
self.cube_aux_lat)
self.assertEqual(weights.shape, self.cube_aux_lat.shape)
self.assertArrayAlmostEqual(weights[:, 0, :],
np.cos(np.deg2rad(self.lat2d)))
def test_cosine_latitude_weights_2d_latitude_last(self):
# 2d latitude coordinate with latitude last (time, lon, lat)
order = [0, 2, 1] # (time, lon, lat)
self.cube_aux_lat.transpose(order)
weights = iris.analysis.cartography.cosine_latitude_weights(
self.cube_aux_lat)
self.assertEqual(weights.shape, self.cube_aux_lat.shape)
self.assertArrayAlmostEqual(weights[0, :, :],
np.cos(np.deg2rad(self.lat2d.T)))
def test_cosine_latitude_weights_no_latitude(self):
# no coordinate identified as latitude
self.cube_dim_lat.remove_coord('grid_latitude')
with self.assertRaises(ValueError):
weights = iris.analysis.cartography.cosine_latitude_weights(
self.cube_dim_lat)
def test_cosine_latitude_weights_multiple_latitude(self):
# two coordinates identified as latitude
with self.assertRaises(ValueError):
weights = iris.analysis.cartography.cosine_latitude_weights(
self.cube)
class TestRollingWindow(tests.IrisTest):
def setUp(self):
# XXX Comes from test_aggregated_by
cube = iris.cube.Cube(np.array([[6, 10, 12, 18], [8, 12, 14, 20], [18, 12, 10, 6]]), long_name='temperature', units='kelvin')
cube.add_dim_coord(iris.coords.DimCoord(np.array([0, 5, 10], dtype=np.float64), 'latitude', units='degrees'), 0)
cube.add_dim_coord(iris.coords.DimCoord(np.array([0, 2, 4, 6], dtype=np.float64), 'longitude', units='degrees'), 1)
self.cube = cube
def test_non_mean_operator(self):
res_cube = self.cube.rolling_window('longitude', iris.analysis.MAX, window=2)
expected_result = np.array([[10, 12, 18],
[12, 14, 20],
[18, 12, 10]], dtype=np.float64)
self.assertArrayEqual(expected_result, res_cube.data)
def test_longitude_simple(self):
res_cube = self.cube.rolling_window('longitude', iris.analysis.MEAN, window=2)
expected_result = np.array([[ 8., 11., 15.],
[ 10., 13., 17.],
[ 15., 11., 8.]], dtype=np.float64)
self.assertArrayEqual(expected_result, res_cube.data)
self.assertCML(res_cube, ('analysis', 'rolling_window', 'simple_longitude.cml'))
self.assertRaises(ValueError, self.cube.rolling_window, 'longitude', iris.analysis.MEAN, window=0)
def test_longitude_masked(self):
self.cube.data = ma.array(self.cube.data,
mask=[[True, True, True, True],
[True, False, True, True],
[False, False, False, False]])
res_cube = self.cube.rolling_window('longitude',
iris.analysis.MEAN,
window=2)
expected_result = np.ma.array([[-99., -99., -99.],
[12., 12., -99.],
[15., 11., 8.]],
mask=[[True, True, True],
[False, False, True],
[False, False, False]],
dtype=np.float64)
self.assertMaskedArrayEqual(expected_result, res_cube.data)
def test_longitude_circular(self):
cube = self.cube
cube.coord('longitude').circular = True
self.assertRaises(iris.exceptions.NotYetImplementedError, self.cube.rolling_window, 'longitude', iris.analysis.MEAN, window=0)
def test_different_length_windows(self):
res_cube = self.cube.rolling_window('longitude', iris.analysis.MEAN, window=4)
expected_result = np.array([[ 11.5],
[ 13.5],
[ 11.5]], dtype=np.float64)
self.assertArrayEqual(expected_result, res_cube.data)
self.assertCML(res_cube, ('analysis', 'rolling_window', 'size_4_longitude.cml'))
# Window too long:
self.assertRaises(ValueError, self.cube.rolling_window, 'longitude', iris.analysis.MEAN, window=6)
# Window too small:
self.assertRaises(ValueError, self.cube.rolling_window, 'longitude', iris.analysis.MEAN, window=0)
def test_bad_coordinate(self):
self.assertRaises(KeyError, self.cube.rolling_window, 'wibble', iris.analysis.MEAN, window=0)
def test_latitude_simple(self):
res_cube = self.cube.rolling_window('latitude', iris.analysis.MEAN, window=2)
expected_result = np.array([[ 7., 11., 13., 19.],
[ 13., 12., 12., 13.]], dtype=np.float64)
self.assertArrayEqual(expected_result, res_cube.data)
self.assertCML(res_cube, ('analysis', 'rolling_window', 'simple_latitude.cml'))
def test_mean_with_weights_consistency(self):
# equal weights should be the same as the mean with no weights
wts = np.array([0.5, 0.5], dtype=np.float64)
res_cube = self.cube.rolling_window('longitude',
iris.analysis.MEAN,
window=2,
weights=wts)
expected_result = self.cube.rolling_window('longitude',
iris.analysis.MEAN,
window=2)
self.assertArrayEqual(expected_result.data, res_cube.data)
def test_mean_with_weights(self):
# rolling window mean with weights
wts = np.array([0.1, 0.6, 0.3], dtype=np.float64)
res_cube = self.cube.rolling_window('longitude',
iris.analysis.MEAN,
window=3,
weights=wts)
expected_result = np.array([[10.2, 13.6],
[12.2, 15.6],
[12.0, 9.0]], dtype=np.float64)
# use almost equal to compare floats
self.assertArrayAlmostEqual(expected_result, res_cube.data)
class TestProject(tests.GraphicsTest):
def setUp(self):
cube = iris.tests.stock.realistic_4d_no_derived()
# Remove some slices to speed testing.
self.cube = cube[0:2, 0:3]
self.target_proj = ccrs.Robinson()
def test_bad_resolution(self):
with self.assertRaises(ValueError):
iris.analysis.cartography.project(self.cube,
self.target_proj,
nx=-200, ny=200)
with self.assertRaises(ValueError):
iris.analysis.cartography.project(self.cube,
self.target_proj,
nx=200, ny='abc')
def test_missing_latlon(self):
cube = self.cube.copy()
cube.remove_coord('grid_latitude')
with self.assertRaises(ValueError):
iris.analysis.cartography.project(cube, self.target_proj)
cube = self.cube.copy()
cube.remove_coord('grid_longitude')
with self.assertRaises(ValueError):
iris.analysis.cartography.project(cube, self.target_proj)
self.cube.remove_coord('grid_longitude')
self.cube.remove_coord('grid_latitude')
with self.assertRaises(ValueError):
iris.analysis.cartography.project(self.cube, self.target_proj)
def test_default_resolution(self):
new_cube, extent = iris.analysis.cartography.project(self.cube,
self.target_proj)
self.assertEqual(new_cube.shape, self.cube.shape)
@tests.skip_data
@tests.skip_plot
def test_cartopy_projection(self):
cube = iris.load_cube(tests.get_data_path(('PP', 'aPPglob1',
'global.pp')))
projections = {}
projections['RotatedPole'] = ccrs.RotatedPole(pole_longitude=177.5,
pole_latitude=37.5)
projections['Robinson'] = ccrs.Robinson()
projections['PlateCarree'] = ccrs.PlateCarree()
projections['NorthPolarStereo'] = ccrs.NorthPolarStereo()
projections['Orthographic'] = ccrs.Orthographic(central_longitude=-90,
central_latitude=45)
projections['InterruptedGoodeHomolosine'] = ccrs.InterruptedGoodeHomolosine()
projections['LambertCylindrical'] = ccrs.LambertCylindrical()
# Set up figure
fig = plt.figure(figsize=(10, 10))
gs = matplotlib.gridspec.GridSpec(nrows=3, ncols=3, hspace=1.5, wspace=0.5)
for subplot_spec, name in zip(gs, sorted(projections)):
target_proj = projections[name]
# Set up axes and title
ax = plt.subplot(subplot_spec, frameon=False, projection=target_proj)
ax.set_title(name)
# Transform cube to target projection
new_cube, extent = iris.analysis.cartography.project(cube, target_proj,
nx=150, ny=150)
# Plot
plt.pcolor(new_cube.coord('projection_x_coordinate').points,
new_cube.coord('projection_y_coordinate').points,
new_cube.data)
# Add coastlines
ax.coastlines()
# Tighten up layout
gs.tight_layout(plt.gcf())
# Verify resulting plot
self.check_graphic(tol=1.0)
@tests.skip_data
def test_no_coord_system(self):
cube = iris.load_cube(tests.get_data_path(('PP', 'aPPglob1', 'global.pp')))
cube.coord('longitude').coord_system = None
cube.coord('latitude').coord_system = None
new_cube, extent = iris.analysis.cartography.project(cube,
self.target_proj)
self.assertCML(new_cube,
('analysis', 'project', 'default_source_cs.cml'))
if __name__ == "__main__":
tests.main()
| gpl-3.0 |
herberthudson/pynance | pynance/opt/price.py | 2 | 7070 | """
.. Copyright (c) 2014, 2015 Marshall Farrier
license http://opensource.org/licenses/MIT
Options - price (:mod:`pynance.opt.price`)
==================================================
.. currentmodule:: pynance.opt.price
"""
from __future__ import absolute_import
import pandas as pd
from ._common import _getprice
from ._common import _relevant_rows
from . import _constants
class Price(object):
"""
Wrapper class for :class:`pandas.DataFrame` for retrieving
options prices.
Objects of this class are not intended for direct instantiation
but are created as attributes of objects of type :class:`~pynance.opt.core.Options`.
.. versionadded:: 0.3.0
Parameters
----------
df : :class:`pandas.DataFrame`
Options data.
Attributes
----------
data : :class:`pandas.DataFrame`
Options data.
Methods
-------
.. automethod:: exps
.. automethod:: get
.. automethod:: metrics
.. automethod:: strikes
"""
def __init__(self, df):
self.data = df
def get(self, opttype, strike, expiry):
"""
Price as midpoint between bid and ask.
Parameters
----------
opttype : str
'call' or 'put'.
strike : numeric
Strike price.
expiry : date-like
Expiration date. Can be a :class:`datetime.datetime` or
a string that :mod:`pandas` can interpret as such, e.g.
'2015-01-01'.
Returns
-------
out : float
Examples
--------
>>> geopts = pn.opt.get('ge')
>>> geopts.price.get('call', 26., '2015-09-18')
0.94
"""
_optrow = _relevant_rows(self.data, (strike, expiry, opttype,),
"No key for {} strike {} {}".format(expiry, strike, opttype))
return _getprice(_optrow)
def metrics(self, opttype, strike, expiry):
"""
Basic metrics for a specific option.
Parameters
----------
opttype : str ('call' or 'put')
strike : numeric
Strike price.
expiry : date-like
Expiration date. Can be a :class:`datetime.datetime` or
a string that :mod:`pandas` can interpret as such, e.g.
'2015-01-01'.
Returns
-------
out : :class:`pandas.DataFrame`
"""
_optrow = _relevant_rows(self.data, (strike, expiry, opttype,),
"No key for {} strike {} {}".format(expiry, strike, opttype))
_index = ['Opt_Price', 'Time_Val', 'Last', 'Bid', 'Ask', 'Vol', 'Open_Int', 'Underlying_Price', 'Quote_Time']
_out = pd.DataFrame(index=_index, columns=['Value'])
_out.loc['Opt_Price', 'Value'] = _opt_price = _getprice(_optrow)
for _name in _index[2:]:
_out.loc[_name, 'Value'] = _optrow.loc[:, _name].values[0]
_eq_price = _out.loc['Underlying_Price', 'Value']
if opttype == 'put':
_out.loc['Time_Val'] = _get_put_time_val(_opt_price, strike, _eq_price)
else:
_out.loc['Time_Val'] = _get_call_time_val(_opt_price, strike, _eq_price)
return _out
def strikes(self, opttype, expiry):
"""
Retrieve option prices for all strikes of a given type with a given expiration.
Parameters
----------
opttype : str ('call' or 'put')
expiry : date-like
Expiration date. Can be a :class:`datetime.datetime` or
a string that :mod:`pandas` can interpret as such, e.g.
'2015-01-01'.
Returns
----------
df : :class:`pandas.DataFrame`
eq : float
Price of underlying.
qt : datetime.datetime
Time of quote.
See Also
--------
:meth:`exps`
"""
_relevant = _relevant_rows(self.data, (slice(None), expiry, opttype,),
"No key for {} {}".format(expiry, opttype))
_index = _relevant.index.get_level_values('Strike')
_columns = ['Price', 'Time_Val', 'Last', 'Bid', 'Ask', 'Vol', 'Open_Int']
_df = pd.DataFrame(index=_index, columns=_columns)
_underlying = _relevant.loc[:, 'Underlying_Price'].values[0]
_quotetime = pd.to_datetime(_relevant.loc[:, 'Quote_Time'].values[0], utc=True).to_datetime()
for _col in _columns[2:]:
_df.loc[:, _col] = _relevant.loc[:, _col].values
_df.loc[:, 'Price'] = (_df.loc[:, 'Bid'] + _df.loc[:, 'Ask']) / 2.
_set_tv_strike_ix(_df, opttype, 'Price', 'Time_Val', _underlying)
return _df, _underlying, _quotetime
def exps(self, opttype, strike):
"""
Prices for given strike on all available dates.
Parameters
----------
opttype : str ('call' or 'put')
strike : numeric
Returns
----------
df : :class:`pandas.DataFrame`
eq : float
Price of underlying.
qt : :class:`datetime.datetime`
Time of quote.
See Also
--------
:meth:`strikes`
"""
_relevant = _relevant_rows(self.data, (strike, slice(None), opttype,),
"No key for {} {}".format(strike, opttype))
_index = _relevant.index.get_level_values('Expiry')
_columns = ['Price', 'Time_Val', 'Last', 'Bid', 'Ask', 'Vol', 'Open_Int']
_df = pd.DataFrame(index=_index, columns=_columns)
_eq = _relevant.loc[:, 'Underlying_Price'].values[0]
_qt = pd.to_datetime(_relevant.loc[:, 'Quote_Time'].values[0], utc=True).to_datetime()
for _col in _columns[2:]:
_df.loc[:, _col] = _relevant.loc[:, _col].values
_df.loc[:, 'Price'] = (_df.loc[:, 'Bid'] + _df.loc[:, 'Ask']) / 2.
_set_tv_other_ix(_df, opttype, 'Price', 'Time_Val', _eq, strike)
return _df, _eq, _qt
def _set_tv_other_ix(df, opttype, pricecol, tvcol, eqprice, strike):
if opttype == 'put':
if strike <= eqprice:
df.loc[:, tvcol] = df.loc[:, pricecol]
else:
_diff = eqprice - strike
df.loc[:, tvcol] = df.loc[:, pricecol] + _diff
else:
if eqprice <= strike:
df.loc[:, tvcol] = df.loc[:, pricecol]
else:
_diff = strike - eqprice
df.loc[:, tvcol] = df.loc[:, pricecol] + _diff
def _set_tv_strike_ix(df, opttype, pricecol, tvcol, eqprice):
df.loc[:, tvcol] = df.loc[:, pricecol]
if opttype == 'put':
_mask = (df.index > eqprice)
df.loc[_mask, tvcol] += eqprice - df.index[_mask]
else:
_mask = (df.index < eqprice)
df.loc[_mask, tvcol] += df.index[_mask] - eqprice
return
def _get_put_time_val(putprice, strike, eqprice):
if strike <= eqprice:
return putprice
return round(putprice + eqprice - strike, _constants.NDIGITS_SIG)
def _get_call_time_val(callprice, strike, eqprice):
if eqprice <= strike:
return callprice
return round(callprice + strike - eqprice, _constants.NDIGITS_SIG)
| mit |
wesleybowman/karsten | turbine_array/UTide/plotTest.py | 1 | 2694 | import netCDF4 as nc
import matplotlib.pyplot as plt
import matplotlib.tri as Tri
import matplotlib.ticker as ticker
#from mpl_toolkits.basemap import Basemap
import numpy as np
import cPickle as pickle
import seaborn
import time
filename = '/home/wesley/github/aidan-projects/grid/dngrid_0001.nc'
data = nc.Dataset(filename,'r')
lat = data.variables['lat'][:]
lon = data.variables['lon'][:]
nv = data.variables['nv'][:].T -1
h = data.variables['h'][:]
el = data.variables['zeta'][:]
x = data.variables['x'][:]
y = data.variables['y'][:]
trinodes = nv
xc = np.mean(x[trinodes], axis=1)
yc = np.mean(y[trinodes], axis=1)
hc = np.mean(h[trinodes], axis=1)
lonc = np.mean(lon[trinodes], axis=1)
latc = np.mean(lat[trinodes], axis=1)
loci = pickle.load(open('loci.p', 'rb'))
loci = loci.astype(int)
latind = np.argwhere(((45.2<lat[:]), (lat<45.4)))
lonind = np.argwhere(((-64.8<lon), (lon<-64.1)))
lat[latind]
lon[lonind]
#tri = Tri.Triangulation(lon,lat,triangles=nv)
tri = Tri.Triangulation(lon[lonind], lat[latind], triangles=nv)
levels = np.arange(-100, -8, 1)
fig = plt.figure(figsize=(18,10))
#plt.ion()
plt.rc('font',size='22')
#ax = fig.add_subplot(111,aspect=(1.0/np.cos(np.mean(lat)*np.pi/180.0)))
ax = fig.add_subplot(111)
#plt.tricontourf(tri, -h,levels=levels,shading='faceted',cmap=plt.cm.gist_earth)
plt.tricontourf(tri, -h,levels=levels,shading='faceted')
plt.triplot(tri)
plt.ylabel('Latitude')
plt.xlabel('Longitude')
plt.gca().patch.set_facecolor('0.5')
cbar = plt.colorbar()
cbar.set_label('Water Depth (m)', rotation=-90, labelpad=30)
scale = 1
ticks = ticker.FuncFormatter(lambda lon, pos: '{0:g}'.format(lon/scale))
ax.xaxis.set_major_formatter(ticks)
ax.yaxis.set_major_formatter(ticks)
plt.grid()
#plt.plot(xc[loci], yc[loci], 'ko')
#plt.plot(lonc[loci], latc[loci], 'ko')
#plt.plot(lonc[loci[0]], latc[loci[0]], 'ko')
plt.show()
for i,v in enumerate(loci):
print i
plt.tricontourf(tri, -h,levels=levels,shading='faceted')
plt.triplot(tri)
plt.ylabel('Latitude')
plt.xlabel('Longitude')
plt.gca().patch.set_facecolor('0.5')
cbar = plt.colorbar()
cbar.set_label('Water Depth (m)', rotation=-90, labelpad=30)
scale = 1
ticks = ticker.FuncFormatter(lambda lon, pos: '{0:g}'.format(lon/scale))
ax.xaxis.set_major_formatter(ticks)
ax.yaxis.set_major_formatter(ticks)
plt.grid()
plt.plot(lonc[loci[0:i]], latc[loci[0:i]], 'ko')
#time.sleep(0.5)
#plt.draw()
plt.show()
#plt.show()
#fig=plt.figure()
#plt.axis([0,1000,0,1])
#
#i=0
#x=list()
#y=list()
#
#while i <1000:
# temp_y=np.random.random()
# x.append(i)
# y.append(temp_y)
# plt.scatter(i,temp_y)
# i+=1
# plt.show()
| mit |
valexandersaulys/airbnb_kaggle_contest | venv/lib/python3.4/site-packages/sklearn/linear_model/tests/test_passive_aggressive.py | 169 | 8809 | import numpy as np
import scipy.sparse as sp
from sklearn.utils.testing import assert_less
from sklearn.utils.testing import assert_greater
from sklearn.utils.testing import assert_array_almost_equal, assert_array_equal
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_raises
from sklearn.base import ClassifierMixin
from sklearn.utils import check_random_state
from sklearn.datasets import load_iris
from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.linear_model import PassiveAggressiveRegressor
iris = load_iris()
random_state = check_random_state(12)
indices = np.arange(iris.data.shape[0])
random_state.shuffle(indices)
X = iris.data[indices]
y = iris.target[indices]
X_csr = sp.csr_matrix(X)
class MyPassiveAggressive(ClassifierMixin):
def __init__(self, C=1.0, epsilon=0.01, loss="hinge",
fit_intercept=True, n_iter=1, random_state=None):
self.C = C
self.epsilon = epsilon
self.loss = loss
self.fit_intercept = fit_intercept
self.n_iter = n_iter
def fit(self, X, y):
n_samples, n_features = X.shape
self.w = np.zeros(n_features, dtype=np.float64)
self.b = 0.0
for t in range(self.n_iter):
for i in range(n_samples):
p = self.project(X[i])
if self.loss in ("hinge", "squared_hinge"):
loss = max(1 - y[i] * p, 0)
else:
loss = max(np.abs(p - y[i]) - self.epsilon, 0)
sqnorm = np.dot(X[i], X[i])
if self.loss in ("hinge", "epsilon_insensitive"):
step = min(self.C, loss / sqnorm)
elif self.loss in ("squared_hinge",
"squared_epsilon_insensitive"):
step = loss / (sqnorm + 1.0 / (2 * self.C))
if self.loss in ("hinge", "squared_hinge"):
step *= y[i]
else:
step *= np.sign(y[i] - p)
self.w += step * X[i]
if self.fit_intercept:
self.b += step
def project(self, X):
return np.dot(X, self.w) + self.b
def test_classifier_accuracy():
for data in (X, X_csr):
for fit_intercept in (True, False):
clf = PassiveAggressiveClassifier(C=1.0, n_iter=30,
fit_intercept=fit_intercept,
random_state=0)
clf.fit(data, y)
score = clf.score(data, y)
assert_greater(score, 0.79)
def test_classifier_partial_fit():
classes = np.unique(y)
for data in (X, X_csr):
clf = PassiveAggressiveClassifier(C=1.0,
fit_intercept=True,
random_state=0)
for t in range(30):
clf.partial_fit(data, y, classes)
score = clf.score(data, y)
assert_greater(score, 0.79)
def test_classifier_refit():
# Classifier can be retrained on different labels and features.
clf = PassiveAggressiveClassifier().fit(X, y)
assert_array_equal(clf.classes_, np.unique(y))
clf.fit(X[:, :-1], iris.target_names[y])
assert_array_equal(clf.classes_, iris.target_names)
def test_classifier_correctness():
y_bin = y.copy()
y_bin[y != 1] = -1
for loss in ("hinge", "squared_hinge"):
clf1 = MyPassiveAggressive(C=1.0,
loss=loss,
fit_intercept=True,
n_iter=2)
clf1.fit(X, y_bin)
for data in (X, X_csr):
clf2 = PassiveAggressiveClassifier(C=1.0,
loss=loss,
fit_intercept=True,
n_iter=2, shuffle=False)
clf2.fit(data, y_bin)
assert_array_almost_equal(clf1.w, clf2.coef_.ravel(), decimal=2)
def test_classifier_undefined_methods():
clf = PassiveAggressiveClassifier()
for meth in ("predict_proba", "predict_log_proba", "transform"):
assert_raises(AttributeError, lambda x: getattr(clf, x), meth)
def test_class_weights():
# Test class weights.
X2 = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0],
[1.0, 1.0], [1.0, 0.0]])
y2 = [1, 1, 1, -1, -1]
clf = PassiveAggressiveClassifier(C=0.1, n_iter=100, class_weight=None,
random_state=100)
clf.fit(X2, y2)
assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1]))
# we give a small weights to class 1
clf = PassiveAggressiveClassifier(C=0.1, n_iter=100,
class_weight={1: 0.001},
random_state=100)
clf.fit(X2, y2)
# now the hyperplane should rotate clock-wise and
# the prediction on this point should shift
assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1]))
def test_partial_fit_weight_class_balanced():
# partial_fit with class_weight='balanced' not supported
clf = PassiveAggressiveClassifier(class_weight="balanced")
assert_raises(ValueError, clf.partial_fit, X, y, classes=np.unique(y))
def test_equal_class_weight():
X2 = [[1, 0], [1, 0], [0, 1], [0, 1]]
y2 = [0, 0, 1, 1]
clf = PassiveAggressiveClassifier(C=0.1, n_iter=1000, class_weight=None)
clf.fit(X2, y2)
# Already balanced, so "balanced" weights should have no effect
clf_balanced = PassiveAggressiveClassifier(C=0.1, n_iter=1000,
class_weight="balanced")
clf_balanced.fit(X2, y2)
clf_weighted = PassiveAggressiveClassifier(C=0.1, n_iter=1000,
class_weight={0: 0.5, 1: 0.5})
clf_weighted.fit(X2, y2)
# should be similar up to some epsilon due to learning rate schedule
assert_almost_equal(clf.coef_, clf_weighted.coef_, decimal=2)
assert_almost_equal(clf.coef_, clf_balanced.coef_, decimal=2)
def test_wrong_class_weight_label():
# ValueError due to wrong class_weight label.
X2 = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0],
[1.0, 1.0], [1.0, 0.0]])
y2 = [1, 1, 1, -1, -1]
clf = PassiveAggressiveClassifier(class_weight={0: 0.5})
assert_raises(ValueError, clf.fit, X2, y2)
def test_wrong_class_weight_format():
# ValueError due to wrong class_weight argument type.
X2 = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0],
[1.0, 1.0], [1.0, 0.0]])
y2 = [1, 1, 1, -1, -1]
clf = PassiveAggressiveClassifier(class_weight=[0.5])
assert_raises(ValueError, clf.fit, X2, y2)
clf = PassiveAggressiveClassifier(class_weight="the larch")
assert_raises(ValueError, clf.fit, X2, y2)
def test_regressor_mse():
y_bin = y.copy()
y_bin[y != 1] = -1
for data in (X, X_csr):
for fit_intercept in (True, False):
reg = PassiveAggressiveRegressor(C=1.0, n_iter=50,
fit_intercept=fit_intercept,
random_state=0)
reg.fit(data, y_bin)
pred = reg.predict(data)
assert_less(np.mean((pred - y_bin) ** 2), 1.7)
def test_regressor_partial_fit():
y_bin = y.copy()
y_bin[y != 1] = -1
for data in (X, X_csr):
reg = PassiveAggressiveRegressor(C=1.0,
fit_intercept=True,
random_state=0)
for t in range(50):
reg.partial_fit(data, y_bin)
pred = reg.predict(data)
assert_less(np.mean((pred - y_bin) ** 2), 1.7)
def test_regressor_correctness():
y_bin = y.copy()
y_bin[y != 1] = -1
for loss in ("epsilon_insensitive", "squared_epsilon_insensitive"):
reg1 = MyPassiveAggressive(C=1.0,
loss=loss,
fit_intercept=True,
n_iter=2)
reg1.fit(X, y_bin)
for data in (X, X_csr):
reg2 = PassiveAggressiveRegressor(C=1.0,
loss=loss,
fit_intercept=True,
n_iter=2, shuffle=False)
reg2.fit(data, y_bin)
assert_array_almost_equal(reg1.w, reg2.coef_.ravel(), decimal=2)
def test_regressor_undefined_methods():
reg = PassiveAggressiveRegressor()
for meth in ("transform",):
assert_raises(AttributeError, lambda x: getattr(reg, x), meth)
| gpl-2.0 |
google-research/electra | finetune/qa/squad_official_eval.py | 1 | 12022 | # coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Official evaluation script for SQuAD version 2.0.
In addition to basic functionality, we also compute additional statistics and
plot precision-recall curves if an additional na_prob.json file is provided.
This file is expected to map question ID's to the model's predicted probability
that a question is unanswerable.
Modified slightly for the ELECTRA codebase.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import collections
import json
import numpy as np
import os
import re
import string
import sys
import tensorflow.compat.v1 as tf
import configure_finetuning
OPTS = None
def parse_args():
parser = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.')
parser.add_argument('data_file', metavar='data.json', help='Input data JSON file.')
parser.add_argument('pred_file', metavar='pred.json', help='Model predictions.')
parser.add_argument('--out-file', '-o', metavar='eval.json',
help='Write accuracy metrics to file (default is stdout).')
parser.add_argument('--na-prob-file', '-n', metavar='na_prob.json',
help='Model estimates of probability of no answer.')
parser.add_argument('--na-prob-thresh', '-t', type=float, default=1.0,
help='Predict "" if no-answer probability exceeds this (default = 1.0).')
parser.add_argument('--out-image-dir', '-p', metavar='out_images', default=None,
help='Save precision-recall curves to directory.')
parser.add_argument('--verbose', '-v', action='store_true')
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
return parser.parse_args()
def set_opts(config: configure_finetuning.FinetuningConfig, split):
global OPTS
Options = collections.namedtuple("Options", [
"data_file", "pred_file", "out_file", "na_prob_file", "na_prob_thresh",
"out_image_dir", "verbose"])
OPTS = Options(
data_file=os.path.join(
config.raw_data_dir("squad"),
split + ("-debug" if config.debug else "") + ".json"),
pred_file=config.qa_preds_file("squad"),
out_file=config.qa_eval_file("squad"),
na_prob_file=config.qa_na_file("squad"),
na_prob_thresh=config.qa_na_threshold,
out_image_dir=None,
verbose=False
)
def make_qid_to_has_ans(dataset):
qid_to_has_ans = {}
for article in dataset:
for p in article['paragraphs']:
for qa in p['qas']:
qid_to_has_ans[qa['id']] = bool(qa['answers'])
return qid_to_has_ans
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
regex = re.compile(r'\b(a|an|the)\b', re.UNICODE)
return re.sub(regex, ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def get_tokens(s):
if not s: return []
return normalize_answer(s).split()
def compute_exact(a_gold, a_pred):
return int(normalize_answer(a_gold) == normalize_answer(a_pred))
def compute_f1(a_gold, a_pred):
gold_toks = get_tokens(a_gold)
pred_toks = get_tokens(a_pred)
common = collections.Counter(gold_toks) & collections.Counter(pred_toks)
num_same = sum(common.values())
if len(gold_toks) == 0 or len(pred_toks) == 0:
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
return int(gold_toks == pred_toks)
if num_same == 0:
return 0
precision = 1.0 * num_same / len(pred_toks)
recall = 1.0 * num_same / len(gold_toks)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def get_raw_scores(dataset, preds):
exact_scores = {}
f1_scores = {}
for article in dataset:
for p in article['paragraphs']:
for qa in p['qas']:
qid = qa['id']
gold_answers = [a['text'] for a in qa['answers']
if normalize_answer(a['text'])]
if not gold_answers:
# For unanswerable questions, only correct answer is empty string
gold_answers = ['']
if qid not in preds:
print('Missing prediction for %s' % qid)
continue
a_pred = preds[qid]
# Take max over all gold answers
exact_scores[qid] = max(compute_exact(a, a_pred) for a in gold_answers)
f1_scores[qid] = max(compute_f1(a, a_pred) for a in gold_answers)
return exact_scores, f1_scores
def apply_no_ans_threshold(scores, na_probs, qid_to_has_ans, na_prob_thresh):
new_scores = {}
for qid, s in scores.items():
pred_na = na_probs[qid] > na_prob_thresh
if pred_na:
new_scores[qid] = float(not qid_to_has_ans[qid])
else:
new_scores[qid] = s
return new_scores
def make_eval_dict(exact_scores, f1_scores, qid_list=None):
if not qid_list:
total = len(exact_scores)
return collections.OrderedDict([
('exact', 100.0 * sum(exact_scores.values()) / total),
('f1', 100.0 * sum(f1_scores.values()) / total),
('total', total),
])
else:
total = len(qid_list)
return collections.OrderedDict([
('exact', 100.0 * sum(exact_scores[k] for k in qid_list) / total),
('f1', 100.0 * sum(f1_scores[k] for k in qid_list) / total),
('total', total),
])
def merge_eval(main_eval, new_eval, prefix):
for k in new_eval:
main_eval['%s_%s' % (prefix, k)] = new_eval[k]
def plot_pr_curve(precisions, recalls, out_image, title):
plt.step(recalls, precisions, color='b', alpha=0.2, where='post')
plt.fill_between(recalls, precisions, step='post', alpha=0.2, color='b')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.xlim([0.0, 1.05])
plt.ylim([0.0, 1.05])
plt.title(title)
plt.savefig(out_image)
plt.clf()
def make_precision_recall_eval(scores, na_probs, num_true_pos, qid_to_has_ans,
out_image=None, title=None):
qid_list = sorted(na_probs, key=lambda k: na_probs[k])
true_pos = 0.0
cur_p = 1.0
cur_r = 0.0
precisions = [1.0]
recalls = [0.0]
avg_prec = 0.0
for i, qid in enumerate(qid_list):
if qid_to_has_ans[qid]:
true_pos += scores[qid]
cur_p = true_pos / float(i+1)
cur_r = true_pos / float(num_true_pos)
if i == len(qid_list) - 1 or na_probs[qid] != na_probs[qid_list[i+1]]:
# i.e., if we can put a threshold after this point
avg_prec += cur_p * (cur_r - recalls[-1])
precisions.append(cur_p)
recalls.append(cur_r)
if out_image:
plot_pr_curve(precisions, recalls, out_image, title)
return {'ap': 100.0 * avg_prec}
def run_precision_recall_analysis(main_eval, exact_raw, f1_raw, na_probs,
qid_to_has_ans, out_image_dir):
if out_image_dir and not os.path.exists(out_image_dir):
os.makedirs(out_image_dir)
num_true_pos = sum(1 for v in qid_to_has_ans.values() if v)
if num_true_pos == 0:
return
pr_exact = make_precision_recall_eval(
exact_raw, na_probs, num_true_pos, qid_to_has_ans,
out_image=os.path.join(out_image_dir, 'pr_exact.png'),
title='Precision-Recall curve for Exact Match score')
pr_f1 = make_precision_recall_eval(
f1_raw, na_probs, num_true_pos, qid_to_has_ans,
out_image=os.path.join(out_image_dir, 'pr_f1.png'),
title='Precision-Recall curve for F1 score')
oracle_scores = {k: float(v) for k, v in qid_to_has_ans.items()}
pr_oracle = make_precision_recall_eval(
oracle_scores, na_probs, num_true_pos, qid_to_has_ans,
out_image=os.path.join(out_image_dir, 'pr_oracle.png'),
title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)')
merge_eval(main_eval, pr_exact, 'pr_exact')
merge_eval(main_eval, pr_f1, 'pr_f1')
merge_eval(main_eval, pr_oracle, 'pr_oracle')
def histogram_na_prob(na_probs, qid_list, image_dir, name):
if not qid_list:
return
x = [na_probs[k] for k in qid_list]
weights = np.ones_like(x) / float(len(x))
plt.hist(x, weights=weights, bins=20, range=(0.0, 1.0))
plt.xlabel('Model probability of no-answer')
plt.ylabel('Proportion of dataset')
plt.title('Histogram of no-answer probability: %s' % name)
plt.savefig(os.path.join(image_dir, 'na_prob_hist_%s.png' % name))
plt.clf()
def find_best_thresh(preds, scores, na_probs, qid_to_has_ans):
num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k])
cur_score = num_no_ans
best_score = cur_score
best_thresh = 0.0
qid_list = sorted(na_probs, key=lambda k: na_probs[k])
for i, qid in enumerate(qid_list):
if qid not in scores: continue
if qid_to_has_ans[qid]:
diff = scores[qid]
else:
if preds[qid]:
diff = -1
else:
diff = 0
cur_score += diff
if cur_score > best_score:
best_score = cur_score
best_thresh = na_probs[qid]
return 100.0 * best_score / len(scores), best_thresh
def find_all_best_thresh(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans):
best_exact, exact_thresh = find_best_thresh(preds, exact_raw, na_probs, qid_to_has_ans)
best_f1, f1_thresh = find_best_thresh(preds, f1_raw, na_probs, qid_to_has_ans)
main_eval['best_exact'] = best_exact
main_eval['best_exact_thresh'] = exact_thresh
main_eval['best_f1'] = best_f1
main_eval['best_f1_thresh'] = f1_thresh
def main():
with tf.io.gfile.GFile(OPTS.data_file) as f:
dataset_json = json.load(f)
dataset = dataset_json['data']
with tf.io.gfile.GFile(OPTS.pred_file) as f:
preds = json.load(f)
if OPTS.na_prob_file:
with tf.io.gfile.GFile(OPTS.na_prob_file) as f:
na_probs = json.load(f)
else:
na_probs = {k: 0.0 for k in preds}
qid_to_has_ans = make_qid_to_has_ans(dataset) # maps qid to True/False
has_ans_qids = [k for k, v in qid_to_has_ans.items() if v]
no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v]
exact_raw, f1_raw = get_raw_scores(dataset, preds)
exact_thresh = apply_no_ans_threshold(exact_raw, na_probs, qid_to_has_ans,
OPTS.na_prob_thresh)
f1_thresh = apply_no_ans_threshold(f1_raw, na_probs, qid_to_has_ans,
OPTS.na_prob_thresh)
out_eval = make_eval_dict(exact_thresh, f1_thresh)
if has_ans_qids:
has_ans_eval = make_eval_dict(exact_thresh, f1_thresh, qid_list=has_ans_qids)
merge_eval(out_eval, has_ans_eval, 'HasAns')
if no_ans_qids:
no_ans_eval = make_eval_dict(exact_thresh, f1_thresh, qid_list=no_ans_qids)
merge_eval(out_eval, no_ans_eval, 'NoAns')
if OPTS.na_prob_file:
find_all_best_thresh(out_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans)
if OPTS.na_prob_file and OPTS.out_image_dir:
run_precision_recall_analysis(out_eval, exact_raw, f1_raw, na_probs,
qid_to_has_ans, OPTS.out_image_dir)
histogram_na_prob(na_probs, has_ans_qids, OPTS.out_image_dir, 'hasAns')
histogram_na_prob(na_probs, no_ans_qids, OPTS.out_image_dir, 'noAns')
if OPTS.out_file:
with tf.io.gfile.GFile(OPTS.out_file, 'w') as f:
json.dump(out_eval, f)
else:
print(json.dumps(out_eval, indent=2))
if __name__ == '__main__':
OPTS = parse_args()
if OPTS.out_image_dir:
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
main()
| apache-2.0 |
GuessWhoSamFoo/pandas | pandas/core/internals/blocks.py | 1 | 114866 | # -*- coding: utf-8 -*-
from datetime import date, datetime, timedelta
import functools
import inspect
import re
import warnings
import numpy as np
from pandas._libs import internals as libinternals, lib, tslib, tslibs
from pandas._libs.tslibs import Timedelta, conversion, is_null_datetimelike
import pandas.compat as compat
from pandas.compat import range, zip
from pandas.util._validators import validate_bool_kwarg
from pandas.core.dtypes.cast import (
astype_nansafe, find_common_type, infer_dtype_from,
infer_dtype_from_scalar, maybe_convert_objects, maybe_downcast_to_dtype,
maybe_infer_dtype_type, maybe_promote, maybe_upcast, soft_convert_objects)
from pandas.core.dtypes.common import (
_NS_DTYPE, _TD_DTYPE, ensure_platform_int, is_bool_dtype, is_categorical,
is_categorical_dtype, is_datetime64_dtype, is_datetime64tz_dtype,
is_dtype_equal, is_extension_array_dtype, is_extension_type,
is_float_dtype, is_integer, is_integer_dtype, is_interval_dtype,
is_list_like, is_numeric_v_string_like, is_object_dtype, is_period_dtype,
is_re, is_re_compilable, is_sparse, is_timedelta64_dtype, pandas_dtype)
import pandas.core.dtypes.concat as _concat
from pandas.core.dtypes.dtypes import (
CategoricalDtype, ExtensionDtype, PandasExtensionDtype)
from pandas.core.dtypes.generic import (
ABCDataFrame, ABCDatetimeIndex, ABCExtensionArray, ABCIndexClass,
ABCSeries)
from pandas.core.dtypes.missing import (
_isna_compat, array_equivalent, isna, notna)
import pandas.core.algorithms as algos
from pandas.core.arrays import (
Categorical, DatetimeArray, ExtensionArray, TimedeltaArray)
from pandas.core.base import PandasObject
import pandas.core.common as com
from pandas.core.indexes.datetimes import DatetimeIndex
from pandas.core.indexing import check_setitem_lengths
from pandas.core.internals.arrays import extract_array
import pandas.core.missing as missing
from pandas.core.nanops import nanpercentile
from pandas.io.formats.printing import pprint_thing
class Block(PandasObject):
"""
Canonical n-dimensional unit of homogeneous dtype contained in a pandas
data structure
Index-ignorant; let the container take care of that
"""
__slots__ = ['_mgr_locs', 'values', 'ndim']
is_numeric = False
is_float = False
is_integer = False
is_complex = False
is_datetime = False
is_datetimetz = False
is_timedelta = False
is_bool = False
is_object = False
is_categorical = False
is_sparse = False
is_extension = False
_box_to_block_values = True
_can_hold_na = False
_can_consolidate = True
_verify_integrity = True
_validate_ndim = True
_ftype = 'dense'
_concatenator = staticmethod(np.concatenate)
def __init__(self, values, placement, ndim=None):
self.ndim = self._check_ndim(values, ndim)
self.mgr_locs = placement
self.values = values
if (self._validate_ndim and self.ndim and
len(self.mgr_locs) != len(self.values)):
raise ValueError(
'Wrong number of items passed {val}, placement implies '
'{mgr}'.format(val=len(self.values), mgr=len(self.mgr_locs)))
def _check_ndim(self, values, ndim):
"""
ndim inference and validation.
Infers ndim from 'values' if not provided to __init__.
Validates that values.ndim and ndim are consistent if and only if
the class variable '_validate_ndim' is True.
Parameters
----------
values : array-like
ndim : int or None
Returns
-------
ndim : int
Raises
------
ValueError : the number of dimensions do not match
"""
if ndim is None:
ndim = values.ndim
if self._validate_ndim and values.ndim != ndim:
msg = ("Wrong number of dimensions. values.ndim != ndim "
"[{} != {}]")
raise ValueError(msg.format(values.ndim, ndim))
return ndim
@property
def _holder(self):
"""The array-like that can hold the underlying values.
None for 'Block', overridden by subclasses that don't
use an ndarray.
"""
return None
@property
def _consolidate_key(self):
return (self._can_consolidate, self.dtype.name)
@property
def _is_single_block(self):
return self.ndim == 1
@property
def is_view(self):
""" return a boolean if I am possibly a view """
return self.values.base is not None
@property
def is_datelike(self):
""" return True if I am a non-datelike """
return self.is_datetime or self.is_timedelta
def is_categorical_astype(self, dtype):
"""
validate that we have a astypeable to categorical,
returns a boolean if we are a categorical
"""
if dtype is Categorical or dtype is CategoricalDtype:
# this is a pd.Categorical, but is not
# a valid type for astypeing
raise TypeError("invalid type {0} for astype".format(dtype))
elif is_categorical_dtype(dtype):
return True
return False
def external_values(self, dtype=None):
""" return an outside world format, currently just the ndarray """
return self.values
def internal_values(self, dtype=None):
""" return an internal format, currently just the ndarray
this should be the pure internal API format
"""
return self.values
def formatting_values(self):
"""Return the internal values used by the DataFrame/SeriesFormatter"""
return self.internal_values()
def get_values(self, dtype=None):
"""
return an internal format, currently just the ndarray
this is often overridden to handle to_dense like operations
"""
if is_object_dtype(dtype):
return self.values.astype(object)
return self.values
def to_dense(self):
return self.values.view()
@property
def _na_value(self):
return np.nan
@property
def fill_value(self):
return np.nan
@property
def mgr_locs(self):
return self._mgr_locs
@mgr_locs.setter
def mgr_locs(self, new_mgr_locs):
if not isinstance(new_mgr_locs, libinternals.BlockPlacement):
new_mgr_locs = libinternals.BlockPlacement(new_mgr_locs)
self._mgr_locs = new_mgr_locs
@property
def array_dtype(self):
""" the dtype to return if I want to construct this block as an
array
"""
return self.dtype
def make_block(self, values, placement=None, ndim=None):
"""
Create a new block, with type inference propagate any values that are
not specified
"""
if placement is None:
placement = self.mgr_locs
if ndim is None:
ndim = self.ndim
return make_block(values, placement=placement, ndim=ndim)
def make_block_same_class(self, values, placement=None, ndim=None,
dtype=None):
""" Wrap given values in a block of same type as self. """
if dtype is not None:
# issue 19431 fastparquet is passing this
warnings.warn("dtype argument is deprecated, will be removed "
"in a future release.", DeprecationWarning)
if placement is None:
placement = self.mgr_locs
return make_block(values, placement=placement, ndim=ndim,
klass=self.__class__, dtype=dtype)
def __unicode__(self):
# don't want to print out all of the items here
name = pprint_thing(self.__class__.__name__)
if self._is_single_block:
result = '{name}: {len} dtype: {dtype}'.format(
name=name, len=len(self), dtype=self.dtype)
else:
shape = ' x '.join(pprint_thing(s) for s in self.shape)
result = '{name}: {index}, {shape}, dtype: {dtype}'.format(
name=name, index=pprint_thing(self.mgr_locs.indexer),
shape=shape, dtype=self.dtype)
return result
def __len__(self):
return len(self.values)
def __getstate__(self):
return self.mgr_locs.indexer, self.values
def __setstate__(self, state):
self.mgr_locs = libinternals.BlockPlacement(state[0])
self.values = state[1]
self.ndim = self.values.ndim
def _slice(self, slicer):
""" return a slice of my values """
return self.values[slicer]
def reshape_nd(self, labels, shape, ref_items):
"""
Parameters
----------
labels : list of new axis labels
shape : new shape
ref_items : new ref_items
return a new block that is transformed to a nd block
"""
return _block2d_to_blocknd(values=self.get_values().T,
placement=self.mgr_locs, shape=shape,
labels=labels, ref_items=ref_items)
def getitem_block(self, slicer, new_mgr_locs=None):
"""
Perform __getitem__-like, return result as block.
As of now, only supports slices that preserve dimensionality.
"""
if new_mgr_locs is None:
if isinstance(slicer, tuple):
axis0_slicer = slicer[0]
else:
axis0_slicer = slicer
new_mgr_locs = self.mgr_locs[axis0_slicer]
new_values = self._slice(slicer)
if self._validate_ndim and new_values.ndim != self.ndim:
raise ValueError("Only same dim slicing is allowed")
return self.make_block_same_class(new_values, new_mgr_locs)
@property
def shape(self):
return self.values.shape
@property
def dtype(self):
return self.values.dtype
@property
def ftype(self):
if getattr(self.values, '_pandas_ftype', False):
dtype = self.dtype.subtype
else:
dtype = self.dtype
return "{dtype}:{ftype}".format(dtype=dtype, ftype=self._ftype)
def merge(self, other):
return _merge_blocks([self, other])
def concat_same_type(self, to_concat, placement=None):
"""
Concatenate list of single blocks of the same type.
"""
values = self._concatenator([blk.values for blk in to_concat],
axis=self.ndim - 1)
return self.make_block_same_class(
values, placement=placement or slice(0, len(values), 1))
def iget(self, i):
return self.values[i]
def set(self, locs, values):
"""
Modify Block in-place with new item value
Returns
-------
None
"""
self.values[locs] = values
def delete(self, loc):
"""
Delete given loc(-s) from block in-place.
"""
self.values = np.delete(self.values, loc, 0)
self.mgr_locs = self.mgr_locs.delete(loc)
def apply(self, func, **kwargs):
""" apply the function to my values; return a block if we are not
one
"""
with np.errstate(all='ignore'):
result = func(self.values, **kwargs)
if not isinstance(result, Block):
result = self.make_block(values=_block_shape(result,
ndim=self.ndim))
return result
def fillna(self, value, limit=None, inplace=False, downcast=None):
""" fillna on the block with the value. If we fail, then convert to
ObjectBlock and try again
"""
inplace = validate_bool_kwarg(inplace, 'inplace')
if not self._can_hold_na:
if inplace:
return self
else:
return self.copy()
mask = isna(self.values)
if limit is not None:
if not is_integer(limit):
raise ValueError('Limit must be an integer')
if limit < 1:
raise ValueError('Limit must be greater than 0')
if self.ndim > 2:
raise NotImplementedError("number of dimensions for 'fillna' "
"is currently limited to 2")
mask[mask.cumsum(self.ndim - 1) > limit] = False
# fillna, but if we cannot coerce, then try again as an ObjectBlock
try:
values, _ = self._try_coerce_args(self.values, value)
blocks = self.putmask(mask, value, inplace=inplace)
blocks = [b.make_block(values=self._try_coerce_result(b.values))
for b in blocks]
return self._maybe_downcast(blocks, downcast)
except (TypeError, ValueError):
# we can't process the value, but nothing to do
if not mask.any():
return self if inplace else self.copy()
# operate column-by-column
def f(m, v, i):
block = self.coerce_to_target_dtype(value)
# slice out our block
if i is not None:
block = block.getitem_block(slice(i, i + 1))
return block.fillna(value,
limit=limit,
inplace=inplace,
downcast=None)
return self.split_and_operate(mask, f, inplace)
def split_and_operate(self, mask, f, inplace):
"""
split the block per-column, and apply the callable f
per-column, return a new block for each. Handle
masking which will not change a block unless needed.
Parameters
----------
mask : 2-d boolean mask
f : callable accepting (1d-mask, 1d values, indexer)
inplace : boolean
Returns
-------
list of blocks
"""
if mask is None:
mask = np.ones(self.shape, dtype=bool)
new_values = self.values
def make_a_block(nv, ref_loc):
if isinstance(nv, Block):
block = nv
elif isinstance(nv, list):
block = nv[0]
else:
# Put back the dimension that was taken from it and make
# a block out of the result.
try:
nv = _block_shape(nv, ndim=self.ndim)
except (AttributeError, NotImplementedError):
pass
block = self.make_block(values=nv,
placement=ref_loc)
return block
# ndim == 1
if self.ndim == 1:
if mask.any():
nv = f(mask, new_values, None)
else:
nv = new_values if inplace else new_values.copy()
block = make_a_block(nv, self.mgr_locs)
return [block]
# ndim > 1
new_blocks = []
for i, ref_loc in enumerate(self.mgr_locs):
m = mask[i]
v = new_values[i]
# need a new block
if m.any():
nv = f(m, v, i)
else:
nv = v if inplace else v.copy()
block = make_a_block(nv, [ref_loc])
new_blocks.append(block)
return new_blocks
def _maybe_downcast(self, blocks, downcast=None):
# no need to downcast our float
# unless indicated
if downcast is None and self.is_float:
return blocks
elif downcast is None and (self.is_timedelta or self.is_datetime):
return blocks
if not isinstance(blocks, list):
blocks = [blocks]
return _extend_blocks([b.downcast(downcast) for b in blocks])
def downcast(self, dtypes=None):
""" try to downcast each item to the dict of dtypes if present """
# turn it off completely
if dtypes is False:
return self
values = self.values
# single block handling
if self._is_single_block:
# try to cast all non-floats here
if dtypes is None:
dtypes = 'infer'
nv = maybe_downcast_to_dtype(values, dtypes)
return self.make_block(nv)
# ndim > 1
if dtypes is None:
return self
if not (dtypes == 'infer' or isinstance(dtypes, dict)):
raise ValueError("downcast must have a dictionary or 'infer' as "
"its argument")
# operate column-by-column
# this is expensive as it splits the blocks items-by-item
def f(m, v, i):
if dtypes == 'infer':
dtype = 'infer'
else:
raise AssertionError("dtypes as dict is not supported yet")
if dtype is not None:
v = maybe_downcast_to_dtype(v, dtype)
return v
return self.split_and_operate(None, f, False)
def astype(self, dtype, copy=False, errors='raise', values=None, **kwargs):
return self._astype(dtype, copy=copy, errors=errors, values=values,
**kwargs)
def _astype(self, dtype, copy=False, errors='raise', values=None,
**kwargs):
"""Coerce to the new type
Parameters
----------
dtype : str, dtype convertible
copy : boolean, default False
copy if indicated
errors : str, {'raise', 'ignore'}, default 'ignore'
- ``raise`` : allow exceptions to be raised
- ``ignore`` : suppress exceptions. On error return original object
Returns
-------
Block
"""
errors_legal_values = ('raise', 'ignore')
if errors not in errors_legal_values:
invalid_arg = ("Expected value of kwarg 'errors' to be one of {}. "
"Supplied value is '{}'".format(
list(errors_legal_values), errors))
raise ValueError(invalid_arg)
if (inspect.isclass(dtype) and
issubclass(dtype, (PandasExtensionDtype, ExtensionDtype))):
msg = ("Expected an instance of {}, but got the class instead. "
"Try instantiating 'dtype'.".format(dtype.__name__))
raise TypeError(msg)
# may need to convert to categorical
if self.is_categorical_astype(dtype):
# deprecated 17636
if ('categories' in kwargs or 'ordered' in kwargs):
if isinstance(dtype, CategoricalDtype):
raise TypeError(
"Cannot specify a CategoricalDtype and also "
"`categories` or `ordered`. Use "
"`dtype=CategoricalDtype(categories, ordered)`"
" instead.")
warnings.warn("specifying 'categories' or 'ordered' in "
".astype() is deprecated; pass a "
"CategoricalDtype instead",
FutureWarning, stacklevel=7)
categories = kwargs.get('categories', None)
ordered = kwargs.get('ordered', None)
if com._any_not_none(categories, ordered):
dtype = CategoricalDtype(categories, ordered)
if is_categorical_dtype(self.values):
# GH 10696/18593: update an existing categorical efficiently
return self.make_block(self.values.astype(dtype, copy=copy))
return self.make_block(Categorical(self.values, dtype=dtype))
# convert dtypes if needed
dtype = pandas_dtype(dtype)
# astype processing
if is_dtype_equal(self.dtype, dtype):
if copy:
return self.copy()
return self
klass = None
if is_sparse(self.values):
# special case sparse, Series[Sparse].astype(object) is sparse
klass = ExtensionBlock
elif is_object_dtype(dtype):
klass = ObjectBlock
elif is_extension_array_dtype(dtype):
klass = ExtensionBlock
try:
# force the copy here
if values is None:
if self.is_extension:
values = self.values.astype(dtype)
else:
if issubclass(dtype.type,
(compat.text_type, compat.string_types)):
# use native type formatting for datetime/tz/timedelta
if self.is_datelike:
values = self.to_native_types()
# astype formatting
else:
values = self.get_values()
else:
values = self.get_values(dtype=dtype)
# _astype_nansafe works fine with 1-d only
values = astype_nansafe(values.ravel(), dtype, copy=True)
# TODO(extension)
# should we make this attribute?
try:
values = values.reshape(self.shape)
except AttributeError:
pass
newb = make_block(values, placement=self.mgr_locs,
klass=klass, ndim=self.ndim)
except Exception: # noqa: E722
if errors == 'raise':
raise
newb = self.copy() if copy else self
if newb.is_numeric and self.is_numeric:
if newb.shape != self.shape:
raise TypeError(
"cannot set astype for copy = [{copy}] for dtype "
"({dtype} [{shape}]) to different shape "
"({newb_dtype} [{newb_shape}])".format(
copy=copy, dtype=self.dtype.name,
shape=self.shape, newb_dtype=newb.dtype.name,
newb_shape=newb.shape))
return newb
def convert(self, copy=True, **kwargs):
""" attempt to coerce any object types to better types return a copy
of the block (if copy = True) by definition we are not an ObjectBlock
here!
"""
return self.copy() if copy else self
def _can_hold_element(self, element):
""" require the same dtype as ourselves """
dtype = self.values.dtype.type
tipo = maybe_infer_dtype_type(element)
if tipo is not None:
return issubclass(tipo.type, dtype)
return isinstance(element, dtype)
def _try_cast_result(self, result, dtype=None):
""" try to cast the result to our original type, we may have
roundtripped thru object in the mean-time
"""
if dtype is None:
dtype = self.dtype
if self.is_integer or self.is_bool or self.is_datetime:
pass
elif self.is_float and result.dtype == self.dtype:
# protect against a bool/object showing up here
if isinstance(dtype, compat.string_types) and dtype == 'infer':
return result
if not isinstance(dtype, type):
dtype = dtype.type
if issubclass(dtype, (np.bool_, np.object_)):
if issubclass(dtype, np.bool_):
if isna(result).all():
return result.astype(np.bool_)
else:
result = result.astype(np.object_)
result[result == 1] = True
result[result == 0] = False
return result
else:
return result.astype(np.object_)
return result
# may need to change the dtype here
return maybe_downcast_to_dtype(result, dtype)
def _try_coerce_args(self, values, other):
""" provide coercion to our input arguments """
if np.any(notna(other)) and not self._can_hold_element(other):
# coercion issues
# let higher levels handle
raise TypeError("cannot convert {} to an {}".format(
type(other).__name__,
type(self).__name__.lower().replace('Block', '')))
return values, other
def _try_coerce_result(self, result):
""" reverse of try_coerce_args """
return result
def _try_coerce_and_cast_result(self, result, dtype=None):
result = self._try_coerce_result(result)
result = self._try_cast_result(result, dtype=dtype)
return result
def to_native_types(self, slicer=None, na_rep='nan', quoting=None,
**kwargs):
""" convert to our native types format, slicing if desired """
values = self.get_values()
if slicer is not None:
values = values[:, slicer]
mask = isna(values)
if not self.is_object and not quoting:
values = values.astype(str)
else:
values = np.array(values, dtype='object')
values[mask] = na_rep
return values
# block actions ####
def copy(self, deep=True):
""" copy constructor """
values = self.values
if deep:
values = values.copy()
return self.make_block_same_class(values)
def replace(self, to_replace, value, inplace=False, filter=None,
regex=False, convert=True):
"""replace the to_replace value with value, possible to create new
blocks here this is just a call to putmask. regex is not used here.
It is used in ObjectBlocks. It is here for API compatibility.
"""
inplace = validate_bool_kwarg(inplace, 'inplace')
original_to_replace = to_replace
# try to replace, if we raise an error, convert to ObjectBlock and
# retry
try:
values, to_replace = self._try_coerce_args(self.values,
to_replace)
mask = missing.mask_missing(values, to_replace)
if filter is not None:
filtered_out = ~self.mgr_locs.isin(filter)
mask[filtered_out.nonzero()[0]] = False
blocks = self.putmask(mask, value, inplace=inplace)
if convert:
blocks = [b.convert(by_item=True, numeric=False,
copy=not inplace) for b in blocks]
return blocks
except (TypeError, ValueError):
# GH 22083, TypeError or ValueError occurred within error handling
# causes infinite loop. Cast and retry only if not objectblock.
if is_object_dtype(self):
raise
# try again with a compatible block
block = self.astype(object)
return block.replace(to_replace=original_to_replace,
value=value,
inplace=inplace,
filter=filter,
regex=regex,
convert=convert)
def _replace_single(self, *args, **kwargs):
""" no-op on a non-ObjectBlock """
return self if kwargs['inplace'] else self.copy()
def setitem(self, indexer, value):
"""Set the value inplace, returning a a maybe different typed block.
Parameters
----------
indexer : tuple, list-like, array-like, slice
The subset of self.values to set
value : object
The value being set
Returns
-------
Block
Notes
-----
`indexer` is a direct slice/positional indexer. `value` must
be a compatible shape.
"""
# coerce None values, if appropriate
if value is None:
if self.is_numeric:
value = np.nan
# coerce if block dtype can store value
values = self.values
try:
values, value = self._try_coerce_args(values, value)
# can keep its own dtype
if hasattr(value, 'dtype') and is_dtype_equal(values.dtype,
value.dtype):
dtype = self.dtype
else:
dtype = 'infer'
except (TypeError, ValueError):
# current dtype cannot store value, coerce to common dtype
find_dtype = False
if hasattr(value, 'dtype'):
dtype = value.dtype
find_dtype = True
elif lib.is_scalar(value):
if isna(value):
# NaN promotion is handled in latter path
dtype = False
else:
dtype, _ = infer_dtype_from_scalar(value,
pandas_dtype=True)
find_dtype = True
else:
dtype = 'infer'
if find_dtype:
dtype = find_common_type([values.dtype, dtype])
if not is_dtype_equal(self.dtype, dtype):
b = self.astype(dtype)
return b.setitem(indexer, value)
# value must be storeable at this moment
arr_value = np.array(value)
# cast the values to a type that can hold nan (if necessary)
if not self._can_hold_element(value):
dtype, _ = maybe_promote(arr_value.dtype)
values = values.astype(dtype)
transf = (lambda x: x.T) if self.ndim == 2 else (lambda x: x)
values = transf(values)
# length checking
check_setitem_lengths(indexer, value, values)
def _is_scalar_indexer(indexer):
# return True if we are all scalar indexers
if arr_value.ndim == 1:
if not isinstance(indexer, tuple):
indexer = tuple([indexer])
return any(isinstance(idx, np.ndarray) and len(idx) == 0
for idx in indexer)
return False
def _is_empty_indexer(indexer):
# return a boolean if we have an empty indexer
if is_list_like(indexer) and not len(indexer):
return True
if arr_value.ndim == 1:
if not isinstance(indexer, tuple):
indexer = tuple([indexer])
return any(isinstance(idx, np.ndarray) and len(idx) == 0
for idx in indexer)
return False
# empty indexers
# 8669 (empty)
if _is_empty_indexer(indexer):
pass
# setting a single element for each dim and with a rhs that could
# be say a list
# GH 6043
elif _is_scalar_indexer(indexer):
values[indexer] = value
# if we are an exact match (ex-broadcasting),
# then use the resultant dtype
elif (len(arr_value.shape) and
arr_value.shape[0] == values.shape[0] and
np.prod(arr_value.shape) == np.prod(values.shape)):
values[indexer] = value
try:
values = values.astype(arr_value.dtype)
except ValueError:
pass
# set
else:
values[indexer] = value
# coerce and try to infer the dtypes of the result
values = self._try_coerce_and_cast_result(values, dtype)
block = self.make_block(transf(values))
return block
def putmask(self, mask, new, align=True, inplace=False, axis=0,
transpose=False):
""" putmask the data to the block; it is possible that we may create a
new dtype of block
return the resulting block(s)
Parameters
----------
mask : the condition to respect
new : a ndarray/object
align : boolean, perform alignment on other/cond, default is True
inplace : perform inplace modification, default is False
axis : int
transpose : boolean
Set to True if self is stored with axes reversed
Returns
-------
a list of new blocks, the result of the putmask
"""
new_values = self.values if inplace else self.values.copy()
new = getattr(new, 'values', new)
mask = getattr(mask, 'values', mask)
# if we are passed a scalar None, convert it here
if not is_list_like(new) and isna(new) and not self.is_object:
new = self.fill_value
if self._can_hold_element(new):
_, new = self._try_coerce_args(new_values, new)
if transpose:
new_values = new_values.T
# If the default repeat behavior in np.putmask would go in the
# wrong direction, then explicitly repeat and reshape new instead
if getattr(new, 'ndim', 0) >= 1:
if self.ndim - 1 == new.ndim and axis == 1:
new = np.repeat(
new, new_values.shape[-1]).reshape(self.shape)
new = new.astype(new_values.dtype)
# we require exact matches between the len of the
# values we are setting (or is compat). np.putmask
# doesn't check this and will simply truncate / pad
# the output, but we want sane error messages
#
# TODO: this prob needs some better checking
# for 2D cases
if ((is_list_like(new) and
np.any(mask[mask]) and
getattr(new, 'ndim', 1) == 1)):
if not (mask.shape[-1] == len(new) or
mask[mask].shape[-1] == len(new) or
len(new) == 1):
raise ValueError("cannot assign mismatch "
"length to masked array")
np.putmask(new_values, mask, new)
# maybe upcast me
elif mask.any():
if transpose:
mask = mask.T
if isinstance(new, np.ndarray):
new = new.T
axis = new_values.ndim - axis - 1
# Pseudo-broadcast
if getattr(new, 'ndim', 0) >= 1:
if self.ndim - 1 == new.ndim:
new_shape = list(new.shape)
new_shape.insert(axis, 1)
new = new.reshape(tuple(new_shape))
# operate column-by-column
def f(m, v, i):
if i is None:
# ndim==1 case.
n = new
else:
if isinstance(new, np.ndarray):
n = np.squeeze(new[i % new.shape[0]])
else:
n = np.array(new)
# type of the new block
dtype, _ = maybe_promote(n.dtype)
# we need to explicitly astype here to make a copy
n = n.astype(dtype)
nv = _putmask_smart(v, m, n)
return nv
new_blocks = self.split_and_operate(mask, f, inplace)
return new_blocks
if inplace:
return [self]
if transpose:
new_values = new_values.T
return [self.make_block(new_values)]
def coerce_to_target_dtype(self, other):
"""
coerce the current block to a dtype compat for other
we will return a block, possibly object, and not raise
we can also safely try to coerce to the same dtype
and will receive the same block
"""
# if we cannot then coerce to object
dtype, _ = infer_dtype_from(other, pandas_dtype=True)
if is_dtype_equal(self.dtype, dtype):
return self
if self.is_bool or is_object_dtype(dtype) or is_bool_dtype(dtype):
# we don't upcast to bool
return self.astype(object)
elif ((self.is_float or self.is_complex) and
(is_integer_dtype(dtype) or is_float_dtype(dtype))):
# don't coerce float/complex to int
return self
elif (self.is_datetime or
is_datetime64_dtype(dtype) or
is_datetime64tz_dtype(dtype)):
# not a datetime
if not ((is_datetime64_dtype(dtype) or
is_datetime64tz_dtype(dtype)) and self.is_datetime):
return self.astype(object)
# don't upcast timezone with different timezone or no timezone
mytz = getattr(self.dtype, 'tz', None)
othertz = getattr(dtype, 'tz', None)
if str(mytz) != str(othertz):
return self.astype(object)
raise AssertionError("possible recursion in "
"coerce_to_target_dtype: {} {}".format(
self, other))
elif (self.is_timedelta or is_timedelta64_dtype(dtype)):
# not a timedelta
if not (is_timedelta64_dtype(dtype) and self.is_timedelta):
return self.astype(object)
raise AssertionError("possible recursion in "
"coerce_to_target_dtype: {} {}".format(
self, other))
try:
return self.astype(dtype)
except (ValueError, TypeError):
pass
return self.astype(object)
def interpolate(self, method='pad', axis=0, index=None, values=None,
inplace=False, limit=None, limit_direction='forward',
limit_area=None, fill_value=None, coerce=False,
downcast=None, **kwargs):
inplace = validate_bool_kwarg(inplace, 'inplace')
def check_int_bool(self, inplace):
# Only FloatBlocks will contain NaNs.
# timedelta subclasses IntBlock
if (self.is_bool or self.is_integer) and not self.is_timedelta:
if inplace:
return self
else:
return self.copy()
# a fill na type method
try:
m = missing.clean_fill_method(method)
except ValueError:
m = None
if m is not None:
r = check_int_bool(self, inplace)
if r is not None:
return r
return self._interpolate_with_fill(method=m, axis=axis,
inplace=inplace, limit=limit,
fill_value=fill_value,
coerce=coerce,
downcast=downcast)
# try an interp method
try:
m = missing.clean_interp_method(method, **kwargs)
except ValueError:
m = None
if m is not None:
r = check_int_bool(self, inplace)
if r is not None:
return r
return self._interpolate(method=m, index=index, values=values,
axis=axis, limit=limit,
limit_direction=limit_direction,
limit_area=limit_area,
fill_value=fill_value, inplace=inplace,
downcast=downcast, **kwargs)
raise ValueError("invalid method '{0}' to interpolate.".format(method))
def _interpolate_with_fill(self, method='pad', axis=0, inplace=False,
limit=None, fill_value=None, coerce=False,
downcast=None):
""" fillna but using the interpolate machinery """
inplace = validate_bool_kwarg(inplace, 'inplace')
# if we are coercing, then don't force the conversion
# if the block can't hold the type
if coerce:
if not self._can_hold_na:
if inplace:
return [self]
else:
return [self.copy()]
values = self.values if inplace else self.values.copy()
values, fill_value = self._try_coerce_args(values, fill_value)
values = missing.interpolate_2d(values, method=method, axis=axis,
limit=limit, fill_value=fill_value,
dtype=self.dtype)
values = self._try_coerce_result(values)
blocks = [self.make_block_same_class(values, ndim=self.ndim)]
return self._maybe_downcast(blocks, downcast)
def _interpolate(self, method=None, index=None, values=None,
fill_value=None, axis=0, limit=None,
limit_direction='forward', limit_area=None,
inplace=False, downcast=None, **kwargs):
""" interpolate using scipy wrappers """
inplace = validate_bool_kwarg(inplace, 'inplace')
data = self.values if inplace else self.values.copy()
# only deal with floats
if not self.is_float:
if not self.is_integer:
return self
data = data.astype(np.float64)
if fill_value is None:
fill_value = self.fill_value
if method in ('krogh', 'piecewise_polynomial', 'pchip'):
if not index.is_monotonic:
raise ValueError("{0} interpolation requires that the "
"index be monotonic.".format(method))
# process 1-d slices in the axis direction
def func(x):
# process a 1-d slice, returning it
# should the axis argument be handled below in apply_along_axis?
# i.e. not an arg to missing.interpolate_1d
return missing.interpolate_1d(index, x, method=method, limit=limit,
limit_direction=limit_direction,
limit_area=limit_area,
fill_value=fill_value,
bounds_error=False, **kwargs)
# interp each column independently
interp_values = np.apply_along_axis(func, axis, data)
blocks = [self.make_block_same_class(interp_values)]
return self._maybe_downcast(blocks, downcast)
def take_nd(self, indexer, axis, new_mgr_locs=None, fill_tuple=None):
"""
Take values according to indexer and return them as a block.bb
"""
# algos.take_nd dispatches for DatetimeTZBlock, CategoricalBlock
# so need to preserve types
# sparse is treated like an ndarray, but needs .get_values() shaping
values = self.values
if self.is_sparse:
values = self.get_values()
if fill_tuple is None:
fill_value = self.fill_value
new_values = algos.take_nd(values, indexer, axis=axis,
allow_fill=False, fill_value=fill_value)
else:
fill_value = fill_tuple[0]
new_values = algos.take_nd(values, indexer, axis=axis,
allow_fill=True, fill_value=fill_value)
if new_mgr_locs is None:
if axis == 0:
slc = libinternals.indexer_as_slice(indexer)
if slc is not None:
new_mgr_locs = self.mgr_locs[slc]
else:
new_mgr_locs = self.mgr_locs[indexer]
else:
new_mgr_locs = self.mgr_locs
if not is_dtype_equal(new_values.dtype, self.dtype):
return self.make_block(new_values, new_mgr_locs)
else:
return self.make_block_same_class(new_values, new_mgr_locs)
def diff(self, n, axis=1):
""" return block for the diff of the values """
new_values = algos.diff(self.values, n, axis=axis)
return [self.make_block(values=new_values)]
def shift(self, periods, axis=0, fill_value=None):
""" shift the block by periods, possibly upcast """
# convert integer to float if necessary. need to do a lot more than
# that, handle boolean etc also
new_values, fill_value = maybe_upcast(self.values, fill_value)
# make sure array sent to np.roll is c_contiguous
f_ordered = new_values.flags.f_contiguous
if f_ordered:
new_values = new_values.T
axis = new_values.ndim - axis - 1
if np.prod(new_values.shape):
new_values = np.roll(new_values, ensure_platform_int(periods),
axis=axis)
axis_indexer = [slice(None)] * self.ndim
if periods > 0:
axis_indexer[axis] = slice(None, periods)
else:
axis_indexer[axis] = slice(periods, None)
new_values[tuple(axis_indexer)] = fill_value
# restore original order
if f_ordered:
new_values = new_values.T
return [self.make_block(new_values)]
def where(self, other, cond, align=True, errors='raise',
try_cast=False, axis=0, transpose=False):
"""
evaluate the block; return result block(s) from the result
Parameters
----------
other : a ndarray/object
cond : the condition to respect
align : boolean, perform alignment on other/cond
errors : str, {'raise', 'ignore'}, default 'raise'
- ``raise`` : allow exceptions to be raised
- ``ignore`` : suppress exceptions. On error return original object
axis : int
transpose : boolean
Set to True if self is stored with axes reversed
Returns
-------
a new block(s), the result of the func
"""
import pandas.core.computation.expressions as expressions
assert errors in ['raise', 'ignore']
values = self.values
orig_other = other
if transpose:
values = values.T
other = getattr(other, '_values', getattr(other, 'values', other))
cond = getattr(cond, 'values', cond)
# If the default broadcasting would go in the wrong direction, then
# explicitly reshape other instead
if getattr(other, 'ndim', 0) >= 1:
if values.ndim - 1 == other.ndim and axis == 1:
other = other.reshape(tuple(other.shape + (1, )))
elif transpose and values.ndim == self.ndim - 1:
cond = cond.T
if not hasattr(cond, 'shape'):
raise ValueError("where must have a condition that is ndarray "
"like")
# our where function
def func(cond, values, other):
if cond.ravel().all():
return values
values, other = self._try_coerce_args(values, other)
try:
return self._try_coerce_result(expressions.where(
cond, values, other))
except Exception as detail:
if errors == 'raise':
raise TypeError(
'Could not operate [{other!r}] with block values '
'[{detail!s}]'.format(other=other, detail=detail))
else:
# return the values
result = np.empty(values.shape, dtype='float64')
result.fill(np.nan)
return result
# see if we can operate on the entire block, or need item-by-item
# or if we are a single block (ndim == 1)
try:
result = func(cond, values, other)
except TypeError:
# we cannot coerce, return a compat dtype
# we are explicitly ignoring errors
block = self.coerce_to_target_dtype(other)
blocks = block.where(orig_other, cond, align=align,
errors=errors,
try_cast=try_cast, axis=axis,
transpose=transpose)
return self._maybe_downcast(blocks, 'infer')
if self._can_hold_na or self.ndim == 1:
if transpose:
result = result.T
# try to cast if requested
if try_cast:
result = self._try_cast_result(result)
return self.make_block(result)
# might need to separate out blocks
axis = cond.ndim - 1
cond = cond.swapaxes(axis, 0)
mask = np.array([cond[i].all() for i in range(cond.shape[0])],
dtype=bool)
result_blocks = []
for m in [mask, ~mask]:
if m.any():
r = self._try_cast_result(result.take(m.nonzero()[0],
axis=axis))
result_blocks.append(
self.make_block(r.T, placement=self.mgr_locs[m]))
return result_blocks
def equals(self, other):
if self.dtype != other.dtype or self.shape != other.shape:
return False
return array_equivalent(self.values, other.values)
def _unstack(self, unstacker_func, new_columns, n_rows, fill_value):
"""Return a list of unstacked blocks of self
Parameters
----------
unstacker_func : callable
Partially applied unstacker.
new_columns : Index
All columns of the unstacked BlockManager.
n_rows : int
Only used in ExtensionBlock.unstack
fill_value : int
Only used in ExtensionBlock.unstack
Returns
-------
blocks : list of Block
New blocks of unstacked values.
mask : array_like of bool
The mask of columns of `blocks` we should keep.
"""
unstacker = unstacker_func(self.values.T)
new_items = unstacker.get_new_columns()
new_placement = new_columns.get_indexer(new_items)
new_values, mask = unstacker.get_new_values()
mask = mask.any(0)
new_values = new_values.T[mask]
new_placement = new_placement[mask]
blocks = [make_block(new_values, placement=new_placement)]
return blocks, mask
def quantile(self, qs, interpolation='linear', axis=0):
"""
compute the quantiles of the
Parameters
----------
qs: a scalar or list of the quantiles to be computed
interpolation: type of interpolation, default 'linear'
axis: axis to compute, default 0
Returns
-------
Block
"""
if self.is_datetimetz:
# TODO: cleanup this special case.
# We need to operate on i8 values for datetimetz
# but `Block.get_values()` returns an ndarray of objects
# right now. We need an API for "values to do numeric-like ops on"
values = self.values.asi8
# TODO: NonConsolidatableMixin shape
# Usual shape inconsistencies for ExtensionBlocks
if self.ndim > 1:
values = values[None, :]
else:
values = self.get_values()
values, _ = self._try_coerce_args(values, values)
is_empty = values.shape[axis] == 0
orig_scalar = not is_list_like(qs)
if orig_scalar:
# make list-like, unpack later
qs = [qs]
if is_empty:
if self.ndim == 1:
result = self._na_value
else:
# create the array of na_values
# 2d len(values) * len(qs)
result = np.repeat(np.array([self.fill_value] * len(qs)),
len(values)).reshape(len(values),
len(qs))
else:
# asarray needed for Sparse, see GH#24600
# TODO: Why self.values and not values?
mask = np.asarray(isna(self.values))
result = nanpercentile(values, np.array(qs) * 100,
axis=axis, na_value=self.fill_value,
mask=mask, ndim=self.ndim,
interpolation=interpolation)
result = np.array(result, copy=False)
if self.ndim > 1:
result = result.T
if orig_scalar and not lib.is_scalar(result):
# result could be scalar in case with is_empty and self.ndim == 1
assert result.shape[-1] == 1, result.shape
result = result[..., 0]
result = lib.item_from_zerodim(result)
ndim = getattr(result, 'ndim', None) or 0
result = self._try_coerce_result(result)
return make_block(result,
placement=np.arange(len(result)),
ndim=ndim)
def _replace_coerce(self, to_replace, value, inplace=True, regex=False,
convert=False, mask=None):
"""
Replace value corresponding to the given boolean array with another
value.
Parameters
----------
to_replace : object or pattern
Scalar to replace or regular expression to match.
value : object
Replacement object.
inplace : bool, default False
Perform inplace modification.
regex : bool, default False
If true, perform regular expression substitution.
convert : bool, default True
If true, try to coerce any object types to better types.
mask : array-like of bool, optional
True indicate corresponding element is ignored.
Returns
-------
A new block if there is anything to replace or the original block.
"""
if mask.any():
if not regex:
self = self.coerce_to_target_dtype(value)
return self.putmask(mask, value, inplace=inplace)
else:
return self._replace_single(to_replace, value, inplace=inplace,
regex=regex,
convert=convert,
mask=mask)
return self
class NonConsolidatableMixIn(object):
""" hold methods for the nonconsolidatable blocks """
_can_consolidate = False
_verify_integrity = False
_validate_ndim = False
def __init__(self, values, placement, ndim=None):
"""Initialize a non-consolidatable block.
'ndim' may be inferred from 'placement'.
This will call continue to call __init__ for the other base
classes mixed in with this Mixin.
"""
# Placement must be converted to BlockPlacement so that we can check
# its length
if not isinstance(placement, libinternals.BlockPlacement):
placement = libinternals.BlockPlacement(placement)
# Maybe infer ndim from placement
if ndim is None:
if len(placement) != 1:
ndim = 1
else:
ndim = 2
super(NonConsolidatableMixIn, self).__init__(values, placement,
ndim=ndim)
@property
def shape(self):
if self.ndim == 1:
return (len(self.values)),
return (len(self.mgr_locs), len(self.values))
def iget(self, col):
if self.ndim == 2 and isinstance(col, tuple):
col, loc = col
if not com.is_null_slice(col) and col != 0:
raise IndexError("{0} only contains one item".format(self))
return self.values[loc]
else:
if col != 0:
raise IndexError("{0} only contains one item".format(self))
return self.values
def should_store(self, value):
return isinstance(value, self._holder)
def set(self, locs, values, check=False):
assert locs.tolist() == [0]
self.values = values
def putmask(self, mask, new, align=True, inplace=False, axis=0,
transpose=False):
"""
putmask the data to the block; we must be a single block and not
generate other blocks
return the resulting block
Parameters
----------
mask : the condition to respect
new : a ndarray/object
align : boolean, perform alignment on other/cond, default is True
inplace : perform inplace modification, default is False
Returns
-------
a new block, the result of the putmask
"""
inplace = validate_bool_kwarg(inplace, 'inplace')
# use block's copy logic.
# .values may be an Index which does shallow copy by default
new_values = self.values if inplace else self.copy().values
new_values, new = self._try_coerce_args(new_values, new)
if isinstance(new, np.ndarray) and len(new) == len(mask):
new = new[mask]
mask = _safe_reshape(mask, new_values.shape)
new_values[mask] = new
new_values = self._try_coerce_result(new_values)
return [self.make_block(values=new_values)]
def _try_cast_result(self, result, dtype=None):
return result
def _get_unstack_items(self, unstacker, new_columns):
"""
Get the placement, values, and mask for a Block unstack.
This is shared between ObjectBlock and ExtensionBlock. They
differ in that ObjectBlock passes the values, while ExtensionBlock
passes the dummy ndarray of positions to be used by a take
later.
Parameters
----------
unstacker : pandas.core.reshape.reshape._Unstacker
new_columns : Index
All columns of the unstacked BlockManager.
Returns
-------
new_placement : ndarray[int]
The placement of the new columns in `new_columns`.
new_values : Union[ndarray, ExtensionArray]
The first return value from _Unstacker.get_new_values.
mask : ndarray[bool]
The second return value from _Unstacker.get_new_values.
"""
# shared with ExtensionBlock
new_items = unstacker.get_new_columns()
new_placement = new_columns.get_indexer(new_items)
new_values, mask = unstacker.get_new_values()
mask = mask.any(0)
return new_placement, new_values, mask
class ExtensionBlock(NonConsolidatableMixIn, Block):
"""Block for holding extension types.
Notes
-----
This holds all 3rd-party extension array types. It's also the immediate
parent class for our internal extension types' blocks, CategoricalBlock.
ExtensionArrays are limited to 1-D.
"""
is_extension = True
def __init__(self, values, placement, ndim=None):
values = self._maybe_coerce_values(values)
super(ExtensionBlock, self).__init__(values, placement, ndim)
def _maybe_coerce_values(self, values):
"""Unbox to an extension array.
This will unbox an ExtensionArray stored in an Index or Series.
ExtensionArrays pass through. No dtype coercion is done.
Parameters
----------
values : Index, Series, ExtensionArray
Returns
-------
ExtensionArray
"""
if isinstance(values, (ABCIndexClass, ABCSeries)):
values = values._values
return values
@property
def _holder(self):
# For extension blocks, the holder is values-dependent.
return type(self.values)
@property
def fill_value(self):
# Used in reindex_indexer
return self.values.dtype.na_value
@property
def _can_hold_na(self):
# The default ExtensionArray._can_hold_na is True
return self._holder._can_hold_na
@property
def is_view(self):
"""Extension arrays are never treated as views."""
return False
@property
def is_numeric(self):
return self.values.dtype._is_numeric
def setitem(self, indexer, value):
"""Set the value inplace, returning a same-typed block.
This differs from Block.setitem by not allowing setitem to change
the dtype of the Block.
Parameters
----------
indexer : tuple, list-like, array-like, slice
The subset of self.values to set
value : object
The value being set
Returns
-------
Block
Notes
-----
`indexer` is a direct slice/positional indexer. `value` must
be a compatible shape.
"""
if isinstance(indexer, tuple):
# we are always 1-D
indexer = indexer[0]
check_setitem_lengths(indexer, value, self.values)
self.values[indexer] = value
return self
def get_values(self, dtype=None):
# ExtensionArrays must be iterable, so this works.
values = np.asarray(self.values)
if values.ndim == self.ndim - 1:
values = values.reshape((1,) + values.shape)
return values
def to_dense(self):
return np.asarray(self.values)
def take_nd(self, indexer, axis=0, new_mgr_locs=None, fill_tuple=None):
"""
Take values according to indexer and return them as a block.
"""
if fill_tuple is None:
fill_value = None
else:
fill_value = fill_tuple[0]
# axis doesn't matter; we are really a single-dim object
# but are passed the axis depending on the calling routing
# if its REALLY axis 0, then this will be a reindex and not a take
new_values = self.values.take(indexer, fill_value=fill_value,
allow_fill=True)
if self.ndim == 1 and new_mgr_locs is None:
new_mgr_locs = [0]
else:
if new_mgr_locs is None:
new_mgr_locs = self.mgr_locs
return self.make_block_same_class(new_values, new_mgr_locs)
def _can_hold_element(self, element):
# XXX: We may need to think about pushing this onto the array.
# We're doing the same as CategoricalBlock here.
return True
def _slice(self, slicer):
""" return a slice of my values """
# slice the category
# return same dims as we currently have
if isinstance(slicer, tuple) and len(slicer) == 2:
if not com.is_null_slice(slicer[0]):
raise AssertionError("invalid slicing for a 1-ndim "
"categorical")
slicer = slicer[1]
return self.values[slicer]
def formatting_values(self):
# Deprecating the ability to override _formatting_values.
# Do the warning here, it's only user in pandas, since we
# have to check if the subclass overrode it.
fv = getattr(type(self.values), '_formatting_values', None)
if fv and fv != ExtensionArray._formatting_values:
msg = (
"'ExtensionArray._formatting_values' is deprecated. "
"Specify 'ExtensionArray._formatter' instead."
)
warnings.warn(msg, DeprecationWarning, stacklevel=10)
return self.values._formatting_values()
return self.values
def concat_same_type(self, to_concat, placement=None):
"""
Concatenate list of single blocks of the same type.
"""
values = self._holder._concat_same_type(
[blk.values for blk in to_concat])
placement = placement or slice(0, len(values), 1)
return self.make_block_same_class(values, ndim=self.ndim,
placement=placement)
def fillna(self, value, limit=None, inplace=False, downcast=None):
values = self.values if inplace else self.values.copy()
values = values.fillna(value=value, limit=limit)
return [self.make_block_same_class(values=values,
placement=self.mgr_locs,
ndim=self.ndim)]
def interpolate(self, method='pad', axis=0, inplace=False, limit=None,
fill_value=None, **kwargs):
values = self.values if inplace else self.values.copy()
return self.make_block_same_class(
values=values.fillna(value=fill_value, method=method,
limit=limit),
placement=self.mgr_locs)
def shift(self, periods, axis=0, fill_value=None):
"""
Shift the block by `periods`.
Dispatches to underlying ExtensionArray and re-boxes in an
ExtensionBlock.
"""
# type: (int, Optional[BlockPlacement]) -> List[ExtensionBlock]
return [
self.make_block_same_class(
self.values.shift(periods=periods, fill_value=fill_value),
placement=self.mgr_locs, ndim=self.ndim)
]
def where(self, other, cond, align=True, errors='raise',
try_cast=False, axis=0, transpose=False):
if isinstance(other, ABCDataFrame):
# ExtensionArrays are 1-D, so if we get here then
# `other` should be a DataFrame with a single column.
assert other.shape[1] == 1
other = other.iloc[:, 0]
other = extract_array(other, extract_numpy=True)
if isinstance(cond, ABCDataFrame):
assert cond.shape[1] == 1
cond = cond.iloc[:, 0]
cond = extract_array(cond, extract_numpy=True)
if lib.is_scalar(other) and isna(other):
# The default `other` for Series / Frame is np.nan
# we want to replace that with the correct NA value
# for the type
other = self.dtype.na_value
if is_sparse(self.values):
# TODO(SparseArray.__setitem__): remove this if condition
# We need to re-infer the type of the data after doing the
# where, for cases where the subtypes don't match
dtype = None
else:
dtype = self.dtype
try:
result = self.values.copy()
icond = ~cond
if lib.is_scalar(other):
result[icond] = other
else:
result[icond] = other[icond]
except (NotImplementedError, TypeError):
# NotImplementedError for class not implementing `__setitem__`
# TypeError for SparseArray, which implements just to raise
# a TypeError
result = self._holder._from_sequence(
np.where(cond, self.values, other),
dtype=dtype,
)
return self.make_block_same_class(result, placement=self.mgr_locs)
@property
def _ftype(self):
return getattr(self.values, '_pandas_ftype', Block._ftype)
def _unstack(self, unstacker_func, new_columns, n_rows, fill_value):
# ExtensionArray-safe unstack.
# We override ObjectBlock._unstack, which unstacks directly on the
# values of the array. For EA-backed blocks, this would require
# converting to a 2-D ndarray of objects.
# Instead, we unstack an ndarray of integer positions, followed by
# a `take` on the actual values.
dummy_arr = np.arange(n_rows)
dummy_unstacker = functools.partial(unstacker_func, fill_value=-1)
unstacker = dummy_unstacker(dummy_arr)
new_placement, new_values, mask = self._get_unstack_items(
unstacker, new_columns
)
blocks = [
self.make_block_same_class(
self.values.take(indices, allow_fill=True,
fill_value=fill_value),
[place])
for indices, place in zip(new_values.T, new_placement)
]
return blocks, mask
class ObjectValuesExtensionBlock(ExtensionBlock):
"""
Block providing backwards-compatibility for `.values`.
Used by PeriodArray and IntervalArray to ensure that
Series[T].values is an ndarray of objects.
"""
def external_values(self, dtype=None):
return self.values.astype(object)
class NumericBlock(Block):
__slots__ = ()
is_numeric = True
_can_hold_na = True
class FloatOrComplexBlock(NumericBlock):
__slots__ = ()
def equals(self, other):
if self.dtype != other.dtype or self.shape != other.shape:
return False
left, right = self.values, other.values
return ((left == right) | (np.isnan(left) & np.isnan(right))).all()
class FloatBlock(FloatOrComplexBlock):
__slots__ = ()
is_float = True
def _can_hold_element(self, element):
tipo = maybe_infer_dtype_type(element)
if tipo is not None:
return (issubclass(tipo.type, (np.floating, np.integer)) and
not issubclass(tipo.type, (np.datetime64, np.timedelta64)))
return (
isinstance(
element, (float, int, np.floating, np.int_, compat.long))
and not isinstance(element, (bool, np.bool_, datetime, timedelta,
np.datetime64, np.timedelta64)))
def to_native_types(self, slicer=None, na_rep='', float_format=None,
decimal='.', quoting=None, **kwargs):
""" convert to our native types format, slicing if desired """
values = self.values
if slicer is not None:
values = values[:, slicer]
# see gh-13418: no special formatting is desired at the
# output (important for appropriate 'quoting' behaviour),
# so do not pass it through the FloatArrayFormatter
if float_format is None and decimal == '.':
mask = isna(values)
if not quoting:
values = values.astype(str)
else:
values = np.array(values, dtype='object')
values[mask] = na_rep
return values
from pandas.io.formats.format import FloatArrayFormatter
formatter = FloatArrayFormatter(values, na_rep=na_rep,
float_format=float_format,
decimal=decimal, quoting=quoting,
fixed_width=False)
return formatter.get_result_as_array()
def should_store(self, value):
# when inserting a column should not coerce integers to floats
# unnecessarily
return (issubclass(value.dtype.type, np.floating) and
value.dtype == self.dtype)
class ComplexBlock(FloatOrComplexBlock):
__slots__ = ()
is_complex = True
def _can_hold_element(self, element):
tipo = maybe_infer_dtype_type(element)
if tipo is not None:
return issubclass(tipo.type,
(np.floating, np.integer, np.complexfloating))
return (
isinstance(
element,
(float, int, complex, np.float_, np.int_, compat.long))
and not isinstance(element, (bool, np.bool_)))
def should_store(self, value):
return issubclass(value.dtype.type, np.complexfloating)
class IntBlock(NumericBlock):
__slots__ = ()
is_integer = True
_can_hold_na = False
def _can_hold_element(self, element):
tipo = maybe_infer_dtype_type(element)
if tipo is not None:
return (issubclass(tipo.type, np.integer) and
not issubclass(tipo.type, (np.datetime64,
np.timedelta64)) and
self.dtype.itemsize >= tipo.itemsize)
return is_integer(element)
def should_store(self, value):
return is_integer_dtype(value) and value.dtype == self.dtype
class DatetimeLikeBlockMixin(object):
"""Mixin class for DatetimeBlock, DatetimeTZBlock, and TimedeltaBlock."""
@property
def _holder(self):
return DatetimeArray
@property
def _na_value(self):
return tslibs.NaT
@property
def fill_value(self):
return tslibs.iNaT
def get_values(self, dtype=None):
"""
return object dtype as boxed values, such as Timestamps/Timedelta
"""
if is_object_dtype(dtype):
values = self.values.ravel()
result = self._holder(values).astype(object)
return result.reshape(self.values.shape)
return self.values
class DatetimeBlock(DatetimeLikeBlockMixin, Block):
__slots__ = ()
is_datetime = True
_can_hold_na = True
def __init__(self, values, placement, ndim=None):
values = self._maybe_coerce_values(values)
super(DatetimeBlock, self).__init__(values,
placement=placement, ndim=ndim)
def _maybe_coerce_values(self, values):
"""Input validation for values passed to __init__. Ensure that
we have datetime64ns, coercing if necessary.
Parameters
----------
values : array-like
Must be convertible to datetime64
Returns
-------
values : ndarray[datetime64ns]
Overridden by DatetimeTZBlock.
"""
if values.dtype != _NS_DTYPE:
values = conversion.ensure_datetime64ns(values)
if isinstance(values, DatetimeArray):
values = values._data
assert isinstance(values, np.ndarray), type(values)
return values
def _astype(self, dtype, **kwargs):
"""
these automatically copy, so copy=True has no effect
raise on an except if raise == True
"""
dtype = pandas_dtype(dtype)
# if we are passed a datetime64[ns, tz]
if is_datetime64tz_dtype(dtype):
values = self.values
if getattr(values, 'tz', None) is None:
values = DatetimeIndex(values).tz_localize('UTC')
values = values.tz_convert(dtype.tz)
return self.make_block(values)
# delegate
return super(DatetimeBlock, self)._astype(dtype=dtype, **kwargs)
def _can_hold_element(self, element):
tipo = maybe_infer_dtype_type(element)
if tipo is not None:
return tipo == _NS_DTYPE or tipo == np.int64
return (is_integer(element) or isinstance(element, datetime) or
isna(element))
def _try_coerce_args(self, values, other):
"""
Coerce values and other to dtype 'i8'. NaN and NaT convert to
the smallest i8, and will correctly round-trip to NaT if converted
back in _try_coerce_result. values is always ndarray-like, other
may not be
Parameters
----------
values : ndarray-like
other : ndarray-like or scalar
Returns
-------
base-type values, base-type other
"""
values = values.view('i8')
if isinstance(other, bool):
raise TypeError
elif is_null_datetimelike(other):
other = tslibs.iNaT
elif isinstance(other, (datetime, np.datetime64, date)):
other = self._box_func(other)
if getattr(other, 'tz') is not None:
raise TypeError("cannot coerce a Timestamp with a tz on a "
"naive Block")
other = other.asm8.view('i8')
elif hasattr(other, 'dtype') and is_datetime64_dtype(other):
other = other.astype('i8', copy=False).view('i8')
else:
# coercion issues
# let higher levels handle
raise TypeError(other)
return values, other
def _try_coerce_result(self, result):
""" reverse of try_coerce_args """
if isinstance(result, np.ndarray):
if result.dtype.kind in ['i', 'f']:
result = result.astype('M8[ns]')
elif isinstance(result, (np.integer, np.float, np.datetime64)):
result = self._box_func(result)
return result
@property
def _box_func(self):
return tslibs.Timestamp
def to_native_types(self, slicer=None, na_rep=None, date_format=None,
quoting=None, **kwargs):
""" convert to our native types format, slicing if desired """
values = self.values
i8values = self.values.view('i8')
if slicer is not None:
i8values = i8values[..., slicer]
from pandas.io.formats.format import _get_format_datetime64_from_values
fmt = _get_format_datetime64_from_values(values, date_format)
result = tslib.format_array_from_datetime(
i8values.ravel(), tz=getattr(self.values, 'tz', None),
format=fmt, na_rep=na_rep).reshape(i8values.shape)
return np.atleast_2d(result)
def should_store(self, value):
return (issubclass(value.dtype.type, np.datetime64) and
not is_datetime64tz_dtype(value) and
not is_extension_array_dtype(value))
def set(self, locs, values):
"""
Modify Block in-place with new item value
Returns
-------
None
"""
values = conversion.ensure_datetime64ns(values, copy=False)
self.values[locs] = values
def external_values(self):
return np.asarray(self.values.astype('datetime64[ns]', copy=False))
class DatetimeTZBlock(ExtensionBlock, DatetimeBlock):
""" implement a datetime64 block with a tz attribute """
__slots__ = ()
is_datetimetz = True
is_extension = True
@property
def _holder(self):
return DatetimeArray
def _maybe_coerce_values(self, values):
"""Input validation for values passed to __init__. Ensure that
we have datetime64TZ, coercing if necessary.
Parametetrs
-----------
values : array-like
Must be convertible to datetime64
Returns
-------
values : DatetimeArray
"""
if not isinstance(values, self._holder):
values = self._holder(values)
if values.tz is None:
raise ValueError("cannot create a DatetimeTZBlock without a tz")
return values
@property
def is_view(self):
""" return a boolean if I am possibly a view """
# check the ndarray values of the DatetimeIndex values
return self.values._data.base is not None
def copy(self, deep=True):
""" copy constructor """
values = self.values
if deep:
values = values.copy(deep=True)
return self.make_block_same_class(values)
def get_values(self, dtype=None):
"""
Returns an ndarray of values.
Parameters
----------
dtype : np.dtype
Only `object`-like dtypes are respected here (not sure
why).
Returns
-------
values : ndarray
When ``dtype=object``, then and object-dtype ndarray of
boxed values is returned. Otherwise, an M8[ns] ndarray
is returned.
DatetimeArray is always 1-d. ``get_values`` will reshape
the return value to be the same dimensionality as the
block.
"""
values = self.values
if is_object_dtype(dtype):
values = values._box_values(values._data)
values = np.asarray(values)
if self.ndim == 2:
# Ensure that our shape is correct for DataFrame.
# ExtensionArrays are always 1-D, even in a DataFrame when
# the analogous NumPy-backed column would be a 2-D ndarray.
values = values.reshape(1, -1)
return values
def to_dense(self):
# we request M8[ns] dtype here, even though it discards tzinfo,
# as lots of code (e.g. anything using values_from_object)
# expects that behavior.
return np.asarray(self.values, dtype=_NS_DTYPE)
def _slice(self, slicer):
""" return a slice of my values """
if isinstance(slicer, tuple):
col, loc = slicer
if not com.is_null_slice(col) and col != 0:
raise IndexError("{0} only contains one item".format(self))
return self.values[loc]
return self.values[slicer]
def _try_coerce_args(self, values, other):
"""
localize and return i8 for the values
Parameters
----------
values : ndarray-like
other : ndarray-like or scalar
Returns
-------
base-type values, base-type other
"""
# asi8 is a view, needs copy
values = _block_shape(values.view("i8"), ndim=self.ndim)
if isinstance(other, ABCSeries):
other = self._holder(other)
if isinstance(other, bool):
raise TypeError
elif is_datetime64_dtype(other):
# add the tz back
other = self._holder(other, dtype=self.dtype)
elif is_null_datetimelike(other):
other = tslibs.iNaT
elif isinstance(other, self._holder):
if other.tz != self.values.tz:
raise ValueError("incompatible or non tz-aware value")
other = _block_shape(other.asi8, ndim=self.ndim)
elif isinstance(other, (np.datetime64, datetime, date)):
other = tslibs.Timestamp(other)
tz = getattr(other, 'tz', None)
# test we can have an equal time zone
if tz is None or str(tz) != str(self.values.tz):
raise ValueError("incompatible or non tz-aware value")
other = other.value
else:
raise TypeError(other)
return values, other
def _try_coerce_result(self, result):
""" reverse of try_coerce_args """
if isinstance(result, np.ndarray):
if result.dtype.kind in ['i', 'f']:
result = result.astype('M8[ns]')
elif isinstance(result, (np.integer, np.float, np.datetime64)):
result = self._box_func(result)
if isinstance(result, np.ndarray):
# allow passing of > 1dim if its trivial
if result.ndim > 1:
result = result.reshape(np.prod(result.shape))
# GH#24096 new values invalidates a frequency
result = self._holder._simple_new(result, freq=None,
dtype=self.values.dtype)
return result
@property
def _box_func(self):
return lambda x: tslibs.Timestamp(x, tz=self.dtype.tz)
def diff(self, n, axis=0):
"""1st discrete difference
Parameters
----------
n : int, number of periods to diff
axis : int, axis to diff upon. default 0
Return
------
A list with a new TimeDeltaBlock.
Note
----
The arguments here are mimicking shift so they are called correctly
by apply.
"""
if axis == 0:
# Cannot currently calculate diff across multiple blocks since this
# function is invoked via apply
raise NotImplementedError
new_values = (self.values - self.shift(n, axis=axis)[0].values).asi8
# Reshape the new_values like how algos.diff does for timedelta data
new_values = new_values.reshape(1, len(new_values))
new_values = new_values.astype('timedelta64[ns]')
return [TimeDeltaBlock(new_values, placement=self.mgr_locs.indexer)]
def concat_same_type(self, to_concat, placement=None):
# need to handle concat([tz1, tz2]) here, since DatetimeArray
# only handles cases where all the tzs are the same.
# Instead of placing the condition here, it could also go into the
# is_uniform_join_units check, but I'm not sure what is better.
if len({x.dtype for x in to_concat}) > 1:
values = _concat._concat_datetime([x.values for x in to_concat])
placement = placement or slice(0, len(values), 1)
if self.ndim > 1:
values = np.atleast_2d(values)
return ObjectBlock(values, ndim=self.ndim, placement=placement)
return super(DatetimeTZBlock, self).concat_same_type(to_concat,
placement)
def fillna(self, value, limit=None, inplace=False, downcast=None):
# We support filling a DatetimeTZ with a `value` whose timezone
# is different by coercing to object.
try:
return super(DatetimeTZBlock, self).fillna(
value, limit, inplace, downcast
)
except (ValueError, TypeError):
# different timezones, or a non-tz
return self.astype(object).fillna(
value, limit=limit, inplace=inplace, downcast=downcast
)
def setitem(self, indexer, value):
# https://github.com/pandas-dev/pandas/issues/24020
# Need a dedicated setitem until #24020 (type promotion in setitem
# for extension arrays) is designed and implemented.
try:
return super(DatetimeTZBlock, self).setitem(indexer, value)
except (ValueError, TypeError):
newb = make_block(self.values.astype(object),
placement=self.mgr_locs,
klass=ObjectBlock,)
return newb.setitem(indexer, value)
def equals(self, other):
# override for significant performance improvement
if self.dtype != other.dtype or self.shape != other.shape:
return False
return (self.values.view('i8') == other.values.view('i8')).all()
class TimeDeltaBlock(DatetimeLikeBlockMixin, IntBlock):
__slots__ = ()
is_timedelta = True
_can_hold_na = True
is_numeric = False
def __init__(self, values, placement, ndim=None):
if values.dtype != _TD_DTYPE:
values = conversion.ensure_timedelta64ns(values)
if isinstance(values, TimedeltaArray):
values = values._data
assert isinstance(values, np.ndarray), type(values)
super(TimeDeltaBlock, self).__init__(values,
placement=placement, ndim=ndim)
@property
def _holder(self):
return TimedeltaArray
@property
def _box_func(self):
return lambda x: Timedelta(x, unit='ns')
def _can_hold_element(self, element):
tipo = maybe_infer_dtype_type(element)
if tipo is not None:
return issubclass(tipo.type, (np.timedelta64, np.int64))
return is_integer(element) or isinstance(
element, (timedelta, np.timedelta64, np.int64))
def fillna(self, value, **kwargs):
# allow filling with integers to be
# interpreted as nanoseconds
if is_integer(value) and not isinstance(value, np.timedelta64):
# Deprecation GH#24694, GH#19233
warnings.warn("Passing integers to fillna is deprecated, will "
"raise a TypeError in a future version. To retain "
"the old behavior, pass pd.Timedelta(seconds=n) "
"instead.",
FutureWarning, stacklevel=6)
value = Timedelta(value, unit='s')
return super(TimeDeltaBlock, self).fillna(value, **kwargs)
def _try_coerce_args(self, values, other):
"""
Coerce values and other to int64, with null values converted to
iNaT. values is always ndarray-like, other may not be
Parameters
----------
values : ndarray-like
other : ndarray-like or scalar
Returns
-------
base-type values, base-type other
"""
values = values.view('i8')
if isinstance(other, bool):
raise TypeError
elif is_null_datetimelike(other):
other = tslibs.iNaT
elif isinstance(other, (timedelta, np.timedelta64)):
other = Timedelta(other).value
elif hasattr(other, 'dtype') and is_timedelta64_dtype(other):
other = other.astype('i8', copy=False).view('i8')
else:
# coercion issues
# let higher levels handle
raise TypeError(other)
return values, other
def _try_coerce_result(self, result):
""" reverse of try_coerce_args / try_operate """
if isinstance(result, np.ndarray):
mask = isna(result)
if result.dtype.kind in ['i', 'f']:
result = result.astype('m8[ns]')
result[mask] = tslibs.iNaT
elif isinstance(result, (np.integer, np.float)):
result = self._box_func(result)
return result
def should_store(self, value):
return (issubclass(value.dtype.type, np.timedelta64) and
not is_extension_array_dtype(value))
def to_native_types(self, slicer=None, na_rep=None, quoting=None,
**kwargs):
""" convert to our native types format, slicing if desired """
values = self.values
if slicer is not None:
values = values[:, slicer]
mask = isna(values)
rvalues = np.empty(values.shape, dtype=object)
if na_rep is None:
na_rep = 'NaT'
rvalues[mask] = na_rep
imask = (~mask).ravel()
# FIXME:
# should use the formats.format.Timedelta64Formatter here
# to figure what format to pass to the Timedelta
# e.g. to not show the decimals say
rvalues.flat[imask] = np.array([Timedelta(val)._repr_base(format='all')
for val in values.ravel()[imask]],
dtype=object)
return rvalues
def external_values(self, dtype=None):
return np.asarray(self.values.astype("timedelta64[ns]", copy=False))
class BoolBlock(NumericBlock):
__slots__ = ()
is_bool = True
_can_hold_na = False
def _can_hold_element(self, element):
tipo = maybe_infer_dtype_type(element)
if tipo is not None:
return issubclass(tipo.type, np.bool_)
return isinstance(element, (bool, np.bool_))
def should_store(self, value):
return (issubclass(value.dtype.type, np.bool_) and not
is_extension_array_dtype(value))
def replace(self, to_replace, value, inplace=False, filter=None,
regex=False, convert=True):
inplace = validate_bool_kwarg(inplace, 'inplace')
to_replace_values = np.atleast_1d(to_replace)
if not np.can_cast(to_replace_values, bool):
return self
return super(BoolBlock, self).replace(to_replace, value,
inplace=inplace, filter=filter,
regex=regex, convert=convert)
class ObjectBlock(Block):
__slots__ = ()
is_object = True
_can_hold_na = True
def __init__(self, values, placement=None, ndim=2):
if issubclass(values.dtype.type, compat.string_types):
values = np.array(values, dtype=object)
super(ObjectBlock, self).__init__(values, ndim=ndim,
placement=placement)
@property
def is_bool(self):
""" we can be a bool if we have only bool values but are of type
object
"""
return lib.is_bool_array(self.values.ravel())
# TODO: Refactor when convert_objects is removed since there will be 1 path
def convert(self, *args, **kwargs):
""" attempt to coerce any object types to better types return a copy of
the block (if copy = True) by definition we ARE an ObjectBlock!!!!!
can return multiple blocks!
"""
if args:
raise NotImplementedError
by_item = kwargs.get('by_item', True)
new_inputs = ['coerce', 'datetime', 'numeric', 'timedelta']
new_style = False
for kw in new_inputs:
new_style |= kw in kwargs
if new_style:
fn = soft_convert_objects
fn_inputs = new_inputs
else:
fn = maybe_convert_objects
fn_inputs = ['convert_dates', 'convert_numeric',
'convert_timedeltas']
fn_inputs += ['copy']
fn_kwargs = {key: kwargs[key] for key in fn_inputs if key in kwargs}
# operate column-by-column
def f(m, v, i):
shape = v.shape
values = fn(v.ravel(), **fn_kwargs)
try:
values = values.reshape(shape)
values = _block_shape(values, ndim=self.ndim)
except (AttributeError, NotImplementedError):
pass
return values
if by_item and not self._is_single_block:
blocks = self.split_and_operate(None, f, False)
else:
values = f(None, self.values.ravel(), None)
blocks = [make_block(values, ndim=self.ndim,
placement=self.mgr_locs)]
return blocks
def set(self, locs, values):
"""
Modify Block in-place with new item value
Returns
-------
None
"""
try:
self.values[locs] = values
except (ValueError):
# broadcasting error
# see GH6171
new_shape = list(values.shape)
new_shape[0] = len(self.items)
self.values = np.empty(tuple(new_shape), dtype=self.dtype)
self.values.fill(np.nan)
self.values[locs] = values
def _maybe_downcast(self, blocks, downcast=None):
if downcast is not None:
return blocks
# split and convert the blocks
return _extend_blocks([b.convert(datetime=True, numeric=False)
for b in blocks])
def _can_hold_element(self, element):
return True
def _try_coerce_args(self, values, other):
""" provide coercion to our input arguments """
if isinstance(other, ABCDatetimeIndex):
# May get a DatetimeIndex here. Unbox it.
other = other.array
if isinstance(other, DatetimeArray):
# hit in pandas/tests/indexing/test_coercion.py
# ::TestWhereCoercion::test_where_series_datetime64[datetime64tz]
# when falling back to ObjectBlock.where
other = other.astype(object)
return values, other
def should_store(self, value):
return not (issubclass(value.dtype.type,
(np.integer, np.floating, np.complexfloating,
np.datetime64, np.bool_)) or
# TODO(ExtensionArray): remove is_extension_type
# when all extension arrays have been ported.
is_extension_type(value) or
is_extension_array_dtype(value))
def replace(self, to_replace, value, inplace=False, filter=None,
regex=False, convert=True):
to_rep_is_list = is_list_like(to_replace)
value_is_list = is_list_like(value)
both_lists = to_rep_is_list and value_is_list
either_list = to_rep_is_list or value_is_list
result_blocks = []
blocks = [self]
if not either_list and is_re(to_replace):
return self._replace_single(to_replace, value, inplace=inplace,
filter=filter, regex=True,
convert=convert)
elif not (either_list or regex):
return super(ObjectBlock, self).replace(to_replace, value,
inplace=inplace,
filter=filter, regex=regex,
convert=convert)
elif both_lists:
for to_rep, v in zip(to_replace, value):
result_blocks = []
for b in blocks:
result = b._replace_single(to_rep, v, inplace=inplace,
filter=filter, regex=regex,
convert=convert)
result_blocks = _extend_blocks(result, result_blocks)
blocks = result_blocks
return result_blocks
elif to_rep_is_list and regex:
for to_rep in to_replace:
result_blocks = []
for b in blocks:
result = b._replace_single(to_rep, value, inplace=inplace,
filter=filter, regex=regex,
convert=convert)
result_blocks = _extend_blocks(result, result_blocks)
blocks = result_blocks
return result_blocks
return self._replace_single(to_replace, value, inplace=inplace,
filter=filter, convert=convert,
regex=regex)
def _replace_single(self, to_replace, value, inplace=False, filter=None,
regex=False, convert=True, mask=None):
"""
Replace elements by the given value.
Parameters
----------
to_replace : object or pattern
Scalar to replace or regular expression to match.
value : object
Replacement object.
inplace : bool, default False
Perform inplace modification.
filter : list, optional
regex : bool, default False
If true, perform regular expression substitution.
convert : bool, default True
If true, try to coerce any object types to better types.
mask : array-like of bool, optional
True indicate corresponding element is ignored.
Returns
-------
a new block, the result after replacing
"""
inplace = validate_bool_kwarg(inplace, 'inplace')
# to_replace is regex compilable
to_rep_re = regex and is_re_compilable(to_replace)
# regex is regex compilable
regex_re = is_re_compilable(regex)
# only one will survive
if to_rep_re and regex_re:
raise AssertionError('only one of to_replace and regex can be '
'regex compilable')
# if regex was passed as something that can be a regex (rather than a
# boolean)
if regex_re:
to_replace = regex
regex = regex_re or to_rep_re
# try to get the pattern attribute (compiled re) or it's a string
try:
pattern = to_replace.pattern
except AttributeError:
pattern = to_replace
# if the pattern is not empty and to_replace is either a string or a
# regex
if regex and pattern:
rx = re.compile(to_replace)
else:
# if the thing to replace is not a string or compiled regex call
# the superclass method -> to_replace is some kind of object
return super(ObjectBlock, self).replace(to_replace, value,
inplace=inplace,
filter=filter, regex=regex)
new_values = self.values if inplace else self.values.copy()
# deal with replacing values with objects (strings) that match but
# whose replacement is not a string (numeric, nan, object)
if isna(value) or not isinstance(value, compat.string_types):
def re_replacer(s):
try:
return value if rx.search(s) is not None else s
except TypeError:
return s
else:
# value is guaranteed to be a string here, s can be either a string
# or null if it's null it gets returned
def re_replacer(s):
try:
return rx.sub(value, s)
except TypeError:
return s
f = np.vectorize(re_replacer, otypes=[self.dtype])
if filter is None:
filt = slice(None)
else:
filt = self.mgr_locs.isin(filter).nonzero()[0]
if mask is None:
new_values[filt] = f(new_values[filt])
else:
new_values[filt][mask] = f(new_values[filt][mask])
# convert
block = self.make_block(new_values)
if convert:
block = block.convert(by_item=True, numeric=False)
return block
def _replace_coerce(self, to_replace, value, inplace=True, regex=False,
convert=False, mask=None):
"""
Replace value corresponding to the given boolean array with another
value.
Parameters
----------
to_replace : object or pattern
Scalar to replace or regular expression to match.
value : object
Replacement object.
inplace : bool, default False
Perform inplace modification.
regex : bool, default False
If true, perform regular expression substitution.
convert : bool, default True
If true, try to coerce any object types to better types.
mask : array-like of bool, optional
True indicate corresponding element is ignored.
Returns
-------
A new block if there is anything to replace or the original block.
"""
if mask.any():
block = super(ObjectBlock, self)._replace_coerce(
to_replace=to_replace, value=value, inplace=inplace,
regex=regex, convert=convert, mask=mask)
if convert:
block = [b.convert(by_item=True, numeric=False, copy=True)
for b in block]
return block
return self
class CategoricalBlock(ExtensionBlock):
__slots__ = ()
is_categorical = True
_verify_integrity = True
_can_hold_na = True
_concatenator = staticmethod(_concat._concat_categorical)
def __init__(self, values, placement, ndim=None):
from pandas.core.arrays.categorical import _maybe_to_categorical
# coerce to categorical if we can
super(CategoricalBlock, self).__init__(_maybe_to_categorical(values),
placement=placement,
ndim=ndim)
@property
def _holder(self):
return Categorical
@property
def array_dtype(self):
""" the dtype to return if I want to construct this block as an
array
"""
return np.object_
def _try_coerce_result(self, result):
""" reverse of try_coerce_args """
# GH12564: CategoricalBlock is 1-dim only
# while returned results could be any dim
if ((not is_categorical_dtype(result)) and
isinstance(result, np.ndarray)):
result = _block_shape(result, ndim=self.ndim)
return result
def to_dense(self):
# Categorical.get_values returns a DatetimeIndex for datetime
# categories, so we can't simply use `np.asarray(self.values)` like
# other types.
return self.values.get_values()
def to_native_types(self, slicer=None, na_rep='', quoting=None, **kwargs):
""" convert to our native types format, slicing if desired """
values = self.values
if slicer is not None:
# Categorical is always one dimension
values = values[slicer]
mask = isna(values)
values = np.array(values, dtype='object')
values[mask] = na_rep
# we are expected to return a 2-d ndarray
return values.reshape(1, len(values))
def concat_same_type(self, to_concat, placement=None):
"""
Concatenate list of single blocks of the same type.
Note that this CategoricalBlock._concat_same_type *may* not
return a CategoricalBlock. When the categories in `to_concat`
differ, this will return an object ndarray.
If / when we decide we don't like that behavior:
1. Change Categorical._concat_same_type to use union_categoricals
2. Delete this method.
"""
values = self._concatenator([blk.values for blk in to_concat],
axis=self.ndim - 1)
# not using self.make_block_same_class as values can be object dtype
return make_block(
values, placement=placement or slice(0, len(values), 1),
ndim=self.ndim)
def where(self, other, cond, align=True, errors='raise',
try_cast=False, axis=0, transpose=False):
# TODO(CategoricalBlock.where):
# This can all be deleted in favor of ExtensionBlock.where once
# we enforce the deprecation.
object_msg = (
"Implicitly converting categorical to object-dtype ndarray. "
"One or more of the values in 'other' are not present in this "
"categorical's categories. A future version of pandas will raise "
"a ValueError when 'other' contains different categories.\n\n"
"To preserve the current behavior, add the new categories to "
"the categorical before calling 'where', or convert the "
"categorical to a different dtype."
)
try:
# Attempt to do preserve categorical dtype.
result = super(CategoricalBlock, self).where(
other, cond, align, errors, try_cast, axis, transpose
)
except (TypeError, ValueError):
warnings.warn(object_msg, FutureWarning, stacklevel=6)
result = self.astype(object).where(other, cond, align=align,
errors=errors,
try_cast=try_cast,
axis=axis, transpose=transpose)
return result
# -----------------------------------------------------------------
# Constructor Helpers
def get_block_type(values, dtype=None):
"""
Find the appropriate Block subclass to use for the given values and dtype.
Parameters
----------
values : ndarray-like
dtype : numpy or pandas dtype
Returns
-------
cls : class, subclass of Block
"""
dtype = dtype or values.dtype
vtype = dtype.type
if is_sparse(dtype):
# Need this first(ish) so that Sparse[datetime] is sparse
cls = ExtensionBlock
elif is_categorical(values):
cls = CategoricalBlock
elif issubclass(vtype, np.datetime64):
assert not is_datetime64tz_dtype(values)
cls = DatetimeBlock
elif is_datetime64tz_dtype(values):
cls = DatetimeTZBlock
elif is_interval_dtype(dtype) or is_period_dtype(dtype):
cls = ObjectValuesExtensionBlock
elif is_extension_array_dtype(values):
cls = ExtensionBlock
elif issubclass(vtype, np.floating):
cls = FloatBlock
elif issubclass(vtype, np.timedelta64):
assert issubclass(vtype, np.integer)
cls = TimeDeltaBlock
elif issubclass(vtype, np.complexfloating):
cls = ComplexBlock
elif issubclass(vtype, np.integer):
cls = IntBlock
elif dtype == np.bool_:
cls = BoolBlock
else:
cls = ObjectBlock
return cls
def make_block(values, placement, klass=None, ndim=None, dtype=None,
fastpath=None):
if fastpath is not None:
# GH#19265 pyarrow is passing this
warnings.warn("fastpath argument is deprecated, will be removed "
"in a future release.", DeprecationWarning)
if klass is None:
dtype = dtype or values.dtype
klass = get_block_type(values, dtype)
elif klass is DatetimeTZBlock and not is_datetime64tz_dtype(values):
# TODO: This is no longer hit internally; does it need to be retained
# for e.g. pyarrow?
values = DatetimeArray._simple_new(values, dtype=dtype)
return klass(values, ndim=ndim, placement=placement)
# -----------------------------------------------------------------
def _extend_blocks(result, blocks=None):
""" return a new extended blocks, givin the result """
from pandas.core.internals import BlockManager
if blocks is None:
blocks = []
if isinstance(result, list):
for r in result:
if isinstance(r, list):
blocks.extend(r)
else:
blocks.append(r)
elif isinstance(result, BlockManager):
blocks.extend(result.blocks)
else:
blocks.append(result)
return blocks
def _block_shape(values, ndim=1, shape=None):
""" guarantee the shape of the values to be at least 1 d """
if values.ndim < ndim:
if shape is None:
shape = values.shape
if not is_extension_array_dtype(values):
# TODO: https://github.com/pandas-dev/pandas/issues/23023
# block.shape is incorrect for "2D" ExtensionArrays
# We can't, and don't need to, reshape.
values = values.reshape(tuple((1, ) + shape))
return values
def _merge_blocks(blocks, dtype=None, _can_consolidate=True):
if len(blocks) == 1:
return blocks[0]
if _can_consolidate:
if dtype is None:
if len({b.dtype for b in blocks}) != 1:
raise AssertionError("_merge_blocks are invalid!")
dtype = blocks[0].dtype
# FIXME: optimization potential in case all mgrs contain slices and
# combination of those slices is a slice, too.
new_mgr_locs = np.concatenate([b.mgr_locs.as_array for b in blocks])
new_values = np.vstack([b.values for b in blocks])
argsort = np.argsort(new_mgr_locs)
new_values = new_values[argsort]
new_mgr_locs = new_mgr_locs[argsort]
return make_block(new_values, placement=new_mgr_locs)
# no merge
return blocks
def _block2d_to_blocknd(values, placement, shape, labels, ref_items):
""" pivot to the labels shape """
panel_shape = (len(placement),) + shape
# TODO: lexsort depth needs to be 2!!
# Create observation selection vector using major and minor
# labels, for converting to panel format.
selector = _factor_indexer(shape[1:], labels)
mask = np.zeros(np.prod(shape), dtype=bool)
mask.put(selector, True)
if mask.all():
pvalues = np.empty(panel_shape, dtype=values.dtype)
else:
dtype, fill_value = maybe_promote(values.dtype)
pvalues = np.empty(panel_shape, dtype=dtype)
pvalues.fill(fill_value)
for i in range(len(placement)):
pvalues[i].flat[mask] = values[:, i]
return make_block(pvalues, placement=placement)
def _safe_reshape(arr, new_shape):
"""
If possible, reshape `arr` to have shape `new_shape`,
with a couple of exceptions (see gh-13012):
1) If `arr` is a ExtensionArray or Index, `arr` will be
returned as is.
2) If `arr` is a Series, the `_values` attribute will
be reshaped and returned.
Parameters
----------
arr : array-like, object to be reshaped
new_shape : int or tuple of ints, the new shape
"""
if isinstance(arr, ABCSeries):
arr = arr._values
if not isinstance(arr, ABCExtensionArray):
arr = arr.reshape(new_shape)
return arr
def _factor_indexer(shape, labels):
"""
given a tuple of shape and a list of Categorical labels, return the
expanded label indexer
"""
mult = np.array(shape)[::-1].cumprod()[::-1]
return ensure_platform_int(
np.sum(np.array(labels).T * np.append(mult, [1]), axis=1).T)
def _putmask_smart(v, m, n):
"""
Return a new ndarray, try to preserve dtype if possible.
Parameters
----------
v : `values`, updated in-place (array like)
m : `mask`, applies to both sides (array like)
n : `new values` either scalar or an array like aligned with `values`
Returns
-------
values : ndarray with updated values
this *may* be a copy of the original
See Also
--------
ndarray.putmask
"""
# we cannot use np.asarray() here as we cannot have conversions
# that numpy does when numeric are mixed with strings
# n should be the length of the mask or a scalar here
if not is_list_like(n):
n = np.repeat(n, len(m))
elif isinstance(n, np.ndarray) and n.ndim == 0: # numpy scalar
n = np.repeat(np.array(n, ndmin=1), len(m))
# see if we are only masking values that if putted
# will work in the current dtype
try:
nn = n[m]
# make sure that we have a nullable type
# if we have nulls
if not _isna_compat(v, nn[0]):
raise ValueError
# we ignore ComplexWarning here
with warnings.catch_warnings(record=True):
warnings.simplefilter("ignore", np.ComplexWarning)
nn_at = nn.astype(v.dtype)
# avoid invalid dtype comparisons
# between numbers & strings
# only compare integers/floats
# don't compare integers to datetimelikes
if (not is_numeric_v_string_like(nn, nn_at) and
(is_float_dtype(nn.dtype) or
is_integer_dtype(nn.dtype) and
is_float_dtype(nn_at.dtype) or
is_integer_dtype(nn_at.dtype))):
comp = (nn == nn_at)
if is_list_like(comp) and comp.all():
nv = v.copy()
nv[m] = nn_at
return nv
except (ValueError, IndexError, TypeError):
pass
n = np.asarray(n)
def _putmask_preserve(nv, n):
try:
nv[m] = n[m]
except (IndexError, ValueError):
nv[m] = n
return nv
# preserves dtype if possible
if v.dtype.kind == n.dtype.kind:
return _putmask_preserve(v, n)
# change the dtype if needed
dtype, _ = maybe_promote(n.dtype)
if is_extension_type(v.dtype) and is_object_dtype(dtype):
v = v.get_values(dtype)
else:
v = v.astype(dtype)
return _putmask_preserve(v, n)
| bsd-3-clause |
ellisk42/TikZ | synthesizer.py | 1 | 30155 | from learnedRanking import learnToRank
from similarity import analyzeFeatures
from render import render
#from fastRender import fastRender
from sketch import synthesizeProgram
from language import *
from utilities import showImage,loadImage,saveMatrixAsImage,mergeDictionaries,frameImageNicely
from recognitionModel import Particle
from groundTruthParses import groundTruthSequence,getGroundTruthParse
from extrapolate import *
from DSL import *
import traceback
import re
import os
import argparse
import pickle
import time
from pathos.multiprocessing import ProcessingPool as Pool
import matplotlib.pyplot as plot
import sys
class SynthesisResult():
def __init__(self, job, time = None, source = None, program = None, cost = None):
self.job = job
self.program = program
self.time = time
self.source = source
self.cost = cost
def __str__(self):
return "SynthesisResult(%s)"%(self.job)
def exportToFile(self,f):
with open(f,"w") as handle:
handle.write("Found the following cost-%d program after %f seconds:\n%s"%
(self.cost, self.time,
self.program.pretty()))
class SynthesisJob():
def __init__(self, parse, originalDrawing, usePrior = True, maximumDepth = 3, canLoop = True, canReflect = True, incremental = False):
self.incremental = incremental
self.maximumDepth = maximumDepth
self.canLoop = canLoop
self.canReflect = canReflect
self.parse = parse
self.originalDrawing = originalDrawing
self.usePrior = usePrior
def __str__(self):
return "SynthesisJob(%s,incremental = %s,maximumD = %s,loops = %s,reflects = %s,prior = %s)"%(self.originalDrawing,
self.incremental,
self.maximumDepth,
self.canLoop,
self.canReflect,
self.usePrior)
def subsumes(self,other):
assert self.originalDrawing == other.originalDrawing
if self.incremental: return False # ??? need to understand this better...
return self.incremental == other.incremental and self.maximumDepth >= other.maximumDepth and self.canLoop >= other.canLoop and self.canReflect >= other.canReflect #and not self.incremental
def execute(self, timeout = 60, parallelSolving = 1):
if self.incremental: return self.executeIncrementally(timeout = timeout, parallelSolving = parallelSolving)
else: return self.executeJoint(timeout = timeout, parallelSolving = parallelSolving)
def executeJoint(self, timeout = 60, parallelSolving = 1):
startTime = time.time()
result = synthesizeProgram(self.parse,self.usePrior,
maximumDepth = self.maximumDepth,
canLoop = self.canLoop,
canReflect = self.canReflect,
CPUs = parallelSolving,
timeout = timeout)
elapsedTime = time.time() - startTime
return SynthesisResult(self,
time = elapsedTime,
source = result[1] if result != None else None,
cost = result[0] if result != None else None,
program = parseSketchOutput(result[1]) if result != None else None)
def executeIncrementally(self, timeout = 60, parallelSolving = 1):
jobs = {}
for l in self.parse.lines:
if isinstance(l,Circle): jobs['Circle'] = jobs.get('Circle',[]) + [l]
elif isinstance(l,Rectangle): jobs['Rectangle'] = jobs.get('Rectangle',[]) + [l]
elif isinstance(l,Line):
jobs['Line%s%s'%(l.solid,l.arrow)] = jobs.get('Line%s%s'%(l.solid,l.arrow),[]) + [l]
else: assert False
# Heuristic: try to solve the "big enough" problems first
# Break ties by absolute size
jobOrdering = sorted(jobs.keys(),key = lambda stuff: (len(stuff) < 3,len(stuff)))
jobResults = {}
startTime = time.time()
xCoefficients = set([])
yCoefficients = set([])
usedReflections = set([])
usedLoops = []
for k in jobOrdering:
print "Synthesizing for:\n",Sequence(jobs[k])
print "xCoefficients",xCoefficients
print "yCoefficients",yCoefficients
print "usedReflections",usedReflections
print "usedLoops",usedLoops
print "canLoop",self.canLoop
print "canReflect",self.canReflect
jobResults[k] = synthesizeProgram(Sequence(jobs[k]),
self.usePrior,
entireParse = self.parse,
xCoefficients = xCoefficients,
yCoefficients = yCoefficients,
usedReflections = usedReflections,
usedLoops = usedLoops,
CPUs = parallelSolving,
maximumDepth = self.maximumDepth,
canLoop = self.canLoop,
canReflect = self.canReflect,
timeout = timeout)
if jobResults[k] == None:
print " [-] Incremental synthesis failure: %s"%self
return SynthesisResult(self,
time = time.time() - startTime,
source = [ s[1] for s in jobResults.values() if s != None ],
program = None,
cost = None)
parsedOutput = parseSketchOutput(jobResults[k][1])
xs,ys = parsedOutput.usedCoefficients()
xCoefficients = xCoefficients|xs
yCoefficients = yCoefficients|ys
xr,yr = parsedOutput.usedReflections()
usedReflections = usedReflections|set([(x,0) for x in xr ])
usedReflections = usedReflections|set([(0,y) for y in yr ])
usedLoops += list(parsedOutput.usedLoops())
usedLoops = removeDuplicateStrings(usedLoops)
elapsedTime = time.time() - startTime
print "Optimizing using rewrites..."
try:
gluedTogether = Block([ x for _,result in jobResults.values()
for x in parseSketchOutput(result).items ])
optimalCost,optimalProgram = gluedTogether.optimizeUsingRewrites()
print optimalProgram.pretty()
except:
e = sys.exc_info()[0]
print " [-] Problem parsing or optimizing %s: %s"%(self.originalDrawing,e)
optimalProgram = None
optimalCost = None
return SynthesisResult(self,
time = elapsedTime,
source = [ s for _,s in jobResults.values() ],
program = optimalProgram,
cost = optimalCost)
def invokeExecuteMethod(k, timeout = 60, parallelSolving = 1):
try:
return k.execute(timeout = timeout, parallelSolving = parallelSolving)
except Exception as exception:
t = traceback.format_exc()
print "Exception while executing job:\n%s\n%s\n%s\n"%(exception,t,k)
return exception
def parallelExecute(jobs):
if arguments.cores == 1:
return map(lambda j: invokeExecuteMethod(j, timeout = arguments.timeout), jobs)
else:
return Pool(arguments.cores).map(lambda j: invokeExecuteMethod(j,timeout = arguments.timeout),jobs)
# Loads all of the particles in the directory, up to the first 200
# Returns the top K as measured by a linear combination of image distance and neural network likelihood
def loadTopParticles(directory, k):
particles = []
if directory.endswith('/'): directory = directory[:-1]
for j in range(k):
f = directory + '/particle' + str(j) + '.p'
if not os.path.isfile(f): break
particles.append(pickle.load(open(f,'rb')))
print " [+] Loaded %s"%(f)
return particles[:k]
# Synthesize based on the top k particles in drawings/expert*
# Just returns the jobs to synthesize these things
def expertSynthesisJobs(k):
jobs = []
for j in range(100):
originalDrawing = 'drawings/expert-%d.png'%j
particleDirectory = 'drawings/expert-%d-parses'%j
if not os.path.exists(originalDrawing) or not os.path.exists(particleDirectory):
continue
newJobs = []
for p in loadTopParticles(particleDirectory, k):
newJobs.append(SynthesisJob(p.sequence(), originalDrawing, usePrior = not arguments.noPrior))
# but we don't care about synthesizing if there wasn't a ground truth in them
if any([ newJob.parse == getGroundTruthParse(originalDrawing) for newJob in newJobs ]):
jobs += newJobs
return jobs
def synthesizeTopK(k):
if k == 0:
name = 'groundTruthSynthesisResults.p'
else:
name = 'top%dSynthesisResults.p'%k
jobs = expertSynthesisJobs(k) if k > 0 else []
# synthesized from the ground truth?
if k == 0:
for k in groundTruthSequence:
sequence = groundTruthSequence[k]
if all([ not (r.parse == sequence)
for r in results ]):
jobs.append(SynthesisJob(sequence,k,usePrior = True))
if arguments.noPrior:
jobs.append(SynthesisJob(sequence,k,usePrior = False))
else:
print "top jobs",len(jobs)
print "# jobs",len(jobs)
flushEverything()
results = parallelExecute(jobs) + results
with open(name,'wb') as handle:
pickle.dump(results, handle)
print "Dumped %d results to %s"%(len(results),name)
def makePolicyTrainingData():
jobs = [ SynthesisJob(getGroundTruthParse(f), f,
usePrior = True,
maximumDepth = d,
canLoop = l,
canReflect = r,
incremental = i)
for j in range(100)
for f in ['drawings/expert-%d.png'%j]
for d in [1,2,3]
for i in [True,False]
for l in [True,False]
for r in [True,False] ]
print " [+] Constructed %d job objects for the purpose of training a policy"%(len(jobs))
results = parallelExecute(jobs)
fn = 'policyTrainingData.p'
with open(fn,'wb') as handle:
pickle.dump(results, handle)
print " [+] Dumped results to %s."%fn
def viewSynthesisResults(arguments):
results = pickle.load(open(arguments.name,'rb'))
print " [+] Loaded %d synthesis results."%(len(results))
interestingExtrapolations = [7,
#14,
17,
29,
#35,
52,
57,
63,
70,
72,
88,
#99]
]
interestingExtrapolations = [(16,12),#*
#(17,0),
(18,0),#*
#(22,0),
#(23,0),
#(29,12),
#(31,27),
(34,0),#*
#(36,0),
#(38,12),
(39,0),#*
#(41,1),
#(51,1),
#(52,12),
#(57,0),
#(58,0),
(60,0),#*
#(63,0),
(66,2),#*
(71,1),#*
#(72,0),
#(73,0),
#(74,10),
#(75,5),
#(79,0),
#(85,1),
(86,0),#*
#(88,0),
(90,2),#*
#(92,0),
#(95,8)
]
#interestingExtrapolations = list(range(100))
latex = []
extrapolationMatrix = []
programFeatures = {}
for expertIndex in list(range(100)):
f = 'drawings/expert-%d.png'%expertIndex
parse = getGroundTruthParse(f)
if parse == None:
print "No ground truth for %d"%expertIndex
assert False
relevantResults = [ r for r in results if r.job.originalDrawing == f and r.cost != None ]
if relevantResults == []:
print "No synthesis result for %s"%f
result = None
else:
result = min(relevantResults, key = lambda r: r.cost)
equallyGoodResults = [ r for r in relevantResults if r.cost <= result.cost + 1 ]
if len(equallyGoodResults) > 1:
print "Got %d results for %d"%(len(equallyGoodResults),expertIndex)
programs = [ r.program.fixStringParameters().\
fixReflections(result.job.parse.canonicalTranslation()).removeDeadCode()
for r in equallyGoodResults ]
gt = result.job.parse.canonicalTranslation()
badPrograms = [ p
for p in programs
if p.convertToSequence().canonicalTranslation() != gt ]
if badPrograms:
print " [-] WARNING: Got %d programs that are inconsistent with ground truth"%(len(badPrograms))
if False:
for program in programs:
prediction = program.convertToSequence().canonicalTranslation()
actual = gt
if not (prediction == actual):
print "FATAL: program does notproduce spec"
print "Specification:"
print actual
print "Program:"
print program
print program.pretty()
print "Program output:"
print prediction
print set(map(str,prediction.lines))
print set(map(str,actual.lines))
print set(map(str,actual.lines))^set(map(str,prediction.lines))
assert False
if result == None and arguments.extrapolate:
print "Synthesis failure for %s"%f
continue
print " [+] %s"%f
print "\t(synthesis time: %s)"%(result.time if result else None)
print
if arguments.debug:
print result.source
if result != None:
syntaxTree = result.program.fixStringParameters()
syntaxTree = syntaxTree.fixReflections(result.job.parse.canonicalTranslation())
print syntaxTree.pretty()
print syntaxTree.features()
print syntaxTree.convertToSequence()
#showImage(fastRender(syntaxTree.convertToSequence()) + loadImage(f)*0.5 + fastRender(result.parse))
programFeatures[f] = syntaxTree.features()
if arguments.extrapolate:
extrapolations = proposeExtrapolations(programs)
if extrapolations:
framedExtrapolations = [1 - frameImageNicely(loadImage(f))] + \
[ frameImageNicely(t.draw(adjustCanvasSize = True))
for t in extrapolations ]
a = 255*makeImageArray(framedExtrapolations)
extrapolationMatrix.append(a)
print "Saving extrapolation column to",'extrapolations/expert-%d-extrapolation.png'%expertIndex
saveMatrixAsImage(a,'extrapolations/expert-%d-extrapolation.png'%expertIndex)
if not arguments.extrapolate:
rightEntryOfTable = '''
\\begin{minipage}{10cm}
\\begin{verbatim}
%s
\\end{verbatim}
\\end{minipage}
'''%(syntaxTree.pretty() if result != None else "Solver timeout")
else:
rightEntryOfTable = ""
if False and extrapolations != [] and arguments.extrapolate:
#print e
rightEntryOfTable = '\\includegraphics[width = 5cm]{../TikZ/extrapolations/expert-%d-extrapolation.png}'%expertIndex
if rightEntryOfTable != "":
parseImage = '\\includegraphics[width = 5cm]{../TikZ/drawings/expert-%d-parses/0.png}'%expertIndex
if not os.path.exists('drawings/expert-%d-parses/0.png'%expertIndex):
parseImage = "Sampled no finished traces."
latex.append('''
\\begin{tabular}{lll}
\\includegraphics[width = 5cm]{../TikZ/drawings/expert-%d.png}&
%s&
%s
\\end{tabular}
'''%(expertIndex, parseImage, rightEntryOfTable))
print
if arguments.latex:
latex = '%s'%("\\\\\n".join(latex))
name = "extrapolations.tex" if arguments.extrapolate else "synthesizerOutputs.tex"
with open('../TikZpaper/%s'%name,'w') as handle:
handle.write(latex)
print "Wrote output to ../TikZpaper/%s"%name
if arguments.similarity:
analyzeFeatures(programFeatures)
if arguments.extrapolate:
#}make the big matrix
bigMatrix = np.zeros((max([m.shape[0] for m in extrapolationMatrix ]),256*len(extrapolationMatrix)))
for j,r in enumerate(extrapolationMatrix):
bigMatrix[0:r.shape[0],256*j:256*(j+1)] = r
saveMatrixAsImage(bigMatrix,'extrapolations/allTheExtrapolations.png')
def rankUsingPrograms():
results = pickle.load(open(arguments.name,'rb'))
print " [+] Loaded %d synthesis results from %s."%(len(results),arguments.name)
def getProgramForParse(sequence):
for r in results:
if sequence == r.parse and r.usedPrior():
return r
return None
def featuresOfParticle(p):
r = getProgramForParse(p.sequence())
if r != None and r.cost != None and r.source != None:
programFeatures = mergeDictionaries({'failure': 0.0},
parseSketchOutput(r.source).features())
else:
programFeatures = {'failure': 1.0}
parseFeatures = {'distance': p.distance[0] + p.distance[1],
'logPrior': p.sequence().logPrior(),
'logLikelihood': p.logLikelihood}
return mergeDictionaries(parseFeatures,programFeatures)
k = arguments.learnToRank
topParticles = [loadTopParticles('drawings/expert-%d-parses'%j,k)
for j in range(100) ]
learningProblems = []
for j,ps in enumerate(topParticles):
gt = getGroundTruthParse('drawings/expert-%d.png'%j)
positives = []
negatives = []
for p in ps:
if p.sequence() == gt: positives.append(p)
else: negatives.append(p)
if positives != [] and negatives != []:
learningProblems.append((map(featuresOfParticle,positives),
map(featuresOfParticle,negatives)))
featureIndices = list(set([ f
for pn in learningProblems
for exs in pn
for ex in exs
for f in ex.keys() ]))
def dictionaryToVector(featureMap):
return [ featureMap.get(f,0.0) for f in featureIndices ]
learningProblems = [ (map(dictionaryToVector,positives), map(dictionaryToVector,negatives))
for positives,negatives in learningProblems ]
parameters = learnToRank(learningProblems)
for f,p in zip(featureIndices,parameters):
print f,p
# showcases where it succeeds
programAccuracy = 0
oldAccuracy = 0
for j,tp in enumerate(topParticles):
if tp == []: continue
gt = getGroundTruthParse('drawings/expert-%d.png'%j)
# the_top_particles_according_to_the_learned_weights
featureVectors = np.array([ dictionaryToVector(featuresOfParticle(p))
for p in tp ])
particleScores = featureVectors.dot(parameters)
bestParticleUsingPrograms = max(zip(particleScores.tolist(),tp))[1]
programPredictionCorrect = False
if bestParticleUsingPrograms.sequence() == gt:
print "Prediction using the program is correct."
programPredictionCorrect = True
programAccuracy += 1
else:
print "Prediction using the program is incorrect."
oldPredictionCorrect = tp[0].sequence() == gt
print "Was the old prediction correct?",oldPredictionCorrect
oldAccuracy += int(oldPredictionCorrect)
visualization = np.zeros((256,256*3))
visualization[:,:256] = 1 - frameImageNicely(loadImage('drawings/expert-%d.png'%j))
visualization[:,256:(256*2)] = frameImageNicely(fastRender(tp[0].sequence()))
visualization[:,(256*2):(256*3)] = frameImageNicely(fastRender(bestParticleUsingPrograms.sequence()))
visualization[:,256] = 0.5
visualization[:,256*2] = 0.5
visualization = 255*visualization
if not oldPredictionCorrect and programPredictionCorrect:
fp = "../TikZpaper/figures/programSuccess%d.png"%j
print "Great success! see %s"%fp
saveMatrixAsImage(visualization,fp)
if oldPredictionCorrect and not programPredictionCorrect:
print "Minor setback!"
print particleScores
print programAccuracy,"vs",oldAccuracy
def induceAbstractions():
results = pickle.load(open(arguments.name,'rb'))
print " [+] Loaded %d synthesis results from %s."%(len(results),arguments.name)
def getProgram(index):
for r in results:
if r.originalDrawing == 'drawings/expert-%d.png'%index:
if r.source == None: return None
return parseSketchOutput(r.source)
return None
abstractions = []
for i in range(100):
p1 = getProgram(i)
if p1 == None:
print "No synthesis result for %d"%i
continue
print "Trying to induce abstractions using:"
print p1.pretty()
for j in range(i+1,100):
p2 = getProgram(j)
if p2 == None: continue
try:
a,e = p1.abstract(p2,Environment())
print "SUCCESS:"
print p2.pretty()
print a.pretty()
abstractions.append((i,j,a,e))
except AbstractionFailure: pass
abstractionMatrix = []
for i,j,a,e in abstractions:
p = a.pretty()
if 'for ' in p:
print p,"\n"
firstProgram = a.substitute(e.firstInstantiation()).convertToSequence()
secondProgram = a.substitute(e.secondInstantiation()).convertToSequence()
allowUnattached = firstProgram.haveUnattachedLines() or secondProgram.haveUnattachedLines()
samples = []
desiredNumberOfSamples = 20
samplingAttempts = 0
while len(samples) < desiredNumberOfSamples and samplingAttempts < 10000:
samplingAttempts += 1
concrete = a.substitute(e.randomInstantiation()).convertToSequence()
if (not concrete.hasCollisions()\
and (allowUnattached or (not concrete.haveUnattachedLines())))\
or samplingAttempts > 90000:
(x0,y0,_,_) = concrete.extent()
concrete = concrete.translate(-x0 + 1,-y0 + 1)
try:
samples.append(concrete.draw())
except ZeroDivisionError: pass
samples += [np.zeros((256,256)) + 0.5]*(desiredNumberOfSamples - len(samples))
samples = [1 - loadExpert(i),1 - loadExpert(j)] + samples
print firstProgram
print firstProgram.haveUnattachedLines()
print i
print secondProgram
print secondProgram.haveUnattachedLines()
print j
showImage(np.concatenate([firstProgram.draw(),secondProgram.draw()],axis = 1))
abstractionMatrix.append(np.concatenate(samples,axis = 1))
#.showImage(np.concatenate(abstractionMatrix,axis = 0),)
saveMatrixAsImage(255*np.concatenate(abstractionMatrix,axis = 0),'abstractions.png')
def analyzeSynthesisTime():
results = pickle.load(open(arguments.name,'rb'))
print " [+] Loaded %d synthesis results from %s."%(len(results),arguments.name)
times = []
traceSizes = []
programSizes = []
for r in results:
if not hasattr(r,'time'):
print "missing time attribute...",r,r.__class__.__name__
continue
if isinstance(r.time,list): times.append(sum(r.time))
else: times.append(r.time)
traceSizes.append(len(r.parse.lines))
programSizes.append(r.cost)
successfulResults = set([r.originalDrawing for r in results if hasattr(r,'time') ])
print set(['drawings/expert-%d.png'%j for j in range(100) ]) - successfulResults
plot.subplot(211)
plot.title(arguments.name)
plot.scatter([c for c,t in zip(programSizes,times) if programSizes ],
[t for c,t in zip(programSizes,times) if programSizes ])
plot.xlabel('program cost')
plot.ylabel('synthesis time in seconds')
plot.gca().set_yscale('log')
plot.subplot(212)
plot.scatter(traceSizes,times)
plot.xlabel('# of primitives in image')
plot.ylabel('synthesis time in seconds')
plot.gca().set_yscale('log')
plot.show()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description = 'Synthesis of high-level code from low-level parses')
parser.add_argument('-f', '--file', default = None)
parser.add_argument('-m', '--cores', default = 1, type = int)
parser.add_argument('--parallelSolving', default = 1, type = int)
parser.add_argument('-n', '--name', default = "groundTruthSynthesisResults.p", type = str)
parser.add_argument('-v', '--view', default = False, action = 'store_true')
parser.add_argument('--latex', default = False, action = 'store_true')
parser.add_argument('-k','--synthesizeTopK', default = None,type = int)
parser.add_argument('-e','--extrapolate', default = False, action = 'store_true')
parser.add_argument('--noPrior', default = False, action = 'store_true')
parser.add_argument('--debug', default = False, action = 'store_true')
parser.add_argument('--similarity', default = False, action = 'store_true')
parser.add_argument('--learnToRank', default = None, type = int)
parser.add_argument('--incremental', default = False, action = 'store_true')
parser.add_argument('--abstract', default = False, action = 'store_true')
parser.add_argument('--timeout', default = 60, type = int)
parser.add_argument('--analyzeSynthesisTime', action = 'store_true')
parser.add_argument('--makePolicyTrainingData', action = 'store_true')
arguments = parser.parse_args()
if arguments.view:
viewSynthesisResults(arguments)
elif arguments.makePolicyTrainingData:
makePolicyTrainingData()
elif arguments.analyzeSynthesisTime:
analyzeSynthesisTime()
elif arguments.learnToRank != None:
rankUsingPrograms()
elif arguments.abstract:
induceAbstractions()
elif arguments.synthesizeTopK != None:
synthesizeTopK(arguments.synthesizeTopK)
elif arguments.file != None:
if "drawings/expert-%s.png"%(arguments.file) in groundTruthSequence:
j = SynthesisJob(groundTruthSequence["drawings/expert-%s.png"%(arguments.file)],'',
usePrior = not arguments.noPrior,
incremental = arguments.incremental)
print j
s = j.execute()
if arguments.incremental:
print "Sketch output for each job:"
for o in s.source:
print o
print str(parseSketchOutput(o))
print
print "Pretty printed merged output:"
print s.program.pretty()
else:
print "Parsed sketch output:"
print str(parseSketchOutput(s.source))
print s.time,'sec'
else:
j = SynthesisJob(pickle.load(open(arguments.file,'rb')).program,'',
usePrior = not arguments.noPrior,
incremental = arguments.incremental)
print j
r = j.execute(timeout = arguments.timeout,parallelSolving = arguments.parallelSolving)
print "Synthesis time:",r.time
print "Program:"
print r.program.pretty()
| gpl-3.0 |
oemof/examples | oemof_examples/oemof.solph/v0.2.x/storage_investment/v1_invest_optimize_all_technologies.py | 2 | 6732 | # -*- coding: utf-8 -*-
"""
General description
-------------------
This example shows how to perform a capacity optimization for
an energy system with storage. The following energy system is modeled:
input/output bgas bel
| | | |
| | | |
wind(FixedSource) |------------------>| |
| | | |
pv(FixedSource) |------------------>| |
| | | |
gas_resource |--------->| | |
(Commodity) | | | |
| | | |
demand(Sink) |<------------------| |
| | | |
| | | |
pp_gas(Transformer) |<---------| | |
|------------------>| |
| | | |
storage(Storage) |<------------------| |
|------------------>| |
The example exists in four variations. The following parameters describe
the main setting for the optimization variation 1:
- optimize wind, pv, gas_resource and storage
- set investment cost for wind, pv and storage
- set gas price for kWh
Results show an installation of wind and the use of the gas resource.
A renewable energy share of 51% is achieved.
Have a look at different parameter settings. There are four variations
of this example in the same folder.
Data
----
storage_investment.csv
Installation requirements
-------------------------
This example requires oemof v0.2.3 Install by:
pip install oemof
"""
###############################################################################
# Imports
###############################################################################
# Default logger of oemof
from oemof.tools import logger
from oemof.tools import economics
import oemof.solph as solph
from oemof.outputlib import processing, views
import logging
import os
import pandas as pd
import pprint as pp
number_timesteps = 8760
##########################################################################
# Initialize the energy system and read/calculate necessary parameters
##########################################################################
logger.define_logging()
logging.info('Initialize the energy system')
date_time_index = pd.date_range('1/1/2012', periods=number_timesteps,
freq='H')
energysystem = solph.EnergySystem(timeindex=date_time_index)
# Read data file
full_filename = os.path.join(os.path.dirname(__file__),
'storage_investment.csv')
data = pd.read_csv(full_filename, sep=",")
price_gas = 0.04
# If the period is one year the equivalent periodical costs (epc) of an
# investment are equal to the annuity. Use oemof's economic tools.
epc_wind = economics.annuity(capex=1000, n=20, wacc=0.05)
epc_pv = economics.annuity(capex=1000, n=20, wacc=0.05)
epc_storage = economics.annuity(capex=1000, n=20, wacc=0.05)
##########################################################################
# Create oemof objects
##########################################################################
logging.info('Create oemof objects')
# create natural gas bus
bgas = solph.Bus(label="natural_gas")
# create electricity bus
bel = solph.Bus(label="electricity")
energysystem.add(bgas, bel)
# create excess component for the electricity bus to allow overproduction
excess = solph.Sink(label='excess_bel', inputs={bel: solph.Flow()})
# create source object representing the natural gas commodity (annual limit)
gas_resource = solph.Source(label='rgas', outputs={bgas: solph.Flow(
variable_costs=price_gas)})
# create fixed source object representing wind power plants
wind = solph.Source(label='wind', outputs={bel: solph.Flow(
actual_value=data['wind'], fixed=True,
investment=solph.Investment(ep_costs=epc_wind))})
# create fixed source object representing pv power plants
pv = solph.Source(label='pv', outputs={bel: solph.Flow(
actual_value=data['pv'], fixed=True,
investment=solph.Investment(ep_costs=epc_pv))})
# create simple sink object representing the electrical demand
demand = solph.Sink(label='demand', inputs={bel: solph.Flow(
actual_value=data['demand_el'], fixed=True, nominal_value=1)})
# create simple transformer object representing a gas power plant
pp_gas = solph.Transformer(
label="pp_gas",
inputs={bgas: solph.Flow()},
outputs={bel: solph.Flow(nominal_value=10e10, variable_costs=0)},
conversion_factors={bel: 0.58})
# create storage object representing a battery
storage = solph.components.GenericStorage(
label='storage',
inputs={bel: solph.Flow(variable_costs=0.0001)},
outputs={bel: solph.Flow()},
capacity_loss=0.00, initial_capacity=0,
invest_relation_input_capacity=1/6,
invest_relation_output_capacity=1/6,
inflow_conversion_factor=1, outflow_conversion_factor=0.8,
investment=solph.Investment(ep_costs=epc_storage),
)
energysystem.add(excess, gas_resource, wind, pv, demand, pp_gas, storage)
##########################################################################
# Optimise the energy system
##########################################################################
logging.info('Optimise the energy system')
# initialise the operational model
om = solph.Model(energysystem)
# if tee_switch is true solver messages will be displayed
logging.info('Solve the optimization problem')
om.solve(solver='cbc', solve_kwargs={'tee': True})
##########################################################################
# Check and plot the results
##########################################################################
# check if the new result object is working for custom components
results = processing.results(om)
custom_storage = views.node(results, 'storage')
electricity_bus = views.node(results, 'electricity')
meta_results = processing.meta_results(om)
pp.pprint(meta_results)
my_results = electricity_bus['scalars']
# installed capacity of storage in GWh
my_results['storage_invest_GWh'] = (results[(storage, None)]
['scalars']['invest']/1e6)
# installed capacity of wind power plant in MW
my_results['wind_invest_MW'] = (results[(wind, bel)]
['scalars']['invest']/1e3)
# resulting renewable energy share
my_results['res_share'] = (1 - results[(pp_gas, bel)]
['sequences'].sum()/results[(bel, demand)]
['sequences'].sum())
pp.pprint(my_results)
| gpl-3.0 |
vossman/ctfeval | appionlib/apCtf/canny.py | 1 | 5510 | #!/usr/bin/env python
import math
import time
import numpy
import random
from scipy import ndimage
#from appionlib.apImage import imagefile
"""
adapted from:
http://code.google.com/p/python-for-matlab-users/source/browse/Examples/scipy_canny.py
"""
#=======================
#=======================
def getRadialAndAngles(shape):
## create a grid of distance from the center
xhalfshape = shape[0]/2.0
x = numpy.arange(-xhalfshape, xhalfshape, 1) + 0.5
yhalfshape = shape[1]/2.0
y = numpy.arange(-yhalfshape, yhalfshape, 1) + 0.5
xx, yy = numpy.meshgrid(x, y)
radialsq = xx**2 + yy**2 - 0.5
angles = numpy.arctan2(yy,xx)
return radialsq, angles
#=======================
#=======================
def non_maximal_edge_suppresion(mag, orient, minEdgeRadius=20, maxEdgeRadius=None):
"""
Non Maximal suppression of gradient magnitude and orientation.
"""
t0 = time.time()
## bin orientations into 4 discrete directions
abin = ((orient + math.pi) * 4 / math.pi + 0.5).astype('int') % 4
radialsq, angles = getRadialAndAngles(mag.shape)
### create circular mask
if maxEdgeRadius is None:
maxEdgeRadiusSq = radialsq[mag.shape[0]/2,mag.shape[0]/10]
else:
maxEdgeRadiusSq = maxEdgeRadius**2
outermask = numpy.where(radialsq > maxEdgeRadiusSq, False, True)
## probably a bad idea here
innermask = numpy.where(radialsq < minEdgeRadius**2, False, True)
### create directional filters to go with offsets
horz = numpy.where(numpy.abs(angles) < 3*math.pi/4., numpy.abs(angles), 0)
horz = numpy.where(horz > math.pi/4., True, False)
vert = -horz
upright = numpy.where(angles < math.pi/2, False, True)
upleft = numpy.flipud(upright)
upleft = numpy.fliplr(upleft)
upright = numpy.logical_or(upright, upleft)
upleft = -upright
# for rotational edges
filters = [horz, upleft, vert, upright]
# for radial edges
#filters = [vert, upright, horz, upleft]
offsets = ((1,0), (1,1), (0,1), (-1,1))
edge_map = numpy.zeros(mag.shape, dtype='bool')
for a in range(4):
di, dj = offsets[a]
footprint = numpy.zeros((3,3), dtype="int")
footprint[1,1] = 0
footprint[1+di,1+dj] = 1
footprint[1-di,1-dj] = 1
## get adjacent maximums
maxfilt = ndimage.maximum_filter(mag, footprint=footprint)
## select points larger than adjacent maximums
newedge_map = numpy.where(mag>maxfilt, True, False)
## filter by edge orientation
newedge_map = numpy.where(abin==a, newedge_map, False)
## filter by location
newedge_map = numpy.where(filters[a], newedge_map, False)
## add to main map
edge_map = numpy.where(newedge_map, True, edge_map)
## remove corner edges
edge_map = numpy.where(outermask, edge_map, False)
edge_map = numpy.where(innermask, edge_map, False)
#print time.time() - t0
return edge_map
#=======================
#=======================
def canny_edges(image, minedges=5000, maxedges=15000, low_thresh=50, minEdgeRadius=20, maxEdgeRadius=None):
"""
Compute Canny edge detection on an image
"""
t0 = time.time()
dx = ndimage.sobel(image,0)
dy = ndimage.sobel(image,1)
mag = numpy.hypot(dx, dy)
mag = mag / mag.max()
ort = numpy.arctan2(dy, dx)
edge_map = non_maximal_edge_suppresion(mag, ort, minEdgeRadius, maxEdgeRadius)
edge_map = numpy.logical_and(edge_map, mag > low_thresh)
labels, numlabels = ndimage.measurements.label(edge_map, numpy.ones((3,3)))
#print "labels", len(labels)
#print maxs
maxs = ndimage.measurements.maximum(mag, labels, range(1,numlabels+1))
maxs = numpy.array(maxs, dtype=numpy.float64)
high_thresh = maxs.mean()
minThresh = maxs.min()
#print time.time() - t0
edge_count = edge_map.sum()
count = 0
while count < 25:
t0 = time.time()
count += 1
maxs = ndimage.measurements.maximum(mag, labels, range(1,numlabels+1))
maxs = numpy.array(maxs, dtype=numpy.float64)
good_label = (maxs > high_thresh)
good_label = numpy.append([False, ], good_label)
numgood = good_label.sum()
if numgood == numlabels and high_thresh > minThresh:
print "ERROR"
maxs.sort()
print high_thresh
print maxs[:3], maxs[-3:]
print maxs[0], ">", high_thresh, "=", maxs[0] > high_thresh
good_label = numpy.zeros((numlabels+1,), dtype=numpy.bool)
good_label[1:] = maxs > high_thresh
print good_label[:3], good_label[-3:]
time.sleep(10)
newedge_map = good_label[labels]
#for i in range(len(maxs)):
# #if max(mag[labels==i]) < high_thresh:
# if maxs[i] < high_thresh:
# edge_map[labels==i] = False
edge_count = newedge_map.sum()
print "canny edges=%d, (thresh=%.3f) time=%.6f"%(edge_count, high_thresh, time.time() - t0)
if edge_count > maxedges:
rand = math.sqrt(random.random())
new_thresh = high_thresh / rand
# fix for too large values
#print rand, new_thresh
if new_thresh < 1.0:
high_thresh = new_thresh
else:
high_thresh = math.sqrt(high_thresh)
elif edge_count < minedges and high_thresh > minThresh:
rand = math.sqrt(random.random())
new_thresh = high_thresh * rand
#print rand, new_thresh, minThresh
high_thresh = new_thresh
else:
break
#print time.time() - t0
return newedge_map
#=======================
#=======================
#=======================
#=======================
if __name__ == "__main__":
from scipy.misc import lena
from matplotlib import pyplot
lena = lena()
image = ndimage.filters.gaussian_filter(lena, 6)
edgeimage = canny_edges(image, minedges=2500, maxedges=15000, low_thresh=0.001, minEdgeRadius=20, maxEdgeRadius=None)
pyplot.imshow(edgeimage)
pyplot.gray()
pyplot.show()
| apache-2.0 |
AIML/scikit-learn | examples/decomposition/plot_pca_iris.py | 253 | 1801 | #!/usr/bin/python
# -*- coding: utf-8 -*-
"""
=========================================================
PCA example with Iris Data-set
=========================================================
Principal Component Analysis applied to the Iris dataset.
See `here <http://en.wikipedia.org/wiki/Iris_flower_data_set>`_ for more
information on this dataset.
"""
print(__doc__)
# Code source: Gaël Varoquaux
# License: BSD 3 clause
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn import decomposition
from sklearn import datasets
np.random.seed(5)
centers = [[1, 1], [-1, -1], [1, -1]]
iris = datasets.load_iris()
X = iris.data
y = iris.target
fig = plt.figure(1, figsize=(4, 3))
plt.clf()
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)
plt.cla()
pca = decomposition.PCA(n_components=3)
pca.fit(X)
X = pca.transform(X)
for name, label in [('Setosa', 0), ('Versicolour', 1), ('Virginica', 2)]:
ax.text3D(X[y == label, 0].mean(),
X[y == label, 1].mean() + 1.5,
X[y == label, 2].mean(), name,
horizontalalignment='center',
bbox=dict(alpha=.5, edgecolor='w', facecolor='w'))
# Reorder the labels to have colors matching the cluster results
y = np.choose(y, [1, 2, 0]).astype(np.float)
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=y, cmap=plt.cm.spectral)
x_surf = [X[:, 0].min(), X[:, 0].max(),
X[:, 0].min(), X[:, 0].max()]
y_surf = [X[:, 0].max(), X[:, 0].max(),
X[:, 0].min(), X[:, 0].min()]
x_surf = np.array(x_surf)
y_surf = np.array(y_surf)
v0 = pca.transform(pca.components_[0])
v0 /= v0[-1]
v1 = pca.transform(pca.components_[1])
v1 /= v1[-1]
ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])
plt.show()
| bsd-3-clause |
gclenaghan/scikit-learn | sklearn/feature_extraction/dict_vectorizer.py | 234 | 12267 | # Authors: Lars Buitinck
# Dan Blanchard <[email protected]>
# License: BSD 3 clause
from array import array
from collections import Mapping
from operator import itemgetter
import numpy as np
import scipy.sparse as sp
from ..base import BaseEstimator, TransformerMixin
from ..externals import six
from ..externals.six.moves import xrange
from ..utils import check_array, tosequence
from ..utils.fixes import frombuffer_empty
def _tosequence(X):
"""Turn X into a sequence or ndarray, avoiding a copy if possible."""
if isinstance(X, Mapping): # single sample
return [X]
else:
return tosequence(X)
class DictVectorizer(BaseEstimator, TransformerMixin):
"""Transforms lists of feature-value mappings to vectors.
This transformer turns lists of mappings (dict-like objects) of feature
names to feature values into Numpy arrays or scipy.sparse matrices for use
with scikit-learn estimators.
When feature values are strings, this transformer will do a binary one-hot
(aka one-of-K) coding: one boolean-valued feature is constructed for each
of the possible string values that the feature can take on. For instance,
a feature "f" that can take on the values "ham" and "spam" will become two
features in the output, one signifying "f=ham", the other "f=spam".
Features that do not occur in a sample (mapping) will have a zero value
in the resulting array/matrix.
Read more in the :ref:`User Guide <dict_feature_extraction>`.
Parameters
----------
dtype : callable, optional
The type of feature values. Passed to Numpy array/scipy.sparse matrix
constructors as the dtype argument.
separator: string, optional
Separator string used when constructing new features for one-hot
coding.
sparse: boolean, optional.
Whether transform should produce scipy.sparse matrices.
True by default.
sort: boolean, optional.
Whether ``feature_names_`` and ``vocabulary_`` should be sorted when fitting.
True by default.
Attributes
----------
vocabulary_ : dict
A dictionary mapping feature names to feature indices.
feature_names_ : list
A list of length n_features containing the feature names (e.g., "f=ham"
and "f=spam").
Examples
--------
>>> from sklearn.feature_extraction import DictVectorizer
>>> v = DictVectorizer(sparse=False)
>>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}]
>>> X = v.fit_transform(D)
>>> X
array([[ 2., 0., 1.],
[ 0., 1., 3.]])
>>> v.inverse_transform(X) == \
[{'bar': 2.0, 'foo': 1.0}, {'baz': 1.0, 'foo': 3.0}]
True
>>> v.transform({'foo': 4, 'unseen_feature': 3})
array([[ 0., 0., 4.]])
See also
--------
FeatureHasher : performs vectorization using only a hash function.
sklearn.preprocessing.OneHotEncoder : handles nominal/categorical features
encoded as columns of integers.
"""
def __init__(self, dtype=np.float64, separator="=", sparse=True,
sort=True):
self.dtype = dtype
self.separator = separator
self.sparse = sparse
self.sort = sort
def fit(self, X, y=None):
"""Learn a list of feature name -> indices mappings.
Parameters
----------
X : Mapping or iterable over Mappings
Dict(s) or Mapping(s) from feature names (arbitrary Python
objects) to feature values (strings or convertible to dtype).
y : (ignored)
Returns
-------
self
"""
feature_names = []
vocab = {}
for x in X:
for f, v in six.iteritems(x):
if isinstance(v, six.string_types):
f = "%s%s%s" % (f, self.separator, v)
if f not in vocab:
feature_names.append(f)
vocab[f] = len(vocab)
if self.sort:
feature_names.sort()
vocab = dict((f, i) for i, f in enumerate(feature_names))
self.feature_names_ = feature_names
self.vocabulary_ = vocab
return self
def _transform(self, X, fitting):
# Sanity check: Python's array has no way of explicitly requesting the
# signed 32-bit integers that scipy.sparse needs, so we use the next
# best thing: typecode "i" (int). However, if that gives larger or
# smaller integers than 32-bit ones, np.frombuffer screws up.
assert array("i").itemsize == 4, (
"sizeof(int) != 4 on your platform; please report this at"
" https://github.com/scikit-learn/scikit-learn/issues and"
" include the output from platform.platform() in your bug report")
dtype = self.dtype
if fitting:
feature_names = []
vocab = {}
else:
feature_names = self.feature_names_
vocab = self.vocabulary_
# Process everything as sparse regardless of setting
X = [X] if isinstance(X, Mapping) else X
indices = array("i")
indptr = array("i", [0])
# XXX we could change values to an array.array as well, but it
# would require (heuristic) conversion of dtype to typecode...
values = []
# collect all the possible feature names and build sparse matrix at
# same time
for x in X:
for f, v in six.iteritems(x):
if isinstance(v, six.string_types):
f = "%s%s%s" % (f, self.separator, v)
v = 1
if f in vocab:
indices.append(vocab[f])
values.append(dtype(v))
else:
if fitting:
feature_names.append(f)
vocab[f] = len(vocab)
indices.append(vocab[f])
values.append(dtype(v))
indptr.append(len(indices))
if len(indptr) == 1:
raise ValueError("Sample sequence X is empty.")
indices = frombuffer_empty(indices, dtype=np.intc)
indptr = np.frombuffer(indptr, dtype=np.intc)
shape = (len(indptr) - 1, len(vocab))
result_matrix = sp.csr_matrix((values, indices, indptr),
shape=shape, dtype=dtype)
# Sort everything if asked
if fitting and self.sort:
feature_names.sort()
map_index = np.empty(len(feature_names), dtype=np.int32)
for new_val, f in enumerate(feature_names):
map_index[new_val] = vocab[f]
vocab[f] = new_val
result_matrix = result_matrix[:, map_index]
if self.sparse:
result_matrix.sort_indices()
else:
result_matrix = result_matrix.toarray()
if fitting:
self.feature_names_ = feature_names
self.vocabulary_ = vocab
return result_matrix
def fit_transform(self, X, y=None):
"""Learn a list of feature name -> indices mappings and transform X.
Like fit(X) followed by transform(X), but does not require
materializing X in memory.
Parameters
----------
X : Mapping or iterable over Mappings
Dict(s) or Mapping(s) from feature names (arbitrary Python
objects) to feature values (strings or convertible to dtype).
y : (ignored)
Returns
-------
Xa : {array, sparse matrix}
Feature vectors; always 2-d.
"""
return self._transform(X, fitting=True)
def inverse_transform(self, X, dict_type=dict):
"""Transform array or sparse matrix X back to feature mappings.
X must have been produced by this DictVectorizer's transform or
fit_transform method; it may only have passed through transformers
that preserve the number of features and their order.
In the case of one-hot/one-of-K coding, the constructed feature
names and values are returned rather than the original ones.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Sample matrix.
dict_type : callable, optional
Constructor for feature mappings. Must conform to the
collections.Mapping API.
Returns
-------
D : list of dict_type objects, length = n_samples
Feature mappings for the samples in X.
"""
# COO matrix is not subscriptable
X = check_array(X, accept_sparse=['csr', 'csc'])
n_samples = X.shape[0]
names = self.feature_names_
dicts = [dict_type() for _ in xrange(n_samples)]
if sp.issparse(X):
for i, j in zip(*X.nonzero()):
dicts[i][names[j]] = X[i, j]
else:
for i, d in enumerate(dicts):
for j, v in enumerate(X[i, :]):
if v != 0:
d[names[j]] = X[i, j]
return dicts
def transform(self, X, y=None):
"""Transform feature->value dicts to array or sparse matrix.
Named features not encountered during fit or fit_transform will be
silently ignored.
Parameters
----------
X : Mapping or iterable over Mappings, length = n_samples
Dict(s) or Mapping(s) from feature names (arbitrary Python
objects) to feature values (strings or convertible to dtype).
y : (ignored)
Returns
-------
Xa : {array, sparse matrix}
Feature vectors; always 2-d.
"""
if self.sparse:
return self._transform(X, fitting=False)
else:
dtype = self.dtype
vocab = self.vocabulary_
X = _tosequence(X)
Xa = np.zeros((len(X), len(vocab)), dtype=dtype)
for i, x in enumerate(X):
for f, v in six.iteritems(x):
if isinstance(v, six.string_types):
f = "%s%s%s" % (f, self.separator, v)
v = 1
try:
Xa[i, vocab[f]] = dtype(v)
except KeyError:
pass
return Xa
def get_feature_names(self):
"""Returns a list of feature names, ordered by their indices.
If one-of-K coding is applied to categorical features, this will
include the constructed feature names but not the original ones.
"""
return self.feature_names_
def restrict(self, support, indices=False):
"""Restrict the features to those in support using feature selection.
This function modifies the estimator in-place.
Parameters
----------
support : array-like
Boolean mask or list of indices (as returned by the get_support
member of feature selectors).
indices : boolean, optional
Whether support is a list of indices.
Returns
-------
self
Examples
--------
>>> from sklearn.feature_extraction import DictVectorizer
>>> from sklearn.feature_selection import SelectKBest, chi2
>>> v = DictVectorizer()
>>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}]
>>> X = v.fit_transform(D)
>>> support = SelectKBest(chi2, k=2).fit(X, [0, 1])
>>> v.get_feature_names()
['bar', 'baz', 'foo']
>>> v.restrict(support.get_support()) # doctest: +ELLIPSIS
DictVectorizer(dtype=..., separator='=', sort=True,
sparse=True)
>>> v.get_feature_names()
['bar', 'foo']
"""
if not indices:
support = np.where(support)[0]
names = self.feature_names_
new_vocab = {}
for i in support:
new_vocab[names[i]] = len(new_vocab)
self.vocabulary_ = new_vocab
self.feature_names_ = [f for f, i in sorted(six.iteritems(new_vocab),
key=itemgetter(1))]
return self
| bsd-3-clause |
pprett/scikit-learn | sklearn/utils/validation.py | 8 | 26078 | """Utilities for input validation"""
# Authors: Olivier Grisel
# Gael Varoquaux
# Andreas Mueller
# Lars Buitinck
# Alexandre Gramfort
# Nicolas Tresegnie
# License: BSD 3 clause
import warnings
import numbers
import numpy as np
import scipy.sparse as sp
from ..externals import six
from ..utils.fixes import signature
from ..exceptions import NonBLASDotWarning
from ..exceptions import NotFittedError
from ..exceptions import DataConversionWarning
FLOAT_DTYPES = (np.float64, np.float32, np.float16)
# Silenced by default to reduce verbosity. Turn on at runtime for
# performance profiling.
warnings.simplefilter('ignore', NonBLASDotWarning)
def _assert_all_finite(X):
"""Like assert_all_finite, but only for ndarray."""
X = np.asanyarray(X)
# First try an O(n) time, O(1) space solution for the common case that
# everything is finite; fall back to O(n) space np.isfinite to prevent
# false positives from overflow in sum method.
if (X.dtype.char in np.typecodes['AllFloat'] and not np.isfinite(X.sum())
and not np.isfinite(X).all()):
raise ValueError("Input contains NaN, infinity"
" or a value too large for %r." % X.dtype)
def assert_all_finite(X):
"""Throw a ValueError if X contains NaN or infinity.
Input MUST be an np.ndarray instance or a scipy.sparse matrix."""
_assert_all_finite(X.data if sp.issparse(X) else X)
def as_float_array(X, copy=True, force_all_finite=True):
"""Converts an array-like to an array of floats
The new dtype will be np.float32 or np.float64, depending on the original
type. The function can create a copy or modify the argument depending
on the argument copy.
Parameters
----------
X : {array-like, sparse matrix}
copy : bool, optional
If True, a copy of X will be created. If False, a copy may still be
returned if X's dtype is not a floating point type.
force_all_finite : boolean (default=True)
Whether to raise an error on np.inf and np.nan in X.
Returns
-------
XT : {array, sparse matrix}
An array of type np.float
"""
if isinstance(X, np.matrix) or (not isinstance(X, np.ndarray)
and not sp.issparse(X)):
return check_array(X, ['csr', 'csc', 'coo'], dtype=np.float64,
copy=copy, force_all_finite=force_all_finite,
ensure_2d=False)
elif sp.issparse(X) and X.dtype in [np.float32, np.float64]:
return X.copy() if copy else X
elif X.dtype in [np.float32, np.float64]: # is numpy array
return X.copy('F' if X.flags['F_CONTIGUOUS'] else 'C') if copy else X
else:
if X.dtype.kind in 'uib' and X.dtype.itemsize <= 4:
return_dtype = np.float32
else:
return_dtype = np.float64
return X.astype(return_dtype)
def _is_arraylike(x):
"""Returns whether the input is array-like"""
return (hasattr(x, '__len__') or
hasattr(x, 'shape') or
hasattr(x, '__array__'))
def _num_samples(x):
"""Return number of samples in array-like x."""
if hasattr(x, 'fit') and callable(x.fit):
# Don't get num_samples from an ensembles length!
raise TypeError('Expected sequence or array-like, got '
'estimator %s' % x)
if not hasattr(x, '__len__') and not hasattr(x, 'shape'):
if hasattr(x, '__array__'):
x = np.asarray(x)
else:
raise TypeError("Expected sequence or array-like, got %s" %
type(x))
if hasattr(x, 'shape'):
if len(x.shape) == 0:
raise TypeError("Singleton array %r cannot be considered"
" a valid collection." % x)
return x.shape[0]
else:
return len(x)
def _shape_repr(shape):
"""Return a platform independent representation of an array shape
Under Python 2, the `long` type introduces an 'L' suffix when using the
default %r format for tuples of integers (typically used to store the shape
of an array).
Under Windows 64 bit (and Python 2), the `long` type is used by default
in numpy shapes even when the integer dimensions are well below 32 bit.
The platform specific type causes string messages or doctests to change
from one platform to another which is not desirable.
Under Python 3, there is no more `long` type so the `L` suffix is never
introduced in string representation.
>>> _shape_repr((1, 2))
'(1, 2)'
>>> one = 2 ** 64 / 2 ** 64 # force an upcast to `long` under Python 2
>>> _shape_repr((one, 2 * one))
'(1, 2)'
>>> _shape_repr((1,))
'(1,)'
>>> _shape_repr(())
'()'
"""
if len(shape) == 0:
return "()"
joined = ", ".join("%d" % e for e in shape)
if len(shape) == 1:
# special notation for singleton tuples
joined += ','
return "(%s)" % joined
def check_consistent_length(*arrays):
"""Check that all arrays have consistent first dimensions.
Checks whether all objects in arrays have the same shape or length.
Parameters
----------
*arrays : list or tuple of input objects.
Objects that will be checked for consistent length.
"""
lengths = [_num_samples(X) for X in arrays if X is not None]
uniques = np.unique(lengths)
if len(uniques) > 1:
raise ValueError("Found input variables with inconsistent numbers of"
" samples: %r" % [int(l) for l in lengths])
def indexable(*iterables):
"""Make arrays indexable for cross-validation.
Checks consistent length, passes through None, and ensures that everything
can be indexed by converting sparse matrices to csr and converting
non-interable objects to arrays.
Parameters
----------
*iterables : lists, dataframes, arrays, sparse matrices
List of objects to ensure sliceability.
"""
result = []
for X in iterables:
if sp.issparse(X):
result.append(X.tocsr())
elif hasattr(X, "__getitem__") or hasattr(X, "iloc"):
result.append(X)
elif X is None:
result.append(X)
else:
result.append(np.array(X))
check_consistent_length(*result)
return result
def _ensure_sparse_format(spmatrix, accept_sparse, dtype, copy,
force_all_finite):
"""Convert a sparse matrix to a given format.
Checks the sparse format of spmatrix and converts if necessary.
Parameters
----------
spmatrix : scipy sparse matrix
Input to validate and convert.
accept_sparse : string, boolean or list/tuple of strings
String[s] representing allowed sparse matrix formats ('csc',
'csr', 'coo', 'dok', 'bsr', 'lil', 'dia'). If the input is sparse but
not in the allowed format, it will be converted to the first listed
format. True allows the input to be any format. False means
that a sparse matrix input will raise an error.
dtype : string, type or None
Data type of result. If None, the dtype of the input is preserved.
copy : boolean
Whether a forced copy will be triggered. If copy=False, a copy might
be triggered by a conversion.
force_all_finite : boolean
Whether to raise an error on np.inf and np.nan in X.
Returns
-------
spmatrix_converted : scipy sparse matrix.
Matrix that is ensured to have an allowed type.
"""
if dtype is None:
dtype = spmatrix.dtype
changed_format = False
if isinstance(accept_sparse, six.string_types):
accept_sparse = [accept_sparse]
if accept_sparse is False:
raise TypeError('A sparse matrix was passed, but dense '
'data is required. Use X.toarray() to '
'convert to a dense numpy array.')
elif isinstance(accept_sparse, (list, tuple)):
if len(accept_sparse) == 0:
raise ValueError("When providing 'accept_sparse' "
"as a tuple or list, it must contain at "
"least one string value.")
# ensure correct sparse format
if spmatrix.format not in accept_sparse:
# create new with correct sparse
spmatrix = spmatrix.asformat(accept_sparse[0])
changed_format = True
elif accept_sparse is not True:
# any other type
raise ValueError("Parameter 'accept_sparse' should be a string, "
"boolean or list of strings. You provided "
"'accept_sparse={}'.".format(accept_sparse))
if dtype != spmatrix.dtype:
# convert dtype
spmatrix = spmatrix.astype(dtype)
elif copy and not changed_format:
# force copy
spmatrix = spmatrix.copy()
if force_all_finite:
if not hasattr(spmatrix, "data"):
warnings.warn("Can't check %s sparse matrix for nan or inf."
% spmatrix.format)
else:
_assert_all_finite(spmatrix.data)
return spmatrix
def check_array(array, accept_sparse=False, dtype="numeric", order=None,
copy=False, force_all_finite=True, ensure_2d=True,
allow_nd=False, ensure_min_samples=1, ensure_min_features=1,
warn_on_dtype=False, estimator=None):
"""Input validation on an array, list, sparse matrix or similar.
By default, the input is converted to an at least 2D numpy array.
If the dtype of the array is object, attempt converting to float,
raising on failure.
Parameters
----------
array : object
Input object to check / convert.
accept_sparse : string, boolean or list/tuple of strings (default=False)
String[s] representing allowed sparse matrix formats, such as 'csc',
'csr', etc. If the input is sparse but not in the allowed format,
it will be converted to the first listed format. True allows the input
to be any format. False means that a sparse matrix input will
raise an error.
dtype : string, type, list of types or None (default="numeric")
Data type of result. If None, the dtype of the input is preserved.
If "numeric", dtype is preserved unless array.dtype is object.
If dtype is a list of types, conversion on the first type is only
performed if the dtype of the input is not in the list.
order : 'F', 'C' or None (default=None)
Whether an array will be forced to be fortran or c-style.
When order is None (default), then if copy=False, nothing is ensured
about the memory layout of the output array; otherwise (copy=True)
the memory layout of the returned array is kept as close as possible
to the original array.
copy : boolean (default=False)
Whether a forced copy will be triggered. If copy=False, a copy might
be triggered by a conversion.
force_all_finite : boolean (default=True)
Whether to raise an error on np.inf and np.nan in X.
ensure_2d : boolean (default=True)
Whether to raise a value error if X is not 2d.
allow_nd : boolean (default=False)
Whether to allow X.ndim > 2.
ensure_min_samples : int (default=1)
Make sure that the array has a minimum number of samples in its first
axis (rows for a 2D array). Setting to 0 disables this check.
ensure_min_features : int (default=1)
Make sure that the 2D array has some minimum number of features
(columns). The default value of 1 rejects empty datasets.
This check is only enforced when the input data has effectively 2
dimensions or is originally 1D and ``ensure_2d`` is True. Setting to 0
disables this check.
warn_on_dtype : boolean (default=False)
Raise DataConversionWarning if the dtype of the input data structure
does not match the requested dtype, causing a memory copy.
estimator : str or estimator instance (default=None)
If passed, include the name of the estimator in warning messages.
Returns
-------
X_converted : object
The converted and validated X.
"""
# accept_sparse 'None' deprecation check
if accept_sparse is None:
warnings.warn(
"Passing 'None' to parameter 'accept_sparse' in methods "
"check_array and check_X_y is deprecated in version 0.19 "
"and will be removed in 0.21. Use 'accept_sparse=False' "
" instead.", DeprecationWarning)
accept_sparse = False
# store whether originally we wanted numeric dtype
dtype_numeric = dtype == "numeric"
dtype_orig = getattr(array, "dtype", None)
if not hasattr(dtype_orig, 'kind'):
# not a data type (e.g. a column named dtype in a pandas DataFrame)
dtype_orig = None
if dtype_numeric:
if dtype_orig is not None and dtype_orig.kind == "O":
# if input is object, convert to float.
dtype = np.float64
else:
dtype = None
if isinstance(dtype, (list, tuple)):
if dtype_orig is not None and dtype_orig in dtype:
# no dtype conversion required
dtype = None
else:
# dtype conversion required. Let's select the first element of the
# list of accepted types.
dtype = dtype[0]
if estimator is not None:
if isinstance(estimator, six.string_types):
estimator_name = estimator
else:
estimator_name = estimator.__class__.__name__
else:
estimator_name = "Estimator"
context = " by %s" % estimator_name if estimator is not None else ""
if sp.issparse(array):
array = _ensure_sparse_format(array, accept_sparse, dtype, copy,
force_all_finite)
else:
array = np.array(array, dtype=dtype, order=order, copy=copy)
if ensure_2d:
if array.ndim == 1:
raise ValueError(
"Got X with X.ndim=1. Reshape your data either using "
"X.reshape(-1, 1) if your data has a single feature or "
"X.reshape(1, -1) if it contains a single sample.")
array = np.atleast_2d(array)
# To ensure that array flags are maintained
array = np.array(array, dtype=dtype, order=order, copy=copy)
# make sure we actually converted to numeric:
if dtype_numeric and array.dtype.kind == "O":
array = array.astype(np.float64)
if not allow_nd and array.ndim >= 3:
raise ValueError("Found array with dim %d. %s expected <= 2."
% (array.ndim, estimator_name))
if force_all_finite:
_assert_all_finite(array)
shape_repr = _shape_repr(array.shape)
if ensure_min_samples > 0:
n_samples = _num_samples(array)
if n_samples < ensure_min_samples:
raise ValueError("Found array with %d sample(s) (shape=%s) while a"
" minimum of %d is required%s."
% (n_samples, shape_repr, ensure_min_samples,
context))
if ensure_min_features > 0 and array.ndim == 2:
n_features = array.shape[1]
if n_features < ensure_min_features:
raise ValueError("Found array with %d feature(s) (shape=%s) while"
" a minimum of %d is required%s."
% (n_features, shape_repr, ensure_min_features,
context))
if warn_on_dtype and dtype_orig is not None and array.dtype != dtype_orig:
msg = ("Data with input dtype %s was converted to %s%s."
% (dtype_orig, array.dtype, context))
warnings.warn(msg, DataConversionWarning)
return array
def check_X_y(X, y, accept_sparse=False, dtype="numeric", order=None,
copy=False, force_all_finite=True, ensure_2d=True,
allow_nd=False, multi_output=False, ensure_min_samples=1,
ensure_min_features=1, y_numeric=False,
warn_on_dtype=False, estimator=None):
"""Input validation for standard estimators.
Checks X and y for consistent length, enforces X 2d and y 1d.
Standard input checks are only applied to y, such as checking that y
does not have np.nan or np.inf targets. For multi-label y, set
multi_output=True to allow 2d and sparse y. If the dtype of X is
object, attempt converting to float, raising on failure.
Parameters
----------
X : nd-array, list or sparse matrix
Input data.
y : nd-array, list or sparse matrix
Labels.
accept_sparse : string, boolean or list of string (default=False)
String[s] representing allowed sparse matrix formats, such as 'csc',
'csr', etc. If the input is sparse but not in the allowed format,
it will be converted to the first listed format. True allows the input
to be any format. False means that a sparse matrix input will
raise an error.
dtype : string, type, list of types or None (default="numeric")
Data type of result. If None, the dtype of the input is preserved.
If "numeric", dtype is preserved unless array.dtype is object.
If dtype is a list of types, conversion on the first type is only
performed if the dtype of the input is not in the list.
order : 'F', 'C' or None (default=None)
Whether an array will be forced to be fortran or c-style.
copy : boolean (default=False)
Whether a forced copy will be triggered. If copy=False, a copy might
be triggered by a conversion.
force_all_finite : boolean (default=True)
Whether to raise an error on np.inf and np.nan in X. This parameter
does not influence whether y can have np.inf or np.nan values.
ensure_2d : boolean (default=True)
Whether to make X at least 2d.
allow_nd : boolean (default=False)
Whether to allow X.ndim > 2.
multi_output : boolean (default=False)
Whether to allow 2-d y (array or sparse matrix). If false, y will be
validated as a vector. y cannot have np.nan or np.inf values if
multi_output=True.
ensure_min_samples : int (default=1)
Make sure that X has a minimum number of samples in its first
axis (rows for a 2D array).
ensure_min_features : int (default=1)
Make sure that the 2D array has some minimum number of features
(columns). The default value of 1 rejects empty datasets.
This check is only enforced when X has effectively 2 dimensions or
is originally 1D and ``ensure_2d`` is True. Setting to 0 disables
this check.
y_numeric : boolean (default=False)
Whether to ensure that y has a numeric type. If dtype of y is object,
it is converted to float64. Should only be used for regression
algorithms.
warn_on_dtype : boolean (default=False)
Raise DataConversionWarning if the dtype of the input data structure
does not match the requested dtype, causing a memory copy.
estimator : str or estimator instance (default=None)
If passed, include the name of the estimator in warning messages.
Returns
-------
X_converted : object
The converted and validated X.
y_converted : object
The converted and validated y.
"""
X = check_array(X, accept_sparse, dtype, order, copy, force_all_finite,
ensure_2d, allow_nd, ensure_min_samples,
ensure_min_features, warn_on_dtype, estimator)
if multi_output:
y = check_array(y, 'csr', force_all_finite=True, ensure_2d=False,
dtype=None)
else:
y = column_or_1d(y, warn=True)
_assert_all_finite(y)
if y_numeric and y.dtype.kind == 'O':
y = y.astype(np.float64)
check_consistent_length(X, y)
return X, y
def column_or_1d(y, warn=False):
""" Ravel column or 1d numpy array, else raises an error
Parameters
----------
y : array-like
warn : boolean, default False
To control display of warnings.
Returns
-------
y : array
"""
shape = np.shape(y)
if len(shape) == 1:
return np.ravel(y)
if len(shape) == 2 and shape[1] == 1:
if warn:
warnings.warn("A column-vector y was passed when a 1d array was"
" expected. Please change the shape of y to "
"(n_samples, ), for example using ravel().",
DataConversionWarning, stacklevel=2)
return np.ravel(y)
raise ValueError("bad input shape {0}".format(shape))
def check_random_state(seed):
"""Turn seed into a np.random.RandomState instance
If seed is None, return the RandomState singleton used by np.random.
If seed is an int, return a new RandomState instance seeded with seed.
If seed is already a RandomState instance, return it.
Otherwise raise ValueError.
"""
if seed is None or seed is np.random:
return np.random.mtrand._rand
if isinstance(seed, (numbers.Integral, np.integer)):
return np.random.RandomState(seed)
if isinstance(seed, np.random.RandomState):
return seed
raise ValueError('%r cannot be used to seed a numpy.random.RandomState'
' instance' % seed)
def has_fit_parameter(estimator, parameter):
"""Checks whether the estimator's fit method supports the given parameter.
Examples
--------
>>> from sklearn.svm import SVC
>>> has_fit_parameter(SVC(), "sample_weight")
True
"""
return parameter in signature(estimator.fit).parameters
def check_symmetric(array, tol=1E-10, raise_warning=True,
raise_exception=False):
"""Make sure that array is 2D, square and symmetric.
If the array is not symmetric, then a symmetrized version is returned.
Optionally, a warning or exception is raised if the matrix is not
symmetric.
Parameters
----------
array : nd-array or sparse matrix
Input object to check / convert. Must be two-dimensional and square,
otherwise a ValueError will be raised.
tol : float
Absolute tolerance for equivalence of arrays. Default = 1E-10.
raise_warning : boolean (default=True)
If True then raise a warning if conversion is required.
raise_exception : boolean (default=False)
If True then raise an exception if array is not symmetric.
Returns
-------
array_sym : ndarray or sparse matrix
Symmetrized version of the input array, i.e. the average of array
and array.transpose(). If sparse, then duplicate entries are first
summed and zeros are eliminated.
"""
if (array.ndim != 2) or (array.shape[0] != array.shape[1]):
raise ValueError("array must be 2-dimensional and square. "
"shape = {0}".format(array.shape))
if sp.issparse(array):
diff = array - array.T
# only csr, csc, and coo have `data` attribute
if diff.format not in ['csr', 'csc', 'coo']:
diff = diff.tocsr()
symmetric = np.all(abs(diff.data) < tol)
else:
symmetric = np.allclose(array, array.T, atol=tol)
if not symmetric:
if raise_exception:
raise ValueError("Array must be symmetric")
if raise_warning:
warnings.warn("Array is not symmetric, and will be converted "
"to symmetric by average with its transpose.")
if sp.issparse(array):
conversion = 'to' + array.format
array = getattr(0.5 * (array + array.T), conversion)()
else:
array = 0.5 * (array + array.T)
return array
def check_is_fitted(estimator, attributes, msg=None, all_or_any=all):
"""Perform is_fitted validation for estimator.
Checks if the estimator is fitted by verifying the presence of
"all_or_any" of the passed attributes and raises a NotFittedError with the
given message.
Parameters
----------
estimator : estimator instance.
estimator instance for which the check is performed.
attributes : attribute name(s) given as string or a list/tuple of strings
Eg. : ["coef_", "estimator_", ...], "coef_"
msg : string
The default error message is, "This %(name)s instance is not fitted
yet. Call 'fit' with appropriate arguments before using this method."
For custom messages if "%(name)s" is present in the message string,
it is substituted for the estimator name.
Eg. : "Estimator, %(name)s, must be fitted before sparsifying".
all_or_any : callable, {all, any}, default all
Specify whether all or any of the given attributes must exist.
"""
if msg is None:
msg = ("This %(name)s instance is not fitted yet. Call 'fit' with "
"appropriate arguments before using this method.")
if not hasattr(estimator, 'fit'):
raise TypeError("%s is not an estimator instance." % (estimator))
if not isinstance(attributes, (list, tuple)):
attributes = [attributes]
if not all_or_any([hasattr(estimator, attr) for attr in attributes]):
raise NotFittedError(msg % {'name': type(estimator).__name__})
def check_non_negative(X, whom):
"""
Check if there is any negative value in an array.
Parameters
----------
X : array-like or sparse matrix
Input data.
whom : string
Who passed X to this function.
"""
X = X.data if sp.issparse(X) else X
if (X < 0).any():
raise ValueError("Negative values in data passed to %s" % whom)
| bsd-3-clause |
datapythonista/pandas | pandas/tests/dtypes/test_generic.py | 6 | 4327 | from warnings import catch_warnings
import numpy as np
import pytest
from pandas.core.dtypes import generic as gt
import pandas as pd
import pandas._testing as tm
class TestABCClasses:
tuples = [[1, 2, 2], ["red", "blue", "red"]]
multi_index = pd.MultiIndex.from_arrays(tuples, names=("number", "color"))
datetime_index = pd.to_datetime(["2000/1/1", "2010/1/1"])
timedelta_index = pd.to_timedelta(np.arange(5), unit="s")
period_index = pd.period_range("2000/1/1", "2010/1/1/", freq="M")
categorical = pd.Categorical([1, 2, 3], categories=[2, 3, 1])
categorical_df = pd.DataFrame({"values": [1, 2, 3]}, index=categorical)
df = pd.DataFrame({"names": ["a", "b", "c"]}, index=multi_index)
sparse_array = pd.arrays.SparseArray(np.random.randn(10))
datetime_array = pd.core.arrays.DatetimeArray(datetime_index)
timedelta_array = pd.core.arrays.TimedeltaArray(timedelta_index)
abc_pairs = [
("ABCInt64Index", pd.Int64Index([1, 2, 3])),
("ABCUInt64Index", pd.UInt64Index([1, 2, 3])),
("ABCFloat64Index", pd.Float64Index([1, 2, 3])),
("ABCMultiIndex", multi_index),
("ABCDatetimeIndex", datetime_index),
("ABCRangeIndex", pd.RangeIndex(3)),
("ABCTimedeltaIndex", timedelta_index),
("ABCIntervalIndex", pd.interval_range(start=0, end=3)),
("ABCPeriodArray", pd.arrays.PeriodArray([2000, 2001, 2002], freq="D")),
("ABCPandasArray", pd.arrays.PandasArray(np.array([0, 1, 2]))),
("ABCPeriodIndex", period_index),
("ABCCategoricalIndex", categorical_df.index),
("ABCSeries", pd.Series([1, 2, 3])),
("ABCDataFrame", df),
("ABCCategorical", categorical),
("ABCDatetimeArray", datetime_array),
("ABCTimedeltaArray", timedelta_array),
]
@pytest.mark.parametrize("abctype1, inst", abc_pairs)
@pytest.mark.parametrize("abctype2, _", abc_pairs)
def test_abc_pairs(self, abctype1, abctype2, inst, _):
# GH 38588
if abctype1 == abctype2:
assert isinstance(inst, getattr(gt, abctype2))
else:
assert not isinstance(inst, getattr(gt, abctype2))
abc_subclasses = {
"ABCIndex": [
abctype
for abctype, _ in abc_pairs
if "Index" in abctype and abctype != "ABCIndex"
],
"ABCNDFrame": ["ABCSeries", "ABCDataFrame"],
"ABCExtensionArray": [
"ABCCategorical",
"ABCDatetimeArray",
"ABCPeriodArray",
"ABCTimedeltaArray",
],
}
@pytest.mark.parametrize("parent, subs", abc_subclasses.items())
@pytest.mark.parametrize("abctype, inst", abc_pairs)
def test_abc_hierarchy(self, parent, subs, abctype, inst):
# GH 38588
if abctype in subs:
assert isinstance(inst, getattr(gt, parent))
else:
assert not isinstance(inst, getattr(gt, parent))
@pytest.mark.parametrize("abctype", [e for e in gt.__dict__ if e.startswith("ABC")])
def test_abc_coverage(self, abctype):
# GH 38588
assert (
abctype in (e for e, _ in self.abc_pairs) or abctype in self.abc_subclasses
)
def test_setattr_warnings():
# GH7175 - GOTCHA: You can't use dot notation to add a column...
d = {
"one": pd.Series([1.0, 2.0, 3.0], index=["a", "b", "c"]),
"two": pd.Series([1.0, 2.0, 3.0, 4.0], index=["a", "b", "c", "d"]),
}
df = pd.DataFrame(d)
with catch_warnings(record=True) as w:
# successfully add new column
# this should not raise a warning
df["three"] = df.two + 1
assert len(w) == 0
assert df.three.sum() > df.two.sum()
with catch_warnings(record=True) as w:
# successfully modify column in place
# this should not raise a warning
df.one += 1
assert len(w) == 0
assert df.one.iloc[0] == 2
with catch_warnings(record=True) as w:
# successfully add an attribute to a series
# this should not raise a warning
df.two.not_an_index = [1, 2]
assert len(w) == 0
with tm.assert_produces_warning(UserWarning):
# warn when setting column to nonexistent name
df.four = df.two + 2
assert df.four.sum() > df.two.sum()
| bsd-3-clause |
juanamari94/mlaas-example | models.py | 1 | 2418 | from sklearn.model_selection import train_test_split
from sklearn.metrics import f1_score
import data_parser
class BaseModel:
def __init__(self, model):
self.model = model
def train(self):
return self.model.fit(self.x_train, self.y_train)
class SupervisedBinaryClassificationModel(BaseModel):
def __init__(self, raw_training_set, raw_predict_set, model):
super().__init__(model)
self.column_names = raw_training_set.pop(0)
raw_labels = data_parser.parse_labels(raw_training_set)
self.classes = list(set(raw_labels))
if len(self.classes) != 2:
raise Exception("A binary classificator can only have two classes.")
self.labels = data_parser.parse_classification_labels(raw_labels, self.classes)
self.features = data_parser.parse_features(raw_training_set)
self.predict_set = data_parser.parse_features(raw_predict_set)
self.x_train, self.x_test, self.y_train, self.y_test = train_test_split(self.features, self.labels)
def predict(self):
predictions = self.model.predict(self.predict_set)
results = []
for i in range(0, len(predictions)):
results.append((int(predictions[i]), self.predict_set[i]))
return results
def accuracy_metrics(self):
return self.model.score(self.x_test, self.y_test)
def calculate_f1_score(self):
test_predictions = self.model.predict(self.x_test)
return f1_score(self.y_test, test_predictions)
class SupervisedEstimationModel(BaseModel):
def __init__(self, raw_training_set, raw_predict_set, model):
super().__init__(model)
self.column_names = raw_training_set.pop(0)
raw_labels = data_parser.parse_labels(raw_training_set)
self.labels = data_parser.parse_estimation_labels(raw_labels)
self.features = data_parser.parse_features(raw_training_set)
self.predict_set = data_parser.parse_features(raw_predict_set)
self.x_train, self.x_test, self.y_train, self.y_test = train_test_split(self.features, self.labels)
def predict(self):
predictions = self.model.predict(self.predict_set)
results = []
for i in range(0, len(predictions)):
results.append((float(predictions[i]), self.predict_set[i]))
return results
def calculate_r2_score(self, X, y):
return self.model.score(X, y)
| mit |
Canas/kaftools | kaftools/utils/shortcuts.py | 1 | 2226 | # -*- coding: utf-8 -*-
"""
kaftools.utils.shortcuts
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This module provides utility functions that are used within
kaftools that can be useful for external scripts.
"""
import time
import re
import numpy as np
import matplotlib.pyplot as plt
def plot_series(data, prediction, **kwargs):
"""Shortcut to plot 2D series estimate vs target """
if 'figsize' in kwargs:
fig = plt.figure(figsize=kwargs['figsize'])
else:
fig = plt.figure()
if 'title' in kwargs:
plt.title(kwargs['title'])
if 'xlim' in kwargs:
plt.xlim(kwargs['xlim'])
if 'ylim' in kwargs:
plt.ylim(kwargs['ylim'])
markersize = kwargs.pop('markersize', 5.0)
linewidth = kwargs.pop('linewidth', 2.0)
plt.plot(data, 'ro', markersize=markersize)
plt.plot(prediction, 'b-', linewidth=linewidth)
#return fig
def plot_squared_error(error_history, **kwargs):
sqerror = np.asarray(error_history)**2
"""Shortcut to plot squared error """
if 'figsize' in kwargs:
fig = plt.figure(figsize=kwargs['figsize'])
else:
fig = plt.figure()
if 'title' in kwargs:
plt.title(kwargs['title'])
if 'xlim' in kwargs:
plt.xlim(kwargs['xlim'])
if 'ylim' in kwargs:
plt.ylim(kwargs['ylim'])
linewidth = kwargs.pop('linewidth', 2.0)
plt.semilogy(sqerror, 'b-', linewidth=linewidth)
plt.show()
return fig
def timeit(f):
"""Decorator for timing execution of a function. """
def wrap(*args, **kwargs):
regex_str = '<(\w+ [A-Za-z]*.[a-z]*)'
regex = re.search(regex_str, f.__str__())
time1 = time.time()
ret = f(*args, **kwargs)
time2 = time.time()
print('{0} took {1:.2f} secs'.format(regex.group(1), (time2-time1)))
return ret
return wrap
def distance_to_dictionary(s, x):
"""Calculates distance from vector/matrix to list of vectors/matrices
:param s: list of vector/matrices of shape (n_samples, n_delays, n_channels)
:param x: vector of shape (n_delays, n_channels)
:return: norm of vector
"""
s = np.asarray(s)
x = np.asarray([x]*len(s))
return np.linalg.norm(s - x, axis=1)
| mit |
droter/trading-with-python | spreadApp/makeDist.py | 77 | 1720 | from distutils.core import setup
import py2exe
manifest_template = '''
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0">
<assemblyIdentity
version="5.0.0.0"
processorArchitecture="x86"
name="%(prog)s"
type="win32"
/>
<description>%(prog)s Program</description>
<dependency>
<dependentAssembly>
<assemblyIdentity
type="win32"
name="Microsoft.Windows.Common-Controls"
version="6.0.0.0"
processorArchitecture="X86"
publicKeyToken="6595b64144ccf1df"
language="*"
/>
</dependentAssembly>
</dependency>
</assembly>
'''
RT_MANIFEST = 24
import matplotlib
opts = {
'py2exe': {
"compressed": 1,
"bundle_files" : 3,
"includes" : ["sip",
"matplotlib.backends",
"matplotlib.backends.backend_qt4agg",
"pylab", "numpy",
"matplotlib.backends.backend_tkagg"],
'excludes': ['_gtkagg', '_tkagg', '_agg2',
'_cairo', '_cocoaagg',
'_fltkagg', '_gtk', '_gtkcairo', ],
'dll_excludes': ['libgdk-win32-2.0-0.dll',
'libgobject-2.0-0.dll']
}
}
setup(name="triton",
version = "0.1",
scripts=["spreadScanner.pyw"],
windows=[{"script": "spreadScanner.pyw"}],
options=opts,
data_files=matplotlib.get_py2exe_datafiles(),
other_resources = [(RT_MANIFEST, 1, manifest_template % dict(prog="spreadDetective"))],
zipfile = None) | bsd-3-clause |
TomAugspurger/pandas | asv_bench/benchmarks/period.py | 4 | 2889 | """
Period benchmarks with non-tslibs dependencies. See
benchmarks.tslibs.period for benchmarks that rely only on tslibs.
"""
from pandas import DataFrame, Period, PeriodIndex, Series, date_range, period_range
from pandas.tseries.frequencies import to_offset
class PeriodIndexConstructor:
params = [["D"], [True, False]]
param_names = ["freq", "is_offset"]
def setup(self, freq, is_offset):
self.rng = date_range("1985", periods=1000)
self.rng2 = date_range("1985", periods=1000).to_pydatetime()
self.ints = list(range(2000, 3000))
self.daily_ints = (
date_range("1/1/2000", periods=1000, freq=freq).strftime("%Y%m%d").map(int)
)
if is_offset:
self.freq = to_offset(freq)
else:
self.freq = freq
def time_from_date_range(self, freq, is_offset):
PeriodIndex(self.rng, freq=freq)
def time_from_pydatetime(self, freq, is_offset):
PeriodIndex(self.rng2, freq=freq)
def time_from_ints(self, freq, is_offset):
PeriodIndex(self.ints, freq=freq)
def time_from_ints_daily(self, freq, is_offset):
PeriodIndex(self.daily_ints, freq=freq)
class DataFramePeriodColumn:
def setup(self):
self.rng = period_range(start="1/1/1990", freq="S", periods=20000)
self.df = DataFrame(index=range(len(self.rng)))
def time_setitem_period_column(self):
self.df["col"] = self.rng
def time_set_index(self):
# GH#21582 limited by comparisons of Period objects
self.df["col2"] = self.rng
self.df.set_index("col2", append=True)
class Algorithms:
params = ["index", "series"]
param_names = ["typ"]
def setup(self, typ):
data = [
Period("2011-01", freq="M"),
Period("2011-02", freq="M"),
Period("2011-03", freq="M"),
Period("2011-04", freq="M"),
]
if typ == "index":
self.vector = PeriodIndex(data * 1000, freq="M")
elif typ == "series":
self.vector = Series(data * 1000)
def time_drop_duplicates(self, typ):
self.vector.drop_duplicates()
def time_value_counts(self, typ):
self.vector.value_counts()
class Indexing:
def setup(self):
self.index = period_range(start="1985", periods=1000, freq="D")
self.series = Series(range(1000), index=self.index)
self.period = self.index[500]
def time_get_loc(self):
self.index.get_loc(self.period)
def time_shallow_copy(self):
self.index._shallow_copy()
def time_series_loc(self):
self.series.loc[self.period]
def time_align(self):
DataFrame({"a": self.series, "b": self.series[:500]})
def time_intersection(self):
self.index[:750].intersection(self.index[250:])
def time_unique(self):
self.index.unique()
| bsd-3-clause |
sarahgrogan/scikit-learn | sklearn/neighbors/tests/test_kde.py | 208 | 5556 | import numpy as np
from sklearn.utils.testing import (assert_allclose, assert_raises,
assert_equal)
from sklearn.neighbors import KernelDensity, KDTree, NearestNeighbors
from sklearn.neighbors.ball_tree import kernel_norm
from sklearn.pipeline import make_pipeline
from sklearn.datasets import make_blobs
from sklearn.grid_search import GridSearchCV
from sklearn.preprocessing import StandardScaler
def compute_kernel_slow(Y, X, kernel, h):
d = np.sqrt(((Y[:, None, :] - X) ** 2).sum(-1))
norm = kernel_norm(h, X.shape[1], kernel) / X.shape[0]
if kernel == 'gaussian':
return norm * np.exp(-0.5 * (d * d) / (h * h)).sum(-1)
elif kernel == 'tophat':
return norm * (d < h).sum(-1)
elif kernel == 'epanechnikov':
return norm * ((1.0 - (d * d) / (h * h)) * (d < h)).sum(-1)
elif kernel == 'exponential':
return norm * (np.exp(-d / h)).sum(-1)
elif kernel == 'linear':
return norm * ((1 - d / h) * (d < h)).sum(-1)
elif kernel == 'cosine':
return norm * (np.cos(0.5 * np.pi * d / h) * (d < h)).sum(-1)
else:
raise ValueError('kernel not recognized')
def test_kernel_density(n_samples=100, n_features=3):
rng = np.random.RandomState(0)
X = rng.randn(n_samples, n_features)
Y = rng.randn(n_samples, n_features)
for kernel in ['gaussian', 'tophat', 'epanechnikov',
'exponential', 'linear', 'cosine']:
for bandwidth in [0.01, 0.1, 1]:
dens_true = compute_kernel_slow(Y, X, kernel, bandwidth)
def check_results(kernel, bandwidth, atol, rtol):
kde = KernelDensity(kernel=kernel, bandwidth=bandwidth,
atol=atol, rtol=rtol)
log_dens = kde.fit(X).score_samples(Y)
assert_allclose(np.exp(log_dens), dens_true,
atol=atol, rtol=max(1E-7, rtol))
assert_allclose(np.exp(kde.score(Y)),
np.prod(dens_true),
atol=atol, rtol=max(1E-7, rtol))
for rtol in [0, 1E-5]:
for atol in [1E-6, 1E-2]:
for breadth_first in (True, False):
yield (check_results, kernel, bandwidth, atol, rtol)
def test_kernel_density_sampling(n_samples=100, n_features=3):
rng = np.random.RandomState(0)
X = rng.randn(n_samples, n_features)
bandwidth = 0.2
for kernel in ['gaussian', 'tophat']:
# draw a tophat sample
kde = KernelDensity(bandwidth, kernel=kernel).fit(X)
samp = kde.sample(100)
assert_equal(X.shape, samp.shape)
# check that samples are in the right range
nbrs = NearestNeighbors(n_neighbors=1).fit(X)
dist, ind = nbrs.kneighbors(X, return_distance=True)
if kernel == 'tophat':
assert np.all(dist < bandwidth)
elif kernel == 'gaussian':
# 5 standard deviations is safe for 100 samples, but there's a
# very small chance this test could fail.
assert np.all(dist < 5 * bandwidth)
# check unsupported kernels
for kernel in ['epanechnikov', 'exponential', 'linear', 'cosine']:
kde = KernelDensity(bandwidth, kernel=kernel).fit(X)
assert_raises(NotImplementedError, kde.sample, 100)
# non-regression test: used to return a scalar
X = rng.randn(4, 1)
kde = KernelDensity(kernel="gaussian").fit(X)
assert_equal(kde.sample().shape, (1, 1))
def test_kde_algorithm_metric_choice():
# Smoke test for various metrics and algorithms
rng = np.random.RandomState(0)
X = rng.randn(10, 2) # 2 features required for haversine dist.
Y = rng.randn(10, 2)
for algorithm in ['auto', 'ball_tree', 'kd_tree']:
for metric in ['euclidean', 'minkowski', 'manhattan',
'chebyshev', 'haversine']:
if algorithm == 'kd_tree' and metric not in KDTree.valid_metrics:
assert_raises(ValueError, KernelDensity,
algorithm=algorithm, metric=metric)
else:
kde = KernelDensity(algorithm=algorithm, metric=metric)
kde.fit(X)
y_dens = kde.score_samples(Y)
assert_equal(y_dens.shape, Y.shape[:1])
def test_kde_score(n_samples=100, n_features=3):
pass
#FIXME
#np.random.seed(0)
#X = np.random.random((n_samples, n_features))
#Y = np.random.random((n_samples, n_features))
def test_kde_badargs():
assert_raises(ValueError, KernelDensity,
algorithm='blah')
assert_raises(ValueError, KernelDensity,
bandwidth=0)
assert_raises(ValueError, KernelDensity,
kernel='blah')
assert_raises(ValueError, KernelDensity,
metric='blah')
assert_raises(ValueError, KernelDensity,
algorithm='kd_tree', metric='blah')
def test_kde_pipeline_gridsearch():
# test that kde plays nice in pipelines and grid-searches
X, _ = make_blobs(cluster_std=.1, random_state=1,
centers=[[0, 1], [1, 0], [0, 0]])
pipe1 = make_pipeline(StandardScaler(with_mean=False, with_std=False),
KernelDensity(kernel="gaussian"))
params = dict(kerneldensity__bandwidth=[0.001, 0.01, 0.1, 1, 10])
search = GridSearchCV(pipe1, param_grid=params, cv=5)
search.fit(X)
assert_equal(search.best_params_['kerneldensity__bandwidth'], .1)
| bsd-3-clause |
LeeMendelowitz/DCMetroMetrics | dcmetrometrics/common/DataWriter.py | 2 | 4877 | """
Methods to convert an object to csv
"""
import datetime
from pandas import Series, DataFrame
import os
from .utils import mkdir_p
from datetime import timedelta, datetime
from collections import defaultdict
from ..eles.models import (Unit, UnitStatus, KeyStatuses, Station, DailyServiceReport, SystemServiceReport)
from ..hotcars.models import HotCarReport
from ..hotcars.models import (HotCarReport, Temperature)
from ..common.metroTimes import tzutc, isNaive, toUtc, utcnow
def s(v):
if v is None:
return 'NA'
return unicode(v)
def q(v):
"""Quote strings"""
if v is None:
return '"NA"'
if isinstance(v, (unicode, str)):
return u'"%s"'%v
return unicode(v)
class DataWriter(object):
"""Write csv files
"""
def __init__(self, basedir = None):
self.basedir = os.path.abspath(basedir) if basedir else os.getcwd()
self.outdir = os.path.join(self.basedir, 'download')
def write_timestamp(self):
# Create the directory if necessary
outdir = self.outdir
mkdir_p(outdir)
fname = 'timestamp'
outpath = os.path.join(outdir, fname)
with open(outpath, 'w') as fout:
fout.write(utcnow().isoformat() + '\n')
def write_units(self):
fields = Unit.data_fields
# Create the directory if necessary
outdir = self.outdir
mkdir_p(outdir)
fname = 'units.csv'
outpath = os.path.join(outdir, fname)
with open(outpath, 'w') as fout:
# Write Header
fout.write(','.join(fields) + '\n')
for unit in Unit.objects.no_cache():
unit_data = unit.to_data_record()
outs = ','.join(q(unit_data[k]) for k in fields) + '\n'
fout.write(outs.encode('utf-8'))
def write_hot_cars(self):
fields = HotCarReport.data_fields
# Create the directory if necessary
outdir = os.path.join(self.basedir, 'download')
mkdir_p(outdir)
fname = 'hotcars.csv'
outpath = os.path.join(outdir, fname)
with open(outpath, 'w') as fout:
# Write Header
fout.write(','.join(fields) + '\n')
for report in HotCarReport.objects.no_cache().order_by('time'):
report.clean()
report_data = report.to_data_record()
df = DataFrame([report_data], columns = fields)
df.to_csv(fout, index = False, header=False, encoding='utf-8') # let pandas do the escaping
def write_unit_statuses(self):
fields = UnitStatus.data_fields
# Create the directory if necessary
outdir = self.outdir
mkdir_p(outdir)
fname = 'unit_statuses.csv'
outpath = os.path.join(outdir, fname)
with open(outpath, 'w') as fout:
# Write Header
fout.write(','.join(fields) + '\n')
statuses = UnitStatus.objects.timeout(False).order_by('time').no_cache()
for status in statuses:
status.clean()
status_data = status.to_data_record()
outs = ','.join(q(status_data[k]) for k in fields) + '\n'
fout.write(outs.encode('utf-8'))
statuses._cursor.close()
def write_stations(self):
fields = Station.data_fields
# Create the directory if necessary
outdir = self.outdir
mkdir_p(outdir)
fname = 'stations.csv'
outpath = os.path.join(outdir, fname)
with open(outpath, 'w') as fout:
# Write Header
fout.write(','.join(fields) + '\n')
stations = Station.objects
for station in stations:
station_data = station.to_data_record()
outs = ','.join(q(station_data[k]) for k in fields) + '\n'
fout.write(outs.encode('utf-8'))
def write_system_daily_service_report(self):
# Create the directory if necessary
outdir = self.outdir
mkdir_p(outdir)
fname = 'daily_system_reports.csv'
outpath = os.path.join(outdir, fname)
with open(outpath, 'w') as fout:
keys = None
reports = SystemServiceReport.objects.timeout(False).order_by('day').no_cache()
for report in reports:
report_data = report.to_data_record()
if not keys:
keys = report_data.keys()
fout.write(','.join(keys) + '\n')
outs = ','.join(q(report_data[k]) for k in keys) + '\n'
fout.write(outs.encode('utf-8'))
reports._cursor.close()
def write_unit_daily_service_report(self):
# Create the directory if necessary
outdir = self.outdir
mkdir_p(outdir)
fname = 'daily_unit_reports.csv'
outpath = os.path.join(outdir, fname)
with open(outpath, 'w') as fout:
keys = None
reports = DailyServiceReport.objects.timeout(False).order_by('day').no_cache()
for report in reports:
report_data = report.to_data_record()
if not keys:
keys = report_data.keys()
fout.write(','.join(keys) + '\n')
outs = ','.join(q(report_data[k]) for k in keys) + '\n'
fout.write(outs.encode('utf-8'))
reports._cursor.close()
| gpl-2.0 |
cswiercz/abelfunctions | abelfunctions/riemann_theta/tests/presentation.py | 3 | 4024 | import numpy as np
from riemanntheta import RiemannTheta_Function
import pylab as p
import matplotlib.pyplot as plt
from pycuda import gpuarray
import time
def demo1():
theta = RiemannTheta_Function()
Omega = np.array([[1.j, .5], [.5, 1.j]])
print
print "Calculating 3,600 points of the Riemann Theta Function in C..."
print
print "Omega = [i .5]"
print " [.5 i]"
print
print "z = (x + iy, 0) where (0 < x < 1) and (0 < y < 5)"
SIZE = 60
x = np.linspace(0,1,SIZE)
y = np.linspace(0,5,SIZE)
X,Y = p.meshgrid(x,y)
Z = X + Y*1.0j
Z = Z.flatten()
start = time.clock()
U,V = theta.exp_and_osc_at_point([[z,0] for z in Z], Omega, gpu=False, batch=True)
done = time.clock() - start
print "Time to perform the calculation: " + str(done)
print
Z = (V.reshape(60,60)).imag
print "\Plotting the imaginary part of the function..."
plt.contourf(X,Y,Z,7,antialiased=True)
plt.show()
def demo2():
theta = RiemannTheta_Function()
Omega = np.array([[1.j, .5], [.5, 1.j]])
print
print "Calculating 3,600 points of the Riemann Theta Function on GPU..."
print
print "Omega = [i .5]"
print " [.5 i]"
print
print "z = (x + iy, 0) where (0 < x < 1) and (0 < y < 5)"
SIZE = 60
x = np.linspace(0,1,SIZE)
y = np.linspace(0,5,SIZE)
X,Y = p.meshgrid(x,y)
Z = X + Y*1.0j
Z = Z.flatten()
start = time.clock()
U,V = theta.exp_and_osc_at_point([[z,0] for z in Z], Omega, batch=True)
done = time.clock() - start
print "Time to perform the calculation: " + str(done)
print
Z = (V.reshape(60,60)).imag
print "\Plotting the imaginary part of the function..."
plt.contourf(X,Y,Z,7,antialiased=True)
plt.show()
def demo3():
theta = RiemannTheta_Function()
Omega = np.array([[1.j, .5], [.5, 1.j]])
print
print "Calculating 1,000,000 points of the Riemann Theta Function on GPU..."
print
print "Omega = [i .5]"
print " [.5 i]"
print
print "z = (x + iy, 0) where (0 < x < 1) and (0 < y < 5)"
SIZE = 1000
x = np.linspace(0,1,SIZE)
y = np.linspace(0,5,SIZE)
X,Y = p.meshgrid(x,y)
Z = X + Y*1.0j
Z = Z.flatten()
Z = [[z,0] for z in Z]
print "Starting computation on the GPU"
start = time.clock()
U,V = theta.exp_and_osc_at_point(Z, Omega, batch=True)
done = time.clock() - start
print "Time to perform the calculation: " + str(done)
print
print "Starting computation on the CPU"
start = time.clock()
U,V = theta.exp_and_osc_at_point(Z, Omega, batch=True, gpu=False)
done = time.clock() - start
print "Time to perform the calculation: " + str(done)
print
def demo4():
theta = RiemannTheta_Function()
z = np.array([1.j, .5*1.j, 1.j])
omegas = []
I = 1.j
t_vals = np.linspace(1, 0, 10000)
for t in t_vals:
a = np.array([[-0.5*t + I, 0.5*t*(1-I), -0.5*t*(1 + I)],
[0.5*t*(1-I), I, 0],
[-0.5*t*(1+I), 0, I]])
omegas.append(a)
print "z = (i, i, i), calculating z for 10,000 different Omegas"
print
print "Omegas = [-0.5*(1-t) + i 0.5*t*(1-i) -0.5*(1-t)*(1 + i)]"
print " [0.5*(1-t)*(1-i) i 0]"
print " [-0.5*(1-t)*(1+i) 0 i]"
print "for 0 <= t <= 1"
print
print "Beginning Computation on the GPU"
start = time.clock()
v = theta.multiple_omega_process1(z, omegas, 3)
print "Computation Finished, elapsed time: " + str(time.clock() - start)
print
print v
print
print "================================="
print "Beginning Computation on the CPU"
start = time.clock()
u = []
for i in range(10000):
U,V = theta.exp_and_osc_at_point(z,omegas[i])
u.append(V)
print "Computation Finished, elapsed time: " + str(time.clock() - start)
print
print np.array(v)
| bsd-3-clause |
Alexsaphir/TP_EDP_Python | TP1.py | 1 | 3456 | # -*- coding: utf-8 -*-
from numpy import *
from numpy.linalg import *
from numpy.random import *
from matplotlib.pyplot import *
print('Valeur de pi :', pi)
print(finfo(float).eps)
#Create a Vector
X1 = array([1, 2, 3, 4, 5])
print('Simple vecteur :',X1)
X2 = arange(0,1,.25)
print('Subdvision uniforme :', X2)
X3 = linspace(0,10,3)
print('Vecteur n-pts :',X3)
X4 = zeros(5)
print('Vecteur zeros :',X4)
#Matrice
M1=array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print('Simple matrice', M1)
M2=zeros((2,3))
print('Matrice zeros', M2)
#Exercice 1
A=-1*(diag(ones(9),1)+diag(ones(9),-1))+2.*eye(10);
A[9,9] = 1
print(A)
#Fonctions
def fonc(x, y, m):
z = x**2 + y**2
t = x - y + m
return z, t
#Test
if(1<2) :
print('1<2')
elif (1<3) :
print('1<3')
else :
print('Aussi non !')
##################
##################
## Exercice 3 ##
##################
##################
def f(x, m) :
if (m == 0) :
y = zeros(size(x))
elif (m == 1) :
y = ones(size(x))
elif (m == 2) :
y = x
elif (m == 3) :
y = x**2
elif (m == 4) :
y = 4.*pi*pi*sin(2.*pi*x)
else :
print('valeur de m indéfinie')
return y
def solex(x, ug , m) :
if (m == 0):
y = ug*ones(size(x))
elif (m == 1) :
y = -0.5*x**2+x+ug
elif (m == 2) :
y = -(1/6)*x**3+(1/2)*x+ug
elif (m == 3 ) :
y = -(1/12)*x**4+(1/3)*x+ug
elif (m == 4) :
y = sin(2*pi*x)-2*pi*x+ug
else :
print('valeur de m indéfinie')
return y
##################
##################
## Exercice 2 ##
##################
##################
print('Pour le second membre, choix de la fonction f')
print('Pour m=0 : f=0')
print('Pour m=1 : f=1')
print('Pour m=2 : f=x')
print('Pour m=3 : f=x^2')
print('Pour m=4 : f=4*pi^2*sin(2*pi*x)')
m = int(input("Choix de m = "))
print('Choix de la condition a gauche')
ug = float(input('ug = u(0) ='))
print("Methode pour l'approximation de u'(1) : ")
print("1- decentre d'ordre 1")
print("2- centre d'ordre 2")
meth = int(input('Choix = '))
print('Choix du nombre Ns de points interieurs du maillage')
Ns = int(input('Ns = '))
# Maillage
h=1./(Ns+1)
X=linspace(0, 1., Ns+2)
Xh=linspace(h,1.,Ns+1)
# Matrice du systeme lineaire :
A=-1*(diag(ones(Ns),1)+diag(ones(Ns),-1))+2.*eye(Ns+1);
A[Ns, Ns] = 1
A=1./h/h*A
#Conditionement de la matrice
cond_A=cond(A)
print('Conditionnement de la matrice A :', cond_A)
# Second membre
# b = ... (plus loin, exercice 3)
b = f(Xh, m)
b[0] = b[0] + (Ns + 1)**2*ug
# Transformation de b[Ns] pour prendre en compte u'(1) = 0 (cf TD)
if (meth == 2):
b[Ns] = b[Ns]/2
# Resolution du syteme lineaire
Uh = solve(A, b) # ceci calcule Uh solution du systeme AU=b
# Calcul de la solution exacte aux points d'approximation
Uex = solex(Xh, ug, m)
# Calcul de l'erreur en norme infini
Uerr = abs(Uex - Uh)
disp(max(Uerr))
#Graphes
Uh = concatenate((array([ug]),Uh))
# on complete le vecteur solution avec la valeur ug en 0
# On trace le graphe de la fonction solex sur un maillage fin de 100 points
plot(linspace(0,1,100),solex(linspace(0,1,100), ug, m), label = 'sol ex')
# et le graphe de la solution approchée obtenue
plot(X, Uh, label = 'sol approchee')
plot(Xh, Uerr, label = 'Erreur')
# On ajoute un titre
title('d²u(x)/dx²=f(x)')
# On ajoute les labels sur les axes
xlabel('X')
ylabel('Y')
# Pour faire afficher les labels
legend()
show() # Pour afficher la figure
| lgpl-3.0 |
muku42/bokeh | bokeh/charts/builder/step_builder.py | 43 | 5445 | """This is the Bokeh charts interface. It gives you a high level API to build
complex plot is a simple way.
This is the Step class which lets you build your Step charts just
passing the arguments to the Chart class and calling the proper functions.
"""
#-----------------------------------------------------------------------------
# Copyright (c) 2012 - 2014, Continuum Analytics, Inc. All rights reserved.
#
# Powered by the Bokeh Development Team.
#
# The full license is in the file LICENSE.txt, distributed with this software.
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
# Imports
#-----------------------------------------------------------------------------
from __future__ import absolute_import
import numpy as np
from six import string_types
from ..utils import cycle_colors
from .._builder import create_and_build, Builder
from ...models import ColumnDataSource, DataRange1d, GlyphRenderer
from ...models.glyphs import Line
from ...properties import Any
#-----------------------------------------------------------------------------
# Classes and functions
#-----------------------------------------------------------------------------
def Step(values, index=None, **kws):
""" Create a step chart using :class:`StepBuilder <bokeh.charts.builder.step_builder.StepBuilder>`
render the geometry from values and index.
Args:
values (iterable): iterable 2d representing the data series
values matrix.
index (str|1d iterable, optional): can be used to specify a common custom
index for all data series as an **1d iterable** of any sort that will be used as
series common index or a **string** that corresponds to the key of the
mapping to be used as index (and not as data series) if
area.values is a mapping (like a dict, an OrderedDict
or a pandas DataFrame)
In addition the the parameters specific to this chart,
:ref:`userguide_charts_generic_arguments` are also accepted as keyword parameters.
Returns:
a new :class:`Chart <bokeh.charts.Chart>`
Examples:
.. bokeh-plot::
:source-position: above
from collections import OrderedDict
from bokeh.charts import Step, output_file, show
# (dict, OrderedDict, lists, arrays and DataFrames are valid inputs)
xyvalues = [[2, 3, 7, 5, 26], [12, 33, 47, 15, 126], [22, 43, 10, 25, 26]]
step = Step(xyvalues, title="Steps", legend="top_left", ylabel='Languages')
output_file('step.html')
show(step)
"""
return create_and_build(StepBuilder, values, index=index, **kws)
class StepBuilder(Builder):
"""This is the Step class and it is in charge of plotting
Step charts in an easy and intuitive way.
Essentially, we provide a way to ingest the data, make the proper
calculations and push the references into a source object.
We additionally make calculations for the ranges.
And finally add the needed lines taking the references from the
source.
"""
index = Any(help="""
An index to be used for all data series as follows:
- A 1d iterable of any sort that will be used as
series common index
- As a string that corresponds to the key of the
mapping to be used as index (and not as data
series) if area.values is a mapping (like a dict,
an OrderedDict or a pandas DataFrame)
""")
def _process_data(self):
"""It calculates the chart properties accordingly from Step.values.
Then build a dict containing references to all the points to be
used by the segment glyph inside the ``_yield_renderers`` method.
"""
self._data = dict()
self._groups = []
orig_xs = self._values_index
xs = np.empty(2*len(orig_xs)-1, dtype=np.int)
xs[::2] = orig_xs[:]
xs[1::2] = orig_xs[1:]
self._data['x'] = xs
for i, col in enumerate(self._values.keys()):
if isinstance(self.index, string_types) and col == self.index:
continue
# save every new group we find
self._groups.append(col)
orig_ys = np.array([self._values[col][x] for x in orig_xs])
ys = np.empty(2*len(orig_ys)-1)
ys[::2] = orig_ys[:]
ys[1::2] = orig_ys[:-1]
self._data['y_%s' % col] = ys
def _set_sources(self):
""" Push the Step data into the ColumnDataSource and calculate
the proper ranges.
"""
self._source = ColumnDataSource(self._data)
self.x_range = DataRange1d()
#y_sources = [sc.columns("y_%s" % col) for col in self._groups]
self.y_range = DataRange1d()
def _yield_renderers(self):
"""Use the line glyphs to connect the xy points in the Step.
Takes reference points from the data loaded at the ColumnDataSource.
"""
colors = cycle_colors(self._groups, self.palette)
for i, name in enumerate(self._groups):
# draw the step horizontal segment
glyph = Line(x="x", y="y_%s" % name, line_color=colors[i], line_width=2)
renderer = GlyphRenderer(data_source=self._source, glyph=glyph)
self._legends.append((self._groups[i], [renderer]))
yield renderer
| bsd-3-clause |
macks22/scikit-learn | examples/tree/plot_iris.py | 271 | 2186 | """
================================================================
Plot the decision surface of a decision tree on the iris dataset
================================================================
Plot the decision surface of a decision tree trained on pairs
of features of the iris dataset.
See :ref:`decision tree <tree>` for more information on the estimator.
For each pair of iris features, the decision tree learns decision
boundaries made of combinations of simple thresholding rules inferred from
the training samples.
"""
print(__doc__)
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
# Parameters
n_classes = 3
plot_colors = "bry"
plot_step = 0.02
# Load data
iris = load_iris()
for pairidx, pair in enumerate([[0, 1], [0, 2], [0, 3],
[1, 2], [1, 3], [2, 3]]):
# We only take the two corresponding features
X = iris.data[:, pair]
y = iris.target
# Shuffle
idx = np.arange(X.shape[0])
np.random.seed(13)
np.random.shuffle(idx)
X = X[idx]
y = y[idx]
# Standardize
mean = X.mean(axis=0)
std = X.std(axis=0)
X = (X - mean) / std
# Train
clf = DecisionTreeClassifier().fit(X, y)
# Plot the decision boundary
plt.subplot(2, 3, pairidx + 1)
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step),
np.arange(y_min, y_max, plot_step))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)
plt.xlabel(iris.feature_names[pair[0]])
plt.ylabel(iris.feature_names[pair[1]])
plt.axis("tight")
# Plot the training points
for i, color in zip(range(n_classes), plot_colors):
idx = np.where(y == i)
plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i],
cmap=plt.cm.Paired)
plt.axis("tight")
plt.suptitle("Decision surface of a decision tree using paired features")
plt.legend()
plt.show()
| bsd-3-clause |
arabenjamin/scikit-learn | examples/semi_supervised/plot_label_propagation_structure.py | 247 | 2432 | """
==============================================
Label Propagation learning a complex structure
==============================================
Example of LabelPropagation learning a complex internal structure
to demonstrate "manifold learning". The outer circle should be
labeled "red" and the inner circle "blue". Because both label groups
lie inside their own distinct shape, we can see that the labels
propagate correctly around the circle.
"""
print(__doc__)
# Authors: Clay Woolam <[email protected]>
# Andreas Mueller <[email protected]>
# Licence: BSD
import numpy as np
import matplotlib.pyplot as plt
from sklearn.semi_supervised import label_propagation
from sklearn.datasets import make_circles
# generate ring with inner box
n_samples = 200
X, y = make_circles(n_samples=n_samples, shuffle=False)
outer, inner = 0, 1
labels = -np.ones(n_samples)
labels[0] = outer
labels[-1] = inner
###############################################################################
# Learn with LabelSpreading
label_spread = label_propagation.LabelSpreading(kernel='knn', alpha=1.0)
label_spread.fit(X, labels)
###############################################################################
# Plot output labels
output_labels = label_spread.transduction_
plt.figure(figsize=(8.5, 4))
plt.subplot(1, 2, 1)
plot_outer_labeled, = plt.plot(X[labels == outer, 0],
X[labels == outer, 1], 'rs')
plot_unlabeled, = plt.plot(X[labels == -1, 0], X[labels == -1, 1], 'g.')
plot_inner_labeled, = plt.plot(X[labels == inner, 0],
X[labels == inner, 1], 'bs')
plt.legend((plot_outer_labeled, plot_inner_labeled, plot_unlabeled),
('Outer Labeled', 'Inner Labeled', 'Unlabeled'), 'upper left',
numpoints=1, shadow=False)
plt.title("Raw data (2 classes=red and blue)")
plt.subplot(1, 2, 2)
output_label_array = np.asarray(output_labels)
outer_numbers = np.where(output_label_array == outer)[0]
inner_numbers = np.where(output_label_array == inner)[0]
plot_outer, = plt.plot(X[outer_numbers, 0], X[outer_numbers, 1], 'rs')
plot_inner, = plt.plot(X[inner_numbers, 0], X[inner_numbers, 1], 'bs')
plt.legend((plot_outer, plot_inner), ('Outer Learned', 'Inner Learned'),
'upper left', numpoints=1, shadow=False)
plt.title("Labels learned with Label Spreading (KNN)")
plt.subplots_adjust(left=0.07, bottom=0.07, right=0.93, top=0.92)
plt.show()
| bsd-3-clause |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.