repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
Titan-C/scikit-learn
sklearn/datasets/tests/test_kddcup99.py
42
1278
"""Test kddcup99 loader. Only 'percent10' mode is tested, as the full data is too big to use in unit-testing. The test is skipped if the data wasn't previously fetched and saved to scikit-learn data folder. """ from sklearn.datasets import fetch_kddcup99 from sklearn.utils.testing import assert_equal, SkipTest def test_percent10(): try: data = fetch_kddcup99(download_if_missing=False) except IOError: raise SkipTest("kddcup99 dataset can not be loaded.") assert_equal(data.data.shape, (494021, 41)) assert_equal(data.target.shape, (494021,)) data_shuffled = fetch_kddcup99(shuffle=True, random_state=0) assert_equal(data.data.shape, data_shuffled.data.shape) assert_equal(data.target.shape, data_shuffled.target.shape) data = fetch_kddcup99('SA') assert_equal(data.data.shape, (100655, 41)) assert_equal(data.target.shape, (100655,)) data = fetch_kddcup99('SF') assert_equal(data.data.shape, (73237, 4)) assert_equal(data.target.shape, (73237,)) data = fetch_kddcup99('http') assert_equal(data.data.shape, (58725, 3)) assert_equal(data.target.shape, (58725,)) data = fetch_kddcup99('smtp') assert_equal(data.data.shape, (9571, 3)) assert_equal(data.target.shape, (9571,))
bsd-3-clause
chengchingwen/moth_prediction
get_ft.py
1
1143
import sqlite3 as sql import pandas as pd import datetime as d import make_db as m date = "%d-%d-%d" datef = "%Y-%m-%d" year_end = "%Y-12-31" year_start = "%Y-01-01" query = "select * from `%d` where Time between '%s' and '%s'" def nd(s): return d.datetime.strptime(s, "%Y-%m-%d").month def get_ft_t(year, month, day, place ,delta=10 ): today = d.datetime(year, month ,day)-d.timedelta(1) start_date = today - d.timedelta(delta-1) db = sql.connect(place) if today.year == start_date.year: table = pd.read_sql(query % (year, start_date.strftime(datef),today.strftime(datef)),db) else: table1 = pd.read_sql(query % (start_date.year, start_date.strftime(datef), start_date.strftime(year_end)), db) table2 = pd.read_sql(query % (today.year, today.strftime(year_start),today.strftime(datef)),db) table = pd.concat([table1, table2]) if len(table): table.index = range(delta) return table def get_ft(row): time = d.datetime.strptime(row["date"],"%Y-%m-%d") return get_ft_t(time.year,time.month,time.day,m.db_path % m.place[row["ID"]],delta=20)
artistic-2.0
yunque/sms-tools
lectures/08-Sound-transformations/plots-code/stftFiltering-orchestra.py
18
1677
import numpy as np import time, os, sys import matplotlib.pyplot as plt sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/transformations/')) import utilFunctions as UF import stftTransformations as STFTT import stft as STFT (fs, x) = UF.wavread('../../../sounds/orchestra.wav') w = np.hamming(2048) N = 2048 H = 512 # design a band stop filter using a hanning window startBin = int(N*500.0/fs) nBins = int(N*2000.0/fs) bandpass = (np.hanning(nBins) * 65.0) - 60 filt = np.zeros(N/2+1)-60 filt[startBin:startBin+nBins] = bandpass y = STFTT.stftFiltering(x, fs, w, N, H, filt) mX,pX = STFT.stftAnal(x, fs, w, N, H) mY,pY = STFT.stftAnal(y, fs, w, N, H) plt.figure(1, figsize=(12, 9)) plt.subplot(311) numFrames = int(mX[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) binFreq = np.arange(mX[0,:].size)*float(fs)/N plt.pcolormesh(frmTime, binFreq, np.transpose(mX)) plt.title('mX (orchestra.wav)') plt.autoscale(tight=True) plt.subplot(312) plt.plot(fs*np.arange(mX[0,:].size)/float(N), filt, 'k', lw=1.3) plt.axis([0, fs/2, -60, 7]) plt.title('filter shape') plt.subplot(313) numFrames = int(mY[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) binFreq = np.arange(mY[0,:].size)*float(fs)/N plt.pcolormesh(frmTime, binFreq, np.transpose(mY)) plt.title('mY') plt.autoscale(tight=True) plt.tight_layout() UF.wavwrite(y, fs, 'orchestra-stft-filtering.wav') plt.savefig('stftFiltering-orchestra.png') plt.show()
agpl-3.0
vigilv/scikit-learn
sklearn/feature_extraction/tests/test_dict_vectorizer.py
276
3790
# Authors: Lars Buitinck <[email protected]> # Dan Blanchard <[email protected]> # License: BSD 3 clause from random import Random import numpy as np import scipy.sparse as sp from numpy.testing import assert_array_equal from sklearn.utils.testing import (assert_equal, assert_in, assert_false, assert_true) from sklearn.feature_extraction import DictVectorizer from sklearn.feature_selection import SelectKBest, chi2 def test_dictvectorizer(): D = [{"foo": 1, "bar": 3}, {"bar": 4, "baz": 2}, {"bar": 1, "quux": 1, "quuux": 2}] for sparse in (True, False): for dtype in (int, np.float32, np.int16): for sort in (True, False): for iterable in (True, False): v = DictVectorizer(sparse=sparse, dtype=dtype, sort=sort) X = v.fit_transform(iter(D) if iterable else D) assert_equal(sp.issparse(X), sparse) assert_equal(X.shape, (3, 5)) assert_equal(X.sum(), 14) assert_equal(v.inverse_transform(X), D) if sparse: # CSR matrices can't be compared for equality assert_array_equal(X.A, v.transform(iter(D) if iterable else D).A) else: assert_array_equal(X, v.transform(iter(D) if iterable else D)) if sort: assert_equal(v.feature_names_, sorted(v.feature_names_)) def test_feature_selection(): # make two feature dicts with two useful features and a bunch of useless # ones, in terms of chi2 d1 = dict([("useless%d" % i, 10) for i in range(20)], useful1=1, useful2=20) d2 = dict([("useless%d" % i, 10) for i in range(20)], useful1=20, useful2=1) for indices in (True, False): v = DictVectorizer().fit([d1, d2]) X = v.transform([d1, d2]) sel = SelectKBest(chi2, k=2).fit(X, [0, 1]) v.restrict(sel.get_support(indices=indices), indices=indices) assert_equal(v.get_feature_names(), ["useful1", "useful2"]) def test_one_of_k(): D_in = [{"version": "1", "ham": 2}, {"version": "2", "spam": .3}, {"version=3": True, "spam": -1}] v = DictVectorizer() X = v.fit_transform(D_in) assert_equal(X.shape, (3, 5)) D_out = v.inverse_transform(X) assert_equal(D_out[0], {"version=1": 1, "ham": 2}) names = v.get_feature_names() assert_true("version=2" in names) assert_false("version" in names) def test_unseen_or_no_features(): D = [{"camelot": 0, "spamalot": 1}] for sparse in [True, False]: v = DictVectorizer(sparse=sparse).fit(D) X = v.transform({"push the pram a lot": 2}) if sparse: X = X.toarray() assert_array_equal(X, np.zeros((1, 2))) X = v.transform({}) if sparse: X = X.toarray() assert_array_equal(X, np.zeros((1, 2))) try: v.transform([]) except ValueError as e: assert_in("empty", str(e)) def test_deterministic_vocabulary(): # Generate equal dictionaries with different memory layouts items = [("%03d" % i, i) for i in range(1000)] rng = Random(42) d_sorted = dict(items) rng.shuffle(items) d_shuffled = dict(items) # check that the memory layout does not impact the resulting vocabulary v_1 = DictVectorizer().fit([d_sorted]) v_2 = DictVectorizer().fit([d_shuffled]) assert_equal(v_1.vocabulary_, v_2.vocabulary_)
bsd-3-clause
spacether/pycalculix
pycalculix/partmodule.py
1
40690
"""This module stores the Part class. It is used to make 2D parts. """ import numpy as np # needed for linspace on hole creation from . import base_classes from . import geometry #point, line, area class Part(base_classes.Idobj): """This makes a part. Args: parent: parent FeaModel Attributes: __fea (FeaModel): parent FeaModel points (list): list or part points, excludes arc centers allpoints (list): list or part points, includes arc centers lines (list): list of all Line and Arc that make the part signlines (list): list of all SignLine and SignArc that make the part __cursor (Point): location of a cursor drawing the part __holemode (bool): if True, lines will be added to holes, otherwise, they'll be added to areas areas (list): list of Area that make up the part left (list): list the parts leftmost lines, they must be vertical right (list): list the parts rightmost lines, they must be vertical top (list): list the parts top lines, they must be horizontal bottom (list): list the parts bottom lines, they must be horizontal center (Point): the area centroid of the part nodes (list): list of part's nodes elements (list): list of part's elements """ def __init__(self, feamodel): self.fea = feamodel self.__cursor = geometry.Point(0, 0) self.areas = [] # top area is the buffer # make the buffer area = self.fea.areas.append(geometry.Area(self, [])) self.areas.append(area) base_classes.Idobj.__init__(self) self.left = None self.right = None self.top = None self.bottom = None self.center = None self.nodes = [] self.elements = [] self.__holemode = False self.fea.parts.append(self) def __hash__(self): """Returns the item's id as its hash.""" return self.id @property def lines(self): """Returns list of part lines.""" lines = set() for area in self.areas: lines.update(area.lines) return list(lines) @property def signlines(self): """Returns list of part signline and signarc.""" lines = set() for area in self.areas: lines.update(area.signlines) return list(lines) @property def points(self): """Returns list of part points, excludes arc centers.""" points = set() lines = self.lines for line in lines: points.update(line.points) return list(points) @property def allpoints(self): """Returns list of part points, includes arc centers.""" points = set() lines = self.lines for line in lines: points.update(line.allpoints) return list(points) def get_item(self, item): """"Returns the part's item(s) requested by the passed string. Args: item (str): string requesting item(s) * Valid examples: 'P0', 'L0', 'left', 'A0' Returns: item(s) or None: If items are found they are returned * If there is only one item it is returned * If there are multiple items, they are returned as a list * If no items are found None is returned """ if item in ['left', 'right', 'top', 'bottom']: items = getattr(self, item) return items elif item[0] == 'P': # get point items = self.points num = int(item[1:]) res = [a for a in items if a.id == num] return res[0] elif item[0] == 'L': # get line items = self.signlines num = int(item[1:]) items = [a for a in items if a.id == num] return items[0] elif item[0] == 'A': # get area items = self.areas num = int(item[1:]) items = [a for a in items if a.id == num] return items[0] else: print('Unknown item! Please pass the name of a point, line or area!') return None def get_name(self): """Returns the part name based on id number.""" return 'PART'+str(self.id) def __set_side(self, side): """Sets the part.side to a list of lines on that side of the part. Used to set the part.left, part.right, part.top, part.bottom sides. Args: side (string): 'left', 'right', 'top','bottom' """ # set index and axis, ind=0 is low side, ind=-1 is high side inds = {'left':0, 'right':-1, 'top':-1, 'bottom':0} axes = {'left':'y', 'right':'y', 'top':'x', 'bottom':'x'} ind = inds[side] axis = axes[side] # loc = 'left', ind = 0, axis = 'y' points = self.points # sort the points low to high points = sorted(points, key=lambda pt: getattr(pt, axis)) # store the target value target_value = getattr(points[ind], axis) res = [] lines = self.signlines for sline in lines: if isinstance(sline, geometry.SignLine): pt_axis_vals = [getattr(pt, axis) for pt in sline.points] pt_dist_vals = [abs(target_value - pt_axis_val) for pt_axis_val in pt_axis_vals] if all([pt_dist_val < geometry.ACC for pt_dist_val in pt_dist_vals]): # line is on the left side res.append(sline) setattr(self, side, res) def goto(self, x, y, holemode=False): """Moves the part cursor to a location. If that location has a point at it, use it. If not, make a new point at that location. Args: x (float): x-coordinate of the point to go to y (float): y-coordinate of the point to go to holemode (bool): if True, we start drawing a hole here, otherwise we start drawing an area Returns: self.__cursor (Point): returns the updated cursor point """ [pnew, already_exists] = self.__make_get_pt(x, y) if already_exists: if self.areas[-1].closed == True: # make a new area if the old area is already closed and we're # going to an existing point area = self.fea.areas.append(geometry.Area(self, [])) self.areas.append(area) # return cursor self.__cursor = pnew self.__holemode = holemode return self.__cursor def __get_point(self, point): """Returns point if found, None otherwise.""" points = self.allpoints found_point = None for apoint in points: dist = point - apoint dist = dist.length() if dist < geometry.ACC: # point already exists in part, use it found_point = apoint break return found_point def __make_get_pt(self, x, y): """Gets a point if it exists, makes it if it doesn't. Returns the point. Use this when you need a point made in the part, and you want to use an extant point if one is available. Args: x (float): point x-coordinate y (float): point y-coordinate Returns: list: list[0]: Point list[1]: boolean, True = the point already existed """ thept = geometry.Point(x, y) pfound = self.__get_point(thept) pexists = True if pfound == None: pfound = thept self.fea.register(pfound) pexists = False return [pfound, pexists] def __calc_area_center(self): """Calculates and returns the part and centroid Point. Returns: list: [area, Point] """ val_list = [] for area in self.areas: if area.closed == True: aval, cval = area.area, area.center val_list.append([aval, cval]) a_sum = sum([aval[0] for aval in val_list]) cxa_sum = sum([center.x*aval for [aval, center] in val_list]) cya_sum = sum([center.y*aval for [aval, center] in val_list]) cx_val = cxa_sum/a_sum cy_val = cya_sum/a_sum center = geometry.Point(cx_val, cy_val) return [a_sum, center] def __make_get_sline(self, lnew): """Returns a signed line or arc, makes it if it needs to. Args: lnew (Line or Arc or SignLine or SignArc): Line or Arc to make Returns: list: list[0]: SignLine or SignArc list[1]: boolean, True = the line already existed """ lpos = lnew.signed_copy(1) lneg = lnew.signed_copy(-1) # get part's signed lines slines = self.signlines lexists = False for sline in slines: if lpos == sline: lexists = True signline_new = sline break elif lneg == sline: lexists = True signline_new = sline.signed_copy(-1) signline_new.edge = False self.fea.register(signline_new) break else: # fired when we haven't broken out of the loop, the line is new if isinstance(lnew, geometry.SignLine): lnew = geometry.Line(lnew.pt(0), lnew.pt(1)) self.fea.register(lnew) lnew.save_to_points() signline_new = lnew.signed_copy(1) self.fea.register(signline_new) signline_new.line.add_signline(signline_new) return [signline_new, lexists] def draw_circle(self, center_x, center_y, radius, num_arcs=4): """Draws a circle area and adds it to the part. Args: center_x (float): x-axis hole center center_y (float): y-axis hole center radius (float): hole radius num_arcs (int): number of arcs to use, must be >= 3 Returns: loop (geometry.LineLoop): a LineLoop list of SignArc """ center = geometry.Point(center_x, center_y) rvect = geometry.Point(0, radius) start = center + rvect self.goto(start.x, start.y) angles = np.linspace(360/num_arcs,360,num_arcs, endpoint=True) for ang in angles: point = geometry.Point(0, radius).rot_ccw_deg(ang) point = point + center self.draw_arc(point.x, point.y, center.x, center.y) loop = self.areas[-1].exlines self.__update() return loop def draw_hole(self, center_x, center_y, radius, num_arcs=4, filled=False): """Makes a hole in the part. Args: center_x (float): x-axis hole center center_y (float): y-axis hole center radius (float): hole radius num_arcs (int): number of arcs to use, must be >= 3 filled (bool): whether to fill the hole * True: makes a new area in the part Returns: hole_lines (list or None): list of hole SignLine or SignArc * Returns None if hole was not made. """ center = geometry.Point(center_x, center_y) area = self.__area_from_pt(center) if area == None: print("You can't make a hole here until there's an area here!") return None else: # make points rvect = geometry.Point(0, radius) start = center + rvect self.goto(start.x, start.y, holemode=True) angles = np.linspace(360/num_arcs,360,num_arcs, endpoint=True) for ang in angles: point = geometry.Point(0, radius).rot_ccw_deg(ang) point = point + center self.draw_arc(point.x, point.y, center.x, center.y) # make new area if filled: # reverse order, reverse sline directions, store in feamodel slines = list(area.holes[-1]) slines.reverse() slines = [sline.signed_copy(-1) for sline in slines] slines = [self.__make_get_sline(sline)[0] for sline in slines] anew = self.fea.areas.append(geometry.Area(self, slines)) self.areas.append(anew) self.__update() return area.holes[-1] def draw_arc_angle(self, degrees_ccw, center_x, center_y): """Makes an arc and adds it to the part. | Current point is the first arc point. | degrees_ccw is the swept angle in degrees, counterclockwise | (center_x, center_y) is the arc center | Degrees: Traversed angle of arc must be < 180 degrees Args: degrees_ccw (float): arc swept angle in degrees, counterclockwise center_x (float): arc center point x-coordinate center_y (float): arc center point y-coordinate Returns: list: [arc, arc_start_point, arc_end_point] """ center = geometry.Point(center_x, center_y) radius_vector = self.__cursor - center radius_vector.rot_ccw_deg(degrees_ccw) end = center + radius_vector return self.draw_arc(end.x, end.y, center_x, center_y) def draw_arc(self, end_x, end_y, center_x, center_y): """Makes an arc and adds it to the part. | Current point is the first arc point. | (end_x, end_y) is the end point | (center_x, center_y) is the arc center | Degrees: Traversed angle of arc must be < 180 degrees | Radians: Traversed angle of arc must be < Pi Args: end_x (float): arc end point x-coordinate end_y (float): arc end point y-coordinate center_x (float): arc center point x-coordinate center_y (float): arc center point y-coordinate Returns: list: [arc, arc_start_point, arc_end_point] """ pold = self.__cursor # make arc center point ctr = self.__make_get_pt(center_x, center_y)[0] # make arc end point self.__cursor = self.__make_get_pt(end_x, end_y)[0] # make arc arc = self.__make_get_sline(geometry.Arc(pold, self.__cursor, ctr))[0] if self.__holemode: area = self.__area_from_pt(self.__cursor) if area != None: closed = area.add_hole_sline(arc) if closed: self.__holemode = False else: print('You must have a closed area here before making a hole!') else: self.areas[-1].add_sline(arc) return [arc, pold, self.__cursor] def draw_line_delta(self, delta_x, delta_y): """Draws a line a relative distance, and adds it to the part. Args: delta_x (float): x-axis delta distance to draw the line delta_y (float): y-axis delta distance to draw the line Returns: list: [line, point_start, point_end] """ x = self.__cursor.x + delta_x y = self.__cursor.y + delta_y return self.draw_line_to(x, y) def draw_line_rad(self, dx_rad): """Draws a line a relative radial distance, and adds it to the part. Args: dx_rad (float): x-axis delta distance to draw the line Returns: list: [line, point_start, point_end] """ return self.draw_line_delta(dx_rad, 0.0) def draw_line_ax(self, dy_ax): """Draws a line a relative axial distance, and adds it to the part. Args: dy_ax (float): y-axis delta distance to draw the line Returns: list: [line, point_start, point_end] """ return self.draw_line_delta(0.0, dy_ax) def draw_line_to(self, x, y): """Draws a line to the given location, and adds it to the part. Args: x (float): x-axis coordinate of the end point y (float): y-axis coordinate of the end point Returns: list: [SignLine, point_start, point_end] """ pold = self.__cursor self.__cursor = self.__make_get_pt(x, y)[0] sline = self.__make_get_sline(geometry.Line(pold, self.__cursor))[0] if self.__holemode: area = self.__area_from_pt(self.__cursor) if area != None: closed = area.add_hole_sline(sline) if closed: self.__holemode = False self.__update() else: print('You must have a closed area here before making a hole!') else: # drawing in last area self.areas[-1].add_sline(sline) # check for closure of the area if self.areas[-1].closed: self.__update() return [sline, pold, self.__cursor] def __get_maxlength(self): """Returns the max distance between points in the part.""" points = self.points maxlen = 0.0 # loop through points checking dist to next point for ind, point_1 in enumerate(points[:-1]): for point_2 in points[ind:]: vect = point_1 - point_2 dist = vect.length() if dist > maxlen: maxlen = dist return maxlen def __area_from_pt(self, point): """Returns the area that the point is inside. Args: point (Point): the point we are asking about Returns: Area or None: Area is the found area None is returned if the point is not in one of this part's areas """ for area in self.areas: if area.contains_point(point): return area return None def fillet_lines(self, line1, line2, radius): """Fillets the given lines in the part. This inserts an arc in the part tangent to the two given lines. Args: line1 (SignLine): line that the arc starts on, arc is tangent line2 (SignLine): line that the arc ends on, arc is tangent radius (float): arc radius size Returns: list: [arc, start_point, end_point] """ # check if the lines are touching if not line1.line.touches(line2.line): print('ERROR: Cannot fillet! Lines must touch!') return if line1.line.pt(1) == line2.line.pt(0): first_line = line1 second_line = line2 elif line2.line.pt(1) == line1.line.pt(0): first_line = line2 second_line = line1 else: print('ERROR: Sign lines must both be going in CW or CCW ' 'direction. The two passed lines are going in ' 'different directions. Unable to fillet them.') return tmp = self.__cursor # offset the lines, assuming area is being traced clockwise # get the intersection point magnitude = radius l1_off = first_line.offset(magnitude) l2_off = second_line.offset(magnitude) ctrpt = l1_off.intersects(l2_off) if ctrpt == None: # flip the offset direction if lines don't intersect magnitude = -radius l1_off = first_line.offset(magnitude) l2_off = second_line.offset(magnitude) ctrpt = l1_off.intersects(l2_off) # now we have an intersecting point p1_new = first_line.arc_tang_intersection(ctrpt, magnitude) p2_new = second_line.arc_tang_intersection(ctrpt, magnitude) rempt = first_line.pt(1) p1_new = self.__make_get_pt(p1_new.x, p1_new.y)[0] ctrpt = self.__make_get_pt(ctrpt.x, ctrpt.y)[0] p2_new = self.__make_get_pt(p2_new.x, p2_new.y)[0] # make the new arc arc = self.__make_get_sline(geometry.Arc(p1_new, p2_new, ctrpt))[0] # put the arc in the right location in the area area = first_line.lineloop.parent area.line_insert(first_line, arc) print('Arc inserted into area %i' % (area.id)) # edit the adjacent lines to replace the removed pt first_line.set_pt(1, arc.pt(0)) second_line.set_pt(0, arc.pt(1)) # del old pt, store new points for the arc self.fea.points.remove(rempt) # reset the cursor to where it should be self.__cursor = tmp return [arc, arc.pt(0), arc.pt(1)] def fillet_all(self, radius): """Fillets all external lines not within 10 degrees of tangency Args: radius (float): the fillet radius to use Returns: arcs (list): list of SignArc """ pairs = [] for area in self.areas: for ind, sline in enumerate(area.exlines): prev_sline = area.exlines[ind-1] this_point = sline.pt(0) if len(this_point.lines) == 2: # only fillet lines that are not shared by other areas if (isinstance(sline, geometry.SignLine) and isinstance(prev_sline, geometry.SignLine)): # only fillet lines perp1 = prev_sline.get_perp_vec(this_point) perp2 = sline.get_perp_vec(this_point) ang = perp1.ang_bet_deg(perp2) is_tangent = (-10 <= ang <= 10) if is_tangent == False: pairs.append([prev_sline, sline]) arcs = [] for pair in pairs: arc = self.fillet_lines(pair[0], pair[1], radius)[0] arcs.append(arc) return arcs def label(self, axis): """Labels the part on a Matplotlib axis Args: axis (Matplotlib Axis): Matplotlib Axis """ axis.text(self.center.y, self.center.x, self.get_name(), ha='center', va='center') def plot(self, axis, label=True, color='yellow'): """Plots the part on the passed Matplotlib axis. Args: axis (Matplotlib axis): the axis we will plot on label (bool): True displays the part label color (tuple): r,g,b,a matplotlib color tuple """ patches = [] for area in self.areas: if area.closed: patches.append(area.get_patch()) for patch in patches: patch.set_color(color) axis.add_patch(patch) # apply the label if label: self.label(axis) def __cut_line(self, point, line): """Cuts the passed line at the passed point. The passed line is cut into two lines. All areas that included the original line are updated. Args: line (Line or Arc): the line to cut, must be Line or Arc point (Point): the location on the line that we will cut it Returns: list: [pnew, lnew] pnew: the new point we created to cut the original line lnew: the new line we created, the end half of the orignal line """ pnew = self.__make_get_pt(point.x, point.y)[0] if point.id != -1: # if passed point already exists, use it pnew = point pend = line.pt(1) line.set_pt(1, pnew) # shortens the line new_prim = geometry.Line(pnew, pend) if isinstance(line, geometry.Arc): new_prim = geometry.Arc(pnew, pend, line.actr) new_sline = self.__make_get_sline(new_prim)[0] # insert the new line into existing areas is_line = isinstance(line, geometry.Line) or isinstance(line, geometry.Arc) is_sline = isinstance(line, geometry.SignLine) or isinstance(line, geometry.SignArc) print('Cutting line (is_line, is_sline, signlines) (%s, %s, %i)' % (is_line, is_sline, len(line.signlines))) slines = line.signlines for sline in slines: area = sline.lineloop.parent if sline.sign == 1: # cutting line in clockwise area, where line is pos area.line_insert(sline, new_sline) elif sline.sign == -1: # cutting line in clockwise area, where line is neg rev_sline = self.__make_get_sline(new_sline.signed_copy(-1))[0] area.line_insert(sline, rev_sline, after=False) return [pnew, new_sline] def __cut_area(self, area, start_pt, end_pt): """Cuts the part area from start_pt to end_pt.""" # select the line portions that define the areas # list[:low] excludes low index # list [high:] includes high index # we want the line which start with the point lpre_start = area.line_from_startpt(start_pt) lpre_end = area.line_from_startpt(end_pt) if lpre_start == None or lpre_end == None: self.fea.plot_geometry() print(area.exlines) istart = area.exlines.index(lpre_start) iend = area.exlines.index(lpre_end) low = min(istart, iend) high = max(istart, iend) # lists of lines for areas beg = area.exlines[:low] mid = area.exlines[low:high] end = area.exlines[high:] # make cut line for [beg + cut + end] area start_pt = mid[0].pt(0) end_pt = mid[-1].pt(1) fwd = geometry.Line(start_pt, end_pt) rev = geometry.Line(end_pt, start_pt) # update existing area cline = self.__make_get_sline(fwd)[0] alist_curr = beg + [cline] + end area.update(alist_curr) # make new area cline_rev = self.__make_get_sline(rev)[0] alist_other = mid + [cline_rev] anew = geometry.Area(self, alist_other) self.fea.register(anew) self.areas.append(anew) # fix holes self.__store_holes() def __merge_hole(self, area, start_pt, end_pt): """Merges the hole into its area with a line between passed points.""" # line will be drawn from start point on exlines to end point on hole hole_points = area.holepoints if start_pt in hole_points: tmp = start_pt start_pt = end_pt end_pt = tmp lpre_start = area.line_from_startpt(start_pt) hole_line = area.line_from_startpt(end_pt) if lpre_start == None or hole_line == None: self.fea.plot_geometry() ind = area.exlines.index(lpre_start) # store sections of the area beg = area.exlines[:ind] end = area.exlines[ind:] thehole = None mid = [] for hole in area.holes: for sline in hole: if sline == hole_line: ind = hole.index(sline) mid = hole[ind:] + hole[:ind] thehole = hole break if mid != []: break fwd = geometry.Line(start_pt, end_pt) fwd_sline = self.__make_get_sline(fwd)[0] rev_sline = fwd_sline.signed_copy(-1) self.fea.register(rev_sline) rev_sline.line.add_signline(rev_sline) alist_curr = beg + [fwd_sline] + mid + [rev_sline] + end area.holes.remove(thehole) area.update(alist_curr) def __get_cut_line(self, cutline): """Returns a cut line beginning and ending on the part.""" # find all intersections lines = self.lines points = set() # add line intersections for line in lines: newpt = line.intersects(cutline) if newpt != None: points.add(newpt) # loop through intersection points, storing distance points = list(points) for (ind, point) in enumerate(points): dist = point - cutline.pt(0) dist = dist.length() pdict = {'dist': dist, 'point': point} points[ind] = pdict # sort the points by dist, lowest to highest, return first cut points = sorted(points, key=lambda k: k['dist']) start = points[0]['point'] end = points[1]['point'] new_cut = geometry.Line(start, end) return new_cut def __cut_with_line(self, cutline, debug): """Cuts the part using the passed line. Args: cutline (Line): line to cut the area with debug (list): bool for printing, bool for plotting after every cut """ # find all intersections lines = self.lines points = set() # add line intersections for line in lines: if debug[0]: print('Checking X between %s and cutline' % line.get_name()) newpt = line.intersects(cutline) if debug[0]: print(' Intersection: %s' % newpt) if newpt != None: points.add(newpt) # loop through intersection points, storing distance and lines to cut points = list(points) for (ind, point) in enumerate(points): dist = point - cutline.pt(0) dist = dist.length() pdict = {'dist': dist} realpt = self.__get_point(point) # we only want to store lines to cut here if realpt == None or realpt.arc_center == True: # we could have an existing arc center on a line that needs to # be cut if realpt == None: realpt = point for line in lines: point_on_line = line.coincident(realpt) if point_on_line and point not in line.points: pdict['line'] = line break pdict['point'] = realpt points[ind] = pdict # sort the points by dist, lowest to highest points = sorted(points, key=lambda k: k['dist']) if debug[0]: print('==================================') print('Points on the cutline!------------') for pdict in points: print(pdict['point']) print(' dist %.3f' % pdict['dist']) if 'line' in pdict: print(' X cut line: %s' % pdict['line']) print('==================================') # loop through the points cutting areas for ind in range(len(points)): pdict = points[ind] start_pt = pdict['point'] if 'line' in pdict: # cut the line and point to the real new point print('Cut through line %s' % pdict['line'].get_name()) pnew = self.__cut_line(start_pt, pdict['line'])[0] points[ind]['point'] = pnew start_pt = pnew end_pt = None pavg = None area = None if ind > 0: # find the area we're working on end_pt = points[ind-1]['point'] pavg = start_pt + end_pt pavg = pavg*0.5 area = self.__area_from_pt(pavg) if area == None: # stop cutting if we are trying to cut through a holes print('No area found at point avg, no cut made') break start_hole = start_pt in area.holepoints end_hole = end_pt in area.holepoints if start_hole and end_hole and area != None: print('Trying to join holes, no cut made') break # stop cutting if we are trying to join holes if end_hole == True or start_hole == True: print('Merging hole in %s' % area.get_name()) self.__merge_hole(area, start_pt, end_pt) else: print('Cutting %s' % area.get_name()) self.__cut_area(area, start_pt, end_pt) if debug[1]: self.fea.plot_geometry() def __store_holes(self): """Puts all holes in their correct areas""" holes = [] for area in self.areas: holes += area.holes for hole in holes: hole_area = hole.parent for area in self.areas: is_inside = hole.inside(area.exlines) if is_inside == True: if area != hole_area: # delete the hole from the old area, move it to the new hole.set_parent(area) hole_area.holes.remove(hole) hole_area.close() area.holes.append(hole) area.close() afrom, ato = hole_area.get_name(), area.get_name() print('Hole moved from %s to %s' % (afrom, ato)) def __vect_to_line(self, point, cvect): """Returns a cutting line at a given point and cutting vector. Args: point (Point): the location we are cutting from cvect (Point): the vector direction of the cut from pt Returns: cutline (Line): cut line """ cvect.make_unit() vsize = self.__get_maxlength() endpt = point + cvect*vsize cutline = geometry.Line(point, endpt) cutline = self.__get_cut_line(cutline) return cutline def __chunk_area(self, area, mode, exclude_convex, debug): """Cuts the passed area into regular smaller areas. The cgx mesher only accepts areas which are 3-5 sides so one may need to call this before using that mesher. Cuts are made perpendicular to tangent points or at internal corners. At internal corners two perpendicular cuts are made. Args: area (Area): the area to cut into smaller areas mode (str): 'both', 'holes' or 'ext' chunks the area using the points form this set. See part.chunk exclude_convex (bool): If true exclude cutting convex tangent points debug (list): bool for printing, bool for plotting after every cut """ # store the cuts first, then cut after cuts = [] # each item is a dict with a pt and vect in it loops = [] cut_point_sets = [] if mode == 'holes': loops = area.holes elif mode == 'ext': loops = [area.exlines] elif mode == 'both': loops = area.holes + [area.exlines] for loop in loops: for ind, line in enumerate(loop): line_pre = loop[ind-1] line_post = line point = line_pre.pt(1) perp1 = line_pre.get_perp_vec(point) perp2 = line_post.get_perp_vec(point) #tan1 = line_pre.get_tan_vec(point) #tan2 = line_post.get_tan_vec(point) # flip these vectors later to make them cut the area(s) ang = perp1.ang_bet_deg(perp2) cut = {} make_cut = True pre_arc = isinstance(line_pre, geometry.SignArc) post_arc = isinstance(line_post, geometry.SignArc) if pre_arc or post_arc: if pre_arc and post_arc: if (line_pre.concavity == 'convex' and line_post.concavity == 'convex' and exclude_convex == True): make_cut = False else: # only one is an arc arc = line_pre if post_arc: arc = line_post if arc.concavity == 'convex' and exclude_convex == True: make_cut = False is_tangent = (-10 <= ang <= 10) is_int_corner = (45 <= ang <= 135) """ print('-------------------') print('%s' % point) print('Angle is %.3f' % ang) print('Make cut %s' % make_cut) print('is_tangent %s' % is_tangent) print('is_int_corner %s' % is_int_corner) """ if is_tangent: if make_cut == True: # tangent cut = {'pt':point, 'vect':perp1*-1} cut_line = self.__vect_to_line(cut['pt'], cut['vect']) pset = set(cut_line.points) if pset not in cut_point_sets: cut_point_sets.append(pset) cut['line'] = cut_line cuts.append(cut) elif is_int_corner: # internal corner cut = {'pt':point, 'vect':perp1*-1} cut_line = self.__vect_to_line(cut['pt'], cut['vect']) pset = set(cut_line.points) if pset not in cut_point_sets: cut_point_sets.append(pset) cut['line'] = cut_line cuts.append(cut) cut = {'pt':point, 'vect':perp2*-1} cut_line = self.__vect_to_line(cut['pt'], cut['vect']) pset = set(cut_line.points) if pset not in cut_point_sets: cut_point_sets.append(pset) cut['line'] = cut_line cuts.append(cut) elif ang < 0: # external corner # do not split these pass # do the cuts for cut in cuts: print('--------------------') print('Cut point:', cut['pt'].get_name()) print('Cut line:', cut['line']) self.__cut_with_line(cut['line'], debug) def chunk(self, mode='both', exclude_convex = True, debug=[0, 0]): """Chunks all areas in the part. Args: mode (str): area chunking mode - 'both': cuts areas using holes and exterior points - 'holes': cut areas using holes points only - 'ext': cut areas using exterior points only exclude_convex (bool): If true exclude cutting convex tangent points """ for area in self.areas: if area.closed: min_sides = 5 has_holes = len(area.holes) > 0 ext_gr = len(area.exlines) > min_sides both_false = (has_holes == False and ext_gr == False) if mode == 'holes' and has_holes: self.__chunk_area(area, mode, exclude_convex, debug) elif (mode == 'both' and (has_holes or ext_gr or not exclude_convex)): self.__chunk_area(area, mode, exclude_convex, debug) elif mode == 'ext' and (ext_gr or not exclude_convex): self.__chunk_area(area, mode, exclude_convex, debug) else: aname = area.get_name() val = 'Area %s was not chunked because it had' % aname adder = '' if mode == 'both' and both_false: adder = '<= %i lines and no holes.' % min_sides elif has_holes == False and (mode in ['both', 'holes']): adder = 'no holes.' elif ext_gr == False and (mode in ['both', 'ext']): adder = '<= %i lines.' % min_sides print('%s %s' % (val, adder)) # store the left, right, top, and bottom lines self.__update() def __update(self): """Updates the left, right, top, bottom sides and area and center""" self.__set_side('left') self.__set_side('right') self.__set_side('top') self.__set_side('bottom') self.area, self.center = self.__calc_area_center() def __str__(self): """Returns string listing object type, id number and name.""" val = 'Part, id=%i name=%s' % (self.id, self.get_name()) return val
apache-2.0
OspreyX/trading-with-python
cookbook/reconstructVXX/reconstructVXX.py
77
3574
# -*- coding: utf-8 -*- """ Reconstructing VXX from futures data author: Jev Kuznetsov License : BSD """ from __future__ import division from pandas import * import numpy as np import os class Future(object): """ vix future class, used to keep data structures simple """ def __init__(self,series,code=None): """ code is optional, example '2010_01' """ self.series = series.dropna() # price data self.settleDate = self.series.index[-1] self.dt = len(self.series) # roll period (this is default, should be recalculated) self.code = code # string code 'YYYY_MM' def monthNr(self): """ get month nr from the future code """ return int(self.code.split('_')[1]) def dr(self,date): """ days remaining before settlement, on a given date """ return(sum(self.series.index>date)) def price(self,date): """ price on a date """ return self.series.get_value(date) def returns(df): """ daily return """ return (df/df.shift(1)-1) def recounstructVXX(): """ calculate VXX returns needs a previously preprocessed file vix_futures.csv """ dataDir = os.path.expanduser('~')+'/twpData' X = DataFrame.from_csv(dataDir+'/vix_futures.csv') # raw data table # build end dates list & futures classes futures = [] codes = X.columns endDates = [] for code in codes: f = Future(X[code],code=code) print code,':', f.settleDate endDates.append(f.settleDate) futures.append(f) endDates = np.array(endDates) # set roll period of each future for i in range(1,len(futures)): futures[i].dt = futures[i].dr(futures[i-1].settleDate) # Y is the result table idx = X.index Y = DataFrame(index=idx, columns=['first','second','days_left','w1','w2', 'ret','30days_avg']) # W is the weight matrix W = DataFrame(data = np.zeros(X.values.shape),index=idx,columns = X.columns) # for VXX calculation see http://www.ipathetn.com/static/pdf/vix-prospectus.pdf # page PS-20 for date in idx: i =np.nonzero(endDates>=date)[0][0] # find first not exprired future first = futures[i] # first month futures class second = futures[i+1] # second month futures class dr = first.dr(date) # number of remaining dates in the first futures contract dt = first.dt #number of business days in roll period W.set_value(date,codes[i],100*dr/dt) W.set_value(date,codes[i+1],100*(dt-dr)/dt) # this is all just debug info p1 = first.price(date) p2 = second.price(date) w1 = 100*dr/dt w2 = 100*(dt-dr)/dt Y.set_value(date,'first',p1) Y.set_value(date,'second',p2) Y.set_value(date,'days_left',first.dr(date)) Y.set_value(date,'w1',w1) Y.set_value(date,'w2',w2) Y.set_value(date,'30days_avg',(p1*w1+p2*w2)/100) valCurr = (X*W.shift(1)).sum(axis=1) # value on day N valYest = (X.shift(1)*W.shift(1)).sum(axis=1) # value on day N-1 Y['ret'] = valCurr/valYest-1 # index return on day N return Y ##-------------------Main script--------------------------- if __name__=="__main__": Y = recounstructVXX() print Y.head(30)# Y.to_csv('reconstructedVXX.csv')
bsd-3-clause
daniorerio/trackpy
benchmarks/suite.py
3
2664
import getpass import sys import os from vbench.api import Benchmark, BenchmarkRunner from datetime import datetime USERNAME = getpass.getuser() if sys.platform == 'darwin': HOME = '/Users/%s' % USERNAME else: HOME = '/home/%s' % USERNAME try: import ConfigParser config = ConfigParser.ConfigParser() config.readfp(open(os.path.expanduser('~/.vbenchcfg'))) REPO_PATH = config.get('setup', 'repo_path') REPO_URL = config.get('setup', 'repo_url') DB_PATH = config.get('setup', 'db_path') TMP_DIR = config.get('setup', 'tmp_dir') except: REPO_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), "../")) REPO_URL = '[email protected]:danielballan/mr.git' DB_PATH = os.path.join(REPO_PATH, 'vb_suite/benchmarks.db') TMP_DIR = os.path.join(HOME, 'tmp/vb_mr') PREPARE = """ python setup.py clean """ BUILD = """ python setup.py build_ext --inplace """ dependencies = [] START_DATE = datetime(2012, 9, 19) # first full day when setup.py existed # repo = GitRepo(REPO_PATH) RST_BASE = 'source' def generate_rst_files(benchmarks): import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt vb_path = os.path.join(RST_BASE, 'vbench') fig_base_path = os.path.join(vb_path, 'figures') if not os.path.exists(vb_path): print 'creating %s' % vb_path os.makedirs(vb_path) if not os.path.exists(fig_base_path): print 'creating %s' % fig_base_path os.makedirs(fig_base_path) for bmk in benchmarks: print 'Generating rst file for %s' % bmk.name rst_path = os.path.join(RST_BASE, 'vbench/%s.txt' % bmk.name) fig_full_path = os.path.join(fig_base_path, '%s.png' % bmk.name) # make the figure plt.figure(figsize=(10, 6)) ax = plt.gca() bmk.plot(DB_PATH, ax=ax) start, end = ax.get_xlim() plt.xlim([start - 30, end + 30]) plt.savefig(fig_full_path, bbox_inches='tight') plt.close('all') fig_rel_path = 'vbench/figures/%s.png' % bmk.name rst_text = bmk.to_rst(image_path=fig_rel_path) with open(rst_path, 'w') as f: f.write(rst_text) ref = __import__('benchmarks') benchmarks = [v for v in ref.__dict__.values() if isinstance(v, Benchmark)] runner = BenchmarkRunner(benchmarks, REPO_PATH, REPO_URL, BUILD, DB_PATH, TMP_DIR, PREPARE, always_clean=True, run_option='eod', start_date=START_DATE, module_dependencies=dependencies) if __name__ == '__main__': runner.run() generate_rst_files(benchmarks)
bsd-3-clause
KennyCandy/HAR
_module123/C_64_32.py
1
17396
# Note that the dataset must be already downloaded for this script to work, do: # $ cd data/ # $ python download_dataset.py # quoc_trinh import tensorflow as tf import numpy as np import matplotlib import matplotlib.pyplot as plt from sklearn import metrics import os import sys import datetime # get current file_name as [0] of array file_name = os.path.splitext(os.path.basename(sys.argv[0]))[0] print(" File Name:") print(file_name) print("") # FLAG to know that whether this is traning process or not. FLAG = 'train' N_HIDDEN_CONFIG = 32 save_path_name = file_name + "/model.ckpt" print(datetime.datetime.now()) # Write to file: time to start, type, time to end f = open(file_name + '/time.txt', 'a+') f.write("------------- \n") f.write("This is time \n") f.write("Started at \n") f.write(str(datetime.datetime.now())+'\n') if __name__ == "__main__": # ----------------------------- # step1: load and prepare data # ----------------------------- # Those are separate normalised input features for the neural network INPUT_SIGNAL_TYPES = [ "body_acc_x_", "body_acc_y_", "body_acc_z_", "body_gyro_x_", "body_gyro_y_", "body_gyro_z_", "total_acc_x_", "total_acc_y_", "total_acc_z_" ] # Output classes to learn how to classify LABELS = [ "WALKING", "WALKING_UPSTAIRS", "WALKING_DOWNSTAIRS", "SITTING", "STANDING", "LAYING" ] DATA_PATH = "../data/" DATASET_PATH = DATA_PATH + "UCI HAR Dataset/" print("\n" + "Dataset is now located at: " + DATASET_PATH) # Preparing data set: TRAIN = "train/" TEST = "test/" # Load "X" (the neural network's training and testing inputs) def load_X(X_signals_paths): X_signals = [] for signal_type_path in X_signals_paths: file = open(signal_type_path, 'rb') # Read dataset from disk, dealing with text files' syntax X_signals.append( [np.array(serie, dtype=np.float32) for serie in [ row.replace(' ', ' ').strip().split(' ') for row in file ]] ) file.close() """Examples -------- >> > x = np.arange(4).reshape((2, 2)) >> > x array([[0, 1], [2, 3]]) >> > np.transpose(x) array([[0, 2], [1, 3]]) >> > x = np.ones((1, 2, 3)) >> > np.transpose(x, (1, 0, 2)).shape (2, 1, 3) """ return np.transpose(np.array(X_signals), (1, 2, 0)) X_train_signals_paths = [ DATASET_PATH + TRAIN + "Inertial Signals/" + signal + "train.txt" for signal in INPUT_SIGNAL_TYPES ] X_test_signals_paths = [ DATASET_PATH + TEST + "Inertial Signals/" + signal + "test.txt" for signal in INPUT_SIGNAL_TYPES ] X_train = load_X(X_train_signals_paths) # [7352, 128, 9] X_test = load_X(X_test_signals_paths) # [7352, 128, 9] # print(X_train) print(len(X_train)) # 7352 print(len(X_train[0])) # 128 print(len(X_train[0][0])) # 9 print(type(X_train)) X_train = np.reshape(X_train, [-1, 32, 36]) X_test = np.reshape(X_test, [-1, 32, 36]) print("-----------------X_train---------------") # print(X_train) print(len(X_train)) # 7352 print(len(X_train[0])) # 32 print(len(X_train[0][0])) # 36 print(type(X_train)) # exit() y_train_path = DATASET_PATH + TRAIN + "y_train.txt" y_test_path = DATASET_PATH + TEST + "y_test.txt" def one_hot(label): """convert label from dense to one hot argument: label: ndarray dense label ,shape: [sample_num,1] return: one_hot_label: ndarray one hot, shape: [sample_num,n_class] """ label_num = len(label) new_label = label.reshape(label_num) # shape : [sample_num] # because max is 5, and we will create 6 columns n_values = np.max(new_label) + 1 return np.eye(n_values)[np.array(new_label, dtype=np.int32)] # Load "y" (the neural network's training and testing outputs) def load_y(y_path): file = open(y_path, 'rb') # Read dataset from disk, dealing with text file's syntax y_ = np.array( [elem for elem in [ row.replace(' ', ' ').strip().split(' ') for row in file ]], dtype=np.int32 ) file.close() # Subtract 1 to each output class for friendly 0-based indexing return y_ - 1 y_train = one_hot(load_y(y_train_path)) y_test = one_hot(load_y(y_test_path)) print("---------y_train----------") # print(y_train) print(len(y_train)) # 7352 print(len(y_train[0])) # 6 # ----------------------------------- # step2: define parameters for model # ----------------------------------- class Config(object): """ define a class to store parameters, the input should be feature mat of training and testing """ def __init__(self, X_train, X_test): # Input data self.train_count = len(X_train) # 7352 training series self.test_data_count = len(X_test) # 2947 testing series self.n_steps = len(X_train[0]) # 128 time_steps per series # Training self.learning_rate = 0.0025 self.lambda_loss_amount = 0.0015 self.training_epochs = 300 self.batch_size = 1000 # LSTM structure self.n_inputs = len(X_train[0][0]) # Features count is of 9: three 3D sensors features over time self.n_hidden = N_HIDDEN_CONFIG # nb of neurons inside the neural network self.n_classes = 6 # Final output classes self.W = { 'hidden': tf.Variable(tf.random_normal([self.n_inputs, self.n_hidden])), # [9, 32] 'output': tf.Variable(tf.random_normal([self.n_hidden, self.n_classes])) # [32, 6] } self.biases = { 'hidden': tf.Variable(tf.random_normal([self.n_hidden], mean=1.0)), # [32] 'output': tf.Variable(tf.random_normal([self.n_classes])) # [6] } config = Config(X_train, X_test) # print("Some useful info to get an insight on dataset's shape and normalisation:") # print("features shape, labels shape, each features mean, each features standard deviation") # print(X_test.shape, y_test.shape, # np.mean(X_test), np.std(X_test)) # print("the dataset is therefore properly normalised, as expected.") # # # ------------------------------------------------------ # step3: Let's get serious and build the neural network # ------------------------------------------------------ # [none, 128, 9] X = tf.placeholder(tf.float32, [None, config.n_steps, config.n_inputs]) # [none, 6] Y = tf.placeholder(tf.float32, [None, config.n_classes]) print("-------X Y----------") print(X) X = tf.reshape(X, shape=[-1, 32, 36]) print(X) print(Y) Y = tf.reshape(Y, shape=[-1, 6]) print(Y) # Weight Initialization def weight_variable(shape): # tra ve 1 gia tri random theo thuat toan truncated_ normal initial = tf.truncated_normal(shape, mean=0.0, stddev=0.1, dtype=tf.float32) return tf.Variable(initial) def bias_varibale(shape): initial = tf.constant(0.1, shape=shape, name='Bias') return tf.Variable(initial) # Convolution and Pooling def conv2d(x, W): # Must have `strides[0] = strides[3] = 1 `. # For the most common case of the same horizontal and vertices strides, `strides = [1, stride, stride, 1] `. return tf.nn.conv2d(input=x, filter=W, strides=[1, 1, 1, 1], padding='SAME', name='conv_2d') def max_pool_2x2(x): return tf.nn.max_pool(value=x, ksize=[1, 2, 2, 1], strides=[1, 1, 1, 1], padding='SAME', name='max_pool') def LSTM_Network(feature_mat, config): """model a LSTM Network, it stacks 2 LSTM layers, each layer has n_hidden=32 cells and 1 output layer, it is a full connet layer argument: feature_mat: ndarray feature matrix, shape=[batch_size,time_steps,n_inputs] config: class containing config of network return: : matrix output shape [batch_size,n_classes] """ W_conv1 = weight_variable([3, 3, 1, 64]) b_conv1 = bias_varibale([64]) # x_image = tf.reshape(x, shape=[-1, 28, 28, 1]) feature_mat_image = tf.reshape(feature_mat, shape=[-1, 32, 36, 1]) print("----feature_mat_image-----") print(feature_mat_image.get_shape()) h_conv1 = tf.nn.relu(conv2d(feature_mat_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) # Second Convolutional Layer W_conv2 = weight_variable([3, 3, 64, 1]) b_conv2 = weight_variable([1]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = h_conv2 h_pool2 = tf.reshape(h_pool2, shape=[-1, 32, 36]) feature_mat = h_pool2 print("----feature_mat-----") print(feature_mat) # exit() # W_fc1 = weight_variable([8 * 9 * 1, 1024]) # b_fc1 = bias_varibale([1024]) # h_pool2_flat = tf.reshape(h_pool2, [-1, 8 * 9 * 1]) # h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) # print("----h_fc1_drop-----") # print(h_fc1) # exit() # # # keep_prob = tf.placeholder(tf.float32) # keep_prob = tf.placeholder(1.0) # h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob=keep_prob) # print("----h_fc1_drop-----") # print(h_fc1_drop) # exit() # # W_fc2 = weight_variable([1024, 10]) # b_fc2 = bias_varibale([10]) # # y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2 # print("----y_conv-----") # print(y_conv) # exit() # Exchange dim 1 and dim 0 # Start at: [0,1,2] = [batch_size, 128, 9] => [batch_size, 32, 36] feature_mat = tf.transpose(feature_mat, [1, 0, 2]) # New feature_mat's shape: [time_steps, batch_size, n_inputs] [128, batch_size, 9] print("----feature_mat-----") print(feature_mat) # exit() # Temporarily crush the feature_mat's dimensions feature_mat = tf.reshape(feature_mat, [-1, config.n_inputs]) # 9 # New feature_mat's shape: [time_steps*batch_size, n_inputs] # 128 * batch_size, 9 # Linear activation, reshaping inputs to the LSTM's number of hidden: hidden = tf.nn.relu(tf.matmul( feature_mat, config.W['hidden'] ) + config.biases['hidden']) # New feature_mat (hidden) shape: [time_steps*batch_size, n_hidden] [128*batch_size, 32] print("--n_steps--") print(config.n_steps) print("--hidden--") print(hidden) # Split the series because the rnn cell needs time_steps features, each of shape: hidden = tf.split(0, config.n_steps, hidden) # (0, 128, [128*batch_size, 32]) # New hidden's shape: a list of length "time_step" containing tensors of shape [batch_size, n_hidden] # Define LSTM cell of first hidden layer: lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(config.n_hidden, forget_bias=1.0) # Stack two LSTM layers, both layers has the same shape lsmt_layers = tf.nn.rnn_cell.MultiRNNCell([lstm_cell] * 2) # Get LSTM outputs, the states are internal to the LSTM cells,they are not our attention here outputs, _ = tf.nn.rnn(lsmt_layers, hidden, dtype=tf.float32) # outputs' shape: a list of lenght "time_step" containing tensors of shape [batch_size, n_hidden] print("------------------list-------------------") print(outputs) # Get last time step's output feature for a "many to one" style classifier, # as in the image describing RNNs at the top of this page lstm_last_output = outputs[-1] # Get the last element of the array: [?, 32] print("------------------last outputs-------------------") print (lstm_last_output) # Linear activation return tf.matmul(lstm_last_output, config.W['output']) + config.biases['output'] pred_Y = LSTM_Network(X, config) # shape[?,6] print("------------------pred_Y-------------------") print(pred_Y) # Loss,train_step,evaluation l2 = config.lambda_loss_amount * \ sum(tf.nn.l2_loss(tf_var) for tf_var in tf.trainable_variables()) # Softmax loss and L2 cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(pred_Y, Y)) + l2 train_step = tf.train.AdamOptimizer( learning_rate=config.learning_rate).minimize(cost) correct_prediction = tf.equal(tf.argmax(pred_Y, 1), tf.argmax(Y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, dtype=tf.float32)) # -------------------------------------------- # step4: Hooray, now train the neural network # -------------------------------------------- # Note that log_device_placement can be turned ON but will cause console spam. # Initializing the variables init = tf.initialize_all_variables() # Add ops to save and restore all the variables. saver = tf.train.Saver() best_accuracy = 0.0 # sess = tf.InteractiveSession(config=tf.ConfigProto(log_device_placement=False)) if (FLAG == 'train') : # If it is the training mode with tf.Session() as sess: # tf.initialize_all_variables().run() sess.run(init) # .run() f.write("---Save model \n") # Start training for each batch and loop epochs for i in range(config.training_epochs): for start, end in zip(range(0, config.train_count, config.batch_size), # (0, 7352, 1500) range(config.batch_size, config.train_count + 1, config.batch_size)): # (1500, 7353, 1500) print(start) print(end) sess.run(train_step, feed_dict={X: X_train[start:end], Y: y_train[start:end]}) # Test completely at every epoch: calculate accuracy pred_out, accuracy_out, loss_out = sess.run([pred_Y, accuracy, cost], feed_dict={ X: X_test, Y: y_test}) print("traing iter: {},".format(i) + \ " test accuracy : {},".format(accuracy_out) + \ " loss : {}".format(loss_out)) best_accuracy = max(best_accuracy, accuracy_out) # Save the model in this session save_path = saver.save(sess, file_name + "/model.ckpt") print("Model saved in file: %s" % save_path) print("") print("final loss: {}").format(loss_out) print("final test accuracy: {}".format(accuracy_out)) print("best epoch's test accuracy: {}".format(best_accuracy)) print("") # Write all output to file f.write("final loss:" + str(format(loss_out)) +" \n") f.write("final test accuracy:" + str(format(accuracy_out)) +" \n") f.write("best epoch's test accuracy:" + str(format(best_accuracy)) + " \n") else : # Running a new session print("Starting 2nd session...") with tf.Session() as sess: # Initialize variables sess.run(init) f.write("---Restore model \n") # Restore model weights from previously saved model saver.restore(sess, file_name+ "/model.ckpt") print("Model restored from file: %s" % save_path_name) # Test completely at every epoch: calculate accuracy pred_out, accuracy_out, loss_out = sess.run([pred_Y, accuracy, cost], feed_dict={ X: X_test, Y: y_test}) # print("traing iter: {}," + \ # " test accuracy : {},".format(accuracy_out) + \ # " loss : {}".format(loss_out)) best_accuracy = max(best_accuracy, accuracy_out) print("") print("final loss: {}").format(loss_out) print("final test accuracy: {}".format(accuracy_out)) print("best epoch's test accuracy: {}".format(best_accuracy)) print("") # Write all output to file f.write("final loss:" + str(format(loss_out)) +" \n") f.write("final test accuracy:" + str(format(accuracy_out)) +" \n") f.write("best epoch's test accuracy:" + str(format(best_accuracy)) + " \n") # # #------------------------------------------------------------------ # # step5: Training is good, but having visual insight is even better # #------------------------------------------------------------------ # # The code is in the .ipynb # # #------------------------------------------------------------------ # # step6: And finally, the multi-class confusion matrix and metrics! # #------------------------------------------------------------------ # # The code is in the .ipynb f.write("Ended at \n") f.write(str(datetime.datetime.now())+'\n') f.write("------------- \n") f.close()
mit
jaidevd/scikit-learn
examples/svm/plot_svm_nonlinear.py
268
1091
""" ============== Non-linear SVM ============== Perform binary classification using non-linear SVC with RBF kernel. The target to predict is a XOR of the inputs. The color map illustrates the decision function learned by the SVC. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm xx, yy = np.meshgrid(np.linspace(-3, 3, 500), np.linspace(-3, 3, 500)) np.random.seed(0) X = np.random.randn(300, 2) Y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0) # fit the model clf = svm.NuSVC() clf.fit(X, Y) # plot the decision function for each datapoint on the grid Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.imshow(Z, interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max()), aspect='auto', origin='lower', cmap=plt.cm.PuOr_r) contours = plt.contour(xx, yy, Z, levels=[0], linewidths=2, linetypes='--') plt.scatter(X[:, 0], X[:, 1], s=30, c=Y, cmap=plt.cm.Paired) plt.xticks(()) plt.yticks(()) plt.axis([-3, 3, -3, 3]) plt.show()
bsd-3-clause
mohseniaref/PySAR-1
pysar/correlation_with_dem.py
1
2229
#! /usr/bin/env python ############################################################ # Program is part of PySAR v1.0 # # Copyright(c) 2013, Heresh Fattahi # # Author: Heresh Fattahi # ############################################################ import sys import os import getopt import h5py import numpy as np import matplotlib.pyplot as plt import _readfile as readfile def Usage(): print ''' ************************************************************************ ************************************************************************ Calculates the correlation of the dem with the InSAR velocity field. Usage: correlation_with_dem.py dem velocity Example: correlation_with_dem.py radar_8rlks.hgt velocity.h5 *********************************************************************** *********************************************************************** ''' try: demFile=sys.argv[1] File=sys.argv[2] except: Usage() sys.exit(1) if os.path.basename(demFile).split('.')[1]=='hgt': amp,dem,demRsc = readfile.read_float32(demFile) elif os.path.basename(demFile).split('.')[1]=='dem': dem,demRsc = readfile.read_dem(demFile) #amp,dem,demRsc = readfile.read_float32(demFile) h5data = h5py.File(File) dset = h5data['velocity'].get('velocity') data = dset[0:dset.shape[0],0:dset.shape[1]] try: suby=sys.argv[3].split(':') subx=sys.argv[4].split(':') data = data[int(suby[0]):int(suby[1]),int(subx[0]):int(subx[1])] dem = dem[int(suby[0]):int(suby[1]),int(subx[0]):int(subx[1])] except: print 'no subset' dem=dem.flatten(1) data=data.flatten(1) ndx = ~np.isnan(data) C1=np.zeros([2,len(dem[ndx])]) C1[0][:]=dem[ndx] C1[1][:]=data[ndx] print '++++++++++++++++++++++++++++++++++++++++++++++++++++++++++' print '' print 'Correlation of the velocity with the DEM: '+ str(np.corrcoef(C1)[0][1]) print '' print'+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++' print 'DEM info:' print '' print 'Maximum height difference (m) : ' + str(np.max(dem[ndx])-np.min(dem[ndx])) print 'Average height (m) :'+str(np.mean(dem[ndx])) print 'Height Std: '+str(np.std(dem[ndx]))
mit
saiwing-yeung/scikit-learn
examples/linear_model/lasso_dense_vs_sparse_data.py
348
1862
""" ============================== Lasso on dense and sparse data ============================== We show that linear_model.Lasso provides the same results for dense and sparse data and that in the case of sparse data the speed is improved. """ print(__doc__) from time import time from scipy import sparse from scipy import linalg from sklearn.datasets.samples_generator import make_regression from sklearn.linear_model import Lasso ############################################################################### # The two Lasso implementations on Dense data print("--- Dense matrices") X, y = make_regression(n_samples=200, n_features=5000, random_state=0) X_sp = sparse.coo_matrix(X) alpha = 1 sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000) dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000) t0 = time() sparse_lasso.fit(X_sp, y) print("Sparse Lasso done in %fs" % (time() - t0)) t0 = time() dense_lasso.fit(X, y) print("Dense Lasso done in %fs" % (time() - t0)) print("Distance between coefficients : %s" % linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_)) ############################################################################### # The two Lasso implementations on Sparse data print("--- Sparse matrices") Xs = X.copy() Xs[Xs < 2.5] = 0.0 Xs = sparse.coo_matrix(Xs) Xs = Xs.tocsc() print("Matrix density : %s %%" % (Xs.nnz / float(X.size) * 100)) alpha = 0.1 sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000) dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000) t0 = time() sparse_lasso.fit(Xs, y) print("Sparse Lasso done in %fs" % (time() - t0)) t0 = time() dense_lasso.fit(Xs.toarray(), y) print("Dense Lasso done in %fs" % (time() - t0)) print("Distance between coefficients : %s" % linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_))
bsd-3-clause
mbayon/TFG-MachineLearning
vbig/lib/python2.7/site-packages/scipy/signal/wavelets.py
67
10523
from __future__ import division, print_function, absolute_import import numpy as np from numpy.dual import eig from scipy.special import comb from scipy import linspace, pi, exp from scipy.signal import convolve __all__ = ['daub', 'qmf', 'cascade', 'morlet', 'ricker', 'cwt'] def daub(p): """ The coefficients for the FIR low-pass filter producing Daubechies wavelets. p>=1 gives the order of the zero at f=1/2. There are 2p filter coefficients. Parameters ---------- p : int Order of the zero at f=1/2, can have values from 1 to 34. Returns ------- daub : ndarray Return """ sqrt = np.sqrt if p < 1: raise ValueError("p must be at least 1.") if p == 1: c = 1 / sqrt(2) return np.array([c, c]) elif p == 2: f = sqrt(2) / 8 c = sqrt(3) return f * np.array([1 + c, 3 + c, 3 - c, 1 - c]) elif p == 3: tmp = 12 * sqrt(10) z1 = 1.5 + sqrt(15 + tmp) / 6 - 1j * (sqrt(15) + sqrt(tmp - 15)) / 6 z1c = np.conj(z1) f = sqrt(2) / 8 d0 = np.real((1 - z1) * (1 - z1c)) a0 = np.real(z1 * z1c) a1 = 2 * np.real(z1) return f / d0 * np.array([a0, 3 * a0 - a1, 3 * a0 - 3 * a1 + 1, a0 - 3 * a1 + 3, 3 - a1, 1]) elif p < 35: # construct polynomial and factor it if p < 35: P = [comb(p - 1 + k, k, exact=1) for k in range(p)][::-1] yj = np.roots(P) else: # try different polynomial --- needs work P = [comb(p - 1 + k, k, exact=1) / 4.0**k for k in range(p)][::-1] yj = np.roots(P) / 4 # for each root, compute two z roots, select the one with |z|>1 # Build up final polynomial c = np.poly1d([1, 1])**p q = np.poly1d([1]) for k in range(p - 1): yval = yj[k] part = 2 * sqrt(yval * (yval - 1)) const = 1 - 2 * yval z1 = const + part if (abs(z1)) < 1: z1 = const - part q = q * [1, -z1] q = c * np.real(q) # Normalize result q = q / np.sum(q) * sqrt(2) return q.c[::-1] else: raise ValueError("Polynomial factorization does not work " "well for p too large.") def qmf(hk): """ Return high-pass qmf filter from low-pass Parameters ---------- hk : array_like Coefficients of high-pass filter. """ N = len(hk) - 1 asgn = [{0: 1, 1: -1}[k % 2] for k in range(N + 1)] return hk[::-1] * np.array(asgn) def cascade(hk, J=7): """ Return (x, phi, psi) at dyadic points ``K/2**J`` from filter coefficients. Parameters ---------- hk : array_like Coefficients of low-pass filter. J : int, optional Values will be computed at grid points ``K/2**J``. Default is 7. Returns ------- x : ndarray The dyadic points ``K/2**J`` for ``K=0...N * (2**J)-1`` where ``len(hk) = len(gk) = N+1``. phi : ndarray The scaling function ``phi(x)`` at `x`: ``phi(x) = sum(hk * phi(2x-k))``, where k is from 0 to N. psi : ndarray, optional The wavelet function ``psi(x)`` at `x`: ``phi(x) = sum(gk * phi(2x-k))``, where k is from 0 to N. `psi` is only returned if `gk` is not None. Notes ----- The algorithm uses the vector cascade algorithm described by Strang and Nguyen in "Wavelets and Filter Banks". It builds a dictionary of values and slices for quick reuse. Then inserts vectors into final vector at the end. """ N = len(hk) - 1 if (J > 30 - np.log2(N + 1)): raise ValueError("Too many levels.") if (J < 1): raise ValueError("Too few levels.") # construct matrices needed nn, kk = np.ogrid[:N, :N] s2 = np.sqrt(2) # append a zero so that take works thk = np.r_[hk, 0] gk = qmf(hk) tgk = np.r_[gk, 0] indx1 = np.clip(2 * nn - kk, -1, N + 1) indx2 = np.clip(2 * nn - kk + 1, -1, N + 1) m = np.zeros((2, 2, N, N), 'd') m[0, 0] = np.take(thk, indx1, 0) m[0, 1] = np.take(thk, indx2, 0) m[1, 0] = np.take(tgk, indx1, 0) m[1, 1] = np.take(tgk, indx2, 0) m *= s2 # construct the grid of points x = np.arange(0, N * (1 << J), dtype=float) / (1 << J) phi = 0 * x psi = 0 * x # find phi0, and phi1 lam, v = eig(m[0, 0]) ind = np.argmin(np.absolute(lam - 1)) # a dictionary with a binary representation of the # evaluation points x < 1 -- i.e. position is 0.xxxx v = np.real(v[:, ind]) # need scaling function to integrate to 1 so find # eigenvector normalized to sum(v,axis=0)=1 sm = np.sum(v) if sm < 0: # need scaling function to integrate to 1 v = -v sm = -sm bitdic = {'0': v / sm} bitdic['1'] = np.dot(m[0, 1], bitdic['0']) step = 1 << J phi[::step] = bitdic['0'] phi[(1 << (J - 1))::step] = bitdic['1'] psi[::step] = np.dot(m[1, 0], bitdic['0']) psi[(1 << (J - 1))::step] = np.dot(m[1, 1], bitdic['0']) # descend down the levels inserting more and more values # into bitdic -- store the values in the correct location once we # have computed them -- stored in the dictionary # for quicker use later. prevkeys = ['1'] for level in range(2, J + 1): newkeys = ['%d%s' % (xx, yy) for xx in [0, 1] for yy in prevkeys] fac = 1 << (J - level) for key in newkeys: # convert key to number num = 0 for pos in range(level): if key[pos] == '1': num += (1 << (level - 1 - pos)) pastphi = bitdic[key[1:]] ii = int(key[0]) temp = np.dot(m[0, ii], pastphi) bitdic[key] = temp phi[num * fac::step] = temp psi[num * fac::step] = np.dot(m[1, ii], pastphi) prevkeys = newkeys return x, phi, psi def morlet(M, w=5.0, s=1.0, complete=True): """ Complex Morlet wavelet. Parameters ---------- M : int Length of the wavelet. w : float, optional Omega0. Default is 5 s : float, optional Scaling factor, windowed from ``-s*2*pi`` to ``+s*2*pi``. Default is 1. complete : bool, optional Whether to use the complete or the standard version. Returns ------- morlet : (M,) ndarray See Also -------- scipy.signal.gausspulse Notes ----- The standard version:: pi**-0.25 * exp(1j*w*x) * exp(-0.5*(x**2)) This commonly used wavelet is often referred to simply as the Morlet wavelet. Note that this simplified version can cause admissibility problems at low values of `w`. The complete version:: pi**-0.25 * (exp(1j*w*x) - exp(-0.5*(w**2))) * exp(-0.5*(x**2)) This version has a correction term to improve admissibility. For `w` greater than 5, the correction term is negligible. Note that the energy of the return wavelet is not normalised according to `s`. The fundamental frequency of this wavelet in Hz is given by ``f = 2*s*w*r / M`` where `r` is the sampling rate. Note: This function was created before `cwt` and is not compatible with it. """ x = linspace(-s * 2 * pi, s * 2 * pi, M) output = exp(1j * w * x) if complete: output -= exp(-0.5 * (w**2)) output *= exp(-0.5 * (x**2)) * pi**(-0.25) return output def ricker(points, a): """ Return a Ricker wavelet, also known as the "Mexican hat wavelet". It models the function: ``A (1 - x^2/a^2) exp(-x^2/2 a^2)``, where ``A = 2/sqrt(3a)pi^1/4``. Parameters ---------- points : int Number of points in `vector`. Will be centered around 0. a : scalar Width parameter of the wavelet. Returns ------- vector : (N,) ndarray Array of length `points` in shape of ricker curve. Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> points = 100 >>> a = 4.0 >>> vec2 = signal.ricker(points, a) >>> print(len(vec2)) 100 >>> plt.plot(vec2) >>> plt.show() """ A = 2 / (np.sqrt(3 * a) * (np.pi**0.25)) wsq = a**2 vec = np.arange(0, points) - (points - 1.0) / 2 xsq = vec**2 mod = (1 - xsq / wsq) gauss = np.exp(-xsq / (2 * wsq)) total = A * mod * gauss return total def cwt(data, wavelet, widths): """ Continuous wavelet transform. Performs a continuous wavelet transform on `data`, using the `wavelet` function. A CWT performs a convolution with `data` using the `wavelet` function, which is characterized by a width parameter and length parameter. Parameters ---------- data : (N,) ndarray data on which to perform the transform. wavelet : function Wavelet function, which should take 2 arguments. The first argument is the number of points that the returned vector will have (len(wavelet(length,width)) == length). The second is a width parameter, defining the size of the wavelet (e.g. standard deviation of a gaussian). See `ricker`, which satisfies these requirements. widths : (M,) sequence Widths to use for transform. Returns ------- cwt: (M, N) ndarray Will have shape of (len(widths), len(data)). Notes ----- :: length = min(10 * width[ii], len(data)) cwt[ii,:] = signal.convolve(data, wavelet(length, width[ii]), mode='same') Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> t = np.linspace(-1, 1, 200, endpoint=False) >>> sig = np.cos(2 * np.pi * 7 * t) + signal.gausspulse(t - 0.4, fc=2) >>> widths = np.arange(1, 31) >>> cwtmatr = signal.cwt(sig, signal.ricker, widths) >>> plt.imshow(cwtmatr, extent=[-1, 1, 31, 1], cmap='PRGn', aspect='auto', ... vmax=abs(cwtmatr).max(), vmin=-abs(cwtmatr).max()) >>> plt.show() """ output = np.zeros([len(widths), len(data)]) for ind, width in enumerate(widths): wavelet_data = wavelet(min(10 * width, len(data)), width) output[ind, :] = convolve(data, wavelet_data, mode='same') return output
mit
menpo/menpo
menpo/visualize/base.py
2
57597
try: from collections.abc import Iterable except ImportError: from collections import Iterable import numpy as np from menpo.base import MenpoMissingDependencyError class Menpo3dMissingError(MenpoMissingDependencyError): r""" Exception that is thrown when an attempt is made to import a 3D visualisation method, but 'menpo3d' is not installed. """ def __init__(self, actual_missing_import_name): super(Menpo3dMissingError, self).__init__(actual_missing_import_name) self.message += ( "\nThis import is required in order to use the " "'menpo3d' package" ) class Renderer(object): r""" Abstract class for rendering visualizations. Framework specific implementations of these classes are made in order to separate implementation cleanly from the rest of the code. It is assumed that the renderers follow some form of stateful pattern for rendering to Figures. Therefore, the major interface for rendering involves providing a `figure_id` or a `bool` about whether a new figure should be used. If neither are provided then the default state of the rendering engine is assumed to be maintained. Providing both a ``figure_id`` and ``new_figure == True`` is not a valid state. Parameters ---------- figure_id : `object` A figure id. Could be any valid object that identifies a figure in a given framework (`str`, `int`, `float`, etc.). new_figure : `bool` Whether the rendering engine should create a new figure. Raises ------ ValueError It is not valid to provide a figure id AND request a new figure to be rendered on. """ def __init__(self, figure_id, new_figure): if figure_id is not None and new_figure: raise ValueError( "Conflicting arguments. figure_id cannot be " "specified if the new_figure flag is True" ) self.figure_id = figure_id self.new_figure = new_figure self.figure = self.get_figure() def render(self, **kwargs): r""" Abstract method to be overridden by the renderer. This will implement the actual rendering code for a given object class. Parameters ---------- kwargs : `dict` Passed through to specific rendering engine. Returns ------- viewer : :map:`Renderer` Pointer to `self`. """ pass def get_figure(self): r""" Abstract method for getting the correct figure to render on. Should also set the correct `figure_id` for the figure. Returns ------- figure : `object` The figure object that the renderer will render on. """ pass def save_figure(self, **kwargs): r""" Abstract method for saving the figure of the current `figure_id` to file. It will implement the actual saving code for a given object class. Parameters ---------- kwargs : `dict` Options to be set when saving the figure to file. """ pass def clear_figure(self): r""" Abstract method for clearing the current figure. """ pass def force_draw(self): r""" Abstract method for forcing the current figure to render. """ pass class viewwrapper(object): r""" This class abuses the Python descriptor protocol in order to dynamically change the view method at runtime. Although this is more obviously achieved through inheritance, the view methods practically amount to syntactic sugar and so we want to maintain a single view method per class. We do not want to add the mental overhead of implementing different 2D and 3D PointCloud classes for example, since, outside of viewing, their implementations would be identical. Also note that we could have separated out viewing entirely and made the check there, but the view method is an important paradigm in menpo that we want to maintain. Therefore, this function cleverly (and obscurely) returns the correct view method for the dimensionality of the given object. """ def __init__(self, wrapped_func): fname = wrapped_func.__name__ self._2d_fname = "_{}_2d".format(fname) self._3d_fname = "_{}_3d".format(fname) def __get__(self, instance, instancetype): if instance.n_dims == 2: return getattr(instance, self._2d_fname) elif instance.n_dims == 3: return getattr(instance, self._3d_fname) else: def raise_not_supported(*args, **kwargs): r""" Viewing of objects with greater than 3 dimensions is not currently possible. """ raise ValueError( "Viewing of objects with greater than 3 " "dimensions is not currently possible." ) return raise_not_supported class Viewable(object): r""" Abstract interface for objects that can visualize themselves. This assumes that the class has dimensionality as the view method checks the ``n_dims`` property to wire up the correct view method. """ @viewwrapper def view(self): r""" Abstract method for viewing. See the :map:`viewwrapper` documentation for an explanation of how the `view` method works. """ pass def _view_2d(self, **kwargs): raise NotImplementedError("2D Viewing is not supported.") def _view_3d(self, **kwargs): raise NotImplementedError("3D Viewing is not supported.") class LandmarkableViewable(object): r""" Mixin for :map:`Landmarkable` and :map:`Viewable` objects. Provides a single helper method for viewing Landmarks and `self` on the same figure. """ @viewwrapper def view_landmarks(self, **kwargs): pass def _view_landmarks_2d(self, **kwargs): raise NotImplementedError("2D Landmark Viewing is not supported.") def _view_landmarks_3d(self, **kwargs): raise NotImplementedError("3D Landmark Viewing is not supported.") from menpo.visualize.viewmatplotlib import ( MatplotlibImageViewer2d, MatplotlibImageSubplotsViewer2d, MatplotlibLandmarkViewer2d, MatplotlibAlignmentViewer2d, MatplotlibGraphPlotter, MatplotlibMultiImageViewer2d, MatplotlibMultiImageSubplotsViewer2d, MatplotlibPointGraphViewer2d, ) # Default importer types PointGraphViewer2d = MatplotlibPointGraphViewer2d LandmarkViewer2d = MatplotlibLandmarkViewer2d ImageViewer2d = MatplotlibImageViewer2d ImageSubplotsViewer2d = MatplotlibImageSubplotsViewer2d AlignmentViewer2d = MatplotlibAlignmentViewer2d GraphPlotter = MatplotlibGraphPlotter MultiImageViewer2d = MatplotlibMultiImageViewer2d MultiImageSubplotsViewer2d = MatplotlibMultiImageSubplotsViewer2d class ImageViewer(object): r""" Base :map:`Image` viewer that abstracts away dimensionality. It can visualize multiple channels of an image in subplots. Parameters ---------- figure_id : `object` A figure id. Could be any valid object that identifies a figure in a given framework (`str`, `int`, `float`, etc.). new_figure : `bool` Whether the rendering engine should create a new figure. dimensions : {``2``, ``3``} `int` The number of dimensions in the image. pixels : ``(N, D)`` `ndarray` The pixels to render. channels: `int` or `list` or ``'all'`` or `None` A specific selection of channels to render. The user can choose either a single or multiple channels. If ``'all'``, render all channels in subplot mode. If `None` and image is not greyscale or RGB, render all channels in subplots. If `None` and image is greyscale or RGB, then do not plot channels in different subplots. mask: ``(N, D)`` `ndarray` A `bool` mask to be applied to the image. All points outside the mask are set to ``0``. """ def __init__( self, figure_id, new_figure, dimensions, pixels, channels=None, mask=None ): if len(pixels.shape) == 3 and pixels.shape[0] == 3: # then probably an RGB image, so ensure the clipped pixels. from menpo.image import Image image = Image(pixels, copy=False) image_clipped = image.clip_pixels() pixels = image_clipped.pixels else: pixels = pixels.copy() self.figure_id = figure_id self.new_figure = new_figure self.dimensions = dimensions pixels, self.use_subplots = self._parse_channels(channels, pixels) self.pixels = self._masked_pixels(pixels, mask) self._flip_image_channels() def _flip_image_channels(self): if self.pixels.ndim == 3: from menpo.image.base import channels_to_back self.pixels = channels_to_back(self.pixels) def _parse_channels(self, channels, pixels): r""" Parse `channels` parameter. If `channels` is `int` or `list`, keep it as is. If `channels` is ``'all'``, return a `list` of all the image's channels. If `channels` is `None`, return the minimum between an `upper_limit` and the image's number of channels. If image is greyscale or RGB and `channels` is `None`, then do not plot channels in different subplots. Parameters ---------- channels : `int` or `list` or ``'all'`` or `None` A specific selection of channels to render. pixels : ``(N, D)`` `ndarray` The image's pixels to render. Returns ------- pixels : ``(N, D)`` `ndarray` The pixels to be visualized. use_subplots : `bool` Whether to visualize using subplots. """ # Flag to trigger ImageSubplotsViewer2d or ImageViewer2d use_subplots = True n_channels = pixels.shape[0] if channels is None: if n_channels == 1: pixels = pixels[0, ...] use_subplots = False elif n_channels == 3: use_subplots = False elif channels != "all": if isinstance(channels, Iterable): if len(channels) == 1: pixels = pixels[channels[0], ...] use_subplots = False else: pixels = pixels[channels, ...] else: pixels = pixels[channels, ...] use_subplots = False return pixels, use_subplots def _masked_pixels(self, pixels, mask): r""" Return the masked pixels using a given `bool` mask. In order to make sure that the non-masked pixels are visualized in white, their value is set to the maximum of pixels. Parameters ---------- pixels : ``(N, D)`` `ndarray` The image's pixels to render. mask: ``(N, D)`` `ndarray` A `bool` mask to be applied to the image. All points outside the mask are set to the image max. If mask is `None`, then the initial pixels are returned. Returns ------- masked_pixels : ``(N, D)`` `ndarray` The masked pixels. """ if mask is not None: nanmax = np.nanmax(pixels) pixels[..., ~mask] = nanmax + (0.01 * nanmax) return pixels def render(self, **kwargs): r""" Select the correct type of image viewer for the given image dimensionality. Parameters ---------- kwargs : `dict` Passed through to image viewer. Returns ------- viewer : :map:`Renderer` The rendering object. Raises ------ ValueError Only 2D images are supported. """ if self.dimensions == 2: if self.use_subplots: return ImageSubplotsViewer2d( self.figure_id, self.new_figure, self.pixels ).render(**kwargs) else: return ImageViewer2d( self.figure_id, self.new_figure, self.pixels ).render(**kwargs) else: raise ValueError("Only 2D images are currently supported") def view_image_landmarks( image, channels, masked, group, with_labels, without_labels, figure_id, new_figure, interpolation, cmap_name, alpha, render_lines, line_colour, line_style, line_width, render_markers, marker_style, marker_size, marker_face_colour, marker_edge_colour, marker_edge_width, render_numbering, numbers_horizontal_align, numbers_vertical_align, numbers_font_name, numbers_font_size, numbers_font_style, numbers_font_weight, numbers_font_colour, render_legend, legend_title, legend_font_name, legend_font_style, legend_font_size, legend_font_weight, legend_marker_scale, legend_location, legend_bbox_to_anchor, legend_border_axes_pad, legend_n_columns, legend_horizontal_spacing, legend_vertical_spacing, legend_border, legend_border_padding, legend_shadow, legend_rounded_corners, render_axes, axes_font_name, axes_font_size, axes_font_style, axes_font_weight, axes_x_limits, axes_y_limits, axes_x_ticks, axes_y_ticks, figure_size, ): r""" This is a helper method that abstracts away the fact that viewing images and masked images is identical apart from the mask. Therefore, we do the class check in this method and then proceed identically whether the image is masked or not. See the documentation for _view_2d on Image or _view_2d on MaskedImage for information about the parameters. """ import matplotlib.pyplot as plt if not image.has_landmarks: raise ValueError( "Image does not have landmarks attached, unable " "to view landmarks." ) # Parse axes limits image_axes_x_limits = None landmarks_axes_x_limits = axes_x_limits if axes_x_limits is None: image_axes_x_limits = landmarks_axes_x_limits = [0, image.width - 1] image_axes_y_limits = None landmarks_axes_y_limits = axes_y_limits if axes_y_limits is None: image_axes_y_limits = landmarks_axes_y_limits = [0, image.height - 1] # Render image from menpo.image import MaskedImage if isinstance(image, MaskedImage): self_view = image.view( figure_id=figure_id, new_figure=new_figure, channels=channels, masked=masked, interpolation=interpolation, cmap_name=cmap_name, alpha=alpha, render_axes=render_axes, axes_x_limits=image_axes_x_limits, axes_y_limits=image_axes_y_limits, ) else: self_view = image.view( figure_id=figure_id, new_figure=new_figure, channels=channels, interpolation=interpolation, cmap_name=cmap_name, alpha=alpha, render_axes=render_axes, axes_x_limits=image_axes_x_limits, axes_y_limits=image_axes_y_limits, ) # Render landmarks # correct group label in legend if group is None and image.landmarks.n_groups == 1: group = image.landmarks.group_labels[0] landmark_view = None # initialize viewer object # useful in order to visualize the legend only for the last axis object render_legend_tmp = False for i, ax in enumerate(self_view.axes_list): # set current axis plt.sca(ax) # show legend only for the last axis object if i == len(self_view.axes_list) - 1: render_legend_tmp = render_legend # viewer landmark_view = image.landmarks[group].view( with_labels=with_labels, without_labels=without_labels, group=group, figure_id=self_view.figure_id, new_figure=False, image_view=True, render_lines=render_lines, line_colour=line_colour, line_style=line_style, line_width=line_width, render_markers=render_markers, marker_style=marker_style, marker_size=marker_size, marker_face_colour=marker_face_colour, marker_edge_colour=marker_edge_colour, marker_edge_width=marker_edge_width, render_numbering=render_numbering, numbers_horizontal_align=numbers_horizontal_align, numbers_vertical_align=numbers_vertical_align, numbers_font_name=numbers_font_name, numbers_font_size=numbers_font_size, numbers_font_style=numbers_font_style, numbers_font_weight=numbers_font_weight, numbers_font_colour=numbers_font_colour, render_legend=render_legend_tmp, legend_title=legend_title, legend_font_name=legend_font_name, legend_font_style=legend_font_style, legend_font_size=legend_font_size, legend_font_weight=legend_font_weight, legend_marker_scale=legend_marker_scale, legend_location=legend_location, legend_bbox_to_anchor=legend_bbox_to_anchor, legend_border_axes_pad=legend_border_axes_pad, legend_n_columns=legend_n_columns, legend_horizontal_spacing=legend_horizontal_spacing, legend_vertical_spacing=legend_vertical_spacing, legend_border=legend_border, legend_border_padding=legend_border_padding, legend_shadow=legend_shadow, legend_rounded_corners=legend_rounded_corners, render_axes=render_axes, axes_font_name=axes_font_name, axes_font_size=axes_font_size, axes_font_style=axes_font_style, axes_font_weight=axes_font_weight, axes_x_limits=landmarks_axes_x_limits, axes_y_limits=landmarks_axes_y_limits, axes_x_ticks=axes_x_ticks, axes_y_ticks=axes_y_ticks, figure_size=figure_size, ) return landmark_view class MultipleImageViewer(ImageViewer): def __init__( self, figure_id, new_figure, dimensions, pixels_list, channels=None, mask=None ): super(MultipleImageViewer, self).__init__( figure_id, new_figure, dimensions, pixels_list[0], channels=channels, mask=mask, ) pixels_list = [self._parse_channels(channels, p)[0] for p in pixels_list] self.pixels_list = [self._masked_pixels(p, mask) for p in pixels_list] def render(self, **kwargs): if self.dimensions == 2: if self.use_subplots: MultiImageSubplotsViewer2d( self.figure_id, self.new_figure, self.pixels_list ).render(**kwargs) else: return MultiImageViewer2d( self.figure_id, self.new_figure, self.pixels_list ).render(**kwargs) else: raise ValueError("Only 2D images are currently supported") def plot_curve( x_axis, y_axis, figure_id=None, new_figure=True, legend_entries=None, title="", x_label="", y_label="", axes_x_limits=0.0, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, render_lines=True, line_colour=None, line_style="-", line_width=1, render_markers=True, marker_style="o", marker_size=5, marker_face_colour=None, marker_edge_colour="k", marker_edge_width=1.0, render_legend=True, legend_title="", legend_font_name="sans-serif", legend_font_style="normal", legend_font_size=10, legend_font_weight="normal", legend_marker_scale=None, legend_location=2, legend_bbox_to_anchor=(1.05, 1.0), legend_border_axes_pad=None, legend_n_columns=1, legend_horizontal_spacing=None, legend_vertical_spacing=None, legend_border=True, legend_border_padding=None, legend_shadow=False, legend_rounded_corners=False, render_axes=True, axes_font_name="sans-serif", axes_font_size=10, axes_font_style="normal", axes_font_weight="normal", figure_size=(7, 7), render_grid=True, grid_line_style="--", grid_line_width=1, ): r""" Plot a single or multiple curves on the same figure. Parameters ---------- x_axis : `list` or `array` The values of the horizontal axis. They are common for all curves. y_axis : `list` of `lists` or `arrays` A `list` with `lists` or `arrays` with the values of the vertical axis for each curve. figure_id : `object`, optional The id of the figure to be used. new_figure : `bool`, optional If ``True``, a new figure is created. legend_entries : `list of `str` or ``None``, optional If `list` of `str`, it must have the same length as `errors` `list` and each `str` will be used to name each curve. If ``None``, the CED curves will be named as `'Curve %d'`. title : `str`, optional The figure's title. x_label : `str`, optional The label of the horizontal axis. y_label : `str`, optional The label of the vertical axis. axes_x_limits : `float` or (`float`, `float`) or ``None``, optional The limits of the x axis. If `float`, then it sets padding on the right and left of the graph as a percentage of the curves' width. If `tuple` or `list`, then it defines the axis limits. If ``None``, then the limits are set automatically. axes_y_limits : `float` or (`float`, `float`) or ``None``, optional The limits of the y axis. If `float`, then it sets padding on the top and bottom of the graph as a percentage of the curves' height. If `tuple` or `list`, then it defines the axis limits. If ``None``, then the limits are set automatically. axes_x_ticks : `list` or `tuple` or ``None``, optional The ticks of the x axis. axes_y_ticks : `list` or `tuple` or ``None``, optional The ticks of the y axis. render_lines : `bool` or `list` of `bool`, optional If ``True``, the line will be rendered. If `bool`, this value will be used for all curves. If `list`, a value must be specified for each curve, thus it must have the same length as `y_axis`. line_colour : `colour` or `list` of `colour` or ``None``, optional The colour of the lines. If not a `list`, this value will be used for all curves. If `list`, a value must be specified for each curve, thus it must have the same length as `y_axis`. If ``None``, the colours will be linearly sampled from jet colormap. Example `colour` options are :: {'r', 'g', 'b', 'c', 'm', 'k', 'w'} or (3, ) ndarray line_style : ``{'-', '--', '-.', ':'}`` or `list` of those, optional The style of the lines. If not a `list`, this value will be used for all curves. If `list`, a value must be specified for each curve, thus it must have the same length as `y_axis`. line_width : `float` or `list` of `float`, optional The width of the lines. If `float`, this value will be used for all curves. If `list`, a value must be specified for each curve, thus it must have the same length as `y_axis`. render_markers : `bool` or `list` of `bool`, optional If ``True``, the markers will be rendered. If `bool`, this value will be used for all curves. If `list`, a value must be specified for each curve, thus it must have the same length as `y_axis`. marker_style : `marker` or `list` of `markers`, optional The style of the markers. If not a `list`, this value will be used for all curves. If `list`, a value must be specified for each curve, thus it must have the same length as `y_axis`. Example `marker` options :: {'.', ',', 'o', 'v', '^', '<', '>', '+', 'x', 'D', 'd', 's', 'p', '*', 'h', 'H', '1', '2', '3', '4', '8'} marker_size : `int` or `list` of `int`, optional The size of the markers in points. If `int`, this value will be used for all curves. If `list`, a value must be specified for each curve, thus it must have the same length as `y_axis`. marker_face_colour : `colour` or `list` of `colour` or ``None``, optional The face (filling) colour of the markers. If not a `list`, this value will be used for all curves. If `list`, a value must be specified for each curve, thus it must have the same length as `y_axis`. If ``None``, the colours will be linearly sampled from jet colormap. Example `colour` options are :: {'r', 'g', 'b', 'c', 'm', 'k', 'w'} or (3, ) ndarray marker_edge_colour : `colour` or `list` of `colour` or ``None``, optional The edge colour of the markers. If not a `list`, this value will be used for all curves. If `list`, a value must be specified for each curve, thus it must have the same length as `y_axis`. If ``None``, the colours will be linearly sampled from jet colormap. Example `colour` options are :: {'r', 'g', 'b', 'c', 'm', 'k', 'w'} or (3, ) ndarray marker_edge_width : `float` or `list` of `float`, optional The width of the markers' edge. If `float`, this value will be used for all curves. If `list`, a value must be specified for each curve, thus it must have the same length as `y_axis`. render_legend : `bool`, optional If ``True``, the legend will be rendered. legend_title : `str`, optional The title of the legend. legend_font_name : See below, optional The font of the legend. Example options :: {'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'} legend_font_style : ``{'normal', 'italic', 'oblique'}``, optional The font style of the legend. legend_font_size : `int`, optional The font size of the legend. legend_font_weight : See below, optional The font weight of the legend. Example options :: {'ultralight', 'light', 'normal', 'regular', 'book', 'medium', 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy', 'extra bold', 'black'} legend_marker_scale : `float`, optional The relative size of the legend markers with respect to the original legend_location : `int`, optional The location of the legend. The predefined values are: =============== === 'best' 0 'upper right' 1 'upper left' 2 'lower left' 3 'lower right' 4 'right' 5 'center left' 6 'center right' 7 'lower center' 8 'upper center' 9 'center' 10 =============== === legend_bbox_to_anchor : (`float`, `float`), optional The bbox that the legend will be anchored. legend_border_axes_pad : `float`, optional The pad between the axes and legend border. legend_n_columns : `int`, optional The number of the legend's columns. legend_horizontal_spacing : `float`, optional The spacing between the columns. legend_vertical_spacing : `float`, optional The vertical space between the legend entries. legend_border : `bool`, optional If ``True``, a frame will be drawn around the legend. legend_border_padding : `float`, optional The fractional whitespace inside the legend border. legend_shadow : `bool`, optional If ``True``, a shadow will be drawn behind legend. legend_rounded_corners : `bool`, optional If ``True``, the frame's corners will be rounded (fancybox). render_axes : `bool`, optional If ``True``, the axes will be rendered. axes_font_name : See below, optional The font of the axes. Example options :: {'serif', 'sans-serif', 'cursive', 'fantasy', 'monospace'} axes_font_size : `int`, optional The font size of the axes. axes_font_style : ``{'normal', 'italic', 'oblique'}``, optional The font style of the axes. axes_font_weight : See below, optional The font weight of the axes. Example options :: {'ultralight', 'light', 'normal', 'regular', 'book', 'medium', 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy', 'extra bold', 'black'} figure_size : (`float`, `float`) or ``None``, optional The size of the figure in inches. render_grid : `bool`, optional If ``True``, the grid will be rendered. grid_line_style : ``{'-', '--', '-.', ':'}``, optional The style of the grid lines. grid_line_width : `float`, optional The width of the grid lines. Raises ------ ValueError legend_entries list has different length than y_axis list Returns ------- viewer : :map:`GraphPlotter` The viewer object. """ from menpo.visualize import GraphPlotter # check y_axis if not isinstance(y_axis, list): y_axis = [y_axis] # check legend_entries if legend_entries is not None and len(legend_entries) != len(y_axis): raise ValueError("legend_entries list has different length than y_axis " "list") # render return GraphPlotter( figure_id=figure_id, new_figure=new_figure, x_axis=x_axis, y_axis=y_axis, title=title, legend_entries=legend_entries, x_label=x_label, y_label=y_label, x_axis_limits=axes_x_limits, y_axis_limits=axes_y_limits, x_axis_ticks=axes_x_ticks, y_axis_ticks=axes_y_ticks, ).render( render_lines=render_lines, line_colour=line_colour, line_style=line_style, line_width=line_width, render_markers=render_markers, marker_style=marker_style, marker_size=marker_size, marker_face_colour=marker_face_colour, marker_edge_colour=marker_edge_colour, marker_edge_width=marker_edge_width, render_legend=render_legend, legend_title=legend_title, legend_font_name=legend_font_name, legend_font_style=legend_font_style, legend_font_size=legend_font_size, legend_font_weight=legend_font_weight, legend_marker_scale=legend_marker_scale, legend_location=legend_location, legend_bbox_to_anchor=legend_bbox_to_anchor, legend_border_axes_pad=legend_border_axes_pad, legend_n_columns=legend_n_columns, legend_horizontal_spacing=legend_horizontal_spacing, legend_vertical_spacing=legend_vertical_spacing, legend_border=legend_border, legend_border_padding=legend_border_padding, legend_shadow=legend_shadow, legend_rounded_corners=legend_rounded_corners, render_axes=render_axes, axes_font_name=axes_font_name, axes_font_size=axes_font_size, axes_font_style=axes_font_style, axes_font_weight=axes_font_weight, figure_size=figure_size, render_grid=render_grid, grid_line_style=grid_line_style, grid_line_width=grid_line_width, ) def render_rectangles_around_patches( centers, patch_shape, axes=None, image_view=True, line_colour="r", line_style="-", line_width=1, interpolation="none", ): r""" Method that renders rectangles of the specified `patch_shape` centered around all the points of the provided `centers`. Parameters ---------- centers : :map:`PointCloud` The centers around which to draw the rectangles. patch_shape : `tuple` or `ndarray`, optional The size of the rectangle to render. axes : `matplotlib.pyplot.axes` object or ``None``, optional The axes object on which to render. image_view : `bool`, optional If ``True`` the rectangles will be viewed as if they are in the image coordinate system. line_colour : See Below, optional The colour of the lines. Example options:: {r, g, b, c, m, k, w} or (3, ) ndarray line_style : ``{-, --, -., :}``, optional The style of the lines. line_width : `float`, optional The width of the lines. interpolation : See Below, optional In case a patch-based image is already rendered on the specified axes, this argument controls how tight the rectangles would be to the patches. It needs to have the same value as the one used when rendering the patches image, otherwise there is the danger that the rectangles won't be exactly on the border of the patches. Example options :: {none, nearest, bilinear, bicubic, spline16, spline36, hanning, hamming, hermite, kaiser, quadric, catrom, gaussian, bessel, mitchell, sinc, lanczos} """ import matplotlib.pyplot as plt from matplotlib.patches import Rectangle # Dictionary with the line styles line_style_dict = {"-": "solid", "--": "dashed", "-.": "dashdot", ":": "dotted"} # Get axes object if axes is None: axes = plt.gca() # Need those in order to compute the lower left corner of the rectangle half_patch_shape = [patch_shape[0] / 2, patch_shape[1] / 2] # Set the view mode if image_view: xi = 1 yi = 0 else: xi = 0 yi = 1 # Set correct offsets so that the rectangle is tight to the patch if interpolation == "none": off_start = 0.5 off_end = 0.0 else: off_start = 1.0 off_end = 0.5 # Render rectangles for p in range(centers.shape[0]): xc = np.intp(centers[p, xi] - half_patch_shape[xi]) - off_start yc = np.intp(centers[p, yi] - half_patch_shape[yi]) - off_start axes.add_patch( Rectangle( (xc, yc), patch_shape[xi] + off_end, patch_shape[yi] + off_end, fill=False, edgecolor=line_colour, linewidth=line_width, linestyle=line_style_dict[line_style], ) ) def view_patches( patches, patch_centers, patches_indices=None, offset_index=None, figure_id=None, new_figure=False, background="white", render_patches=True, channels=None, interpolation="none", cmap_name=None, alpha=1.0, render_patches_bboxes=True, bboxes_line_colour="r", bboxes_line_style="-", bboxes_line_width=1, render_centers=True, render_lines=True, line_colour=None, line_style="-", line_width=1, render_markers=True, marker_style="o", marker_size=5, marker_face_colour=None, marker_edge_colour=None, marker_edge_width=1.0, render_numbering=False, numbers_horizontal_align="center", numbers_vertical_align="bottom", numbers_font_name="sans-serif", numbers_font_size=10, numbers_font_style="normal", numbers_font_weight="normal", numbers_font_colour="k", render_axes=False, axes_font_name="sans-serif", axes_font_size=10, axes_font_style="normal", axes_font_weight="normal", axes_x_limits=None, axes_y_limits=None, axes_x_ticks=None, axes_y_ticks=None, figure_size=(7, 7), ): r""" Method that renders the provided `patches` on a canvas. The user can choose whether to render the patch centers (`render_centers`) as well as rectangle boundaries around the patches (`render_patches_bboxes`). The patches argument can have any of the two formats that are returned from the `extract_patches()` and `extract_patches_around_landmarks()` methods of the :map:`Image` class. Specifically it can be: 1. ``(n_center, n_offset, self.n_channels, patch_shape)`` `ndarray` 2. `list` of ``n_center * n_offset`` :map:`Image` objects Parameters ---------- patches : `ndarray` or `list` The values of the patches. It can have any of the two formats that are returned from the `extract_patches()` and `extract_patches_around_landmarks()` methods. Specifically, it can either be an ``(n_center, n_offset, self.n_channels, patch_shape)`` `ndarray` or a `list` of ``n_center * n_offset`` :map:`Image` objects. patch_centers : :map:`PointCloud` The centers around which to visualize the patches. patches_indices : `int` or `list` of `int` or ``None``, optional Defines the patches that will be visualized. If ``None``, then all the patches are selected. offset_index : `int` or ``None``, optional The offset index within the provided `patches` argument, thus the index of the second dimension from which to sample. If ``None``, then ``0`` is used. figure_id : `object`, optional The id of the figure to be used. new_figure : `bool`, optional If ``True``, a new figure is created. background : ``{'black', 'white'}``, optional If ``'black'``, then the background is set equal to the minimum value of `patches`. If ``'white'``, then the background is set equal to the maximum value of `patches`. render_patches : `bool`, optional Flag that determines whether to render the patch values. channels : `int` or `list` of `int` or ``all`` or ``None``, optional If `int` or `list` of `int`, the specified channel(s) will be rendered. If ``all``, all the channels will be rendered in subplots. If ``None`` and the image is RGB, it will be rendered in RGB mode. If ``None`` and the image is not RGB, it is equivalent to ``all``. interpolation : See Below, optional The interpolation used to render the image. For example, if ``bilinear``, the image will be smooth and if ``nearest``, the image will be pixelated. Example options :: {none, nearest, bilinear, bicubic, spline16, spline36, hanning, hamming, hermite, kaiser, quadric, catrom, gaussian, bessel, mitchell, sinc, lanczos} cmap_name: `str`, optional, If ``None``, single channel and three channel images default to greyscale and rgb colormaps respectively. alpha : `float`, optional The alpha blending value, between 0 (transparent) and 1 (opaque). render_patches_bboxes : `bool`, optional Flag that determines whether to render the bounding box lines around the patches. bboxes_line_colour : See Below, optional The colour of the lines. Example options:: {r, g, b, c, m, k, w} or (3, ) ndarray bboxes_line_style : ``{-, --, -., :}``, optional The style of the lines. bboxes_line_width : `float`, optional The width of the lines. render_centers : `bool`, optional Flag that determines whether to render the patch centers. render_lines : `bool`, optional If ``True``, the edges will be rendered. line_colour : See Below, optional The colour of the lines. Example options:: {r, g, b, c, m, k, w} or (3, ) ndarray line_style : ``{-, --, -., :}``, optional The style of the lines. line_width : `float`, optional The width of the lines. render_markers : `bool`, optional If ``True``, the markers will be rendered. marker_style : See Below, optional The style of the markers. Example options :: {., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8} marker_size : `int`, optional The size of the markers in points. marker_face_colour : See Below, optional The face (filling) colour of the markers. Example options :: {r, g, b, c, m, k, w} or (3, ) ndarray marker_edge_colour : See Below, optional The edge colour of the markers. Example options :: {r, g, b, c, m, k, w} or (3, ) ndarray marker_edge_width : `float`, optional The width of the markers' edge. render_numbering : `bool`, optional If ``True``, the landmarks will be numbered. numbers_horizontal_align : ``{center, right, left}``, optional The horizontal alignment of the numbers' texts. numbers_vertical_align : ``{center, top, bottom, baseline}``, optional The vertical alignment of the numbers' texts. numbers_font_name : See Below, optional The font of the numbers. Example options :: {serif, sans-serif, cursive, fantasy, monospace} numbers_font_size : `int`, optional The font size of the numbers. numbers_font_style : ``{normal, italic, oblique}``, optional The font style of the numbers. numbers_font_weight : See Below, optional The font weight of the numbers. Example options :: {ultralight, light, normal, regular, book, medium, roman, semibold, demibold, demi, bold, heavy, extra bold, black} numbers_font_colour : See Below, optional The font colour of the numbers. Example options :: {r, g, b, c, m, k, w} or (3, ) ndarray render_axes : `bool`, optional If ``True``, the axes will be rendered. axes_font_name : See Below, optional The font of the axes. Example options :: {serif, sans-serif, cursive, fantasy, monospace} axes_font_size : `int`, optional The font size of the axes. axes_font_style : ``{normal, italic, oblique}``, optional The font style of the axes. axes_font_weight : See Below, optional The font weight of the axes. Example options :: {ultralight, light, normal, regular, book, medium, roman, semibold,demibold, demi, bold, heavy, extra bold, black} axes_x_limits : `float` or (`float`, `float`) or ``None``, optional The limits of the x axis. If `float`, then it sets padding on the right and left of the shape as a percentage of the shape's width. If `tuple` or `list`, then it defines the axis limits. If ``None``, then the limits are set automatically. axes_y_limits : `float` or (`float`, `float`) or ``None``, optional The limits of the y axis. If `float`, then it sets padding on the top and bottom of the shape as a percentage of the shape's height. If `tuple` or `list`, then it defines the axis limits. If ``None``, then the limits are set automatically. axes_x_ticks : `list` or `tuple` or ``None``, optional The ticks of the x axis. axes_y_ticks : `list` or `tuple` or ``None``, optional The ticks of the y axis. figure_size : (`float`, `float`) `tuple` or ``None`` optional The size of the figure in inches. Returns ------- viewer : `ImageViewer` The image viewing object. """ from menpo.image.base import ( _convert_patches_list_to_single_array, _create_patches_image, ) # If patches is a list, convert it to an array if isinstance(patches, list): patches = _convert_patches_list_to_single_array(patches, patch_centers.n_points) # Create patches image if render_patches: patches_image = _create_patches_image( patches, patch_centers, patches_indices=patches_indices, offset_index=offset_index, background=background, ) else: if background == "black": tmp_patches = np.zeros( ( patches.shape[0], patches.shape[1], 3, patches.shape[3], patches.shape[4], ) ) elif background == "white": tmp_patches = np.ones( ( patches.shape[0], patches.shape[1], 3, patches.shape[3], patches.shape[4], ) ) patches_image = _create_patches_image( tmp_patches, patch_centers, patches_indices=patches_indices, offset_index=offset_index, background=background, ) channels = None # Render patches image if render_centers: patch_view = patches_image.view_landmarks( channels=channels, group="patch_centers", figure_id=figure_id, new_figure=new_figure, interpolation=interpolation, cmap_name=cmap_name, alpha=alpha, render_lines=render_lines, line_colour=line_colour, line_style=line_style, line_width=line_width, render_markers=render_markers, marker_style=marker_style, marker_size=marker_size, marker_face_colour=marker_face_colour, marker_edge_colour=marker_edge_colour, marker_edge_width=marker_edge_width, render_numbering=render_numbering, numbers_horizontal_align=numbers_horizontal_align, numbers_vertical_align=numbers_vertical_align, numbers_font_name=numbers_font_name, numbers_font_size=numbers_font_size, numbers_font_style=numbers_font_style, numbers_font_weight=numbers_font_weight, numbers_font_colour=numbers_font_colour, render_legend=False, render_axes=render_axes, axes_font_name=axes_font_name, axes_font_size=axes_font_size, axes_font_style=axes_font_style, axes_font_weight=axes_font_weight, axes_x_limits=axes_x_limits, axes_y_limits=axes_y_limits, axes_x_ticks=axes_x_ticks, axes_y_ticks=axes_y_ticks, figure_size=figure_size, ) else: patch_view = patches_image.view( figure_id=figure_id, new_figure=new_figure, channels=channels, interpolation=interpolation, cmap_name=cmap_name, alpha=alpha, render_axes=render_axes, axes_font_name=axes_font_name, axes_font_size=axes_font_size, axes_font_style=axes_font_style, axes_font_weight=axes_font_weight, axes_x_limits=axes_x_limits, axes_y_limits=axes_y_limits, axes_x_ticks=axes_x_ticks, axes_y_ticks=axes_y_ticks, figure_size=figure_size, ) # Render rectangles around patches if render_patches_bboxes: patch_shape = [patches.shape[3], patches.shape[4]] render_rectangles_around_patches( patches_image.landmarks["patch_centers"].points, patch_shape, image_view=True, line_colour=bboxes_line_colour, line_style=bboxes_line_style, line_width=bboxes_line_width, interpolation=interpolation, ) return patch_view def plot_gaussian_ellipses( covariances, means, n_std=2, render_colour_bar=True, colour_bar_label="Normalized Standard Deviation", colour_map="jet", figure_id=None, new_figure=False, image_view=True, line_colour="r", line_style="-", line_width=1.0, render_markers=True, marker_edge_colour="k", marker_face_colour="k", marker_edge_width=1.0, marker_size=5, marker_style="o", render_axes=False, axes_font_name="sans-serif", axes_font_size=10, axes_font_style="normal", axes_font_weight="normal", crop_proportion=0.1, figure_size=(7, 7), ): r""" Method that renders the Gaussian ellipses that correspond to a set of covariance matrices and mean vectors. Naturally, this only works for 2-dimensional random variables. Parameters ---------- covariances : `list` of ``(2, 2)`` `ndarray` The covariance matrices that correspond to each ellipse. means : `list` of ``(2, )`` `ndarray` The mean vectors that correspond to each ellipse. n_std : `float`, optional This defines the size of the ellipses in terms of number of standard deviations. render_colour_bar : `bool`, optional If ``True``, then the ellipses will be coloured based on their normalized standard deviations and a colour bar will also appear on the side. If ``False``, then all the ellipses will have the same colour. colour_bar_label : `str`, optional The title of the colour bar. It only applies if `render_colour_bar` is ``True``. colour_map : `str`, optional A valid Matplotlib colour map. For more info, please refer to `matplotlib.cm`. figure_id : `object`, optional The id of the figure to be used. new_figure : `bool`, optional If ``True``, a new figure is created. image_view : `bool`, optional If ``True`` the ellipses will be rendered in the image coordinates system. line_colour : See Below, optional The colour of the lines of the ellipses. Example options:: {r, g, b, c, m, k, w} or (3, ) ndarray line_style : ``{-, --, -., :}``, optional The style of the lines of the ellipses. line_width : `float`, optional The width of the lines of the ellipses. render_markers : `bool`, optional If ``True``, the centers of the ellipses will be rendered. marker_style : See Below, optional The style of the centers of the ellipses. Example options :: {., ,, o, v, ^, <, >, +, x, D, d, s, p, *, h, H, 1, 2, 3, 4, 8} marker_size : `int`, optional The size of the centers of the ellipses in points. marker_face_colour : See Below, optional The face (filling) colour of the centers of the ellipses. Example options :: {r, g, b, c, m, k, w} or (3, ) ndarray marker_edge_colour : See Below, optional The edge colour of the centers of the ellipses. Example options :: {r, g, b, c, m, k, w} or (3, ) ndarray marker_edge_width : `float`, optional The edge width of the centers of the ellipses. render_axes : `bool`, optional If ``True``, the axes will be rendered. axes_font_name : See Below, optional The font of the axes. Example options :: {serif, sans-serif, cursive, fantasy, monospace} axes_font_size : `int`, optional The font size of the axes. axes_font_style : ``{normal, italic, oblique}``, optional The font style of the axes. axes_font_weight : See Below, optional The font weight of the axes. Example options :: {ultralight, light, normal, regular, book, medium, roman, semibold,demibold, demi, bold, heavy, extra bold, black} crop_proportion : `float`, optional The proportion to be left around the centers' pointcloud. figure_size : (`float`, `float`) `tuple` or ``None`` optional The size of the figure in inches. """ import matplotlib.pyplot as plt from matplotlib.patches import Ellipse import matplotlib.colors as colors import matplotlib.cm as cmx from matplotlib.font_manager import FontProperties from menpo.shape import PointCloud def eigh_sorted(cov): vals, vecs = np.linalg.eigh(cov) order = vals.argsort()[::-1] return vals[order], vecs[:, order] # get correct line style if line_style == "-": line_style = "solid" elif line_style == "--": line_style = "dashed" elif line_style == "-.": line_style = "dashdot" elif line_style == ":": line_style = "dotted" else: raise ValueError("line_style must be selected from " "['-', '--', '-.', ':'].") # create pointcloud pc = PointCloud(np.array(means)) # compute axes limits bounds = pc.bounds() r = pc.range() x_rr = r[0] * crop_proportion y_rr = r[1] * crop_proportion axes_x_limits = [bounds[0][1] - x_rr, bounds[1][1] + x_rr] axes_y_limits = [bounds[0][0] - y_rr, bounds[1][0] + y_rr] normalizer = np.sum(r) / 2.0 # compute height, width, theta and std stds = [] heights = [] widths = [] thetas = [] for cov in covariances: vals, vecs = eigh_sorted(cov) width, height = np.sqrt(vals) theta = np.degrees(np.arctan2(*vecs[:, 0][::-1])) stds.append(np.mean([height, width]) / normalizer) heights.append(height) widths.append(width) thetas.append(theta) if render_colour_bar: # set colormap values cmap = plt.get_cmap(colour_map) cNorm = colors.Normalize(vmin=np.min(stds), vmax=np.max(stds)) scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=cmap) # visualize pointcloud if render_colour_bar: renderer = pc.view( figure_id=figure_id, new_figure=new_figure, image_view=image_view, render_axes=render_axes, axes_font_name=axes_font_name, axes_font_size=axes_font_size, axes_font_style=axes_font_style, axes_font_weight=axes_font_weight, axes_x_limits=axes_x_limits, axes_y_limits=axes_y_limits, figure_size=figure_size, render_markers=False, ) else: renderer = pc.view( figure_id=figure_id, new_figure=new_figure, image_view=image_view, marker_edge_colour=marker_edge_colour, marker_face_colour=marker_face_colour, marker_edge_width=marker_edge_width, marker_size=marker_size, marker_style=marker_style, render_axes=render_axes, axes_font_name=axes_font_name, axes_font_size=axes_font_size, axes_font_style=axes_font_style, axes_font_weight=axes_font_weight, axes_x_limits=axes_x_limits, axes_y_limits=axes_y_limits, figure_size=figure_size, render_markers=render_markers, ) # plot ellipses ax = plt.gca() for i in range(len(covariances)): # Width and height are "full" widths, not radius width = 2 * n_std * widths[i] height = 2 * n_std * heights[i] if image_view: colour = line_colour if render_colour_bar: colour = scalarMap.to_rgba(stds[i]) if render_markers: plt.plot( means[i][1], means[i][0], facecolor=colour, edgecolor=colour, linewidth=0, ) ellip = Ellipse( xy=means[i][-1::-1], width=height, height=width, angle=thetas[i], linestyle=line_style, linewidth=line_width, edgecolor=colour, facecolor="none", ) else: colour = line_colour if render_colour_bar: colour = scalarMap.to_rgba(stds[i]) if render_markers: plt.plot( means[i][0], means[i][1], facecolor=colour, edgecolor=colour, linewidth=0, ) ellip = Ellipse( xy=means[i], width=width, height=height, angle=thetas[i], linestyle=line_style, linewidth=line_width, edgecolor=colour, facecolor="none", ) ax.add_artist(ellip) # show colour bar if render_colour_bar: scalarMap.set_array(stds) cb = plt.colorbar(scalarMap, label=colour_bar_label) # change colour bar's font properties ax = cb.ax text = ax.yaxis.label font = FontProperties( size=axes_font_size, weight=axes_font_weight, style=axes_font_style, family=axes_font_name, ) text.set_font_properties(font) return renderer
bsd-3-clause
mosra/m.css
documentation/test_python/test_page.py
1
4453
# # This file is part of m.css. # # Copyright © 2017, 2018, 2019, 2020 Vladimír Vondruš <[email protected]> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # import matplotlib import os import re import subprocess from distutils.version import LooseVersion from . import BaseTestCase def dot_version(): return re.match(".*version (?P<version>\d+\.\d+\.\d+).*", subprocess.check_output(['dot', '-V'], stderr=subprocess.STDOUT).decode('utf-8').strip()).group('version') class Page(BaseTestCase): def test(self): self.run_python({ 'INPUT_PAGES': ['index.rst', 'another.rst', 'error.rst'] }) self.assertEqual(*self.actual_expected_contents('index.html')) self.assertEqual(*self.actual_expected_contents('another.html')) self.assertEqual(*self.actual_expected_contents('error.html')) self.assertEqual(*self.actual_expected_contents('pages.html')) class InputSubdir(BaseTestCase): def test(self): self.run_python({ 'INPUT': 'sub', 'INPUT_PAGES': ['index.rst'] }) # The same output as Page, just the file is taken from elsewhere self.assertEqual(*self.actual_expected_contents('index.html', '../page/index.html')) class Plugins(BaseTestCase): def test(self): self.run_python({ # Test all of them to check the registration works well 'PLUGINS': [ 'm.abbr', 'm.code', 'm.components', 'm.dot', 'm.dox', 'm.gh', 'm.gl', 'm.images', 'm.link', 'm.plots', 'm.vk', 'fancyline' ], 'PLUGIN_PATHS': ['plugins'], 'INPUT_PAGES': ['index.rst', 'dot.rst', 'plots.rst'], 'M_HTMLSANITY_SMART_QUOTES': True, 'M_DOT_FONT': 'DejaVu Sans', 'M_PLOTS_FONT': 'DejaVu Sans', 'M_DOX_TAGFILES': [ (os.path.join(self.path, '../../../doc/documentation/corrade.tag'), 'https://doc.magnum.graphics/corrade/') ] }) self.assertEqual(*self.actual_expected_contents('index.html')) # The output is different for every other Graphviz if LooseVersion(dot_version()) >= LooseVersion("2.44.0"): file = 'dot.html' elif LooseVersion(dot_version()) > LooseVersion("2.40.0"): file = 'dot-240.html' elif LooseVersion(dot_version()) >= LooseVersion("2.38.0"): file = 'dot-238.html' self.assertEqual(*self.actual_expected_contents('dot.html', file)) # I assume this will be a MASSIVE ANNOYANCE at some point as well so # keeping it separate self.assertEqual(*self.actual_expected_contents('plots.html')) self.assertTrue(os.path.exists(os.path.join(self.path, 'output/tiny.png'))) import fancyline self.assertEqual(fancyline.post_crawl_call_count, 1) self.assertEqual(fancyline.scope_stack, []) # No code, thus no docstrings processed self.assertEqual(fancyline.docstring_call_count, 0) # Once for each page, but nonce for render_docs() as that shouldn't # generate any output anyway self.assertEqual(fancyline.pre_page_call_count, 3) self.assertEqual(fancyline.post_run_call_count, 1)
mit
jdwittenauer/ionyx
ionyx/experiment.py
1
19762
import pickle import time import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.metrics import get_scorer from sklearn.model_selection import GridSearchCV, RandomizedSearchCV from sklearn.model_selection import cross_validate, learning_curve, train_test_split from .print_message import PrintMessageMixin class Experiment(PrintMessageMixin): """ Provides functionality to create and run machine learning experiments. Designed to serve as a "wrapper" for running an experiment. This class provides methods for training, cross-validation, parameter tuning etc. The main value proposition is in providing a simplified API for common tasks, layering useful reporting and logging on top, and reconciling capabilities between several popular libraries. Parameters ---------- package : {'sklearn', 'xgboost', 'keras', 'prophet'} The source package of the model used in the experiment. Some capabilities are available only using certain packages. model : object An instantiated supervised learning model. Must be API compatible with scikit-learn estimators. Pipelines are also supported. scoring_metric : string Name of the metric to use to score models. Text must match a valid scikit-learn metric. eval_metric : string, optional, default None Separate metric used specifically for evaluation such as hold-out sets during training. Text must match an evaluation metric supported by the package the model originates from. n_jobs : int, optional, default 1 Number of parallel processes to use (where functionality is available). verbose : boolean, optional, default True If true, messages will be written to the console. logger : object, optional, default None An instantiated log writer with an open file handle. If provided, messages will be written to the log file. data : DataFrame, optional, default None The data set to be used for the experiment. Provides the option to specify the data at initialization vs. passing in training data and labels with each function call. If "data" is specified then "X_columns" and "y_column" must also be specified. X_columns : list, optional, default None List of columns in "data" to use for the training set. y_column : string, optional, default None Name of the column in "data" to use as a label for supervised learning. cv : object, optional, default None A cross-validation strategy. Accepts all options considered valid by scikit-learn. Attributes ---------- scorer_ : object Scikit-learn scoring function for the provided scoring metric. best_model_ : object The best model found during a parameter search. """ def __init__(self, package, model, scoring_metric, eval_metric=None, n_jobs=1, verbose=True, logger=None, data=None, X_columns=None, y_column=None, cv=None): PrintMessageMixin.__init__(self, verbose, logger) self.package = package self.model = model self.scoring_metric = scoring_metric self.eval_metric = eval_metric self.n_jobs = n_jobs self.scorer_ = get_scorer(self.scoring_metric) self.best_model_ = None self.data = data if self.data is not None: if X_columns and y_column: self.X = data[X_columns].values self.y = data[y_column].values else: raise Exception('X and y columns must be specified if data set is provided.') self.cv = cv self.print_message('Beginning experiment...') self.print_message('Package = {0}'.format(package)) self.print_message('Scoring Metric = {0}'.format(scoring_metric)) self.print_message('Evaluation Metric = {0}'.format(eval_metric)) self.print_message('Parallel Jobs = {0}'.format(n_jobs)) self.print_message('Model:') self.print_message(model, pprint=True) self.print_message('Parameters:') self.print_message(model.get_params(), pprint=True) def train_model(self, X=None, y=None, validate=False, early_stopping=False, early_stopping_rounds=None, plot_eval_history=False, fig_size=16): """ Trains a new model using the provided training data. Parameters ---------- X : array-like, optional, default None Training input samples. Must be specified if no data was provided during initialization. y : array-like, optional, default None Target values. Must be specified if no data was provided during initialization. validate : boolean, optional, default False Evaluate model on a hold-out set during training. early_stopping : boolean, optional, default False Stop training the model when performance on a validation set begins to drop. Eval must be enabled. early_stopping_rounds : int, optional, default None Number of training iterations to allow before stopping training due to performance on a validation set. Eval and early_stopping must be enabled. plot_eval_history : boolean, optional, default False Plot model performance as a function of training time. Eval must be enabled. fig_size : int, optional, default 16 Size of the evaluation history plot. """ if X is not None: self.X = X if y is not None: self.y = y self.print_message('Beginning model training...') self.print_message('X dimensions = {0}'.format(self.X.shape)) self.print_message('y dimensions = {0}'.format(self.y.shape)) v = 1 if self.verbose else 0 t0 = time.time() if self.package not in ['sklearn', 'xgboost', 'keras', 'prophet']: raise Exception('Package not supported.') if validate and self.package in ['xgboost', 'keras']: X_train, X_eval, y_train, y_eval = train_test_split(self.X, self.y, test_size=0.1) training_history = None min_eval_loss = None min_eval_epoch = None if early_stopping: if self.package == 'xgboost': self.model.fit(X_train, y_train, eval_set=[(X_eval, y_eval)], eval_metric=self.eval_metric, early_stopping_rounds=early_stopping_rounds, verbose=self.verbose) elif self.package == 'keras': from keras.callbacks import EarlyStopping callbacks = [ EarlyStopping(monitor='val_loss', patience=early_stopping_rounds) ] training_history = self.model.fit(X_train, y_train, verbose=v, validation_data=(X_eval, y_eval), callbacks=callbacks) else: if self.package == 'xgboost': self.model.fit(X_train, y_train, eval_set=[(X_eval, y_eval)], eval_metric=self.eval_metric, verbose=self.verbose) elif self.package == 'keras': training_history = self.model.fit(X_train, y_train, verbose=v, validation_data=(X_eval, y_eval)) if self.package == 'xgboost': training_history = self.model.evals_result()['validation_0'][self.eval_metric] min_eval_loss = min(training_history) min_eval_epoch = training_history.index(min(training_history)) + 1 elif self.package == 'keras': training_history = training_history.history['val_loss'] min_eval_loss = min(training_history) min_eval_epoch = training_history.index(min(training_history)) + 1 if plot_eval_history: df = pd.DataFrame(training_history, columns=['Eval Loss']) df.plot(figsize=(fig_size, fig_size * 3 / 4)) t1 = time.time() self.print_message('Model training complete in {0:3f} s.'.format(t1 - t0)) self.print_message('Training score = {0}' .format(self.scorer_(self.model, X_train, y_train))) self.print_message('Min. evaluation score = {0}'.format(min_eval_loss)) self.print_message('Min. evaluation epoch = {0}'.format(min_eval_epoch)) elif validate: raise Exception('Package does not support evaluation during training.') else: if self.package == 'keras': self.model.set_params(verbose=v) self.model.fit(self.X, self.y) t1 = time.time() self.print_message('Model training complete in {0:3f} s.'.format(t1 - t0)) self.print_message('Training score = {0}' .format(self.scorer_(self.model, self.X, self.y))) def cross_validate(self, X=None, y=None, cv=None): """ Performs cross-validation to estimate the true performance of the model. Parameters ---------- X : array-like, optional, default None Training input samples. Must be specified if no data was provided during initialization. y : array-like, optional, default None Target values. Must be specified if no data was provided during initialization. cv : object, optional, default None A cross-validation strategy. Accepts all options considered valid by scikit-learn. Must be specified if no cv was passed in during initialization. """ if X is not None: self.X = X if y is not None: self.y = y if cv is not None: self.cv = cv self.print_message('Beginning cross-validation...') self.print_message('X dimensions = {0}'.format(self.X.shape)) self.print_message('y dimensions = {0}'.format(self.y.shape)) self.print_message('Cross-validation strategy = {0}'.format(self.cv)) t0 = time.time() if self.package not in ['sklearn', 'xgboost', 'keras', 'prophet']: raise Exception('Package not supported.') if self.package == 'keras': self.model.set_params(verbose=0) results = cross_validate(self.model, self.X, self.y, scoring=self.scoring_metric, cv=self.cv, n_jobs=self.n_jobs, verbose=0, return_train_score=True) t1 = time.time() self.print_message('Cross-validation complete in {0:3f} s.'.format(t1 - t0)) train_score = np.mean(results['train_score']) test_score = np.mean(results['test_score']) self.print_message('Training score = {0}'.format(train_score)) self.print_message('Cross-validation score = {0}'.format(test_score)) def learning_curve(self, X=None, y=None, cv=None, fig_size=16): """ Plots a learning curve showing model performance against both training and validation data sets as a function of the number of training samples. Parameters ---------- X : array-like, optional, default None Training input samples. Must be specified if no data was provided during initialization. y : array-like, optional, default None Target values. Must be specified if no data was provided during initialization. cv : object, optional, default None A cross-validation strategy. Accepts all options considered valid by scikit-learn. Must be specified if no cv was passed in during initialization. fig_size : int, optional, default 16 Size of the plot. """ if X is not None: self.X = X if y is not None: self.y = y if cv is not None: self.cv = cv self.print_message('Plotting learning curve...') self.print_message('X dimensions = {0}'.format(self.X.shape)) self.print_message('y dimensions = {0}'.format(self.y.shape)) self.print_message('Cross-validation strategy = {0}'.format(self.cv)) t0 = time.time() if self.package not in ['sklearn', 'xgboost', 'keras', 'prophet']: raise Exception('Package not supported.') if self.package == 'keras': self.model.set_params(verbose=0) values = learning_curve(self.model, self.X, self.y, cv=self.cv, scoring=self.scoring_metric, n_jobs=self.n_jobs, verbose=0) train_sizes, train_scores, test_scores = values train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) fig, ax = plt.subplots(figsize=(fig_size, fig_size * 3 / 4)) ax.set_title('Learning Curve') ax.set_xlabel('Training Examples') ax.set_ylabel('Score') ax.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color='b') ax.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color='r') ax.plot(train_sizes, train_scores_mean, 'o-', color='b', label='Training score') ax.plot(train_sizes, test_scores_mean, 'o-', color='r', label='Cross-validation score') ax.legend(loc='best') fig.tight_layout() t1 = time.time() self.print_message('Plot generation complete in {0:3f} s.'.format(t1 - t0)) def param_search(self, param_grid, X=None, y=None, cv=None, search_type='grid', n_iter=100, save_results_path=None): """ Conduct a search over some pre-defined set of hyper-parameter configurations to find the best-performing set of parameter. Parameters ---------- param_grid : list, dict Parameter search space. See scikit-learn documentation for GridSearchCV and RandomSearchCV for acceptable formatting. X : array-like, optional, default None Training input samples. Must be specified if no data was provided during initialization. y : array-like, optional, default None Target values. Must be specified if no data was provided during initialization. cv : object, optional, default None A cross-validation strategy. Accepts all options considered valid by scikit-learn. Must be specified if no cv was passed in during initialization. search_type : {'grid', 'random'}, optional, default 'grid' Specifies use of grid search or random search. Requirements for param_grid are different depending on which method is used. See scikit-learn documentation for GridSearchCV and RandomSearchCV for details. n_iter : int, optional, default 100 Number of search iterations to run. Only applies to random search. save_results_path : string, optional, default None Specifies a location to save the full results of the search in format. File name should end in .csv. """ if X is not None: self.X = X if y is not None: self.y = y if cv is not None: self.cv = cv self.print_message('Beginning hyper-parameter search...') self.print_message('X dimensions = {0}'.format(self.X.shape)) self.print_message('y dimensions = {0}'.format(self.y.shape)) self.print_message('Cross-validation strategy = {0}'.format(self.cv)) t0 = time.time() if self.package not in ['sklearn', 'xgboost', 'keras', 'prophet']: raise Exception('Package not supported.') if self.package == 'keras': self.model.set_params(verbose=0) if search_type == 'grid': search = GridSearchCV(self.model, param_grid=param_grid, scoring=self.scoring_metric, n_jobs=self.n_jobs, cv=self.cv, refit=self.scoring_metric, verbose=0, return_train_score=True) elif search_type == 'random': search = RandomizedSearchCV(self.model, param_grid, n_iter=n_iter, scoring=self.scoring_metric, n_jobs=self.n_jobs, cv=self.cv, refit=self.scoring_metric, verbose=0, return_train_score=True) else: raise Exception('Search type not supported.') search.fit(self.X, self.y) t1 = time.time() self.print_message('Hyper-parameter search complete in {0:3f} s.'.format(t1 - t0)) self.print_message('Best score found = {0}'.format(search.best_score_)) self.print_message('Best parameters found:') self.print_message(search.best_params_, pprint=True) self.best_model_ = search.best_estimator_ if save_results_path: results = pd.DataFrame(search.cv_results_) results = results.sort_values(by='mean_test_score', ascending=False) results.to_csv(save_results_path, index=False) def load_model(self, filename): """ Load a previously trained model from disk. Parameters ---------- filename : string Location of the file to read. """ self.print_message('Loading model...') t0 = time.time() if self.package in ['sklearn', 'xgboost', 'prophet']: model_file = open(filename, 'rb') self.model = pickle.load(model_file) model_file.close() elif self.package == 'keras': from keras.models import load_model self.model.model = load_model(filename) else: raise Exception('Package not supported.') t1 = time.time() self.print_message('Model loaded in {0:3f} s.'.format(t1 - t0)) def save_model(self, filename): """ Persist a trained model to disk. Parameters ---------- filename : string Location of the file to write. Scikit-learn, XGBoost, and Prophet use pickle to write to disk (use .pkl extension for clarity) while Keras has a built-in save function that uses the HDF5 file format, so Keras models must have a .h5 extension. """ self.print_message('Saving model...') t0 = time.time() if self.package in ['sklearn', 'xgboost', 'prophet']: model_file = open(filename, 'wb') pickle.dump(self.model, model_file) model_file.close() elif self.package == 'keras': if hasattr(self.model, 'model'): self.model.model.save(filename) else: raise Exception('Keras model must be fit before saving.') else: raise Exception('Package not supported.') t1 = time.time() self.print_message('Model saved in {0:3f} s.'.format(t1 - t0))
apache-2.0
niltonlk/nest-simulator
doc/userdoc/guides/spatial/user_manual_scripts/layers.py
17
11076
# -*- coding: utf-8 -*- # # layers.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. # Run as python3 layers.py > layers.log import matplotlib.pyplot as plt import nest import numpy as np # seed NumPy RNG to ensure identical results for runs with random placement np.random.seed(1234567) def beautify_layer(layer, fig=plt.gcf(), xlabel=None, ylabel=None, xlim=None, ylim=None, xticks=None, yticks=None, dx=0, dy=0): """Assume either x and ylims/ticks given or none""" ctr = layer.spatial['center'] ext = layer.spatial['extent'] if xticks is None: if 'shape' in layer.spatial: dx = float(ext[0]) / layer.spatial['shape'][0] dy = float(ext[1]) / layer.spatial['shape'][1] xticks = ctr[0] - ext[0] / 2. + dx / 2. + dx * np.arange( layer.spatial['shape'][0]) yticks = ctr[1] - ext[1] / 2. + dy / 2. + dy * np.arange( layer.spatial['shape'][1]) if xlim is None: xlim = [ctr[0] - ext[0] / 2. - dx / 2., ctr[0] + ext[ 0] / 2. + dx / 2.] # extra space so extent is visible ylim = [ctr[1] - ext[1] / 2. - dy / 2., ctr[1] + ext[1] / 2. + dy / 2.] else: ext = [xlim[1] - xlim[0], ylim[1] - ylim[0]] ax = fig.gca() ax.set_xlim(xlim) ax.set_ylim(ylim) ax.set_aspect('equal', 'box') ax.set_xticks(xticks) ax.set_yticks(yticks) ax.grid(True) ax.set_axisbelow(True) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) return # -------------------------------------------------- nest.ResetKernel() #{ layer1 #} layer = nest.Create('iaf_psc_alpha', positions=nest.spatial.grid(shape=[5, 5])) #{ end #} fig = nest.PlotLayer(layer, nodesize=50) beautify_layer(layer, fig, xlabel='x-axis (columns)', ylabel='y-axis (rows)') ax = fig.gca() tx = [] for r in range(5): tx.append(ax.text(0.65, 0.4 - r * 0.2, str(r), horizontalalignment='center', verticalalignment='center')) tx.append(ax.text(-0.4 + r * 0.2, 0.65, str(r), horizontalalignment='center', verticalalignment='center')) # For bbox_extra_artists, see # https://github.com/matplotlib/matplotlib/issues/351 # plt.savefig('../user_manual_figures/layer1.png', bbox_inches='tight', # bbox_extra_artists=tx) print("#{ layer1s.log #}") #{ layer1s #} print(layer.spatial) #{ end #} print("#{ end.log #}") print("#{ layer1p.log #}") #{ layer1p #} nest.PrintNodes() #{ end #} print("#{ end.log #}") # -------------------------------------------------- nest.ResetKernel() #{ layer2 #} layer = nest.Create('iaf_psc_alpha', positions=nest.spatial.grid( shape=[5, 5], extent=[2.0, 0.5])) #{ end #} fig = nest.PlotLayer(layer, nodesize=50) beautify_layer(layer, fig, xlabel='x-axis (columns)', ylabel='y-axis (rows)') ax = fig.gca() tx = [] for r in range(5): tx.append(fig.gca().text(1.25, 0.2 - r * 0.1, str(r), horizontalalignment='center', verticalalignment='center')) tx.append(fig.gca().text(-0.8 + r * 0.4, 0.35, str(r), horizontalalignment='center', verticalalignment='center')) # See https://github.com/matplotlib/matplotlib/issues/351 plt.savefig('../user_manual_figures/layer2.png', bbox_inches='tight', bbox_extra_artists=tx) # -------------------------------------------------- nest.ResetKernel() #{ layer3 #} layer1 = nest.Create('iaf_psc_alpha', positions=nest.spatial.grid(shape=[5, 5])) layer2 = nest.Create('iaf_psc_alpha', positions=nest.spatial.grid( shape=[5, 5], center=[-1., 1.])) layer3 = nest.Create('iaf_psc_alpha', positions=nest.spatial.grid( shape=[5, 5], center=[1.5, 0.5])) #{ end #} fig = nest.PlotLayer(layer1, nodesize=50) nest.PlotLayer(layer2, nodesize=50, nodecolor='g', fig=fig) nest.PlotLayer(layer3, nodesize=50, nodecolor='r', fig=fig) beautify_layer(layer1, fig, xlabel='x-axis (columns)', ylabel='y-axis (rows)', xlim=[-1.6, 2.1], ylim=[-0.6, 1.6], xticks=np.arange(-1.4, 2.05, 0.2), yticks=np.arange(-0.4, 1.45, 0.2)) plt.savefig('../user_manual_figures/layer3.png', bbox_inches='tight') # -------------------------------------------------- nest.ResetKernel() #{ layer3a #} nx, ny = 5, 3 d = 0.1 layer = nest.Create('iaf_psc_alpha', positions=nest.spatial.grid( shape=[nx, ny], extent=[nx * d, ny * d], center=[nx * d / 2., 0.])) #{ end #} fig = nest.PlotLayer(layer, nodesize=100) plt.plot(0, 0, 'x', markersize=20, c='k', mew=3) plt.plot(nx * d / 2, 0, 'o', markersize=20, c='k', mew=3, mfc='none', zorder=100) beautify_layer(layer, fig, xlabel='x-axis (columns)', ylabel='y-axis (rows)', xticks=np.arange(0., 0.501, 0.05), yticks=np.arange(-0.15, 0.151, 0.05), xlim=[-0.05, 0.55], ylim=[-0.2, 0.2]) plt.savefig('../user_manual_figures/layer3a.png', bbox_inches='tight') # -------------------------------------------------- nest.ResetKernel() #{ layer4 #} pos = nest.spatial.free(pos=nest.random.uniform(min=-0.5, max=0.5), num_dimensions=2) layer = nest.Create('iaf_psc_alpha', 50, positions=pos) #{ end #} fig = nest.PlotLayer(layer, nodesize=50) beautify_layer(layer, fig, xlabel='x-axis (columns)', ylabel='y-axis (rows)', xlim=[-0.55, 0.55], ylim=[-0.55, 0.55], xticks=[-0.5, 0., 0.5], yticks=[-0.5, 0., 0.5]) plt.savefig('../user_manual_figures/layer4.png', bbox_inches='tight') # -------------------------------------------------- nest.ResetKernel() #{ layer4b #} pos = nest.spatial.free(pos=[[-0.5, -0.5], [-0.25, -0.25], [0.75, 0.75]]) layer = nest.Create('iaf_psc_alpha', positions=pos) #{ end #} fig = nest.PlotLayer(layer, nodesize=50) beautify_layer(layer, fig, xlabel='x-axis (columns)', ylabel='y-axis (rows)', xlim=[-0.55, 0.80], ylim=[-0.55, 0.80], xticks=[-0.75, -0.5, -0.25, 0., 0.25, 0.5, 0.75, 1.], yticks=[-0.75, -0.5, -0.25, 0., 0.25, 0.5, 0.75, 1.]) plt.savefig('../user_manual_figures/layer4b.png', bbox_inches='tight') # -------------------------------------------------- nest.ResetKernel() #{ layer4_3d #} pos = nest.spatial.free(nest.random.uniform(min=-0.5, max=0.5), num_dimensions=3) layer = nest.Create('iaf_psc_alpha', 200, positions=pos) #{ end #} fig = nest.PlotLayer(layer, nodesize=50) plt.savefig('../user_manual_figures/layer4_3d.png', bbox_inches='tight') # -------------------------------------------------- nest.ResetKernel() #{ layer4_3d_b #} pos = nest.spatial.grid(shape=[4, 5, 6]) layer = nest.Create('iaf_psc_alpha', positions=pos) #{ end #} fig = nest.PlotLayer(layer, nodesize=50) plt.savefig('../user_manual_figures/layer4_3d_b.png', bbox_inches='tight') # -------------------------------------------------- nest.ResetKernel() #{ player #} layer = nest.Create('iaf_psc_alpha', positions=nest.spatial.grid( shape=[5, 1], extent=[5., 1.], edge_wrap=True)) #{ end #} # fake plot with layer on line and circle clist = [(0, 0, 1), (0.35, 0, 1), (0.6, 0, 1), (0.8, 0, 1), (1.0, 0, 1)] fig = plt.figure() ax1 = fig.add_subplot(221) ax1.plot([0.5, 5.5], [0, 0], 'k-', lw=2) ax1.scatter(range(1, 6), [0] * 5, s=200, c=clist) ax1.set_xlim([0, 6]) ax1.set_ylim([-0.5, 1.25]) ax1.set_aspect('equal', 'box') ax1.set_xticks([]) ax1.set_yticks([]) for j in range(1, 6): ax1.text(j, 0.5, str('(%d,0)' % (j - 3)), horizontalalignment='center', verticalalignment='bottom') ax1a = fig.add_subplot(223) ax1a.plot([0.5, 5.5], [0, 0], 'k-', lw=2) ax1a.scatter(range(1, 6), [0] * 5, s=200, c=[clist[0], clist[1], clist[2], clist[2], clist[1]]) ax1a.set_xlim([0, 6]) ax1a.set_ylim([-0.5, 1.25]) ax1a.set_aspect('equal', 'box') ax1a.set_xticks([]) ax1a.set_yticks([]) for j in range(1, 6): ax1a.text(j, 0.5, str('(%d,0)' % (j - 3)), horizontalalignment='center', verticalalignment='bottom') ax2 = fig.add_subplot(122) phic = np.arange(0., 2 * np.pi + 0.5, 0.1) r = 5. / (2 * np.pi) ax2.plot(r * np.cos(phic), r * np.sin(phic), 'k-', lw=2) phin = np.arange(0., 4.1, 1.) * 2 * np.pi / 5 ax2.scatter(r * np.sin(phin), r * np.cos(phin), s=200, c=[clist[0], clist[1], clist[2], clist[2], clist[1]]) ax2.set_xlim([-1.3, 1.3]) ax2.set_ylim([-1.2, 1.2]) ax2.set_aspect('equal', 'box') ax2.set_xticks([]) ax2.set_yticks([]) for j in range(5): ax2.text(1.4 * r * np.sin(phin[j]), 1.4 * r * np.cos(phin[j]), str('(%d,0)' % (j + 1 - 3)), horizontalalignment='center', verticalalignment='center') plt.savefig('../user_manual_figures/player.png', bbox_inches='tight') # -------------------------------------------------- nest.ResetKernel() #{ layer6 #} layer1 = nest.Create('iaf_cond_alpha', positions=nest.spatial.grid(shape=[2, 1])) layer2 = nest.Create('poisson_generator', positions=nest.spatial.grid(shape=[2, 1])) #{ end #} print("#{ layer6 #}") nest.PrintNodes() print("#{ end #}") # -------------------------------------------------- nest.ResetKernel() #{ vislayer #} layer = nest.Create('iaf_psc_alpha', positions=nest.spatial.grid(shape=[21, 21])) probability_param = nest.spatial_distributions.gaussian(nest.spatial.distance, std=0.15) conndict = {'rule': 'pairwise_bernoulli', 'p': probability_param, 'mask': {'circular': {'radius': 0.4}}} nest.Connect(layer, layer, conndict) fig = nest.PlotLayer(layer, nodesize=80) ctr = nest.FindCenterElement(layer) nest.PlotTargets(ctr, layer, fig=fig, mask=conndict['mask'], probability_parameter=probability_param, src_size=250, tgt_color='red', tgt_size=20, mask_color='red', probability_cmap='Greens') #{ end #} plt.savefig('../user_manual_figures/vislayer.png', bbox_inches='tight')
gpl-2.0
dotpmrcunha/gnuradio
gr-filter/examples/interpolate.py
58
8816
#!/usr/bin/env python # # Copyright 2009,2012,2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr from gnuradio import blocks from gnuradio import filter import sys, time try: from gnuradio import analog except ImportError: sys.stderr.write("Error: Program requires gr-analog.\n") sys.exit(1) try: import scipy from scipy import fftpack except ImportError: sys.stderr.write("Error: Program requires scipy (see: www.scipy.org).\n") sys.exit(1) try: import pylab from pylab import mlab except ImportError: sys.stderr.write("Error: Program requires matplotlib (see: matplotlib.sourceforge.net).\n") sys.exit(1) class pfb_top_block(gr.top_block): def __init__(self): gr.top_block.__init__(self) self._N = 100000 # number of samples to use self._fs = 2000 # initial sampling rate self._interp = 5 # Interpolation rate for PFB interpolator self._ainterp = 5.5 # Resampling rate for the PFB arbitrary resampler # Frequencies of the signals we construct freq1 = 100 freq2 = 200 # Create a set of taps for the PFB interpolator # This is based on the post-interpolation sample rate self._taps = filter.firdes.low_pass_2(self._interp, self._interp*self._fs, freq2+50, 50, attenuation_dB=120, window=filter.firdes.WIN_BLACKMAN_hARRIS) # Create a set of taps for the PFB arbitrary resampler # The filter size is the number of filters in the filterbank; 32 will give very low side-lobes, # and larger numbers will reduce these even farther # The taps in this filter are based on a sampling rate of the filter size since it acts # internally as an interpolator. flt_size = 32 self._taps2 = filter.firdes.low_pass_2(flt_size, flt_size*self._fs, freq2+50, 150, attenuation_dB=120, window=filter.firdes.WIN_BLACKMAN_hARRIS) # Calculate the number of taps per channel for our own information tpc = scipy.ceil(float(len(self._taps)) / float(self._interp)) print "Number of taps: ", len(self._taps) print "Number of filters: ", self._interp print "Taps per channel: ", tpc # Create a couple of signals at different frequencies self.signal1 = analog.sig_source_c(self._fs, analog.GR_SIN_WAVE, freq1, 0.5) self.signal2 = analog.sig_source_c(self._fs, analog.GR_SIN_WAVE, freq2, 0.5) self.signal = blocks.add_cc() self.head = blocks.head(gr.sizeof_gr_complex, self._N) # Construct the PFB interpolator filter self.pfb = filter.pfb.interpolator_ccf(self._interp, self._taps) # Construct the PFB arbitrary resampler filter self.pfb_ar = filter.pfb.arb_resampler_ccf(self._ainterp, self._taps2, flt_size) self.snk_i = blocks.vector_sink_c() #self.pfb_ar.pfb.print_taps() #self.pfb.pfb.print_taps() # Connect the blocks self.connect(self.signal1, self.head, (self.signal,0)) self.connect(self.signal2, (self.signal,1)) self.connect(self.signal, self.pfb) self.connect(self.signal, self.pfb_ar) self.connect(self.signal, self.snk_i) # Create the sink for the interpolated signals self.snk1 = blocks.vector_sink_c() self.snk2 = blocks.vector_sink_c() self.connect(self.pfb, self.snk1) self.connect(self.pfb_ar, self.snk2) def main(): tb = pfb_top_block() tstart = time.time() tb.run() tend = time.time() print "Run time: %f" % (tend - tstart) if 1: fig1 = pylab.figure(1, figsize=(12,10), facecolor="w") fig2 = pylab.figure(2, figsize=(12,10), facecolor="w") fig3 = pylab.figure(3, figsize=(12,10), facecolor="w") Ns = 10000 Ne = 10000 fftlen = 8192 winfunc = scipy.blackman # Plot input signal fs = tb._fs d = tb.snk_i.data()[Ns:Ns+Ne] sp1_f = fig1.add_subplot(2, 1, 1) X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs, window = lambda d: d*winfunc(fftlen), scale_by_freq=True) X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X))) f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size)) p1_f = sp1_f.plot(f_in, X_in, "b") sp1_f.set_xlim([min(f_in), max(f_in)+1]) sp1_f.set_ylim([-200.0, 50.0]) sp1_f.set_title("Input Signal", weight="bold") sp1_f.set_xlabel("Frequency (Hz)") sp1_f.set_ylabel("Power (dBW)") Ts = 1.0/fs Tmax = len(d)*Ts t_in = scipy.arange(0, Tmax, Ts) x_in = scipy.array(d) sp1_t = fig1.add_subplot(2, 1, 2) p1_t = sp1_t.plot(t_in, x_in.real, "b-o") #p1_t = sp1_t.plot(t_in, x_in.imag, "r-o") sp1_t.set_ylim([-2.5, 2.5]) sp1_t.set_title("Input Signal", weight="bold") sp1_t.set_xlabel("Time (s)") sp1_t.set_ylabel("Amplitude") # Plot output of PFB interpolator fs_int = tb._fs*tb._interp sp2_f = fig2.add_subplot(2, 1, 1) d = tb.snk1.data()[Ns:Ns+(tb._interp*Ne)] X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs, window = lambda d: d*winfunc(fftlen), scale_by_freq=True) X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X))) f_o = scipy.arange(-fs_int/2.0, fs_int/2.0, fs_int/float(X_o.size)) p2_f = sp2_f.plot(f_o, X_o, "b") sp2_f.set_xlim([min(f_o), max(f_o)+1]) sp2_f.set_ylim([-200.0, 50.0]) sp2_f.set_title("Output Signal from PFB Interpolator", weight="bold") sp2_f.set_xlabel("Frequency (Hz)") sp2_f.set_ylabel("Power (dBW)") Ts_int = 1.0/fs_int Tmax = len(d)*Ts_int t_o = scipy.arange(0, Tmax, Ts_int) x_o1 = scipy.array(d) sp2_t = fig2.add_subplot(2, 1, 2) p2_t = sp2_t.plot(t_o, x_o1.real, "b-o") #p2_t = sp2_t.plot(t_o, x_o.imag, "r-o") sp2_t.set_ylim([-2.5, 2.5]) sp2_t.set_title("Output Signal from PFB Interpolator", weight="bold") sp2_t.set_xlabel("Time (s)") sp2_t.set_ylabel("Amplitude") # Plot output of PFB arbitrary resampler fs_aint = tb._fs * tb._ainterp sp3_f = fig3.add_subplot(2, 1, 1) d = tb.snk2.data()[Ns:Ns+(tb._interp*Ne)] X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs, window = lambda d: d*winfunc(fftlen), scale_by_freq=True) X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X))) f_o = scipy.arange(-fs_aint/2.0, fs_aint/2.0, fs_aint/float(X_o.size)) p3_f = sp3_f.plot(f_o, X_o, "b") sp3_f.set_xlim([min(f_o), max(f_o)+1]) sp3_f.set_ylim([-200.0, 50.0]) sp3_f.set_title("Output Signal from PFB Arbitrary Resampler", weight="bold") sp3_f.set_xlabel("Frequency (Hz)") sp3_f.set_ylabel("Power (dBW)") Ts_aint = 1.0/fs_aint Tmax = len(d)*Ts_aint t_o = scipy.arange(0, Tmax, Ts_aint) x_o2 = scipy.array(d) sp3_f = fig3.add_subplot(2, 1, 2) p3_f = sp3_f.plot(t_o, x_o2.real, "b-o") p3_f = sp3_f.plot(t_o, x_o1.real, "m-o") #p3_f = sp3_f.plot(t_o, x_o2.imag, "r-o") sp3_f.set_ylim([-2.5, 2.5]) sp3_f.set_title("Output Signal from PFB Arbitrary Resampler", weight="bold") sp3_f.set_xlabel("Time (s)") sp3_f.set_ylabel("Amplitude") pylab.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
akrherz/iem
htdocs/plotting/auto/scripts/p8.py
1
3318
""" Monthly precip reliability""" import calendar import datetime import psycopg2.extras import numpy as np import pandas as pd from pyiem import network from pyiem.plot.use_agg import plt from pyiem.util import get_autoplot_context, get_dbconn from pyiem.exceptions import NoDataFound def get_description(): """ Return a dict describing how to call this plotter """ desc = dict() y2 = datetime.date.today().year y1 = y2 - 20 desc["arguments"] = [ dict( type="station", name="station", default="IA0200", label="Select Station:", network="IACLIMATE", ), dict(type="year", name="syear", default=y1, label="Enter Start Year:"), dict( type="year", name="eyear", default=y2, label="Enter End Year (inclusive):", ), dict( type="int", name="threshold", default="80", label="Threshold Percentage [%]:", ), ] desc["data"] = True desc[ "description" ] = """This plot presents the frequency of having a month's preciptation at or above some threshold. This threshold is compared against the long term climatology for the site and month. This plot is designed to answer the question about reliability of monthly precipitation for a period of your choice. """ return desc def plotter(fdict): """ Go """ coop = get_dbconn("coop") cursor = coop.cursor(cursor_factory=psycopg2.extras.DictCursor) ctx = get_autoplot_context(fdict, get_description()) station = ctx["station"] syear = ctx["syear"] eyear = ctx["eyear"] threshold = ctx["threshold"] table = "alldata_%s" % (station[:2],) nt = network.Table("%sCLIMATE" % (station[:2],)) cursor.execute( f""" with months as ( select year, month, p, avg(p) OVER (PARTITION by month) from ( select year, month, sum(precip) as p from {table} where station = %s and year < extract(year from now()) GROUP by year, month) as foo) SELECT month, sum(case when p > (avg * %s / 100.0) then 1 else 0 end) from months WHERE year >= %s and year < %s GROUP by month ORDER by month ASC """, (station, threshold, syear, eyear), ) vals = [] years = float(1 + eyear - syear) for row in cursor: vals.append(row[1] / years * 100.0) if not vals: raise NoDataFound("No Data Found!") df = pd.DataFrame( dict(freq=pd.Series(vals, index=range(1, 13))), index=pd.Series(range(1, 13), name="month"), ) (fig, ax) = plt.subplots(1, 1) ax.bar(np.arange(1, 13), vals, align="center") ax.set_xticks(np.arange(1, 13)) ax.set_ylim(0, 100) ax.set_yticks(np.arange(0, 101, 10)) ax.set_xticklabels(calendar.month_abbr[1:]) ax.grid(True) ax.set_xlim(0.5, 12.5) ax.set_ylabel("Percentage of Months, n=%.0f years" % (years,)) ax.set_title( ( "%s [%s] Monthly Precipitation Reliability\n" "Period: %s-%s, %% of Months above %s%% of Long Term Avg" ) % (nt.sts[station]["name"], station, syear, eyear, threshold) ) return fig, df if __name__ == "__main__": plotter(dict())
mit
janhahne/nest-simulator
pynest/examples/spatial/grid_iaf.py
20
1437
# -*- coding: utf-8 -*- # # grid_iaf.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. """ Create a population of iaf_psc_alpha neurons on a 4x3 grid ----------------------------------------------------------- BCCN Tutorial @ CNS*09 Hans Ekkehard Plesser, UMB """ import nest import matplotlib.pyplot as plt nest.ResetKernel() l1 = nest.Create('iaf_psc_alpha', positions=nest.spatial.grid(shape=[4, 3], extent=[2., 1.5])) nest.PrintNodes() nest.PlotLayer(l1, nodesize=50) # beautify plt.axis([-1.0, 1.0, -0.75, 0.75]) plt.axes().set_aspect('equal', 'box') plt.axes().set_xticks((-0.75, -0.25, 0.25, 0.75)) plt.axes().set_yticks((-0.5, 0, 0.5)) plt.grid(True) plt.xlabel('4 Columns, Extent: 1.5') plt.ylabel('2 Rows, Extent: 1.0') plt.show() # plt.savefig('grid_iaf.png')
gpl-2.0
mdjurfeldt/nest-simulator
examples/neuronview/neuronview.py
13
10676
# -*- coding: utf-8 -*- # # neuronview.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. import pygtk pygtk.require('2.0') import gtk # noqa import pango # noqa import gobject # noqa from matplotlib.figure import Figure # noqa from matplotlib.backends.backend_gtkagg import \ FigureCanvasGTKAgg as FigureCanvas # noqa import matplotlib.gridspec as gridspec # noqa import os # noqa import nest # noqa default_neuron = "iaf_psc_alpha" default_stimulator = "dc_generator" class Main(): def __init__(self): self._gladefile = "neuronview.glade" self._builder = gtk.Builder() self._builder.add_from_file(self._gladefile) self._builder.connect_signals(self) self._win = self._builder.get_object("mainwindow") self._win.resize(900, 700) box = self._builder.get_object("box5") self._stimulatordictview = DictView() self._builder.get_object("scrolledwindow2").add( self._stimulatordictview) box = self._builder.get_object("box4") self._neurondictview = DictView() self._builder.get_object("scrolledwindow3").add(self._neurondictview) self.populate_comboboxes() self._figure = Figure(figsize=(5, 4), dpi=100) canvas = FigureCanvas(self._figure) canvas.set_size_request(200, 250) canvas.show() box = self._builder.get_object("box3") bg_style = box.get_style().bg[gtk.STATE_NORMAL] gtk_color = (bg_style.red_float, bg_style.green_float, bg_style.blue_float) self._figure.set_facecolor(gtk_color) box.pack_start(canvas) self._win.show() gtk.main() def update_figure(self, spikes, potentials): if nest.GetKernelStatus("time") != 0.0: self._figure.clear() gs = gridspec.GridSpec(2, 1, height_ratios=[1, 4]) ax0 = self._figure.add_subplot(gs[0]) ax0.plot(spikes[0]["times"], [1] * len(spikes[0]["times"]), ".") ax0.set_yticks([]) ax0.set_xticks([]) ax1 = self._figure.add_subplot(gs[1]) ax1.plot(potentials[0]["times"], potentials[0]["V_m"], "r-") ax1.set_ylabel("$V_m$ (mV)") ax1.set_xlabel("time (s)") # plt.tight_layout() self._figure.canvas.draw() def filter_statusdict(self, params): for key in ["archiver_length", "available", "capacity", "elementsize", "frozen", "global_id", "instantiations", "is_refractory", "local", "model", "element_type", "offset", "origin", "receptor_types", "recordables", "refractory_input", "rmax", "state", "t_spike", "thread", "tlast", "tspike", "type_id", "vp", "ymod"]: if key in params.keys(): params.pop(key) def populate_comboboxes(self): neuronmodels = self._builder.get_object("neuronmodels") neuronmodelsliststore = neuronmodels.get_model() stimulatormodels = self._builder.get_object("stimulatormodels") stimulatormodelsliststore = stimulatormodels.get_model() neuron_it = None stimulator_it = None models = nest.Models("nodes") models = [x for x in models if x not in ["correlation_detector", "sli_neuron", "iaf_psc_alpha_norec", "parrot_neuron", "parrot_neuron_ps"]] for entry in models: try: entrytype = nest.GetDefaults(entry)["element_type"] except: entrytype = "unknown" if entrytype == "neuron": it = neuronmodelsliststore.append([entry]) if entry == default_neuron: neuron_it = it elif entrytype == "stimulator": it = stimulatormodelsliststore.append([entry]) if entry == default_stimulator: stimulator_it = it cell = gtk.CellRendererText() neuronmodels.pack_start(cell, True) neuronmodels.add_attribute(cell, 'text', 0) neuronmodels.set_active_iter(neuron_it) stimulatormodels.pack_start(cell, True) stimulatormodels.add_attribute(cell, 'text', 0) stimulatormodels.set_active_iter(stimulator_it) docviewcombo = self._builder.get_object("docviewcombo") docviewcomboliststore = docviewcombo.get_model() docviewcomboliststore.append(["Stimulating device"]) it = docviewcomboliststore.append(["Neuron"]) docviewcombo.pack_start(cell, True) docviewcombo.add_attribute(cell, 'text', 0) docviewcombo.set_active_iter(it) def get_help_text(self, name): nest.sli_run("statusdict /prgdocdir get") docdir = nest.sli_pop() helptext = "No documentation available" for subdir in ["cc", "sli"]: filename = os.path.join(docdir, "help", subdir, name + ".hlp") if os.path.isfile(filename): helptext = open(filename, 'r').read() return helptext def on_model_selected(self, widget): liststore = widget.get_model() model = liststore.get_value(widget.get_active_iter(), 0) statusdict = nest.GetDefaults(model) self.filter_statusdict(statusdict) if widget == self._builder.get_object("neuronmodels"): self._neurondictview.set_params(statusdict) if widget == self._builder.get_object("stimulatormodels"): self._stimulatordictview.set_params(statusdict) self.on_doc_selected(self._builder.get_object("docviewcombo")) def on_doc_selected(self, widget): liststore = widget.get_model() doc = liststore.get_value(widget.get_active_iter(), 0) docview = self._builder.get_object("docview") docbuffer = gtk.TextBuffer() if doc == "Neuron": combobox = self._builder.get_object("neuronmodels") if doc == "Stimulating device": combobox = self._builder.get_object("stimulatormodels") liststore = combobox.get_model() model = liststore.get_value(combobox.get_active_iter(), 0) docbuffer.set_text(self.get_help_text(model)) docview.set_buffer(docbuffer) docview.modify_font(pango.FontDescription("monospace 10")) def on_simulate_clicked(self, widget): nest.ResetKernel() combobox = self._builder.get_object("stimulatormodels") liststore = combobox.get_model() stimulatormodel = liststore.get_value(combobox.get_active_iter(), 0) params = self._stimulatordictview.get_params() stimulator = nest.Create(stimulatormodel, params=params) combobox = self._builder.get_object("neuronmodels") liststore = combobox.get_model() neuronmodel = liststore.get_value(combobox.get_active_iter(), 0) neuron = nest.Create(neuronmodel, params=self._neurondictview.get_params()) weight = self._builder.get_object("weight").get_value() delay = self._builder.get_object("delay").get_value() nest.Connect(stimulator, neuron, weight, delay) sd = nest.Create("spike_detector", params={"record_to": ["memory"]}) nest.Connect(neuron, sd) vm = nest.Create("voltmeter", params={"record_to": ["memory"], "interval": 0.1}) nest.Connect(vm, neuron) simtime = self._builder.get_object("simtime").get_value() nest.Simulate(simtime) self.update_figure(nest.GetStatus(sd, "events"), nest.GetStatus(vm, "events")) def on_delete_event(self, widget, event): self.on_quit(widget) return True def on_quit(self, project): self._builder.get_object("mainwindow").hide() gtk.main_quit() class DictView(gtk.TreeView): def __init__(self, params=None): gtk.TreeView.__init__(self) if params: self.params = params self.repopulate() renderer = gtk.CellRendererText() column = gtk.TreeViewColumn("Name", renderer, text=1) self.append_column(column) renderer = gtk.CellRendererText() renderer.set_property("mode", gtk.CELL_RENDERER_MODE_EDITABLE) renderer.set_property("editable", True) column = gtk.TreeViewColumn("Value", renderer, text=2) self.append_column(column) self.set_size_request(200, 150) renderer.connect("edited", self.check_value) self.show() def repopulate(self): model = gtk.TreeStore(gobject.TYPE_PYOBJECT, gobject.TYPE_STRING, gobject.TYPE_STRING) for key in sorted(self.params.keys()): pos = model.insert_after(None, None) data = {"key": key, "element_type": type(self.params[key])} model.set_value(pos, 0, data) model.set_value(pos, 1, str(key)) model.set_value(pos, 2, str(self.params[key])) self.set_model(model) def check_value(self, widget, path, new_text): model = self.get_model() data = model[path][0] try: typename = data["element_type"].__name__ new_value = eval("%s('%s')" % (typename, new_text)) if typename == "bool" and new_text.lower() in ["false", "0"]: new_value = False self.params[data["key"]] = new_value model[path][2] = str(new_value) except ValueError: old_value = self.params[data["key"]] model[path][2] = str(old_value) def get_params(self): return self.params def set_params(self, params): self.params = params self.repopulate() if __name__ == "__main__": Main()
gpl-2.0
dmnfarrell/epitopepredict
epitopepredict/utilities.py
2
6016
#!/usr/bin/env python """ Utilities for epitopepredict Created March 2013 Copyright (C) Damien Farrell """ from __future__ import absolute_import, print_function import os, math, csv, string import shutil import numpy as np import pandas as pd from Bio import SeqIO from Bio.SeqRecord import SeqRecord from Bio import PDB home = os.path.expanduser("~") def venndiagram(names, labels, ax=None, colors=('r','g','b'), **kwargs): """Plot a venn diagram""" from matplotlib_venn import venn2,venn3 import pylab as plt f=None if ax==None: f=plt.figure(figsize=(4,4)) ax=f.add_subplot(111) if len(names)==2: n1,n2=names v = venn2([set(n1), set(n2)], set_labels=labels, set_colors=colors, **kwargs) elif len(names)==3: n1,n2,n3=names v = venn3([set(n1), set(n2), set(n3)], set_labels=labels, set_colors=colors, **kwargs) ax.axis('off') #f.patch.set_visible(False) ax.set_axis_off() return f def compress(filename, remove=False): """Compress a file with gzip""" import gzip fin = open(filename, 'rb') fout = gzip.open(filename+'.gz', 'wb') fout.writelines(fin) fout.close() fin.close() if remove == True: os.remove(filename) return def rmse(ar1, ar2): """Mean squared error""" ar1 = np.asarray(ar1) ar2 = np.asarray(ar2) dif = ar1 - ar2 dif *= dif return np.sqrt(dif.sum()/len(ar1)) def add_dicts(a, b): return dict((n, a.get(n, 0)+b.get(n, 0)) for n in set(a)|set(b)) def copyfile(source, dest, newname=None): """Helper method to copy files""" if not os.path.exists(source): #print 'no such file %s' %source return False shutil.copy(source, newname) dest = os.path.join(dest, newname) if os.path.exists(dest): os.remove(dest) shutil.move(newname, dest) return True def copyfiles(path, files): for f in files: src = os.path.join(path, f) print (src) if not os.path.exists(src): return False shutil.copy(src, f) return True def symmetrize(m, lower=True): """Return symmetric array""" m=m.fillna(0) if lower==True: return np.tril(m) + np.triu(m.T) - np.diag(np.diag(m)) else: return np.triu(m) + np.tril(m.T) - np.diag(np.diag(m)) def get_symmetric_data_frame(m): x = symmetrize(m) return pd.DataFrame(x, columns=m.columns,index=m.index) def find_filefrom_string(files, string): for f in files: if string in os.path.splitext(f)[0]: return f return '' def find_files(path, ext='txt'): """List files in a dir of a specific type""" if not os.path.exists(path): print ('no such directory: %s' %path) return [] files=[] for dirname, dirnames, filenames in os.walk(path): for f in filenames: name = os.path.join(dirname, f) if f.endswith(ext): files.append(name) return files def find_folders(path): if not os.path.exists(path): print ('no such directory: %s' %path) return [] dirs = [] for dirname, dirnames, filenames in os.walk(path): dirs.append(dirname) return dirs def reorder_filenames(files, order): """reorder filenames by another list order(seqs)""" new = [] for i in order: found=False for f in files: if i in f: new.append(f) found=True if found==False: new.append('') return new def read_iedb(filename, key='Epitope ID'): """Load iedb peptidic csv file and return dataframe""" #cr = csv.reader(open(filename,'r')) cr = csv.DictReader(open(filename,'r'),quotechar='"') cr.fieldnames = [field.strip() for field in cr.fieldnames] D={} for r in cr: k = r[key] D[k] = r return D def get_sequencefrom_pdb(pdbfile, chain='C', index=0): """Get AA sequence from PDB""" parser = PDB.PDBParser(QUIET=True) struct = parser.get_structure(pdbfile,pdbfile) ppb = PDB.PPBuilder() model = struct[0] peptides = ppb.build_peptides(model[chain]) seq='' for i,pep in enumerate(peptides): seq+=str(pep.get_sequence()) return seq def filter_iedb_file(filename, field, search): """Return filtered iedb data""" X = pd.read_csv(filename) cols = ['PubMed ID','Author','Journal','Year','T Cell ID','MHC Allele Name', 'Epitope Linear Sequence','Epitope Source Organism Name'] y = X[X[field].str.contains(search)] print (y[cols]) y.to_csv('filtered.csv',cols=cols) return y def search_pubmed(term, max_count=100): from Bio import Entrez from Bio import Medline def fetch_details(id_list): ids = ','.join(id_list) Entrez.email = '[email protected]' handle = Entrez.efetch(db='pubmed', retmode='xml', id=ids) results = Entrez.read(handle) return results def search(query): Entrez.email = '[email protected]' handle = Entrez.esearch(db='pubmed', sort='relevance', retmax=max_count, retmode='xml', term=query) results = Entrez.read(handle) return results results = search(term) id_list = results['IdList'] papers = fetch_details(id_list) for i, paper in enumerate(papers): print("%d) %s" % (i+1, paper['MedlineCitation']['Article']['ArticleTitle'])) # Pretty print the first paper in full to observe its structure #import json #print(json.dumps(papers[0], indent=2, separators=(',', ':'))) def test(): sourcefasta = os.path.join(home,'dockingdata/fastafiles/1KLU.fasta') findClosestStructures(sourcefasta) #fetchPDBList('MHCII_homologs.csv') if __name__ == '__main__': test()
apache-2.0
fbagirov/scikit-learn
sklearn/metrics/cluster/tests/test_unsupervised.py
230
2823
import numpy as np from scipy.sparse import csr_matrix from sklearn import datasets from sklearn.metrics.cluster.unsupervised import silhouette_score from sklearn.metrics import pairwise_distances from sklearn.utils.testing import assert_false, assert_almost_equal from sklearn.utils.testing import assert_raises_regexp def test_silhouette(): # Tests the Silhouette Coefficient. dataset = datasets.load_iris() X = dataset.data y = dataset.target D = pairwise_distances(X, metric='euclidean') # Given that the actual labels are used, we can assume that S would be # positive. silhouette = silhouette_score(D, y, metric='precomputed') assert(silhouette > 0) # Test without calculating D silhouette_metric = silhouette_score(X, y, metric='euclidean') assert_almost_equal(silhouette, silhouette_metric) # Test with sampling silhouette = silhouette_score(D, y, metric='precomputed', sample_size=int(X.shape[0] / 2), random_state=0) silhouette_metric = silhouette_score(X, y, metric='euclidean', sample_size=int(X.shape[0] / 2), random_state=0) assert(silhouette > 0) assert(silhouette_metric > 0) assert_almost_equal(silhouette_metric, silhouette) # Test with sparse X X_sparse = csr_matrix(X) D = pairwise_distances(X_sparse, metric='euclidean') silhouette = silhouette_score(D, y, metric='precomputed') assert(silhouette > 0) def test_no_nan(): # Assert Silhouette Coefficient != nan when there is 1 sample in a class. # This tests for the condition that caused issue 960. # Note that there is only one sample in cluster 0. This used to cause the # silhouette_score to return nan (see bug #960). labels = np.array([1, 0, 1, 1, 1]) # The distance matrix doesn't actually matter. D = np.random.RandomState(0).rand(len(labels), len(labels)) silhouette = silhouette_score(D, labels, metric='precomputed') assert_false(np.isnan(silhouette)) def test_correct_labelsize(): # Assert 1 < n_labels < n_samples dataset = datasets.load_iris() X = dataset.data # n_labels = n_samples y = np.arange(X.shape[0]) assert_raises_regexp(ValueError, 'Number of labels is %d\. Valid values are 2 ' 'to n_samples - 1 \(inclusive\)' % len(np.unique(y)), silhouette_score, X, y) # n_labels = 1 y = np.zeros(X.shape[0]) assert_raises_regexp(ValueError, 'Number of labels is %d\. Valid values are 2 ' 'to n_samples - 1 \(inclusive\)' % len(np.unique(y)), silhouette_score, X, y)
bsd-3-clause
hvanwyk/drifter
src/grid/mesh.py
1
15658
from grid.cell import Cell from grid.vertex import Vertex from grid.triangle import Triangle import numpy import matplotlib.pyplot as plt class Mesh(object): ''' Description: (Quad) Mesh object Attributes: bounding_box: [xmin, xmax, ymin, ymax] children: Cell, list of cells contained in mesh vertex_list: Vertex, list of vertices (run number_vertices) connectivity: int, numpy array - element connectivity matrix (run build_connectivity) max_depth: int, maximum number of times each of the mesh's cell can be refined balanced: bool, true if mesh is balanced. Methods: ''' def __init__(self, box=[0.,1.,0.,1.], nx=2, ny=2): ''' Description: Constructor, initialize rectangular grid Inputs: box: double, boundary vertices of rectangular grid, box = [x_min, x_max, y_min, y_max] nx: int, number of cells in x-direction ny: int, number of cells in y-direction type: 'MESH' ''' self.bounding_box = box self.type = 'MESH' self.children_array_size = (nx,ny) # # Define cells in mesh # xmin, xmax, ymin, ymax = box x = numpy.linspace(xmin, xmax, nx+1) y = numpy.linspace(ymin, ymax, ny+1) mesh_cells = {} for i in range(nx): for j in range(ny): if i == 0 and j == 0: v_sw = Vertex((x[i] ,y[j] )) v_se = Vertex((x[i+1],y[j] )) v_ne = Vertex((x[i+1],y[j+1])) v_nw = Vertex((x[i] ,y[j+1])) elif i > 0 and j == 0: v_se = Vertex((x[i+1],y[j] )) v_ne = Vertex((x[i+1],y[j+1])) v_sw = mesh_cells[i-1,j].vertices['SE'] v_nw = mesh_cells[i-1,j].vertices['NE'] elif i == 0 and j > 0: v_ne = Vertex((x[i+1],y[j+1])) v_nw = Vertex((x[i] ,y[j+1])) v_sw = mesh_cells[i,j-1].vertices['NW'] v_se = mesh_cells[i,j-1].vertices['NE'] elif i > 0 and j > 0: v_ne = Vertex((x[i+1],y[j+1])) v_nw = mesh_cells[i-1,j].vertices['NE'] v_sw = mesh_cells[i,j-1].vertices['NW'] v_se = mesh_cells[i,j-1].vertices['NE'] cell_vertices = {'SW': v_sw, 'SE': v_se, 'NE': v_ne, 'NW': v_nw} cell_address = [i,j] mesh_cells[i,j] = Cell(cell_vertices, self, cell_address) self.children = mesh_cells self.vertex_list = [] self.connectivity = None self.max_depth = 0 self.__num_vertices = 0 self.__num_cells = 0 self.__balanced = False self.__triangles = [] def leaves(self): """ Description: Returns a list of all leaf sub-cells of the mesh Input: group: string, optional sorting criterium (None, or 'depth') Output: leaves: list of LEAF cells """ # # All leaves go in a long list # leaves = [] for child in self.children.itervalues(): leaves.extend(child.find_leaves()) self.__num_cells = len(leaves) return leaves def triangles(self): """ Returns a list of triangles """ if len(self.__triangles) == 0: # # Mesh has not been triangulated yet # self.triangulate() return self.__triangles else: # # Mesh triangulated # return self.__triangles def vertices(self): """ Returns a list of vertices. POSSIBLE BUG: if vertex has been marked outside of this function, it will not show up in the list. """ n_vertices = -1 vertices = [] for leaf in self.leaves(): for v in leaf.vertices.itervalues(): if not v.is_marked(): n_vertices += 1 vertices.append(v) v.set_node_number(n_vertices) # # Mark vertices in the list # v.mark() self.__num_vertices = n_vertices # # Unmark all vertices again # for v in vertices: v.unmark() def cells_at_depth(self, depth): """ Return all cells at a given depth > 0 """ cells = [] for child in self.children.itervalues(): cells.extend(child.cells_at_depth(depth)) return cells def has_children(self): """ Determine whether the mesh has children """ return any(child != None for child in self.children.itervalues()) def get_max_depth(self): """ Determine the maximum depth of the mesh """ def unmark_all(self): """ Unmark all cells in mesh """ if self.has_children(): for child in self.children.itervalues(): child.unmark_all() def refine(self): """ Refine mesh by splitting marked cells. """ leaves = self.leaves() for leaf in leaves: if leaf.flag: leaf.split() leaf.unmark() self.__balanced = False def coarsen(self): """ Coarsen mesh by collapsing marked cells """ leaves = self.leaves() for leaf in leaves: parent = leaf.parent if parent.flag: parent.children.clear() self.remove_supports() self.__balanced = False def balance_tree(self): """ Ensure the 2:1 rule holds """ leaves = self.leaves() leaf_dict = {'N': ['SE', 'SW'], 'S': ['NE', 'NW'], 'E': ['NW', 'SW'], 'W': ['NE', 'SE']} while len(leaves) > 0: leaf = leaves.pop() flag = False # # Check if leaf needs to be split # for direction in ['N', 'S', 'E', 'W']: nb = leaf.find_neighbor(direction) if nb == None: pass elif nb.type == 'LEAF': pass else: for pos in leaf_dict[direction]: # # If neighor's children nearest to you aren't LEAVES, # then split and add children to list of leaves! # if nb.children[pos].type != 'LEAF': leaf.mark() leaf.split() for child in leaf.children.itervalues(): child.mark_support_cell() leaves.append(child) # # Check if there are any neighbors that should # now also be split. # for direction in ['N', 'S', 'E', 'W']: nb = leaf.find_neighbor(direction) if nb != None and nb.depth < leaf.depth: leaves.append(nb) flag = True break if flag: break self.__balanced = True def remove_supports(self): """ Remove the supporting cells """ leaves = self.leaves() while len(leaves) > 0: leaf = leaves.pop() if leaf.support_cell: # # Check whether its safe to delete the support cell # safe_to_coarsen = True for direction in ['N', 'S', 'E', 'W']: nb = leaf.find_neighbor(direction) if nb.has_children(): safe_to_coarsen = False break if safe_to_coarsen: parent = leaf.parent for child in parent.children.itervalues(): # # Delete cells individually # del child parent.children.clear() leaves.append(parent) self.__balanced = False def triangulate(self): """ Generate triangulation of mesh: balance if necessary populate cells with triangles generate connectivity matrix. #TODO: unfinished """ triangles = [] if not self.__balanced: # # Balance mesh first # self.balance_tree() for leaf in self.leaves(): v = leaf.vertices # # Determine whether Steiner Point is necessary # if any([v.has_key(direction) for direction in ['N','S','E','W']]): # # Add Steiner vertex # x0, x1, y0, y1 = leaf.box() vm = Vertex((0.5*(x0 + x1), 0.5*(y0 + y1))) leaf.vertices['M'] = vm sub_edge_dict = {'S': ['SW','S','SE'], \ 'E': ['NE','E','SE'], \ 'N': ['NE','N','NW'], \ 'W': ['NW','W','SW']} for direction in ['S','E','N','W']: se = sub_edge_dict[direction] if v.has_key(direction): # # Midpoint on this edge # tri = [Triangle([v[se[0]],v[se[1]],vm],parent_cell=leaf), Triangle([v[se[1]],v[se[2]],vm],parent_cell=leaf)] else: # # No midpoint # tri = [Triangle([v[se[0]],v[se[2]],vm],parent_cell=leaf)] triangles.extend(tri) else: # # No Steiner vertex - simple triangulation # tri = [Triangle([v['SW'],v['SE'],v['NE']], parent_cell=leaf), \ Triangle([v['NE'],v['NW'],v['SW']], parent_cell=leaf)] triangles.extend(tri) self.__triangles = triangles def build_connectivity(self): """ Returns the connectivity matrix for the tree """ # TODO: FIX build_connectivity econn = [] num_vertices = len(self.vertex_list) # # Balance tree first # #self.balance_tree() for leaf in self.leaves(): add_steiner_pt = False # # Get global indices for each corner vertex # gi = {} for pos in ['NW', 'SW', 'NE', 'SE']: gi[pos] = leaf.vertices[pos].node_number edges = {'S': [[gi['SW'], gi['SE']]], 'N': [[gi['NE'], gi['NW']]], 'W': [[gi['NW'], gi['SW']]], 'E': [[gi['SE'], gi['NE']]] } opposite_direction = {'N': 'S', 'S': 'N', 'W': 'E', 'E': 'W'} for direction in ['S', 'N', 'E', 'W']: neighbor = leaf.find_neighbor(direction) if neighbor != None and neighbor.type != 'LEAF': # If neighbor has children, then add the midpoint to # your list of vertices, update the list of edges and # remember to add the Steiner point later on. # od = opposite_direction[direction] leaf.vertices[direction] = neighbor.vertices[od] gi[direction] = leaf.vertices[direction].node_number add_steiner_pt = True edges[direction] = [[edges[direction][0][0], gi[direction]], [gi[direction], edges[direction][0][1]]] # # Add the Triangles to connectivity # if not add_steiner_pt: # # Simple Triangulation # econn.extend([[gi['SW'], gi['SE'], gi['NE']], [gi['NE'], gi['NW'], gi['SW']]] ) elif not leaf.vertices.has_key('M') or leaf.vertices['M'] == None: # # Add Steiner Vertex # x0, x1, y0, y1 = leaf.box() vm = Vertex((0.5*(x0 + x1), 0.5*(y0 + y1)), node_number=num_vertices) leaf.vertices['M'] = vm gi['M'] = vm.node_number self.vertex_list.append(vm) num_vertices += 1 for direction in ['N', 'S', 'E', 'W']: for sub_edge in edges[direction]: econn.append([sub_edge[0], sub_edge[1], gi['M']]) return econn def plot_quadmesh(self, ax, name=None, show=True, set_axis=True): ''' Plot the current quadmesh ''' if self.has_children(): if set_axis: x0, x1, y0, y1 = self.bounding_box hx = x1 - x0 hy = y1 - y0 ax.set_xlim(x0-0.1*hx, x1+0.1*hx) ax.set_ylim(y0-0.1*hy, y1+0.1*hy) for child in self.children.itervalues(): ax = child.plot(ax, set_axis=False) else: x0, y0 = self.vertices['SW'].coordinate x1, y1 = self.vertices['NE'].coordinate # Plot current cell plt.plot([x0, x0, x1, x1],[y0, y1, y0, y1],'r.') points = [[x0, y0], [x1, y0], [x1, y1], [x0, y1]] if self.flag: rect = plt.Polygon(points, fc='r', edgecolor='k') else: rect = plt.Polygon(points, fc='w', edgecolor='k') ax.add_patch(rect) return ax def plot_trimesh(self, ax): """ Plot triangular mesh """ e_conn = self.build_connectivity() for element in e_conn: points = [] for node_num in element: x, y = self.vertex_list[node_num].coordinate points.append([x,y]) triangle = plt.Polygon(points, fc='w', ec='k') ax.add_patch(triangle)
mit
rubenlorenzo/fab-city-dashboard
app/views.py
1
1785
# -*- encoding: utf-8 -*- from app import app from flask import Flask, render_template, jsonify import pandas as pd import makerlabs.fablabs_io as fio from werkzeug.routing import Rule # import global variables for Z2N from .scripts.app_vars import title, metas, description, subtitle, version, authors, license, static_dir, URLroot_, fabcities # gather global names global_names = { 'titleApp': title, # name/brand of the app 'subtitleApp': subtitle, # explanation of what the app does 'metas': metas, # meta for referencing 'description': description, # description of the app 'version': version, # explanation of what the app does 'authors': authors, # authors in metas 'license': license } @app.route('/') @app.route('/index') def index(): print '-' * 10, 'VIEW INDEX', '-' * 50 return render_template( "index.html", index=True, glob=global_names, ) # Tests by massimo @app.route("/api/cities") def fabicites_list(): return jsonify(fabcities) @app.route("/api/labs") def labs_map(): labs_geojson = fio.get_labs(format="geojson") return labs_geojson @app.route("/oecd/regional-data") def regional_data(): regional_data = pd.read_csv( app.static_folder + "/data_custom/json_stats/OECD/regional.csv", encoding="utf-8") # return regional_data.to_html() return regional_data.to_json(orient='records') @app.route("/oecd/national-data") def national_data(): national_data = pd.read_csv( app.static_folder + "/data_custom/json_stats/OECD/national.csv", encoding="utf-8") # return national_data.to_html() return national_data.to_json(orient='records') @app.route('/viz_format') def info(): return render_template('modules/mod_viz.html')
agpl-3.0
stevenjoelbrey/PMFutures
Python/average6HourlyData.py
1
14668
#!/usr/bin/env python2 ############################################################################### # ------------------------- Description --------------------------------------- ############################################################################### # This script will be used to generate daily met fields from hourly nc files. # The 6-houly data to average live in /barnes-scratch/sbrey/era_interim_nc_6_hourly # Follows ---------------------------------------- # - get_ERA_Interim_data.py # Precedes # - merge_yearly_nc.py # TODO: Handle fg10 (wind gust) daily value creation. ############################################################################### # ---------------------- Set analysis variables-------------------------------- ############################################################################### import sys import cesm_nc_manager as cnm print 'Number of arguments:', len(sys.argv), 'arguments.' print 'Argument List:', str(sys.argv) if len(sys.argv) != 1: print 'Using arguments passed via command line.' hourlyVAR = str(sys.argv[1]) # e.g. 'z' startYear = int(sys.argv[2]) endYear = int(sys.argv[3]) else: # Development environment. Set variables by manually here. hourlyVAR = 'fg10' startYear = 1992 endYear = 2016 drive = cnm.getDrive() dataDir = drive + "era_interim_nc_6_hourly" outputDir = drive + "era_interim_nc_daily" print '----------------------------------------------------------------------' print 'Working on variable: ' + hourlyVAR + ' for years: ' + str(startYear) +\ '-'+ str(endYear) print '----------------------------------------------------------------------' # Import the required modules import os import numpy as np from mpl_toolkits.basemap import Basemap, cm from netCDF4 import Dataset import matplotlib.pyplot as plt import numpy.ma as ma from datetime import date from datetime import timedelta import matplotlib.ticker as tkr import datetime import time as timer import os.path # Start the timer on this code timeStart = timer.time() # Loop over the selected years if startYear == 'all': years = ['all'] else: years = np.arange(startYear, endYear+1) ii = 0 # for counting total iterations for year in years: year = str(year) print '---------------------------------------------------------------------' print 'Working on : ' + year print '---------------------------------------------------------------------' # Load 6-hourly data HourlyFile = os.path.join(dataDir, hourlyVAR + "_" + year + ".nc") print HourlyFile nc = Dataset(HourlyFile, 'r') VAR = nc.variables[hourlyVAR] time = nc.variables['time'] time_hour = np.array(time[:], dtype=int) lon = nc.variables['longitude'] lat = nc.variables['latitude'] # Some variables live on (t, level, lat, lon) grids, others (t, lat, lon) # Find out which one using dimension keys # e.g. [u'longitude', u'latitude', u'time'] for 'sp' # [u'longitude', u'latitude', u'level', u'time'] for 'z' dims = nc.dimensions.keys() if len(dims) == 4: level = nc.variables['level'] ####################################################################### # Handle date from hourly time dimensions ####################################################################### if time.units == 'hours since 1900-01-01 00:00:0.0': # For time datetime array t0 = datetime.datetime(year=1900, month=1, day=1,\ hour=0, minute=0, second=0) # For simply getting dates date0 = date(year=1900, month=1, day=1) else: raise ValueError('Unknown time origin! Code will not work.') # Create arrays to store datetime objects t = [] dates = [] yearList = [] monthList = [] hourList = [] for i in range(len(time_hour)): dt = timedelta(hours=time_hour[i]) date_new = date0 + dt t_new = t0 + dt year_new = t_new.year t.append(t_new) dates.append(date_new) yearList.append(year_new) monthList.append(t_new.month) hourList.append(t_new.hour) t = np.array(t) dates = np.array(dates) dateYears = np.array(yearList) dateMonths = np.array(monthList) dateHours = np.array(hourList) # NOTE: Accumulation parameters (total precip (tp) and e) represent # NOTE: accumulated values from intitialization time. For these data those # NOTE: times are 00:00:00 and 12:00:00. I downloaded the data in 12 hour steps. # NOTE: So for these parameters, each time in the data represents a total for the # NOTE: previous 12 hours. This is why time series start at 12:00:00 for # NOTE: these fields and 00:00:00 for analysis fields. # NOTE: For maximum in time period quantity, e.g. wind gust (fg10), the time step # NOTE: is three hourly and starts at 03:00:00. The units of wind gusts are # NOTE: "10 meter wind gusts since previous post processing". # Get all values numpy array into workspace print '---------------------------------------------------' print 'Loading the large variable array into the workspace' print '---------------------------------------------------' VAR_array = VAR[:] print 'Working on the large loop averaging 6-hourly values for each day' if (hourlyVAR != 'tp') & (hourlyVAR != 'e') & (hourlyVAR != 'fg10'): # these are the analysis variables that always require averages for a # given calendar date. print '---------------------------------------------------------------------' print 'Working with an analysis parameter whos first hour is 0. ' print '---------------------------------------------------------------------' if dateHours[0] != 0: raise ValueError('The first hour of analysis field was not 0Z.') # Create structure to save daily data and do the averaging unique_dates = np.unique(dates) nDays = len(unique_dates) # might have to do a - 1 here now. Or search for feb 29th and set length based on that. nLon = len(lon) nLat = len(lat) # Create array to store daily averaged data, based on dimensions if len(dims) == 4: nLevel= len(level) dailyVAR = np.zeros((nDays, nLevel, nLat, nLon)) else: dailyVAR = np.zeros((nDays, nLat, nLon)) for i in range(nDays): # find unique day to work on indexMask = np.where(dates == unique_dates[i])[0] if len(dims) == 4: VAR_array_subset = VAR_array[indexMask, :, :, :] day_time_mean = np.mean(VAR_array_subset, 0) dailyVAR[i, :, : , :] = day_time_mean else: # Non-precip variables of this size need an average. These are analysis variables VAR_array_subset = VAR_array[indexMask, :, :] day_time_mean = np.mean(VAR_array_subset, 0) dailyVAR[i, :, : ] = day_time_mean elif (hourlyVAR == 'fg10'): print "Handling precip. Going to follow ecmwf guidelines for getting daily max value. " # Create structure to save daily data and do the max value finding unique_dates = np.unique(dates) nDays = len(unique_dates) - 1 # last day (3 hour chunk) goes into next year. Discard that data nLon = len(lon) nLat = len(lat) dailyVAR = np.zeros((nDays, nLat, nLon)) for i in range(nDays): indexMask = np.where(dates == unique_dates[i])[0] VAR_array_subset = VAR_array[indexMask, :, :] # find 0:6 index of maximum value in each lat lon coordinate position array dailyMaxValArray = np.amax(VAR_array_subset, axis=0) # TODO: ensure that this is the max value for each coord! dailyVAR[i,:,:] = dailyMaxValArray elif (dateHours[0] == 12) & (dateHours[-1]) == 0 & (dateYears[-1] > int(year)): print '---------------------------------------------------------------------' print 'Working with an accumulation parameter with start time hour == 12. ' print '---------------------------------------------------------------------' # These strange time conditions are all true when we are working with # tp and e accumulation forecast fields. # Precip units of m per 12 hour window. Requires a sum NOT an average. # Need matching dates noon and next dates midnight to get a days total. # e.g. total precip for Jan 1 is sum of tp at 01-01-year 12:00:00 AND # 01-02-year 00:00:00. # the last date in the time array will be the next year, since midnight or # 0Z. # In order for the code to work for these variables the same as the # analysis fields, we are going to subtract 12 hours from each time # element. t = t - timedelta(hours=12) nTime = len(t) if nTime % 2 != 0: raise ValueError("There is something wrong. Somehow there is a date without two 23 hour chuncks. ") nDays = len(t)/2 nLon = len(lon) nLat = len(lat) # To make a mask of unique dates, we need to make timetime.datetime objects # a more simple datetime.date object. dates = [] for i in range(nDays*2): dates.append(t[i].date()) dates = np.array(dates) unique_dates = np.unique(dates) # Now that these strange time contrains have been met, we know we can # sum the values of every other. Create an array to store daily data in. dailyVAR = np.zeros((nDays, nLat, nLon)) for j in range(nDays): # The hours that match our date. indexMask = np.where(dates == unique_dates[j])[0] if (dateHours[indexMask[0]] == 12) & (dateHours[indexMask[1]] == 0): # Subset the dataframe to include the two twelve hour slices we # want. timeSlice = VAR[indexMask, :, :] # This statement makes sure we are really getting a time slice with # a dimension of 2, e.g. 2 12 hour segments. if timeSlice.shape[0] == 2: dailySum = np.sum(timeSlice, axis=0) dailyVAR[j,:,:] = dailySum else: raise ValueError("The time size was not two deep in time dim.") # if the sum of the dailyVAR array for this date is still zero, # no data was assigned. if np.sum(dailyVAR[j, :,:]) == 0: raise ValueError("No data was assigned to day index j = " + str(j)) meansCompleteTime = timer.time() dt = (meansCompleteTime - timeStart) / 60. print '---------------------------------------------------------------------' print 'It took ' + str(dt) + ' minutes to create daily averages.' print '---------------------------------------------------------------------' # Check to see if the total amount of precip was conserved. if hourlyVAR == 'tp': originalSum = np.sum(VAR, axis=0) dailySum = np.sum(dailyVAR, axis=0) dtp = np.abs(originalSum - dailySum) # ideally dtp is all zero. With float rounding issues it could be slightly # different. This matrix needs to be examined. maxDiff = np.max(dtp) print '------------------------------------------------------------------' print 'Maximum annual difference in rainfall is: ' + str(maxDiff) print '------------------------------------------------------------------' if maxDiff > 1e-10: raise ValueError("Total rainfall depth in meters not conserved within tolerance") #print 'The min value of dailyVAR is: ' + str(np.min(dailyVAR)) #print 'The max value of dailyVAR is: ' + str(np.max(dailyVAR)) ############################################################################### # Write the new netcdf data with the exact same formatting as the # data read here. # Create the Save name and make sure that this file does not exist ############################################################################### outputFile = os.path.join(outputDir, hourlyVAR + "_" + year + ".nc") # See if the file already exists # os.path.isfile(outPutSavename): print '----------------------------------------------------------------------' print 'outputFile used:' print outputFile print '----------------------------------------------------------------------' ############################################################################### # Write the daily averaged netCDF data ############################################################################### ncFile = Dataset(outputFile, 'w', format='NETCDF4') ncFile.description = 'Daily average of 6 hourly data' ncFile.location = 'Global' ncFile.createDimension('time', nDays ) ncFile.createDimension('latitude', nLat ) ncFile.createDimension('longitude', nLon ) # Create variables on the dimension they live on if len(dims) == 4: ncFile.createDimension('level', nLevel ) dailyVAR_ = ncFile.createVariable(hourlyVAR,'f4', ('time','level','latitude','longitude')) # While here create the level dimesion level_ = ncFile.createVariable('level', 'i4', ('level',)) level_.units = level.units else: dailyVAR_ = ncFile.createVariable(hourlyVAR, 'f4',('time','latitude','longitude')) # Assign the same units as the loaded file to the main variable dailyVAR_.units = VAR.units # Create time variable time_ = ncFile.createVariable('time', 'i4', ('time',)) time_.units = time.units time_.calendar = time.calendar # create lat variable latitude_ = ncFile.createVariable('latitude', 'f4', ('latitude',)) latitude_.units = lat.units # create longitude variable longitude_ = ncFile.createVariable('longitude', 'f4', ('longitude',)) longitude_.units = lon.units # Write the actual data to these dimensions dailyVAR_[:] = dailyVAR latitude_[:] = lat[:] longitude_[:] = lon[:] if len(dims) == 4: level_[:] = level[:] # NOTE: In general, every 4th element, starting at 0th, since there # NOTE: are 4 analysis snapshots space by 6 hours for any given date. # NOTE: However, tp (total precip) only has two chunks of 12 hourly data per # NOTE: day so this needs to be handled seperately. Because tp and e fields # NOTE: time were adjusted by minus 12 hours, all daily mean or sum fields # NOTE: have a time stamp of the 0Z for the date of the data. # NOTE: fg divides days into 3 hour analysis periods and they start at 03:00:00Z # NOTE: for a given date. I save the largest wind gust of those 8 3 hour analysis # NOTE: periods. So I need to subtract 3 from time for fg in order to get date # NOTE: for a day to be saved as a consistent 00:00:00Z time for a given date. if (hourlyVAR == 'tp') | (hourlyVAR == 'e'): time = time[:] - 12 elif (hourlyVAR == 'fg10'): time = time[:] - 3 tstep = len(time) / nDays time_[:] = time[0::tstep] # The difference in each time_[:] element in hours must be 24 or # this is not working. if np.unique(np.diff(time_[:])) != 24: ValueError('Difference in hours between days not all 24! Broken.') # The data is written, close the ncFile and move on to the next year! ncFile.close() dt = (timer.time() - timeStart) / 60. print '----------------------------------------------------------------------' print 'It took ' + str(dt) + ' minutes to run entire script.' print '----------------------------------------------------------------------'
mit
dmargala/qusp
examples/analysis_prep.py
1
5041
#!/usr/bin/env python import argparse import numpy as np import numpy.ma as ma import h5py import qusp import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt # def sum_chunk(x, chunk_size, axis=-1): # shape = x.shape # if axis < 0: # axis += x.ndim # shape = shape[:axis] + (-1, chunk_size) + shape[axis+1:] # x = x.reshape(shape) # return x.sum(axis=axis+1) def combine_pixels(loglam, flux, ivar, num_combine, trim_front=True): """ Combines neighboring pixels of inner most axis using an ivar weighted average """ shape = flux.shape num_pixels = flux.shape[-1] assert len(loglam) == num_pixels ndim = flux.ndim new_shape = shape[:ndim-1] + (-1, num_combine) num_leftover = num_pixels % num_combine s = slice(num_leftover,None) if trim_front else slice(0,-num_leftover) flux = flux[...,s].reshape(new_shape) ivar = ivar[...,s].reshape(new_shape) loglam = loglam[s].reshape(-1, num_combine) flux, ivar = ma.average(flux, weights=ivar, axis=ndim, returned=True) loglam = ma.average(loglam, axis=1) return loglam, flux, ivar def main(): # parse command-line arguments parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) ## targets to fit parser.add_argument("-i", "--input", type=str, default=None, help="target list") parser.add_argument("-o", "--output", type=str, default=None, help="output file name") parser.add_argument("--num-combine", type=int, default=3, help="number of pixels to combine") parser.add_argument("--wave-min", type=float, default=3600, help="minimum observed wavelength") args = parser.parse_args() # import data skim = h5py.File(args.input, 'r') skim_norm = skim['norm'][:][:,np.newaxis] assert not np.any(skim_norm <= 0) skim_flux = np.ma.MaskedArray(skim['flux'][:], mask=skim['mask'][:])/skim_norm skim_ivar = np.ma.MaskedArray(skim['ivar'][:], mask=skim['mask'][:])*skim_norm*skim_norm skim_loglam = skim['loglam'][:] skim_wave = np.power(10.0, skim_loglam) good_waves = skim_wave > args.wave_min print 'Combining input pixels...' loglam, flux, ivar = combine_pixels(skim_loglam[good_waves], skim_flux[:,good_waves], skim_ivar[:,good_waves], args.num_combine) wave = np.power(10.0, loglam) outfile = h5py.File(args.output+'.hdf5', 'w') # save pixel flux, ivar, and mask outfile.create_dataset('flux', data=flux.data, compression="gzip") outfile.create_dataset('ivar', data=ivar.data, compression="gzip") outfile.create_dataset('mask', data=ivar.mask, compression="gzip") # save uniform wavelength grid outfile.create_dataset('loglam', data=loglam, compression="gzip") # save redshifts from input target list outfile.copy(skim['z'], 'z') # save additional quantities outfile.copy(skim['norm'], 'norm') # save meta data outfile.copy(skim['meta'], 'meta') # copy attrs for attr_key in skim.attrs: outfile.attrs[attr_key] = skim.attrs[attr_key] outfile.attrs['coeff0'] = loglam[0] outfile.attrs['coeff1'] = args.num_combine*1e-4 outfile.attrs['max_fid_index'] = len(loglam) outfile.attrs['wave_min'] = args.wave_min outfile.close() # verify combined pixels print 'Computing mean and variance of input pixels...' skim_flux_mean = np.ma.average(skim_flux, axis=0, weights=skim_ivar) skim_flux_var = np.ma.average((skim_flux-skim_flux_mean)**2, axis=0, weights=skim_ivar) print 'Computing mean and variance of combined pixels...' flux_mean = np.ma.average(flux, axis=0, weights=ivar) flux_var = np.ma.average((flux-flux_mean)**2, axis=0, weights=ivar) print 'Making comparison plots...' plt.figure(figsize=(12,9)) plt.plot(skim_wave, skim_flux_mean, label='Pipeline pixels') plt.plot(wave, flux_mean, label='Analysis pixels') plt.ylim(0.5, 1.5) plt.ylabel(r'Normalized Flux Mean (arb. units)') plt.xlabel(r'Observed Wavelength ($\AA$)') plt.legend() plt.grid() plt.savefig(args.output+'-flux-mean.png', dpi=100, bbox_inches='tight') plt.close() plt.figure(figsize=(12,9)) plt.plot(skim_wave, skim_flux_var, label='Pipeline pixels') plt.plot(wave, flux_var, label='Analysis pixels') plt.ylim(0, 0.45) plt.ylabel('Normalized Flux Variance (arb. units)') plt.xlabel(r'Observed Wavelength ($\AA$)') plt.legend() plt.grid() plt.savefig(args.output+'-flux-var.png', dpi=100, bbox_inches='tight') plt.close() plt.figure(figsize=(12,9)) plt.plot(skim_wave, np.sum(skim_ivar, axis=0), label='Pipeline pixels') plt.plot(wave, np.sum(ivar, axis=0), label='Analysis pixels') plt.ylabel('Inv. Var. Total (arb. units)') plt.xlabel(r'Observed Wavelength ($\AA$)') plt.legend() plt.grid() plt.savefig(args.output+'-ivar-total.png', dpi=100, bbox_inches='tight') plt.close() if __name__ == '__main__': main()
mit
ky822/nyu_ml_lectures
notebooks/figures/plot_digits_datasets.py
19
2750
# Taken from example in scikit-learn examples # Authors: Fabian Pedregosa <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Gael Varoquaux # License: BSD 3 clause (C) INRIA 2011 import numpy as np import matplotlib.pyplot as plt from matplotlib import offsetbox from sklearn import (manifold, datasets, decomposition, ensemble, lda, random_projection) def digits_plot(): digits = datasets.load_digits(n_class=6) n_digits = 500 X = digits.data[:n_digits] y = digits.target[:n_digits] n_samples, n_features = X.shape n_neighbors = 30 def plot_embedding(X, title=None): x_min, x_max = np.min(X, 0), np.max(X, 0) X = (X - x_min) / (x_max - x_min) plt.figure() ax = plt.subplot(111) for i in range(X.shape[0]): plt.text(X[i, 0], X[i, 1], str(digits.target[i]), color=plt.cm.Set1(y[i] / 10.), fontdict={'weight': 'bold', 'size': 9}) if hasattr(offsetbox, 'AnnotationBbox'): # only print thumbnails with matplotlib > 1.0 shown_images = np.array([[1., 1.]]) # just something big for i in range(X.shape[0]): dist = np.sum((X[i] - shown_images) ** 2, 1) if np.min(dist) < 1e5: # don't show points that are too close # set a high threshold to basically turn this off continue shown_images = np.r_[shown_images, [X[i]]] imagebox = offsetbox.AnnotationBbox( offsetbox.OffsetImage(digits.images[i], cmap=plt.cm.gray_r), X[i]) ax.add_artist(imagebox) plt.xticks([]), plt.yticks([]) if title is not None: plt.title(title) n_img_per_row = 10 img = np.zeros((10 * n_img_per_row, 10 * n_img_per_row)) for i in range(n_img_per_row): ix = 10 * i + 1 for j in range(n_img_per_row): iy = 10 * j + 1 img[ix:ix + 8, iy:iy + 8] = X[i * n_img_per_row + j].reshape((8, 8)) plt.imshow(img, cmap=plt.cm.binary) plt.xticks([]) plt.yticks([]) plt.title('A selection from the 64-dimensional digits dataset') print("Computing PCA projection") pca = decomposition.PCA(n_components=2).fit(X) X_pca = pca.transform(X) plot_embedding(X_pca, "Principal Components projection of the digits") plt.figure() plt.matshow(pca.components_[0, :].reshape(8, 8), cmap="gray") plt.axis('off') plt.figure() plt.matshow(pca.components_[1, :].reshape(8, 8), cmap="gray") plt.axis('off') plt.show()
cc0-1.0
rhyolight/nupic.research
projects/sequence_prediction/reberGrammar/reberSequence_CompareTMvsLSTM.py
13
2320
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2015, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- import numpy as np import matplotlib.pyplot as plt from matplotlib import rcParams plt.ion() rcParams.update({'figure.autolayout': True}) def plotResult(): resultTM = np.load('result/reberSequenceTM.npz') resultLSTM = np.load('result/reberSequenceLSTM.npz') plt.figure() plt.hold(True) plt.subplot(2,2,1) plt.semilogx(resultTM['trainSeqN'], 100*np.mean(resultTM['correctRateAll'],1),'-*',label='TM') plt.semilogx(resultLSTM['trainSeqN'], 100*np.mean(resultLSTM['correctRateAll'],1),'-s',label='LSTM') plt.legend() plt.xlabel(' Training Sequence Number') plt.ylabel(' Hit Rate (Best Match) (%)') plt.subplot(2,2,4) plt.semilogx(resultTM['trainSeqN'], 100*np.mean(resultTM['missRateAll'],1),'-*',label='TM') plt.semilogx(resultLSTM['trainSeqN'], 100*np.mean(resultLSTM['missRateAll'],1),'-*',label='LSTM') plt.legend() plt.xlabel(' Training Sequence Number') plt.ylabel(' Miss Rate (%)') plt.subplot(2,2,3) plt.semilogx(resultTM['trainSeqN'], 100*np.mean(resultTM['fpRateAll'],1),'-*',label='TM') plt.semilogx(resultLSTM['trainSeqN'], 100*np.mean(resultLSTM['fpRateAll'],1),'-*',label='LSTM') plt.legend() plt.xlabel(' Training Sequence Number') plt.ylabel(' False Positive Rate (%)') plt.savefig('result/ReberSequence_CompareTM&LSTMperformance.pdf') if __name__ == "__main__": plotResult()
gpl-3.0
Intel-Corporation/tensorflow
tensorflow/contrib/factorization/python/ops/gmm_test.py
41
8716
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for ops.gmm.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.factorization.python.ops import gmm as gmm_lib from tensorflow.contrib.learn.python.learn.estimators import kmeans from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import random_seed as random_seed_lib from tensorflow.python.ops import array_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import random_ops from tensorflow.python.platform import test from tensorflow.python.training import queue_runner class GMMTest(test.TestCase): def input_fn(self, batch_size=None, points=None): batch_size = batch_size or self.batch_size points = points if points is not None else self.points num_points = points.shape[0] def _fn(): x = constant_op.constant(points) if batch_size == num_points: return x, None indices = random_ops.random_uniform(constant_op.constant([batch_size]), minval=0, maxval=num_points-1, dtype=dtypes.int32, seed=10) return array_ops.gather(x, indices), None return _fn def setUp(self): np.random.seed(3) random_seed_lib.set_random_seed(2) self.num_centers = 2 self.num_dims = 2 self.num_points = 4000 self.batch_size = self.num_points self.true_centers = self.make_random_centers(self.num_centers, self.num_dims) self.points, self.assignments = self.make_random_points( self.true_centers, self.num_points) # Use initial means from kmeans (just like scikit-learn does). clusterer = kmeans.KMeansClustering(num_clusters=self.num_centers) clusterer.fit(input_fn=lambda: (constant_op.constant(self.points), None), steps=30) self.initial_means = clusterer.clusters() @staticmethod def make_random_centers(num_centers, num_dims): return np.round( np.random.rand(num_centers, num_dims).astype(np.float32) * 500) @staticmethod def make_random_points(centers, num_points): num_centers, num_dims = centers.shape assignments = np.random.choice(num_centers, num_points) offsets = np.round( np.random.randn(num_points, num_dims).astype(np.float32) * 20) points = centers[assignments] + offsets return (points, assignments) def test_weights(self): """Tests the shape of the weights.""" gmm = gmm_lib.GMM(self.num_centers, initial_clusters=self.initial_means, random_seed=4, config=run_config.RunConfig(tf_random_seed=2)) gmm.fit(input_fn=self.input_fn(), steps=0) weights = gmm.weights() self.assertAllEqual(list(weights.shape), [self.num_centers]) def test_clusters(self): """Tests the shape of the clusters.""" gmm = gmm_lib.GMM(self.num_centers, initial_clusters=self.initial_means, random_seed=4, config=run_config.RunConfig(tf_random_seed=2)) gmm.fit(input_fn=self.input_fn(), steps=0) clusters = gmm.clusters() self.assertAllEqual(list(clusters.shape), [self.num_centers, self.num_dims]) def test_fit(self): gmm = gmm_lib.GMM(self.num_centers, initial_clusters='random', random_seed=4, config=run_config.RunConfig(tf_random_seed=2)) gmm.fit(input_fn=self.input_fn(), steps=1) score1 = gmm.score(input_fn=self.input_fn(batch_size=self.num_points), steps=1) gmm.fit(input_fn=self.input_fn(), steps=10) score2 = gmm.score(input_fn=self.input_fn(batch_size=self.num_points), steps=1) self.assertLess(score1, score2) def test_infer(self): gmm = gmm_lib.GMM(self.num_centers, initial_clusters=self.initial_means, random_seed=4, config=run_config.RunConfig(tf_random_seed=2)) gmm.fit(input_fn=self.input_fn(), steps=60) clusters = gmm.clusters() # Make a small test set num_points = 40 points, true_assignments = self.make_random_points(clusters, num_points) assignments = [] for item in gmm.predict_assignments( input_fn=self.input_fn(points=points, batch_size=num_points)): assignments.append(item) assignments = np.ravel(assignments) self.assertAllEqual(true_assignments, assignments) def _compare_with_sklearn(self, cov_type): # sklearn version. iterations = 40 np.random.seed(5) sklearn_assignments = np.asarray([0, 0, 1, 0, 0, 0, 1, 0, 0, 1]) sklearn_means = np.asarray([[144.83417719, 254.20130341], [274.38754816, 353.16074346]]) sklearn_covs = np.asarray([[[395.0081194, -4.50389512], [-4.50389512, 408.27543989]], [[385.17484203, -31.27834935], [-31.27834935, 391.74249925]]]) # skflow version. gmm = gmm_lib.GMM(self.num_centers, initial_clusters=self.initial_means, covariance_type=cov_type, config=run_config.RunConfig(tf_random_seed=2)) gmm.fit(input_fn=self.input_fn(), steps=iterations) points = self.points[:10, :] skflow_assignments = [] for item in gmm.predict_assignments( input_fn=self.input_fn(points=points, batch_size=10)): skflow_assignments.append(item) self.assertAllClose(sklearn_assignments, np.ravel(skflow_assignments).astype(int)) self.assertAllClose(sklearn_means, gmm.clusters()) if cov_type == 'full': self.assertAllClose(sklearn_covs, gmm.covariances(), rtol=0.01) else: for d in [0, 1]: self.assertAllClose( np.diag(sklearn_covs[d]), gmm.covariances()[d, :], rtol=0.01) def test_compare_full(self): self._compare_with_sklearn('full') def test_compare_diag(self): self._compare_with_sklearn('diag') def test_random_input_large(self): # sklearn version. iterations = 5 # that should be enough to know whether this diverges np.random.seed(5) num_classes = 20 x = np.array([[np.random.random() for _ in range(100)] for _ in range(num_classes)], dtype=np.float32) # skflow version. gmm = gmm_lib.GMM(num_classes, covariance_type='full', config=run_config.RunConfig(tf_random_seed=2)) def get_input_fn(x): def input_fn(): return constant_op.constant(x.astype(np.float32)), None return input_fn gmm.fit(input_fn=get_input_fn(x), steps=iterations) self.assertFalse(np.isnan(gmm.clusters()).any()) class GMMTestQueues(test.TestCase): def input_fn(self): def _fn(): queue = data_flow_ops.FIFOQueue(capacity=10, dtypes=dtypes.float32, shapes=[10, 3]) enqueue_op = queue.enqueue(array_ops.zeros([10, 3], dtype=dtypes.float32)) queue_runner.add_queue_runner(queue_runner.QueueRunner(queue, [enqueue_op])) return queue.dequeue(), None return _fn # This test makes sure that there are no deadlocks when using a QueueRunner. # Note that since cluster initialization is dependent on inputs, if input # is generated using a QueueRunner, one has to make sure that these runners # are started before the initialization. def test_queues(self): gmm = gmm_lib.GMM(2, covariance_type='diag') gmm.fit(input_fn=self.input_fn(), steps=1) if __name__ == '__main__': test.main()
apache-2.0
ChanderG/scipy
scipy/spatial/_plotutils.py
53
4034
from __future__ import division, print_function, absolute_import import numpy as np from scipy._lib.decorator import decorator as _decorator __all__ = ['delaunay_plot_2d', 'convex_hull_plot_2d', 'voronoi_plot_2d'] @_decorator def _held_figure(func, obj, ax=None, **kw): import matplotlib.pyplot as plt if ax is None: fig = plt.figure() ax = fig.gca() was_held = ax.ishold() try: ax.hold(True) return func(obj, ax=ax, **kw) finally: ax.hold(was_held) def _adjust_bounds(ax, points): ptp_bound = points.ptp(axis=0) ax.set_xlim(points[:,0].min() - 0.1*ptp_bound[0], points[:,0].max() + 0.1*ptp_bound[0]) ax.set_ylim(points[:,1].min() - 0.1*ptp_bound[1], points[:,1].max() + 0.1*ptp_bound[1]) @_held_figure def delaunay_plot_2d(tri, ax=None): """ Plot the given Delaunay triangulation in 2-D Parameters ---------- tri : scipy.spatial.Delaunay instance Triangulation to plot ax : matplotlib.axes.Axes instance, optional Axes to plot on Returns ------- fig : matplotlib.figure.Figure instance Figure for the plot See Also -------- Delaunay matplotlib.pyplot.triplot Notes ----- Requires Matplotlib. """ if tri.points.shape[1] != 2: raise ValueError("Delaunay triangulation is not 2-D") ax.plot(tri.points[:,0], tri.points[:,1], 'o') ax.triplot(tri.points[:,0], tri.points[:,1], tri.simplices.copy()) _adjust_bounds(ax, tri.points) return ax.figure @_held_figure def convex_hull_plot_2d(hull, ax=None): """ Plot the given convex hull diagram in 2-D Parameters ---------- hull : scipy.spatial.ConvexHull instance Convex hull to plot ax : matplotlib.axes.Axes instance, optional Axes to plot on Returns ------- fig : matplotlib.figure.Figure instance Figure for the plot See Also -------- ConvexHull Notes ----- Requires Matplotlib. """ if hull.points.shape[1] != 2: raise ValueError("Convex hull is not 2-D") ax.plot(hull.points[:,0], hull.points[:,1], 'o') for simplex in hull.simplices: ax.plot(hull.points[simplex,0], hull.points[simplex,1], 'k-') _adjust_bounds(ax, hull.points) return ax.figure @_held_figure def voronoi_plot_2d(vor, ax=None): """ Plot the given Voronoi diagram in 2-D Parameters ---------- vor : scipy.spatial.Voronoi instance Diagram to plot ax : matplotlib.axes.Axes instance, optional Axes to plot on Returns ------- fig : matplotlib.figure.Figure instance Figure for the plot See Also -------- Voronoi Notes ----- Requires Matplotlib. """ if vor.points.shape[1] != 2: raise ValueError("Voronoi diagram is not 2-D") ax.plot(vor.points[:,0], vor.points[:,1], '.') ax.plot(vor.vertices[:,0], vor.vertices[:,1], 'o') for simplex in vor.ridge_vertices: simplex = np.asarray(simplex) if np.all(simplex >= 0): ax.plot(vor.vertices[simplex,0], vor.vertices[simplex,1], 'k-') ptp_bound = vor.points.ptp(axis=0) center = vor.points.mean(axis=0) for pointidx, simplex in zip(vor.ridge_points, vor.ridge_vertices): simplex = np.asarray(simplex) if np.any(simplex < 0): i = simplex[simplex >= 0][0] # finite end Voronoi vertex t = vor.points[pointidx[1]] - vor.points[pointidx[0]] # tangent t /= np.linalg.norm(t) n = np.array([-t[1], t[0]]) # normal midpoint = vor.points[pointidx].mean(axis=0) direction = np.sign(np.dot(midpoint - center, n)) * n far_point = vor.vertices[i] + direction * ptp_bound.max() ax.plot([vor.vertices[i,0], far_point[0]], [vor.vertices[i,1], far_point[1]], 'k--') _adjust_bounds(ax, vor.points) return ax.figure
bsd-3-clause
librosa/librosa
librosa/util/utils.py
1
64787
#!/usr/bin/env python # -*- coding: utf-8 -*- """Utility functions""" import warnings import scipy.ndimage import scipy.sparse import numpy as np import numba from numpy.lib.stride_tricks import as_strided from .._cache import cache from .exceptions import ParameterError # Constrain STFT block sizes to 256 KB MAX_MEM_BLOCK = 2 ** 8 * 2 ** 10 __all__ = [ "MAX_MEM_BLOCK", "frame", "pad_center", "fix_length", "valid_audio", "valid_int", "valid_intervals", "fix_frames", "axis_sort", "localmax", "localmin", "normalize", "peak_pick", "sparsify_rows", "shear", "stack", "fill_off_diagonal", "index_to_slice", "sync", "softmask", "buf_to_float", "tiny", "cyclic_gradient", "dtype_r2c", "dtype_c2r", ] def frame(x, frame_length, hop_length, axis=-1): """Slice a data array into (overlapping) frames. This implementation uses low-level stride manipulation to avoid making a copy of the data. The resulting frame representation is a new view of the same input data. However, if the input data is not contiguous in memory, a warning will be issued and the output will be a full copy, rather than a view of the input data. For example, a one-dimensional input ``x = [0, 1, 2, 3, 4, 5, 6]`` can be framed with frame length 3 and hop length 2 in two ways. The first (``axis=-1``), results in the array ``x_frames``:: [[0, 2, 4], [1, 3, 5], [2, 4, 6]] where each column ``x_frames[:, i]`` contains a contiguous slice of the input ``x[i * hop_length : i * hop_length + frame_length]``. The second way (``axis=0``) results in the array ``x_frames``:: [[0, 1, 2], [2, 3, 4], [4, 5, 6]] where each row ``x_frames[i]`` contains a contiguous slice of the input. This generalizes to higher dimensional inputs, as shown in the examples below. In general, the framing operation increments by 1 the number of dimensions, adding a new "frame axis" either to the end of the array (``axis=-1``) or the beginning of the array (``axis=0``). Parameters ---------- x : np.ndarray Array to frame frame_length : int > 0 [scalar] Length of the frame hop_length : int > 0 [scalar] Number of steps to advance between frames axis : 0 or -1 The axis along which to frame. If ``axis=-1`` (the default), then ``x`` is framed along its last dimension. ``x`` must be "F-contiguous" in this case. If ``axis=0``, then ``x`` is framed along its first dimension. ``x`` must be "C-contiguous" in this case. Returns ------- x_frames : np.ndarray [shape=(..., frame_length, N_FRAMES) or (N_FRAMES, frame_length, ...)] A framed view of ``x``, for example with ``axis=-1`` (framing on the last dimension):: x_frames[..., j] == x[..., j * hop_length : j * hop_length + frame_length] If ``axis=0`` (framing on the first dimension), then:: x_frames[j] = x[j * hop_length : j * hop_length + frame_length] Raises ------ ParameterError If ``x`` is not an `np.ndarray`. If ``x.shape[axis] < frame_length``, there is not enough data to fill one frame. If ``hop_length < 1``, frames cannot advance. If ``axis`` is not 0 or -1. Framing is only supported along the first or last axis. See Also -------- numpy.asfortranarray : Convert data to F-contiguous representation numpy.ascontiguousarray : Convert data to C-contiguous representation numpy.ndarray.flags : information about the memory layout of a numpy `ndarray`. Examples -------- Extract 2048-sample frames from monophonic signal with a hop of 64 samples per frame >>> y, sr = librosa.load(librosa.ex('trumpet')) >>> frames = librosa.util.frame(y, frame_length=2048, hop_length=64) >>> frames array([[-1.407e-03, -2.604e-02, ..., -1.795e-05, -8.108e-06], [-4.461e-04, -3.721e-02, ..., -1.573e-05, -1.652e-05], ..., [ 7.960e-02, -2.335e-01, ..., -6.815e-06, 1.266e-05], [ 9.568e-02, -1.252e-01, ..., 7.397e-06, -1.921e-05]], dtype=float32) >>> y.shape (117601,) >>> frames.shape (2048, 1806) Or frame along the first axis instead of the last: >>> frames = librosa.util.frame(y, frame_length=2048, hop_length=64, axis=0) >>> frames.shape (1806, 2048) Frame a stereo signal: >>> y, sr = librosa.load(librosa.ex('trumpet', hq=True), mono=False) >>> y.shape (2, 117601) >>> frames = librosa.util.frame(y, frame_length=2048, hop_length=64) (2, 2048, 1806) Carve an STFT into fixed-length patches of 32 frames with 50% overlap >>> y, sr = librosa.load(librosa.ex('trumpet')) >>> S = np.abs(librosa.stft(y)) >>> S.shape (1025, 230) >>> S_patch = librosa.util.frame(S, frame_length=32, hop_length=16) >>> S_patch.shape (1025, 32, 13) >>> # The first patch contains the first 32 frames of S >>> np.allclose(S_patch[:, :, 0], S[:, :32]) True >>> # The second patch contains frames 16 to 16+32=48, and so on >>> np.allclose(S_patch[:, :, 1], S[:, 16:48]) True """ if not isinstance(x, np.ndarray): raise ParameterError( "Input must be of type numpy.ndarray, " "given type(x)={}".format(type(x)) ) if x.shape[axis] < frame_length: raise ParameterError( "Input is too short (n={:d})" " for frame_length={:d}".format(x.shape[axis], frame_length) ) if hop_length < 1: raise ParameterError("Invalid hop_length: {:d}".format(hop_length)) if axis == -1 and not x.flags["F_CONTIGUOUS"]: warnings.warn( "librosa.util.frame called with axis={} " "on a non-contiguous input. This will result in a copy.".format(axis) ) x = np.asfortranarray(x) elif axis == 0 and not x.flags["C_CONTIGUOUS"]: warnings.warn( "librosa.util.frame called with axis={} " "on a non-contiguous input. This will result in a copy.".format(axis) ) x = np.ascontiguousarray(x) n_frames = 1 + (x.shape[axis] - frame_length) // hop_length strides = np.asarray(x.strides) new_stride = np.prod(strides[strides > 0] // x.itemsize) * x.itemsize if axis == -1: shape = list(x.shape)[:-1] + [frame_length, n_frames] strides = list(strides) + [hop_length * new_stride] elif axis == 0: shape = [n_frames, frame_length] + list(x.shape)[1:] strides = [hop_length * new_stride] + list(strides) else: raise ParameterError("Frame axis={} must be either 0 or -1".format(axis)) return as_strided(x, shape=shape, strides=strides) @cache(level=20) def valid_audio(y, mono=True): """Determine whether a variable contains valid audio data. If ``mono=True``, then ``y`` is only considered valid if it has shape ``(N,)`` (number of samples). If ``mono=False``, then ``y`` may be either monophonic, or have shape ``(2, N)`` (stereo) or ``(K, N)`` for ``K>=2`` for general multi-channel. Parameters ---------- y : np.ndarray The input data to validate mono : bool Whether or not to require monophonic audio Returns ------- valid : bool True if all tests pass Raises ------ ParameterError In any of these cases: - ``type(y)`` is not ``np.ndarray`` - ``y.dtype`` is not floating-point - ``mono == True`` and ``y.ndim`` is not 1 - ``mono == False`` and ``y.ndim`` is not 1 or 2 - ``mono == False`` and ``y.ndim == 2`` but ``y.shape[0] == 1`` - ``np.isfinite(y).all()`` is False Notes ----- This function caches at level 20. Examples -------- >>> # By default, valid_audio allows only mono signals >>> filepath = librosa.ex('trumpet', hq=True) >>> y_mono, sr = librosa.load(filepath, mono=True) >>> y_stereo, _ = librosa.load(filepath, mono=False) >>> librosa.util.valid_audio(y_mono), librosa.util.valid_audio(y_stereo) True, False >>> # To allow stereo signals, set mono=False >>> librosa.util.valid_audio(y_stereo, mono=False) True See also -------- numpy.float32 """ if not isinstance(y, np.ndarray): raise ParameterError("Audio data must be of type numpy.ndarray") if not np.issubdtype(y.dtype, np.floating): raise ParameterError("Audio data must be floating-point") if mono and y.ndim != 1: raise ParameterError( "Invalid shape for monophonic audio: " "ndim={:d}, shape={}".format(y.ndim, y.shape) ) elif y.ndim > 2 or y.ndim == 0: raise ParameterError( "Audio data must have shape (samples,) or (channels, samples). " "Received shape={}".format(y.shape) ) elif y.ndim == 2 and y.shape[0] < 2: raise ParameterError( "Mono data must have shape (samples,). " "Received shape={}".format(y.shape) ) if not np.isfinite(y).all(): raise ParameterError("Audio buffer is not finite everywhere") return True def valid_int(x, cast=None): """Ensure that an input value is integer-typed. This is primarily useful for ensuring integrable-valued array indices. Parameters ---------- x : number A scalar value to be cast to int cast : function [optional] A function to modify ``x`` before casting. Default: `np.floor` Returns ------- x_int : int ``x_int = int(cast(x))`` Raises ------ ParameterError If ``cast`` is provided and is not callable. """ if cast is None: cast = np.floor if not callable(cast): raise ParameterError("cast parameter must be callable") return int(cast(x)) def valid_intervals(intervals): """Ensure that an array is a valid representation of time intervals: - intervals.ndim == 2 - intervals.shape[1] == 2 - intervals[i, 0] <= intervals[i, 1] for all i Parameters ---------- intervals : np.ndarray [shape=(n, 2)] set of time intervals Returns ------- valid : bool True if ``intervals`` passes validation. """ if intervals.ndim != 2 or intervals.shape[-1] != 2: raise ParameterError("intervals must have shape (n, 2)") if np.any(intervals[:, 0] > intervals[:, 1]): raise ParameterError( "intervals={} must have non-negative durations".format(intervals) ) return True def pad_center(data, size, axis=-1, **kwargs): """Pad an array to a target length along a target axis. This differs from `np.pad` by centering the data prior to padding, analogous to `str.center` Examples -------- >>> # Generate a vector >>> data = np.ones(5) >>> librosa.util.pad_center(data, 10, mode='constant') array([ 0., 0., 1., 1., 1., 1., 1., 0., 0., 0.]) >>> # Pad a matrix along its first dimension >>> data = np.ones((3, 5)) >>> librosa.util.pad_center(data, 7, axis=0) array([[ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.], [ 1., 1., 1., 1., 1.], [ 1., 1., 1., 1., 1.], [ 1., 1., 1., 1., 1.], [ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.]]) >>> # Or its second dimension >>> librosa.util.pad_center(data, 7, axis=1) array([[ 0., 1., 1., 1., 1., 1., 0.], [ 0., 1., 1., 1., 1., 1., 0.], [ 0., 1., 1., 1., 1., 1., 0.]]) Parameters ---------- data : np.ndarray Vector to be padded and centered size : int >= len(data) [scalar] Length to pad ``data`` axis : int Axis along which to pad and center the data kwargs : additional keyword arguments arguments passed to `np.pad` Returns ------- data_padded : np.ndarray ``data`` centered and padded to length ``size`` along the specified axis Raises ------ ParameterError If ``size < data.shape[axis]`` See Also -------- numpy.pad """ kwargs.setdefault("mode", "constant") n = data.shape[axis] lpad = int((size - n) // 2) lengths = [(0, 0)] * data.ndim lengths[axis] = (lpad, int(size - n - lpad)) if lpad < 0: raise ParameterError( ("Target size ({:d}) must be " "at least input size ({:d})").format(size, n) ) return np.pad(data, lengths, **kwargs) def fix_length(data, size, axis=-1, **kwargs): """Fix the length an array ``data`` to exactly ``size`` along a target axis. If ``data.shape[axis] < n``, pad according to the provided kwargs. By default, ``data`` is padded with trailing zeros. Examples -------- >>> y = np.arange(7) >>> # Default: pad with zeros >>> librosa.util.fix_length(y, 10) array([0, 1, 2, 3, 4, 5, 6, 0, 0, 0]) >>> # Trim to a desired length >>> librosa.util.fix_length(y, 5) array([0, 1, 2, 3, 4]) >>> # Use edge-padding instead of zeros >>> librosa.util.fix_length(y, 10, mode='edge') array([0, 1, 2, 3, 4, 5, 6, 6, 6, 6]) Parameters ---------- data : np.ndarray array to be length-adjusted size : int >= 0 [scalar] desired length of the array axis : int, <= data.ndim axis along which to fix length kwargs : additional keyword arguments Parameters to ``np.pad`` Returns ------- data_fixed : np.ndarray [shape=data.shape] ``data`` either trimmed or padded to length ``size`` along the specified axis. See Also -------- numpy.pad """ kwargs.setdefault("mode", "constant") n = data.shape[axis] if n > size: slices = [slice(None)] * data.ndim slices[axis] = slice(0, size) return data[tuple(slices)] elif n < size: lengths = [(0, 0)] * data.ndim lengths[axis] = (0, size - n) return np.pad(data, lengths, **kwargs) return data def fix_frames(frames, x_min=0, x_max=None, pad=True): """Fix a list of frames to lie within [x_min, x_max] Examples -------- >>> # Generate a list of frame indices >>> frames = np.arange(0, 1000.0, 50) >>> frames array([ 0., 50., 100., 150., 200., 250., 300., 350., 400., 450., 500., 550., 600., 650., 700., 750., 800., 850., 900., 950.]) >>> # Clip to span at most 250 >>> librosa.util.fix_frames(frames, x_max=250) array([ 0, 50, 100, 150, 200, 250]) >>> # Or pad to span up to 2500 >>> librosa.util.fix_frames(frames, x_max=2500) array([ 0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 2500]) >>> librosa.util.fix_frames(frames, x_max=2500, pad=False) array([ 0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950]) >>> # Or starting away from zero >>> frames = np.arange(200, 500, 33) >>> frames array([200, 233, 266, 299, 332, 365, 398, 431, 464, 497]) >>> librosa.util.fix_frames(frames) array([ 0, 200, 233, 266, 299, 332, 365, 398, 431, 464, 497]) >>> librosa.util.fix_frames(frames, x_max=500) array([ 0, 200, 233, 266, 299, 332, 365, 398, 431, 464, 497, 500]) Parameters ---------- frames : np.ndarray [shape=(n_frames,)] List of non-negative frame indices x_min : int >= 0 or None Minimum allowed frame index x_max : int >= 0 or None Maximum allowed frame index pad : boolean If ``True``, then ``frames`` is expanded to span the full range ``[x_min, x_max]`` Returns ------- fixed_frames : np.ndarray [shape=(n_fixed_frames,), dtype=int] Fixed frame indices, flattened and sorted Raises ------ ParameterError If ``frames`` contains negative values """ frames = np.asarray(frames) if np.any(frames < 0): raise ParameterError("Negative frame index detected") if pad and (x_min is not None or x_max is not None): frames = np.clip(frames, x_min, x_max) if pad: pad_data = [] if x_min is not None: pad_data.append(x_min) if x_max is not None: pad_data.append(x_max) frames = np.concatenate((pad_data, frames)) if x_min is not None: frames = frames[frames >= x_min] if x_max is not None: frames = frames[frames <= x_max] return np.unique(frames).astype(int) def axis_sort(S, axis=-1, index=False, value=None): """Sort an array along its rows or columns. Examples -------- Visualize NMF output for a spectrogram S >>> # Sort the columns of W by peak frequency bin >>> y, sr = librosa.load(librosa.ex('trumpet')) >>> S = np.abs(librosa.stft(y)) >>> W, H = librosa.decompose.decompose(S, n_components=64) >>> W_sort = librosa.util.axis_sort(W) Or sort by the lowest frequency bin >>> W_sort = librosa.util.axis_sort(W, value=np.argmin) Or sort the rows instead of the columns >>> W_sort_rows = librosa.util.axis_sort(W, axis=0) Get the sorting index also, and use it to permute the rows of H >>> W_sort, idx = librosa.util.axis_sort(W, index=True) >>> H_sort = H[idx, :] >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(nrows=2, ncols=2) >>> img_w = librosa.display.specshow(librosa.amplitude_to_db(W, ref=np.max), ... y_axis='log', ax=ax[0, 0]) >>> ax[0, 0].set(title='W') >>> ax[0, 0].label_outer() >>> img_act = librosa.display.specshow(H, x_axis='time', ax=ax[0, 1]) >>> ax[0, 1].set(title='H') >>> ax[0, 1].label_outer() >>> librosa.display.specshow(librosa.amplitude_to_db(W_sort, ... ref=np.max), ... y_axis='log', ax=ax[1, 0]) >>> ax[1, 0].set(title='W sorted') >>> librosa.display.specshow(H_sort, x_axis='time', ax=ax[1, 1]) >>> ax[1, 1].set(title='H sorted') >>> ax[1, 1].label_outer() >>> fig.colorbar(img_w, ax=ax[:, 0], orientation='horizontal') >>> fig.colorbar(img_act, ax=ax[:, 1], orientation='horizontal') Parameters ---------- S : np.ndarray [shape=(d, n)] Array to be sorted axis : int [scalar] The axis along which to compute the sorting values - ``axis=0`` to sort rows by peak column index - ``axis=1`` to sort columns by peak row index index : boolean [scalar] If true, returns the index array as well as the permuted data. value : function function to return the index corresponding to the sort order. Default: `np.argmax`. Returns ------- S_sort : np.ndarray [shape=(d, n)] ``S`` with the columns or rows permuted in sorting order idx : np.ndarray (optional) [shape=(d,) or (n,)] If ``index == True``, the sorting index used to permute ``S``. Length of ``idx`` corresponds to the selected ``axis``. Raises ------ ParameterError If ``S`` does not have exactly 2 dimensions (``S.ndim != 2``) """ if value is None: value = np.argmax if S.ndim != 2: raise ParameterError("axis_sort is only defined for 2D arrays") bin_idx = value(S, axis=np.mod(1 - axis, S.ndim)) idx = np.argsort(bin_idx) sort_slice = [slice(None)] * S.ndim sort_slice[axis] = idx if index: return S[tuple(sort_slice)], idx else: return S[tuple(sort_slice)] @cache(level=40) def normalize(S, norm=np.inf, axis=0, threshold=None, fill=None): """Normalize an array along a chosen axis. Given a norm (described below) and a target axis, the input array is scaled so that:: norm(S, axis=axis) == 1 For example, ``axis=0`` normalizes each column of a 2-d array by aggregating over the rows (0-axis). Similarly, ``axis=1`` normalizes each row of a 2-d array. This function also supports thresholding small-norm slices: any slice (i.e., row or column) with norm below a specified ``threshold`` can be left un-normalized, set to all-zeros, or filled with uniform non-zero values that normalize to 1. Note: the semantics of this function differ from `scipy.linalg.norm` in two ways: multi-dimensional arrays are supported, but matrix-norms are not. Parameters ---------- S : np.ndarray The matrix to normalize norm : {np.inf, -np.inf, 0, float > 0, None} - `np.inf` : maximum absolute value - `-np.inf` : minimum absolute value - `0` : number of non-zeros (the support) - float : corresponding l_p norm See `scipy.linalg.norm` for details. - None : no normalization is performed axis : int [scalar] Axis along which to compute the norm. threshold : number > 0 [optional] Only the columns (or rows) with norm at least ``threshold`` are normalized. By default, the threshold is determined from the numerical precision of ``S.dtype``. fill : None or bool If None, then columns (or rows) with norm below ``threshold`` are left as is. If False, then columns (rows) with norm below ``threshold`` are set to 0. If True, then columns (rows) with norm below ``threshold`` are filled uniformly such that the corresponding norm is 1. .. note:: ``fill=True`` is incompatible with ``norm=0`` because no uniform vector exists with l0 "norm" equal to 1. Returns ------- S_norm : np.ndarray [shape=S.shape] Normalized array Raises ------ ParameterError If ``norm`` is not among the valid types defined above If ``S`` is not finite If ``fill=True`` and ``norm=0`` See Also -------- scipy.linalg.norm Notes ----- This function caches at level 40. Examples -------- >>> # Construct an example matrix >>> S = np.vander(np.arange(-2.0, 2.0)) >>> S array([[-8., 4., -2., 1.], [-1., 1., -1., 1.], [ 0., 0., 0., 1.], [ 1., 1., 1., 1.]]) >>> # Max (l-infinity)-normalize the columns >>> librosa.util.normalize(S) array([[-1. , 1. , -1. , 1. ], [-0.125, 0.25 , -0.5 , 1. ], [ 0. , 0. , 0. , 1. ], [ 0.125, 0.25 , 0.5 , 1. ]]) >>> # Max (l-infinity)-normalize the rows >>> librosa.util.normalize(S, axis=1) array([[-1. , 0.5 , -0.25 , 0.125], [-1. , 1. , -1. , 1. ], [ 0. , 0. , 0. , 1. ], [ 1. , 1. , 1. , 1. ]]) >>> # l1-normalize the columns >>> librosa.util.normalize(S, norm=1) array([[-0.8 , 0.667, -0.5 , 0.25 ], [-0.1 , 0.167, -0.25 , 0.25 ], [ 0. , 0. , 0. , 0.25 ], [ 0.1 , 0.167, 0.25 , 0.25 ]]) >>> # l2-normalize the columns >>> librosa.util.normalize(S, norm=2) array([[-0.985, 0.943, -0.816, 0.5 ], [-0.123, 0.236, -0.408, 0.5 ], [ 0. , 0. , 0. , 0.5 ], [ 0.123, 0.236, 0.408, 0.5 ]]) >>> # Thresholding and filling >>> S[:, -1] = 1e-308 >>> S array([[ -8.000e+000, 4.000e+000, -2.000e+000, 1.000e-308], [ -1.000e+000, 1.000e+000, -1.000e+000, 1.000e-308], [ 0.000e+000, 0.000e+000, 0.000e+000, 1.000e-308], [ 1.000e+000, 1.000e+000, 1.000e+000, 1.000e-308]]) >>> # By default, small-norm columns are left untouched >>> librosa.util.normalize(S) array([[ -1.000e+000, 1.000e+000, -1.000e+000, 1.000e-308], [ -1.250e-001, 2.500e-001, -5.000e-001, 1.000e-308], [ 0.000e+000, 0.000e+000, 0.000e+000, 1.000e-308], [ 1.250e-001, 2.500e-001, 5.000e-001, 1.000e-308]]) >>> # Small-norm columns can be zeroed out >>> librosa.util.normalize(S, fill=False) array([[-1. , 1. , -1. , 0. ], [-0.125, 0.25 , -0.5 , 0. ], [ 0. , 0. , 0. , 0. ], [ 0.125, 0.25 , 0.5 , 0. ]]) >>> # Or set to constant with unit-norm >>> librosa.util.normalize(S, fill=True) array([[-1. , 1. , -1. , 1. ], [-0.125, 0.25 , -0.5 , 1. ], [ 0. , 0. , 0. , 1. ], [ 0.125, 0.25 , 0.5 , 1. ]]) >>> # With an l1 norm instead of max-norm >>> librosa.util.normalize(S, norm=1, fill=True) array([[-0.8 , 0.667, -0.5 , 0.25 ], [-0.1 , 0.167, -0.25 , 0.25 ], [ 0. , 0. , 0. , 0.25 ], [ 0.1 , 0.167, 0.25 , 0.25 ]]) """ # Avoid div-by-zero if threshold is None: threshold = tiny(S) elif threshold <= 0: raise ParameterError( "threshold={} must be strictly " "positive".format(threshold) ) if fill not in [None, False, True]: raise ParameterError("fill={} must be None or boolean".format(fill)) if not np.all(np.isfinite(S)): raise ParameterError("Input must be finite") # All norms only depend on magnitude, let's do that first mag = np.abs(S).astype(np.float) # For max/min norms, filling with 1 works fill_norm = 1 if norm == np.inf: length = np.max(mag, axis=axis, keepdims=True) elif norm == -np.inf: length = np.min(mag, axis=axis, keepdims=True) elif norm == 0: if fill is True: raise ParameterError("Cannot normalize with norm=0 and fill=True") length = np.sum(mag > 0, axis=axis, keepdims=True, dtype=mag.dtype) elif np.issubdtype(type(norm), np.number) and norm > 0: length = np.sum(mag ** norm, axis=axis, keepdims=True) ** (1.0 / norm) if axis is None: fill_norm = mag.size ** (-1.0 / norm) else: fill_norm = mag.shape[axis] ** (-1.0 / norm) elif norm is None: return S else: raise ParameterError("Unsupported norm: {}".format(repr(norm))) # indices where norm is below the threshold small_idx = length < threshold Snorm = np.empty_like(S) if fill is None: # Leave small indices un-normalized length[small_idx] = 1.0 Snorm[:] = S / length elif fill: # If we have a non-zero fill value, we locate those entries by # doing a nan-divide. # If S was finite, then length is finite (except for small positions) length[small_idx] = np.nan Snorm[:] = S / length Snorm[np.isnan(Snorm)] = fill_norm else: # Set small values to zero by doing an inf-divide. # This is safe (by IEEE-754) as long as S is finite. length[small_idx] = np.inf Snorm[:] = S / length return Snorm def localmax(x, axis=0): """Find local maxima in an array An element ``x[i]`` is considered a local maximum if the following conditions are met: - ``x[i] > x[i-1]`` - ``x[i] >= x[i+1]`` Note that the first condition is strict, and that the first element ``x[0]`` will never be considered as a local maximum. Examples -------- >>> x = np.array([1, 0, 1, 2, -1, 0, -2, 1]) >>> librosa.util.localmax(x) array([False, False, False, True, False, True, False, True], dtype=bool) >>> # Two-dimensional example >>> x = np.array([[1,0,1], [2, -1, 0], [2, 1, 3]]) >>> librosa.util.localmax(x, axis=0) array([[False, False, False], [ True, False, False], [False, True, True]], dtype=bool) >>> librosa.util.localmax(x, axis=1) array([[False, False, True], [False, False, True], [False, False, True]], dtype=bool) Parameters ---------- x : np.ndarray [shape=(d1,d2,...)] input vector or array axis : int axis along which to compute local maximality Returns ------- m : np.ndarray [shape=x.shape, dtype=bool] indicator array of local maximality along ``axis`` See Also -------- localmin """ paddings = [(0, 0)] * x.ndim paddings[axis] = (1, 1) x_pad = np.pad(x, paddings, mode="edge") inds1 = [slice(None)] * x.ndim inds1[axis] = slice(0, -2) inds2 = [slice(None)] * x.ndim inds2[axis] = slice(2, x_pad.shape[axis]) return (x > x_pad[tuple(inds1)]) & (x >= x_pad[tuple(inds2)]) def localmin(x, axis=0): """Find local minima in an array An element ``x[i]`` is considered a local minimum if the following conditions are met: - ``x[i] < x[i-1]`` - ``x[i] <= x[i+1]`` Note that the first condition is strict, and that the first element ``x[0]`` will never be considered as a local minimum. Examples -------- >>> x = np.array([1, 0, 1, 2, -1, 0, -2, 1]) >>> librosa.util.localmin(x) array([False, True, False, False, True, False, True, False]) >>> # Two-dimensional example >>> x = np.array([[1,0,1], [2, -1, 0], [2, 1, 3]]) >>> librosa.util.localmin(x, axis=0) array([[False, False, False], [False, True, True], [False, False, False]]) >>> librosa.util.localmin(x, axis=1) array([[False, True, False], [False, True, False], [False, True, False]]) Parameters ---------- x : np.ndarray [shape=(d1,d2,...)] input vector or array axis : int axis along which to compute local minimality Returns ------- m : np.ndarray [shape=x.shape, dtype=bool] indicator array of local minimality along ``axis`` See Also -------- localmax """ paddings = [(0, 0)] * x.ndim paddings[axis] = (1, 1) x_pad = np.pad(x, paddings, mode="edge") inds1 = [slice(None)] * x.ndim inds1[axis] = slice(0, -2) inds2 = [slice(None)] * x.ndim inds2[axis] = slice(2, x_pad.shape[axis]) return (x < x_pad[tuple(inds1)]) & (x <= x_pad[tuple(inds2)]) def peak_pick(x, pre_max, post_max, pre_avg, post_avg, delta, wait): """Uses a flexible heuristic to pick peaks in a signal. A sample n is selected as an peak if the corresponding ``x[n]`` fulfills the following three conditions: 1. ``x[n] == max(x[n - pre_max:n + post_max])`` 2. ``x[n] >= mean(x[n - pre_avg:n + post_avg]) + delta`` 3. ``n - previous_n > wait`` where ``previous_n`` is the last sample picked as a peak (greedily). This implementation is based on [#]_ and [#]_. .. [#] Boeck, Sebastian, Florian Krebs, and Markus Schedl. "Evaluating the Online Capabilities of Onset Detection Methods." ISMIR. 2012. .. [#] https://github.com/CPJKU/onset_detection/blob/master/onset_program.py Parameters ---------- x : np.ndarray [shape=(n,)] input signal to peak picks from pre_max : int >= 0 [scalar] number of samples before ``n`` over which max is computed post_max : int >= 1 [scalar] number of samples after ``n`` over which max is computed pre_avg : int >= 0 [scalar] number of samples before ``n`` over which mean is computed post_avg : int >= 1 [scalar] number of samples after ``n`` over which mean is computed delta : float >= 0 [scalar] threshold offset for mean wait : int >= 0 [scalar] number of samples to wait after picking a peak Returns ------- peaks : np.ndarray [shape=(n_peaks,), dtype=int] indices of peaks in ``x`` Raises ------ ParameterError If any input lies outside its defined range Examples -------- >>> y, sr = librosa.load(librosa.ex('trumpet')) >>> onset_env = librosa.onset.onset_strength(y=y, sr=sr, ... hop_length=512, ... aggregate=np.median) >>> peaks = librosa.util.peak_pick(onset_env, 3, 3, 3, 5, 0.5, 10) >>> peaks array([ 3, 27, 40, 61, 72, 88, 103]) >>> import matplotlib.pyplot as plt >>> times = librosa.times_like(onset_env, sr=sr, hop_length=512) >>> fig, ax = plt.subplots(nrows=2, sharex=True) >>> D = np.abs(librosa.stft(y)) >>> librosa.display.specshow(librosa.amplitude_to_db(D, ref=np.max), ... y_axis='log', x_axis='time', ax=ax[1]) >>> ax[0].plot(times, onset_env, alpha=0.8, label='Onset strength') >>> ax[0].vlines(times[peaks], 0, ... onset_env.max(), color='r', alpha=0.8, ... label='Selected peaks') >>> ax[0].legend(frameon=True, framealpha=0.8) >>> ax[0].label_outer() """ if pre_max < 0: raise ParameterError("pre_max must be non-negative") if pre_avg < 0: raise ParameterError("pre_avg must be non-negative") if delta < 0: raise ParameterError("delta must be non-negative") if wait < 0: raise ParameterError("wait must be non-negative") if post_max <= 0: raise ParameterError("post_max must be positive") if post_avg <= 0: raise ParameterError("post_avg must be positive") if x.ndim != 1: raise ParameterError("input array must be one-dimensional") # Ensure valid index types pre_max = valid_int(pre_max, cast=np.ceil) post_max = valid_int(post_max, cast=np.ceil) pre_avg = valid_int(pre_avg, cast=np.ceil) post_avg = valid_int(post_avg, cast=np.ceil) wait = valid_int(wait, cast=np.ceil) # Get the maximum of the signal over a sliding window max_length = pre_max + post_max max_origin = np.ceil(0.5 * (pre_max - post_max)) # Using mode='constant' and cval=x.min() effectively truncates # the sliding window at the boundaries mov_max = scipy.ndimage.filters.maximum_filter1d( x, int(max_length), mode="constant", origin=int(max_origin), cval=x.min() ) # Get the mean of the signal over a sliding window avg_length = pre_avg + post_avg avg_origin = np.ceil(0.5 * (pre_avg - post_avg)) # Here, there is no mode which results in the behavior we want, # so we'll correct below. mov_avg = scipy.ndimage.filters.uniform_filter1d( x, int(avg_length), mode="nearest", origin=int(avg_origin) ) # Correct sliding average at the beginning n = 0 # Only need to correct in the range where the window needs to be truncated while n - pre_avg < 0 and n < x.shape[0]: # This just explicitly does mean(x[n - pre_avg:n + post_avg]) # with truncation start = n - pre_avg start = start if start > 0 else 0 mov_avg[n] = np.mean(x[start : n + post_avg]) n += 1 # Correct sliding average at the end n = x.shape[0] - post_avg # When post_avg > x.shape[0] (weird case), reset to 0 n = n if n > 0 else 0 while n < x.shape[0]: start = n - pre_avg start = start if start > 0 else 0 mov_avg[n] = np.mean(x[start : n + post_avg]) n += 1 # First mask out all entries not equal to the local max detections = x * (x == mov_max) # Then mask out all entries less than the thresholded average detections = detections * (detections >= (mov_avg + delta)) # Initialize peaks array, to be filled greedily peaks = [] # Remove onsets which are close together in time last_onset = -np.inf for i in np.nonzero(detections)[0]: # Only report an onset if the "wait" samples was reported if i > last_onset + wait: peaks.append(i) # Save last reported onset last_onset = i return np.array(peaks) @cache(level=40) def sparsify_rows(x, quantile=0.01, dtype=None): """Return a row-sparse matrix approximating the input Parameters ---------- x : np.ndarray [ndim <= 2] The input matrix to sparsify. quantile : float in [0, 1.0) Percentage of magnitude to discard in each row of ``x`` dtype : np.dtype, optional The dtype of the output array. If not provided, then ``x.dtype`` will be used. Returns ------- x_sparse : ``scipy.sparse.csr_matrix`` [shape=x.shape] Row-sparsified approximation of ``x`` If ``x.ndim == 1``, then ``x`` is interpreted as a row vector, and ``x_sparse.shape == (1, len(x))``. Raises ------ ParameterError If ``x.ndim > 2`` If ``quantile`` lies outside ``[0, 1.0)`` Notes ----- This function caches at level 40. Examples -------- >>> # Construct a Hann window to sparsify >>> x = scipy.signal.hann(32) >>> x array([ 0. , 0.01 , 0.041, 0.09 , 0.156, 0.236, 0.326, 0.424, 0.525, 0.625, 0.72 , 0.806, 0.879, 0.937, 0.977, 0.997, 0.997, 0.977, 0.937, 0.879, 0.806, 0.72 , 0.625, 0.525, 0.424, 0.326, 0.236, 0.156, 0.09 , 0.041, 0.01 , 0. ]) >>> # Discard the bottom percentile >>> x_sparse = librosa.util.sparsify_rows(x, quantile=0.01) >>> x_sparse <1x32 sparse matrix of type '<type 'numpy.float64'>' with 26 stored elements in Compressed Sparse Row format> >>> x_sparse.todense() matrix([[ 0. , 0. , 0. , 0.09 , 0.156, 0.236, 0.326, 0.424, 0.525, 0.625, 0.72 , 0.806, 0.879, 0.937, 0.977, 0.997, 0.997, 0.977, 0.937, 0.879, 0.806, 0.72 , 0.625, 0.525, 0.424, 0.326, 0.236, 0.156, 0.09 , 0. , 0. , 0. ]]) >>> # Discard up to the bottom 10th percentile >>> x_sparse = librosa.util.sparsify_rows(x, quantile=0.1) >>> x_sparse <1x32 sparse matrix of type '<type 'numpy.float64'>' with 20 stored elements in Compressed Sparse Row format> >>> x_sparse.todense() matrix([[ 0. , 0. , 0. , 0. , 0. , 0. , 0.326, 0.424, 0.525, 0.625, 0.72 , 0.806, 0.879, 0.937, 0.977, 0.997, 0.997, 0.977, 0.937, 0.879, 0.806, 0.72 , 0.625, 0.525, 0.424, 0.326, 0. , 0. , 0. , 0. , 0. , 0. ]]) """ if x.ndim == 1: x = x.reshape((1, -1)) elif x.ndim > 2: raise ParameterError( "Input must have 2 or fewer dimensions. " "Provided x.shape={}.".format(x.shape) ) if not 0.0 <= quantile < 1: raise ParameterError("Invalid quantile {:.2f}".format(quantile)) if dtype is None: dtype = x.dtype x_sparse = scipy.sparse.lil_matrix(x.shape, dtype=dtype) mags = np.abs(x) norms = np.sum(mags, axis=1, keepdims=True) mag_sort = np.sort(mags, axis=1) cumulative_mag = np.cumsum(mag_sort / norms, axis=1) threshold_idx = np.argmin(cumulative_mag < quantile, axis=1) for i, j in enumerate(threshold_idx): idx = np.where(mags[i] >= mag_sort[i, j]) x_sparse[i, idx] = x[i, idx] return x_sparse.tocsr() def buf_to_float(x, n_bytes=2, dtype=np.float32): """Convert an integer buffer to floating point values. This is primarily useful when loading integer-valued wav data into numpy arrays. Parameters ---------- x : np.ndarray [dtype=int] The integer-valued data buffer n_bytes : int [1, 2, 4] The number of bytes per sample in ``x`` dtype : numeric type The target output type (default: 32-bit float) Returns ------- x_float : np.ndarray [dtype=float] The input data buffer cast to floating point """ # Invert the scale of the data scale = 1.0 / float(1 << ((8 * n_bytes) - 1)) # Construct the format string fmt = "<i{:d}".format(n_bytes) # Rescale and format the data buffer return scale * np.frombuffer(x, fmt).astype(dtype) def index_to_slice(idx, idx_min=None, idx_max=None, step=None, pad=True): """Generate a slice array from an index array. Parameters ---------- idx : list-like Array of index boundaries idx_min, idx_max : None or int Minimum and maximum allowed indices step : None or int Step size for each slice. If `None`, then the default step of 1 is used. pad : boolean If `True`, pad ``idx`` to span the range ``idx_min:idx_max``. Returns ------- slices : list of slice ``slices[i] = slice(idx[i], idx[i+1], step)`` Additional slice objects may be added at the beginning or end, depending on whether ``pad==True`` and the supplied values for ``idx_min`` and ``idx_max``. See Also -------- fix_frames Examples -------- >>> # Generate slices from spaced indices >>> librosa.util.index_to_slice(np.arange(20, 100, 15)) [slice(20, 35, None), slice(35, 50, None), slice(50, 65, None), slice(65, 80, None), slice(80, 95, None)] >>> # Pad to span the range (0, 100) >>> librosa.util.index_to_slice(np.arange(20, 100, 15), ... idx_min=0, idx_max=100) [slice(0, 20, None), slice(20, 35, None), slice(35, 50, None), slice(50, 65, None), slice(65, 80, None), slice(80, 95, None), slice(95, 100, None)] >>> # Use a step of 5 for each slice >>> librosa.util.index_to_slice(np.arange(20, 100, 15), ... idx_min=0, idx_max=100, step=5) [slice(0, 20, 5), slice(20, 35, 5), slice(35, 50, 5), slice(50, 65, 5), slice(65, 80, 5), slice(80, 95, 5), slice(95, 100, 5)] """ # First, normalize the index set idx_fixed = fix_frames(idx, idx_min, idx_max, pad=pad) # Now convert the indices to slices return [slice(start, end, step) for (start, end) in zip(idx_fixed, idx_fixed[1:])] @cache(level=40) def sync(data, idx, aggregate=None, pad=True, axis=-1): """Synchronous aggregation of a multi-dimensional array between boundaries .. note:: In order to ensure total coverage, boundary points may be added to ``idx``. If synchronizing a feature matrix against beat tracker output, ensure that frame index numbers are properly aligned and use the same hop length. Parameters ---------- data : np.ndarray multi-dimensional array of features idx : iterable of ints or slices Either an ordered array of boundary indices, or an iterable collection of slice objects. aggregate : function aggregation function (default: `np.mean`) pad : boolean If `True`, ``idx`` is padded to span the full range ``[0, data.shape[axis]]`` axis : int The axis along which to aggregate data Returns ------- data_sync : ndarray ``data_sync`` will have the same dimension as ``data``, except that the ``axis`` coordinate will be reduced according to ``idx``. For example, a 2-dimensional ``data`` with ``axis=-1`` should satisfy:: data_sync[:, i] = aggregate(data[:, idx[i-1]:idx[i]], axis=-1) Raises ------ ParameterError If the index set is not of consistent type (all slices or all integers) Notes ----- This function caches at level 40. Examples -------- Beat-synchronous CQT spectra >>> y, sr = librosa.load(librosa.ex('choice')) >>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr, trim=False) >>> C = np.abs(librosa.cqt(y=y, sr=sr)) >>> beats = librosa.util.fix_frames(beats, x_max=C.shape[1]) By default, use mean aggregation >>> C_avg = librosa.util.sync(C, beats) Use median-aggregation instead of mean >>> C_med = librosa.util.sync(C, beats, ... aggregate=np.median) Or sub-beat synchronization >>> sub_beats = librosa.segment.subsegment(C, beats) >>> sub_beats = librosa.util.fix_frames(sub_beats, x_max=C.shape[1]) >>> C_med_sub = librosa.util.sync(C, sub_beats, aggregate=np.median) Plot the results >>> import matplotlib.pyplot as plt >>> beat_t = librosa.frames_to_time(beats, sr=sr) >>> subbeat_t = librosa.frames_to_time(sub_beats, sr=sr) >>> fig, ax = plt.subplots(nrows=3, sharex=True, sharey=True) >>> librosa.display.specshow(librosa.amplitude_to_db(C, ... ref=np.max), ... x_axis='time', ax=ax[0]) >>> ax[0].set(title='CQT power, shape={}'.format(C.shape)) >>> ax[0].label_outer() >>> librosa.display.specshow(librosa.amplitude_to_db(C_med, ... ref=np.max), ... x_coords=beat_t, x_axis='time', ax=ax[1]) >>> ax[1].set(title='Beat synchronous CQT power, ' ... 'shape={}'.format(C_med.shape)) >>> ax[1].label_outer() >>> librosa.display.specshow(librosa.amplitude_to_db(C_med_sub, ... ref=np.max), ... x_coords=subbeat_t, x_axis='time', ax=ax[2]) >>> ax[2].set(title='Sub-beat synchronous CQT power, ' ... 'shape={}'.format(C_med_sub.shape)) """ if aggregate is None: aggregate = np.mean shape = list(data.shape) if np.all([isinstance(_, slice) for _ in idx]): slices = idx elif np.all([np.issubdtype(type(_), np.integer) for _ in idx]): slices = index_to_slice(np.asarray(idx), 0, shape[axis], pad=pad) else: raise ParameterError("Invalid index set: {}".format(idx)) agg_shape = list(shape) agg_shape[axis] = len(slices) data_agg = np.empty( agg_shape, order="F" if np.isfortran(data) else "C", dtype=data.dtype ) idx_in = [slice(None)] * data.ndim idx_agg = [slice(None)] * data_agg.ndim for (i, segment) in enumerate(slices): idx_in[axis] = segment idx_agg[axis] = i data_agg[tuple(idx_agg)] = aggregate(data[tuple(idx_in)], axis=axis) return data_agg def softmask(X, X_ref, power=1, split_zeros=False): """Robustly compute a soft-mask operation. ``M = X**power / (X**power + X_ref**power)`` Parameters ---------- X : np.ndarray The (non-negative) input array corresponding to the positive mask elements X_ref : np.ndarray The (non-negative) array of reference or background elements. Must have the same shape as ``X``. power : number > 0 or np.inf If finite, returns the soft mask computed in a numerically stable way If infinite, returns a hard (binary) mask equivalent to ``X > X_ref``. Note: for hard masks, ties are always broken in favor of ``X_ref`` (``mask=0``). split_zeros : bool If `True`, entries where ``X`` and ``X_ref`` are both small (close to 0) will receive mask values of 0.5. Otherwise, the mask is set to 0 for these entries. Returns ------- mask : np.ndarray, shape=X.shape The output mask array Raises ------ ParameterError If ``X`` and ``X_ref`` have different shapes. If ``X`` or ``X_ref`` are negative anywhere If ``power <= 0`` Examples -------- >>> X = 2 * np.ones((3, 3)) >>> X_ref = np.vander(np.arange(3.0)) >>> X array([[ 2., 2., 2.], [ 2., 2., 2.], [ 2., 2., 2.]]) >>> X_ref array([[ 0., 0., 1.], [ 1., 1., 1.], [ 4., 2., 1.]]) >>> librosa.util.softmask(X, X_ref, power=1) array([[ 1. , 1. , 0.667], [ 0.667, 0.667, 0.667], [ 0.333, 0.5 , 0.667]]) >>> librosa.util.softmask(X_ref, X, power=1) array([[ 0. , 0. , 0.333], [ 0.333, 0.333, 0.333], [ 0.667, 0.5 , 0.333]]) >>> librosa.util.softmask(X, X_ref, power=2) array([[ 1. , 1. , 0.8], [ 0.8, 0.8, 0.8], [ 0.2, 0.5, 0.8]]) >>> librosa.util.softmask(X, X_ref, power=4) array([[ 1. , 1. , 0.941], [ 0.941, 0.941, 0.941], [ 0.059, 0.5 , 0.941]]) >>> librosa.util.softmask(X, X_ref, power=100) array([[ 1.000e+00, 1.000e+00, 1.000e+00], [ 1.000e+00, 1.000e+00, 1.000e+00], [ 7.889e-31, 5.000e-01, 1.000e+00]]) >>> librosa.util.softmask(X, X_ref, power=np.inf) array([[ True, True, True], [ True, True, True], [False, False, True]], dtype=bool) """ if X.shape != X_ref.shape: raise ParameterError("Shape mismatch: {}!={}".format(X.shape, X_ref.shape)) if np.any(X < 0) or np.any(X_ref < 0): raise ParameterError("X and X_ref must be non-negative") if power <= 0: raise ParameterError("power must be strictly positive") # We're working with ints, cast to float. dtype = X.dtype if not np.issubdtype(dtype, np.floating): dtype = np.float32 # Re-scale the input arrays relative to the larger value Z = np.maximum(X, X_ref).astype(dtype) bad_idx = Z < np.finfo(dtype).tiny Z[bad_idx] = 1 # For finite power, compute the softmask if np.isfinite(power): mask = (X / Z) ** power ref_mask = (X_ref / Z) ** power good_idx = ~bad_idx mask[good_idx] /= mask[good_idx] + ref_mask[good_idx] # Wherever energy is below energy in both inputs, split the mask if split_zeros: mask[bad_idx] = 0.5 else: mask[bad_idx] = 0.0 else: # Otherwise, compute the hard mask mask = X > X_ref return mask def tiny(x): """Compute the tiny-value corresponding to an input's data type. This is the smallest "usable" number representable in ``x.dtype`` (e.g., float32). This is primarily useful for determining a threshold for numerical underflow in division or multiplication operations. Parameters ---------- x : number or np.ndarray The array to compute the tiny-value for. All that matters here is ``x.dtype`` Returns ------- tiny_value : float The smallest positive usable number for the type of ``x``. If ``x`` is integer-typed, then the tiny value for ``np.float32`` is returned instead. See Also -------- numpy.finfo Examples -------- For a standard double-precision floating point number: >>> librosa.util.tiny(1.0) 2.2250738585072014e-308 Or explicitly as double-precision >>> librosa.util.tiny(np.asarray(1e-5, dtype=np.float64)) 2.2250738585072014e-308 Or complex numbers >>> librosa.util.tiny(1j) 2.2250738585072014e-308 Single-precision floating point: >>> librosa.util.tiny(np.asarray(1e-5, dtype=np.float32)) 1.1754944e-38 Integer >>> librosa.util.tiny(5) 1.1754944e-38 """ # Make sure we have an array view x = np.asarray(x) # Only floating types generate a tiny if np.issubdtype(x.dtype, np.floating) or np.issubdtype( x.dtype, np.complexfloating ): dtype = x.dtype else: dtype = np.float32 return np.finfo(dtype).tiny def fill_off_diagonal(x, radius, value=0): """Sets all cells of a matrix to a given ``value`` if they lie outside a constraint region. In this case, the constraint region is the Sakoe-Chiba band which runs with a fixed ``radius`` along the main diagonal. When ``x.shape[0] != x.shape[1]``, the radius will be expanded so that ``x[-1, -1] = 1`` always. ``x`` will be modified in place. Parameters ---------- x : np.ndarray [shape=(N, M)] Input matrix, will be modified in place. radius : float The band radius (1/2 of the width) will be ``int(radius*min(x.shape))`` value : int ``x[n, m] = value`` when ``(n, m)`` lies outside the band. Examples -------- >>> x = np.ones((8, 8)) >>> librosa.util.fill_off_diagonal(x, 0.25) >>> x array([[1, 1, 0, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0, 0, 0], [0, 0, 1, 1, 1, 0, 0, 0], [0, 0, 0, 1, 1, 1, 0, 0], [0, 0, 0, 0, 1, 1, 1, 0], [0, 0, 0, 0, 0, 1, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1]]) >>> x = np.ones((8, 12)) >>> librosa.util.fill_off_diagonal(x, 0.25) >>> x array([[1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]]) """ nx, ny = x.shape # Calculate the radius in indices, rather than proportion radius = np.round(radius * np.min(x.shape)) nx, ny = x.shape offset = np.abs((x.shape[0] - x.shape[1])) if nx < ny: idx_u = np.triu_indices_from(x, k=radius + offset) idx_l = np.tril_indices_from(x, k=-radius) else: idx_u = np.triu_indices_from(x, k=radius) idx_l = np.tril_indices_from(x, k=-radius - offset) # modify input matrix x[idx_u] = value x[idx_l] = value def cyclic_gradient(data, edge_order=1, axis=-1): """Estimate the gradient of a function over a uniformly sampled, periodic domain. This is essentially the same as `np.gradient`, except that edge effects are handled by wrapping the observations (i.e. assuming periodicity) rather than extrapolation. Parameters ---------- data : np.ndarray The function values observed at uniformly spaced positions on a periodic domain edge_order: {1, 2} The order of the difference approximation used for estimating the gradient axis : int The axis along which gradients are calculated. Returns ------- grad : np.ndarray like ``data`` The gradient of ``data`` taken along the specified axis. See Also -------- numpy.gradient Examples -------- This example estimates the gradient of cosine (-sine) from 64 samples using direct (aperiodic) and periodic gradient calculation. >>> import matplotlib.pyplot as plt >>> x = 2 * np.pi * np.linspace(0, 1, num=64, endpoint=False) >>> y = np.cos(x) >>> grad = np.gradient(y) >>> cyclic_grad = librosa.util.cyclic_gradient(y) >>> true_grad = -np.sin(x) * 2 * np.pi / len(x) >>> fig, ax = plt.subplots() >>> ax.plot(x, true_grad, label='True gradient', linewidth=5, ... alpha=0.35) >>> ax.plot(x, cyclic_grad, label='cyclic_gradient') >>> ax.plot(x, grad, label='np.gradient', linestyle=':') >>> ax.legend() >>> # Zoom into the first part of the sequence >>> ax.set(xlim=[0, np.pi/16], ylim=[-0.025, 0.025]) """ # Wrap-pad the data along the target axis by `edge_order` on each side padding = [(0, 0)] * data.ndim padding[axis] = (edge_order, edge_order) data_pad = np.pad(data, padding, mode="wrap") # Compute the gradient grad = np.gradient(data_pad, edge_order=edge_order, axis=axis) # Remove the padding slices = [slice(None)] * data.ndim slices[axis] = slice(edge_order, -edge_order) return grad[tuple(slices)] @numba.jit(nopython=True, cache=True) def __shear_dense(X, factor=+1, axis=-1): """Numba-accelerated shear for dense (ndarray) arrays""" if axis == 0: X = X.T X_shear = np.empty_like(X) for i in range(X.shape[1]): X_shear[:, i] = np.roll(X[:, i], factor * i) if axis == 0: X_shear = X_shear.T return X_shear def __shear_sparse(X, factor=+1, axis=-1): """Fast shearing for sparse matrices Shearing is performed using CSC array indices, and the result is converted back to whatever sparse format the data was originally provided in. """ fmt = X.format if axis == 0: X = X.T # Now we're definitely rolling on the correct axis X_shear = X.tocsc(copy=True) # The idea here is to repeat the shear amount (factor * range) # by the number of non-zeros for each column. # The number of non-zeros is computed by diffing the index pointer array roll = np.repeat(factor * np.arange(X_shear.shape[1]), np.diff(X_shear.indptr)) # In-place roll np.mod(X_shear.indices + roll, X_shear.shape[0], out=X_shear.indices) if axis == 0: X_shear = X_shear.T # And convert back to the input format return X_shear.asformat(fmt) def shear(X, factor=1, axis=-1): """Shear a matrix by a given factor. The column ``X[:, n]`` will be displaced (rolled) by ``factor * n`` This is primarily useful for converting between lag and recurrence representations: shearing with ``factor=-1`` converts the main diagonal to a horizontal. Shearing with ``factor=1`` converts a horizontal to a diagonal. Parameters ---------- X : np.ndarray [ndim=2] or scipy.sparse matrix The array to be sheared factor : integer The shear factor: ``X[:, n] -> np.roll(X[:, n], factor * n)`` axis : integer The axis along which to shear Returns ------- X_shear : same type as ``X`` The sheared matrix Examples -------- >>> E = np.eye(3) >>> librosa.util.shear(E, factor=-1, axis=-1) array([[1., 1., 1.], [0., 0., 0.], [0., 0., 0.]]) >>> librosa.util.shear(E, factor=-1, axis=0) array([[1., 0., 0.], [1., 0., 0.], [1., 0., 0.]]) >>> librosa.util.shear(E, factor=1, axis=-1) array([[1., 0., 0.], [0., 0., 1.], [0., 1., 0.]]) """ if not np.issubdtype(type(factor), np.integer): raise ParameterError("factor={} must be integer-valued".format(factor)) if scipy.sparse.isspmatrix(X): return __shear_sparse(X, factor=factor, axis=axis) else: return __shear_dense(X, factor=factor, axis=axis) def stack(arrays, axis=0): """Stack one or more arrays along a target axis. This function is similar to `np.stack`, except that memory contiguity is retained when stacking along the first dimension. This is useful when combining multiple monophonic audio signals into a multi-channel signal, or when stacking multiple feature representations to form a multi-dimensional array. Parameters ---------- arrays : list one or more `np.ndarray` axis : integer The target axis along which to stack. ``axis=0`` creates a new first axis, and ``axis=-1`` creates a new last axis. Returns ------- arr_stack : np.ndarray [shape=(len(arrays), array_shape) or shape=(array_shape, len(arrays))] The input arrays, stacked along the target dimension. If ``axis=0``, then ``arr_stack`` will be F-contiguous. Otherwise, ``arr_stack`` will be C-contiguous by default, as computed by `np.stack`. Raises ------ ParameterError - If ``arrays`` do not all have the same shape - If no ``arrays`` are given See Also -------- numpy.stack numpy.ndarray.flags frame Examples -------- Combine two buffers into a contiguous arrays >>> y_left = np.ones(5) >>> y_right = -np.ones(5) >>> y_stereo = librosa.util.stack([y_left, y_right], axis=0) >>> y_stereo array([[ 1., 1., 1., 1., 1.], [-1., -1., -1., -1., -1.]]) >>> y_stereo.flags C_CONTIGUOUS : False F_CONTIGUOUS : True OWNDATA : True WRITEABLE : True ALIGNED : True WRITEBACKIFCOPY : False UPDATEIFCOPY : False Or along the trailing axis >>> y_stereo = librosa.util.stack([y_left, y_right], axis=-1) >>> y_stereo array([[ 1., -1.], [ 1., -1.], [ 1., -1.], [ 1., -1.], [ 1., -1.]]) >>> y_stereo.flags C_CONTIGUOUS : True F_CONTIGUOUS : False OWNDATA : True WRITEABLE : True ALIGNED : True WRITEBACKIFCOPY : False UPDATEIFCOPY : False """ shapes = {arr.shape for arr in arrays} if len(shapes) > 1: raise ParameterError("all input arrays must have the same shape") elif len(shapes) < 1: raise ParameterError("at least one input array must be provided for stack") shape_in = shapes.pop() if axis != 0: return np.stack(arrays, axis=axis) else: # If axis is 0, enforce F-ordering shape = tuple([len(arrays)] + list(shape_in)) # Find the common dtype for all inputs dtype = np.find_common_type([arr.dtype for arr in arrays], []) # Allocate an empty array of the right shape and type result = np.empty(shape, dtype=dtype, order="F") # Stack into the preallocated buffer np.stack(arrays, axis=axis, out=result) return result def dtype_r2c(d, default=np.complex64): """Find the complex numpy dtype corresponding to a real dtype. This is used to maintain numerical precision and memory footprint when constructing complex arrays from real-valued data (e.g. in a Fourier transform). A `float32` (single-precision) type maps to `complex64`, while a `float64` (double-precision) maps to `complex128`. Parameters ---------- d : np.dtype The real-valued dtype to convert to complex. If ``d`` is a complex type already, it will be returned. default : np.dtype, optional The default complex target type, if ``d`` does not match a known dtype Returns ------- d_c : np.dtype The complex dtype See Also -------- dtype_c2r numpy.dtype Examples -------- >>> librosa.util.dtype_r2c(np.float32) dtype('complex64') >>> librosa.util.dtype_r2c(np.int16) dtype('complex64') >>> librosa.util.dtype_r2c(np.complex128) dtype('complex128') """ mapping = { np.dtype(np.float32): np.complex64, np.dtype(np.float64): np.complex128, np.dtype(np.float): np.complex, } # If we're given a complex type already, return it dt = np.dtype(d) if dt.kind == "c": return dt # Otherwise, try to map the dtype. # If no match is found, return the default. return np.dtype(mapping.get(dt, default)) def dtype_c2r(d, default=np.float32): """Find the real numpy dtype corresponding to a complex dtype. This is used to maintain numerical precision and memory footprint when constructing real arrays from complex-valued data (e.g. in an inverse Fourier transform). A `complex64` (single-precision) type maps to `float32`, while a `complex128` (double-precision) maps to `float64`. Parameters ---------- d : np.dtype The complex-valued dtype to convert to real. If ``d`` is a real (float) type already, it will be returned. default : np.dtype, optional The default real target type, if ``d`` does not match a known dtype Returns ------- d_r : np.dtype The real dtype See Also -------- dtype_r2c numpy.dtype Examples -------- >>> librosa.util.dtype_r2c(np.complex64) dtype('float32') >>> librosa.util.dtype_r2c(np.float32) dtype('float32') >>> librosa.util.dtype_r2c(np.int16) dtype('float32') >>> librosa.util.dtype_r2c(np.complex128) dtype('float64') """ mapping = { np.dtype(np.complex64): np.float32, np.dtype(np.complex128): np.float64, np.dtype(np.complex): np.float, } # If we're given a real type already, return it dt = np.dtype(d) if dt.kind == "f": return dt # Otherwise, try to map the dtype. # If no match is found, return the default. return np.dtype(mapping.get(np.dtype(d), default))
isc
blab/stability
augur/src/HI_predictability.py
2
26929
###### # script that explores the predictive power of inferred antigenic change # It tree and mutation models inferred in intervals of 10years for H3N2 # ###### from collections import defaultdict from diagnostic_figures import large_effect_mutations, figheight from itertools import izip from H3N2_process import H3N2_process, virus_config from diagnostic_figures import get_slope import matplotlib.pyplot as plt from matplotlib import cm import numpy as np from scipy.stats import ks_2samp from fitness_tolerance import * import seaborn as sns plt.ion() fig_fontsize=14 fs =fig_fontsize params = { 'lam_HI':1.0, 'lam_avi':2.0, 'lam_pot':0.3, 'prefix':'H3N2_', 'serum_Kc':0.003, } def add_panel_label(ax,label, x_offset=-0.1): '''add one letter labels to the upper left corner of a figure A, B, C etc ''' ax.text(x_offset, 0.95, label, transform=ax.transAxes, fontsize=fig_fontsize*1.5) def select_nodes_in_season(tree, interval): '''mark all nodes in a time interval specified by decimalized years, e.g. 2012.34 ''' for node in tree.leaf_iter(): # mark leafs if node.num_date>=interval[0] and node.num_date<interval[1]: node.alive=True node.n_alive = 1 else: node.alive=False node.n_alive = 0 for node in tree.postorder_internal_node_iter(): # go over all internal nodes: alive iff at least one child alive node.alive = any([n.alive for n in node.child_nodes()]) node.n_alive = np.sum([n.n_alive for n in node.child_nodes()]) def calc_LBI(tree, LBI_tau = 0.0005, attr = 'lb'): ''' traverses the tree in postorder and preorder to calculate the up and downstream tree length exponentially weighted by distance. then adds them as LBI tree -- dendropy tree for whose node the LBI is being computed attr -- the attribute name used to store the result ''' min_bl = 0.00005 # traverse the tree in postorder (children first) to calculate msg to parents for node in tree.postorder_node_iter(): node.down_polarizer = 0 node.up_polarizer = 0 for child in node.child_nodes(): node.up_polarizer += child.up_polarizer bl = max(min_bl, node.edge_length)/LBI_tau node.up_polarizer *= np.exp(-bl) if node.alive: node.up_polarizer += LBI_tau*(1-np.exp(-bl)) # traverse the tree in preorder (parents first) to calculate msg to children for node in tree.preorder_internal_node_iter(): for child1 in node.child_nodes(): child1.down_polarizer = node.down_polarizer for child2 in node.child_nodes(): if child1!=child2: child1.down_polarizer += child2.up_polarizer bl = max(min_bl, child1.edge_length)/LBI_tau child1.down_polarizer *= np.exp(-bl) if child1.alive: child1.down_polarizer += LBI_tau*(1-np.exp(-bl)) # go over all nodes and calculate the LBI (can be done in any order) max_LBI = 0 for node in tree.postorder_node_iter(): tmp_LBI = node.down_polarizer for child in node.child_nodes(): tmp_LBI += child.up_polarizer node.__setattr__(attr, tmp_LBI) if tmp_LBI>max_LBI: max_LBI=tmp_LBI return max_LBI ''' mutation model goes over different intervals and fits the HI model ''' mut_models = True save_figs = True if mut_models: resolutions = ['1985to1995','1990to2000','1995to2005','2000to2010','2005to2016'] fig, axs = plt.subplots(1,len(resolutions), sharey=True, figsize=(4*figheight, 1.3*figheight)) cols={} HI_distributions_mutations = [] #### make a plot of trajectories colored by HI effect for res,ax in izip(resolutions,axs): params['pivots_per_year'] = 6.0 params['resolution']=res params['time_interval'] = map(float, res.split('to')) #params['time_interval'] = [2015.8-int(res[:-1]), 2015.8] if params['time_interval'][1]>2015: params['time_interval'][1]=2015.8 # add all arguments to virus_config (possibly overriding) virus_config.update(params) # pass all these arguments to the processor: will be passed down as kwargs through all classes myH3N2 = H3N2_process(**virus_config) myH3N2.run(['HI'], lam_HI = virus_config['lam_HI'], lam_avi = virus_config['lam_avi'], lam_pot = virus_config['lam_pot'], ) cols = large_effect_mutations(myH3N2, ax, cols) # plot the mutation trajectories into a multi panel figure for mut in myH3N2.mutation_effects: # for each mutation, make a list of mutation, effect and frequency trajectory HI = myH3N2.mutation_effects[mut] mutlabel = mut[0]+':'+mut[1][1:] if mutlabel in myH3N2.frequencies["mutations"]["global"]: HI_distributions_mutations.append([res, mut, HI, np.array(myH3N2.frequencies["mutations"]["global"][mutlabel])]) else: print("no frequencies for ",mut, 'HI', HI) continue print(len(HI_distributions_mutations)) if save_figs: plt.savefig("prediction_figures/"+"trajectories_mutations.pdf") ### make cumulative distribution of HI titers that fix or don't freq_thres = 0.5 # minimal freq HI_threshold =0.1 # minimal HI effect fixed = np.array([ HI for res, mut, HI, freq in HI_distributions_mutations if freq[0]<0.1 and freq.max()>freq_thres and HI>HI_threshold]) # condition on initially rare failed = np.array([ HI for res, mut, HI, freq in HI_distributions_mutations if freq[0]<0.1 and freq.max()<freq_thres and HI>HI_threshold]) D, p = ks_2samp(fixed, failed) print("HI distribution of fixed and failed, KS stat:", D, "p-val:",p) # plt cumulative distributions plt.figure() plt.plot(sorted(fixed), np.linspace(0,1,len(fixed)), label = '>'+str(freq_thres)+' n='+str(len(fixed))) plt.plot(sorted(failed), np.linspace(0,1,len(failed)), label = '<'+str(freq_thres)+' n='+str(len(failed))) plt.xlabel('HI effect') plt.ylabel('cumulative distribution') plt.legend(loc=4) if save_figs: plt.savefig("prediction_figures/"+"cumulative_HI_mutations.pdf") ################################################################ ##### fraction successful ################################################################ plt.figure(figsize = (1.6*figheight, figheight)) ax3 = plt.subplot(1,1,1) HI_max = np.array([[HI, freq.max()] for res, mut, HI, freq in HI_distributions_mutations if freq[0]<0.1 and freq.max()>0.1]) nreps=100 HI_threshold = np.array([0.0, 0.3, 0.7, 1.2, 4]) #defining HI categories HI_binc = 0.5*(HI_threshold[:-1] + HI_threshold[1:]) for fi,freq_thres in enumerate([0.25, 0.5, 0.75, 0.95]): frac_success = [] stddev_success = [] for HI_lower, HI_upper in zip(HI_threshold[:-1], HI_threshold[1:]): ind = (HI_max[:,0]>=HI_lower)&(HI_max[:,0]<HI_upper) vals = HI_max[ind,1] tmp = [] for rep in xrange(nreps): tmp_vals = vals[np.random.randint(len(vals), size=len(vals)/2)] tmp.append((tmp_vals>freq_thres).mean()) stddev_success.append(np.std(tmp)) print(HI_lower, ind.sum()) frac_success.append((HI_max[ind,1]>freq_thres).mean()) ax3.errorbar(np.arange(len(frac_success))+0.5+0.03*fi, frac_success,stddev_success, label = "max freq >"+str(freq_thres), lw=2) ax3.set_xlabel('HI effect', fontsize=fs) ax3.set_ylabel('fraction reaching frequency threshold', fontsize=fs) ax3.tick_params(labelsize=fs) ax3.set_xticks(np.arange(len(HI_binc))+0.5) ax3.set_xticklabels([str(lower)+'-'+str(upper) for lower, upper in zip(HI_threshold[:-1], HI_threshold[1:])]) plt.legend(loc=8, fontsize=fs) plt.ylim([0,1]) plt.xlim([0,len(HI_binc)]) plt.tight_layout() if save_figs: plt.savefig("prediction_figures/"+'fraction_successful.pdf') ### make cumulative HI on backbone HI_backbone = np.array([HI for res, mut, HI, freq in HI_distributions_mutations if freq[0]<0.1 and freq.max()>0.75]) HI_backbone.sort() plt.figure(figsize = (1.2*figheight, figheight)) cumHI = HI_backbone.cumsum() plt.plot(HI_backbone, cumHI/cumHI[-1]) plt.ylabel('fraction of cHI due to effects < cutoff', fontsize = fs) plt.xlabel('effect size', fontsize = fs) plt.tick_params(labelsize=fs) plt.tight_layout() if save_figs: plt.savefig("prediction_figures/"+'cumulative_HI_effects.pdf') ''' analyze the tree model This uses the 30 year span and investigates whether antigenic advance (as measured by cHI) is predictive of clade success. ''' res = '1985to2016' params['pivots_per_year'] = 3.0 params['resolution']=res params['time_interval'] = map(float, res.split('to')) if params['time_interval'][1]>2015: params['time_interval'][1]=2015.8 # set the upper time limit to past the last sequence # add all arguments to virus_config (possibly overriding) virus_config.update(params) # pass all these arguments to the processor: will be passed down as kwargs through all classes myH3N2 = H3N2_process(**virus_config) myH3N2.load() # assign dates to internal nodes as minimum for children. this is needed to calculate the recent for node in myH3N2.tree.postorder_internal_node_iter(): node.num_date = np.min([c.num_date for c in node.child_nodes()]) assign_fitness(myH3N2.tree) dates_fitness = np.array([(n.num_date, n.tol) for n in myH3N2.tree.postorder_internal_node_iter()]) dates_fitness_term = np.array([(n.num_date, n.tol) for n in myH3N2.tree.leaf_iter()]) pivots = myH3N2.tree.seed_node.pivots HI_vs_max_freq_tree = [] dt=0.5 for node in myH3N2.tree.postorder_internal_node_iter(): if node.num_date<1987: continue if node.freq["global"] is not None and node.freq["global"].max()>0.05: p = node.parent_node cHI = node.dHI while p is not None and (node.num_date - p.num_date)<dt: cHI += p.dHI p = p.parent_node ind = (dates_fitness_term[:,0]<=node.num_date)&(dates_fitness_term[:,0]>node.num_date-dt) HI_vs_max_freq_tree.append((cHI, np.array(node.freq["global"]))) freq_clusters = [] globbing_thres=0.25 print("combining trajectories") for cHI, freq in HI_vs_max_freq_tree: found = False for fi, (cHIs, cfreqs) in enumerate(freq_clusters): max_freq = np.mean(cfreqs, axis=0).max()+0.1 if np.max(np.abs(freq - np.mean(cfreqs, axis=0)))/max_freq<globbing_thres: freq_clusters[fi][1].append(freq) freq_clusters[fi][0].append(cHI) found=True if not found: print ("adding new cluster") freq_clusters.append([[cHI], [freq]]) print("generated",len(freq_clusters), " trajectory clusters") freq_thres = 0.75 fixed = np.array([ max(HI) for HI, freqs in freq_clusters if np.max(np.mean(freqs, axis=0))>freq_thres and max(HI)>0.01]) failed = np.array([ max(HI) for HI, freqs in freq_clusters if np.max(np.mean(freqs, axis=0))<freq_thres and max(HI)>0.01]) print("split into lists of failed and successful trajectories") D, p = ks_2samp(fixed, failed) print("KS stat:", D, "p-val:",p) plt.figure() plt.plot(sorted(fixed), np.linspace(0,1,len(fixed)), label = '>'+str(freq_thres)+' n='+str(len(fixed))) plt.plot(sorted(failed), np.linspace(0,1,len(failed)), label = '<'+str(freq_thres)+' n='+str(len(failed))) plt.xlabel('HI effect') plt.ylabel('cumulative distribution') plt.legend(loc=4) if save_figs: plt.savefig("prediction_figures/"+"cumulative_HI_tree.pdf") ################################################################ #### plot tree frequencies ################################################################ fs=14 HI_cutoff=0.1 mycmap = cm.cool plt.figure(figsize=(3*figheight, figheight)) ax1 = plt.subplot(1,1,1) for cHIs, cfreqs in freq_clusters: if max(cHIs)>HI_cutoff: ax1.plot(pivots,np.mean(cfreqs, axis=0), c=mycmap(np.sqrt(np.max(cHIs))/2)) sm = plt.cm.ScalarMappable(cmap=mycmap, norm=plt.Normalize(vmin=0, vmax=2)) # fake up the array of the scalar mappable. Urgh... sm._A = [] cb = plt.colorbar(sm) cb.set_ticks(np.sqrt([0, 0.3, 1, 2,4])) cb.set_ticklabels(map(str, [0, 0.3, 1, 2,4])) cb.set_label('HI effect', fontsize=fs) ax1.set_ylabel('frequency', fontsize=fs) ax1.set_xlabel('year', fontsize=fs) ax1.set_xlim([1985,2016]) ax1.tick_params(labelsize=fs) plt.tight_layout() add_panel_label(ax1, "A", x_offset=-0.07) if save_figs: plt.savefig("prediction_figures/"+"trajectories_tree.pdf") ''' the following is obsolete code that was used to plot the fraction of successful clades vs their antigenic effect ''' ################################################################ ##### add fraction successful ################################################################ #plt.figure(figsize=(2.4*figheight, figheight)) #ax2 = plt.subplot2grid((1,2),(0,0)) #plt.title("tree model", fontsize=fs) ##HI_threshold = np.array([0.1, 0.3, 0.8, 1.5, 4]) #HI_threshold = np.array([0.0, 0.3, 0.8, 1.5, 4]) #HI_binc = 0.5*(HI_threshold[:-1]+HI_threshold[1:]) #HI_max = np.array([[np.max(HI), np.max(np.mean(freqs, axis=0))] for HI, freqs in freq_clusters]) #for freq_thres in [0.5, 0.75, 0.95]: # frac_success = [] # for HI_lower, HI_upper in zip(HI_threshold[:-1], HI_threshold[1:]): # ind = (HI_max[:,0]>=HI_lower)&(HI_max[:,0]<HI_upper) # print(HI_lower, ind.sum()) # frac_success.append((HI_max[ind,1]>freq_thres).mean()) # ax2.plot(np.arange(len(frac_success))+0.5, frac_success, 'o-', label = "max freq >"+str(freq_thres)) # #ax2.set_xlabel('HI effect', fontsize=fs) #ax2.set_ylabel('fraction reaching frequency threshold', fontsize=fs) #ax2.tick_params(labelsize=fs) #ax2.set_xticks(np.arange(len(HI_binc))+0.5) #ax2.set_xticklabels([str(lower)+'-'+str(upper) for lower, upper in zip(HI_threshold[:-1], HI_threshold[1:])]) #plt.legend(loc=4, fontsize=fs) #plt.ylim([0,1]) #plt.xlim([0,len(HI_binc)]) # #ax3 = plt.subplot2grid((1,2),(0,1)) #plt.title("mutation model", fontsize=fs) #HI_max = np.array([[HI, freq.max()] for res, mut, HI, freq in HI_distributions_mutations if freq[0]<0.1 and freq.max()>0.01]) #for freq_thres in [0.25, 0.5, 0.75, 0.95]: # frac_success = [] # for HI_lower, HI_upper in zip(HI_threshold[:-1], HI_threshold[1:]): # ind = (HI_max[:,0]>=HI_lower)&(HI_max[:,0]<HI_upper) # print(HI_lower, ind.sum()) # frac_success.append((HI_max[ind,1]>freq_thres).mean()) # ax3.plot(np.arange(len(frac_success))+0.5, frac_success, 'o-', label = "max freq >"+str(freq_thres)) # #ax3.set_xlabel('HI effect', fontsize=fs) #ax3.set_ylabel('fraction reaching frequency threshold', fontsize=fs) #ax3.tick_params(labelsize=fs) #ax3.set_xticks(np.arange(len(HI_binc))+0.5) #ax3.set_xticklabels([str(lower)+'-'+str(upper) for lower, upper in zip(HI_threshold[:-1], HI_threshold[1:])]) #plt.legend(loc=4, fontsize=fs) #plt.ylim([0,1]) #plt.xlim([0,len(HI_binc)]) # #plt.tight_layout() #if save_figs: # plt.savefig("prediction_figures/"+'combined_HI_dynamics.pdf') # # ######################################################################### ##### the following implements bona fide prediction by estimating HI models ##### and LBI for viruses sampled up to a time cutoff and examining the next season ######################################################################### gof_by_year = [] alpha = 'ACGT' def allele_freqs(seqs): ''' alignment -> nucleotide frequencies ''' tmp_seqs = np.array([np.fromstring(seq, 'S1') for seq in seqs]) af = np.zeros((4,tmp_seqs.shape[1])) for ni,nuc in enumerate(alpha): af[ni,:] = (tmp_seqs==nuc).mean(axis=0) return af def af_dist(af1, af2): ''' average distance between two population characterized by nucleotide frequencies af1 and af2''' return 1-(af1*af2).sum(axis=0).mean(axis=0) # distance == 1-probability of being the same def seq_dist(seq, af): ''' average distance betweeen a populiation characterized by nucleotide frequencies and a sequence''' ind = np.array([alpha.index(nuc) for nuc in seq]) #calculate the indices in the frequency array that correspond to the sequence state return 1.0-np.mean(af[ind, np.arange(len(seq))]) #1 - probability of being the same # frequency cutoffs for a clade to be included cutoffs = [0.01, 0.03, 0.05, 0.1] # set up dictionaries to remember the highest scoring clades for sets defined by each of the cutoffs LBI_HI_by_date = {cutoff:[] for cutoff in cutoffs} best_scores = {cutoff:[] for cutoff in cutoffs} best_LBI = {cutoff:[] for cutoff in cutoffs} best_HI = {cutoff:[] for cutoff in cutoffs} best_HI_vs_HI_of_best = {cutoff:[] for cutoff in cutoffs} # loop over all years we want to include for year in range(1990, 2015): print("#############################################") print("### YEAR:",year) print("#############################################") # train the HI model and remember some basic figures about the fit myH3N2.map_HI(training_fraction = 1.0, method = 'nnl1reg', lam_HI=params['lam_HI'], map_to_tree = True, lam_pot = params['lam_pot'], lam_avi = params['lam_avi'], cutoff_date = year+2./12.0, subset_strains = False, force_redo = True) gof_by_year.append((year, myH3N2.fit_error, myH3N2.tree_graph.shape[0])) # take and allele frequency snapshot of future season Sept until June select_nodes_in_season(myH3N2.tree, (year+9.0/12, year+18.0/12)) future_seqs = [node.seq for node in myH3N2.tree.leaf_iter() if node.alive] future_af = allele_freqs(future_seqs) #current season May until Feb (all previously selected nodes will be erased) select_nodes_in_season(myH3N2.tree, (year-7.0/12, year+2.0/12)) af = allele_freqs([node.seq for node in myH3N2.tree.leaf_iter() if node.alive]) avg_dist = af_dist(af, future_af) max_LBI = calc_LBI(myH3N2.tree, LBI_tau = 0.001) total_alive = 1.0*myH3N2.tree.seed_node.n_alive # loop over the different frequency cut-offs for cutoff in cutoffs: # make a list of nodes (clades) that are used for prediction. frequency needs to be >cutoff and <0.95 nodes = [node for node in myH3N2.tree.postorder_node_iter() if node.alive and node.n_alive/total_alive>cutoff and node.n_alive/total_alive<0.95] # determine the minimal distance to future, the average cumulative antigenic advance, and the best possible node all_distance_to_future = np.array([seq_dist(node.seq, future_af) for node in nodes]) best = np.argmin(all_distance_to_future) min_dist = all_distance_to_future[best] current_cHI = np.mean([n.cHI for n in nodes]) # determine the nodes with the highest LBI and the highest HI all_LBI = np.array([n.lb for n in nodes]) best_LBI_node = nodes[np.argmax(all_LBI)] best_HI_node = nodes[np.argmax([n.cHI for n in nodes])] # remember the LBI and HI of the best node best_scores[cutoff].append([year, nodes[best].lb/max_LBI, nodes[best].cHI-current_cHI]) # remember the LBI and HI, normalized (d/avg_d), standardized (d-min_d)/(avg_d-min_d), and min_d, avg_d for node with highest LBI best_LBI[cutoff].append((year, best_LBI_node.lb/max_LBI, best_LBI_node.cHI-current_cHI, (seq_dist(best_LBI_node.seq, future_af)-min_dist)/(avg_dist-min_dist), seq_dist(best_LBI_node.seq, future_af)/avg_dist, min_dist, avg_dist)) # remember the LBI and HI, normalized (d/avg_d), standardized (d-min_d)/(avg_d-min_d), and min_d, avg_d for node with highest HI best_HI[cutoff].append((year, best_HI_node.lb/max_LBI, best_HI_node.cHI-current_cHI, (seq_dist(best_HI_node.seq, future_af)-min_dist)/(avg_dist-min_dist), seq_dist(best_HI_node.seq, future_af)/avg_dist, min_dist, avg_dist)) # remember HI of the node closest to the future and the HI of the node iwth the highest HI best_HI_vs_HI_of_best[cutoff].append((year, best_HI_node.cHI - current_cHI, nodes[best].cHI - current_cHI)) print(year, "avg_dist", avg_dist) # make a list of the LBI, cHI, and distances for every node in the set belonging to cutoffs. (used for scattering LBI vs HI) for node in nodes: node_freq = node.n_alive/total_alive if node.freq["global"] is not None: tmp_freq = np.array(node.freq["global"]) ii = pivots.searchsorted(year+0.2) nii= pivots.searchsorted(year+1.0) LBI_HI_by_date[cutoff].append((node, year, node.lb/max_LBI, node.cHI-current_cHI, (seq_dist(node.seq, future_af)-min_dist)/(avg_dist-min_dist),node_freq, tmp_freq[ii], tmp_freq[nii], tmp_freq)) else: #print("missing frequency", year, node.n_alive) LBI_HI_by_date[cutoff].append((node, year, node.lb/max_LBI, node.cHI-current_cHI, (seq_dist(node.seq, future_af)-min_dist)/(avg_dist-min_dist), node_freq, 0,0,0)) # make an array out of all values for slicing and plotting clades = {} for cutoff in cutoffs: best_scores[cutoff] = np.array(best_scores[cutoff]) best_LBI[cutoff] = np.array(best_LBI[cutoff]) best_HI[cutoff] = np.array(best_HI[cutoff]) best_HI_vs_HI_of_best[cutoff] = np.array(best_HI_vs_HI_of_best[cutoff]) tmp = [] for cl in LBI_HI_by_date[cutoff]: tmp.append(cl[1:-1]) # exclude node (entry 0) and frequencies (entry -1) since they aren't numbers clades[cutoff] = np.array(tmp) ############ # make figure that shows the distance to future season for all years # comparing LBI and HI at different cutoffs ############ cutoff = 0.01 plt.figure(figsize=(2.4*figheight,figheight)) ax=plt.subplot(121) # -2 == mindist, -1 == avg_dits -3 == dist/avg_dist ax.plot(best_HI[cutoff][:,0],best_HI[cutoff][:,-2]/best_HI[cutoff][:,-1], label='best',lw=2, c='k') ax.plot(best_LBI[cutoff][:,0],best_LBI[cutoff][:,-3], label='LBI',lw=2) ax.plot(best_HI[0.05][:,0],best_HI[0.05][:,-3], label='cHI >0.05',lw=2) ax.plot(best_HI[0.01][:,0],best_HI[0.01][:,-3], label='cHI >0.01',lw=2) ax.plot([1990, 2015], [1.0, 1.0], lw=3, c='k', ls='--') ax.tick_params(labelsize=fs) add_panel_label(ax, "B", x_offset=-0.12) ax.set_xlabel('year', fontsize=fs) ax.set_ylabel('distance to season year/year+1', fontsize=fs) ax.set_yticks([0,0.5, 1.0, 1.5]) plt.legend(loc=2, fontsize=fs) ############ # second panel showing the distribytion of HI values of the best nodes ############ cols = sns.color_palette(n_colors=5) symbs = ['o','d','v','^','<'] ax = plt.subplot(122) ax.hist(best_scores[0.05][:,-1]) add_panel_label(ax, "C") ax.set_yticks([0,2,4,6, 8]) ax.set_ylim([0,10]) ax.set_ylabel("#years", fontsize=fs) ax.set_xlabel(r'$cHI-\langle cHI\rangle_{year}$', fontsize=fs) ax.tick_params(labelsize=fs) plt.tight_layout() if save_figs: plt.savefig("prediction_figures/"+'LBI_and_HI_vs_distance.pdf') #fig, axs = plt.subplots(1,3, figsize=(3.0*figheight, figheight)) #lbi_cutoff = 0.2 #for ax, qi in izip(axs,[1,2]): # for yi,year in enumerate(range(1990,2015)): # ind = (clades[:,0]==year)&((clades[:,-3]>lbi_cutoff)|(clades[:,2]>.5)) #restrict to clades larger than cutoff # if ind.sum()==0: # continue # lstr = str(year) if (year<1998 and qi==1) or (year>=1998 and year<2006 and qi==2) else None # ax.scatter(clades[ind,qi], clades[ind,3], c=cols[yi%5], marker=symbs[yi//5], s=50, label=lstr) # print(cols[yi%5]) # x_str = r'$cHI-\langle cHI\rangle_{year}$' if qi==2 else r'$LBI/\max(LBI)$' # ax.set_xlabel(x_str, fontsize=fs) # ax.tick_params(labelsize=fs) # ax.set_xlim((0.2,1.4) if qi==1 else (-3,3)) # ax.set_xticks((0.25,0.5, 0.75, 1.0) if qi==1 else (-2,-1,0,1,2)) # ax.set_ylim((-0.2,2.5)) # if qi<3: # ax.set_yticks([0, 0.5,1.0, 1.5, 2.0]) # ax.set_ylabel(r'distance to season year/year+1', fontsize=fs) # ax.legend() # add_panel_label(ax, "C" if qi==2 else "B", x_offset=-0.12) # #ax = axs[2] #for yi, (year, lbi, cHI) in enumerate(best_scores): # lstr = str(year) if (year>=2006) else None # ax.scatter([lbi], [cHI], c=cols[yi%5], marker=symbs[yi//5], s=50, label=lstr) #ax.set_xlabel(r'$LBI/\max(LBI)$', fontsize=fs) #ax.set_ylabel(r'$cHI-\langle cHI\rangle_{year}$', fontsize=fs) #ax.set_xlim([0, 1.1]) #ax.set_xticks([0, 0.25, 0.5, 0.75, 1]) #ax.set_yticks([-0.5, 0, 0.5, 1, 1.5]) #ax.legend() ################################################################# ### plot best HI vs HI of best ################################################################ plt.figure(figsize = (1.2*figheight, figheight)) ax=plt.subplot(111) for col, cutoff in zip(['b', 'g'], [0.01, 0.05]): plt.scatter(best_HI_vs_HI_of_best[cutoff][:,1], best_HI_vs_HI_of_best[cutoff][:,2], label = '>'+str(cutoff), s=50, c=col) #, s=50*best_HI[:,-3]) plt.plot([0,3],[0,3]) plt.tick_params(labelsize=fs) plt.xlabel(r'maximal $cHI-\langle cHI\rangle_{year}$', fontsize=fs) plt.ylabel(r'successful $cHI-\langle cHI\rangle_{year}$', fontsize=fs) plt.xticks([0,1,2,3,4]) plt.yticks([-1, 0,1,2,3]) plt.legend(loc=2) plt.tight_layout() if save_figs: plt.savefig("prediction_figures/"+'best_HI_vs_HI_of_best.pdf') ################################################################ ### scatter plot of LBI vs HI ################################################################ plt.figure(figsize=(2.4*figheight, figheight)) mycmap=cm.Set1 cutoff = 0.01 for li,lbi_cutoff in enumerate([0.2, 0.1]): ax = plt.subplot(1,2,li+1) ind = clades[cutoff][:,-3]>lbi_cutoff #restrict to clades larger than cutoff if ind.sum()==0: continue ax.set_title('clades >'+str(lbi_cutoff)+' frequency') ax.scatter(clades[cutoff][ind,1], clades[cutoff][ind,2], c=mycmap((clades[cutoff][ind,0]-1990)/25.0), s=80*(1-clades[cutoff][ind,3])**2) ax.set_ylabel(r'$cHI-\langle cHI\rangle_{year}$', fontsize=fs) ax.set_xlabel(r'$LBI/\max(LBI)$', fontsize=fs) ax.tick_params(labelsize=fs) ax.set_yticks([-3,-2,-1,0,1,2]) add_panel_label(ax, "C" if li else "B", x_offset=-0.15) if li: sm = plt.cm.ScalarMappable(cmap=mycmap, norm=plt.Normalize(vmin=1990, vmax=2015)) sm._A = [] cb = plt.colorbar(sm) cb.set_ticks([1990,1995,2000, 2005, 2010, 2015]) cb.set_label('year', fontsize=fs) plt.tight_layout() if save_figs: plt.savefig("prediction_figures/"+'LBI_HI.pdf')
agpl-3.0
adykstra/mne-python
tutorials/epochs/plot_visualize_epochs.py
10
5143
""" .. _tut_viz_epochs: Visualize Epochs data ===================== """ # sphinx_gallery_thumbnail_number = 7 import os.path as op import mne data_path = op.join(mne.datasets.sample.data_path(), 'MEG', 'sample') raw = mne.io.read_raw_fif( op.join(data_path, 'sample_audvis_raw.fif'), preload=True) raw.load_data().filter(None, 9, fir_design='firwin') raw.set_eeg_reference('average', projection=True) # set EEG average reference event_id = {'auditory/left': 1, 'auditory/right': 2, 'visual/left': 3, 'visual/right': 4, 'smiley': 5, 'button': 32} events = mne.read_events(op.join(data_path, 'sample_audvis_raw-eve.fif')) epochs = mne.Epochs(raw, events, event_id=event_id, tmin=-0.2, tmax=.5) ############################################################################### # This tutorial focuses on visualization of epoched data. All of the functions # introduced here are basically high level matplotlib functions with built in # intelligence to work with epoched data. All the methods return a handle to # matplotlib figure instance. # # Events used for constructing the epochs here are the triggers for subject # being presented a smiley face at the center of the visual field. More of the # paradigm at :ref:`BABDHIFJ`. # # All plotting functions start with ``plot``. Let's start with the most # obvious. :func:`mne.Epochs.plot` offers an interactive browser that allows # rejection by hand when called in combination with a keyword ``block=True``. # This blocks the execution of the script until the browser window is closed. epochs.plot(block=True) ############################################################################### # The numbers at the top refer to the event id of the epoch. The number at the # bottom is the running numbering for the epochs. # # Since we did no artifact correction or rejection, there are epochs # contaminated with blinks and saccades. For instance, epoch number 1 seems to # be contaminated by a blink (scroll to the bottom to view the EOG channel). # This epoch can be marked for rejection by clicking on top of the browser # window. The epoch should turn red when you click it. This means that it will # be dropped as the browser window is closed. # # It is possible to plot event markers on epoched data by passing ``events`` # keyword to the epochs plotter. The events are plotted as vertical lines and # they follow the same coloring scheme as :func:`mne.viz.plot_events`. The # events plotter gives you all the events with a rough idea of the timing. # Since the colors are the same, the event plotter can also function as a # legend for the epochs plotter events. It is also possible to pass your own # colors via ``event_colors`` keyword. Here we can plot the reaction times # between seeing the smiley face and the button press (event 32). # # When events are passed, the epoch numbering at the bottom is switched off by # default to avoid overlaps. You can turn it back on via settings dialog by # pressing `o` key. You should check out `help` at the lower left corner of the # window for more information about the interactive features. events = mne.pick_events(events, include=[5, 32]) mne.viz.plot_events(events) epochs['smiley'].plot(events=events) ############################################################################### # To plot individual channels as an image, where you see all the epochs at one # glance, you can use function :func:`mne.Epochs.plot_image`. It shows the # amplitude of the signal over all the epochs plus an average (evoked response) # of the activation. We explicitly set interactive colorbar on (it is also on # by default for plotting functions with a colorbar except the topo plots). In # interactive mode you can scale and change the colormap with mouse scroll and # up/down arrow keys. You can also drag the colorbar with left/right mouse # button. Hitting space bar resets the scale. epochs.plot_image(278, cmap='interactive', sigma=1., vmin=-250, vmax=250) ############################################################################### # We can also give an overview of all channels by calculating the global # field power (or other other aggregation methods). However, combining # multiple channel types (e.g., MEG and EEG) in this way is not sensible. # Instead, we can use the ``group_by`` parameter. Setting ``group_by`` to # 'type' combines channels by type. # ``group_by`` can also be used to group channels into arbitrary groups, e.g. # regions of interests, by providing a dictionary containing # group name -> channel indices mappings. epochs.plot_image(combine='gfp', group_by='type', sigma=2., cmap="YlGnBu_r") ############################################################################### # You also have functions for plotting channelwise information arranged into a # shape of the channel array. The image plotting uses automatic scaling by # default, but noisy channels and different channel types can cause the scaling # to be a bit off. Here we define the limits by hand. epochs.plot_topo_image(vmin=-250, vmax=250, title='ERF images', sigma=2., fig_facecolor='w', font_color='k')
bsd-3-clause
zorojean/scikit-learn
sklearn/preprocessing/tests/test_label.py
156
17626
import numpy as np from scipy.sparse import issparse from scipy.sparse import coo_matrix from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix from sklearn.utils.multiclass import type_of_target from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import ignore_warnings from sklearn.preprocessing.label import LabelBinarizer from sklearn.preprocessing.label import MultiLabelBinarizer from sklearn.preprocessing.label import LabelEncoder from sklearn.preprocessing.label import label_binarize from sklearn.preprocessing.label import _inverse_binarize_thresholding from sklearn.preprocessing.label import _inverse_binarize_multiclass from sklearn import datasets iris = datasets.load_iris() def toarray(a): if hasattr(a, "toarray"): a = a.toarray() return a def test_label_binarizer(): lb = LabelBinarizer() # one-class case defaults to negative label inp = ["pos", "pos", "pos", "pos"] expected = np.array([[0, 0, 0, 0]]).T got = lb.fit_transform(inp) assert_array_equal(lb.classes_, ["pos"]) assert_array_equal(expected, got) assert_array_equal(lb.inverse_transform(got), inp) # two-class case inp = ["neg", "pos", "pos", "neg"] expected = np.array([[0, 1, 1, 0]]).T got = lb.fit_transform(inp) assert_array_equal(lb.classes_, ["neg", "pos"]) assert_array_equal(expected, got) to_invert = np.array([[1, 0], [0, 1], [0, 1], [1, 0]]) assert_array_equal(lb.inverse_transform(to_invert), inp) # multi-class case inp = ["spam", "ham", "eggs", "ham", "0"] expected = np.array([[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0]]) got = lb.fit_transform(inp) assert_array_equal(lb.classes_, ['0', 'eggs', 'ham', 'spam']) assert_array_equal(expected, got) assert_array_equal(lb.inverse_transform(got), inp) def test_label_binarizer_unseen_labels(): lb = LabelBinarizer() expected = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) got = lb.fit_transform(['b', 'd', 'e']) assert_array_equal(expected, got) expected = np.array([[0, 0, 0], [1, 0, 0], [0, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, 0]]) got = lb.transform(['a', 'b', 'c', 'd', 'e', 'f']) assert_array_equal(expected, got) def test_label_binarizer_set_label_encoding(): lb = LabelBinarizer(neg_label=-2, pos_label=0) # two-class case with pos_label=0 inp = np.array([0, 1, 1, 0]) expected = np.array([[-2, 0, 0, -2]]).T got = lb.fit_transform(inp) assert_array_equal(expected, got) assert_array_equal(lb.inverse_transform(got), inp) lb = LabelBinarizer(neg_label=-2, pos_label=2) # multi-class case inp = np.array([3, 2, 1, 2, 0]) expected = np.array([[-2, -2, -2, +2], [-2, -2, +2, -2], [-2, +2, -2, -2], [-2, -2, +2, -2], [+2, -2, -2, -2]]) got = lb.fit_transform(inp) assert_array_equal(expected, got) assert_array_equal(lb.inverse_transform(got), inp) @ignore_warnings def test_label_binarizer_errors(): # Check that invalid arguments yield ValueError one_class = np.array([0, 0, 0, 0]) lb = LabelBinarizer().fit(one_class) multi_label = [(2, 3), (0,), (0, 2)] assert_raises(ValueError, lb.transform, multi_label) lb = LabelBinarizer() assert_raises(ValueError, lb.transform, []) assert_raises(ValueError, lb.inverse_transform, []) assert_raises(ValueError, LabelBinarizer, neg_label=2, pos_label=1) assert_raises(ValueError, LabelBinarizer, neg_label=2, pos_label=2) assert_raises(ValueError, LabelBinarizer, neg_label=1, pos_label=2, sparse_output=True) # Fail on y_type assert_raises(ValueError, _inverse_binarize_thresholding, y=csr_matrix([[1, 2], [2, 1]]), output_type="foo", classes=[1, 2], threshold=0) # Sequence of seq type should raise ValueError y_seq_of_seqs = [[], [1, 2], [3], [0, 1, 3], [2]] assert_raises(ValueError, LabelBinarizer().fit_transform, y_seq_of_seqs) # Fail on the number of classes assert_raises(ValueError, _inverse_binarize_thresholding, y=csr_matrix([[1, 2], [2, 1]]), output_type="foo", classes=[1, 2, 3], threshold=0) # Fail on the dimension of 'binary' assert_raises(ValueError, _inverse_binarize_thresholding, y=np.array([[1, 2, 3], [2, 1, 3]]), output_type="binary", classes=[1, 2, 3], threshold=0) # Fail on multioutput data assert_raises(ValueError, LabelBinarizer().fit, np.array([[1, 3], [2, 1]])) assert_raises(ValueError, label_binarize, np.array([[1, 3], [2, 1]]), [1, 2, 3]) def test_label_encoder(): # Test LabelEncoder's transform and inverse_transform methods le = LabelEncoder() le.fit([1, 1, 4, 5, -1, 0]) assert_array_equal(le.classes_, [-1, 0, 1, 4, 5]) assert_array_equal(le.transform([0, 1, 4, 4, 5, -1, -1]), [1, 2, 3, 3, 4, 0, 0]) assert_array_equal(le.inverse_transform([1, 2, 3, 3, 4, 0, 0]), [0, 1, 4, 4, 5, -1, -1]) assert_raises(ValueError, le.transform, [0, 6]) def test_label_encoder_fit_transform(): # Test fit_transform le = LabelEncoder() ret = le.fit_transform([1, 1, 4, 5, -1, 0]) assert_array_equal(ret, [2, 2, 3, 4, 0, 1]) le = LabelEncoder() ret = le.fit_transform(["paris", "paris", "tokyo", "amsterdam"]) assert_array_equal(ret, [1, 1, 2, 0]) def test_label_encoder_errors(): # Check that invalid arguments yield ValueError le = LabelEncoder() assert_raises(ValueError, le.transform, []) assert_raises(ValueError, le.inverse_transform, []) # Fail on unseen labels le = LabelEncoder() le.fit([1, 2, 3, 1, -1]) assert_raises(ValueError, le.inverse_transform, [-1]) def test_sparse_output_multilabel_binarizer(): # test input as iterable of iterables inputs = [ lambda: [(2, 3), (1,), (1, 2)], lambda: (set([2, 3]), set([1]), set([1, 2])), lambda: iter([iter((2, 3)), iter((1,)), set([1, 2])]), ] indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]]) inverse = inputs[0]() for sparse_output in [True, False]: for inp in inputs: # With fit_tranform mlb = MultiLabelBinarizer(sparse_output=sparse_output) got = mlb.fit_transform(inp()) assert_equal(issparse(got), sparse_output) if sparse_output: got = got.toarray() assert_array_equal(indicator_mat, got) assert_array_equal([1, 2, 3], mlb.classes_) assert_equal(mlb.inverse_transform(got), inverse) # With fit mlb = MultiLabelBinarizer(sparse_output=sparse_output) got = mlb.fit(inp()).transform(inp()) assert_equal(issparse(got), sparse_output) if sparse_output: got = got.toarray() assert_array_equal(indicator_mat, got) assert_array_equal([1, 2, 3], mlb.classes_) assert_equal(mlb.inverse_transform(got), inverse) assert_raises(ValueError, mlb.inverse_transform, csr_matrix(np.array([[0, 1, 1], [2, 0, 0], [1, 1, 0]]))) def test_multilabel_binarizer(): # test input as iterable of iterables inputs = [ lambda: [(2, 3), (1,), (1, 2)], lambda: (set([2, 3]), set([1]), set([1, 2])), lambda: iter([iter((2, 3)), iter((1,)), set([1, 2])]), ] indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]]) inverse = inputs[0]() for inp in inputs: # With fit_tranform mlb = MultiLabelBinarizer() got = mlb.fit_transform(inp()) assert_array_equal(indicator_mat, got) assert_array_equal([1, 2, 3], mlb.classes_) assert_equal(mlb.inverse_transform(got), inverse) # With fit mlb = MultiLabelBinarizer() got = mlb.fit(inp()).transform(inp()) assert_array_equal(indicator_mat, got) assert_array_equal([1, 2, 3], mlb.classes_) assert_equal(mlb.inverse_transform(got), inverse) def test_multilabel_binarizer_empty_sample(): mlb = MultiLabelBinarizer() y = [[1, 2], [1], []] Y = np.array([[1, 1], [1, 0], [0, 0]]) assert_array_equal(mlb.fit_transform(y), Y) def test_multilabel_binarizer_unknown_class(): mlb = MultiLabelBinarizer() y = [[1, 2]] assert_raises(KeyError, mlb.fit(y).transform, [[0]]) mlb = MultiLabelBinarizer(classes=[1, 2]) assert_raises(KeyError, mlb.fit_transform, [[0]]) def test_multilabel_binarizer_given_classes(): inp = [(2, 3), (1,), (1, 2)] indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 0, 1]]) # fit_transform() mlb = MultiLabelBinarizer(classes=[1, 3, 2]) assert_array_equal(mlb.fit_transform(inp), indicator_mat) assert_array_equal(mlb.classes_, [1, 3, 2]) # fit().transform() mlb = MultiLabelBinarizer(classes=[1, 3, 2]) assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) assert_array_equal(mlb.classes_, [1, 3, 2]) # ensure works with extra class mlb = MultiLabelBinarizer(classes=[4, 1, 3, 2]) assert_array_equal(mlb.fit_transform(inp), np.hstack(([[0], [0], [0]], indicator_mat))) assert_array_equal(mlb.classes_, [4, 1, 3, 2]) # ensure fit is no-op as iterable is not consumed inp = iter(inp) mlb = MultiLabelBinarizer(classes=[1, 3, 2]) assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) def test_multilabel_binarizer_same_length_sequence(): # Ensure sequences of the same length are not interpreted as a 2-d array inp = [[1], [0], [2]] indicator_mat = np.array([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) # fit_transform() mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit_transform(inp), indicator_mat) assert_array_equal(mlb.inverse_transform(indicator_mat), inp) # fit().transform() mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) assert_array_equal(mlb.inverse_transform(indicator_mat), inp) def test_multilabel_binarizer_non_integer_labels(): tuple_classes = np.empty(3, dtype=object) tuple_classes[:] = [(1,), (2,), (3,)] inputs = [ ([('2', '3'), ('1',), ('1', '2')], ['1', '2', '3']), ([('b', 'c'), ('a',), ('a', 'b')], ['a', 'b', 'c']), ([((2,), (3,)), ((1,),), ((1,), (2,))], tuple_classes), ] indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]]) for inp, classes in inputs: # fit_transform() mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit_transform(inp), indicator_mat) assert_array_equal(mlb.classes_, classes) assert_array_equal(mlb.inverse_transform(indicator_mat), inp) # fit().transform() mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) assert_array_equal(mlb.classes_, classes) assert_array_equal(mlb.inverse_transform(indicator_mat), inp) mlb = MultiLabelBinarizer() assert_raises(TypeError, mlb.fit_transform, [({}), ({}, {'a': 'b'})]) def test_multilabel_binarizer_non_unique(): inp = [(1, 1, 1, 0)] indicator_mat = np.array([[1, 1]]) mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit_transform(inp), indicator_mat) def test_multilabel_binarizer_inverse_validation(): inp = [(1, 1, 1, 0)] mlb = MultiLabelBinarizer() mlb.fit_transform(inp) # Not binary assert_raises(ValueError, mlb.inverse_transform, np.array([[1, 3]])) # The following binary cases are fine, however mlb.inverse_transform(np.array([[0, 0]])) mlb.inverse_transform(np.array([[1, 1]])) mlb.inverse_transform(np.array([[1, 0]])) # Wrong shape assert_raises(ValueError, mlb.inverse_transform, np.array([[1]])) assert_raises(ValueError, mlb.inverse_transform, np.array([[1, 1, 1]])) def test_label_binarize_with_class_order(): out = label_binarize([1, 6], classes=[1, 2, 4, 6]) expected = np.array([[1, 0, 0, 0], [0, 0, 0, 1]]) assert_array_equal(out, expected) # Modified class order out = label_binarize([1, 6], classes=[1, 6, 4, 2]) expected = np.array([[1, 0, 0, 0], [0, 1, 0, 0]]) assert_array_equal(out, expected) out = label_binarize([0, 1, 2, 3], classes=[3, 2, 0, 1]) expected = np.array([[0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0], [1, 0, 0, 0]]) assert_array_equal(out, expected) def check_binarized_results(y, classes, pos_label, neg_label, expected): for sparse_output in [True, False]: if ((pos_label == 0 or neg_label != 0) and sparse_output): assert_raises(ValueError, label_binarize, y, classes, neg_label=neg_label, pos_label=pos_label, sparse_output=sparse_output) continue # check label_binarize binarized = label_binarize(y, classes, neg_label=neg_label, pos_label=pos_label, sparse_output=sparse_output) assert_array_equal(toarray(binarized), expected) assert_equal(issparse(binarized), sparse_output) # check inverse y_type = type_of_target(y) if y_type == "multiclass": inversed = _inverse_binarize_multiclass(binarized, classes=classes) else: inversed = _inverse_binarize_thresholding(binarized, output_type=y_type, classes=classes, threshold=((neg_label + pos_label) / 2.)) assert_array_equal(toarray(inversed), toarray(y)) # Check label binarizer lb = LabelBinarizer(neg_label=neg_label, pos_label=pos_label, sparse_output=sparse_output) binarized = lb.fit_transform(y) assert_array_equal(toarray(binarized), expected) assert_equal(issparse(binarized), sparse_output) inverse_output = lb.inverse_transform(binarized) assert_array_equal(toarray(inverse_output), toarray(y)) assert_equal(issparse(inverse_output), issparse(y)) def test_label_binarize_binary(): y = [0, 1, 0] classes = [0, 1] pos_label = 2 neg_label = -1 expected = np.array([[2, -1], [-1, 2], [2, -1]])[:, 1].reshape((-1, 1)) yield check_binarized_results, y, classes, pos_label, neg_label, expected # Binary case where sparse_output = True will not result in a ValueError y = [0, 1, 0] classes = [0, 1] pos_label = 3 neg_label = 0 expected = np.array([[3, 0], [0, 3], [3, 0]])[:, 1].reshape((-1, 1)) yield check_binarized_results, y, classes, pos_label, neg_label, expected def test_label_binarize_multiclass(): y = [0, 1, 2] classes = [0, 1, 2] pos_label = 2 neg_label = 0 expected = 2 * np.eye(3) yield check_binarized_results, y, classes, pos_label, neg_label, expected assert_raises(ValueError, label_binarize, y, classes, neg_label=-1, pos_label=pos_label, sparse_output=True) def test_label_binarize_multilabel(): y_ind = np.array([[0, 1, 0], [1, 1, 1], [0, 0, 0]]) classes = [0, 1, 2] pos_label = 2 neg_label = 0 expected = pos_label * y_ind y_sparse = [sparse_matrix(y_ind) for sparse_matrix in [coo_matrix, csc_matrix, csr_matrix, dok_matrix, lil_matrix]] for y in [y_ind] + y_sparse: yield (check_binarized_results, y, classes, pos_label, neg_label, expected) assert_raises(ValueError, label_binarize, y, classes, neg_label=-1, pos_label=pos_label, sparse_output=True) def test_invalid_input_label_binarize(): assert_raises(ValueError, label_binarize, [0, 2], classes=[0, 2], pos_label=0, neg_label=1) def test_inverse_binarize_multiclass(): got = _inverse_binarize_multiclass(csr_matrix([[0, 1, 0], [-1, 0, -1], [0, 0, 0]]), np.arange(3)) assert_array_equal(got, np.array([1, 1, 0]))
bsd-3-clause
vibhorag/scikit-learn
examples/cluster/plot_kmeans_assumptions.py
270
2040
""" ==================================== Demonstration of k-means assumptions ==================================== This example is meant to illustrate situations where k-means will produce unintuitive and possibly unexpected clusters. In the first three plots, the input data does not conform to some implicit assumption that k-means makes and undesirable clusters are produced as a result. In the last plot, k-means returns intuitive clusters despite unevenly sized blobs. """ print(__doc__) # Author: Phil Roth <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import make_blobs plt.figure(figsize=(12, 12)) n_samples = 1500 random_state = 170 X, y = make_blobs(n_samples=n_samples, random_state=random_state) # Incorrect number of clusters y_pred = KMeans(n_clusters=2, random_state=random_state).fit_predict(X) plt.subplot(221) plt.scatter(X[:, 0], X[:, 1], c=y_pred) plt.title("Incorrect Number of Blobs") # Anisotropicly distributed data transformation = [[ 0.60834549, -0.63667341], [-0.40887718, 0.85253229]] X_aniso = np.dot(X, transformation) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_aniso) plt.subplot(222) plt.scatter(X_aniso[:, 0], X_aniso[:, 1], c=y_pred) plt.title("Anisotropicly Distributed Blobs") # Different variance X_varied, y_varied = make_blobs(n_samples=n_samples, cluster_std=[1.0, 2.5, 0.5], random_state=random_state) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_varied) plt.subplot(223) plt.scatter(X_varied[:, 0], X_varied[:, 1], c=y_pred) plt.title("Unequal Variance") # Unevenly sized blobs X_filtered = np.vstack((X[y == 0][:500], X[y == 1][:100], X[y == 2][:10])) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_filtered) plt.subplot(224) plt.scatter(X_filtered[:, 0], X_filtered[:, 1], c=y_pred) plt.title("Unevenly Sized Blobs") plt.show()
bsd-3-clause
ndingwall/scikit-learn
examples/feature_selection/plot_feature_selection.py
18
3371
""" ============================ Univariate Feature Selection ============================ An example showing univariate feature selection. Noisy (non informative) features are added to the iris data and univariate feature selection is applied. For each feature, we plot the p-values for the univariate feature selection and the corresponding weights of an SVM. We can see that univariate feature selection selects the informative features and that these have larger SVM weights. In the total set of features, only the 4 first ones are significant. We can see that they have the highest score with univariate feature selection. The SVM assigns a large weight to one of these features, but also Selects many of the non-informative features. Applying univariate feature selection before the SVM increases the SVM weight attributed to the significant features, and will thus improve classification. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.svm import LinearSVC from sklearn.pipeline import make_pipeline from sklearn.feature_selection import SelectKBest, f_classif # ############################################################################# # Import some data to play with # The iris dataset X, y = load_iris(return_X_y=True) # Some noisy data not correlated E = np.random.RandomState(42).uniform(0, 0.1, size=(X.shape[0], 20)) # Add the noisy data to the informative features X = np.hstack((X, E)) # Split dataset to select feature and evaluate the classifier X_train, X_test, y_train, y_test = train_test_split( X, y, stratify=y, random_state=0 ) plt.figure(1) plt.clf() X_indices = np.arange(X.shape[-1]) # ############################################################################# # Univariate feature selection with F-test for feature scoring # We use the default selection function to select the four # most significant features selector = SelectKBest(f_classif, k=4) selector.fit(X_train, y_train) scores = -np.log10(selector.pvalues_) scores /= scores.max() plt.bar(X_indices - .45, scores, width=.2, label=r'Univariate score ($-Log(p_{value})$)') # ############################################################################# # Compare to the weights of an SVM clf = make_pipeline(MinMaxScaler(), LinearSVC()) clf.fit(X_train, y_train) print('Classification accuracy without selecting features: {:.3f}' .format(clf.score(X_test, y_test))) svm_weights = np.abs(clf[-1].coef_).sum(axis=0) svm_weights /= svm_weights.sum() plt.bar(X_indices - .25, svm_weights, width=.2, label='SVM weight') clf_selected = make_pipeline( SelectKBest(f_classif, k=4), MinMaxScaler(), LinearSVC() ) clf_selected.fit(X_train, y_train) print('Classification accuracy after univariate feature selection: {:.3f}' .format(clf_selected.score(X_test, y_test))) svm_weights_selected = np.abs(clf_selected[-1].coef_).sum(axis=0) svm_weights_selected /= svm_weights_selected.sum() plt.bar(X_indices[selector.get_support()] - .05, svm_weights_selected, width=.2, label='SVM weights after selection') plt.title("Comparing feature selection") plt.xlabel('Feature number') plt.yticks(()) plt.axis('tight') plt.legend(loc='upper right') plt.show()
bsd-3-clause
deepesch/scikit-learn
sklearn/datasets/mldata.py
309
7838
"""Automatically download MLdata datasets.""" # Copyright (c) 2011 Pietro Berkes # License: BSD 3 clause import os from os.path import join, exists import re import numbers try: # Python 2 from urllib2 import HTTPError from urllib2 import quote from urllib2 import urlopen except ImportError: # Python 3+ from urllib.error import HTTPError from urllib.parse import quote from urllib.request import urlopen import numpy as np import scipy as sp from scipy import io from shutil import copyfileobj from .base import get_data_home, Bunch MLDATA_BASE_URL = "http://mldata.org/repository/data/download/matlab/%s" def mldata_filename(dataname): """Convert a raw name for a data set in a mldata.org filename.""" dataname = dataname.lower().replace(' ', '-') return re.sub(r'[().]', '', dataname) def fetch_mldata(dataname, target_name='label', data_name='data', transpose_data=True, data_home=None): """Fetch an mldata.org data set If the file does not exist yet, it is downloaded from mldata.org . mldata.org does not have an enforced convention for storing data or naming the columns in a data set. The default behavior of this function works well with the most common cases: 1) data values are stored in the column 'data', and target values in the column 'label' 2) alternatively, the first column stores target values, and the second data values 3) the data array is stored as `n_features x n_samples` , and thus needs to be transposed to match the `sklearn` standard Keyword arguments allow to adapt these defaults to specific data sets (see parameters `target_name`, `data_name`, `transpose_data`, and the examples below). mldata.org data sets may have multiple columns, which are stored in the Bunch object with their original name. Parameters ---------- dataname: Name of the data set on mldata.org, e.g.: "leukemia", "Whistler Daily Snowfall", etc. The raw name is automatically converted to a mldata.org URL . target_name: optional, default: 'label' Name or index of the column containing the target values. data_name: optional, default: 'data' Name or index of the column containing the data. transpose_data: optional, default: True If True, transpose the downloaded data array. data_home: optional, default: None Specify another download and cache folder for the data sets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'target', the classification labels, 'DESCR', the full description of the dataset, and 'COL_NAMES', the original names of the dataset columns. Examples -------- Load the 'iris' dataset from mldata.org: >>> from sklearn.datasets.mldata import fetch_mldata >>> import tempfile >>> test_data_home = tempfile.mkdtemp() >>> iris = fetch_mldata('iris', data_home=test_data_home) >>> iris.target.shape (150,) >>> iris.data.shape (150, 4) Load the 'leukemia' dataset from mldata.org, which needs to be transposed to respects the sklearn axes convention: >>> leuk = fetch_mldata('leukemia', transpose_data=True, ... data_home=test_data_home) >>> leuk.data.shape (72, 7129) Load an alternative 'iris' dataset, which has different names for the columns: >>> iris2 = fetch_mldata('datasets-UCI iris', target_name=1, ... data_name=0, data_home=test_data_home) >>> iris3 = fetch_mldata('datasets-UCI iris', ... target_name='class', data_name='double0', ... data_home=test_data_home) >>> import shutil >>> shutil.rmtree(test_data_home) """ # normalize dataset name dataname = mldata_filename(dataname) # check if this data set has been already downloaded data_home = get_data_home(data_home=data_home) data_home = join(data_home, 'mldata') if not exists(data_home): os.makedirs(data_home) matlab_name = dataname + '.mat' filename = join(data_home, matlab_name) # if the file does not exist, download it if not exists(filename): urlname = MLDATA_BASE_URL % quote(dataname) try: mldata_url = urlopen(urlname) except HTTPError as e: if e.code == 404: e.msg = "Dataset '%s' not found on mldata.org." % dataname raise # store Matlab file try: with open(filename, 'w+b') as matlab_file: copyfileobj(mldata_url, matlab_file) except: os.remove(filename) raise mldata_url.close() # load dataset matlab file with open(filename, 'rb') as matlab_file: matlab_dict = io.loadmat(matlab_file, struct_as_record=True) # -- extract data from matlab_dict # flatten column names col_names = [str(descr[0]) for descr in matlab_dict['mldata_descr_ordering'][0]] # if target or data names are indices, transform then into names if isinstance(target_name, numbers.Integral): target_name = col_names[target_name] if isinstance(data_name, numbers.Integral): data_name = col_names[data_name] # rules for making sense of the mldata.org data format # (earlier ones have priority): # 1) there is only one array => it is "data" # 2) there are multiple arrays # a) copy all columns in the bunch, using their column name # b) if there is a column called `target_name`, set "target" to it, # otherwise set "target" to first column # c) if there is a column called `data_name`, set "data" to it, # otherwise set "data" to second column dataset = {'DESCR': 'mldata.org dataset: %s' % dataname, 'COL_NAMES': col_names} # 1) there is only one array => it is considered data if len(col_names) == 1: data_name = col_names[0] dataset['data'] = matlab_dict[data_name] # 2) there are multiple arrays else: for name in col_names: dataset[name] = matlab_dict[name] if target_name in col_names: del dataset[target_name] dataset['target'] = matlab_dict[target_name] else: del dataset[col_names[0]] dataset['target'] = matlab_dict[col_names[0]] if data_name in col_names: del dataset[data_name] dataset['data'] = matlab_dict[data_name] else: del dataset[col_names[1]] dataset['data'] = matlab_dict[col_names[1]] # set axes to sklearn conventions if transpose_data: dataset['data'] = dataset['data'].T if 'target' in dataset: if not sp.sparse.issparse(dataset['target']): dataset['target'] = dataset['target'].squeeze() return Bunch(**dataset) # The following is used by nosetests to setup the docstring tests fixture def setup_module(module): # setup mock urllib2 module to avoid downloading from mldata.org from sklearn.utils.testing import install_mldata_mock install_mldata_mock({ 'iris': { 'data': np.empty((150, 4)), 'label': np.empty(150), }, 'datasets-uci-iris': { 'double0': np.empty((150, 4)), 'class': np.empty((150,)), }, 'leukemia': { 'data': np.empty((72, 7129)), }, }) def teardown_module(module): from sklearn.utils.testing import uninstall_mldata_mock uninstall_mldata_mock()
bsd-3-clause
unnikrishnankgs/va
venv/lib/python3.5/site-packages/tensorflow/models/cognitive_mapping_and_planning/tfcode/cmp_summary.py
14
8338
# Copyright 2016 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Code for setting up summaries for CMP. """ import sys, os, numpy as np import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.contrib import slim from tensorflow.contrib.slim import arg_scope import logging from tensorflow.python.platform import app from tensorflow.python.platform import flags from src import utils import src.file_utils as fu import tfcode.nav_utils as nu def _vis_readout_maps(outputs, global_step, output_dir, metric_summary, N): # outputs is [gt_map, pred_map]: if N >= 0: outputs = outputs[:N] N = len(outputs) plt.set_cmap('jet') fig, axes = utils.subplot(plt, (N, outputs[0][0].shape[4]*2), (5,5)) axes = axes.ravel()[::-1].tolist() for i in range(N): gt_map, pred_map = outputs[i] for j in [0]: for k in range(gt_map.shape[4]): # Display something like the midpoint of the trajectory. id = np.int(gt_map.shape[1]/2) ax = axes.pop(); ax.imshow(gt_map[j,id,:,:,k], origin='lower', interpolation='none', vmin=0., vmax=1.) ax.set_axis_off(); if i == 0: ax.set_title('gt_map') ax = axes.pop(); ax.imshow(pred_map[j,id,:,:,k], origin='lower', interpolation='none', vmin=0., vmax=1.) ax.set_axis_off(); if i == 0: ax.set_title('pred_map') file_name = os.path.join(output_dir, 'readout_map_{:d}.png'.format(global_step)) with fu.fopen(file_name, 'w') as f: fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0) plt.close(fig) def _vis(outputs, global_step, output_dir, metric_summary, N): # Plot the value map, goal for various maps to see what if the model is # learning anything useful. # # outputs is [values, goals, maps, occupancy, conf]. # if N >= 0: outputs = outputs[:N] N = len(outputs) plt.set_cmap('jet') fig, axes = utils.subplot(plt, (N, outputs[0][0].shape[4]*5), (5,5)) axes = axes.ravel()[::-1].tolist() for i in range(N): values, goals, maps, occupancy, conf = outputs[i] for j in [0]: for k in range(values.shape[4]): # Display something like the midpoint of the trajectory. id = np.int(values.shape[1]/2) ax = axes.pop(); ax.imshow(goals[j,id,:,:,k], origin='lower', interpolation='none') ax.set_axis_off(); if i == 0: ax.set_title('goal') ax = axes.pop(); ax.imshow(occupancy[j,id,:,:,k], origin='lower', interpolation='none') ax.set_axis_off(); if i == 0: ax.set_title('occupancy') ax = axes.pop(); ax.imshow(conf[j,id,:,:,k], origin='lower', interpolation='none', vmin=0., vmax=1.) ax.set_axis_off(); if i == 0: ax.set_title('conf') ax = axes.pop(); ax.imshow(values[j,id,:,:,k], origin='lower', interpolation='none') ax.set_axis_off(); if i == 0: ax.set_title('value') ax = axes.pop(); ax.imshow(maps[j,id,:,:,k], origin='lower', interpolation='none') ax.set_axis_off(); if i == 0: ax.set_title('incr map') file_name = os.path.join(output_dir, 'value_vis_{:d}.png'.format(global_step)) with fu.fopen(file_name, 'w') as f: fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0) plt.close(fig) def _summary_vis(m, batch_size, num_steps, arop_full_summary_iters): arop = []; arop_summary_iters = []; arop_eval_fns = []; vis_value_ops = []; vis_goal_ops = []; vis_map_ops = []; vis_occupancy_ops = []; vis_conf_ops = []; for i, val_op in enumerate(m.value_ops): vis_value_op = tf.reduce_mean(tf.abs(val_op), axis=3, keep_dims=True) vis_value_ops.append(vis_value_op) vis_occupancy_op = tf.reduce_mean(tf.abs(m.occupancys[i]), 3, True) vis_occupancy_ops.append(vis_occupancy_op) vis_conf_op = tf.reduce_max(tf.abs(m.confs[i]), axis=3, keep_dims=True) vis_conf_ops.append(vis_conf_op) ego_goal_imgs_i_op = m.input_tensors['step']['ego_goal_imgs_{:d}'.format(i)] vis_goal_op = tf.reduce_max(ego_goal_imgs_i_op, 4, True) vis_goal_ops.append(vis_goal_op) vis_map_op = tf.reduce_mean(tf.abs(m.ego_map_ops[i]), 4, True) vis_map_ops.append(vis_map_op) vis_goal_ops = tf.concat(vis_goal_ops, 4) vis_map_ops = tf.concat(vis_map_ops, 4) vis_value_ops = tf.concat(vis_value_ops, 3) vis_occupancy_ops = tf.concat(vis_occupancy_ops, 3) vis_conf_ops = tf.concat(vis_conf_ops, 3) sh = tf.unstack(tf.shape(vis_value_ops))[1:] vis_value_ops = tf.reshape(vis_value_ops, shape=[batch_size, -1] + sh) sh = tf.unstack(tf.shape(vis_conf_ops))[1:] vis_conf_ops = tf.reshape(vis_conf_ops, shape=[batch_size, -1] + sh) sh = tf.unstack(tf.shape(vis_occupancy_ops))[1:] vis_occupancy_ops = tf.reshape(vis_occupancy_ops, shape=[batch_size,-1] + sh) # Save memory, only return time steps that need to be visualized, factor of # 32 CPU memory saving. id = np.int(num_steps/2) vis_goal_ops = tf.expand_dims(vis_goal_ops[:,id,:,:,:], axis=1) vis_map_ops = tf.expand_dims(vis_map_ops[:,id,:,:,:], axis=1) vis_value_ops = tf.expand_dims(vis_value_ops[:,id,:,:,:], axis=1) vis_conf_ops = tf.expand_dims(vis_conf_ops[:,id,:,:,:], axis=1) vis_occupancy_ops = tf.expand_dims(vis_occupancy_ops[:,id,:,:,:], axis=1) arop += [[vis_value_ops, vis_goal_ops, vis_map_ops, vis_occupancy_ops, vis_conf_ops]] arop_summary_iters += [arop_full_summary_iters] arop_eval_fns += [_vis] return arop, arop_summary_iters, arop_eval_fns def _summary_readout_maps(m, num_steps, arop_full_summary_iters): arop = []; arop_summary_iters = []; arop_eval_fns = []; id = np.int(num_steps-1) vis_readout_maps_gt = m.readout_maps_gt vis_readout_maps_prob = tf.reshape(m.readout_maps_probs, shape=tf.shape(vis_readout_maps_gt)) vis_readout_maps_gt = tf.expand_dims(vis_readout_maps_gt[:,id,:,:,:], 1) vis_readout_maps_prob = tf.expand_dims(vis_readout_maps_prob[:,id,:,:,:], 1) arop += [[vis_readout_maps_gt, vis_readout_maps_prob]] arop_summary_iters += [arop_full_summary_iters] arop_eval_fns += [_vis_readout_maps] return arop, arop_summary_iters, arop_eval_fns def _add_summaries(m, args, summary_mode, arop_full_summary_iters): task_params = args.navtask.task_params summarize_ops = [m.lr_op, m.global_step_op, m.sample_gt_prob_op] + \ m.loss_ops + m.acc_ops summarize_names = ['lr', 'global_step', 'sample_gt_prob_op'] + \ m.loss_ops_names + ['acc_{:d}'.format(i) for i in range(len(m.acc_ops))] to_aggregate = [0, 0, 0] + [1]*len(m.loss_ops_names) + [1]*len(m.acc_ops) scope_name = 'summary' with tf.name_scope(scope_name): s_ops = nu.add_default_summaries(summary_mode, arop_full_summary_iters, summarize_ops, summarize_names, to_aggregate, m.action_prob_op, m.input_tensors, scope_name=scope_name) if summary_mode == 'val': arop, arop_summary_iters, arop_eval_fns = _summary_vis( m, task_params.batch_size, task_params.num_steps, arop_full_summary_iters) s_ops.additional_return_ops += arop s_ops.arop_summary_iters += arop_summary_iters s_ops.arop_eval_fns += arop_eval_fns if args.arch.readout_maps: arop, arop_summary_iters, arop_eval_fns = _summary_readout_maps( m, task_params.num_steps, arop_full_summary_iters) s_ops.additional_return_ops += arop s_ops.arop_summary_iters += arop_summary_iters s_ops.arop_eval_fns += arop_eval_fns return s_ops
bsd-2-clause
nils-wisiol/pypuf
pypuf/studies/why_attackers_lose/fig_04_a.py
1
3434
""" Figure 4 (a) of "Why attackers lose: design and security analysis of arbitrarily large XOR arbiter PUFs", Accepted 26 Feb 2019 Journal of Cryptographic Engineering. This study examines the minimum number of votes needed such that for a uniformly random challenge c we have Pr[Stab(c) ≥ 95%] ≥ 80% for different k, as determined by a simulation (Sect. 6.2). The simulation uses arbiter chain length of n = 32; however, we showed that the results are independent of n. This log–log graph confirms the result that the number of votes required grows polynomially. """ from matplotlib import pyplot from matplotlib.ticker import FixedLocator, ScalarFormatter from seaborn import lineplot, scatterplot from pypuf.experiments.experiment.majority_vote import ExperimentMajorityVoteFindVotes, Parameters from pypuf.studies.base import Study class NumberOfVotesRequiredStudy(Study): """ Generates Figure 4 (a) of "Why attackers lose: design and security analysis of arbitrarily large XOR arbiter PUFs" """ SHUFFLE = True COMPRESSION = True RESTARTS = 200 K_RANGE = 2 K_MAX = 32 LOWERCASE_N = 32 UPPERCASE_N = 2000 S_RATIO = .033 ITERATIONS = 10 SEED_CHALLENGES = 0xf000 STAB_C = .95 STAB_ALL = .80 def experiments(self): e = [] for i in range(self.RESTARTS): for k in range(self.K_RANGE, self.K_MAX + 1, self.K_RANGE): e.append(ExperimentMajorityVoteFindVotes( progress_log_prefix=None, parameters=Parameters( n=self.LOWERCASE_N, k=k, challenge_count=self.UPPERCASE_N, seed_instance=0xC0DEBA5E + i, seed_instance_noise=0xdeadbeef + i, transformation='id', combiner='xor', mu=0, sigma=1, sigma_noise_ratio=self.S_RATIO, seed_challenges=self.SEED_CHALLENGES + i, desired_stability=self.STAB_C, overall_desired_stability=self.STAB_ALL, minimum_vote_count=1, iterations=self.ITERATIONS, bias=None ) )) return e def plot(self): fig = pyplot.figure() ax = fig.add_subplot(1, 1, 1) ax.set(xscale='log', yscale='log') ax.xaxis.set_major_locator(FixedLocator([2, 4, 6, 8, 12, 16, 20, 24, 28, 32])) ax.xaxis.set_major_formatter(ScalarFormatter()) ax.yaxis.set_major_locator(FixedLocator([1, 2, 5, 10, 20, 50])) ax.yaxis.set_major_formatter(ScalarFormatter()) r = self.experimenter.results[['k', 'vote_count']].groupby(['k']).mean().reset_index() lineplot( x='k', y='vote_count', data=r, ax=ax, estimator=None, ci=None ) scatterplot( x='k', y='vote_count', data=r, ax=ax ) fig = ax.get_figure() fig.set_size_inches(6, 2.5) ax.set_xlabel('number of arbiter chains in the MV XOR Arbiter PUF') ax.set_ylabel('number of votes') ax.set_title('Number of votes required for Pr[Stab(c)>95%] > 80%') fig.savefig('figures/{}.pdf'.format(self.name()), bbox_inches='tight', pad_inches=0)
gpl-3.0
NeuroDataDesign/pan-synapse
pipeline_1/code/tests/clusterTests.py
1
2720
import sys sys.path.insert(0, '../functions/') from epsilonDifference import epsilonDifference as floatEq from cluster import Cluster import epsilonDifference as epDiff import matplotlib.pyplot as plt import connectLib as cLib import pickle testData1 = [[3,3,3], [3,3,2], [3,3,4], [3,2,3], [3,4,3], [2,3,3], [4,3,3]] testData2 = [[3,3,3], [3,3,4], [3,4,4], [3,4,5], [3,5,5], [4,5,5], [4,5,6]] testData3 = [[0, 0, 0], [0, 0, 1], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]] testData4 = pickle.load(open('synthDat/exponDecayIndexList.synth', 'r')) testData5 = pickle.load(open('synthDat/smallTwoGaussian.synth', 'r')) print 'Cluster in cluster.py' testCluster1 = Cluster(testData1) testCluster2 = Cluster(testData2) testCluster3 = Cluster(testData3) testCluster4 = Cluster(testData4) #test the centroid method print '\tTest 1: ', testCluster1.getCentroid() == [3., 3., 3.],'\n\t\tExpected: [3, 3, 3]\tResult: ', testCluster1.getCentroid() print '\tTest 2: ', epDiff.epsilonDifference(3.28571429, testCluster2.getCentroid()[0], .001) and epDiff.epsilonDifference(4.14285714, testCluster2.getCentroid()[1], .001) and epDiff.epsilonDifference(4.57142857, testCluster2.getCentroid()[2], .001),'\n\t\tExpected: [3.28571429, 4.14285714, 4.57142857]\tResult: ', testCluster2.getCentroid() print '\tTest 3: ', testCluster3.getCentroid() == [0.5, 0.5, 0.5],'\n\t\tExpected: [0.5, 0.5, 0.5]\tResult: ', testCluster3.getCentroid() #test the std distance method print '\tTest 4: ', testCluster3.getStdDeviation() == 0,'\n\t\tExpected: 0\tResult: ', testCluster3.getStdDeviation() print '\tTest 5: ', epDiff.epsilonDifference(testCluster1.getStdDeviation(), 0.3499271),'\n\t\tExpected: 0.3499271\tResult: ', testCluster1.getStdDeviation() #test the getVolume method print '\tTest 6: ', testCluster1.getVolume() == 7,'\n\t\tExpected: 7\tResult: ', testCluster1.getVolume() print '\tTest 7: ', testCluster2.getVolume() == 7,'\n\t\tExpected: 7\tResult: ', testCluster2.getVolume() print '\tTest 8: ', testCluster3.getVolume() == 8,'\n\t\tExpected: 8\tResult: ', testCluster3.getVolume() #test the densityOfSlice method #NOTE:slicing from 1 to remove background cluster clusterList = cLib.connectedComponents(cLib.otsuVox(testData5))[1:] test10 = cLib.densityOfSlice(clusterList, 0, 5, 0, 5, 0, 5) print '\tTest 10: ', epDiff.epsilonDifference(test10, 2.22222222),'\n\t\tExpected: 2.22222\tResult: ', test10 test11 = cLib.densityOfSlice(clusterList, 0, 2, 0, 2, 0, 2) print '\tTest 11: ', epDiff.epsilonDifference(test11, 17.3611),'\n\t\tExpected: 17.31111\tResult: ', test11 test12 = cLib.densityOfSlice(clusterList, 2, 3, 2, 3, 2, 3) print '\tTest 12: ', test12 == 0.,'\n\t\tExpected: 0.\tResult: ', test12
apache-2.0
tylerbrazier/archive
datamining/assign3Kmeans/kmeans.py
1
3230
#!/usr/bin/python2 # Not very optimized import sys import math import random import matplotlib.pyplot as plot import numpy def dist(pointA, pointB): "pointA and pointB should be lists" total = 0 for i in range(0, len(pointA)): total += (pointA[i] - pointB[i])**2 return math.sqrt(total) def findClosest(point, meanPoints): ''' returns the index of the mean point in meanPoints that the point argument is closest to. ''' index = 0 shortestDist = dist(point, meanPoints[0]) for i in range(1, len(meanPoints)): currentDist = dist(point, meanPoints[i]) if currentDist < shortestDist: shortestDist = currentDist index = i return index def findCentroid(points): "argument is a list of lists; returns a list (point)" totals = [0 for attr in points[0]] # holds total for each point attribute for point in points: for i in range(0, len(point)): totals[i] += point[i] centroid = [] for i in range(0, len(totals)): centroid.append(totals[i] / len(points)) return centroid ''' old implementation totalX = 0 totalY = 0 for point in points: totalX += point.x totalY += point.y return Point( (totalX / len(points)), (totalY / len(points)) ) ''' filename = sys.argv[1] k = int(sys.argv[2]) data = numpy.loadtxt(filename) meanPoints = [] # find initial random means maxAttrs = [0 for i in data[1]] for point in data: for i in range(0, len(point)): if point[i] > maxAttrs[i]: maxAttrs[i] = point[i] for i in range(0, k): randPoint = [] for maxAttr in maxAttrs: randPoint.append(random.random() * maxAttr) meanPoints.append(randPoint) maxIterations = 20 epsilonThreshold = 0.00001 delta = 1 iterations = 0 while iterations < maxIterations and delta > epsilonThreshold: delta = 0 # assign points to means memberships = [ [] for i in range(0, k) ] # [ [], [] ] when k = 2 membersToPrint = [] # for the report of which points belong where for point in data: memberships[findClosest(point, meanPoints)].append(point) membersToPrint.append(findClosest(point, meanPoints)) # update mean points previousMeanPoints = meanPoints meanPoints = [] for group in memberships: if len(group) != 0: meanPoints.append(findCentroid(group)) # calculate delta for i in range(0, len(meanPoints)): delta += dist(meanPoints[i], previousMeanPoints[i]) iterations += 1 # report print "mean points :", meanPoints for i in range(0, len(memberships)): print "number of points in cluster", i, ":", len(memberships[i]) print "number of iterations :", iterations print "delta :", delta print "membership :", membersToPrint # plot 2d data if data.shape[1] == 2: xs = [] ys = [] for point in data: xs.append(point[0]) ys.append(point[1]) meanXs = [] meanYs = [] for point in meanPoints: meanXs.append(point[0]) meanYs.append(point[1]) plot.plot(xs, ys, 'ro', meanXs, meanYs, 'bs') plot.axis([0, round(max(xs)) + 1, 0, round(max(ys)) + 1]) plot.show()
mit
pbrod/scipy
scipy/spatial/_plotutils.py
23
5505
from __future__ import division, print_function, absolute_import import numpy as np from scipy._lib.decorator import decorator as _decorator __all__ = ['delaunay_plot_2d', 'convex_hull_plot_2d', 'voronoi_plot_2d'] @_decorator def _held_figure(func, obj, ax=None, **kw): import matplotlib.pyplot as plt if ax is None: fig = plt.figure() ax = fig.gca() return func(obj, ax=ax, **kw) # As of matplotlib 2.0, the "hold" mechanism is deprecated. # When matplotlib 1.x is no longer supported, this check can be removed. was_held = ax.ishold() if was_held: return func(obj, ax=ax, **kw) try: ax.hold(True) return func(obj, ax=ax, **kw) finally: ax.hold(was_held) def _adjust_bounds(ax, points): margin = 0.1 * points.ptp(axis=0) xy_min = points.min(axis=0) - margin xy_max = points.max(axis=0) + margin ax.set_xlim(xy_min[0], xy_max[0]) ax.set_ylim(xy_min[1], xy_max[1]) @_held_figure def delaunay_plot_2d(tri, ax=None): """ Plot the given Delaunay triangulation in 2-D Parameters ---------- tri : scipy.spatial.Delaunay instance Triangulation to plot ax : matplotlib.axes.Axes instance, optional Axes to plot on Returns ------- fig : matplotlib.figure.Figure instance Figure for the plot See Also -------- Delaunay matplotlib.pyplot.triplot Notes ----- Requires Matplotlib. """ if tri.points.shape[1] != 2: raise ValueError("Delaunay triangulation is not 2-D") x, y = tri.points.T ax.plot(x, y, 'o') ax.triplot(x, y, tri.simplices.copy()) _adjust_bounds(ax, tri.points) return ax.figure @_held_figure def convex_hull_plot_2d(hull, ax=None): """ Plot the given convex hull diagram in 2-D Parameters ---------- hull : scipy.spatial.ConvexHull instance Convex hull to plot ax : matplotlib.axes.Axes instance, optional Axes to plot on Returns ------- fig : matplotlib.figure.Figure instance Figure for the plot See Also -------- ConvexHull Notes ----- Requires Matplotlib. """ from matplotlib.collections import LineCollection if hull.points.shape[1] != 2: raise ValueError("Convex hull is not 2-D") ax.plot(hull.points[:,0], hull.points[:,1], 'o') line_segments = [hull.points[simplex] for simplex in hull.simplices] ax.add_collection(LineCollection(line_segments, colors='k', linestyle='solid')) _adjust_bounds(ax, hull.points) return ax.figure @_held_figure def voronoi_plot_2d(vor, ax=None, **kw): """ Plot the given Voronoi diagram in 2-D Parameters ---------- vor : scipy.spatial.Voronoi instance Diagram to plot ax : matplotlib.axes.Axes instance, optional Axes to plot on show_points: bool, optional Add the Voronoi points to the plot. show_vertices : bool, optional Add the Voronoi vertices to the plot. line_colors : string, optional Specifies the line color for polygon boundaries line_width : float, optional Specifies the line width for polygon boundaries line_alpha: float, optional Specifies the line alpha for polygon boundaries Returns ------- fig : matplotlib.figure.Figure instance Figure for the plot See Also -------- Voronoi Notes ----- Requires Matplotlib. """ from matplotlib.collections import LineCollection if vor.points.shape[1] != 2: raise ValueError("Voronoi diagram is not 2-D") if kw.get('show_points', True): ax.plot(vor.points[:,0], vor.points[:,1], '.') if kw.get('show_vertices', True): ax.plot(vor.vertices[:,0], vor.vertices[:,1], 'o') line_colors = kw.get('line_colors', 'k') line_width = kw.get('line_width', 1.0) line_alpha = kw.get('line_alpha', 1.0) center = vor.points.mean(axis=0) ptp_bound = vor.points.ptp(axis=0) finite_segments = [] infinite_segments = [] for pointidx, simplex in zip(vor.ridge_points, vor.ridge_vertices): simplex = np.asarray(simplex) if np.all(simplex >= 0): finite_segments.append(vor.vertices[simplex]) else: i = simplex[simplex >= 0][0] # finite end Voronoi vertex t = vor.points[pointidx[1]] - vor.points[pointidx[0]] # tangent t /= np.linalg.norm(t) n = np.array([-t[1], t[0]]) # normal midpoint = vor.points[pointidx].mean(axis=0) direction = np.sign(np.dot(midpoint - center, n)) * n far_point = vor.vertices[i] + direction * ptp_bound.max() infinite_segments.append([vor.vertices[i], far_point]) ax.add_collection(LineCollection(finite_segments, colors=line_colors, lw=line_width, alpha=line_alpha, linestyle='solid')) ax.add_collection(LineCollection(infinite_segments, colors=line_colors, lw=line_width, alpha=line_alpha, linestyle='dashed')) _adjust_bounds(ax, vor.points) return ax.figure
bsd-3-clause
arabenjamin/scikit-learn
examples/feature_selection/plot_feature_selection.py
249
2827
""" =============================== Univariate Feature Selection =============================== An example showing univariate feature selection. Noisy (non informative) features are added to the iris data and univariate feature selection is applied. For each feature, we plot the p-values for the univariate feature selection and the corresponding weights of an SVM. We can see that univariate feature selection selects the informative features and that these have larger SVM weights. In the total set of features, only the 4 first ones are significant. We can see that they have the highest score with univariate feature selection. The SVM assigns a large weight to one of these features, but also Selects many of the non-informative features. Applying univariate feature selection before the SVM increases the SVM weight attributed to the significant features, and will thus improve classification. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, svm from sklearn.feature_selection import SelectPercentile, f_classif ############################################################################### # import some data to play with # The iris dataset iris = datasets.load_iris() # Some noisy data not correlated E = np.random.uniform(0, 0.1, size=(len(iris.data), 20)) # Add the noisy data to the informative features X = np.hstack((iris.data, E)) y = iris.target ############################################################################### plt.figure(1) plt.clf() X_indices = np.arange(X.shape[-1]) ############################################################################### # Univariate feature selection with F-test for feature scoring # We use the default selection function: the 10% most significant features selector = SelectPercentile(f_classif, percentile=10) selector.fit(X, y) scores = -np.log10(selector.pvalues_) scores /= scores.max() plt.bar(X_indices - .45, scores, width=.2, label=r'Univariate score ($-Log(p_{value})$)', color='g') ############################################################################### # Compare to the weights of an SVM clf = svm.SVC(kernel='linear') clf.fit(X, y) svm_weights = (clf.coef_ ** 2).sum(axis=0) svm_weights /= svm_weights.max() plt.bar(X_indices - .25, svm_weights, width=.2, label='SVM weight', color='r') clf_selected = svm.SVC(kernel='linear') clf_selected.fit(selector.transform(X), y) svm_weights_selected = (clf_selected.coef_ ** 2).sum(axis=0) svm_weights_selected /= svm_weights_selected.max() plt.bar(X_indices[selector.get_support()] - .05, svm_weights_selected, width=.2, label='SVM weights after selection', color='b') plt.title("Comparing feature selection") plt.xlabel('Feature number') plt.yticks(()) plt.axis('tight') plt.legend(loc='upper right') plt.show()
bsd-3-clause
webmasterraj/FogOrNot
flask/lib/python2.7/site-packages/pandas/tests/test_generic.py
2
53567
# -*- coding: utf-8 -*- # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import nose import numpy as np from numpy import nan import pandas as pd from pandas import (Index, Series, DataFrame, Panel, isnull, notnull, date_range, period_range) from pandas.core.index import Index, MultiIndex import pandas.core.common as com from pandas.compat import StringIO, lrange, range, zip, u, OrderedDict, long from pandas import compat from pandas.util.testing import (assert_series_equal, assert_frame_equal, assert_panel_equal, assert_almost_equal, assert_equal, ensure_clean) import pandas.util.testing as tm def _skip_if_no_pchip(): try: from scipy.interpolate import pchip_interpolate except ImportError: raise nose.SkipTest('scipy.interpolate.pchip missing') #------------------------------------------------------------------------------ # Generic types test cases class Generic(object): _multiprocess_can_split_ = True def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) @property def _ndim(self): return self._typ._AXIS_LEN def _axes(self): """ return the axes for my object typ """ return self._typ._AXIS_ORDERS def _construct(self, shape, value=None, dtype=None, **kwargs): """ construct an object for the given shape if value is specified use that if its a scalar if value is an array, repeat it as needed """ if isinstance(shape,int): shape = tuple([shape] * self._ndim) if value is not None: if np.isscalar(value): if value == 'empty': arr = None # remove the info axis kwargs.pop(self._typ._info_axis_name,None) else: arr = np.empty(shape,dtype=dtype) arr.fill(value) else: fshape = np.prod(shape) arr = value.ravel() new_shape = fshape/arr.shape[0] if fshape % arr.shape[0] != 0: raise Exception("invalid value passed in _construct") arr = np.repeat(arr,new_shape).reshape(shape) else: arr = np.random.randn(*shape) return self._typ(arr,dtype=dtype,**kwargs) def _compare(self, result, expected): self._comparator(result,expected) def test_rename(self): # single axis for axis in self._axes(): kwargs = { axis : list('ABCD') } obj = self._construct(4,**kwargs) # no values passed #self.assertRaises(Exception, o.rename(str.lower)) # rename a single axis result = obj.rename(**{ axis : str.lower }) expected = obj.copy() setattr(expected,axis,list('abcd')) self._compare(result, expected) # multiple axes at once def test_get_numeric_data(self): n = 4 kwargs = { } for i in range(self._ndim): kwargs[self._typ._AXIS_NAMES[i]] = list(range(n)) # get the numeric data o = self._construct(n,**kwargs) result = o._get_numeric_data() self._compare(result, o) # non-inclusion result = o._get_bool_data() expected = self._construct(n,value='empty',**kwargs) self._compare(result,expected) # get the bool data arr = np.array([True,True,False,True]) o = self._construct(n,value=arr,**kwargs) result = o._get_numeric_data() self._compare(result, o) # _get_numeric_data is includes _get_bool_data, so can't test for non-inclusion def test_get_default(self): # GH 7725 d0 = "a", "b", "c", "d" d1 = np.arange(4, dtype='int64') others = "e", 10 for data, index in ((d0, d1), (d1, d0)): s = Series(data, index=index) for i,d in zip(index, data): self.assertEqual(s.get(i), d) self.assertEqual(s.get(i, d), d) self.assertEqual(s.get(i, "z"), d) for other in others: self.assertEqual(s.get(other, "z"), "z") self.assertEqual(s.get(other, other), other) def test_nonzero(self): # GH 4633 # look at the boolean/nonzero behavior for objects obj = self._construct(shape=4) self.assertRaises(ValueError, lambda : bool(obj == 0)) self.assertRaises(ValueError, lambda : bool(obj == 1)) self.assertRaises(ValueError, lambda : bool(obj)) obj = self._construct(shape=4,value=1) self.assertRaises(ValueError, lambda : bool(obj == 0)) self.assertRaises(ValueError, lambda : bool(obj == 1)) self.assertRaises(ValueError, lambda : bool(obj)) obj = self._construct(shape=4,value=np.nan) self.assertRaises(ValueError, lambda : bool(obj == 0)) self.assertRaises(ValueError, lambda : bool(obj == 1)) self.assertRaises(ValueError, lambda : bool(obj)) # empty obj = self._construct(shape=0) self.assertRaises(ValueError, lambda : bool(obj)) # invalid behaviors obj1 = self._construct(shape=4,value=1) obj2 = self._construct(shape=4,value=1) def f(): if obj1: com.pprint_thing("this works and shouldn't") self.assertRaises(ValueError, f) self.assertRaises(ValueError, lambda : obj1 and obj2) self.assertRaises(ValueError, lambda : obj1 or obj2) self.assertRaises(ValueError, lambda : not obj1) def test_numpy_1_7_compat_numeric_methods(self): # GH 4435 # numpy in 1.7 tries to pass addtional arguments to pandas functions o = self._construct(shape=4) for op in ['min','max','max','var','std','prod','sum','cumsum','cumprod', 'median','skew','kurt','compound','cummax','cummin','all','any']: f = getattr(np,op,None) if f is not None: f(o) def test_downcast(self): # test close downcasting o = self._construct(shape=4, value=9, dtype=np.int64) result = o.copy() result._data = o._data.downcast(dtypes='infer') self._compare(result, o) o = self._construct(shape=4, value=9.) expected = o.astype(np.int64) result = o.copy() result._data = o._data.downcast(dtypes='infer') self._compare(result, expected) o = self._construct(shape=4, value=9.5) result = o.copy() result._data = o._data.downcast(dtypes='infer') self._compare(result, o) # are close o = self._construct(shape=4, value=9.000000000005) result = o.copy() result._data = o._data.downcast(dtypes='infer') expected = o.astype(np.int64) self._compare(result, expected) def test_constructor_compound_dtypes(self): # GH 5191 # compound dtypes should raise not-implementederror def f(dtype): return self._construct(shape=3, dtype=dtype) self.assertRaises(NotImplementedError, f, [("A","datetime64[h]"), ("B","str"), ("C","int32")]) # these work (though results may be unexpected) f('int64') f('float64') f('M8[ns]') def check_metadata(self, x, y=None): for m in x._metadata: v = getattr(x,m,None) if y is None: self.assertIsNone(v) else: self.assertEqual(v, getattr(y,m,None)) def test_metadata_propagation(self): # check that the metadata matches up on the resulting ops o = self._construct(shape=3) o.name = 'foo' o2 = self._construct(shape=3) o2.name = 'bar' # TODO # Once panel can do non-trivial combine operations # (currently there is an a raise in the Panel arith_ops to prevent # this, though it actually does work) # can remove all of these try: except: blocks on the actual operations # ---------- # preserving # ---------- # simple ops with scalars for op in [ '__add__','__sub__','__truediv__','__mul__' ]: result = getattr(o,op)(1) self.check_metadata(o,result) # ops with like for op in [ '__add__','__sub__','__truediv__','__mul__' ]: try: result = getattr(o,op)(o) self.check_metadata(o,result) except (ValueError, AttributeError): pass # simple boolean for op in [ '__eq__','__le__', '__ge__' ]: v1 = getattr(o,op)(o) self.check_metadata(o,v1) try: self.check_metadata(o, v1 & v1) except (ValueError): pass try: self.check_metadata(o, v1 | v1) except (ValueError): pass # combine_first try: result = o.combine_first(o2) self.check_metadata(o,result) except (AttributeError): pass # --------------------------- # non-preserving (by default) # --------------------------- # add non-like try: result = o + o2 self.check_metadata(result) except (ValueError, AttributeError): pass # simple boolean for op in [ '__eq__','__le__', '__ge__' ]: # this is a name matching op v1 = getattr(o,op)(o) v2 = getattr(o,op)(o2) self.check_metadata(v2) try: self.check_metadata(v1 & v2) except (ValueError): pass try: self.check_metadata(v1 | v2) except (ValueError): pass def test_head_tail(self): # GH5370 o = self._construct(shape=10) # check all index types for index in [ tm.makeFloatIndex, tm.makeIntIndex, tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeDateIndex, tm.makePeriodIndex ]: axis = o._get_axis_name(0) setattr(o,axis,index(len(getattr(o,axis)))) # Panel + dims try: o.head() except (NotImplementedError): raise nose.SkipTest('not implemented on {0}'.format(o.__class__.__name__)) self._compare(o.head(), o.iloc[:5]) self._compare(o.tail(), o.iloc[-5:]) # 0-len self._compare(o.head(0), o.iloc[:]) self._compare(o.tail(0), o.iloc[0:]) # bounded self._compare(o.head(len(o)+1), o) self._compare(o.tail(len(o)+1), o) # neg index self._compare(o.head(-3), o.head(7)) self._compare(o.tail(-3), o.tail(7)) def test_size_compat(self): # GH8846 # size property should be defined o = self._construct(shape=10) self.assertTrue(o.size == np.prod(o.shape)) self.assertTrue(o.size == 10**len(o.axes)) def test_split_compat(self): # xref GH8846 o = self._construct(shape=10) self.assertTrue(len(np.array_split(o,5)) == 5) self.assertTrue(len(np.array_split(o,2)) == 2) def test_unexpected_keyword(self): # GH8597 from pandas.util.testing import assertRaisesRegexp df = DataFrame(np.random.randn(5, 2), columns=['jim', 'joe']) ca = pd.Categorical([0, 0, 2, 2, 3, np.nan]) ts = df['joe'].copy() ts[2] = np.nan with assertRaisesRegexp(TypeError, 'unexpected keyword'): df.drop('joe', axis=1, in_place=True) with assertRaisesRegexp(TypeError, 'unexpected keyword'): df.reindex([1, 0], inplace=True) with assertRaisesRegexp(TypeError, 'unexpected keyword'): ca.fillna(0, inplace=True) with assertRaisesRegexp(TypeError, 'unexpected keyword'): ts.fillna(0, in_place=True) class TestSeries(tm.TestCase, Generic): _typ = Series _comparator = lambda self, x, y: assert_series_equal(x,y) def setUp(self): self.ts = tm.makeTimeSeries() # Was at top level in test_series self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series' def test_rename_mi(self): s = Series([11,21,31], index=MultiIndex.from_tuples([("A",x) for x in ["a","B","c"]])) result = s.rename(str.lower) def test_get_numeric_data_preserve_dtype(self): # get the numeric data o = Series([1,2,3]) result = o._get_numeric_data() self._compare(result, o) o = Series([1,'2',3.]) result = o._get_numeric_data() expected = Series([],dtype=object) self._compare(result, expected) o = Series([True,False,True]) result = o._get_numeric_data() self._compare(result, o) o = Series([True,False,True]) result = o._get_bool_data() self._compare(result, o) o = Series(date_range('20130101',periods=3)) result = o._get_numeric_data() expected = Series([],dtype='M8[ns]') self._compare(result, expected) def test_nonzero_single_element(self): # allow single item via bool method s = Series([True]) self.assertTrue(s.bool()) s = Series([False]) self.assertFalse(s.bool()) # single item nan to raise for s in [ Series([np.nan]), Series([pd.NaT]), Series([True]), Series([False]) ]: self.assertRaises(ValueError, lambda : bool(s)) for s in [ Series([np.nan]), Series([pd.NaT])]: self.assertRaises(ValueError, lambda : s.bool()) # multiple bool are still an error for s in [Series([True,True]), Series([False, False])]: self.assertRaises(ValueError, lambda : bool(s)) self.assertRaises(ValueError, lambda : s.bool()) # single non-bool are an error for s in [Series([1]), Series([0]), Series(['a']), Series([0.0])]: self.assertRaises(ValueError, lambda : bool(s)) self.assertRaises(ValueError, lambda : s.bool()) def test_metadata_propagation_indiv(self): # check that the metadata matches up on the resulting ops o = Series(range(3),range(3)) o.name = 'foo' o2 = Series(range(3),range(3)) o2.name = 'bar' result = o.T self.check_metadata(o,result) # resample ts = Series(np.random.rand(1000), index=date_range('20130101',periods=1000,freq='s'), name='foo') result = ts.resample('1T') self.check_metadata(ts,result) result = ts.resample('1T',how='min') self.check_metadata(ts,result) result = ts.resample('1T',how=lambda x: x.sum()) self.check_metadata(ts,result) _metadata = Series._metadata _finalize = Series.__finalize__ Series._metadata = ['name','filename'] o.filename = 'foo' o2.filename = 'bar' def finalize(self, other, method=None, **kwargs): for name in self._metadata: if method == 'concat' and name == 'filename': value = '+'.join([ getattr(o,name) for o in other.objs if getattr(o,name,None) ]) object.__setattr__(self, name, value) else: object.__setattr__(self, name, getattr(other, name, None)) return self Series.__finalize__ = finalize result = pd.concat([o, o2]) self.assertEqual(result.filename,'foo+bar') self.assertIsNone(result.name) # reset Series._metadata = _metadata Series.__finalize__ = _finalize def test_interpolate(self): ts = Series(np.arange(len(self.ts), dtype=float), self.ts.index) ts_copy = ts.copy() ts_copy[5:10] = np.NaN linear_interp = ts_copy.interpolate(method='linear') self.assert_numpy_array_equal(linear_interp, ts) ord_ts = Series([d.toordinal() for d in self.ts.index], index=self.ts.index).astype(float) ord_ts_copy = ord_ts.copy() ord_ts_copy[5:10] = np.NaN time_interp = ord_ts_copy.interpolate(method='time') self.assert_numpy_array_equal(time_interp, ord_ts) # try time interpolation on a non-TimeSeries # Only raises ValueError if there are NaNs. non_ts = self.series.copy() non_ts[0] = np.NaN self.assertRaises(ValueError, non_ts.interpolate, method='time') def test_interp_regression(self): tm._skip_if_no_scipy() _skip_if_no_pchip() ser = Series(np.sort(np.random.uniform(size=100))) # interpolate at new_index new_index = ser.index.union(Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75])) interp_s = ser.reindex(new_index).interpolate(method='pchip') # does not blow up, GH5977 interp_s[49:51] def test_interpolate_corners(self): s = Series([np.nan, np.nan]) assert_series_equal(s.interpolate(), s) s = Series([]).interpolate() assert_series_equal(s.interpolate(), s) tm._skip_if_no_scipy() s = Series([np.nan, np.nan]) assert_series_equal(s.interpolate(method='polynomial', order=1), s) s = Series([]).interpolate() assert_series_equal(s.interpolate(method='polynomial', order=1), s) def test_interpolate_index_values(self): s = Series(np.nan, index=np.sort(np.random.rand(30))) s[::3] = np.random.randn(10) vals = s.index.values.astype(float) result = s.interpolate(method='index') expected = s.copy() bad = isnull(expected.values) good = ~bad expected = Series( np.interp(vals[bad], vals[good], s.values[good]), index=s.index[bad]) assert_series_equal(result[bad], expected) # 'values' is synonymous with 'index' for the method kwarg other_result = s.interpolate(method='values') assert_series_equal(other_result, result) assert_series_equal(other_result[bad], expected) def test_interpolate_non_ts(self): s = Series([1, 3, np.nan, np.nan, np.nan, 11]) with tm.assertRaises(ValueError): s.interpolate(method='time') # New interpolation tests def test_nan_interpolate(self): s = Series([0, 1, np.nan, 3]) result = s.interpolate() expected = Series([0., 1., 2., 3.]) assert_series_equal(result, expected) tm._skip_if_no_scipy() result = s.interpolate(method='polynomial', order=1) assert_series_equal(result, expected) def test_nan_irregular_index(self): s = Series([1, 2, np.nan, 4], index=[1, 3, 5, 9]) result = s.interpolate() expected = Series([1., 2., 3., 4.], index=[1, 3, 5, 9]) assert_series_equal(result, expected) def test_nan_str_index(self): s = Series([0, 1, 2, np.nan], index=list('abcd')) result = s.interpolate() expected = Series([0., 1., 2., 2.], index=list('abcd')) assert_series_equal(result, expected) def test_interp_quad(self): tm._skip_if_no_scipy() sq = Series([1, 4, np.nan, 16], index=[1, 2, 3, 4]) result = sq.interpolate(method='quadratic') expected = Series([1., 4., 9., 16.], index=[1, 2, 3, 4]) assert_series_equal(result, expected) def test_interp_scipy_basic(self): tm._skip_if_no_scipy() s = Series([1, 3, np.nan, 12, np.nan, 25]) # slinear expected = Series([1., 3., 7.5, 12., 18.5, 25.]) result = s.interpolate(method='slinear') assert_series_equal(result, expected) result = s.interpolate(method='slinear', downcast='infer') assert_series_equal(result, expected) # nearest expected = Series([1, 3, 3, 12, 12, 25]) result = s.interpolate(method='nearest') assert_series_equal(result, expected.astype('float')) result = s.interpolate(method='nearest', downcast='infer') assert_series_equal(result, expected) # zero expected = Series([1, 3, 3, 12, 12, 25]) result = s.interpolate(method='zero') assert_series_equal(result, expected.astype('float')) result = s.interpolate(method='zero', downcast='infer') assert_series_equal(result, expected) # quadratic expected = Series([1, 3., 6.769231, 12., 18.230769, 25.]) result = s.interpolate(method='quadratic') assert_series_equal(result, expected) result = s.interpolate(method='quadratic', downcast='infer') assert_series_equal(result, expected) # cubic expected = Series([1., 3., 6.8, 12., 18.2, 25.]) result = s.interpolate(method='cubic') assert_series_equal(result, expected) def test_interp_limit(self): s = Series([1, 3, np.nan, np.nan, np.nan, 11]) expected = Series([1., 3., 5., 7., np.nan, 11.]) result = s.interpolate(method='linear', limit=2) assert_series_equal(result, expected) def test_interp_all_good(self): # scipy tm._skip_if_no_scipy() s = Series([1, 2, 3]) result = s.interpolate(method='polynomial', order=1) assert_series_equal(result, s) # non-scipy result = s.interpolate() assert_series_equal(result, s) def test_interp_multiIndex(self): idx = MultiIndex.from_tuples([(0, 'a'), (1, 'b'), (2, 'c')]) s = Series([1, 2, np.nan], index=idx) expected = s.copy() expected.loc[2] = 2 result = s.interpolate() assert_series_equal(result, expected) tm._skip_if_no_scipy() with tm.assertRaises(ValueError): s.interpolate(method='polynomial', order=1) def test_interp_nonmono_raise(self): tm._skip_if_no_scipy() s = Series([1, np.nan, 3], index=[0, 2, 1]) with tm.assertRaises(ValueError): s.interpolate(method='krogh') def test_interp_datetime64(self): tm._skip_if_no_scipy() df = Series([1, np.nan, 3], index=date_range('1/1/2000', periods=3)) result = df.interpolate(method='nearest') expected = Series([1., 1., 3.], index=date_range('1/1/2000', periods=3)) assert_series_equal(result, expected) def test_interp_limit_no_nans(self): # GH 7173 s = pd.Series([1., 2., 3.]) result = s.interpolate(limit=1) expected = s assert_series_equal(result, expected) def test_describe(self): _ = self.series.describe() _ = self.ts.describe() def test_describe_percentiles(self): with tm.assert_produces_warning(FutureWarning): desc = self.series.describe(percentile_width=50) assert '75%' in desc.index assert '25%' in desc.index with tm.assert_produces_warning(FutureWarning): desc = self.series.describe(percentile_width=95) assert '97.5%' in desc.index assert '2.5%' in desc.index def test_describe_objects(self): s = Series(['a', 'b', 'b', np.nan, np.nan, np.nan, 'c', 'd', 'a', 'a']) result = s.describe() expected = Series({'count': 7, 'unique': 4, 'top': 'a', 'freq': 3}, index=result.index) assert_series_equal(result, expected) dt = list(self.ts.index) dt.append(dt[0]) ser = Series(dt) rs = ser.describe() min_date = min(dt) max_date = max(dt) xp = Series({'count': len(dt), 'unique': len(self.ts.index), 'first': min_date, 'last': max_date, 'freq': 2, 'top': min_date}, index=rs.index) assert_series_equal(rs, xp) def test_describe_empty(self): result = pd.Series().describe() self.assertEqual(result['count'], 0) self.assertTrue(result.drop('count').isnull().all()) nanSeries = Series([np.nan]) nanSeries.name = 'NaN' result = nanSeries.describe() self.assertEqual(result['count'], 0) self.assertTrue(result.drop('count').isnull().all()) def test_describe_none(self): noneSeries = Series([None]) noneSeries.name = 'None' assert_series_equal(noneSeries.describe(), Series([0, 0], index=['count', 'unique'])) class TestDataFrame(tm.TestCase, Generic): _typ = DataFrame _comparator = lambda self, x, y: assert_frame_equal(x,y) def test_rename_mi(self): df = DataFrame([11,21,31], index=MultiIndex.from_tuples([("A",x) for x in ["a","B","c"]])) result = df.rename(str.lower) def test_nonzero_single_element(self): # allow single item via bool method df = DataFrame([[True]]) self.assertTrue(df.bool()) df = DataFrame([[False]]) self.assertFalse(df.bool()) df = DataFrame([[False, False]]) self.assertRaises(ValueError, lambda : df.bool()) self.assertRaises(ValueError, lambda : bool(df)) def test_get_numeric_data_preserve_dtype(self): # get the numeric data o = DataFrame({'A': [1, '2', 3.]}) result = o._get_numeric_data() expected = DataFrame(index=[0, 1, 2], dtype=object) self._compare(result, expected) def test_interp_basic(self): df = DataFrame({'A': [1, 2, np.nan, 4], 'B': [1, 4, 9, np.nan], 'C': [1, 2, 3, 5], 'D': list('abcd')}) expected = DataFrame({'A': [1., 2., 3., 4.], 'B': [1., 4., 9., 9.], 'C': [1, 2, 3, 5], 'D': list('abcd')}) result = df.interpolate() assert_frame_equal(result, expected) result = df.set_index('C').interpolate() expected = df.set_index('C') expected.loc[3,'A'] = 3 expected.loc[5,'B'] = 9 assert_frame_equal(result, expected) def test_interp_bad_method(self): df = DataFrame({'A': [1, 2, np.nan, 4], 'B': [1, 4, 9, np.nan], 'C': [1, 2, 3, 5], 'D': list('abcd')}) with tm.assertRaises(ValueError): df.interpolate(method='not_a_method') def test_interp_combo(self): df = DataFrame({'A': [1., 2., np.nan, 4.], 'B': [1, 4, 9, np.nan], 'C': [1, 2, 3, 5], 'D': list('abcd')}) result = df['A'].interpolate() expected = Series([1., 2., 3., 4.]) assert_series_equal(result, expected) result = df['A'].interpolate(downcast='infer') expected = Series([1, 2, 3, 4]) assert_series_equal(result, expected) def test_interp_nan_idx(self): df = DataFrame({'A': [1, 2, np.nan, 4], 'B': [np.nan, 2, 3, 4]}) df = df.set_index('A') with tm.assertRaises(NotImplementedError): df.interpolate(method='values') def test_interp_various(self): tm._skip_if_no_scipy() df = DataFrame({'A': [1, 2, np.nan, 4, 5, np.nan, 7], 'C': [1, 2, 3, 5, 8, 13, 21]}) df = df.set_index('C') expected = df.copy() result = df.interpolate(method='polynomial', order=1) expected.A.loc[3] = 2.66666667 expected.A.loc[13] = 5.76923076 assert_frame_equal(result, expected) result = df.interpolate(method='cubic') expected.A.loc[3] = 2.81621174 expected.A.loc[13] = 5.64146581 assert_frame_equal(result, expected) result = df.interpolate(method='nearest') expected.A.loc[3] = 2 expected.A.loc[13] = 5 assert_frame_equal(result, expected, check_dtype=False) result = df.interpolate(method='quadratic') expected.A.loc[3] = 2.82533638 expected.A.loc[13] = 6.02817974 assert_frame_equal(result, expected) result = df.interpolate(method='slinear') expected.A.loc[3] = 2.66666667 expected.A.loc[13] = 5.76923077 assert_frame_equal(result, expected) result = df.interpolate(method='zero') expected.A.loc[3] = 2. expected.A.loc[13] = 5 assert_frame_equal(result, expected, check_dtype=False) result = df.interpolate(method='quadratic') expected.A.loc[3] = 2.82533638 expected.A.loc[13] = 6.02817974 assert_frame_equal(result, expected) def test_interp_alt_scipy(self): tm._skip_if_no_scipy() df = DataFrame({'A': [1, 2, np.nan, 4, 5, np.nan, 7], 'C': [1, 2, 3, 5, 8, 13, 21]}) result = df.interpolate(method='barycentric') expected = df.copy() expected.ix[2,'A'] = 3 expected.ix[5,'A'] = 6 assert_frame_equal(result, expected) result = df.interpolate(method='barycentric', downcast='infer') assert_frame_equal(result, expected.astype(np.int64)) result = df.interpolate(method='krogh') expectedk = df.copy() expectedk['A'] = expected['A'] assert_frame_equal(result, expectedk) _skip_if_no_pchip() result = df.interpolate(method='pchip') expected.ix[2,'A'] = 3 expected.ix[5,'A'] = 6.125 assert_frame_equal(result, expected) def test_interp_rowwise(self): df = DataFrame({0: [1, 2, np.nan, 4], 1: [2, 3, 4, np.nan], 2: [np.nan, 4, 5, 6], 3: [4, np.nan, 6, 7], 4: [1, 2, 3, 4]}) result = df.interpolate(axis=1) expected = df.copy() expected.loc[3,1] = 5 expected.loc[0,2] = 3 expected.loc[1,3] = 3 expected[4] = expected[4].astype(np.float64) assert_frame_equal(result, expected) # scipy route tm._skip_if_no_scipy() result = df.interpolate(axis=1, method='values') assert_frame_equal(result, expected) result = df.interpolate(axis=0) expected = df.interpolate() assert_frame_equal(result, expected) def test_rowwise_alt(self): df = DataFrame({0: [0, .5, 1., np.nan, 4, 8, np.nan, np.nan, 64], 1: [1, 2, 3, 4, 3, 2, 1, 0, -1]}) df.interpolate(axis=0) def test_interp_leading_nans(self): df = DataFrame({"A": [np.nan, np.nan, .5, .25, 0], "B": [np.nan, -3, -3.5, np.nan, -4]}) result = df.interpolate() expected = df.copy() expected['B'].loc[3] = -3.75 assert_frame_equal(result, expected) tm._skip_if_no_scipy() result = df.interpolate(method='polynomial', order=1) assert_frame_equal(result, expected) def test_interp_raise_on_only_mixed(self): df = DataFrame({'A': [1, 2, np.nan, 4], 'B': ['a', 'b', 'c', 'd'], 'C': [np.nan, 2, 5, 7], 'D': [np.nan, np.nan, 9, 9], 'E': [1, 2, 3, 4]}) with tm.assertRaises(TypeError): df.interpolate(axis=1) def test_interp_inplace(self): df = DataFrame({'a': [1., 2., np.nan, 4.]}) expected = DataFrame({'a': [1., 2., 3., 4.]}) result = df.copy() result['a'].interpolate(inplace=True) assert_frame_equal(result, expected) result = df.copy() result['a'].interpolate(inplace=True, downcast='infer') assert_frame_equal(result, expected.astype('int64')) def test_interp_ignore_all_good(self): # GH df = DataFrame({'A': [1, 2, np.nan, 4], 'B': [1, 2, 3, 4], 'C': [1., 2., np.nan, 4.], 'D': [1., 2., 3., 4.]}) expected = DataFrame({'A': np.array([1, 2, 3, 4], dtype='float64'), 'B': np.array([1, 2, 3, 4], dtype='int64'), 'C': np.array([1., 2., 3, 4.], dtype='float64'), 'D': np.array([1., 2., 3., 4.], dtype='float64')}) result = df.interpolate(downcast=None) assert_frame_equal(result, expected) # all good result = df[['B', 'D']].interpolate(downcast=None) assert_frame_equal(result, df[['B', 'D']]) def test_describe(self): desc = tm.makeDataFrame().describe() desc = tm.makeMixedDataFrame().describe() desc = tm.makeTimeDataFrame().describe() def test_describe_percentiles(self): with tm.assert_produces_warning(FutureWarning): desc = tm.makeDataFrame().describe(percentile_width=50) assert '75%' in desc.index assert '25%' in desc.index with tm.assert_produces_warning(FutureWarning): desc = tm.makeDataFrame().describe(percentile_width=95) assert '97.5%' in desc.index assert '2.5%' in desc.index def test_describe_quantiles_both(self): with tm.assertRaises(ValueError): tm.makeDataFrame().describe(percentile_width=50, percentiles=[25, 75]) def test_describe_percentiles_percent_or_raw(self): df = tm.makeDataFrame() with tm.assertRaises(ValueError): df.describe(percentiles=[10, 50, 100]) def test_describe_percentiles_equivalence(self): df = tm.makeDataFrame() d1 = df.describe() d2 = df.describe(percentiles=[.25, .75]) assert_frame_equal(d1, d2) def test_describe_percentiles_insert_median(self): df = tm.makeDataFrame() d1 = df.describe(percentiles=[.25, .75]) d2 = df.describe(percentiles=[.25, .5, .75]) assert_frame_equal(d1, d2) # none above d1 = df.describe(percentiles=[.25, .45]) d2 = df.describe(percentiles=[.25, .45, .5]) assert_frame_equal(d1, d2) # none below d1 = df.describe(percentiles=[.75, 1]) d2 = df.describe(percentiles=[.5, .75, 1]) assert_frame_equal(d1, d2) def test_describe_no_numeric(self): df = DataFrame({'A': ['foo', 'foo', 'bar'] * 8, 'B': ['a', 'b', 'c', 'd'] * 6}) desc = df.describe() expected = DataFrame(dict((k, v.describe()) for k, v in compat.iteritems(df)), columns=df.columns) assert_frame_equal(desc, expected) ts = tm.makeTimeSeries() df = DataFrame({'time': ts.index}) desc = df.describe() self.assertEqual(desc.time['first'], min(ts.index)) def test_describe_empty_int_columns(self): df = DataFrame([[0, 1], [1, 2]]) desc = df[df[0] < 0].describe() # works assert_series_equal(desc.xs('count'), Series([0, 0], dtype=float, name='count')) self.assertTrue(isnull(desc.ix[1:]).all().all()) def test_describe_objects(self): df = DataFrame({"C1": ['a', 'a', 'c'], "C2": ['d', 'd', 'f']}) result = df.describe() expected = DataFrame({"C1": [3, 2, 'a', 2], "C2": [3, 2, 'd', 2]}, index=['count', 'unique', 'top', 'freq']) assert_frame_equal(result, expected) df = DataFrame({"C1": pd.date_range('2010-01-01', periods=4, freq='D')}) df.loc[4] = pd.Timestamp('2010-01-04') result = df.describe() expected = DataFrame({"C1": [5, 4, pd.Timestamp('2010-01-04'), 2, pd.Timestamp('2010-01-01'), pd.Timestamp('2010-01-04')]}, index=['count', 'unique', 'top', 'freq', 'first', 'last']) assert_frame_equal(result, expected) # mix time and str df['C2'] = ['a', 'a', 'b', 'c', 'a'] result = df.describe() expected['C2'] = [5, 3, 'a', 3, np.nan, np.nan] assert_frame_equal(result, expected) # just str expected = DataFrame({'C2': [5, 3, 'a', 4]}, index=['count', 'unique', 'top', 'freq']) result = df[['C2']].describe() # mix of time, str, numeric df['C3'] = [2, 4, 6, 8, 2] result = df.describe() expected = DataFrame({"C3": [5., 4.4, 2.607681, 2., 2., 4., 6., 8.]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) assert_frame_equal(result, expected) assert_frame_equal(df.describe(), df[['C3']].describe()) assert_frame_equal(df[['C1', 'C3']].describe(), df[['C3']].describe()) assert_frame_equal(df[['C2', 'C3']].describe(), df[['C3']].describe()) def test_describe_typefiltering(self): df = DataFrame({'catA': ['foo', 'foo', 'bar'] * 8, 'catB': ['a', 'b', 'c', 'd'] * 6, 'numC': np.arange(24, dtype='int64'), 'numD': np.arange(24.) + .5, 'ts': tm.makeTimeSeries()[:24].index}) descN = df.describe() expected_cols = ['numC', 'numD',] expected = DataFrame(dict((k, df[k].describe()) for k in expected_cols), columns=expected_cols) assert_frame_equal(descN, expected) desc = df.describe(include=['number']) assert_frame_equal(desc, descN) desc = df.describe(exclude=['object', 'datetime']) assert_frame_equal(desc, descN) desc = df.describe(include=['float']) assert_frame_equal(desc, descN.drop('numC',1)) descC = df.describe(include=['O']) expected_cols = ['catA', 'catB'] expected = DataFrame(dict((k, df[k].describe()) for k in expected_cols), columns=expected_cols) assert_frame_equal(descC, expected) descD = df.describe(include=['datetime']) assert_series_equal( descD.ts, df.ts.describe()) desc = df.describe(include=['object','number', 'datetime']) assert_frame_equal(desc.loc[:,["numC","numD"]].dropna(), descN) assert_frame_equal(desc.loc[:,["catA","catB"]].dropna(), descC) descDs = descD.sort_index() # the index order change for mixed-types assert_frame_equal(desc.loc[:,"ts":].dropna().sort_index(), descDs) desc = df.loc[:,'catA':'catB'].describe(include='all') assert_frame_equal(desc, descC) desc = df.loc[:,'numC':'numD'].describe(include='all') assert_frame_equal(desc, descN) desc = df.describe(percentiles = [], include='all') cnt = Series(data=[4,4,6,6,6], index=['catA','catB','numC','numD','ts']) assert_series_equal( desc.count(), cnt) self.assertTrue('count' in desc.index) self.assertTrue('unique' in desc.index) self.assertTrue('50%' in desc.index) self.assertTrue('first' in desc.index) desc = df.drop("ts", 1).describe(percentiles = [], include='all') assert_series_equal( desc.count(), cnt.drop("ts")) self.assertTrue('first' not in desc.index) desc = df.drop(["numC","numD"], 1).describe(percentiles = [], include='all') assert_series_equal( desc.count(), cnt.drop(["numC","numD"])) self.assertTrue('50%' not in desc.index) def test_describe_typefiltering_category_bool(self): df = DataFrame({'A_cat': pd.Categorical(['foo', 'foo', 'bar'] * 8), 'B_str': ['a', 'b', 'c', 'd'] * 6, 'C_bool': [True] * 12 + [False] * 12, 'D_num': np.arange(24.) + .5, 'E_ts': tm.makeTimeSeries()[:24].index}) # bool is considered numeric in describe, although not an np.number desc = df.describe() expected_cols = ['C_bool', 'D_num'] expected = DataFrame(dict((k, df[k].describe()) for k in expected_cols), columns=expected_cols) assert_frame_equal(desc, expected) desc = df.describe(include=["category"]) self.assertTrue(desc.columns.tolist() == ["A_cat"]) # 'all' includes numpy-dtypes + category desc1 = df.describe(include="all") desc2 = df.describe(include=[np.generic, "category"]) assert_frame_equal(desc1, desc2) def test_describe_timedelta(self): df = DataFrame({"td": pd.to_timedelta(np.arange(24)%20,"D")}) self.assertTrue(df.describe().loc["mean"][0] == pd.to_timedelta("8d4h")) def test_describe_typefiltering_dupcol(self): df = DataFrame({'catA': ['foo', 'foo', 'bar'] * 8, 'catB': ['a', 'b', 'c', 'd'] * 6, 'numC': np.arange(24), 'numD': np.arange(24.) + .5, 'ts': tm.makeTimeSeries()[:24].index}) s = df.describe(include='all').shape[1] df = pd.concat([df, df], axis=1) s2 = df.describe(include='all').shape[1] self.assertTrue(s2 == 2 * s) def test_describe_typefiltering_groupby(self): df = DataFrame({'catA': ['foo', 'foo', 'bar'] * 8, 'catB': ['a', 'b', 'c', 'd'] * 6, 'numC': np.arange(24), 'numD': np.arange(24.) + .5, 'ts': tm.makeTimeSeries()[:24].index}) G = df.groupby('catA') self.assertTrue(G.describe(include=['number']).shape == (16, 2)) self.assertTrue(G.describe(include=['number', 'object']).shape == (22, 3)) self.assertTrue(G.describe(include='all').shape == (26, 4)) def test_no_order(self): tm._skip_if_no_scipy() s = Series([0, 1, np.nan, 3]) with tm.assertRaises(ValueError): s.interpolate(method='polynomial') with tm.assertRaises(ValueError): s.interpolate(method='spline') def test_spline(self): tm._skip_if_no_scipy() s = Series([1, 2, np.nan, 4, 5, np.nan, 7]) result = s.interpolate(method='spline', order=1) expected = Series([1., 2., 3., 4., 5., 6., 7.]) assert_series_equal(result, expected) def test_metadata_propagation_indiv(self): # groupby df = DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], 'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'C': np.random.randn(8), 'D': np.random.randn(8)}) result = df.groupby('A').sum() self.check_metadata(df,result) # resample df = DataFrame(np.random.randn(1000,2), index=date_range('20130101',periods=1000,freq='s')) result = df.resample('1T') self.check_metadata(df,result) # merging with override # GH 6923 _metadata = DataFrame._metadata _finalize = DataFrame.__finalize__ np.random.seed(10) df1 = DataFrame(np.random.randint(0, 4, (3, 2)), columns=['a', 'b']) df2 = DataFrame(np.random.randint(0, 4, (3, 2)), columns=['c', 'd']) DataFrame._metadata = ['filename'] df1.filename = 'fname1.csv' df2.filename = 'fname2.csv' def finalize(self, other, method=None, **kwargs): for name in self._metadata: if method == 'merge': left, right = other.left, other.right value = getattr(left, name, '') + '|' + getattr(right, name, '') object.__setattr__(self, name, value) else: object.__setattr__(self, name, getattr(other, name, '')) return self DataFrame.__finalize__ = finalize result = df1.merge(df2, left_on=['a'], right_on=['c'], how='inner') self.assertEqual(result.filename,'fname1.csv|fname2.csv') # concat # GH 6927 DataFrame._metadata = ['filename'] df1 = DataFrame(np.random.randint(0, 4, (3, 2)), columns=list('ab')) df1.filename = 'foo' def finalize(self, other, method=None, **kwargs): for name in self._metadata: if method == 'concat': value = '+'.join([ getattr(o,name) for o in other.objs if getattr(o,name,None) ]) object.__setattr__(self, name, value) else: object.__setattr__(self, name, getattr(other, name, None)) return self DataFrame.__finalize__ = finalize result = pd.concat([df1, df1]) self.assertEqual(result.filename,'foo+foo') # reset DataFrame._metadata = _metadata DataFrame.__finalize__ = _finalize def test_tz_convert_and_localize(self): l0 = date_range('20140701', periods=5, freq='D') # TODO: l1 should be a PeriodIndex for testing # after GH2106 is addressed with tm.assertRaises(NotImplementedError): period_range('20140701', periods=1).tz_convert('UTC') with tm.assertRaises(NotImplementedError): period_range('20140701', periods=1).tz_localize('UTC') # l1 = period_range('20140701', periods=5, freq='D') l1 = date_range('20140701', periods=5, freq='D') int_idx = Index(range(5)) for fn in ['tz_localize', 'tz_convert']: if fn == 'tz_convert': l0 = l0.tz_localize('UTC') l1 = l1.tz_localize('UTC') for idx in [l0, l1]: l0_expected = getattr(idx, fn)('US/Pacific') l1_expected = getattr(idx, fn)('US/Pacific') df1 = DataFrame(np.ones(5), index=l0) df1 = getattr(df1, fn)('US/Pacific') self.assertTrue(df1.index.equals(l0_expected)) # MultiIndex # GH7846 df2 = DataFrame(np.ones(5), MultiIndex.from_arrays([l0, l1])) df3 = getattr(df2, fn)('US/Pacific', level=0) self.assertFalse(df3.index.levels[0].equals(l0)) self.assertTrue(df3.index.levels[0].equals(l0_expected)) self.assertTrue(df3.index.levels[1].equals(l1)) self.assertFalse(df3.index.levels[1].equals(l1_expected)) df3 = getattr(df2, fn)('US/Pacific', level=1) self.assertTrue(df3.index.levels[0].equals(l0)) self.assertFalse(df3.index.levels[0].equals(l0_expected)) self.assertTrue(df3.index.levels[1].equals(l1_expected)) self.assertFalse(df3.index.levels[1].equals(l1)) df4 = DataFrame(np.ones(5), MultiIndex.from_arrays([int_idx, l0])) df5 = getattr(df4, fn)('US/Pacific', level=1) self.assertTrue(df3.index.levels[0].equals(l0)) self.assertFalse(df3.index.levels[0].equals(l0_expected)) self.assertTrue(df3.index.levels[1].equals(l1_expected)) self.assertFalse(df3.index.levels[1].equals(l1)) # Bad Inputs for fn in ['tz_localize', 'tz_convert']: # Not DatetimeIndex / PeriodIndex with tm.assertRaisesRegexp(TypeError, 'DatetimeIndex'): df = DataFrame(index=int_idx) df = getattr(df, fn)('US/Pacific') # Not DatetimeIndex / PeriodIndex with tm.assertRaisesRegexp(TypeError, 'DatetimeIndex'): df = DataFrame(np.ones(5), MultiIndex.from_arrays([int_idx, l0])) df = getattr(df, fn)('US/Pacific', level=0) # Invalid level with tm.assertRaisesRegexp(ValueError, 'not valid'): df = DataFrame(index=l0) df = getattr(df, fn)('US/Pacific', level=1) def test_set_attribute(self): # Test for consistent setattr behavior when an attribute and a column # have the same name (Issue #8994) df = DataFrame({'x':[1, 2, 3]}) df.y = 2 df['y'] = [2, 4, 6] df.y = 5 assert_equal(df.y, 5) assert_series_equal(df['y'], Series([2, 4, 6])) class TestPanel(tm.TestCase, Generic): _typ = Panel _comparator = lambda self, x, y: assert_panel_equal(x, y) class TestNDFrame(tm.TestCase): # tests that don't fit elsewhere def test_squeeze(self): # noop for s in [ tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries() ]: tm.assert_series_equal(s.squeeze(),s) for df in [ tm.makeTimeDataFrame() ]: tm.assert_frame_equal(df.squeeze(),df) for p in [ tm.makePanel() ]: tm.assert_panel_equal(p.squeeze(),p) for p4d in [ tm.makePanel4D() ]: tm.assert_panel4d_equal(p4d.squeeze(),p4d) # squeezing df = tm.makeTimeDataFrame().reindex(columns=['A']) tm.assert_series_equal(df.squeeze(),df['A']) p = tm.makePanel().reindex(items=['ItemA']) tm.assert_frame_equal(p.squeeze(),p['ItemA']) p = tm.makePanel().reindex(items=['ItemA'],minor_axis=['A']) tm.assert_series_equal(p.squeeze(),p.ix['ItemA',:,'A']) p4d = tm.makePanel4D().reindex(labels=['label1']) tm.assert_panel_equal(p4d.squeeze(),p4d['label1']) p4d = tm.makePanel4D().reindex(labels=['label1'],items=['ItemA']) tm.assert_frame_equal(p4d.squeeze(),p4d.ix['label1','ItemA']) def test_equals(self): s1 = pd.Series([1, 2, 3], index=[0, 2, 1]) s2 = s1.copy() self.assertTrue(s1.equals(s2)) s1[1] = 99 self.assertFalse(s1.equals(s2)) # NaNs compare as equal s1 = pd.Series([1, np.nan, 3, np.nan], index=[0, 2, 1, 3]) s2 = s1.copy() self.assertTrue(s1.equals(s2)) s2[0] = 9.9 self.assertFalse(s1.equals(s2)) idx = MultiIndex.from_tuples([(0, 'a'), (1, 'b'), (2, 'c')]) s1 = Series([1, 2, np.nan], index=idx) s2 = s1.copy() self.assertTrue(s1.equals(s2)) # Add object dtype column with nans index = np.random.random(10) df1 = DataFrame(np.random.random(10,), index=index, columns=['floats']) df1['text'] = 'the sky is so blue. we could use more chocolate.'.split() df1['start'] = date_range('2000-1-1', periods=10, freq='T') df1['end'] = date_range('2000-1-1', periods=10, freq='D') df1['diff'] = df1['end'] - df1['start'] df1['bool'] = (np.arange(10) % 3 == 0) df1.ix[::2] = nan df2 = df1.copy() self.assertTrue(df1['text'].equals(df2['text'])) self.assertTrue(df1['start'].equals(df2['start'])) self.assertTrue(df1['end'].equals(df2['end'])) self.assertTrue(df1['diff'].equals(df2['diff'])) self.assertTrue(df1['bool'].equals(df2['bool'])) self.assertTrue(df1.equals(df2)) self.assertFalse(df1.equals(object)) # different dtype different = df1.copy() different['floats'] = different['floats'].astype('float32') self.assertFalse(df1.equals(different)) # different index different_index = -index different = df2.set_index(different_index) self.assertFalse(df1.equals(different)) # different columns different = df2.copy() different.columns = df2.columns[::-1] self.assertFalse(df1.equals(different)) # DatetimeIndex index = pd.date_range('2000-1-1', periods=10, freq='T') df1 = df1.set_index(index) df2 = df1.copy() self.assertTrue(df1.equals(df2)) # MultiIndex df3 = df1.set_index(['text'], append=True) df2 = df1.set_index(['text'], append=True) self.assertTrue(df3.equals(df2)) df2 = df1.set_index(['floats'], append=True) self.assertFalse(df3.equals(df2)) # NaN in index df3 = df1.set_index(['floats'], append=True) df2 = df1.set_index(['floats'], append=True) self.assertTrue(df3.equals(df2)) # GH 8437 a = pd.Series([False, np.nan]) b = pd.Series([False, np.nan]) c = pd.Series(index=range(2)) d = pd.Series(index=range(2)) e = pd.Series(index=range(2)) f = pd.Series(index=range(2)) c[:-1] = d[:-1] = e[0] = f[0] = False self.assertTrue(a.equals(a)) self.assertTrue(a.equals(b)) self.assertTrue(a.equals(c)) self.assertTrue(a.equals(d)) self.assertFalse(a.equals(e)) self.assertTrue(e.equals(f)) def test_describe_raises(self): with tm.assertRaises(NotImplementedError): tm.makePanel().describe() if __name__ == '__main__': nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
gpl-2.0
Nacturne/CoreNLP_copy
python_tools/lexical/stats_gen.py
1
1460
from Core import TreeClass as tc import pandas as pd file_original = open('input/test.txt', 'r') file_predicted = open('input/full_hid25_re0-0007-test.txt', 'r') original_temp = [] predicted_temp = [] for line in file_original: original_tree = tc.ScoreTree(line) for node in original_tree.allNodes(): if not node.isLeaf(): data_entry = [] # will be populated with ['score', 'l_child_score', 'r_child_score', 'phrase_length'] data_entry.append(int(node.label)) data_entry.append(int(node.children[0].label)) data_entry.append(int(node.children[1].label)) data_entry.append(node.num_phrases()) original_temp.append(data_entry) for line in file_predicted: predicted_tree = tc.ScoreTree(line) for node in predicted_tree.allNodes(): if not node.isLeaf(): data_entry = [] # will be populated with ['pred_score', 'pred_phrase_length'] data_entry.append(int(node.label)) data_entry.append(node.num_phrases()) predicted_temp.append(data_entry) original_frame = pd.DataFrame(original_temp, columns=['score', 'l_child_score', 'r_child_score', 'phrase_length']) predicted_frame = pd.DataFrame(predicted_temp, columns=['pred_score', 'pred_phrase_length']) result = pd.concat([original_frame, predicted_frame], axis=1) result.to_csv('output/stats.txt',sep='\t') file_original.close() file_predicted.close()
gpl-2.0
cactusbin/nyt
matplotlib/examples/pylab_examples/line_collection2.py
9
1327
from pylab import * from matplotlib.collections import LineCollection # In order to efficiently plot many lines in a single set of axes, # Matplotlib has the ability to add the lines all at once. Here is a # simple example showing how it is done. N = 50 x = arange(N) # Here are many sets of y to plot vs x ys = [x+i for i in x] # We need to set the plot limits, they will not autoscale ax = axes() ax.set_xlim((amin(x),amax(x))) ax.set_ylim((amin(amin(ys)),amax(amax(ys)))) # colors is sequence of rgba tuples # linestyle is a string or dash tuple. Legal string values are # solid|dashed|dashdot|dotted. The dash tuple is (offset, onoffseq) # where onoffseq is an even length tuple of on and off ink in points. # If linestyle is omitted, 'solid' is used # See matplotlib.collections.LineCollection for more information line_segments = LineCollection([list(zip(x,y)) for y in ys], # Make a sequence of x,y pairs linewidths = (0.5,1,1.5,2), linestyles = 'solid') line_segments.set_array(x) ax.add_collection(line_segments) fig = gcf() axcb = fig.colorbar(line_segments) axcb.set_label('Line Number') ax.set_title('Line Collection with mapped colors') sci(line_segments) # This allows interactive changing of the colormap. show()
unlicense
wilsonkichoi/zipline
zipline/finance/trading.py
3
18887
# # Copyright 2015 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import bisect import logbook import datetime import pandas as pd import numpy as np from six import string_types from sqlalchemy import create_engine from zipline.assets import AssetDBWriter, AssetFinder from zipline.data.loader import load_market_data from zipline.utils import tradingcalendar from zipline.errors import ( NoFurtherDataError ) from zipline.utils.memoize import remember_last, lazyval log = logbook.Logger('Trading') class TradingEnvironment(object): """ The financial simulations in zipline depend on information about the benchmark index and the risk free rates of return. The benchmark index defines the benchmark returns used in the calculation of performance metrics such as alpha/beta. Many components, including risk, performance, transforms, and batch_transforms, need access to a calendar of trading days and market hours. The TradingEnvironment maintains two time keeping facilities: - a DatetimeIndex of trading days for calendar calculations - a timezone name, which should be local to the exchange hosting the benchmark index. All dates are normalized to UTC for serialization and storage, and the timezone is used to ensure proper rollover through daylight savings and so on. User code will not normally need to use TradingEnvironment directly. If you are extending zipline's core financial components and need to use the environment, you must import the module and build a new TradingEnvironment object, then pass that TradingEnvironment as the 'env' arg to your TradingAlgorithm. Parameters ---------- load : callable, optional The function that returns benchmark returns and treasury curves. The treasury curves are expected to be a DataFrame with an index of dates and columns of the curve names, e.g. '10year', '1month', etc. bm_symbol : str, optional The benchmark symbol exchange_tz : tz-coercable, optional The timezone of the exchange. min_date : datetime, optional The oldest date that we know about in this environment. max_date : datetime, optional The most recent date that we know about in this environment. env_trading_calendar : pd.DatetimeIndex, optional The calendar of datetimes that define our market hours. asset_db_path : str or sa.engine.Engine, optional The path to the assets db or sqlalchemy Engine object to use to construct an AssetFinder. """ # Token used as a substitute for pickling objects that contain a # reference to a TradingEnvironment PERSISTENT_TOKEN = "<TradingEnvironment>" def __init__(self, load=None, bm_symbol='^GSPC', exchange_tz="US/Eastern", min_date=None, max_date=None, env_trading_calendar=tradingcalendar, asset_db_path=':memory:'): self.trading_day = env_trading_calendar.trading_day.copy() # `tc_td` is short for "trading calendar trading days" tc_td = env_trading_calendar.trading_days self.trading_days = tc_td[tc_td.slice_indexer(min_date, max_date)] self.first_trading_day = self.trading_days[0] self.last_trading_day = self.trading_days[-1] self.early_closes = env_trading_calendar.get_early_closes( self.first_trading_day, self.last_trading_day) self.open_and_closes = env_trading_calendar.open_and_closes.loc[ self.trading_days] self.bm_symbol = bm_symbol if not load: load = load_market_data self.benchmark_returns, self.treasury_curves = \ load(self.trading_day, self.trading_days, self.bm_symbol) if max_date: tr_c = self.treasury_curves # Mask the treasury curves down to the current date. # In the case of live trading, the last date in the treasury # curves would be the day before the date considered to be # 'today'. self.treasury_curves = tr_c[tr_c.index <= max_date] self.exchange_tz = exchange_tz if isinstance(asset_db_path, string_types): asset_db_path = 'sqlite:///%s' % asset_db_path self.engine = engine = create_engine(asset_db_path) else: self.engine = engine = asset_db_path if engine is not None: AssetDBWriter(engine).init_db() self.asset_finder = AssetFinder(engine) else: self.asset_finder = None @lazyval def market_minutes(self): return self.minutes_for_days_in_range(self.first_trading_day, self.last_trading_day) def write_data(self, **kwargs): """Write data into the asset_db. Parameters ---------- **kwargs Forwarded to AssetDBWriter.write """ AssetDBWriter(self.engine).write(**kwargs) def normalize_date(self, test_date): test_date = pd.Timestamp(test_date, tz='UTC') return pd.tseries.tools.normalize_date(test_date) def utc_dt_in_exchange(self, dt): return pd.Timestamp(dt).tz_convert(self.exchange_tz) def exchange_dt_in_utc(self, dt): return pd.Timestamp(dt, tz=self.exchange_tz).tz_convert('UTC') def is_market_hours(self, test_date): if not self.is_trading_day(test_date): return False mkt_open, mkt_close = self.get_open_and_close(test_date) return test_date >= mkt_open and test_date <= mkt_close def is_trading_day(self, test_date): dt = self.normalize_date(test_date) return (dt in self.trading_days) def next_trading_day(self, test_date): dt = self.normalize_date(test_date) delta = datetime.timedelta(days=1) while dt <= self.last_trading_day: dt += delta if dt in self.trading_days: return dt return None def previous_trading_day(self, test_date): dt = self.normalize_date(test_date) delta = datetime.timedelta(days=-1) while self.first_trading_day < dt: dt += delta if dt in self.trading_days: return dt return None def add_trading_days(self, n, date): """ Adds n trading days to date. If this would fall outside of the trading calendar, a NoFurtherDataError is raised. :Arguments: n : int The number of days to add to date, this can be positive or negative. date : datetime The date to add to. :Returns: new_date : datetime n trading days added to date. """ if n == 1: return self.next_trading_day(date) if n == -1: return self.previous_trading_day(date) idx = self.get_index(date) + n if idx < 0 or idx >= len(self.trading_days): raise NoFurtherDataError( msg='Cannot add %d days to %s' % (n, date) ) return self.trading_days[idx] def days_in_range(self, start, end): start_date = self.normalize_date(start) end_date = self.normalize_date(end) mask = ((self.trading_days >= start_date) & (self.trading_days <= end_date)) return self.trading_days[mask] def opens_in_range(self, start, end): return self.open_and_closes.market_open.loc[start:end] def closes_in_range(self, start, end): return self.open_and_closes.market_close.loc[start:end] def minutes_for_days_in_range(self, start, end): """ Get all market minutes for the days between start and end, inclusive. """ start_date = self.normalize_date(start) end_date = self.normalize_date(end) o_and_c = self.open_and_closes[ self.open_and_closes.index.slice_indexer(start_date, end_date)] opens = o_and_c.market_open closes = o_and_c.market_close one_min = pd.Timedelta(1, unit='m') all_minutes = [] for i in range(0, len(o_and_c.index)): market_open = opens[i] market_close = closes[i] day_minutes = np.arange(market_open, market_close + one_min, dtype='datetime64[m]') all_minutes.append(day_minutes) # Concatenate all minutes and truncate minutes before start/after end. return pd.DatetimeIndex( np.concatenate(all_minutes), copy=False, tz='UTC', ) def next_open_and_close(self, start_date): """ Given the start_date, returns the next open and close of the market. """ next_open = self.next_trading_day(start_date) if next_open is None: raise NoFurtherDataError( msg=("Attempt to backtest beyond available history. " "Last known date: %s" % self.last_trading_day) ) return self.get_open_and_close(next_open) def previous_open_and_close(self, start_date): """ Given the start_date, returns the previous open and close of the market. """ previous = self.previous_trading_day(start_date) if previous is None: raise NoFurtherDataError( msg=("Attempt to backtest beyond available history. " "First known date: %s" % self.first_trading_day) ) return self.get_open_and_close(previous) def next_market_minute(self, start): """ Get the next market minute after @start. This is either the immediate next minute, the open of the same day if @start is before the market open on a trading day, or the open of the next market day after @start. """ if self.is_trading_day(start): market_open, market_close = self.get_open_and_close(start) # If start before market open on a trading day, return market open. if start < market_open: return market_open # If start is during trading hours, then get the next minute. elif start < market_close: return start + datetime.timedelta(minutes=1) # If start is not in a trading day, or is after the market close # then return the open of the *next* trading day. return self.next_open_and_close(start)[0] @remember_last def previous_market_minute(self, start): """ Get the next market minute before @start. This is either the immediate previous minute, the close of the same day if @start is after the close on a trading day, or the close of the market day before @start. """ if self.is_trading_day(start): market_open, market_close = self.get_open_and_close(start) # If start after the market close, return market close. if start > market_close: return market_close # If start is during trading hours, then get previous minute. if start > market_open: return start - datetime.timedelta(minutes=1) # If start is not a trading day, or is before the market open # then return the close of the *previous* trading day. return self.previous_open_and_close(start)[1] def get_open_and_close(self, day): index = self.open_and_closes.index.get_loc(day.date()) todays_minutes = self.open_and_closes.iloc[index] return todays_minutes[0], todays_minutes[1] def market_minutes_for_day(self, stamp): market_open, market_close = self.get_open_and_close(stamp) return pd.date_range(market_open, market_close, freq='T') def open_close_window(self, start, count, offset=0, step=1): """ Return a DataFrame containing `count` market opens and closes, beginning with `start` + `offset` days and continuing `step` minutes at a time. """ # TODO: Correctly handle end of data. start_idx = self.get_index(start) + offset stop_idx = start_idx + (count * step) index = np.arange(start_idx, stop_idx, step) return self.open_and_closes.iloc[index] def market_minute_window(self, start, count, step=1): """ Return a DatetimeIndex containing `count` market minutes, starting with `start` and continuing `step` minutes at a time. """ if not self.is_market_hours(start): raise ValueError("market_minute_window starting at " "non-market time {minute}".format(minute=start)) all_minutes = [] current_day_minutes = self.market_minutes_for_day(start) first_minute_idx = current_day_minutes.searchsorted(start) minutes_in_range = current_day_minutes[first_minute_idx::step] # Build up list of lists of days' market minutes until we have count # minutes stored altogether. while True: if len(minutes_in_range) >= count: # Truncate off extra minutes minutes_in_range = minutes_in_range[:count] all_minutes.append(minutes_in_range) count -= len(minutes_in_range) if count <= 0: break if step > 0: start, _ = self.next_open_and_close(start) current_day_minutes = self.market_minutes_for_day(start) else: _, start = self.previous_open_and_close(start) current_day_minutes = self.market_minutes_for_day(start) minutes_in_range = current_day_minutes[::step] # Concatenate all the accumulated minutes. return pd.DatetimeIndex( np.concatenate(all_minutes), copy=False, tz='UTC', ) def trading_day_distance(self, first_date, second_date): first_date = self.normalize_date(first_date) second_date = self.normalize_date(second_date) # TODO: May be able to replace the following with searchsorted. # Find leftmost item greater than or equal to day i = bisect.bisect_left(self.trading_days, first_date) if i == len(self.trading_days): # nothing found return None j = bisect.bisect_left(self.trading_days, second_date) if j == len(self.trading_days): return None return j - i def get_index(self, dt): """ Return the index of the given @dt, or the index of the preceding trading day if the given dt is not in the trading calendar. """ ndt = self.normalize_date(dt) if ndt in self.trading_days: return self.trading_days.searchsorted(ndt) else: return self.trading_days.searchsorted(ndt) - 1 class SimulationParameters(object): def __init__(self, period_start, period_end, capital_base=10e3, emission_rate='daily', data_frequency='daily', env=None, arena='backtest'): self.period_start = period_start self.period_end = period_end self.capital_base = capital_base self.emission_rate = emission_rate self.data_frequency = data_frequency # copied to algorithm's environment for runtime access self.arena = arena if env is not None: self.update_internal_from_env(env=env) def update_internal_from_env(self, env): assert self.period_start <= self.period_end, \ "Period start falls after period end." assert self.period_start <= env.last_trading_day, \ "Period start falls after the last known trading day." assert self.period_end >= env.first_trading_day, \ "Period end falls before the first known trading day." self.first_open = self._calculate_first_open(env) self.last_close = self._calculate_last_close(env) start_index = env.get_index(self.first_open) end_index = env.get_index(self.last_close) # take an inclusive slice of the environment's # trading_days. self.trading_days = env.trading_days[start_index:end_index + 1] def _calculate_first_open(self, env): """ Finds the first trading day on or after self.period_start. """ first_open = self.period_start one_day = datetime.timedelta(days=1) while not env.is_trading_day(first_open): first_open = first_open + one_day mkt_open, _ = env.get_open_and_close(first_open) return mkt_open def _calculate_last_close(self, env): """ Finds the last trading day on or before self.period_end """ last_close = self.period_end one_day = datetime.timedelta(days=1) while not env.is_trading_day(last_close): last_close = last_close - one_day _, mkt_close = env.get_open_and_close(last_close) return mkt_close @property def days_in_period(self): """return the number of trading days within the period [start, end)""" return len(self.trading_days) def __repr__(self): return """ {class_name}( period_start={period_start}, period_end={period_end}, capital_base={capital_base}, data_frequency={data_frequency}, emission_rate={emission_rate}, first_open={first_open}, last_close={last_close})\ """.format(class_name=self.__class__.__name__, period_start=self.period_start, period_end=self.period_end, capital_base=self.capital_base, data_frequency=self.data_frequency, emission_rate=self.emission_rate, first_open=self.first_open, last_close=self.last_close) def noop_load(*args, **kwargs): """ A method that can be substituted in as the load method in a TradingEnvironment to prevent it from loading benchmarks. Accepts any arguments, but returns only a tuple of Nones regardless of input. """ return None, None
apache-2.0
gtfierro/backchannel
readtopo.py
1
3711
import yaml import networkx as nx import matplotlib.pyplot as plt from collections import defaultdict import sys class Topo: def __init__(self, yaml_string): self.raw = yaml.load(yaml_string) self.G = nx.Graph() self.hops = defaultdict(list) self.hops_edges = defaultdict(list) if 'root' not in self.raw.iterkeys(): print 'Graph has no root!' sys.exit(1) self.root = str(self.raw.pop('root')) self.G.add_node(self.root) for node in self.raw.iterkeys(): self.G.add_node(str(node)) for node, edges in self.raw.iteritems(): for edge in edges: self.G.add_edge(str(node), str(edge)) edges = list(nx.traversal.bfs_edges(self.G, self.root)) for edge in edges: if edge[0] == self.root: # edge[1] is single-hop self.hops[1].append(edge[1]) self.hops_edges[1].append(edge) continue for i in range(1, len(edges)+1): # worst case scenario if edge[0] in self.hops[i]: self.hops[i+1].append(edge[1]) self.hops_edges[1+1].append(edge) continue print self.hops def draw(self): # node attrs node_size=1600 # 1-hop, 2-hop etc root_color = 'red' node_tiers = ['blue','green','yellow'] node_color='blue' node_alpha=0.3 node_text_size=12 # edge attrs edge_color='black' edge_alpha=0.3 edge_tickness=1 edge_text_pos=0.3 f = plt.figure() graph_pos = nx.shell_layout(self.G) # draw graph nx.draw_networkx_nodes(self.G, graph_pos, nodelist=[self.root], alpha=node_alpha, node_color=root_color) for hop, nodes in self.hops.iteritems(): if len(nodes) == 0: continue print hop nx.draw_networkx_nodes(self.G, graph_pos, nodelist=nodes, alpha=node_alpha, node_color=node_tiers[hop-1]) nx.draw_networkx_edges(self.G,graph_pos, edgelist=self.hops_edges[hop], width=edge_tickness, alpha=edge_alpha, edge_color=edge_color) nx.draw_networkx_labels(self.G, graph_pos,font_size=node_text_size) #print "Drawing..." #f.savefig("graph.png") #plt.show() def generate_ignore_block(self, node, ignored): def _ignore_neighbor(neighbor, OID="::212:6d02:0:"): return 'storm.os.ignoreNeighbor("{0}{1}")'.format(OID, neighbor) code = '' if len(ignored) > 0: code += 'if (storm.os.nodeid() == {0}) then\n\t'.format(int(node, 16)) code += '\n\t'.join(map(_ignore_neighbor, ignored)) code += '\nend' return code def to_code(self): edges = list(nx.traversal.bfs_edges(self.G, self.root)) node_set = set(self.G.nodes()) ignoreblocks = [] for node in self.G.nodes(): allowed_neighbors = set(self.G[node].keys()) allowed_neighbors.add(node) # add yourself ignore_these = node_set.difference(allowed_neighbors) ignoreblocks.append(self.generate_ignore_block(node, ignore_these)) framework = """sh = require "stormsh" sh.start() {0} cord.enter_loop() """ code = framework.format('\n'.join(ignoreblocks)) with open('./main.lua', 'w') as f: f.write(code) if __name__ == '__main__': filename = sys.argv[1] print 'Loading topology from {0}'.format(filename) topo = Topo(open(filename).read()) topo.draw() topo.to_code()
apache-2.0
jgliss/pydoas
docs/conf.py
1
10922
# -*- coding: utf-8 -*- # # PyDOAS documentation build configuration file, created by # sphinx-quickstart on Tue Apr 12 14:39:57 2016. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import matplotlib # This was inserted based on this blog: https://github.com/spinus/sphinxcontrib-images/issues/41, after the following build error occured: Could not import extension sphinxcontrib.images (exception: cannot import name make_admonition), apparently due to a compatibility error between an updated version of sphinx (1.6) and the extension sphinxcontrib.images from docutils.parsers.rst.directives.admonitions import BaseAdmonition from sphinx.util import compat compat.make_admonition = BaseAdmonition matplotlib.use('agg') with open(os.path.join("..", "VERSION")) as f: __version__ = f.readline() f.close() sys.path.insert(0, os.path.abspath('../')) MOCK_MODULES = [ 'numpy', 'pandas' 'matplotlib' ] #sys.modules.update((mod_name, Mock()) for mod_name in MOCK_MODULES) # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. #extensions = [ # 'sphinx.ext.autodoc', # 'sphinx.ext.doctest', # 'sphinx.ext.intersphinx', # 'sphinx.ext.todo', # 'sphinx.ext.pngmath', # 'sphinx.ext.ifconfig', # 'sphinx.ext.viewcode', #] extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.ifconfig', 'sphinx.ext.viewcode', 'sphinx.ext.graphviz', 'sphinxcontrib.napoleon', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = 'pydoas' copyright = '2016, Jonas Gliss' author = 'Jonas Gliss' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. print("LIB VERSION %s" %__version__) version = __version__ # The full version, including alpha/beta/rc tags. release = __version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. #html_theme = 'alabaster' html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr' #html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'pydoasdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'pydoas.tex', 'pydoas Documentation', 'Jonas Gliss', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'pydoas', 'pydoas Documentation', [author], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'pydoas', 'pydoas Documentation', author, 'pydoas', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'https://docs.python.org/': None} def skip(app, what, name, obj, skip, options): if name == "__init__": return False return skip def setup(app): app.connect("autodoc-skip-member", skip) autodoc_member_order = 'bysource' images_config = { 'default_image_width' : '300px', 'default_group' : 'default' }
bsd-3-clause
DGrady/pandas
pandas/tests/io/parser/usecols.py
11
18059
# -*- coding: utf-8 -*- """ Tests the usecols functionality during parsing for all of the parsers defined in parsers.py """ import pytest import numpy as np import pandas.util.testing as tm from pandas import DataFrame, Index from pandas._libs.lib import Timestamp from pandas.compat import StringIO class UsecolsTests(object): def test_raise_on_mixed_dtype_usecols(self): # See gh-12678 data = """a,b,c 1000,2000,3000 4000,5000,6000 """ msg = ("'usecols' must either be all strings, all unicode, " "all integers or a callable") usecols = [0, 'b', 2] with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(data), usecols=usecols) def test_usecols(self): data = """\ a,b,c 1,2,3 4,5,6 7,8,9 10,11,12""" result = self.read_csv(StringIO(data), usecols=(1, 2)) result2 = self.read_csv(StringIO(data), usecols=('b', 'c')) exp = self.read_csv(StringIO(data)) assert len(result.columns) == 2 assert (result['b'] == exp['b']).all() assert (result['c'] == exp['c']).all() tm.assert_frame_equal(result, result2) result = self.read_csv(StringIO(data), usecols=[1, 2], header=0, names=['foo', 'bar']) expected = self.read_csv(StringIO(data), usecols=[1, 2]) expected.columns = ['foo', 'bar'] tm.assert_frame_equal(result, expected) data = """\ 1,2,3 4,5,6 7,8,9 10,11,12""" result = self.read_csv(StringIO(data), names=['b', 'c'], header=None, usecols=[1, 2]) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) expected = expected[['b', 'c']] tm.assert_frame_equal(result, expected) result2 = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None, usecols=['b', 'c']) tm.assert_frame_equal(result2, result) # see gh-5766 result = self.read_csv(StringIO(data), names=['a', 'b'], header=None, usecols=[0, 1]) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) expected = expected[['a', 'b']] tm.assert_frame_equal(result, expected) # length conflict, passed names and usecols disagree pytest.raises(ValueError, self.read_csv, StringIO(data), names=['a', 'b'], usecols=[1], header=None) def test_usecols_index_col_False(self): # see gh-9082 s = "a,b,c,d\n1,2,3,4\n5,6,7,8" s_malformed = "a,b,c,d\n1,2,3,4,\n5,6,7,8," cols = ['a', 'c', 'd'] expected = DataFrame({'a': [1, 5], 'c': [3, 7], 'd': [4, 8]}) df = self.read_csv(StringIO(s), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(s_malformed), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) def test_usecols_index_col_conflict(self): # see gh-4201: test that index_col as integer reflects usecols data = 'a,b,c,d\nA,a,1,one\nB,b,2,two' expected = DataFrame({'c': [1, 2]}, index=Index( ['a', 'b'], name='b')) df = self.read_csv(StringIO(data), usecols=['b', 'c'], index_col=0) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=['b', 'c'], index_col='b') tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[1, 2], index_col='b') tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[1, 2], index_col=0) tm.assert_frame_equal(expected, df) expected = DataFrame( {'b': ['a', 'b'], 'c': [1, 2], 'd': ('one', 'two')}) expected = expected.set_index(['b', 'c']) df = self.read_csv(StringIO(data), usecols=['b', 'c', 'd'], index_col=['b', 'c']) tm.assert_frame_equal(expected, df) def test_usecols_implicit_index_col(self): # see gh-2654 data = 'a,b,c\n4,apple,bat,5.7\n8,orange,cow,10' result = self.read_csv(StringIO(data), usecols=['a', 'b']) expected = DataFrame({'a': ['apple', 'orange'], 'b': ['bat', 'cow']}, index=[4, 8]) tm.assert_frame_equal(result, expected) def test_usecols_regex_sep(self): # see gh-2733 data = 'a b c\n4 apple bat 5.7\n8 orange cow 10' df = self.read_csv(StringIO(data), sep=r'\s+', usecols=('a', 'b')) expected = DataFrame({'a': ['apple', 'orange'], 'b': ['bat', 'cow']}, index=[4, 8]) tm.assert_frame_equal(df, expected) def test_usecols_with_whitespace(self): data = 'a b c\n4 apple bat 5.7\n8 orange cow 10' result = self.read_csv(StringIO(data), delim_whitespace=True, usecols=('a', 'b')) expected = DataFrame({'a': ['apple', 'orange'], 'b': ['bat', 'cow']}, index=[4, 8]) tm.assert_frame_equal(result, expected) def test_usecols_with_integer_like_header(self): data = """2,0,1 1000,2000,3000 4000,5000,6000 """ usecols = [0, 1] # column selection by index expected = DataFrame(data=[[1000, 2000], [4000, 5000]], columns=['2', '0']) df = self.read_csv(StringIO(data), usecols=usecols) tm.assert_frame_equal(df, expected) usecols = ['0', '1'] # column selection by name expected = DataFrame(data=[[2000, 3000], [5000, 6000]], columns=['0', '1']) df = self.read_csv(StringIO(data), usecols=usecols) tm.assert_frame_equal(df, expected) def test_usecols_with_parse_dates(self): # See gh-9755 s = """a,b,c,d,e 0,1,20140101,0900,4 0,1,20140102,1000,4""" parse_dates = [[1, 2]] cols = { 'a': [0, 0], 'c_d': [ Timestamp('2014-01-01 09:00:00'), Timestamp('2014-01-02 10:00:00') ] } expected = DataFrame(cols, columns=['c_d', 'a']) df = self.read_csv(StringIO(s), usecols=[0, 2, 3], parse_dates=parse_dates) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(s), usecols=[3, 0, 2], parse_dates=parse_dates) tm.assert_frame_equal(df, expected) # See gh-13604 s = """2008-02-07 09:40,1032.43 2008-02-07 09:50,1042.54 2008-02-07 10:00,1051.65 """ parse_dates = [0] names = ['date', 'values'] usecols = names[:] index = Index([Timestamp('2008-02-07 09:40'), Timestamp('2008-02-07 09:50'), Timestamp('2008-02-07 10:00')], name='date') cols = {'values': [1032.43, 1042.54, 1051.65]} expected = DataFrame(cols, index=index) df = self.read_csv(StringIO(s), parse_dates=parse_dates, index_col=0, usecols=usecols, header=None, names=names) tm.assert_frame_equal(df, expected) # See gh-14792 s = """a,b,c,d,e,f,g,h,i,j 2016/09/21,1,1,2,3,4,5,6,7,8""" parse_dates = [0] usecols = list('abcdefghij') cols = {'a': Timestamp('2016-09-21'), 'b': [1], 'c': [1], 'd': [2], 'e': [3], 'f': [4], 'g': [5], 'h': [6], 'i': [7], 'j': [8]} expected = DataFrame(cols, columns=usecols) df = self.read_csv(StringIO(s), usecols=usecols, parse_dates=parse_dates) tm.assert_frame_equal(df, expected) s = """a,b,c,d,e,f,g,h,i,j\n2016/09/21,1,1,2,3,4,5,6,7,8""" parse_dates = [[0, 1]] usecols = list('abcdefghij') cols = {'a_b': '2016/09/21 1', 'c': [1], 'd': [2], 'e': [3], 'f': [4], 'g': [5], 'h': [6], 'i': [7], 'j': [8]} expected = DataFrame(cols, columns=['a_b'] + list('cdefghij')) df = self.read_csv(StringIO(s), usecols=usecols, parse_dates=parse_dates) tm.assert_frame_equal(df, expected) def test_usecols_with_parse_dates_and_full_names(self): # See gh-9755 s = """0,1,20140101,0900,4 0,1,20140102,1000,4""" parse_dates = [[1, 2]] names = list('abcde') cols = { 'a': [0, 0], 'c_d': [ Timestamp('2014-01-01 09:00:00'), Timestamp('2014-01-02 10:00:00') ] } expected = DataFrame(cols, columns=['c_d', 'a']) df = self.read_csv(StringIO(s), names=names, usecols=[0, 2, 3], parse_dates=parse_dates) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(s), names=names, usecols=[3, 0, 2], parse_dates=parse_dates) tm.assert_frame_equal(df, expected) def test_usecols_with_parse_dates_and_usecol_names(self): # See gh-9755 s = """0,1,20140101,0900,4 0,1,20140102,1000,4""" parse_dates = [[1, 2]] names = list('acd') cols = { 'a': [0, 0], 'c_d': [ Timestamp('2014-01-01 09:00:00'), Timestamp('2014-01-02 10:00:00') ] } expected = DataFrame(cols, columns=['c_d', 'a']) df = self.read_csv(StringIO(s), names=names, usecols=[0, 2, 3], parse_dates=parse_dates) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(s), names=names, usecols=[3, 0, 2], parse_dates=parse_dates) tm.assert_frame_equal(df, expected) def test_usecols_with_unicode_strings(self): # see gh-13219 s = '''AAA,BBB,CCC,DDD 0.056674973,8,True,a 2.613230982,2,False,b 3.568935038,7,False,a ''' data = { 'AAA': { 0: 0.056674972999999997, 1: 2.6132309819999997, 2: 3.5689350380000002 }, 'BBB': {0: 8, 1: 2, 2: 7} } expected = DataFrame(data) df = self.read_csv(StringIO(s), usecols=[u'AAA', u'BBB']) tm.assert_frame_equal(df, expected) def test_usecols_with_single_byte_unicode_strings(self): # see gh-13219 s = '''A,B,C,D 0.056674973,8,True,a 2.613230982,2,False,b 3.568935038,7,False,a ''' data = { 'A': { 0: 0.056674972999999997, 1: 2.6132309819999997, 2: 3.5689350380000002 }, 'B': {0: 8, 1: 2, 2: 7} } expected = DataFrame(data) df = self.read_csv(StringIO(s), usecols=[u'A', u'B']) tm.assert_frame_equal(df, expected) def test_usecols_with_mixed_encoding_strings(self): s = '''AAA,BBB,CCC,DDD 0.056674973,8,True,a 2.613230982,2,False,b 3.568935038,7,False,a ''' msg = ("'usecols' must either be all strings, all unicode, " "all integers or a callable") with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(s), usecols=[u'AAA', b'BBB']) with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(s), usecols=[b'AAA', u'BBB']) def test_usecols_with_multibyte_characters(self): s = '''あああ,いい,ううう,ええええ 0.056674973,8,True,a 2.613230982,2,False,b 3.568935038,7,False,a ''' data = { 'あああ': { 0: 0.056674972999999997, 1: 2.6132309819999997, 2: 3.5689350380000002 }, 'いい': {0: 8, 1: 2, 2: 7} } expected = DataFrame(data) df = self.read_csv(StringIO(s), usecols=['あああ', 'いい']) tm.assert_frame_equal(df, expected) def test_usecols_with_multibyte_unicode_characters(self): pytest.skip('TODO: see gh-13253') s = '''あああ,いい,ううう,ええええ 0.056674973,8,True,a 2.613230982,2,False,b 3.568935038,7,False,a ''' data = { 'あああ': { 0: 0.056674972999999997, 1: 2.6132309819999997, 2: 3.5689350380000002 }, 'いい': {0: 8, 1: 2, 2: 7} } expected = DataFrame(data) df = self.read_csv(StringIO(s), usecols=[u'あああ', u'いい']) tm.assert_frame_equal(df, expected) def test_empty_usecols(self): # should not raise data = 'a,b,c\n1,2,3\n4,5,6' expected = DataFrame() result = self.read_csv(StringIO(data), usecols=set([])) tm.assert_frame_equal(result, expected) def test_np_array_usecols(self): # See gh-12546 data = 'a,b,c\n1,2,3' usecols = np.array(['a', 'b']) expected = DataFrame([[1, 2]], columns=usecols) result = self.read_csv(StringIO(data), usecols=usecols) tm.assert_frame_equal(result, expected) def test_callable_usecols(self): # See gh-14154 s = '''AaA,bBb,CCC,ddd 0.056674973,8,True,a 2.613230982,2,False,b 3.568935038,7,False,a ''' data = { 'AaA': { 0: 0.056674972999999997, 1: 2.6132309819999997, 2: 3.5689350380000002 }, 'bBb': {0: 8, 1: 2, 2: 7}, 'ddd': {0: 'a', 1: 'b', 2: 'a'} } expected = DataFrame(data) df = self.read_csv(StringIO(s), usecols=lambda x: x.upper() in ['AAA', 'BBB', 'DDD']) tm.assert_frame_equal(df, expected) # Check that a callable returning only False returns # an empty DataFrame expected = DataFrame() df = self.read_csv(StringIO(s), usecols=lambda x: False) tm.assert_frame_equal(df, expected) def test_incomplete_first_row(self): # see gh-6710 data = '1,2\n1,2,3' names = ['a', 'b', 'c'] expected = DataFrame({'a': [1, 1], 'c': [np.nan, 3]}) usecols = ['a', 'c'] df = self.read_csv(StringIO(data), names=names, usecols=usecols) tm.assert_frame_equal(df, expected) usecols = lambda x: x in ['a', 'c'] df = self.read_csv(StringIO(data), names=names, usecols=usecols) tm.assert_frame_equal(df, expected) def test_uneven_length_cols(self): # see gh-8985 usecols = [0, 1, 2] data = '19,29,39\n' * 2 + '10,20,30,40' expected = DataFrame([[19, 29, 39], [19, 29, 39], [10, 20, 30]]) df = self.read_csv(StringIO(data), header=None, usecols=usecols) tm.assert_frame_equal(df, expected) # see gh-9549 usecols = ['A', 'B', 'C'] data = ('A,B,C\n1,2,3\n3,4,5\n1,2,4,5,1,6\n' '1,2,3,,,1,\n1,2,3\n5,6,7') expected = DataFrame({'A': [1, 3, 1, 1, 1, 5], 'B': [2, 4, 2, 2, 2, 6], 'C': [3, 5, 4, 3, 3, 7]}) df = self.read_csv(StringIO(data), usecols=usecols) tm.assert_frame_equal(df, expected) def test_raise_on_usecols_names_mismatch(self): # GH 14671 data = 'a,b,c,d\n1,2,3,4\n5,6,7,8' if self.engine == 'c': msg = 'Usecols do not match names' else: msg = 'is not in list' usecols = ['a', 'b', 'c', 'd'] df = self.read_csv(StringIO(data), usecols=usecols) expected = DataFrame({'a': [1, 5], 'b': [2, 6], 'c': [3, 7], 'd': [4, 8]}) tm.assert_frame_equal(df, expected) usecols = ['a', 'b', 'c', 'f'] with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(data), usecols=usecols) usecols = ['a', 'b', 'f'] with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(data), usecols=usecols) names = ['A', 'B', 'C', 'D'] df = self.read_csv(StringIO(data), header=0, names=names) expected = DataFrame({'A': [1, 5], 'B': [2, 6], 'C': [3, 7], 'D': [4, 8]}) tm.assert_frame_equal(df, expected) # TODO: https://github.com/pandas-dev/pandas/issues/16469 # usecols = ['A','C'] # df = self.read_csv(StringIO(data), header=0, names=names, # usecols=usecols) # expected = DataFrame({'A': [1,5], 'C': [3,7]}) # tm.assert_frame_equal(df, expected) # # usecols = [0,2] # df = self.read_csv(StringIO(data), header=0, names=names, # usecols=usecols) # expected = DataFrame({'A': [1,5], 'C': [3,7]}) # tm.assert_frame_equal(df, expected) usecols = ['A', 'B', 'C', 'f'] with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(data), header=0, names=names, usecols=usecols) usecols = ['A', 'B', 'f'] with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(data), names=names, usecols=usecols)
bsd-3-clause
sys-bio/tellurium
tellurium/tests/sedml/test_phrasedml.py
2
30460
""" Testing phrasedml. test_sedml_phrasedml.py : phrasedml based tests. test_sedml_kisao.py : SED-ML kisao support test_sedml_omex.py : SED-ML tests based on Combine Archives test_sedml_sedml.py : sed-ml tests """ from __future__ import absolute_import, print_function, division import os import shutil import tempfile import unittest import pytest import matplotlib import tellurium as te try: import tesedml as libsedml except ImportError: import libsedml import phrasedml from tellurium.sedml.utils import run_case from tellurium import temiriam from tellurium.utils import omex from tellurium.sedml.tesedml import executeSEDML, executeCombineArchive class PhrasedmlTestCase(unittest.TestCase): """ Testing execution and archives based on phrasedml input. """ def setUp(self): # switch the backend of matplotlib, so plots can be tested self.backend = matplotlib.rcParams['backend'] matplotlib.pyplot.switch_backend("Agg") # create a test instance self.antimony = ''' model myModel S1 -> S2; k1*S1; S1 = 10; S2 = 0; k1 = 1; end ''' self.phrasedml = ''' model1 = model "myModel" sim1 = simulate uniform(0, 5, 100) task1 = run sim1 on model1 plot "Figure 1" time vs S1, S2 ''' # self.tep = tephrasedml.experiment(self.antimony, self.phrasedml) self.a1 = """ model m1() J0: S1 -> S2; k1*S1; S1 = 10.0; S2=0.0; k1 = 0.1; end """ self.a2 = """ model m2() v0: X1 -> X2; p1*X1; X1 = 5.0; X2 = 20.0; p1 = 0.2; end """ def tearDown(self): matplotlib.pyplot.switch_backend(self.backend) matplotlib.pyplot.close('all') def test_execute(self): """Test execute.""" inline_omex = '\n'.join([self.antimony, self.phrasedml]) te.executeInlineOmex(inline_omex) def test_exportAsCombine(self): """ Test exportAsCombine. """ inline_omex = '\n'.join([self.antimony, self.phrasedml]) tmpdir = tempfile.mkdtemp() te.exportInlineOmex(inline_omex, os.path.join(tmpdir, 'archive.omex')) shutil.rmtree(tmpdir) def test_1Model1PhrasedML(self): """ Minimal example which should work. """ antimony_str = """ model test J0: S1 -> S2; k1*S1; S1 = 10.0; S2=0.0; k1 = 0.1; end """ phrasedml_str = """ model0 = model "test" sim0 = simulate uniform(0, 10, 100) task0 = run sim0 on model0 plot task0.time vs task0.S1 """ inline_omex = '\n'.join([antimony_str, phrasedml_str]) te.executeInlineOmex(inline_omex) def test_1Model2PhrasedML(self): """ Test multiple models and multiple phrasedml files. """ p1 = """ model1 = model "m1" sim1 = simulate uniform(0, 6, 100) task1 = run sim1 on model1 plot task1.time vs task1.S1, task1.S2 """ p2 = """ model1 = model "m1" model2 = model model1 with S1=S2+20 sim1 = simulate uniform(0, 6, 100) task1 = run sim1 on model2 plot task1.time vs task1.S1, task1.S2 """ inline_omex = '\n'.join([self.a1, p1]) te.executeInlineOmex(inline_omex) inline_omex = '\n'.join([self.a1, p2]) te.executeInlineOmex(inline_omex) inline_omex = '\n'.join([self.a1, p1, p2]) te.executeInlineOmex(inline_omex) def test_2Model1PhrasedML(self): """ Test multiple models and multiple phrasedml files. """ p1 = """ model1 = model "m1" model2 = model "m2" model3 = model model1 with S1=S2+20 sim1 = simulate uniform(0, 6, 100) task1 = run sim1 on model1 task2 = run sim1 on model2 plot "Timecourse test1" task1.time vs task1.S1, task1.S2 plot "Timecourse test2" task2.time vs task2.X1, task2.X2 """ inline_omex = '\n'.join([self.a1, self.a2, p1]) te.executeInlineOmex(inline_omex) def test_2Model2PhrasedML(self): """ Test multiple models and multiple phrasedml files. """ p1 = """ model1 = model "m1" model2 = model "m2" sim1 = simulate uniform(0, 6, 100) task1 = run sim1 on model1 task2 = run sim1 on model2 plot task1.time vs task1.S1, task1.S2, task2.time vs task2.X1, task2.X2 """ p2 = """ model1 = model "m1" model2 = model "m2" sim1 = simulate uniform(0, 20, 20) task1 = run sim1 on model1 task2 = run sim1 on model2 plot task1.time vs task1.S1, task1.S2, task2.time vs task2.X1, task2.X2 """ inline_omex = '\n'.join([self.a1, self.a2, p1, p2]) te.executeInlineOmex(inline_omex) ############################################ # Real world tests ############################################ def run_example(self, a_str, p_str): # execute tmpdir = tempfile.mkdtemp() try: run_case( call_file=os.path.realpath(__file__), antimony_str=a_str, phrasedml_str=p_str, working_dir=tmpdir ) finally: shutil.rmtree(tmpdir) def test_case_01(self): a_str = """ model case_01 J0: S1 -> S2; k1*S1; S1 = 10.0; S2=0.0; k1 = 0.1; end """ p_str = """ model0 = model "case_01" sim0 = simulate uniform(0, 10, 100) task0 = run sim0 on model0 plot "UniformTimecourse" task0.time vs task0.S1 report task0.time vs task0.S1 """ self.run_example(a_str, p_str) def test_case_02(self): a_str = """ model case_02 J0: S1 -> S2; k1*S1; S1 = 10.0; S2=0.0; k1 = 0.1; end """ p_str = """ model0 = model "case_02" model1 = model model0 with S1=5.0 sim0 = simulate uniform(0, 6, 100) task0 = run sim0 on model1 task1 = repeat task0 for k1 in uniform(0.0, 5.0, 5), reset = true plot "Repeated task with reset" task1.time vs task1.S1, task1.S2 report task1.time vs task1.S1, task1.S2 plot "Repeated task varying k1" task1.k1 vs task1.S1 report task1.k1 vs task1.S1 """ self.run_example(a_str, p_str) def test_case_03(self): a_str = ''' model case_03() J0: S1 -> S2; k1*S1-k2*S2 S1 = 10.0; S2 = 0.0; k1 = 0.5; k2=0.4 end ''' p_str = ''' mod1 = model "case_03" mod2 = model mod1 with S2=S1+4 sim1 = simulate uniform(0, 10, 100) task1 = run sim1 on mod1 task2 = run sim1 on mod2 plot "ComputeChanges" task1.time vs task1.S1, task1.S2, task2.S1, task2.S2 report task1.time vs task1.S1, task1.S2, task2.S1, task2.S2 ''' self.run_example(a_str, p_str) def test_case_04(self): a_str = ''' model case_04() J0: S1 -> S2; k1*S1-k2*S2 S1 = 10.0; S2 = 0.0; k1 = 0.5; k2=0.4 end ''' p_str = ''' mod1 = model "case_04" mod2 = model mod1 with S2=S1+4 mod3 = model mod2 with S1=20.0 sim1 = simulate uniform(0, 10, 100) task1 = run sim1 on mod1 task2 = run sim1 on mod2 task3 = run sim1 on mod3 plot "Example plot" task1.time vs task1.S1, task1.S2, task2.S1, task2.S2, task3.S1, task3.S2 report task1.time vs task1.S1, task1.S2, task2.S1, task2.S2, task3.S1, task3.S2 ''' self.run_example(a_str, p_str) def test_case_05(self): a_str = ''' model case_05() J0: S1 -> S2; k1*S1-k2*S2 S1 = 10.0; S2 = 0.0; k1 = 0.5; k2=0.4 end ''' p_str = ''' mod1 = model "case_05" sim1 = simulate uniform(0, 10, 100) task1 = run sim1 on mod1 plot "Example plot" task1.time vs task1.S1, task1.S2, task1.S1/task1.S2 report task1.time vs task1.S1, task1.S2, task1.S1/task1.S2 plot "Normalized plot" task1.S1/max(task1.S1) vs task1.S2/max(task1.S2) report task1.S1/max(task1.S1) vs task1.S2/max(task1.S2) ''' self.run_example(a_str, p_str) def test_case_06(self): a_str = ''' model case_06() J0: S1 -> S2; k1*S1-k2*S2 S1 = 10.0; S2 = 0.0; k1 = 0.5; k2=0.4 end ''' p_str = ''' mod1 = model "case_06" sim1 = simulate uniform(0, 10, 100) task1 = run sim1 on mod1 repeat1 = repeat task1 for S1 in [1, 3, 5], S2 in uniform(0, 10, 2), reset=True repeat2 = repeat task1 for S1 in [1, 3, 5], S2 in uniform(0, 10, 2), reset=False plot "Example plot" repeat1.time vs repeat1.S1, repeat1.S2 report repeat1.time vs repeat1.S1, repeat1.S2 plot "Example plot" repeat2.time vs repeat2.S1, repeat2.S2 report repeat2.time vs repeat2.S1, repeat2.S2 ''' self.run_example(a_str, p_str) def test_case_07(self): a_str = ''' model case_07() J0: S1 -> S2; k1*S1-k2*S2 S1 = 10.0; S2 = 0.0; k1 = 0.5; k2=0.4 end ''' p_str = ''' mod1 = model "case_07" sim1 = simulate uniform(0, 10, 100) task1 = run sim1 on mod1 repeat1 = repeat task1 for S1 in [1, 3, 5], reset=True report task1.time, task1.S1, task1.S2, task1.S1/task1.S2 report repeat1.time, repeat1.S1, repeat1.S2, repeat1.S1/repeat1.S2 ''' self.run_example(a_str, p_str) def test_case_08(self): a_str = ''' model case_08() J0: S1 -> S2; k1*S1-k2*S2 S1 = 10.0; S2 = 0.0; k1 = 0.5; k2=0.4 end ''' p_str = ''' mod1 = model "case_08" mod2 = model "case_08" sim1 = simulate uniform(0, 10, 20) sim2 = simulate uniform(0, 3, 10) task1 = run sim1 on mod1 task2 = run sim2 on mod1 repeat1 = repeat [task1, task2] for S2 in uniform(0, 10, 9), mod1.S1 = S2+3, reset=False plot "Repeated Multiple Subtasks" repeat1.mod1.time vs repeat1.mod1.S1, repeat1.mod1.S2 # plot "Repeated Multiple Subtasks" repeat1.mod2.time vs repeat1.mod2.S1, repeat1.mod2.S2 ''' self.run_example(a_str, p_str) def test_case_09(self): a_str = ''' // Created by libAntimony v2.9 model *case_09() // Compartments and Species: compartment compartment_; species MKKK in compartment_, MKKK_P in compartment_, MKK in compartment_; species MKK_P in compartment_, MKK_PP in compartment_, MAPK in compartment_; species MAPK_P in compartment_, MAPK_PP in compartment_; // Reactions: J0: MKKK => MKKK_P; (J0_V1*MKKK)/((1 + (MAPK_PP/J0_Ki)^J0_n)*(J0_K1 + MKKK)); J1: MKKK_P => MKKK; (J1_V2*MKKK_P)/(J1_KK2 + MKKK_P); J2: MKK => MKK_P; (J2_k3*MKKK_P*MKK)/(J2_KK3 + MKK); J3: MKK_P => MKK_PP; (J3_k4*MKKK_P*MKK_P)/(J3_KK4 + MKK_P); J4: MKK_PP => MKK_P; (J4_V5*MKK_PP)/(J4_KK5 + MKK_PP); J5: MKK_P => MKK; (J5_V6*MKK_P)/(J5_KK6 + MKK_P); J6: MAPK => MAPK_P; (J6_k7*MKK_PP*MAPK)/(J6_KK7 + MAPK); J7: MAPK_P => MAPK_PP; (J7_k8*MKK_PP*MAPK_P)/(J7_KK8 + MAPK_P); J8: MAPK_PP => MAPK_P; (J8_V9*MAPK_PP)/(J8_KK9 + MAPK_PP); J9: MAPK_P => MAPK; (J9_V10*MAPK_P)/(J9_KK10 + MAPK_P); // Species initializations: MKKK = 90; MKKK_P = 10; MKK = 280; MKK_P = 10; MKK_PP = 10; MAPK = 280; MAPK_P = 10; MAPK_PP = 10; // Compartment initializations: compartment_ = 1; // Variable initializations: J0_V1 = 2.5; J0_Ki = 9; J0_n = 1; J0_K1 = 10; J1_V2 = 0.25; J1_KK2 = 8; J2_k3 = 0.025; J2_KK3 = 15; J3_k4 = 0.025; J3_KK4 = 15; J4_V5 = 0.75; J4_KK5 = 15; J5_V6 = 0.75; J5_KK6 = 15; J6_k7 = 0.025; J6_KK7 = 15; J7_k8 = 0.025; J7_KK8 = 15; J8_V9 = 0.5; J8_KK9 = 15; J9_V10 = 0.5; J9_KK10 = 15; // Other declarations: const compartment_, J0_V1, J0_Ki, J0_n, J0_K1, J1_V2, J1_KK2, J2_k3, J2_KK3; const J3_k4, J3_KK4, J4_V5, J4_KK5, J5_V6, J5_KK6, J6_k7, J6_KK7, J7_k8; const J7_KK8, J8_V9, J8_KK9, J9_V10, J9_KK10; end ''' p_str = ''' mod1 = model "case_09" # sim1 = simulate uniform_stochastic(0, 4000, 1000) sim1 = simulate uniform(0, 4000, 1000) task1 = run sim1 on mod1 repeat1 = repeat task1 for local.x in uniform(0, 10, 10), reset=true plot "MAPK oscillations" repeat1.MAPK vs repeat1.time vs repeat1.MAPK_P, repeat1.MAPK vs repeat1.time vs repeat1.MAPK_PP, repeat1.MAPK vs repeat1.time vs repeat1.MKK report repeat1.MAPK vs repeat1.time vs repeat1.MAPK_P, repeat1.MAPK vs repeat1.time vs repeat1.MAPK_PP, repeat1.MAPK vs repeat1.time vs repeat1.MKK ''' self.run_example(a_str, p_str) def test_case_10(self): a_str = ''' model case_10() J0: S1 -> S2; k1*S1-k2*S2 S1 = 10.0; S2 = 0.0; k1 = 0.5; k2=0.4 end ''' p_str = ''' mod1 = model "case_10" mod2 = model "case_10" sim1 = simulate uniform(0, 10, 100) sim2 = simulate uniform(0, 3, 10) task1 = run sim1 on mod1 task2 = run sim2 on mod2 repeat1 = repeat [task1, task2] for local.X in uniform(0, 10, 9), mod1.S1 = X, mod2.S1 = X+3 plot repeat1.mod1.time vs repeat1.mod1.S1, repeat1.mod1.S2, repeat1.mod2.time vs repeat1.mod2.S1, repeat1.mod2.S2 ''' self.run_example(a_str, p_str) def test_case_11(self): a_str = ''' model case_11() J0: S1 -> S2; k1*S1-k2*S2 S1 = 10.0; S2 = 0.0; k1 = 0.5; k2=0.4 end ''' p_str = ''' mod1 = model "case_11" sim1 = simulate uniform(0, 10, 100) task1 = run sim1 on mod1 rtask1 = repeat task1 for k1 in uniform(0, 1, 2) rtask2 = repeat rtask1 for k2 in uniform(0, 1, 3) rtask3 = repeat rtask2 for S1 in [5, 10], reset=true plot "RepeatedTask of RepeatedTask" rtask3.time vs rtask3.S1, rtask3.S2 plot rtask3.k1 vs rtask3.k2 vs rtask3.S1 ''' self.run_example(a_str, p_str) def test_case_12(self): a_str = ''' model case_12() J0: S1 -> S2; k1*S1-k2*S2 S1 = 10.0; S2 = 0.0; k1 = 0.2; k2=0.01 end ''' p_str = ''' mod1 = model "case_12" sim1 = simulate uniform(0, 2, 10, 49) sim2 = simulate uniform(0, 15, 49) task1 = run sim1 on mod1 task2 = run sim2 on mod1 repeat1 = repeat task1 for S1 in uniform(0, 10, 4), S2 = S1+20, reset=true repeat2 = repeat task2 for S1 in uniform(0, 10, 4), S2 = S1+20, reset=true plot "Offset simulation" repeat2.time vs repeat2.S1, repeat2.S2, repeat1.time vs repeat1.S1, repeat1.S2 report repeat2.time vs repeat2.S1, repeat2.S2, repeat1.time vs repeat1.S1, repeat1.S2 ''' self.run_example(a_str, p_str) def test_lorenz(self): a_str = ''' model lorenz x' = sigma*(y - x); y' = x*(rho - z) - y; z' = x*y - beta*z; x = 0.96259; y = 2.07272; z = 18.65888; sigma = 10; rho = 28; beta = 2.67; end ''' p_str = ''' model1 = model "lorenz" sim1 = simulate uniform(0,15,2000) task1 = run sim1 on model1 plot task1.z vs task1.x ''' self.run_example(a_str, p_str) def test_oneStep(self): a_str = ''' // Created by libAntimony v2.9 model *oneStep() // Compartments and Species: compartment compartment_; species S1 in compartment_, S2 in compartment_, $X0 in compartment_, $X1 in compartment_; species $X2 in compartment_; // Reactions: J0: $X0 => S1; J0_v0; J1: S1 => $X1; J1_k3*S1; J2: S1 => S2; (J2_k1*S1 - J2_k_1*S2)*(1 + J2_c*S2^J2_q); J3: S2 => $X2; J3_k2*S2; // Species initializations: S1 = 0; S2 = 1; X0 = 1; X1 = 0; X2 = 0; // Compartment initializations: compartment_ = 1; // Variable initializations: J0_v0 = 8; J1_k3 = 0; J2_k1 = 1; J2_k_1 = 0; J2_c = 1; J2_q = 3; J3_k2 = 5; // Other declarations: const compartment_, J0_v0, J1_k3, J2_k1, J2_k_1, J2_c, J2_q, J3_k2; end ''' p_str = ''' model1 = model "oneStep" stepper = simulate onestep(0.1) task0 = run stepper on model1 task1 = repeat task0 for local.x in uniform(0, 10, 100), J0_v0 = piecewise(8, x<4, 0.1, 4<=x<6, 8) plot "One Step Simulation" task1.time vs task1.S1, task1.S2, task1.J0_v0 report task1.time vs task1.S1, task1.S2, task1.J0_v0 ''' self.run_example(a_str, p_str) def test_parameterScan1D(self): a_str = ''' // Created by libAntimony v2.9 model *parameterScan1D() // Compartments and Species: compartment compartment_; species S1 in compartment_, S2 in compartment_, $X0 in compartment_, $X1 in compartment_; species $X2 in compartment_; // Reactions: J0: $X0 => S1; J0_v0; J1: S1 => $X1; J1_k3*S1; J2: S1 => S2; (J2_k1*S1 - J2_k_1*S2)*(1 + J2_c*S2^J2_q); J3: S2 => $X2; J3_k2*S2; // Species initializations: S1 = 0; S2 = 1; X0 = 1; X1 = 0; X2 = 0; // Compartment initializations: compartment_ = 1; // Variable initializations: J0_v0 = 8; J1_k3 = 0; J2_k1 = 1; J2_k_1 = 0; J2_c = 1; J2_q = 3; J3_k2 = 5; // Other declarations: const compartment_, J0_v0, J1_k3, J2_k1, J2_k_1, J2_c, J2_q, J3_k2; end ''' p_str = ''' model1 = model "parameterScan1D" timecourse1 = simulate uniform(0, 20, 1000) task0 = run timecourse1 on model1 task1 = repeat task0 for J0_v0 in [8, 4, 0.4], reset=true plot task1.time vs task1.S1, task1.S2 ''' self.run_example(a_str, p_str) def test_parameterScan2D(self): a_str = ''' // Created by libAntimony v2.9 model *parameterScan2D() // Compartments and Species: compartment compartment_; species MKKK in compartment_, MKKK_P in compartment_, MKK in compartment_; species MKK_P in compartment_, MKK_PP in compartment_, MAPK in compartment_; species MAPK_P in compartment_, MAPK_PP in compartment_; // Reactions: J0: MKKK => MKKK_P; (J0_V1*MKKK)/((1 + (MAPK_PP/J0_Ki)^J0_n)*(J0_K1 + MKKK)); J1: MKKK_P => MKKK; (J1_V2*MKKK_P)/(J1_KK2 + MKKK_P); J2: MKK => MKK_P; (J2_k3*MKKK_P*MKK)/(J2_KK3 + MKK); J3: MKK_P => MKK_PP; (J3_k4*MKKK_P*MKK_P)/(J3_KK4 + MKK_P); J4: MKK_PP => MKK_P; (J4_V5*MKK_PP)/(J4_KK5 + MKK_PP); J5: MKK_P => MKK; (J5_V6*MKK_P)/(J5_KK6 + MKK_P); J6: MAPK => MAPK_P; (J6_k7*MKK_PP*MAPK)/(J6_KK7 + MAPK); J7: MAPK_P => MAPK_PP; (J7_k8*MKK_PP*MAPK_P)/(J7_KK8 + MAPK_P); J8: MAPK_PP => MAPK_P; (J8_V9*MAPK_PP)/(J8_KK9 + MAPK_PP); J9: MAPK_P => MAPK; (J9_V10*MAPK_P)/(J9_KK10 + MAPK_P); // Species initializations: MKKK = 90; MKKK_P = 10; MKK = 280; MKK_P = 10; MKK_PP = 10; MAPK = 280; MAPK_P = 10; MAPK_PP = 10; // Compartment initializations: compartment_ = 1; // Variable initializations: J0_V1 = 2.5; J0_Ki = 9; J0_n = 1; J0_K1 = 10; J1_V2 = 0.25; J1_KK2 = 8; J2_k3 = 0.025; J2_KK3 = 15; J3_k4 = 0.025; J3_KK4 = 15; J4_V5 = 0.75; J4_KK5 = 15; J5_V6 = 0.75; J5_KK6 = 15; J6_k7 = 0.025; J6_KK7 = 15; J7_k8 = 0.025; J7_KK8 = 15; J8_V9 = 0.5; J8_KK9 = 15; J9_V10 = 0.5; J9_KK10 = 15; // Other declarations: const compartment_, J0_V1, J0_Ki, J0_n, J0_K1, J1_V2, J1_KK2, J2_k3, J2_KK3; const J3_k4, J3_KK4, J4_V5, J4_KK5, J5_V6, J5_KK6, J6_k7, J6_KK7, J7_k8; const J7_KK8, J8_V9, J8_KK9, J9_V10, J9_KK10; end ''' p_str = ''' model_3 = model "parameterScan2D" sim_repeat = simulate uniform(0,3000,100) task_1 = run sim_repeat on model_3 repeatedtask_1 = repeat task_1 for J1_KK2 in [1, 5, 10, 50, 60, 70, 80, 90, 100], reset=true repeatedtask_2 = repeat repeatedtask_1 for J4_KK5 in uniform(1, 40, 10), reset=true plot repeatedtask_2.J4_KK5 vs repeatedtask_2.J1_KK2 plot repeatedtask_2.time vs repeatedtask_2.MKK, repeatedtask_2.MKK_P ''' self.run_example(a_str, p_str) def test_repeatedStochastic(self): a_str = ''' // Created by libAntimony v2.9 model *repeatedStochastic() // Compartments and Species: compartment compartment_; species MKKK in compartment_, MKKK_P in compartment_, MKK in compartment_; species MKK_P in compartment_, MKK_PP in compartment_, MAPK in compartment_; species MAPK_P in compartment_, MAPK_PP in compartment_; // Reactions: J0: MKKK => MKKK_P; (J0_V1*MKKK)/((1 + (MAPK_PP/J0_Ki)^J0_n)*(J0_K1 + MKKK)); J1: MKKK_P => MKKK; (J1_V2*MKKK_P)/(J1_KK2 + MKKK_P); J2: MKK => MKK_P; (J2_k3*MKKK_P*MKK)/(J2_KK3 + MKK); J3: MKK_P => MKK_PP; (J3_k4*MKKK_P*MKK_P)/(J3_KK4 + MKK_P); J4: MKK_PP => MKK_P; (J4_V5*MKK_PP)/(J4_KK5 + MKK_PP); J5: MKK_P => MKK; (J5_V6*MKK_P)/(J5_KK6 + MKK_P); J6: MAPK => MAPK_P; (J6_k7*MKK_PP*MAPK)/(J6_KK7 + MAPK); J7: MAPK_P => MAPK_PP; (J7_k8*MKK_PP*MAPK_P)/(J7_KK8 + MAPK_P); J8: MAPK_PP => MAPK_P; (J8_V9*MAPK_PP)/(J8_KK9 + MAPK_PP); J9: MAPK_P => MAPK; (J9_V10*MAPK_P)/(J9_KK10 + MAPK_P); // Species initializations: MKKK = 90; MKKK_P = 10; MKK = 280; MKK_P = 10; MKK_PP = 10; MAPK = 280; MAPK_P = 10; MAPK_PP = 10; // Compartment initializations: compartment_ = 1; // Variable initializations: J0_V1 = 2.5; J0_Ki = 9; J0_n = 1; J0_K1 = 10; J1_V2 = 0.25; J1_KK2 = 8; J2_k3 = 0.025; J2_KK3 = 15; J3_k4 = 0.025; J3_KK4 = 15; J4_V5 = 0.75; J4_KK5 = 15; J5_V6 = 0.75; J5_KK6 = 15; J6_k7 = 0.025; J6_KK7 = 15; J7_k8 = 0.025; J7_KK8 = 15; J8_V9 = 0.5; J8_KK9 = 15; J9_V10 = 0.5; J9_KK10 = 15; // Other declarations: const compartment_, J0_V1, J0_Ki, J0_n, J0_K1, J1_V2, J1_KK2, J2_k3, J2_KK3; const J3_k4, J3_KK4, J4_V5, J4_KK5, J5_V6, J5_KK6, J6_k7, J6_KK7, J7_k8; const J7_KK8, J8_V9, J8_KK9, J9_V10, J9_KK10; end ''' p_str = ''' model1 = model "repeatedStochastic" timecourse1 = simulate uniform_stochastic(0, 4000, 1000) timecourse1.algorithm.seed = 1003 timecourse2 = simulate uniform_stochastic(0, 4000, 1000) task1 = run timecourse1 on model1 task2 = run timecourse2 on model1 repeat1 = repeat task1 for local.x in uniform(0, 10, 10), reset=true repeat2 = repeat task2 for local.x in uniform(0, 10, 10), reset=true plot "Repeats with SEED" repeat1.time vs repeat1.MAPK, repeat1.MAPK_P, repeat1.MAPK_PP, repeat1.MKK, repeat1.MKK_P, repeat1.MKKK, repeat1.MKKK_P plot "Repeats without SEED" repeat2.time vs repeat2.MAPK, repeat2.MAPK_P, repeat2.MAPK_PP, repeat2.MKK, repeat2.MKK_P, repeat2.MKKK, repeat2.MKKK_P ''' self.run_example(a_str, p_str) def test_repressilator(self): # Get SBML from URN and set for phrasedml urn = "urn:miriam:biomodels.db:BIOMD0000000012" sbml_str = temiriam.getSBMLFromBiomodelsURN(urn=urn) return_code = phrasedml.setReferencedSBML(urn, sbml_str) assert return_code # valid SBML # <SBML species> # PX - LacI protein # PY - TetR protein # PZ - cI protein # X - LacI mRNA # Y - TetR mRNA # Z - cI mRNA # <SBML parameters> # ps_a - tps_active: Transcription from free promotor in transcripts per second and promotor # ps_0 - tps_repr: Transcription from fully repressed promotor in transcripts per second and promotor phrasedml_str = """ model1 = model "{}" model2 = model model1 with ps_0=1.3E-5, ps_a=0.013 sim1 = simulate uniform(0, 1000, 1000) task1 = run sim1 on model1 task2 = run sim1 on model2 # A simple timecourse simulation plot "Timecourse of repressilator" task1.time vs task1.PX, task1.PZ, task1.PY # Applying preprocessing plot "Timecourse after pre-processing" task2.time vs task2.PX, task2.PZ, task2.PY # Applying postprocessing plot "Timecourse after post-processing" task1.PX/max(task1.PX) vs task1.PZ/max(task1.PZ), \ task1.PY/max(task1.PY) vs task1.PX/max(task1.PX), \ task1.PZ/max(task1.PZ) vs task1.PY/max(task1.PY) """.format(urn) # convert to sedml print(phrasedml_str) sedml_str = phrasedml.convertString(phrasedml_str) if sedml_str is None: print(phrasedml.getLastError()) raise IOError("sedml could not be generated") # run SEDML directly try: tmp_dir = tempfile.mkdtemp() executeSEDML(sedml_str, workingDir=tmp_dir) finally: shutil.rmtree(tmp_dir) # create combine archive and execute try: tmp_dir = tempfile.mkdtemp() sedml_location = "repressilator_sedml.xml" sedml_path = os.path.join(tmp_dir, sedml_location) omex_path = os.path.join(tmp_dir, "repressilator.omex") with open(sedml_path, "w") as f: f.write(sedml_str) entries = [ omex.Entry(location=sedml_location, formatKey="sedml", master=True) ] omex.combineArchiveFromEntries(omexPath=omex_path, entries=entries, workingDir=tmp_dir) executeCombineArchive(omex_path, workingDir=tmp_dir) finally: shutil.rmtree(tmp_dir) def test_simpletimecourse(self): a_str = ''' // Created by libAntimony v2.9 model MAPKcascade() // Compartments and Species: compartment compartment_; species MKKK in compartment_, MKKK_P in compartment_, MKK in compartment_; species MKK_P in compartment_, MKK_PP in compartment_, MAPK in compartment_; species MAPK_P in compartment_, MAPK_PP in compartment_; // Reactions: J0: MKKK => MKKK_P; (J0_V1*MKKK)/((1 + (MAPK_PP/J0_Ki)^J0_n)*(J0_K1 + MKKK)); J1: MKKK_P => MKKK; (J1_V2*MKKK_P)/(J1_KK2 + MKKK_P); J2: MKK => MKK_P; (J2_k3*MKKK_P*MKK)/(J2_KK3 + MKK); J3: MKK_P => MKK_PP; (J3_k4*MKKK_P*MKK_P)/(J3_KK4 + MKK_P); J4: MKK_PP => MKK_P; (J4_V5*MKK_PP)/(J4_KK5 + MKK_PP); J5: MKK_P => MKK; (J5_V6*MKK_P)/(J5_KK6 + MKK_P); J6: MAPK => MAPK_P; (J6_k7*MKK_PP*MAPK)/(J6_KK7 + MAPK); J7: MAPK_P => MAPK_PP; (J7_k8*MKK_PP*MAPK_P)/(J7_KK8 + MAPK_P); J8: MAPK_PP => MAPK_P; (J8_V9*MAPK_PP)/(J8_KK9 + MAPK_PP); J9: MAPK_P => MAPK; (J9_V10*MAPK_P)/(J9_KK10 + MAPK_P); // Species initializations: MKKK = 90; MKKK_P = 10; MKK = 280; MKK_P = 10; MKK_PP = 10; MAPK = 280; MAPK_P = 10; MAPK_PP = 10; // Compartment initializations: compartment_ = 1; // Variable initializations: J0_V1 = 2.5; J0_Ki = 9; J0_n = 1; J0_K1 = 10; J1_V2 = 0.25; J1_KK2 = 8; J2_k3 = 0.025; J2_KK3 = 15; J3_k4 = 0.025; J3_KK4 = 15; J4_V5 = 0.75; J4_KK5 = 15; J5_V6 = 0.75; J5_KK6 = 15; J6_k7 = 0.025; J6_KK7 = 15; J7_k8 = 0.025; J7_KK8 = 15; J8_V9 = 0.5; J8_KK9 = 15; J9_V10 = 0.5; J9_KK10 = 15; // Other declarations: const compartment_, J0_V1, J0_Ki, J0_n, J0_K1, J1_V2, J1_KK2, J2_k3, J2_KK3; const J3_k4, J3_KK4, J4_V5, J4_KK5, J5_V6, J5_KK6, J6_k7, J6_KK7, J7_k8; const J7_KK8, J8_V9, J8_KK9, J9_V10, J9_KK10; end ''' p_str = ''' model1 = model "MAPKcascade" sim1 = simulate uniform(0,4000,1000) task1 = run sim1 on model1 plot task1.time vs task1.MAPK, task1.MAPK_P, task1.MAPK_PP ''' self.run_example(a_str, p_str)
apache-2.0
cl4rke/scikit-learn
benchmarks/bench_20newsgroups.py
377
3555
from __future__ import print_function, division from time import time import argparse import numpy as np from sklearn.dummy import DummyClassifier from sklearn.datasets import fetch_20newsgroups_vectorized from sklearn.metrics import accuracy_score from sklearn.utils.validation import check_array from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import MultinomialNB ESTIMATORS = { "dummy": DummyClassifier(), "random_forest": RandomForestClassifier(n_estimators=100, max_features="sqrt", min_samples_split=10), "extra_trees": ExtraTreesClassifier(n_estimators=100, max_features="sqrt", min_samples_split=10), "logistic_regression": LogisticRegression(), "naive_bayes": MultinomialNB(), "adaboost": AdaBoostClassifier(n_estimators=10), } ############################################################################### # Data if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-e', '--estimators', nargs="+", required=True, choices=ESTIMATORS) args = vars(parser.parse_args()) data_train = fetch_20newsgroups_vectorized(subset="train") data_test = fetch_20newsgroups_vectorized(subset="test") X_train = check_array(data_train.data, dtype=np.float32, accept_sparse="csc") X_test = check_array(data_test.data, dtype=np.float32, accept_sparse="csr") y_train = data_train.target y_test = data_test.target print("20 newsgroups") print("=============") print("X_train.shape = {0}".format(X_train.shape)) print("X_train.format = {0}".format(X_train.format)) print("X_train.dtype = {0}".format(X_train.dtype)) print("X_train density = {0}" "".format(X_train.nnz / np.product(X_train.shape))) print("y_train {0}".format(y_train.shape)) print("X_test {0}".format(X_test.shape)) print("X_test.format = {0}".format(X_test.format)) print("X_test.dtype = {0}".format(X_test.dtype)) print("y_test {0}".format(y_test.shape)) print() print("Classifier Training") print("===================") accuracy, train_time, test_time = {}, {}, {} for name in sorted(args["estimators"]): clf = ESTIMATORS[name] try: clf.set_params(random_state=0) except (TypeError, ValueError): pass print("Training %s ... " % name, end="") t0 = time() clf.fit(X_train, y_train) train_time[name] = time() - t0 t0 = time() y_pred = clf.predict(X_test) test_time[name] = time() - t0 accuracy[name] = accuracy_score(y_test, y_pred) print("done") print() print("Classification performance:") print("===========================") print() print("%s %s %s %s" % ("Classifier ", "train-time", "test-time", "Accuracy")) print("-" * 44) for name in sorted(accuracy, key=accuracy.get): print("%s %s %s %s" % (name.ljust(16), ("%.4fs" % train_time[name]).center(10), ("%.4fs" % test_time[name]).center(10), ("%.4f" % accuracy[name]).center(10))) print()
bsd-3-clause
wdwvt1/scikit-bio
skbio/stats/ordination/tests/test_ordination.py
3
35844
# ---------------------------------------------------------------------------- # Copyright (c) 2013--, scikit-bio development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. # ---------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function import six from six import binary_type, text_type import warnings import unittest import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import numpy.testing as npt import pandas as pd from IPython.core.display import Image, SVG from nose.tools import assert_is_instance, assert_true from scipy.spatial.distance import pdist from skbio import DistanceMatrix from skbio.stats.ordination import ( CA, RDA, CCA, PCoA, OrdinationResults, corr, mean_and_std, assert_ordination_results_equal) from skbio.util import get_data_path def normalize_signs(arr1, arr2): """Change column signs so that "column" and "-column" compare equal. This is needed because results of eigenproblmes can have signs flipped, but they're still right. Notes ===== This function tries hard to make sure that, if you find "column" and "-column" almost equal, calling a function like np.allclose to compare them after calling `normalize_signs` succeeds. To do so, it distinguishes two cases for every column: - It can be all almost equal to 0 (this includes a column of zeros). - Otherwise, it has a value that isn't close to 0. In the first case, no sign needs to be flipped. I.e., for |epsilon| small, np.allclose(-epsilon, 0) is true if and only if np.allclose(epsilon, 0) is. In the second case, the function finds the number in the column whose absolute value is largest. Then, it compares its sign with the number found in the same index, but in the other array, and flips the sign of the column as needed. """ # Let's convert everyting to floating point numbers (it's # reasonable to assume that eigenvectors will already be floating # point numbers). This is necessary because np.array(1) / # np.array(0) != np.array(1.) / np.array(0.) arr1 = np.asarray(arr1, dtype=np.float64) arr2 = np.asarray(arr2, dtype=np.float64) if arr1.shape != arr2.shape: raise ValueError( "Arrays must have the same shape ({0} vs {1}).".format(arr1.shape, arr2.shape) ) # To avoid issues around zero, we'll compare signs of the values # with highest absolute value max_idx = np.abs(arr1).argmax(axis=0) max_arr1 = arr1[max_idx, range(arr1.shape[1])] max_arr2 = arr2[max_idx, range(arr2.shape[1])] sign_arr1 = np.sign(max_arr1) sign_arr2 = np.sign(max_arr2) # Store current warnings, and ignore division by zero (like 1. / # 0.) and invalid operations (like 0. / 0.) wrn = np.seterr(invalid='ignore', divide='ignore') differences = sign_arr1 / sign_arr2 # The values in `differences` can be: # 1 -> equal signs # -1 -> diff signs # Or nan (0/0), inf (nonzero/0), 0 (0/nonzero) np.seterr(**wrn) # Now let's deal with cases where `differences != \pm 1` special_cases = (~np.isfinite(differences)) | (differences == 0) # In any of these cases, the sign of the column doesn't matter, so # let's just keep it differences[special_cases] = 1 return arr1 * differences, arr2 def chi_square_distance(data_table, between_rows=True): """Computes the chi-square distance between two rows or columns of input. It is a measure that has no upper limit, and it excludes double-zeros. Parameters ---------- data_table : 2D array_like An array_like object of shape (n, p). The input must be a frequency table (so that the sum of all cells equals 1, and all values are non-negative). between_rows : bool (defaults to True) Indicates whether distance is computed between rows (default) or columns. Returns ------- Y : ndarray Returns a condensed distance matrix. For each i and j (where i<j<n), the chi square distance between u=X[i] and v=X[j] is computed and stored in `Y[(n choose 2) - (n - i choose 2) + (j - i - 1)]`. See Also -------- scipy.spatial.distance.squareform References ---------- This coefficient appears in Legendre and Legendre (1998) as formula 7.54 (as D_{16}). Another source is http://www.springerreference.com/docs/html/chapterdbid/60817.html """ data_table = np.asarray(data_table, dtype=np.float64) if not np.allclose(data_table.sum(), 1): raise ValueError("Input is not a frequency table: if it is an" " abundance table you could scale it as" " `data_table / data_table.sum()`.") if np.any(data_table < 0): raise ValueError("A frequency table can't have negative values.") # The distances are always computed between the rows of F F = data_table if between_rows else data_table.T row_sums = F.sum(axis=1, keepdims=True) column_sums = F.sum(axis=0) scaled_F = F / (row_sums * np.sqrt(column_sums)) return pdist(scaled_F, 'euclidean') class TestNormalizeSigns(object): def test_shapes_and_nonarray_input(self): with npt.assert_raises(ValueError): normalize_signs([[1, 2], [3, 5]], [[1, 2]]) def test_works_when_different(self): """Taking abs value of everything would lead to false positives.""" a = np.array([[1, -1], [2, 2]]) b = np.array([[-1, -1], [2, 2]]) with npt.assert_raises(AssertionError): npt.assert_equal(*normalize_signs(a, b)) def test_easy_different(self): a = np.array([[1, 2], [3, -1]]) b = np.array([[-1, 2], [-3, -1]]) npt.assert_equal(*normalize_signs(a, b)) def test_easy_already_equal(self): a = np.array([[1, -2], [3, 1]]) b = a.copy() npt.assert_equal(*normalize_signs(a, b)) def test_zeros(self): a = np.array([[0, 3], [0, -1]]) b = np.array([[0, -3], [0, 1]]) npt.assert_equal(*normalize_signs(a, b)) def test_hard(self): a = np.array([[0, 1], [1, 2]]) b = np.array([[0, 1], [-1, 2]]) npt.assert_equal(*normalize_signs(a, b)) def test_harder(self): """We don't want a value that might be negative due to floating point inaccuracies to make a call to allclose in the result to be off.""" a = np.array([[-1e-15, 1], [5, 2]]) b = np.array([[1e-15, 1], [5, 2]]) # Clearly a and b would refer to the same "column # eigenvectors" but a slopppy implementation of # normalize_signs could change the sign of column 0 and make a # comparison fail npt.assert_almost_equal(*normalize_signs(a, b)) def test_column_zeros(self): a = np.array([[0, 1], [0, 2]]) b = np.array([[0, -1], [0, -2]]) npt.assert_equal(*normalize_signs(a, b)) def test_column_almost_zero(self): a = np.array([[1e-15, 3], [-2e-14, -6]]) b = np.array([[0, 3], [-1e-15, -6]]) npt.assert_almost_equal(*normalize_signs(a, b)) class TestChiSquareDistance(object): def test_errors(self): a = np.array([[-0.5, 0], [1, 0.5]]) with npt.assert_raises(ValueError): chi_square_distance(a) b = np.array([[0.5, 0], [0.5, 0.1]]) with npt.assert_raises(ValueError): chi_square_distance(b) def test_results(self): """Some random numbers.""" a = np.array([[0.02808988764, 0.056179775281, 0.084269662921, 0.140449438202], [0.01404494382, 0.196629213483, 0.109550561798, 0.033707865169], [0.02808988764, 0.112359550562, 0.056179775281, 0.140449438202]]) dist = chi_square_distance(a) expected = [0.91413919964333856, 0.33651110106124049, 0.75656884966269089] npt.assert_almost_equal(dist, expected) def test_results2(self): """A tiny example from Legendre & Legendre 1998, p. 285.""" a = np.array([[0, 1, 1], [1, 0, 0], [0, 4, 4]]) dist = chi_square_distance(a / a.sum()) # Note L&L used a terrible calculator because they got a wrong # number (says it's 3.477) :( expected = [3.4785054261852175, 0, 3.4785054261852175] npt.assert_almost_equal(dist, expected) class TestUtils(object): def setup(self): self.x = np.array([[1, 2, 3], [4, 5, 6]]) self.y = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) def test_mean_and_std_no_mean_no_std(self): with npt.assert_raises(ValueError): mean_and_std(self.x, with_mean=False, with_std=False) def test_corr_shape_mismatch(self): with npt.assert_raises(ValueError): corr(self.x, self.y) def test_assert_ordination_results_equal(self): minimal1 = OrdinationResults([1, 2]) # a minimal set of results should be equal to itself assert_ordination_results_equal(minimal1, minimal1) # type mismatch with npt.assert_raises(AssertionError): assert_ordination_results_equal(minimal1, 'foo') # numeric values should be checked that they're almost equal almost_minimal1 = OrdinationResults([1.0000001, 1.9999999]) assert_ordination_results_equal(minimal1, almost_minimal1) # species_ids missing in one, present in the other almost_minimal1.species_ids = ['abc', 'def'] with npt.assert_raises(AssertionError): assert_ordination_results_equal(minimal1, almost_minimal1) almost_minimal1.species_ids = None # site_ids missing in one, present in the other almost_minimal1.site_ids = ['abc', 'def'] with npt.assert_raises(AssertionError): assert_ordination_results_equal(minimal1, almost_minimal1) almost_minimal1.site_ids = None # test each of the optional numeric attributes for attr in ('species', 'site', 'biplot', 'site_constraints', 'proportion_explained'): # missing optional numeric attribute in one, present in the other setattr(almost_minimal1, attr, [[1, 2], [3, 4]]) with npt.assert_raises(AssertionError): assert_ordination_results_equal(minimal1, almost_minimal1) setattr(almost_minimal1, attr, None) # optional numeric attributes present in both, but not almost equal setattr(minimal1, attr, [[1, 2], [3, 4]]) setattr(almost_minimal1, attr, [[1, 2], [3.00002, 4]]) with npt.assert_raises(AssertionError): assert_ordination_results_equal(minimal1, almost_minimal1) setattr(minimal1, attr, None) setattr(almost_minimal1, attr, None) # optional numeric attributes present in both, and almost equal setattr(minimal1, attr, [[1, 2], [3, 4]]) setattr(almost_minimal1, attr, [[1, 2], [3.00000002, 4]]) assert_ordination_results_equal(minimal1, almost_minimal1) setattr(minimal1, attr, None) setattr(almost_minimal1, attr, None) class TestCAResults(object): def setup(self): """Data from table 9.11 in Legendre & Legendre 1998.""" self.X = np.loadtxt(get_data_path('L&L_CA_data')) self.ordination = CA(self.X, ['Site1', 'Site2', 'Site3'], ['Species1', 'Species2', 'Species3']) def test_scaling2(self): scores = self.ordination.scores(scaling=2) # p. 460 L&L 1998 F_hat = np.array([[0.40887, -0.06955], [-0.11539, 0.29977], [-0.30997, -0.18739]]) npt.assert_almost_equal(*normalize_signs(F_hat, scores.species), decimal=5) V_hat = np.array([[-0.84896, -0.88276], [-0.22046, 1.34482], [1.66697, -0.47032]]) npt.assert_almost_equal(*normalize_signs(V_hat, scores.site), decimal=5) def test_scaling1(self): scores = self.ordination.scores(scaling=1) # p. 458 V = np.array([[1.31871, -0.34374], [-0.37215, 1.48150], [-0.99972, -0.92612]]) npt.assert_almost_equal(*normalize_signs(V, scores.species), decimal=5) F = np.array([[-0.26322, -0.17862], [-0.06835, 0.27211], [0.51685, -0.09517]]) npt.assert_almost_equal(*normalize_signs(F, scores.site), decimal=5) def test_maintain_chi_square_distance_scaling1(self): """In scaling 1, chi^2 distance among rows (sites) is equal to euclidean distance between them in transformed space.""" frequencies = self.X / self.X.sum() chi2_distances = chi_square_distance(frequencies) transformed_sites = self.ordination.scores(1).site euclidean_distances = pdist(transformed_sites, 'euclidean') npt.assert_almost_equal(chi2_distances, euclidean_distances) def test_maintain_chi_square_distance_scaling2(self): """In scaling 2, chi^2 distance among columns (species) is equal to euclidean distance between them in transformed space.""" frequencies = self.X / self.X.sum() chi2_distances = chi_square_distance(frequencies, between_rows=False) transformed_species = self.ordination.scores(2).species euclidean_distances = pdist(transformed_species, 'euclidean') npt.assert_almost_equal(chi2_distances, euclidean_distances) class TestCAErrors(object): def test_negative(self): X = np.array([[1, 2], [-0.1, -2]]) with npt.assert_raises(ValueError): CA(X, None, None) class TestRDAErrors(object): def test_shape(self): for n, p, n_, m in [(3, 4, 2, 1), (3, 4, 3, 10)]: Y = np.random.randn(n, p) X = np.random.randn(n_, m) yield npt.assert_raises, ValueError, RDA, Y, X, None, None class TestRDAResults(object): # STATUS: L&L only shows results with scaling 1, and they agree # with vegan's (module multiplying by a constant). I can also # compute scaling 2, agreeing with vegan, but there are no written # results in L&L. def setup(self): """Data from table 11.3 in Legendre & Legendre 1998.""" Y = np.loadtxt(get_data_path('example2_Y')) X = np.loadtxt(get_data_path('example2_X')) self.ordination = RDA(Y, X, ['Site0', 'Site1', 'Site2', 'Site3', 'Site4', 'Site5', 'Site6', 'Site7', 'Site8', 'Site9'], ['Species0', 'Species1', 'Species2', 'Species3', 'Species4', 'Species5']) def test_scaling1(self): scores = self.ordination.scores(1) # Load data as computed with vegan 2.0-8 vegan_species = np.loadtxt(get_data_path( 'example2_species_scaling1_from_vegan')) npt.assert_almost_equal(scores.species, vegan_species, decimal=6) vegan_site = np.loadtxt(get_data_path( 'example2_site_scaling1_from_vegan')) npt.assert_almost_equal(scores.site, vegan_site, decimal=6) def test_scaling2(self): scores = self.ordination.scores(2) # Load data as computed with vegan 2.0-8 vegan_species = np.loadtxt(get_data_path( 'example2_species_scaling2_from_vegan')) npt.assert_almost_equal(scores.species, vegan_species, decimal=6) vegan_site = np.loadtxt(get_data_path( 'example2_site_scaling2_from_vegan')) npt.assert_almost_equal(scores.site, vegan_site, decimal=6) class TestCCAErrors(object): def setup(self): """Data from table 11.3 in Legendre & Legendre 1998.""" self.Y = np.loadtxt(get_data_path('example3_Y')) self.X = np.loadtxt(get_data_path('example3_X')) def test_shape(self): X, Y = self.X, self.Y with npt.assert_raises(ValueError): CCA(Y, X[:-1], None, None) def test_Y_values(self): X, Y = self.X, self.Y Y[0, 0] = -1 with npt.assert_raises(ValueError): CCA(Y, X, None, None) Y[0] = 0 with npt.assert_raises(ValueError): CCA(Y, X, None, None) class TestCCAResults(object): def setup(self): """Data from table 11.3 in Legendre & Legendre 1998 (p. 590). Loaded results as computed with vegan 2.0-8 and compared with table 11.5 if also there.""" Y = np.loadtxt(get_data_path('example3_Y')) X = np.loadtxt(get_data_path('example3_X')) self.ordination = CCA(Y, X[:, :-1], ['Site0', 'Site1', 'Site2', 'Site3', 'Site4', 'Site5', 'Site6', 'Site7', 'Site8', 'Site9'], ['Species0', 'Species1', 'Species2', 'Species3', 'Species4', 'Species5', 'Species6', 'Species7', 'Species8']) def test_scaling1_species(self): scores = self.ordination.scores(1) vegan_species = np.loadtxt(get_data_path( 'example3_species_scaling1_from_vegan')) npt.assert_almost_equal(scores.species, vegan_species, decimal=6) def test_scaling1_site(self): scores = self.ordination.scores(1) vegan_site = np.loadtxt(get_data_path( 'example3_site_scaling1_from_vegan')) npt.assert_almost_equal(scores.site, vegan_site, decimal=4) def test_scaling2_species(self): scores = self.ordination.scores(2) vegan_species = np.loadtxt(get_data_path( 'example3_species_scaling2_from_vegan')) npt.assert_almost_equal(scores.species, vegan_species, decimal=5) def test_scaling2_site(self): scores = self.ordination.scores(2) vegan_site = np.loadtxt(get_data_path( 'example3_site_scaling2_from_vegan')) npt.assert_almost_equal(scores.site, vegan_site, decimal=4) class TestPCoAResults(object): def setup(self): """Sample data set from page 111 of W.J Krzanowski. Principles of multivariate analysis, 2000, Oxford University Press.""" matrix = np.loadtxt(get_data_path('PCoA_sample_data')) dist_matrix = DistanceMatrix(matrix, map(str, range(matrix.shape[0]))) self.dist_matrix = dist_matrix def test_negative_eigenvalue_warning(self): """This data has some small negative eigenvalues.""" npt.assert_warns(RuntimeWarning, PCoA, self.dist_matrix) def test_values(self): """Adapted from cogent's `test_principal_coordinate_analysis`: "I took the example in the book (see intro info), and did the principal coordinates analysis, plotted the data and it looked right".""" with warnings.catch_warnings(): warnings.filterwarnings('ignore', category=RuntimeWarning) ordination = PCoA(self.dist_matrix) scores = ordination.scores() exp_eigvals = np.array([0.73599103, 0.26260032, 0.14926222, 0.06990457, 0.02956972, 0.01931184, 0., 0., 0., 0., 0., 0., 0., 0.]) exp_site = np.loadtxt(get_data_path('exp_PCoAzeros_site')) exp_prop_expl = np.array([0.58105792, 0.20732046, 0.1178411, 0.05518899, 0.02334502, 0.01524651, 0., 0., 0., 0., 0., 0., 0., 0.]) exp_site_ids = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13'] # Note the absolute value because column can have signs swapped npt.assert_almost_equal(scores.eigvals, exp_eigvals) npt.assert_almost_equal(np.abs(scores.site), exp_site) npt.assert_almost_equal(scores.proportion_explained, exp_prop_expl) npt.assert_equal(scores.site_ids, exp_site_ids) class TestPCoAResultsExtensive(object): def setup(self): matrix = np.loadtxt(get_data_path('PCoA_sample_data_2')) self.ids = [str(i) for i in range(matrix.shape[0])] dist_matrix = DistanceMatrix(matrix, self.ids) self.ordination = PCoA(dist_matrix) def test_values(self): results = self.ordination.scores() npt.assert_equal(len(results.eigvals), len(results.site[0])) expected = np.array([[-0.028597, 0.22903853, 0.07055272, 0.26163576, 0.28398669, 0.0], [0.37494056, 0.22334055, -0.20892914, 0.05057395, -0.18710366, 0.0], [-0.33517593, -0.23855979, -0.3099887, 0.11521787, -0.05021553, 0.0], [0.25412394, -0.4123464, 0.23343642, 0.06403168, -0.00482608, 0.0], [-0.28256844, 0.18606911, 0.28875631, -0.06455635, -0.21141632, 0.0], [0.01727687, 0.012458, -0.07382761, -0.42690292, 0.1695749, 0.0]]) npt.assert_almost_equal(*normalize_signs(expected, results.site)) expected = np.array([0.3984635, 0.36405689, 0.28804535, 0.27479983, 0.19165361, 0.0]) npt.assert_almost_equal(results.eigvals, expected) expected = np.array([0.2626621381, 0.2399817314, 0.1898758748, 0.1811445992, 0.1263356565, 0.0]) npt.assert_almost_equal(results.proportion_explained, expected) npt.assert_equal(results.site_ids, self.ids) class TestPCoAEigenResults(object): def setup(self): dist_matrix = DistanceMatrix.read(get_data_path('PCoA_sample_data_3')) self.ordination = PCoA(dist_matrix) self.ids = ['PC.636', 'PC.635', 'PC.356', 'PC.481', 'PC.354', 'PC.593', 'PC.355', 'PC.607', 'PC.634'] def test_values(self): results = self.ordination.scores() npt.assert_almost_equal(len(results.eigvals), len(results.site[0])) expected = np.loadtxt(get_data_path('exp_PCoAEigenResults_site')) npt.assert_almost_equal(*normalize_signs(expected, results.site)) expected = np.array([0.51236726, 0.30071909, 0.26791207, 0.20898868, 0.19169895, 0.16054235, 0.15017696, 0.12245775, 0.0]) npt.assert_almost_equal(results.eigvals, expected) expected = np.array([0.2675738328, 0.157044696, 0.1399118638, 0.1091402725, 0.1001110485, 0.0838401162, 0.0784269939, 0.0639511764, 0.0]) npt.assert_almost_equal(results.proportion_explained, expected) npt.assert_equal(results.site_ids, self.ids) class TestPCoAPrivateMethods(object): def setup(self): self.matrix = np.arange(1, 7).reshape(2, 3) self.matrix2 = np.arange(1, 10).reshape(3, 3) def test_E_matrix(self): E = PCoA._E_matrix(self.matrix) expected_E = np.array([[-0.5, -2., -4.5], [-8., -12.5, -18.]]) npt.assert_almost_equal(E, expected_E) def test_F_matrix(self): F = PCoA._F_matrix(self.matrix2) expected_F = np.zeros((3, 3)) # Note that `test_make_F_matrix` in cogent is wrong npt.assert_almost_equal(F, expected_F) class TestPCoAErrors(object): def test_input(self): with npt.assert_raises(TypeError): PCoA([[1, 2], [3, 4]]) class TestOrdinationResults(unittest.TestCase): def setUp(self): # Define in-memory CA results to serialize and deserialize. eigvals = np.array([0.0961330159181, 0.0409418140138]) species = np.array([[0.408869425742, 0.0695518116298], [-0.1153860437, -0.299767683538], [-0.309967102571, 0.187391917117]]) site = np.array([[-0.848956053187, 0.882764759014], [-0.220458650578, -1.34482000302], [1.66697179591, 0.470324389808]]) biplot = None site_constraints = None prop_explained = None species_ids = ['Species1', 'Species2', 'Species3'] site_ids = ['Site1', 'Site2', 'Site3'] self.ordination_results = OrdinationResults( eigvals=eigvals, species=species, site=site, biplot=biplot, site_constraints=site_constraints, proportion_explained=prop_explained, species_ids=species_ids, site_ids=site_ids) # DataFrame for testing plot method. Has a categorical column with a # mix of numbers and strings. Has a numeric column with a mix of ints, # floats, and strings that can be converted to floats. Has a numeric # column with missing data (np.nan). self.df = pd.DataFrame([['foo', '42', 10], [22, 0, 8], [22, -4.2, np.nan], ['foo', '42.19', 11]], index=['A', 'B', 'C', 'D'], columns=['categorical', 'numeric', 'nancolumn']) # Minimal ordination results for easier testing of plotting method. # Paired with df above. eigvals = np.array([0.50, 0.25, 0.25]) site = np.array([[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]]) self.min_ord_results = OrdinationResults(eigvals=eigvals, site=site, site_ids=['A', 'B', 'C', 'D']) def test_str(self): exp = ("Ordination results:\n" "\tEigvals: 2\n" "\tProportion explained: N/A\n" "\tSpecies: 3x2\n" "\tSite: 3x2\n" "\tBiplot: N/A\n" "\tSite constraints: N/A\n" "\tSpecies IDs: 'Species1', 'Species2', 'Species3'\n" "\tSite IDs: 'Site1', 'Site2', 'Site3'") obs = str(self.ordination_results) self.assertEqual(obs, exp) # all optional attributes missing exp = ("Ordination results:\n" "\tEigvals: 1\n" "\tProportion explained: N/A\n" "\tSpecies: N/A\n" "\tSite: N/A\n" "\tBiplot: N/A\n" "\tSite constraints: N/A\n" "\tSpecies IDs: N/A\n" "\tSite IDs: N/A") obs = str(OrdinationResults(np.array([4.2]))) self.assertEqual(obs, exp) def check_basic_figure_sanity(self, fig, exp_num_subplots, exp_title, exp_legend_exists, exp_xlabel, exp_ylabel, exp_zlabel): # check type assert_is_instance(fig, mpl.figure.Figure) # check number of subplots axes = fig.get_axes() npt.assert_equal(len(axes), exp_num_subplots) # check title ax = axes[0] npt.assert_equal(ax.get_title(), exp_title) # shouldn't have tick labels for tick_label in (ax.get_xticklabels() + ax.get_yticklabels() + ax.get_zticklabels()): npt.assert_equal(tick_label.get_text(), '') # check if legend is present legend = ax.get_legend() if exp_legend_exists: assert_true(legend is not None) else: assert_true(legend is None) # check axis labels npt.assert_equal(ax.get_xlabel(), exp_xlabel) npt.assert_equal(ax.get_ylabel(), exp_ylabel) npt.assert_equal(ax.get_zlabel(), exp_zlabel) def test_plot_no_metadata(self): fig = self.min_ord_results.plot() self.check_basic_figure_sanity(fig, 1, '', False, '0', '1', '2') def test_plot_with_numeric_metadata_and_plot_options(self): fig = self.min_ord_results.plot( self.df, 'numeric', axes=(1, 0, 2), axis_labels=['PC 2', 'PC 1', 'PC 3'], title='a title', cmap='Reds') self.check_basic_figure_sanity( fig, 2, 'a title', False, 'PC 2', 'PC 1', 'PC 3') def test_plot_with_categorical_metadata_and_plot_options(self): fig = self.min_ord_results.plot( self.df, 'categorical', axes=[2, 0, 1], title='a title', cmap='Accent') self.check_basic_figure_sanity(fig, 1, 'a title', True, '2', '0', '1') def test_plot_with_invalid_axis_labels(self): with six.assertRaisesRegex(self, ValueError, 'axis_labels.*4'): self.min_ord_results.plot(axes=[2, 0, 1], axis_labels=('a', 'b', 'c', 'd')) def test_validate_plot_axes_valid_input(self): # shouldn't raise an error on valid input. nothing is returned, so # nothing to check here self.min_ord_results._validate_plot_axes(self.min_ord_results.site.T, (1, 2, 0)) def test_validate_plot_axes_invalid_input(self): # not enough dimensions with six.assertRaisesRegex(self, ValueError, '2 dimension\(s\)'): self.min_ord_results._validate_plot_axes( np.asarray([[0.1, 0.2, 0.3], [0.2, 0.3, 0.4]]), (0, 1, 2)) coord_matrix = self.min_ord_results.site.T # wrong number of axes with six.assertRaisesRegex(self, ValueError, 'exactly three.*found 0'): self.min_ord_results._validate_plot_axes(coord_matrix, []) with six.assertRaisesRegex(self, ValueError, 'exactly three.*found 4'): self.min_ord_results._validate_plot_axes(coord_matrix, (0, 1, 2, 3)) # duplicate axes with six.assertRaisesRegex(self, ValueError, 'must be unique'): self.min_ord_results._validate_plot_axes(coord_matrix, (0, 1, 0)) # out of range axes with six.assertRaisesRegex(self, ValueError, 'axes\[1\].*3'): self.min_ord_results._validate_plot_axes(coord_matrix, (0, -1, 2)) with six.assertRaisesRegex(self, ValueError, 'axes\[2\].*3'): self.min_ord_results._validate_plot_axes(coord_matrix, (0, 2, 3)) def test_get_plot_point_colors_invalid_input(self): # column provided without df with npt.assert_raises(ValueError): self.min_ord_results._get_plot_point_colors(None, 'numeric', ['B', 'C'], 'jet') # df provided without column with npt.assert_raises(ValueError): self.min_ord_results._get_plot_point_colors(self.df, None, ['B', 'C'], 'jet') # column not in df with six.assertRaisesRegex(self, ValueError, 'missingcol'): self.min_ord_results._get_plot_point_colors(self.df, 'missingcol', ['B', 'C'], 'jet') # id not in df with six.assertRaisesRegex(self, ValueError, 'numeric'): self.min_ord_results._get_plot_point_colors( self.df, 'numeric', ['B', 'C', 'missingid', 'A'], 'jet') # missing data in df with six.assertRaisesRegex(self, ValueError, 'nancolumn'): self.min_ord_results._get_plot_point_colors(self.df, 'nancolumn', ['B', 'C', 'A'], 'jet') def test_get_plot_point_colors_no_df_or_column(self): obs = self.min_ord_results._get_plot_point_colors(None, None, ['B', 'C'], 'jet') npt.assert_equal(obs, (None, None)) def test_get_plot_point_colors_numeric_column(self): # subset of the ids in df exp = [0.0, -4.2, 42.0] obs = self.min_ord_results._get_plot_point_colors( self.df, 'numeric', ['B', 'C', 'A'], 'jet') npt.assert_almost_equal(obs[0], exp) assert_true(obs[1] is None) # all ids in df exp = [0.0, 42.0, 42.19, -4.2] obs = self.min_ord_results._get_plot_point_colors( self.df, 'numeric', ['B', 'A', 'D', 'C'], 'jet') npt.assert_almost_equal(obs[0], exp) assert_true(obs[1] is None) def test_get_plot_point_colors_categorical_column(self): # subset of the ids in df exp_colors = [[0., 0., 0.5, 1.], [0., 0., 0.5, 1.], [0.5, 0., 0., 1.]] exp_color_dict = { 'foo': [0.5, 0., 0., 1.], 22: [0., 0., 0.5, 1.] } obs = self.min_ord_results._get_plot_point_colors( self.df, 'categorical', ['B', 'C', 'A'], 'jet') npt.assert_almost_equal(obs[0], exp_colors) npt.assert_equal(obs[1], exp_color_dict) # all ids in df exp_colors = [[0., 0., 0.5, 1.], [0.5, 0., 0., 1.], [0.5, 0., 0., 1.], [0., 0., 0.5, 1.]] obs = self.min_ord_results._get_plot_point_colors( self.df, 'categorical', ['B', 'A', 'D', 'C'], 'jet') npt.assert_almost_equal(obs[0], exp_colors) # should get same color dict as before npt.assert_equal(obs[1], exp_color_dict) def test_plot_categorical_legend(self): fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # we shouldn't have a legend yet assert_true(ax.get_legend() is None) self.min_ord_results._plot_categorical_legend( ax, {'foo': 'red', 'bar': 'green'}) # make sure we have a legend now legend = ax.get_legend() assert_true(legend is not None) # do some light sanity checking to make sure our input labels and # colors are present. we're not using nose.tools.assert_items_equal # because it isn't available in Python 3. labels = [t.get_text() for t in legend.get_texts()] npt.assert_equal(sorted(labels), ['bar', 'foo']) colors = [l.get_color() for l in legend.get_lines()] npt.assert_equal(sorted(colors), ['green', 'red']) def test_repr_png(self): obs = self.min_ord_results._repr_png_() assert_is_instance(obs, binary_type) assert_true(len(obs) > 0) def test_repr_svg(self): obs = self.min_ord_results._repr_svg_() # print_figure(format='svg') can return text or bytes depending on the # version of IPython assert_true(isinstance(obs, text_type) or isinstance(obs, binary_type)) assert_true(len(obs) > 0) def test_png(self): assert_is_instance(self.min_ord_results.png, Image) def test_svg(self): assert_is_instance(self.min_ord_results.svg, SVG) if __name__ == '__main__': import nose nose.runmodule()
bsd-3-clause
psi-rking/psi4
psi4/driver/qcdb/mpl.py
7
54234
# # @BEGIN LICENSE # # Psi4: an open-source quantum chemistry software package # # Copyright (c) 2007-2021 The Psi4 Developers. # # The copyrights for code used from other parties are included in # the corresponding files. # # This file is part of Psi4. # # Psi4 is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, version 3. # # Psi4 is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License along # with Psi4; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # # @END LICENSE # """Module with matplotlib plotting routines. These are not hooked up to any particular qcdb data structures but can be called with basic arguments. """ import os #import matplotlib #matplotlib.use('Agg') def expand_saveas(saveas, def_filename, def_path=os.path.abspath(os.curdir), def_prefix='', relpath=False): """Analyzes string *saveas* to see if it contains information on path to save file, name to save file, both or neither (*saveas* ends in '/' to indicate directory only) (able to expand '.'). A full absolute filename is returned, lacking only file extension. Based on analysis of missing parts of *saveas*, path information from *def_path* and/or filename information from *def_prefix* + *def_filename* is inserted. *def_prefix* is intended to be something like ``mplthread_`` to identify the type of figure. """ defname = def_prefix + def_filename.replace(' ', '_') if saveas is None: pth = def_path fil = defname else: pth, fil = os.path.split(saveas) pth = pth if pth != '' else def_path fil = fil if fil != '' else defname abspathfile = os.path.join(os.path.abspath(pth), fil) if relpath: return os.path.relpath(abspathfile, os.getcwd()) else: return abspathfile def segment_color(argcolor, saptcolor): """Find appropriate color expression between overall color directive *argcolor* and particular color availibility *rxncolor*. """ import matplotlib # validate any sapt color if saptcolor is not None: if saptcolor < 0.0 or saptcolor > 1.0: saptcolor = None if argcolor is None: # no color argument, so take from rxn if rxncolor is None: clr = 'grey' elif saptcolor is not None: clr = matplotlib.cm.jet(saptcolor) else: clr = rxncolor elif argcolor == 'sapt': # sapt color from rxn if available if saptcolor is not None: clr = matplotlib.cm.jet(saptcolor) else: clr = 'grey' elif argcolor == 'rgb': # HB/MX/DD sapt color from rxn if available if saptcolor is not None: if saptcolor < 0.333: clr = 'blue' elif saptcolor < 0.667: clr = 'green' else: clr = 'red' else: clr = 'grey' else: # color argument is name of mpl color clr = argcolor return clr def bars(data, title='', saveas=None, relpath=False, graphicsformat=['pdf'], view=True): """Generates a 'gray-bars' diagram between model chemistries with error statistics in list *data*, which is supplied as part of the dictionary for each participating bar/modelchem, along with *mc* keys in argument *data*. The plot is labeled with *title* and each bar with *mc* key and plotted at a fixed scale to facilitate comparison across projects. """ import hashlib import matplotlib.pyplot as plt # initialize plot, fix dimensions for consistent Illustrator import fig, ax = plt.subplots(figsize=(12, 7)) plt.ylim([0, 4.86]) plt.xlim([0, 6]) plt.xticks([]) # label plot and tiers ax.text(0.4, 4.6, title, verticalalignment='bottom', horizontalalignment='left', family='Times New Roman', weight='bold', fontsize=12) widths = [0.15, 0.02, 0.02, 0.02] # TT, HB, MX, DD xval = 0.1 # starting posn along x-axis # plot bar sets for bar in data: if bar is not None: lefts = [xval, xval + 0.025, xval + 0.065, xval + 0.105] rect = ax.bar(lefts, bar['data'], widths, linewidth=0) rect[0].set_color('grey') rect[1].set_color('red') rect[2].set_color('green') rect[3].set_color('blue') ax.text(xval + .08, 4.3, bar['mc'], verticalalignment='center', horizontalalignment='right', rotation='vertical', family='Times New Roman', fontsize=8) xval += 0.20 # save and show pltuid = title + '_' + hashlib.sha1((title + repr([bar['mc'] for bar in data if bar is not None])).encode()).hexdigest() pltfile = expand_saveas(saveas, pltuid, def_prefix='bar_', relpath=relpath) files_saved = {} for ext in graphicsformat: savefile = pltfile + '.' + ext.lower() plt.savefig(savefile, transparent=True, format=ext, bbox_inches='tight') files_saved[ext.lower()] = savefile if view: plt.show() plt.close() return files_saved def flat(data, color=None, title='', xlimit=4.0, xlines=[0.0, 0.3, 1.0], mae=None, mape=None, view=True, saveas=None, relpath=False, graphicsformat=['pdf']): """Generates a slat diagram between model chemistries with errors in single-item list *data*, which is supplied as part of the dictionary for each participating reaction, along with *dbse* and *rxn* keys in argument *data*. Limits of plot are *xlimit* from the zero-line. If *color* is None, slats are black, if 'sapt', colors are taken from sapt_colors module. Summary statistic *mae* is plotted on the overbound side and relative statistic *mape* on the underbound side. Saves a file with name *title* and plots to screen if *view*. """ import matplotlib.pyplot as plt Nweft = 1 positions = range(-1, -1 * Nweft - 1, -1) # initialize plot fig, ax = plt.subplots(figsize=(12, 0.33)) plt.xlim([-xlimit, xlimit]) plt.ylim([-1 * Nweft - 1, 0]) plt.yticks([]) plt.xticks([]) # fig.patch.set_visible(False) # ax.patch.set_visible(False) ax.axis('off') for xl in xlines: plt.axvline(xl, color='grey', linewidth=4) if xl != 0.0: plt.axvline(-1 * xl, color='grey', linewidth=4) # plot reaction errors and threads for rxn in data: xvals = rxn['data'] clr = segment_color(color, rxn['color'] if 'color' in rxn else None) ax.plot(xvals, positions, '|', color=clr, markersize=13.0, mew=4) # plot trimmings if mae is not None: plt.axvline(-1 * mae, color='black', linewidth=12) if mape is not None: # equivalent to MAE for a 10 kcal/mol interaction energy ax.plot(0.025 * mape, positions, 'o', color='black', markersize=15.0) # save and show pltuid = title # simple (not really unique) filename for LaTeX integration pltfile = expand_saveas(saveas, pltuid, def_prefix='flat_', relpath=relpath) files_saved = {} for ext in graphicsformat: savefile = pltfile + '.' + ext.lower() plt.savefig(savefile, transparent=True, format=ext, bbox_inches='tight', frameon=False, pad_inches=0.0) files_saved[ext.lower()] = savefile if view: plt.show() plt.close() # give this a try return files_saved #def mpl_distslat_multiplot_files(pltfile, dbid, dbname, xmin, xmax, mcdats, labels, titles): # """Saves a plot with basename *pltfile* with a slat representation # of the modelchems errors in *mcdat*. Plot is in PNG, PDF, & EPS # and suitable for download, no mouseover properties. Both labeled # and labelless (for pub) figures are constructed. # # """ # import matplotlib as mpl # from matplotlib.axes import Subplot # import sapt_colors # from matplotlib.figure import Figure # # nplots = len(mcdats) # fht = nplots * 0.8 # fig, axt = plt.subplots(figsize=(12.0, fht)) # plt.subplots_adjust(left=0.01, right=0.99, hspace=0.3) # # axt.set_xticks([]) # axt.set_yticks([]) # plt.axis('off') # # for item in range(nplots): # mcdat = mcdats[item] # label = labels[item] # title = titles[item] # # erdat = np.array(mcdat) # yvals = np.ones(len(mcdat)) # y = np.array([sapt_colors.sapt_colors[dbname][i] for i in label]) # # ax = Subplot(fig, nplots, 1, item + 1) # fig.add_subplot(ax) # sc = ax.scatter(erdat, yvals, c=y, s=3000, marker="|", cmap=mpl.cm.jet, vmin=0, vmax=1) # # ax.set_yticks([]) # ax.set_xticks([]) # ax.set_frame_on(False) # ax.set_xlim([xmin, xmax]) # # # Write files with only slats # plt.savefig('scratch/' + pltfile + '_plain' + '.png', transparent=True, format='PNG') # plt.savefig('scratch/' + pltfile + '_plain' + '.pdf', transparent=True, format='PDF') # plt.savefig('scratch/' + pltfile + '_plain' + '.eps', transparent=True, format='EPS') # # # Rewrite files with guides and labels # for item in range(nplots): # ax_again = fig.add_subplot(nplots, 1, item + 1) # ax_again.set_title(titles[item], fontsize=8) # ax_again.text(xmin + 0.3, 1.0, stats(np.array(mcdats[item])), fontsize=7, family='monospace', verticalalignment='center') # ax_again.plot([0, 0], [0.9, 1.1], color='#cccc00', lw=2) # ax_again.set_frame_on(False) # ax_again.set_yticks([]) # ax_again.set_xticks([-12.0, -8.0, -4.0, -2.0, -1.0, 0.0, 1.0, 2.0, 4.0, 8.0, 12.0]) # ax_again.tick_params(axis='both', which='major', labelbottom='off', bottom='off') # ax_again.set_xticks([-12.0, -8.0, -4.0, -2.0, -1.0, 0.0, 1.0, 2.0, 4.0, 8.0, 12.0]) # ax_again.tick_params(axis='both', which='major', labelbottom='on', bottom='off') # # plt.savefig('scratch/' + pltfile + '_trimd' + '.png', transparent=True, format='PNG') # plt.savefig('scratch/' + pltfile + '_trimd' + '.pdf', transparent=True, format='PDF') # plt.savefig('scratch/' + pltfile + '_trimd' + '.eps', transparent=True, format='EPS') def valerr(data, color=None, title='', xtitle='', view=True, saveas=None, relpath=False, graphicsformat=['pdf']): """ """ import hashlib from itertools import cycle import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(4, 6)) ax1 = fig.add_subplot(211) plt.axhline(0.0, axes=ax1, color='black') ax1.set_ylabel('Reaction Energy') plt.title(title) ax2 = plt.subplot(212, sharex=ax1) plt.axhline(0.0, axes=ax2, color='#cccc00') ax2.set_ylabel('Energy Error') ax2.set_xlabel(xtitle) xmin = 500.0 xmax = -500.0 vmin = 1.0 vmax = -1.0 emin = 1.0 emax = -1.0 linecycler = cycle(['-', '--', '-.', ':']) # plot reaction errors and threads for trace, tracedata in data.items(): vaxis = [] vmcdata = [] verror = [] for rxn in tracedata: clr = segment_color(color, rxn['color'] if 'color' in rxn else None) xmin = min(xmin, rxn['axis']) xmax = max(xmax, rxn['axis']) ax1.plot(rxn['axis'], rxn['mcdata'], '^', color=clr, markersize=6.0, mew=0, zorder=10) vmcdata.append(rxn['mcdata']) vaxis.append(rxn['axis']) vmin = min(0, vmin, rxn['mcdata']) vmax = max(0, vmax, rxn['mcdata']) if rxn['bmdata'] is not None: ax1.plot(rxn['axis'], rxn['bmdata'], 'o', color='black', markersize=6.0, zorder=1) vmin = min(0, vmin, rxn['bmdata']) vmax = max(0, vmax, rxn['bmdata']) if rxn['error'][0] is not None: ax2.plot(rxn['axis'], rxn['error'][0], 's', color=clr, mew=0, zorder=8) emin = min(0, emin, rxn['error'][0]) emax = max(0, emax, rxn['error'][0]) verror.append(rxn['error'][0]) ls = next(linecycler) ax1.plot(vaxis, vmcdata, ls, color='grey', label=trace, zorder=3) ax2.plot(vaxis, verror, ls, color='grey', label=trace, zorder=4) xbuf = max(0.05, abs(0.02 * xmax)) vbuf = max(0.1, abs(0.02 * vmax)) ebuf = max(0.01, abs(0.02 * emax)) plt.xlim([xmin - xbuf, xmax + xbuf]) ax1.set_ylim([vmin - vbuf, vmax + vbuf]) plt.legend(fontsize='x-small', frameon=False) ax2.set_ylim([emin - ebuf, emax + ebuf]) # save and show pltuid = title + '_' + hashlib.sha1(title.encode()).hexdigest() pltfile = expand_saveas(saveas, pltuid, def_prefix='valerr_', relpath=relpath) files_saved = {} for ext in graphicsformat: savefile = pltfile + '.' + ext.lower() plt.savefig(savefile, transparent=True, format=ext, bbox_inches='tight') files_saved[ext.lower()] = savefile if view: plt.show() plt.close() # give this a try return files_saved def disthist(data, title='', xtitle='', xmin=None, xmax=None, me=None, stde=None, view=True, saveas=None, relpath=False, graphicsformat=['pdf']): """Saves a plot with name *saveas* with a histogram representation of the reaction errors in *data*. Also plots a gaussian distribution with mean *me* and standard deviation *stde*. Plot has x-range *xmin* to *xmax*, x-axis label *xtitle* and overall title *title*. """ import hashlib import numpy as np import matplotlib.pyplot as plt def gaussianpdf(u, v, x): """*u* is mean, *v* is variance, *x* is value, returns probability""" return 1.0 / np.sqrt(2.0 * np.pi * v) * np.exp(-pow(x - u, 2) / 2.0 / v) me = me if me is not None else np.mean(data) stde = stde if stde is not None else np.std(data, ddof=1) evenerr = max(abs(me - 4.0 * stde), abs(me + 4.0 * stde)) xmin = xmin if xmin is not None else -1 * evenerr xmax = xmax if xmax is not None else evenerr dx = (xmax - xmin) / 40. nx = int(round((xmax - xmin) / dx)) + 1 pdfx = [] pdfy = [] for i in range(nx): ix = xmin + i * dx pdfx.append(ix) pdfy.append(gaussianpdf(me, pow(stde, 2), ix)) fig, ax1 = plt.subplots(figsize=(16, 6)) plt.axvline(0.0, color='#cccc00') ax1.set_xlim(xmin, xmax) ax1.hist(data, bins=30, range=(xmin, xmax), color='#2d4065', alpha=0.7) ax1.set_xlabel(xtitle) ax1.set_ylabel('Count') ax2 = ax1.twinx() ax2.fill(pdfx, pdfy, color='k', alpha=0.2) ax2.set_ylabel('Probability Density') plt.title(title) # save and show pltuid = title + '_' + hashlib.sha1((title + str(me) + str(stde) + str(xmin) + str(xmax)).encode()).hexdigest() pltfile = expand_saveas(saveas, pltuid, def_prefix='disthist_', relpath=relpath) files_saved = {} for ext in graphicsformat: savefile = pltfile + '.' + ext.lower() plt.savefig(savefile, transparent=True, format=ext, bbox_inches='tight') files_saved[ext.lower()] = savefile if view: plt.show() plt.close() return files_saved #def thread(data, labels, color=None, title='', xlimit=4.0, mae=None, mape=None): # """Generates a tiered slat diagram between model chemistries with # errors (or simply values) in list *data*, which is supplied as part of the # dictionary for each participating reaction, along with *dbse* and *rxn* keys # in argument *data*. The plot is labeled with *title* and each tier with # an element of *labels* and plotted at *xlimit* from the zero-line. If # *color* is None, slats are black, if 'sapt', colors are taken from *color* # key in *data* [0, 1]. Summary statistics *mae* are plotted on the # overbound side and relative statistics *mape* on the underbound side. # # """ # from random import random # import matplotlib.pyplot as plt # # # initialize tiers/wefts # Nweft = len(labels) # lenS = 0.2 # gapT = 0.04 # positions = range(-1, -1 * Nweft - 1, -1) # posnS = [] # for weft in range(Nweft): # posnS.extend([positions[weft] + lenS, positions[weft] - lenS, None]) # posnT = [] # for weft in range(Nweft - 1): # posnT.extend([positions[weft] - lenS - gapT, positions[weft + 1] + lenS + gapT, None]) # # # initialize plot # fht = Nweft * 0.8 # fig, ax = plt.subplots(figsize=(12, fht)) # plt.subplots_adjust(left=0.01, right=0.99, hspace=0.3) # plt.xlim([-xlimit, xlimit]) # plt.ylim([-1 * Nweft - 1, 0]) # plt.yticks([]) # # # label plot and tiers # ax.text(-0.9 * xlimit, -0.25, title, # verticalalignment='bottom', horizontalalignment='left', # family='Times New Roman', weight='bold', fontsize=12) # for weft in labels: # ax.text(-0.9 * xlimit, -(1.2 + labels.index(weft)), weft, # verticalalignment='bottom', horizontalalignment='left', # family='Times New Roman', weight='bold', fontsize=18) # # # plot reaction errors and threads # for rxn in data: # # # preparation # xvals = rxn['data'] # clr = segment_color(color, rxn['color'] if 'color' in rxn else None) # slat = [] # for weft in range(Nweft): # slat.extend([xvals[weft], xvals[weft], None]) # thread = [] # for weft in range(Nweft - 1): # thread.extend([xvals[weft], xvals[weft + 1], None]) # # # plotting # ax.plot(slat, posnS, color=clr, linewidth=1.0, solid_capstyle='round') # ax.plot(thread, posnT, color=clr, linewidth=0.5, solid_capstyle='round', # alpha=0.3) # # # labeling # try: # toplblposn = next(item for item in xvals if item is not None) # botlblposn = next(item for item in reversed(xvals) if item is not None) # except StopIteration: # pass # else: # ax.text(toplblposn, -0.75 + 0.6 * random(), rxn['sys'], # verticalalignment='bottom', horizontalalignment='center', # family='Times New Roman', fontsize=8) # ax.text(botlblposn, -1 * Nweft - 0.75 + 0.6 * random(), rxn['sys'], # verticalalignment='bottom', horizontalalignment='center', # family='Times New Roman', fontsize=8) # # # plot trimmings # if mae is not None: # ax.plot([-x for x in mae], positions, 's', color='black') # if mape is not None: # equivalent to MAE for a 10 kcal/mol IE # ax.plot([0.025 * x for x in mape], positions, 'o', color='black') # # plt.axvline(0, color='black') # plt.show() def threads(data, labels, color=None, title='', xlimit=4.0, mae=None, mape=None, mousetext=None, mouselink=None, mouseimag=None, mousetitle=None, mousediv=None, labeled=True, view=True, saveas=None, relpath=False, graphicsformat=['pdf']): """Generates a tiered slat diagram between model chemistries with errors (or simply values) in list *data*, which is supplied as part of the dictionary for each participating reaction, along with *dbse* and *rxn* keys in argument *data*. The plot is labeled with *title* and each tier with an element of *labels* and plotted at *xlimit* from the zero-line. If *color* is None, slats are black, if 'sapt', colors are taken from *color* key in *data* [0, 1]. Summary statistics *mae* are plotted on the overbound side and relative statistics *mape* on the underbound side. HTML code for mouseover if mousetext or mouselink or mouseimag specified based on recipe of Andrew Dalke from http://www.dalkescientific.com/writings/diary/archive/2005/04/24/interactive_html.html """ import random import hashlib import matplotlib.pyplot as plt import numpy as np # only needed for missing data with mouseiness # initialize tiers/wefts Nweft = len(labels) lenS = 0.2 gapT = 0.04 positions = range(-1, -1 * Nweft - 1, -1) posnS = [] for weft in range(Nweft): posnS.extend([positions[weft] + lenS, positions[weft] - lenS, None]) posnT = [] for weft in range(Nweft - 1): posnT.extend([positions[weft] - lenS - gapT, positions[weft + 1] + lenS + gapT, None]) posnM = [] # initialize plot fht = Nweft * 0.8 #fig, ax = plt.subplots(figsize=(12, fht)) fig, ax = plt.subplots(figsize=(11, fht)) plt.subplots_adjust(left=0.01, right=0.99, hspace=0.3) plt.xlim([-xlimit, xlimit]) plt.ylim([-1 * Nweft - 1, 0]) plt.yticks([]) ax.set_frame_on(False) if labeled: ax.set_xticks([-0.5 * xlimit, -0.25 * xlimit, 0.0, 0.25 * xlimit, 0.5 * xlimit]) else: ax.set_xticks([]) for tick in ax.xaxis.get_major_ticks(): tick.tick1line.set_markersize(0) tick.tick2line.set_markersize(0) # label plot and tiers if labeled: ax.text(-0.9 * xlimit, -0.25, title, verticalalignment='bottom', horizontalalignment='left', family='Times New Roman', weight='bold', fontsize=12) for weft in labels: ax.text(-0.9 * xlimit, -(1.2 + labels.index(weft)), weft, verticalalignment='bottom', horizontalalignment='left', family='Times New Roman', weight='bold', fontsize=18) # plot reaction errors and threads for rxn in data: # preparation xvals = rxn['data'] clr = segment_color(color, rxn['color'] if 'color' in rxn else None) slat = [] for weft in range(Nweft): slat.extend([xvals[weft], xvals[weft], None]) thread = [] for weft in range(Nweft - 1): thread.extend([xvals[weft], xvals[weft + 1], None]) # plotting if Nweft == 1: ax.plot(slat, posnS, '|', color=clr, markersize=20.0, mew=1.5, solid_capstyle='round') else: ax.plot(slat, posnS, color=clr, linewidth=1.0, solid_capstyle='round') ax.plot(thread, posnT, color=clr, linewidth=0.5, solid_capstyle='round', alpha=0.3) # converting into screen coordinates for image map # block not working for py3 or up-to-date mpl. better ways for html image map nowadays #npxvals = [np.nan if val is None else val for val in xvals] #xyscreen = ax.transData.transform(zip(npxvals, positions)) #xscreen, yscreen = zip(*xyscreen) #posnM.extend(zip([rxn['db']] * Nweft, [rxn['sys']] * Nweft, # npxvals, [rxn['show']] * Nweft, xscreen, yscreen)) # labeling if not(mousetext or mouselink or mouseimag): if labeled and len(data) < 200: try: toplblposn = next(item for item in xvals if item is not None) botlblposn = next(item for item in reversed(xvals) if item is not None) except StopIteration: pass else: ax.text(toplblposn, -0.75 + 0.6 * random.random(), rxn['sys'], verticalalignment='bottom', horizontalalignment='center', family='Times New Roman', fontsize=8) ax.text(botlblposn, -1 * Nweft - 0.75 + 0.6 * random.random(), rxn['sys'], verticalalignment='bottom', horizontalalignment='center', family='Times New Roman', fontsize=8) # plot trimmings if mae is not None: ax.plot([-x for x in mae], positions, 's', color='black') if labeled: if mape is not None: # equivalent to MAE for a 10 kcal/mol IE ax.plot([0.025 * x for x in mape], positions, 'o', color='black') plt.axvline(0, color='#cccc00') # save and show pltuid = title + '_' + ('lbld' if labeled else 'bare') + '_' + hashlib.sha1((title + repr(labels) + repr(xlimit)).encode()).hexdigest() pltfile = expand_saveas(saveas, pltuid, def_prefix='thread_', relpath=relpath) files_saved = {} for ext in graphicsformat: savefile = pltfile + '.' + ext.lower() plt.savefig(savefile, transparent=True, format=ext, bbox_inches='tight') files_saved[ext.lower()] = savefile if view: plt.show() if not (mousetext or mouselink or mouseimag): plt.close() return files_saved, None else: dpi = 80 img_width = fig.get_figwidth() * dpi img_height = fig.get_figheight() * dpi htmlcode = """<SCRIPT>\n""" htmlcode += """function mouseshow(db, rxn, val, show) {\n""" if mousetext or mouselink: htmlcode += """ var cid = document.getElementById("cid");\n""" if mousetext: htmlcode += """ cid.innerHTML = %s;\n""" % (mousetext) if mouselink: htmlcode += """ cid.href = %s;\n""" % (mouselink) if mouseimag: htmlcode += """ var cmpd_img = document.getElementById("cmpd_img");\n""" htmlcode += """ cmpd_img.src = %s;\n""" % (mouseimag) htmlcode += """}\n""" htmlcode += """</SCRIPT>\n""" if mousediv: htmlcode += """%s\n""" % (mousediv[0]) if mousetitle: htmlcode += """%s <BR>""" % (mousetitle) htmlcode += """<h4>Mouseover</h4><a id="cid"></a><br>\n""" if mouseimag: htmlcode += """<div class="text-center">""" htmlcode += """<IMG ID="cmpd_img" WIDTH="%d" HEIGHT="%d">\n""" % (200, 160) htmlcode += """</div>""" if mousediv: htmlcode += """%s\n""" % (mousediv[1]) #htmlcode += """<IMG SRC="%s" ismap usemap="#points" WIDTH="%d" HEIGHT="%d">\n""" % \ # (pltfile + '.png', img_width, img_height) htmlcode += """<IMG SRC="%s" ismap usemap="#points" WIDTH="%d">\n""" % \ (pltfile + '.png', img_width) htmlcode += """<MAP name="points">\n""" # generating html image map code # points sorted to avoid overlapping map areas that can overwhelm html for SSI # y=0 on top for html and on bottom for mpl, so flip the numbers posnM.sort(key=lambda tup: tup[2]) posnM.sort(key=lambda tup: tup[3]) last = (0, 0) for dbse, rxn, val, show, x, y in posnM: if val is None or val is np.nan: continue now = (int(x), int(y)) if now == last: htmlcode += """<!-- map overlap! %s-%s %+.2f skipped -->\n""" % (dbse, rxn, val) else: htmlcode += """<AREA shape="rect" coords="%d,%d,%d,%d" onmouseover="javascript:mouseshow('%s', '%s', '%+.2f', '%s');">\n""" % \ (x - 2, img_height - y - 20, x + 2, img_height - y + 20, dbse, rxn, val, show) last = now htmlcode += """</MAP>\n""" plt.close() return files_saved, htmlcode def ternary(sapt, title='', labeled=True, view=True, saveas=None, relpath=False, graphicsformat=['pdf']): """Takes array of arrays *sapt* in form [elst, indc, disp] and builds formatted two-triangle ternary diagrams. Either fully-readable or dotsonly depending on *labeled*. Saves in formats *graphicsformat*. """ import hashlib import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib.path import Path import matplotlib.patches as patches # initialize plot fig, ax = plt.subplots(figsize=(6, 3.6)) plt.xlim([-0.75, 1.25]) plt.ylim([-0.18, 1.02]) plt.xticks([]) plt.yticks([]) ax.set_aspect('equal') if labeled: # form and color ternary triangles codes = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY] pathPos = Path([(0., 0.), (1., 0.), (0.5, 0.866), (0., 0.)], codes) pathNeg = Path([(0., 0.), (-0.5, 0.866), (0.5, 0.866), (0., 0.)], codes) ax.add_patch(patches.PathPatch(pathPos, facecolor='white', lw=2)) ax.add_patch(patches.PathPatch(pathNeg, facecolor='#fff5ee', lw=2)) # form and color HB/MX/DD dividing lines ax.plot([0.667, 0.5], [0., 0.866], color='#eeb4b4', lw=0.5) ax.plot([-0.333, 0.5], [0.577, 0.866], color='#eeb4b4', lw=0.5) ax.plot([0.333, 0.5], [0., 0.866], color='#7ec0ee', lw=0.5) ax.plot([-0.167, 0.5], [0.289, 0.866], color='#7ec0ee', lw=0.5) # label corners ax.text(1.0, -0.15, u'Elst (\u2212)', verticalalignment='bottom', horizontalalignment='center', family='Times New Roman', weight='bold', fontsize=18) ax.text(0.5, 0.9, u'Ind (\u2212)', verticalalignment='bottom', horizontalalignment='center', family='Times New Roman', weight='bold', fontsize=18) ax.text(0.0, -0.15, u'Disp (\u2212)', verticalalignment='bottom', horizontalalignment='center', family='Times New Roman', weight='bold', fontsize=18) ax.text(-0.5, 0.9, u'Elst (+)', verticalalignment='bottom', horizontalalignment='center', family='Times New Roman', weight='bold', fontsize=18) xvals = [] yvals = [] cvals = [] for sys in sapt: [elst, indc, disp] = sys # calc ternary posn and color Ftop = abs(indc) / (abs(elst) + abs(indc) + abs(disp)) Fright = abs(elst) / (abs(elst) + abs(indc) + abs(disp)) xdot = 0.5 * Ftop + Fright ydot = 0.866 * Ftop cdot = 0.5 + (xdot - 0.5) / (1. - Ftop) if elst > 0.: xdot = 0.5 * (Ftop - Fright) ydot = 0.866 * (Ftop + Fright) #print elst, indc, disp, '', xdot, ydot, cdot xvals.append(xdot) yvals.append(ydot) cvals.append(cdot) sc = ax.scatter(xvals, yvals, c=cvals, s=15, marker="o", \ cmap=mpl.cm.jet, edgecolor='none', vmin=0, vmax=1, zorder=10) # remove figure outline ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.spines['left'].set_visible(False) # save and show pltuid = title + '_' + ('lbld' if labeled else 'bare') + '_' + hashlib.sha1((title + repr(sapt)).encode()).hexdigest() pltfile = expand_saveas(saveas, pltuid, def_prefix='tern_', relpath=relpath) files_saved = {} for ext in graphicsformat: savefile = pltfile + '.' + ext.lower() plt.savefig(savefile, transparent=True, format=ext, bbox_inches='tight', frameon=False, dpi=450, edgecolor='none', pad_inches=0.0) files_saved[ext.lower()] = savefile if view: plt.show() plt.close() return files_saved #def thread_mouseover_web(pltfile, dbid, dbname, xmin, xmax, mcdats, labels, titles): # """Saves a plot with name *pltfile* with a slat representation of # the modelchems errors in *mcdat*. Mouseover shows geometry and error # from *labels* based on recipe of Andrew Dalke from # http://www.dalkescientific.com/writings/diary/archive/2005/04/24/interactive_html.html # # """ # from matplotlib.backends.backend_agg import FigureCanvasAgg # import matplotlib # import sapt_colors # # cmpd_width = 200 # cmpd_height = 160 # # nplots = len(mcdats) # fht = nplots * 0.8 # fht = nplots * 0.8 * 1.4 # fig = matplotlib.figure.Figure(figsize=(12.0, fht)) # fig.subplots_adjust(left=0.01, right=0.99, hspace=0.3, top=0.8, bottom=0.2) # img_width = fig.get_figwidth() * 80 # img_height = fig.get_figheight() * 80 # # htmlcode = """ #<SCRIPT> #function mouseandshow(name, id, db, dbname) { # var cid = document.getElementById("cid"); # cid.innerHTML = name; # cid.href = "fragmentviewer.py?name=" + id + "&dataset=" + db; # var cmpd_img = document.getElementById("cmpd_img"); # cmpd_img.src = dbname + "/dimers/" + id + ".png"; #} #</SCRIPT> # #Distribution of Fragment Errors in Interaction Energy (kcal/mol)<BR> #Mouseover:<BR><a id="cid"></a><br> #<IMG SRC="scratch/%s" ismap usemap="#points" WIDTH="%d" HEIGHT="%d"> #<IMG ID="cmpd_img" WIDTH="%d" HEIGHT="%d"> #<MAP name="points"> #""" % (pltfile, img_width, img_height, cmpd_width, cmpd_height) # # for item in range(nplots): # print '<br><br><br><br><br><br>' # mcdat = mcdats[item] # label = labels[item] # tttle = titles[item] # # erdat = np.array(mcdat) # # No masked_array because interferes with html map # #erdat = np.ma.masked_array(mcdat, mask=mask) # yvals = np.ones(len(mcdat)) # y = np.array([sapt_colors.sapt_colors[dbname][i] for i in label]) # # ax = fig.add_subplot(nplots, 1, item + 1) # sc = ax.scatter(erdat, yvals, c=y, s=3000, marker="|", cmap=matplotlib.cm.jet, vmin=0, vmax=1) # ax.set_title(tttle, fontsize=8) # ax.set_yticks([]) # lp = ax.plot([0, 0], [0.9, 1.1], color='#cccc00', lw=2) # ax.set_ylim([0.95, 1.05]) # ax.text(xmin + 0.3, 1.0, stats(erdat), fontsize=7, family='monospace', verticalalignment='center') # if item + 1 == nplots: # ax.set_xticks([-12.0, -8.0, -4.0, -2.0, -1.0, 0.0, 1.0, 2.0, 4.0, 8.0, 12.0]) # for tick in ax.xaxis.get_major_ticks(): # tick.tick1line.set_markersize(0) # tick.tick2line.set_markersize(0) # else: # ax.set_xticks([]) # ax.set_frame_on(False) # ax.set_xlim([xmin, xmax]) # # # Convert the data set points into screen space coordinates # #xyscreencoords = ax.transData.transform(zip(erdat, yvals)) # xyscreencoords = ax.transData.transform(zip(erdat, yvals)) # xcoords, ycoords = zip(*xyscreencoords) # # # HTML image coordinates have y=0 on the top. Matplotlib # # has y=0 on the bottom. We'll need to flip the numbers # for cid, x, y, er in zip(label, xcoords, ycoords, erdat): # htmlcode += """<AREA shape="rect" coords="%d,%d,%d,%d" onmouseover="javascript:mouseandshow('%s %+.2f', '%s', %s, '%s');">\n""" % \ # (x - 2, img_height - y - 20, x + 2, img_height - y + 20, cid, er, cid, dbid, dbname) # # htmlcode += "</MAP>\n" # canvas = FigureCanvasAgg(fig) # canvas.print_figure('scratch/' + title, dpi=80, transparent=True) # # #plt.savefig('mplflat_' + title + '.pdf', bbox_inches='tight', transparent=True, format='PDF') # #plt.savefig(os.environ['HOME'] + os.sep + 'mplflat_' + title + '.pdf', bbox_inches='tight', transparent=T rue, format='PDF') # # return htmlcode def composition_tile(db, aa1, aa2): """Takes dictionary *db* of label, error pairs and amino acids *aa1* and *aa2* and returns a square array of all errors for that amino acid pair, buffered by zeros. """ import re import numpy as np bfdbpattern = re.compile("\d\d\d([A-Z][A-Z][A-Z])-\d\d\d([A-Z][A-Z][A-Z])-\d") tiles = [] for key, val in db.items(): bfdbname = bfdbpattern.match(key) if (bfdbname.group(1) == aa1 and bfdbname.group(2) == aa2) or \ (bfdbname.group(2) == aa1 and bfdbname.group(1) == aa2): tiles.append(val) if not tiles: # fill in background when no data. only sensible for neutral center colormaps tiles = [0] dim = int(np.ceil(np.sqrt(len(tiles)))) pad = dim * dim - len(tiles) tiles += [0] * pad return np.reshape(np.array(tiles), (dim, dim)) def iowa(mcdat, mclbl, title='', xtitle='', xlimit=2.0, view=True, saveas=None, relpath=False, graphicsformat=['pdf']): """Saves a plot with (extensionless) name *pltfile* with an Iowa representation of the modelchems errors in *mcdat* for BBI/SSI-style *labels*. """ import numpy as np import hashlib import matplotlib import matplotlib.pyplot as plt aa = ['ARG', 'HIE', 'LYS', 'ASP', 'GLU', 'SER', 'THR', 'ASN', 'GLN', 'CYS', 'MET', 'GLY', 'ALA', 'VAL', 'ILE', 'LEU', 'PRO', 'PHE', 'TYR', 'TRP'] #aa = ['ILE', 'LEU', 'ASP', 'GLU', 'PHE'] err = dict(zip(mclbl, mcdat)) # handle for frame, overall axis fig, axt = plt.subplots(figsize=(6, 6)) #axt.set_xticks([]) # for quick nolabel, whiteback #axt.set_yticks([]) # for quick nolabel, whiteback axt.set_xticks(np.arange(len(aa)) + 0.3, minor=False) axt.set_yticks(np.arange(len(aa)) + 0.3, minor=False) axt.invert_yaxis() axt.xaxis.tick_top() # comment for quick nolabel, whiteback axt.set_xticklabels(aa, minor=False, rotation=60, size='small') # comment for quick nolabel, whiteback axt.set_yticklabels(aa, minor=False, size='small') # comment for quick nolabel, whiteback axt.xaxis.set_tick_params(width=0, length=0) axt.yaxis.set_tick_params(width=0, length=0) #axt.set_title('%s' % (title), fontsize=16, verticalalignment='bottom') #axt.text(10.0, -1.5, title, horizontalalignment='center', fontsize=16) # nill spacing between 20x20 heatmaps plt.subplots_adjust(hspace=0.001, wspace=0.001) index = 1 for aa1 in aa: for aa2 in aa: cb = composition_tile(err, aa1, aa2) ax = matplotlib.axes.Subplot(fig, len(aa), len(aa), index) fig.add_subplot(ax) heatmap = ax.pcolor(cb, vmin=-xlimit, vmax=xlimit, cmap=plt.cm.PRGn) ax.set_xticks([]) ax.set_yticks([]) index += 1 #plt.title(title) axt.axvline(x=4.8, linewidth=5, color='k') axt.axvline(x=8.75, linewidth=5, color='k') axt.axvline(x=11.6, linewidth=5, color='k') axt.axhline(y=4.8, linewidth=5, color='k') axt.axhline(y=8.75, linewidth=5, color='k') axt.axhline(y=11.6, linewidth=5, color='k') axt.set_zorder(100) # save and show pltuid = title + '_' + hashlib.sha1((title + str(xlimit)).encode()).hexdigest() pltfile = expand_saveas(saveas, pltuid, def_prefix='iowa_', relpath=relpath) files_saved = {} for ext in graphicsformat: savefile = pltfile + '.' + ext.lower() plt.savefig(savefile, transparent=True, format=ext, bbox_inches='tight') #plt.savefig(savefile, transparent=False, format=ext, bbox_inches='tight') # for quick nolabel, whiteback files_saved[ext.lower()] = savefile if view: plt.show() plt.close() return files_saved def liliowa(mcdat, title='', xlimit=2.0, view=True, saveas=None, relpath=False, graphicsformat=['pdf']): """Saves a plot with a heatmap representation of *mcdat*. """ import numpy as np import hashlib import matplotlib import matplotlib.pyplot as plt # handle for frame, overall axis fig, axt = plt.subplots(figsize=(1, 1)) axt.set_xticks([]) axt.set_yticks([]) axt.invert_yaxis() axt.xaxis.set_tick_params(width=0, length=0) axt.yaxis.set_tick_params(width=0, length=0) axt.set_aspect('equal') # remove figure outline axt.spines['top'].set_visible(False) axt.spines['right'].set_visible(False) axt.spines['bottom'].set_visible(False) axt.spines['left'].set_visible(False) tiles = mcdat dim = int(np.ceil(np.sqrt(len(tiles)))) pad = dim * dim - len(tiles) tiles += [0] * pad cb = np.reshape(np.array(tiles), (dim, dim)) heatmap = axt.pcolor(cb, vmin=-xlimit, vmax=xlimit, cmap=plt.cm.PRGn) # save and show pltuid = title + '_' + hashlib.sha1((title + str(xlimit)).encode()).hexdigest() pltfile = expand_saveas(saveas, pltuid, def_prefix='liliowa_', relpath=relpath) files_saved = {} for ext in graphicsformat: savefile = pltfile + '.' + ext.lower() plt.savefig(savefile, transparent=True, format=ext, bbox_inches='tight', frameon=False, pad_inches=0.0) files_saved[ext.lower()] = savefile if view: plt.show() plt.close() return files_saved if __name__ == "__main__": merge_dats = [ {'show':'a', 'db':'HSG', 'sys':'1', 'data':[0.3508, 0.1234, 0.0364, 0.0731, 0.0388]}, {'show':'b', 'db':'HSG', 'sys':'3', 'data':[0.2036, -0.0736, -0.1650, -0.1380, -0.1806]}, #{'show':'', 'db':'S22', 'sys':'14', 'data':[np.nan, -3.2144, np.nan, np.nan, np.nan]}, {'show':'c', 'db':'S22', 'sys':'14', 'data':[None, -3.2144, None, None, None]}, {'show':'d', 'db':'S22', 'sys':'15', 'data':[-1.5090, -2.5263, -2.9452, -2.8633, -3.1059]}, {'show':'e', 'db':'S22', 'sys':'22', 'data':[0.3046, -0.2632, -0.5070, -0.4925, -0.6359]}] threads(merge_dats, labels=['d', 't', 'dt', 'q', 'tq'], color='sapt', title='MP2-CPa[]z', mae=[0.25, 0.5, 0.5, 0.3, 1.0], mape=[20.1, 25, 15, 5.5, 3.6]) more_dats = [ {'mc':'MP2-CP-adz', 'data':[1.0, 0.8, 1.4, 1.6]}, {'mc':'MP2-CP-adtz', 'data':[0.6, 0.2, 0.4, 0.6]}, None, {'mc':'MP2-CP-adzagain', 'data':[1.0, 0.8, 1.4, 1.6]}] bars(more_dats, title='asdf') single_dats = [ {'dbse':'HSG', 'sys':'1', 'data':[0.3508]}, {'dbse':'HSG', 'sys':'3', 'data':[0.2036]}, {'dbse':'S22', 'sys':'14', 'data':[None]}, {'dbse':'S22', 'sys':'15', 'data':[-1.5090]}, {'dbse':'S22', 'sys':'22', 'data':[0.3046]}] #flat(single_dats, color='sapt', title='fg_MP2_adz', mae=0.25, mape=20.1) flat([{'sys': '1', 'color': 0.6933450559423702, 'data': [0.45730000000000004]}, {'sys': '2', 'color': 0.7627027688599753, 'data': [0.6231999999999998]}, {'sys': '3', 'color': 0.7579958735528617, 'data': [2.7624999999999993]}, {'sys': '4', 'color': 0.7560883254421639, 'data': [2.108600000000001]}, {'sys': '5', 'color': 0.7515161912065955, 'data': [2.2304999999999993]}, {'sys': '6', 'color': 0.7235223893438876, 'data': [1.3782000000000014]}, {'sys': '7', 'color': 0.7120099024225569, 'data': [1.9519000000000002]}, {'sys': '8', 'color': 0.13721565059144678, 'data': [0.13670000000000004]}, {'sys': '9', 'color': 0.3087395095814767, 'data': [0.2966]}, {'sys': '10', 'color': 0.25493207637105103, 'data': [-0.020199999999999996]}, {'sys': '11', 'color': 0.24093814608979347, 'data': [-1.5949999999999998]}, {'sys': '12', 'color': 0.3304746631959777, 'data': [-1.7422000000000004]}, {'sys': '13', 'color': 0.4156050644764822, 'data': [0.0011999999999989797]}, {'sys': '14', 'color': 0.2667207259626991, 'data': [-2.6083999999999996]}, {'sys': '15', 'color': 0.3767053567641695, 'data': [-1.5090000000000003]}, {'sys': '16', 'color': 0.5572641509433963, 'data': [0.10749999999999993]}, {'sys': '17', 'color': 0.4788598239641578, 'data': [0.29669999999999996]}, {'sys': '18', 'color': 0.3799031371351281, 'data': [0.10209999999999964]}, {'sys': '19', 'color': 0.5053227185999078, 'data': [0.16610000000000014]}, {'sys': '20', 'color': 0.2967660584483015, 'data': [-0.37739999999999974]}, {'sys': '21', 'color': 0.38836460733750316, 'data': [-0.4712000000000005]}, {'sys': '22', 'color': 0.5585849893078809, 'data': [0.30460000000000065]}, {'sys': 'BzBz_PD36-1.8', 'color': 0.1383351040559965, 'data': [-1.1921]}, {'sys': 'BzBz_PD34-2.0', 'color': 0.23086034843049832, 'data': [-1.367]}, {'sys': 'BzBz_T-5.2', 'color': 0.254318060864096, 'data': [-0.32230000000000025]}, {'sys': 'BzBz_T-5.1', 'color': 0.26598486566733337, 'data': [-0.3428]}, {'sys': 'BzBz_T-5.0', 'color': 0.28011258347610224, 'data': [-0.36060000000000025]}, {'sys': 'PyPy_S2-3.9', 'color': 0.14520332101084785, 'data': [-0.9853000000000001]}, {'sys': 'PyPy_S2-3.8', 'color': 0.1690757103699542, 'data': [-1.0932]}, {'sys': 'PyPy_S2-3.5', 'color': 0.25615734567417053, 'data': [-1.4617]}, {'sys': 'PyPy_S2-3.7', 'color': 0.19566550224566906, 'data': [-1.2103999999999995]}, {'sys': 'PyPy_S2-3.6', 'color': 0.22476748600170826, 'data': [-1.3333]}, {'sys': 'BzBz_PD32-2.0', 'color': 0.31605681987208084, 'data': [-1.6637]}, {'sys': 'BzBz_T-4.8', 'color': 0.31533827331543723, 'data': [-0.38759999999999994]}, {'sys': 'BzBz_T-4.9', 'color': 0.2966146678069063, 'data': [-0.3759999999999999]}, {'sys': 'BzH2S-3.6', 'color': 0.38284814928043304, 'data': [-0.1886000000000001]}, {'sys': 'BzBz_PD32-1.7', 'color': 0.3128835191478639, 'data': [-1.8703999999999998]}, {'sys': 'BzMe-3.8', 'color': 0.24117892478245323, 'data': [-0.034399999999999986]}, {'sys': 'BzMe-3.9', 'color': 0.22230903086047088, 'data': [-0.046499999999999986]}, {'sys': 'BzH2S-3.7', 'color': 0.36724255203373696, 'data': [-0.21039999999999992]}, {'sys': 'BzMe-3.6', 'color': 0.284901522674611, 'data': [0.007099999999999884]}, {'sys': 'BzMe-3.7', 'color': 0.2621086166558813, 'data': [-0.01770000000000005]}, {'sys': 'BzBz_PD32-1.9', 'color': 0.314711251903219, 'data': [-1.7353999999999998]}, {'sys': 'BzBz_PD32-1.8', 'color': 0.3136181753200793, 'data': [-1.8039999999999998]}, {'sys': 'BzH2S-3.8', 'color': 0.3542001591399945, 'data': [-0.22230000000000016]}, {'sys': 'BzBz_PD36-1.9', 'color': 0.14128552184232473, 'data': [-1.1517]}, {'sys': 'BzBz_S-3.7', 'color': 0.08862098445220466, 'data': [-1.3414]}, {'sys': 'BzH2S-4.0', 'color': 0.33637540012259076, 'data': [-0.2265999999999999]}, {'sys': 'BzBz_PD36-1.5', 'color': 0.13203548045236127, 'data': [-1.3035]}, {'sys': 'BzBz_S-3.8', 'color': 0.0335358832178858, 'data': [-1.2022]}, {'sys': 'BzBz_S-3.9', 'color': 0.021704594689389095, 'data': [-1.0747]}, {'sys': 'PyPy_T3-5.1', 'color': 0.3207725129126432, 'data': [-0.2958000000000003]}, {'sys': 'PyPy_T3-5.0', 'color': 0.3254925304351165, 'data': [-0.30710000000000015]}, {'sys': 'BzBz_PD36-1.7', 'color': 0.13577087141986593, 'data': [-1.2333000000000003]}, {'sys': 'PyPy_T3-4.8', 'color': 0.3443704059902452, 'data': [-0.32010000000000005]}, {'sys': 'PyPy_T3-4.9', 'color': 0.3333442013628509, 'data': [-0.3158999999999996]}, {'sys': 'PyPy_T3-4.7', 'color': 0.35854000505665756, 'data': [-0.31530000000000014]}, {'sys': 'BzBz_PD36-1.6', 'color': 0.13364651314909243, 'data': [-1.2705000000000002]}, {'sys': 'BzMe-4.0', 'color': 0.20560117919562013, 'data': [-0.05389999999999984]}, {'sys': 'MeMe-3.6', 'color': 0.16934865900383142, 'data': [0.18420000000000003]}, {'sys': 'MeMe-3.7', 'color': 0.1422332591197123, 'data': [0.14680000000000004]}, {'sys': 'MeMe-3.4', 'color': 0.23032794290360467, 'data': [0.29279999999999995]}, {'sys': 'MeMe-3.5', 'color': 0.19879551978386897, 'data': [0.23260000000000003]}, {'sys': 'MeMe-3.8', 'color': 0.11744404936205816, 'data': [0.11680000000000001]}, {'sys': 'BzBz_PD34-1.7', 'color': 0.22537382457222138, 'data': [-1.5286999999999997]}, {'sys': 'BzBz_PD34-1.6', 'color': 0.22434088042760192, 'data': [-1.5754000000000001]}, {'sys': 'BzBz_PD32-2.2', 'color': 0.3189891685300601, 'data': [-1.5093999999999999]}, {'sys': 'BzBz_S-4.1', 'color': 0.10884135031532088, 'data': [-0.8547000000000002]}, {'sys': 'BzBz_S-4.0', 'color': 0.06911476296747143, 'data': [-0.9590000000000001]}, {'sys': 'BzBz_PD34-1.8', 'color': 0.22685419834431494, 'data': [-1.476]}, {'sys': 'BzBz_PD34-1.9', 'color': 0.2287079261672095, 'data': [-1.4223999999999997]}, {'sys': 'BzH2S-3.9', 'color': 0.3439077006047999, 'data': [-0.22739999999999982]}, {'sys': 'FaNNFaNN-4.1', 'color': 0.7512716174974567, 'data': [1.7188999999999997]}, {'sys': 'FaNNFaNN-4.0', 'color': 0.7531388297328865, 'data': [1.9555000000000007]}, {'sys': 'FaNNFaNN-4.3', 'color': 0.7478064149182957, 'data': [1.2514000000000003]}, {'sys': 'FaNNFaNN-4.2', 'color': 0.7493794908838113, 'data': [1.4758000000000013]}, {'sys': 'FaOOFaON-4.0', 'color': 0.7589275618320565, 'data': [2.0586]}, {'sys': 'FaOOFaON-3.7', 'color': 0.7619465815742713, 'data': [3.3492999999999995]}, {'sys': 'FaOOFaON-3.9', 'color': 0.7593958895631474, 'data': [2.4471000000000007]}, {'sys': 'FaOOFaON-3.8', 'color': 0.7605108059280967, 'data': [2.8793999999999986]}, {'sys': 'FaONFaON-4.1', 'color': 0.7577459277014137, 'data': [1.8697999999999997]}, {'sys': 'FaOOFaON-3.6', 'color': 0.7633298028299997, 'data': [3.847599999999998]}, {'sys': 'FaNNFaNN-3.9', 'color': 0.7548200901251662, 'data': [2.2089]}, {'sys': 'FaONFaON-3.8', 'color': 0.7582294603551467, 'data': [2.967699999999999]}, {'sys': 'FaONFaON-3.9', 'color': 0.7575285282217349, 'data': [2.578900000000001]}, {'sys': 'FaONFaON-4.2', 'color': 0.7594549221042256, 'data': [1.5579999999999998]}, {'sys': 'FaOOFaNN-3.6', 'color': 0.7661655616885379, 'data': [3.701599999999999]}, {'sys': 'FaOOFaNN-3.7', 'color': 0.7671068376007428, 'data': [3.156500000000001]}, {'sys': 'FaOOFaNN-3.8', 'color': 0.766947626251711, 'data': [2.720700000000001]}, {'sys': 'FaONFaNN-3.9', 'color': 0.7569836601896789, 'data': [2.4281000000000006]}, {'sys': 'FaONFaNN-3.8', 'color': 0.758024548462959, 'data': [2.7561999999999998]}, {'sys': 'FaOOFaOO-3.6', 'color': 0.7623422640217077, 'data': [3.851800000000001]}, {'sys': 'FaOOFaOO-3.7', 'color': 0.7597430792159379, 'data': [3.2754999999999974]}, {'sys': 'FaOOFaOO-3.4', 'color': 0.7672554950739594, 'data': [5.193299999999999]}, {'sys': 'FaOOFaOO-3.5', 'color': 0.764908813123865, 'data': [4.491900000000001]}, {'sys': 'FaONFaNN-4.2', 'color': 0.7549212942233738, 'data': [1.534699999999999]}, {'sys': 'FaONFaNN-4.0', 'color': 0.7559404310956357, 'data': [2.1133000000000024]}, {'sys': 'FaONFaNN-4.1', 'color': 0.7551574698775625, 'data': [1.813900000000002]}, {'sys': 'FaONFaON-4.0', 'color': 0.7572064604483282, 'data': [2.2113999999999994]}, {'sys': 'FaOOFaOO-3.8', 'color': 0.7573810956831686, 'data': [2.7634000000000007]}, {'sys': '1', 'color': 0.2784121805328983, 'data': [0.3508]}, {'sys': '2', 'color': 0.22013842798900166, 'data': [-0.034600000000000186]}, {'sys': '3', 'color': 0.12832496088281312, 'data': [0.20360000000000023]}, {'sys': '4', 'color': 0.6993695033529733, 'data': [1.9092000000000002]}, {'sys': '5', 'color': 0.7371192790053749, 'data': [1.656600000000001]}, {'sys': '6', 'color': 0.5367033190796172, 'data': [0.27970000000000006]}, {'sys': '7', 'color': 0.3014220615964802, 'data': [0.32289999999999974]}, {'sys': '8', 'color': 0.01605867807629261, 'data': [0.12199999999999994]}, {'sys': '9', 'color': 0.6106300539083558, 'data': [0.3075999999999999]}, {'sys': '10', 'color': 0.6146680031333968, 'data': [0.6436000000000002]}, {'sys': '11', 'color': 0.6139747851721759, 'data': [0.4551999999999996]}, {'sys': '12', 'color': 0.32122739401126593, 'data': [0.44260000000000005]}, {'sys': '13', 'color': 0.24678148099136055, 'data': [-0.11789999999999967]}, {'sys': '14', 'color': 0.23700950710597016, 'data': [0.42689999999999995]}, {'sys': '15', 'color': 0.23103396678138563, 'data': [0.3266]}, {'sys': '16', 'color': 0.1922070769654413, 'data': [0.0696000000000001]}, {'sys': '17', 'color': 0.19082151944747366, 'data': [0.11159999999999992]}, {'sys': '18', 'color': 0.2886200282444196, 'data': [0.4114]}, {'sys': '19', 'color': 0.23560171133945224, 'data': [-0.1392]}, {'sys': '20', 'color': 0.3268270751294533, 'data': [0.5593]}, {'sys': '21', 'color': 0.7324460869158442, 'data': [0.6806000000000001]}], color='sapt', title='MP2-CP-adz', mae=1.21356003247, mape=24.6665886087, xlimit=4.0) lin_dats = [-0.5, -0.4, -0.3, 0, .5, .8, 5] lin_labs = ['008ILE-012LEU-1', '012LEU-085ASP-1', '004GLU-063LEU-2', '011ILE-014PHE-1', '027GLU-031LEU-1', '038PHE-041ILE-1', '199LEU-202GLU-1'] iowa(lin_dats, lin_labs, title='ttl', xlimit=0.5) figs = [0.22, 0.41, 0.14, 0.08, 0.47, 0, 0.38, 0.22, 0.10, 0.20, 0, 0, 0.13, 0.07, 0.25, 0, 0, 0, 0.06, 0.22, 0, 0, 0, 0, 0.69] liliowa(figs, saveas='SSI-default-MP2-CP-aqz', xlimit=1.0) disthist(lin_dats) valerrdata = [{'color': 0.14255710779686612, 'db': 'NBC1', 'sys': 'BzBz_S-3.6', 'error': [0.027999999999999803], 'mcdata': -1.231, 'bmdata': -1.259, 'axis': 3.6}, {'color': 0.08862098445220466, 'db': 'NBC1', 'sys': 'BzBz_S-3.7', 'error': [0.02300000000000013], 'mcdata': -1.535, 'bmdata': -1.558, 'axis': 3.7}, {'color': 0.246634626511043, 'db': 'NBC1', 'sys': 'BzBz_S-3.4', 'error': [0.04200000000000001], 'mcdata': 0.189, 'bmdata': 0.147, 'axis': 3.4}, {'color': 0.19526236766857613, 'db': 'NBC1', 'sys': 'BzBz_S-3.5', 'error': [0.03500000000000003], 'mcdata': -0.689, 'bmdata': -0.724, 'axis': 3.5}, {'color': 0.3443039102164425, 'db': 'NBC1', 'sys': 'BzBz_S-3.2', 'error': [0.05999999999999961], 'mcdata': 3.522, 'bmdata': 3.462, 'axis': 3.2}, {'color': 0.29638827303466814, 'db': 'NBC1', 'sys': 'BzBz_S-3.3', 'error': [0.050999999999999934], 'mcdata': 1.535, 'bmdata': 1.484, 'axis': 3.3}, {'color': 0.42859228971962615, 'db': 'NBC1', 'sys': 'BzBz_S-6.0', 'error': [0.0020000000000000018], 'mcdata': -0.099, 'bmdata': -0.101, 'axis': 6.0}, {'color': 0.30970751839224836, 'db': 'NBC1', 'sys': 'BzBz_S-5.0', 'error': [0.0040000000000000036], 'mcdata': -0.542, 'bmdata': -0.546, 'axis': 5.0}, {'color': 0.3750832778147902, 'db': 'NBC1', 'sys': 'BzBz_S-5.5', 'error': [0.0030000000000000027], 'mcdata': -0.248, 'bmdata': -0.251, 'axis': 5.5}, {'color': 0.0335358832178858, 'db': 'NBC1', 'sys': 'BzBz_S-3.8', 'error': [0.019000000000000128], 'mcdata': -1.674, 'bmdata': -1.693, 'axis': 3.8}, {'color': 0.021704594689389095, 'db': 'NBC1', 'sys': 'BzBz_S-3.9', 'error': [0.016000000000000014], 'mcdata': -1.701, 'bmdata': -1.717, 'axis': 3.9}, {'color': 0.22096255119953187, 'db': 'NBC1', 'sys': 'BzBz_S-4.5', 'error': [0.008000000000000007], 'mcdata': -1.058, 'bmdata': -1.066, 'axis': 4.5}, {'color': 0.10884135031532088, 'db': 'NBC1', 'sys': 'BzBz_S-4.1', 'error': [0.01200000000000001], 'mcdata': -1.565, 'bmdata': -1.577, 'axis': 4.1}, {'color': 0.06911476296747143, 'db': 'NBC1', 'sys': 'BzBz_S-4.0', 'error': [0.014000000000000012], 'mcdata': -1.655, 'bmdata': -1.669, 'axis': 4.0}, {'color': 0.14275218373289067, 'db': 'NBC1', 'sys': 'BzBz_S-4.2', 'error': [0.01100000000000012], 'mcdata': -1.448, 'bmdata': -1.459, 'axis': 4.2}, {'color': 0.4740372133275638, 'db': 'NBC1', 'sys': 'BzBz_S-6.5', 'error': [0.0010000000000000009], 'mcdata': -0.028, 'bmdata': -0.029, 'axis': 6.5}, {'color': 0.6672504378283713, 'db': 'NBC1', 'sys': 'BzBz_S-10.0', 'error': [0.0], 'mcdata': 0.018, 'bmdata': 0.018, 'axis': 10.0}] valerr({'cat': valerrdata}, color='sapt', xtitle='Rang', title='aggh', graphicsformat=['png'])
lgpl-3.0
feranick/SpectralMachine
Archive/20170609c/SpectraLearnPredict.py
1
60594
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ''' ********************************************************** * * SpectraLearnPredict * Perform Machine Learning on Raman spectra. * version: 20170609c * * Uses: Deep Neural Networks, TensorFlow, SVM, PCA, K-Means * * By: Nicola Ferralis <[email protected]> * *********************************************************** ''' print(__doc__) import matplotlib if matplotlib.get_backend() == 'TkAgg': matplotlib.use('Agg') import numpy as np import sys, os.path, getopt, glob, csv from os.path import exists, splitext from os import rename from datetime import datetime, date import random #*************************************************************** ''' Spectra normalization, preprocessing, model selection ''' #*************************************************************** class preprocDef: Ynorm = True # Normalize spectra (True: recommended) fullYnorm = False # Normalize considering full range (False: recommended) StandardScalerFlag = True # Standardize features by removing the mean and scaling to unit variance (sklearn) YnormTo = 1 YnormX = 1600 YnormXdelta = 30 enRestrictRegion = False enLim1 = 450 # for now use indexes rather than actual Energy enLim2 = 550 # for now use indexes rather than actual Energy scrambleNoiseFlag = False # Adds random noise to spectra (False: recommended) scrambleNoiseOffset = 0.1 if StandardScalerFlag: from sklearn.preprocessing import StandardScaler scaler = StandardScaler() #********************************************** ''' Calculation by limited number of points ''' #********************************************** cherryPickEnPoint = False # False recommended enSel = [1050, 1150, 1220, 1270, 1330, 1410, 1480, 1590, 1620, 1650] enSelDelta = [2, 2, 2, 2, 10, 2, 2, 15, 5, 2] #enSel = [1220, 1270, 1590] #enSelDelta = [2, 2, 30] if(cherryPickEnPoint == True): enRestrictRegion = False print(' Calculation by limited number of points: ENABLED ') print(' THIS IS AN EXPERIMENTAL FEATURE \n') print(' Restricted range: DISABLED') #********************************************** ''' Deep Neural Networks - sklearn''' #********************************************** class nnDef: runNN = True alwaysRetrain = False subsetCrossValid = False percentCrossValid = 0.10 # proportion of TEST data for cross validation iterCrossValid = 2 numNeurons = 200 #default = 200 # Optimizers: lbfgs (default), adam, sgd nnOptimizer = "lbfgs" # activation functions: http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html # identity, logistic (sigmoid), tanh, relu activation_function = "tanh" MLPRegressor = False # threshold in % of probabilities for listing prediction results thresholdProbabilityPred = 0.001 plotNN = True nnClassReport = False #*********************************************************** ''' Deep Neural Networks - tensorflow via DNNClassifier''' #*********************************************************** class dnntfDef: runDNNTF = True alwaysRetrain = False subsetCrossValid = False percentCrossValid = 0.10 # proportion of TEST data for cross validation iterCrossValid = 1 numNeurons = 200 # number of neurons per layer numHidlayers = 1 # number of hidden layer # Optimizers: Adagrad (recommended), Adam, Ftrl, Momentum, RMSProp, SGD # https://www.tensorflow.org/api_guides/python/train nnOptimizer = "Adagrad" # activation functions: https://www.tensorflow.org/api_guides/python/nn # relu, relu6, crelu, elu, softplus, softsign, dropout, bias_add # sigmoid, tanh activation_function = "tanh" trainingSteps = 1000 #number of training steps # threshold in % of probabilities for listing prediction results thresholdProbabilityPred = 0.01 logCheckpoint = False #************************************************* # Setup variables and definitions- do not change. #************************************************* hidden_layers = [numNeurons]*numHidlayers if runDNNTF == True: import tensorflow as tf if activation_function == "sigmoid" or activation_function == "tanh": actFn = "tf."+activation_function else: actFn = "tf.nn."+activation_function activationFn = eval(actFn) #********************************************** ''' Support Vector Machines''' #********************************************** class svmDef: runSVM = True alwaysRetrain = False subsetCrossValid = False percentCrossValid = 0.10 # proportion of TEST data for cross validation iterCrossValid = 2 # threshold in % of probabilities for listing prediction results thresholdProbabilitySVMPred = 3 ''' Training algorithm for SVM Use either 'linear' or 'rbf' ('rbf' for large number of features) ''' Cfactor = 20 kernel = 'rbf' showClasses = False plotSVM = True svmClassReport = False #********************************************** ''' Principal component analysis (PCA) ''' #********************************************** class pcaDef: runPCA = False customNumPCAComp = True numPCAcomponents = 2 #********************************************** ''' K-means ''' #********************************************** class kmDef: runKM = False customNumKMComp = False numKMcomponents = 20 plotKM = False plotKMmaps = True #********************************************** ''' TensorFlow ''' #********************************************** class tfDef: runTF = False alwaysRetrain = False alwaysImprove = False # alwaysRetrain must be True for this to work subsetCrossValid = True percentCrossValid = 0.1 # proportion of TEST data for cross validation iterCrossValid = 2 # threshold in % of probabilities for listing prediction results thresholdProbabilityTFPred = 30 decayLearnRate = True learnRate = 0.75 plotMapTF = True plotClassDistribTF = False enableTensorboard = False #********************************************** ''' Plotting ''' #********************************************** class plotDef: showProbPlot = False showPCAPlots = True createTrainingDataPlot = False showTrainingDataPlot = False plotAllSpectra = True # Set to false for extremely large training sets if plotAllSpectra == False: stepSpectraPlot = 100 # steps in the number of spectra to be plotted #********************************************** ''' Multiprocessing ''' #********************************************** multiproc = False #********************************************** ''' Main ''' #********************************************** def main(): try: opts, args = getopt.getopt(sys.argv[1:], "fatmbkph:", ["file", "accuracy", "traintf", "map", "batch", "kmaps", "pca", "help"]) except: usage() sys.exit(2) if opts == []: usage() sys.exit(2) print(" Using training file: ", sys.argv[2],"\n") for o, a in opts: if o in ("-f" , "--file"): try: LearnPredictFile(sys.argv[2], sys.argv[3]) except: usage() sys.exit(2) if o in ("-a" , "--accuracy"): print('\033[1m Running in cross validation mode for accuracy determination...\033[0m\n') nnDef.alwaysRetrain = True nnDef.subsetCrossValid = True dnntfDef.alwaysRetrain = True dnntfDef.subsetCrossValid = True dnntfDef.logCheckpoint = True svmDef.alwaysRetrain = True svmDef.subsetCrossValid = True tfDef.alwaysRetrain = True tfDef.subsetCrossValid = True try: LearnPredictFile(sys.argv[2], sys.argv[3]) except: usage() sys.exit(2) if o in ("-t" , "--traintf"): if len(sys.argv) > 3: numRuns = int(sys.argv[3]) else: numRuns = 1 preprocDef.scrambleNoiseFlag = False try: TrainTF(sys.argv[2], int(numRuns)) except: usage() sys.exit(2) if o in ("-m" , "--map"): try: LearnPredictMap(sys.argv[2], sys.argv[3]) except: usage() sys.exit(2) if o in ("-b" , "--batch"): try: LearnPredictBatch(sys.argv[2]) except: usage() sys.exit(2) if o in ("-p" , "--pca"): if len(sys.argv) > 3: numPCAcomp = int(sys.argv[3]) else: numPCAcomp = pcaDef.numPCAcomponents try: runPCA(sys.argv[2], numPCAcomp) except: usage() sys.exit(2) if o in ("-k" , "--kmaps"): if len(sys.argv) > 3: numKMcomp = int(sys.argv[3]) else: numKMcomp = kmDef.numKMcomponents try: KmMap(sys.argv[2], numKMcomp) except: usage() sys.exit(2) #********************************************** ''' Learn and Predict - File''' #********************************************** def LearnPredictFile(learnFile, sampleFile): ''' Open and process training data ''' En, Cl, A, YnormXind = readLearnFile(learnFile) learnFileRoot = os.path.splitext(learnFile)[0] ''' Run PCA ''' if pcaDef.runPCA == True: runPCAmain(A, Cl, En) ''' Open prediction file ''' R, Rx = readPredFile(sampleFile) ''' Preprocess prediction data ''' A, Cl, En, Aorig = preProcessNormLearningData(A, En, Cl, YnormXind, 0) R, Rorig = preProcessNormPredData(R, Rx, A, En, Cl, YnormXind, 0) ''' Run Neural Network - sklearn''' if nnDef.runNN == True: runNN(A, Cl, R, learnFileRoot) ''' Run Neural Network - TensorFlow''' if dnntfDef.runDNNTF == True: runDNNTF(A, Cl, R, learnFileRoot) ''' Run Support Vector Machines ''' if svmDef.runSVM == True: runSVM(A, Cl, En, R, learnFileRoot) ''' Tensorflow ''' if tfDef.runTF == True: runTFbasic(A,Cl,R, learnFileRoot) ''' Plot Training Data ''' if plotDef.createTrainingDataPlot == True: plotTrainData(A, En, R, plotDef.plotAllSpectra, learnFileRoot) ''' Run K-Means ''' if kmDef.runKM == True: runKMmain(A, Cl, En, R, Aorig, Rorig) #********************************************** ''' Process - Batch''' #********************************************** def LearnPredictBatch(learnFile): summary_filename = 'summary' + str(datetime.now().strftime('_%Y-%m-%d_%H-%M-%S.csv')) makeHeaderSummary(summary_filename, learnFile) ''' Open and process training data ''' En, Cl, A, YnormXind = readLearnFile(learnFile) A, Cl, En, Aorig = preProcessNormLearningData(A, En, Cl, YnormXind, 0) if multiproc == True: import multiprocessing as mp p = mp.Pool() for f in glob.glob('*.txt'): if (f != learnFile): p.apply_async(processSingleBatch, args=(f, En, Cl, A, Aorig, YnormXind, summary_filename, learnFile)) p.close() p.join() else: for f in glob.glob('*.txt'): if (f != learnFile): processSingleBatch(f, En, Cl, A, Aorig, YnormXind, summary_filename, learnFile) def processSingleBatch(f, En, Cl, A, Aorig, YnormXind, summary_filename, learnFile): print(' Processing file: \033[1m' + f + '\033[0m\n') R, Rx = readPredFile(f) summaryFile = [f] ''' Preprocess prediction data ''' R, Rorig = preProcessNormPredData(R, Rx, A, En, Cl, YnormXind, 0) learnFileRoot = os.path.splitext(learnFile)[0] ''' Run Neural Network - sklearn''' if nnDef.runNN == True: nnPred, nnProb = runNN(A, Cl, R, learnFileRoot) summaryFile.extend([nnPred, nnProb]) nnDef.alwaysRetrain = False ''' Run Neural Network - TensorFlow''' if dnntfDef.runDNNTF == True: dnntfPred, dnntfProb = runDNNTF(A, Cl, R, learnFileRoot) summaryFile.extend([nnPred, nnProb]) dnntfDef.alwaysRetrain = False ''' Run Support Vector Machines ''' if svmDef.runSVM == True: svmPred, svmProb = runSVM(A, Cl, En, R, learnFileRoot) summaryFile.extend([svmPred, svmProb]) svmDef.alwaysRetrain = False ''' Tensorflow ''' if tfDef.runTF == True: tfPred, tfProb, tfAccur = runTFbasic(A,Cl,R, learnFileRoot) summaryFile.extend([tfPred, tfProb, tfAccur]) tfDef.tfalwaysRetrain = False ''' Run K-Means ''' if kmDef.runKM == True: kmDef.plotKM = False kmPred = runKMmain(A, Cl, En, R, Aorig, Rorig) summaryFile.extend([kmPred]) with open(summary_filename, "a") as sum_file: csv_out=csv.writer(sum_file) csv_out.writerow(summaryFile) #********************************************** ''' Learn and Predict - Maps''' #********************************************** def LearnPredictMap(learnFile, mapFile): ''' Open and process training data ''' En, Cl, A, YnormXind = readLearnFile(learnFile) learnFileRoot = os.path.splitext(learnFile)[0] ''' Open prediction map ''' X, Y, R, Rx = readPredMap(mapFile) type = 0 i = 0; svmPred = nnPred = tfPred = kmPred = np.empty([X.shape[0]]) A, Cl, En, Aorig = preProcessNormLearningData(A, En, Cl, YnormXind, type) print(' Processing map...' ) for r in R[:]: r, rorig = preProcessNormPredData(r, Rx, A, En, Cl, YnormXind, type) type = 1 ''' Run Neural Network - sklearn''' if nnDef.runNN == True: nnPred[i], temp = runNN(A, Cl, r, learnFileRoot) saveMap(mapFile, 'NN', 'HC', nnPred[i], X[i], Y[i], True) nnDef.alwaysRetrain = False ''' Run Neural Network - TensorFlow''' if nnDef.runNN == True: dnntfPred[i], temp = runDNNTF(A, Cl, r, learnFileRoot) saveMap(mapFile, 'DNN-TF', 'HC', dnntfPred[i], X[i], Y[i], True) dnnDef.alwaysRetrain = False ''' Run Support Vector Machines ''' if svmDef.runSVM == True: svmPred[i], temp = runSVM(A, Cl, En, r, learnFileRoot) saveMap(mapFile, 'svm', 'HC', svmPred[i], X[i], Y[i], True) svmDef.alwaysRetrain = False ''' Tensorflow ''' if tfDef.runTF == True: tfPred[i], temp, temp = runTFbasic(A,Cl,r, learnFileRoot) saveMap(mapFile, 'TF', 'HC', tfPred[i], X[i], Y[i], True) tfDef.alwaysRetrain = False ''' Run K-Means ''' if kmDef.runKM == True: kmDef.plotKM = False kmPred[i] = runKMmain(A, Cl, En, r, Aorig, rorig) saveMap(mapFile, 'KM', 'HC', kmPred[i], X[i], Y[i], True) i+=1 if nnDef.plotNN == True and nnDef.runNN == True: plotMaps(X, Y, nnPred, 'Deep Neural networks - sklearn') if nnDef.plotNN == True and nnDef.runNN == True: plotMaps(X, Y, dnntfPred, 'Deep Neural networks - tensorFlow') if svmDef.plotSVM == True and svmDef.runSVM == True: plotMaps(X, Y, svmPred, 'SVM') if tfDef.plotMapTF == True and tfDef.runTF == True: plotMaps(X, Y, tfPred, 'TensorFlow') if kmDef.plotKMmaps == True and kmDef.runKM == True: plotMaps(X, Y, kmPred, 'K-Means Prediction') #******************************************************************************** ''' Run Neural Network - sklearn ''' #******************************************************************************** def runNN(A, Cl, R, Root): from sklearn.neural_network import MLPClassifier, MLPRegressor from sklearn.externals import joblib if nnDef.MLPRegressor is False: Root+"/DNN-TF_" nnTrainedData = Root + '.nnModelC.pkl' else: nnTrainedData = Root + '.nnModelR.pkl' print('==========================================================================\n') print(' Running Neural Network: multi-layer perceptron (MLP)') print(' Number of neurons: Hidden layers:', nnDef.numNeurons) print(' Optimizer:',nnDef.nnOptimizer,', Activation Fn:',nnDef.activation_function) try: if nnDef.alwaysRetrain == False: with open(nnTrainedData): print(' Opening NN training model...\n') clf = joblib.load(nnTrainedData) else: raise ValueError('Force NN retraining.') except: #********************************************** ''' Retrain training data if not available''' #********************************************** if nnDef.MLPRegressor is False: print(' Retraining NN model using MLP Classifier...') clf = MLPClassifier(solver=nnDef.nnOptimizer, alpha=1e-5, activation = nnDef.activation_function, hidden_layer_sizes=(nnDef.numNeurons,), random_state=1) else: print(' Retraining NN model using MLP Regressor...') clf = MLPRegressor(solver=nnDef.nnOptimizer, alpha=1e-5, hidden_layer_sizes=(nnDef.numNeurons,), random_state=1) Cl = np.array(Cl,dtype=float) if nnDef.subsetCrossValid == True: print(" Iterating training using: ",str(nnDef.percentCrossValid*100), "% as test subset, iterating",str(nnDef.iterCrossValid)," time(s) ...\n") for i in range(nnDef.iterCrossValid): As, Cls, As_cv, Cls_cv = formatSubset(A, Cl, nnDef.percentCrossValid) clf.fit(As, Cls) if nnDef.MLPRegressor is False: print(' Mean accuracy: ',100*clf.score(As_cv,Cls_cv),'%') else: print(' Coefficient of determination R^2: ',clf.score(As_cv,Cls_cv)) else: print(" Training on the full training dataset\n") clf.fit(A, Cl) joblib.dump(clf, nnTrainedData) if nnDef.MLPRegressor is False: prob = clf.predict_proba(R)[0].tolist() rosterPred = np.where(clf.predict_proba(R)[0]>nnDef.thresholdProbabilityPred/100)[0] print('\n ==============================') print(' \033[1mNN\033[0m - Probability >',str(nnDef.thresholdProbabilityPred),'%') print(' ==============================') print(' Prediction\tProbability [%]') for i in range(rosterPred.shape[0]): print(' ',str(np.unique(Cl)[rosterPred][i]),'\t\t',str('{:.4f}'.format(100*clf.predict_proba(R)[0][rosterPred][i]))) print(' ==============================') predValue = clf.predict(R)[0] predProb = round(100*max(prob),4) print('\033[1m' + '\n Predicted classifier value (Deep Neural Networks - sklearn) = ' + str(predValue) + ' (probability = ' + str(predProb) + '%)\033[0m\n') else: Cl = np.array(Cl,dtype=float) predValue = clf.predict(R)[0] predProb = clf.score(A,Cl) print('\033[1m' + '\n Predicted regressor value (Deep Neural Networks - sklearn) = ' + str('{:.3f}'.format(predValue)) + ' (R^2 = ' + str('{:.5f}'.format(predProb)) + ')\033[0m\n') #************************************** ''' Neural Networks Classification Report ''' #************************************** if nnDef.nnClassReport == True: print(' Neural Networks Classification Report\n') runClassReport(clf, A, Cl) #************************* ''' Plot probabilities ''' #************************* if plotDef.showProbPlot == True: if nnDef.MLPRegressor is False: plotProb(clf, R) return predValue, predProb #******************************************************************************** ''' TensorFlow ''' ''' Run SkFlow - DNN Classifier ''' ''' https://www.tensorflow.org/api_docs/python/tf/contrib/learn/DNNClassifier''' #******************************************************************************** ''' Run DNNClassifier model training and evaluation via TensorFlow-skflow ''' #******************************************************************************** def runDNNTF(A, Cl, R, Root): print('==========================================================================\n') print(' Running Deep Neural Networks: DNNClassifier - TensorFlow...') print(' Hidden layers:', dnntfDef.hidden_layers) print(' Optimizer:',dnntfDef.nnOptimizer,', Activation function:',dnntfDef.activation_function) import tensorflow as tf import tensorflow.contrib.learn as skflow from sklearn import preprocessing if dnntfDef.logCheckpoint ==True: tf.logging.set_verbosity(tf.logging.INFO) if dnntfDef.alwaysRetrain == False: model_directory = Root + "/DNN-TF_" + str(dnntfDef.numHidlayers)+"x"+str(dnntfDef.numNeurons) print("\n Training model saved in: ", model_directory, "\n") else: model_directory = None print("\n Training model not saved\n") #********************************************** ''' Initialize Estimator and training data ''' #********************************************** print(' Initializing TensorFlow...') tf.reset_default_graph() le = preprocessing.LabelEncoder() Cl2 = le.fit_transform(Cl) feature_columns = skflow.infer_real_valued_columns_from_input(A.astype(np.float32)) clf = skflow.DNNClassifier(feature_columns=feature_columns, hidden_units=dnntfDef.hidden_layers, optimizer=dnntfDef.nnOptimizer, n_classes=np.unique(Cl).size, activation_fn=dnntfDef.activationFn, model_dir=model_directory) print("\n Number of training steps:",dnntfDef.trainingSteps) #********************************************** ''' Train ''' #********************************************** if dnntfDef.subsetCrossValid == True: print(" Iterating training using: ",str(dnntfDef.percentCrossValid*100), "% as test subset, iterating",str(dnntfDef.iterCrossValid)," time(s) ...\n") for i in range(dnntfDef.iterCrossValid): As, Cl2s, As_cv, Cl2s_cv = formatSubset(A, Cl2, dnntfDef.percentCrossValid) clf.fit(input_fn=lambda: input_fn(As, Cl2s), steps=dnntfDef.trainingSteps) accuracy_score = clf.evaluate(input_fn=lambda: input_fn(As_cv, Cl2s_cv), steps=1) print("\n Accuracy: {:.2f}%".format(100*accuracy_score["accuracy"])) print(" Loss: {:.2f}".format(accuracy_score["loss"])) print(" Global step: {:.2f}\n".format(accuracy_score["global_step"])) else: print(" Training on the full training dataset\n") clf.fit(input_fn=lambda: input_fn(A, Cl2), steps=dnntfDef.trainingSteps) #********************************************** ''' Predict ''' #********************************************** def input_fn_predict(): x = tf.constant(R.astype(np.float32)) return x pred_class = list(clf.predict_classes(input_fn=input_fn_predict))[0] predValue = le.inverse_transform(pred_class) prob = list(clf.predict_proba(input_fn=input_fn_predict))[0] predProb = round(100*prob[pred_class],2) rosterPred = np.where(prob>dnntfDef.thresholdProbabilityPred/100)[0] print('\n ================================') print(' \033[1mDNN-TF\033[0m - Probability >',str(dnntfDef.thresholdProbabilityPred),'%') print(' ================================') print(' Prediction\tProbability [%]') for i in range(rosterPred.shape[0]): print(' ',str(np.unique(Cl)[rosterPred][i]),'\t\t',str('{:.4f}'.format(100*prob[rosterPred][i]))) print(' ================================') print('\033[1m' + '\n Predicted regressor value (Deep Neural Networks - TensorFlow) = ' + predValue + ' (probability = ' + str(predProb) + '%)\033[0m\n') return predValue, predProb #********************************************** ''' Format input data for Estimator ''' #********************************************** def input_fn(A, Cl2): import tensorflow as tf x = tf.constant(A.astype(np.float32)) y = tf.constant(Cl2) return x,y #******************************************************************************** ''' Run SVM ''' #******************************************************************************** def runSVM(A, Cl, En, R, Root): from sklearn import svm from sklearn.externals import joblib svmTrainedData = Root + '.svmModel.pkl' print('==========================================================================\n') print(' Running Support Vector Machine (kernel: ' + svmDef.kernel + ')...') try: if svmDef.alwaysRetrain == False: with open(svmTrainedData): print(' Opening SVM training model...\n') clf = joblib.load(svmTrainedData) else: raise ValueError('Force retraining SVM model') except: #********************************************** ''' Retrain training model if not available''' #********************************************** print(' Retraining SVM data...') clf = svm.SVC(C = svmDef.Cfactor, decision_function_shape = 'ovr', probability=True) if svmDef.subsetCrossValid == True: print(" Iterating training using: ",str(nnDef.percentCrossValid*100), "% as test subset, iterating",str(nnDef.iterCrossValid)," time(s) ...\n") for i in range(svmDef.iterCrossValid): As, Cls, As_cv, Cls_cv = formatSubset(A, Cl, svmDef.percentCrossValid) clf.fit(As, Cls) print(' Mean accuracy: ',100*clf.score(As_cv,Cls_cv),'%') else: print(" Training on the full training dataset\n") clf.fit(A,Cl) Z = clf.decision_function(A) print('\n Number of classes = ' + str(Z.shape[1])) joblib.dump(clf, svmTrainedData) if svmDef.showClasses == True: print(' List of classes: ' + str(clf.classes_)) R_pred = clf.predict(R) prob = clf.predict_proba(R)[0].tolist() rosterPred = np.where(clf.predict_proba(R)[0]>svmDef.thresholdProbabilitySVMPred/100)[0] print('\n ==============================') print(' \033[1mSVM\033[0m - Probability >',str(svmDef.thresholdProbabilitySVMPred),'%') print(' ==============================') print(' Prediction\tProbability [%]') for i in range(rosterPred.shape[0]): print(' ',str(np.unique(Cl)[rosterPred][i]),'\t\t',str('{:.1f}'.format(100*clf.predict_proba(R)[0][rosterPred][i]))) print(' ==============================') print('\033[1m' + '\n Predicted value (SVM) = ' + str(R_pred[0]) + ' (probability = ' + str(round(100*max(prob),1)) + '%)\033[0m\n') #************************************** ''' SVM Classification Report ''' #************************************** if svmDef.svmClassReport == True: print(' SVM Classification Report \n') runClassReport(clf, A, Cl) #************************* ''' Plot probabilities ''' #************************* if plotDef.showProbPlot == True: plotProb(clf, R) return R_pred[0], round(100*max(prob),1) #******************************************************************************** ''' Run PCA ''' ''' Transform data: pca.fit(data).transform(data) Loading Vectors (eigenvectors): pca.components_ Eigenvalues: pca.explained_variance_ratio ''' #******************************************************************************** def runPCA(learnFile, numPCAcomponents): from sklearn.decomposition import PCA import matplotlib.pyplot as plt from matplotlib import cm ''' Open and process training data ''' En, Cl, A, YnormXind = readLearnFile(learnFile) print('==========================================================================\n') print(' Running PCA...\n') print(' Number of unique identifiers in training data: ' + str(np.unique(Cl).shape[0])) if pcaDef.customNumPCAComp == False: numPCAcomp = np.unique(Cl).shape[0] else: numPCAcomp = numPCAcomponents print(' Number of Principal components: ' + str(numPCAcomp) + '\n') pca = PCA(n_components=numPCAcomp) A_r = pca.fit(A).transform(A) for i in range(0,pca.components_.shape[0]): print(' Score PC ' + str(i) + ': ' + '{0:.0f}%'.format(pca.explained_variance_ratio_[i] * 100)) print('') if plotDef.showPCAPlots == True: print(' Plotting Loadings and score plots... \n') #*************************** ''' Plotting Loadings ''' #*************************** for i in range(0,pca.components_.shape[0]): plt.plot(En, pca.components_[i,:], label='PC' + str(i) + ' ({0:.0f}%)'.format(pca.explained_variance_ratio_[i] * 100)) plt.plot((En[0], En[En.shape[0]-1]), (0.0, 0.0), 'k--') plt.title('Loadings plot') plt.xlabel('Raman shift [1/cm]') plt.ylabel('Principal component') plt.legend() plt.figure() #*************************** ''' Plotting Scores ''' #*************************** Cl_ind = np.zeros(len(Cl)) Cl_labels = np.zeros(0) ind = np.zeros(np.unique(Cl).shape[0]) for i in range(len(Cl)): if (np.in1d(Cl[i], Cl_labels, invert=True)): Cl_labels = np.append(Cl_labels, Cl[i]) for i in range(len(Cl)): Cl_ind[i] = np.where(Cl_labels == Cl[i])[0][0] colors = [ cm.jet(x) for x in np.linspace(0, 1, ind.shape[0]) ] for color, i, target_name in zip(colors, range(ind.shape[0]), Cl_labels): plt.scatter(A_r[Cl_ind==i,0], A_r[Cl_ind==i,1], color=color, alpha=.8, lw=2, label=target_name) plt.title('Score plot') plt.xlabel('PC 0 ({0:.0f}%)'.format(pca.explained_variance_ratio_[0] * 100)) plt.ylabel('PC 1 ({0:.0f}%)'.format(pca.explained_variance_ratio_[1] * 100)) plt.figure() plt.title('Score box plot') plt.xlabel('Principal Component') plt.ylabel('Score') for j in range(pca.components_.shape[0]): for color, i, target_name in zip(colors, range(ind.shape[0]), Cl_labels): plt.scatter([j+1]*len(A_r[Cl_ind==i,j]), A_r[Cl_ind==i,j], color=color, alpha=.8, lw=2, label=target_name) plt.boxplot(A_r) plt.figure() #****************************** ''' Plotting Scores vs H:C ''' #****************************** for j in range(pca.components_.shape[0]): for color, i, target_name in zip(colors, range(ind.shape[0]), Cl_labels): plt.scatter(np.asarray(Cl)[Cl_ind==i], A_r[Cl_ind==i,j], color=color, alpha=.8, lw=2, label=target_name) plt.xlabel('H:C elemental ratio') plt.ylabel('PC ' + str(j) + ' ({0:.0f}%)'.format(pca.explained_variance_ratio_[j] * 100)) plt.figure() plt.show() #******************** ''' Run K-Means ''' #******************** def runKMmain(A, Cl, En, R, Aorig, Rorig): from sklearn.cluster import KMeans print('==========================================================================\n') print(' Running K-Means...') print(' Number of unique identifiers in training data: ' + str(np.unique(Cl).shape[0])) if kmDef.customNumKMComp == False: numKMcomp = np.unique(Cl).shape[0] else: numKMcomp = kmDef.numKMcomponents kmeans = KMeans(n_clusters=numKMcomp, random_state=0).fit(A) ''' for i in range(0, numKMcomp): print('\n Class: ' + str(i) + '\n ',end="") for j in range(0,kmeans.labels_.shape[0]): if kmeans.labels_[j] == i: print(' ' + str(Cl[j]), end="") ''' print('\n ==============================') print(' \033[1mKM\033[0m - Predicted class: \033[1m',str(kmeans.predict(R)[0]),'\033[0m') print(' ==============================') print(' Prediction') for j in range(0,kmeans.labels_.shape[0]): if kmeans.labels_[j] == 22: print(' ' + str(Cl[j])) print(' ==============================\n') if kmDef.plotKM == True: import matplotlib.pyplot as plt for j in range(0,kmeans.labels_.shape[0]): if kmeans.labels_[j] == kmeans.predict(R)[0]: plt.plot(En, Aorig[j,:]) plt.plot(En, Rorig[0,:], linewidth = 2, label='Predict') plt.title('K-Means') plt.xlabel('Raman shift [1/cm]') plt.ylabel('Intensity') plt.legend() plt.show() return kmeans.predict(R)[0] #********************************************** ''' K-Means - Maps''' #********************************************** def KmMap(mapFile, numKMcomp): ''' Open prediction map ''' X, Y, R, Rx = readPredMap(mapFile) type = 0 i = 0; R, Rx, Rorig = preProcessNormMap(R, Rx, type) from sklearn.cluster import KMeans print(' Running K-Means...') print(' Number of classes: ' + str(numKMcomp)) kmeans = KMeans(n_clusters=kmDef.numKMcomponents, random_state=0).fit(R) kmPred = np.empty([R.shape[0]]) for i in range(0, R.shape[0]): kmPred[i] = kmeans.predict(R[i,:].reshape(1,-1))[0] saveMap(mapFile, 'KM', 'Class', int(kmPred[i]), X[i], Y[i], True) if kmPred[i] in kmeans.labels_: if os.path.isfile(saveMapName(mapFile, 'KM', 'Class_'+ str(int(kmPred[i]))+'-'+str(np.unique(kmeans.labels_).shape[0]), False)) == False: saveMap(mapFile, 'KM', 'Class_'+ str(int(kmPred[i])) + '-'+str(np.unique(kmeans.labels_).shape[0]) , '\t'.join(map(str, Rx)), ' ', ' ', False) saveMap(mapFile, 'KM', 'Class_'+ str(int(kmPred[i])) + '-'+str(np.unique(kmeans.labels_).shape[0]) , '\t'.join(map(str, R[1,:])), X[i], Y[i], False) if kmDef.plotKM == True: plotMaps(X, Y, kmPred, 'K-Means') #************************************ ''' Read Learning file ''' #************************************ def readLearnFile(learnFile): try: with open(learnFile, 'r') as f: M = np.loadtxt(f, unpack =False) except: print('\033[1m' + ' Map data file not found \n' + '\033[0m') return En = np.delete(np.array(M[0,:]),np.s_[0:1],0) M = np.delete(M,np.s_[0:1],0) Cl = ['{:.2f}'.format(x) for x in M[:,0]] A = np.delete(M,np.s_[0:1],1) Atemp = A[:,range(len(preprocDef.enSel))] if preprocDef.cherryPickEnPoint == True and preprocDef.enRestrictRegion == False: enPoints = list(preprocDef.enSel) enRange = list(preprocDef.enSel) for i in range(0, len(preprocDef.enSel)): enRange[i] = np.where((En<float(preprocDef.enSel[i]+preprocDef.enSelDelta[i])) & (En>float(preprocDef.enSel[i]-preprocDef.enSelDelta[i])))[0].tolist() for j in range(0, A.shape[0]): Atemp[j,i] = A[j,A[j,enRange[i]].tolist().index(max(A[j, enRange[i]].tolist()))+enRange[i][0]] enPoints[i] = int(np.average(enRange[i])) A = Atemp En = En[enPoints] if type == 0: print( ' Cheery picking points in the spectra\n') # Find index corresponding to energy value to be used for Y normalization if preprocDef.fullYnorm == True: YnormXind = np.where(En>0)[0].tolist() else: YnormXind_temp = np.where((En<float(preprocDef.YnormX+preprocDef.YnormXdelta)) & (En>float(preprocDef.YnormX-preprocDef.YnormXdelta)))[0].tolist() if YnormXind_temp == []: print( ' Renormalization region out of requested range. Normalizing over full range...\n') YnormXind = np.where(En>0)[0].tolist() else: YnormXind = YnormXind_temp print(' Number of datapoints = ' + str(A.shape[0])) print(' Size of each datapoint = ' + str(A.shape[1]) + '\n') return En, Cl, A, YnormXind #********************************************** ''' Open prediction file ''' #********************************************** def readPredFile(sampleFile): try: with open(sampleFile, 'r') as f: print(' Opening sample data for prediction...') Rtot = np.loadtxt(f, unpack =True) except: print('\033[1m' + '\n Sample data file not found \n ' + '\033[0m') return R=Rtot[1,:] Rx=Rtot[0,:] if preprocDef.cherryPickEnPoint == True and preprocDef.enRestrictRegion == False: Rtemp = R[range(len(preprocDef.enSel))] enPoints = list(preprocDef.enSel) enRange = list(preprocDef.enSel) for i in range(0, len(preprocDef.enSel)): enRange[i] = np.where((Rx<float(preprocDef.enSel[i]+preprocDef.enSelDelta[i])) & (Rx>float(preprocDef.enSel[i]-preprocDef.enSelDelta[i])))[0].tolist() Rtemp[i] = R[R[enRange[i]].tolist().index(max(R[enRange[i]].tolist()))+enRange[i][0]] enPoints[i] = int(np.average(enRange[i])) R = Rtemp Rx = Rx[enPoints] return R, Rx #********************************************************************************** ''' Preprocess Learning data ''' #********************************************************************************** def preProcessNormLearningData(A, En, Cl, YnormXind, type): print(' Processing Training data file... ') #********************************************************************************** ''' Reformat x-axis in case it does not match that of the training data ''' #********************************************************************************** if preprocDef.scrambleNoiseFlag == True: print(' Adding random noise to training set \n') scrambleNoise(A, preprocDef.scrambleNoiseOffset) Aorig = np.copy(A) #********************************************** ''' Normalize/preprocess if flags are set ''' #********************************************** if preprocDef.Ynorm == True: if type == 0: if preprocDef.fullYnorm == False: print(' Normalizing spectral intensity to: ' + str(preprocDef.YnormTo) + '; En = [' + str(preprocDef.YnormX-preprocDef.YnormXdelta) + ', ' + str(preprocDef.YnormX+preprocDef.YnormXdelta) + ']') else: print(' Normalizing spectral intensity to: ' + str(preprocDef.YnormTo) + '; to max intensity in spectra') for i in range(0,A.shape[0]): if(np.amin(A[i]) <= 0): A[i,:] = A[i,:] - np.amin(A[i,:]) + 0.00001 A[i,:] = np.multiply(A[i,:], preprocDef.YnormTo/A[i,A[i][YnormXind].tolist().index(max(A[i][YnormXind].tolist()))+YnormXind[0]]) if preprocDef.StandardScalerFlag == True: print(' Using StandardScaler from sklearn ') A = preprocDef.scaler.fit_transform(A) #********************************************** ''' Energy normalization range ''' #********************************************** if preprocDef.enRestrictRegion == True: A = A[:,range(preprocDef.enLim1, preprocDef.enLim2)] En = En[range(preprocDef.enLim1, preprocDef.enLim2)] Aorig = Aorig[:,range(preprocDef.enLim1, preprocDef.enLim2)] if type == 0: print( ' Restricting energy range between: [' + str(En[0]) + ', ' + str(En[En.shape[0]-1]) + ']\n') else: if type == 0: if(preprocDef.cherryPickEnPoint == True): print( ' Using selected spectral points:') print(En) else: print( ' Using full energy range: [' + str(En[0]) + ', ' + str(En[En.shape[0]-1]) + ']\n') return A, Cl, En, Aorig #********************************************************************************** ''' Preprocess Prediction data ''' #********************************************************************************** def preProcessNormPredData(R, Rx, A, En, Cl, YnormXind, type): print(' Processing Prediction data file... ') #********************************************************************************** ''' Reformat x-axis in case it does not match that of the training data ''' #********************************************************************************** if(R.shape[0] != A.shape[1]): if type == 0: print('\033[1m' + ' WARNING: Different number of datapoints for the x-axis\n for training (' + str(A.shape[1]) + ') and sample (' + str(R.shape[0]) + ') data.\n Reformatting x-axis of sample data...\n' + '\033[0m') R = np.interp(En, Rx, R) R = R.reshape(1,-1) Rorig = np.copy(R) #********************************************** ''' Normalize/preprocess if flags are set ''' #********************************************** if preprocDef.Ynorm == True: if type == 0: if preprocDef.fullYnorm == False: print(' Normalizing spectral intensity to: ' + str(preprocDef.YnormTo) + '; En = [' + str(preprocDef.YnormX-preprocDef.YnormXdelta) + ', ' + str(preprocDef.YnormX+preprocDef.YnormXdelta) + ']') else: print(' Normalizing spectral intensity to: ' + str(preprocDef.YnormTo) + '; to max intensity in spectra') if(np.amin(R) <= 0): print(' Spectra max below zero detected') R[0,:] = R[0,:] - np.amin(R[0,:]) + 0.00001 R[0,:] = np.multiply(R[0,:], preprocDef.YnormTo/R[0,R[0][YnormXind].tolist().index(max(R[0][YnormXind].tolist()))+YnormXind[0]]) if preprocDef.StandardScalerFlag == True: print(' Using StandardScaler from sklearn ') R = preprocDef.scaler.transform(R) #********************************************** ''' Energy normalization range ''' #********************************************** if preprocDef.enRestrictRegion == True: A = A[:,range(preprocDef.enLim1, preprocDef.enLim2)] En = En[range(preprocDef.enLim1, preprocDef.enLim2)] R = R[:,range(preprocDef.enLim1, preprocDef.enLim2)] if type == 0: print( ' Restricting energy range between: [' + str(En[0]) + ', ' + str(En[En.shape[0]-1]) + ']\n') else: if type == 0: if(preprocDef.cherryPickEnPoint == True): print( ' Using selected spectral points:') print(En) else: print( ' Using full energy range: [' + str(En[0]) + ', ' + str(En[En.shape[0]-1]) + ']\n') return R, Rorig #********************************************************************************** ''' Preprocess prediction data ''' #********************************************************************************** def preProcessNormMap(A, En, type): #********************************************************************************** ''' Reformat x-axis in case it does not match that of the training data ''' #********************************************************************************** # Find index corresponding to energy value to be used for Y normalization if preprocDef.fullYnorm == False: YnormXind = np.where((En<float(preprocDef.YnormX+preprocDef.YnormXdelta)) & (En>float(preprocDef.YnormX-preprocDef.YnormXdelta)))[0].tolist() else: YnormXind = np.where(En>0)[0].tolist() Aorig = np.copy(A) #********************************************** ''' Normalize/preprocess if flags are set ''' #********************************************** if preprocDef.Ynorm == True: if type == 0: print(' Normalizing spectral intensity to: ' + str(preprocDef.YnormTo) + '; En = [' + str(preprocDef.YnormX-preprocDef.YnormXdelta) + ', ' + str(preprocDef.YnormX+preprocDef.YnormXdelta) + ']') for i in range(0,A.shape[0]): A[i,:] = np.multiply(A[i,:], preprocDef.YnormTo/np.amax(A[i])) if preprocDef.StandardScalerFlag == True: print(' Using StandardScaler from sklearn ') A = preprocDef.scaler.fit_transform(A) #********************************************** ''' Energy normalization range ''' #********************************************** if preprocDef.enRestrictRegion == True: A = A[:,range(preprocDef.enLim1, preprocDef.enLim2)] En = En[range(preprocDef.enLim1, preprocDef.enLim2)] Aorig = Aorig[:,range(preprocDef.enLim1, preprocDef.enLim2)] if type == 0: print( ' Restricting energy range between: [' + str(En[0]) + ', ' + str(En[En.shape[0]-1]) + ']\n') else: if type == 0: print( ' Using full energy range: [' + str(En[0]) + ', ' + str(En[En.shape[0]-1]) + ']\n') return A, En, Aorig #################################################################### ''' Format subset of training data ''' #################################################################### def formatSubset(A, Cl, percent): from sklearn.model_selection import train_test_split A_train, A_cv, Cl_train, Cl_cv = \ train_test_split(A, Cl, test_size=percent, random_state=42) return A_train, Cl_train, A_cv, Cl_cv #################################################################### ''' Open map files ''' #################################################################### def readPredMap(mapFile): try: with open(mapFile, 'r') as f: En = np.array(f.readline().split(), dtype=np.dtype(float)) A = np.loadtxt(f, unpack =False) except: print('\033[1m' + ' Map data file not found \n' + '\033[0m') return X = A[:,0] Y = A[:,1] A = np.delete(A, np.s_[0:2], 1) print(' Shape map: ' + str(A.shape)) return X, Y, A, En #################################################################### ''' Save map files ''' #################################################################### def saveMap(file, type, extension, s, x1, y1, comma): inputFile = saveMapName(file, type, extension, comma) with open(inputFile, "a") as coord_file: if comma==True: coord_file.write('{:},'.format(x1)) coord_file.write('{:},'.format(y1)) else: coord_file.write('{:}\t'.format(x1)) coord_file.write('{:}\t'.format(y1)) coord_file.write('{:}\n'.format(s)) def saveMapName(file, type, extension, comma): if comma==True: extension2 = '_map.csv' else: extension2 = '_map.txt' return os.path.splitext(file)[0] + '_' + type + '-' + extension + extension2 #************************************ ''' Plot Probabilities''' #************************************ def plotProb(clf, R): prob = clf.predict_proba(R)[0].tolist() print(' Probabilities of this sample within each class: \n') for i in range(0,clf.classes_.shape[0]): print(' ' + str(clf.classes_[i]) + ': ' + str(round(100*prob[i],2)) + '%') import matplotlib.pyplot as plt print('\n Stand by: Plotting probabilities for each class... \n') plt.title('Probability density per class') for i in range(0, clf.classes_.shape[0]): plt.scatter(clf.classes_[i], round(100*prob[i],2), label='probability', c = 'red') plt.grid(True) plt.xlabel('Class') plt.ylabel('Probability [%]') plt.show() #************************************ ''' Plot Training data''' #************************************ def plotTrainData(A, En, R, plotAllSpectra, learnFileRoot): import matplotlib.pyplot as plt if plotDef.plotAllSpectra == True: step = 1 learnFileRoot = learnFileRoot + '_full-set' else: step = plotDef.stepSpectraPlot learnFileRoot = learnFileRoot + '_partial-' + str(step) print(' Plotting Training dataset in: ' + learnFileRoot + '.png\n') if preprocDef.Ynorm ==True: plt.title('Normalized Training Data') else: plt.title('Training Data') for i in range(0,A.shape[0], step): plt.plot(En, A[i,:], label='Training data') plt.plot(En, R[0,:], linewidth = 4, label='Sample data') plt.xlabel('Raman shift [1/cm]') plt.ylabel('Raman Intensity [arb. units]') plt.savefig(learnFileRoot + '.png', dpi = 160, format = 'png') # Save plot if plotDef.showTrainingDataPlot == True: plt.show() plt.close() #************************************ ''' Plot Processed Maps''' #************************************ def plotMaps(X, Y, A, label): print(' Plotting ' + label + ' Map...\n') import scipy.interpolate xi = np.linspace(min(X), max(X)) yi = np.linspace(min(Y), max(Y)) xi, yi = np.meshgrid(xi, yi) rbf = scipy.interpolate.Rbf(Y, -X, A, function='linear') zi = rbf(xi, yi) import matplotlib.pyplot as plt plt.imshow(zi, vmin=A.min(), vmax=A.max(), origin='lower',label='data', extent=[X.min(), X.max(), Y.min(), Y.max()]) plt.title(label) plt.xlabel('X [um]') plt.ylabel('Y [um]') plt.show() #################################################################### ''' Make header, if absent, for the summary file ''' #################################################################### def makeHeaderSummary(file, learnFile): if os.path.isfile(file) == False: summaryHeader1 = ['Training File:', learnFile] summaryHeader2 = ['File','SVM-HC','SVM-Prob%', 'NN-HC', 'NN-Prob%', 'TF-HC', 'TF-Prob%', 'TF-Accuracy%'] with open(file, "a") as sum_file: csv_out=csv.writer(sum_file) csv_out.writerow(summaryHeader1) csv_out.writerow(summaryHeader2) #************************************ ''' Lists the program usage ''' #************************************ def usage(): print('\n Usage:\n') print(' Single files:') print(' python3 SpectraLearnPredict.py -f <learningfile> <spectrafile> \n') print(' Single files with cross-validation for accuracy determination: ') print(' python3 SpectraLearnPredict.py -a <learningfile> <spectrafile> \n') print(' Maps (formatted for Horiba LabSpec):') print(' python3 SpectraLearnPredict.py -m <learningfile> <spectramap> \n') print(' Batch txt files:') print(' python3 SpectraLearnPredict.py -b <learningfile> \n') print(' K-means on maps:') print(' python3 SpectraLearnPredict.py -k <spectramap> <number_of_classes>\n') print(' Principal component analysis on spectral collection files: ') print(' python3 SpectraLearnPredict.py -p <spectrafile> <#comp>\n') print(' Run tensorflow training only:') print(' python3 SpectraLearnPredict.py -t <learningfile> <# iterations>\n') print(' Requires python 3.x. Not compatible with python 2.x\n') #************************************ ''' Info on Classification Report ''' #************************************ def runClassReport(clf, A, Cl): from sklearn.metrics import classification_report y_pred = clf.predict(A) print(classification_report(Cl, y_pred, target_names=clf.classes_)) print(' Precision is the probability that, given a classification result for a sample,\n' + ' the sample actually belongs to that class. Recall (Accuracy) is the probability that a \n' + ' sample will be correctly classified for a given class. f1-score combines both \n' + ' accuracy and precision to give a single measure of relevancy of the classifier results.\n') #************************************ ''' Introduce Noise in Data ''' #************************************ def scrambleNoise(A, offset): from random import uniform for i in range(A.shape[1]): A[:,i] += offset*uniform(-1,1) #******************************************************************************** ''' Tensorflow ''' ''' https://www.tensorflow.org/get_started/mnist/beginners''' #******************************************************************************** ''' Setup training-only via TensorFlow ''' #******************************************************************************** def TrainTF(learnFile, numRuns): learnFileRoot = os.path.splitext(learnFile)[0] summary_filename = learnFileRoot + '_summary-TF-training' + str(datetime.now().strftime('_%Y-%m-%d_%H-%M-%S.log')) tfDef.alwaysRetrain = True tfDef.alwaysImprove = True ''' Open and process training data ''' En, Cl, A, YnormXind = readLearnFile(learnFile) En_temp = En Cl_temp = Cl A_temp = A with open(summary_filename, "a") as sum_file: sum_file.write(str(datetime.now().strftime('Training started: %Y-%m-%d %H:%M:%S\n'))) if preprocDef.scrambleNoiseFlag == True: sum_file.write(' Using Noise scrambler (offset: ' + str(preprocDef.scrambleNoiseOffset) + ')\n\n') sum_file.write('\nIteration\tAccuracy %\t Prediction\t Probability %\n') index = random.randint(0,A.shape[0]-1) R = A[index,:] if preprocDef.scrambleNoiseFlag == False: A_temp, Cl_temp, En_temp, Aorig = preProcessNormLearningData(A, En, Cl, YnormXind, 0) ''' Plot Training Data ''' if plotDef.createTrainingDataPlot == True: plotTrainData(A, En, R.reshape(1,-1), plotDef.plotAllSpectra, learnFileRoot) for i in range(numRuns): print(' Running tensorflow training iteration: ' + str(i+1) + '\n') ''' Preprocess prediction data ''' if preprocDef.scrambleNoiseFlag == True: A_temp, Cl_temp, En_temp, Aorig = preProcessNormLearningData(A, En, Cl, YnormXind, 0) R_temp, Rorig = preProcessNormPredData(R, En, A_temp, En_temp, Cl_temp, YnormXind, 0) print(' Using random spectra from training dataset as evaluation file ') tfPred, tfProb, tfAccur = runTensorFlow(A_temp,Cl_temp,R_temp,learnFileRoot) with open(summary_filename, "a") as sum_file: sum_file.write(str(i+1) + '\t{:10.2f}\t'.format(tfAccur) + str(tfPred) + '\t{:10.2f}\n'.format(tfProb)) print(' Nominal class for prediction spectra:', str(index+1), '\n') with open(summary_filename, "a") as sum_file: sum_file.write(str(datetime.now().strftime('\nTraining ended: %Y-%m-%d %H:%M:%S\n'))) print(' Completed ' + str(numRuns) + ' Training iterations. \n') #******************************************************************************** ''' Format vectors of unique labels ''' #******************************************************************************** def formatClass(rootFile, Cl): import sklearn.preprocessing as pp print('==========================================================================\n') print(' Running basic TensorFlow. Creating class data in binary form...') Cl2 = pp.LabelBinarizer().fit_transform(Cl) import matplotlib.pyplot as plt plt.hist([float(x) for x in Cl], bins=np.unique([float(x) for x in Cl]), edgecolor="black") plt.xlabel('Class') plt.ylabel('Occurrances') plt.title('Class distibution') plt.savefig(rootFile + '_ClassDistrib.png', dpi = 160, format = 'png') # Save plot if tfDef.plotClassDistribTF == True: print(' Plotting Class distibution \n') plt.show() return Cl2 #******************************************************************************** ''' Run basic model training and evaluation via TensorFlow ''' #******************************************************************************** def runTFbasic(A, Cl, R, Root): import tensorflow as tf tfTrainedData = Root + '.tfmodel' Cl2 = formatClass(Root, Cl) print(' Initializing TensorFlow...') tf.reset_default_graph() x = tf.placeholder(tf.float32, [None, A.shape[1]]) W = tf.Variable(tf.zeros([A.shape[1], np.unique(Cl).shape[0]])) b = tf.Variable(tf.zeros(np.unique(Cl).shape[0])) y_ = tf.placeholder(tf.float32, [None, np.unique(Cl).shape[0]]) # The raw formulation of cross-entropy can be numerically unstable #y = tf.nn.softmax(tf.matmul(x, W) + b) #cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), axis=[1])) # So here we use tf.nn.softmax_cross_entropy_with_logits on the raw # outputs of 'y', and then average across the batch. y = tf.matmul(x,W) + b cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)) if tfDef.decayLearnRate == True: print(' Using decaying learning rate, start at:',tfDef.learnRate, '\n') global_step = tf.Variable(0, trainable=False) starter_learning_rate = tfDef.learnRate learning_rate = tf.train.exponential_decay(starter_learning_rate, global_step, 100000, 0.96, staircase=True) train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cross_entropy, global_step=global_step) else: print(' Using fix learning rate:', tfDef.learnRate, '\n') train_step = tf.train.GradientDescentOptimizer(tfDef.learnRate).minimize(cross_entropy) sess = tf.InteractiveSession() tf.global_variables_initializer().run() if tfDef.enableTensorboard == True: writer = tf.summary.FileWriter(".", sess.graph) print('\n Saving graph. Accessible via tensorboard. \n') saver = tf.train.Saver() accur = 0 try: if tfDef.alwaysRetrain == False: print(' Opening TF training model from:', tfTrainedData) saver.restore(sess, './' + tfTrainedData) print('\n Model restored.\n') else: raise ValueError(' Force TF model retraining.') except: init = tf.global_variables_initializer() sess.run(init) if os.path.isfile(tfTrainedData + '.meta') & tfDef.alwaysImprove == True: print('\n Improving TF model...') saver.restore(sess, './' + tfTrainedData) else: print('\n Rebuildind TF model...') if tfDef.subsetCrossValid == True: print(' Iterating training using subset (' + str(tfDef.percentCrossValid*100) + '%), ' + str(tfDef.iterCrossValid) + ' times ...') for i in range(tfDef.iterCrossValid): As, Cl2s, As_cv, Cl2s_cv = formatSubset(A, Cl2, tfDef.percentCrossValid) summary = sess.run(train_step, feed_dict={x: As, y_: Cl2s}) correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) accur = 100*accuracy.eval(feed_dict={x:As_cv, y_:Cl2s_cv}) else: summary = sess.run(train_step, feed_dict={x: A, y_: Cl2}) correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) accur = 100*accuracy.eval(feed_dict={x:A, y_:Cl2}) save_path = saver.save(sess, tfTrainedData) print(' Model saved in file: %s\n' % save_path) print('\033[1m Accuracy: ' + str('{:.3f}'.format(accur)) + '%\n\033[0m') if tfDef.enableTensorboard == True: writer.close() res1 = sess.run(y, feed_dict={x: R}) res2 = sess.run(tf.argmax(y, 1), feed_dict={x: R}) sess.close() rosterPred = np.where(res1[0]>tfDef.thresholdProbabilityTFPred)[0] print(' ==============================') print(' \033[1mTF\033[0m - Probability >',str(tfDef.thresholdProbabilityTFPred),'%') print(' ==============================') print(' Prediction\tProbability [%]') for i in range(rosterPred.shape[0]): print(' ',str(np.unique(Cl)[rosterPred][i]),'\t\t',str('{:.1f}'.format(res1[0][rosterPred][i]))) print(' ==============================\n') print('\033[1m Predicted value (TF): ' + str(np.unique(Cl)[res2][0]) + ' (Probability: ' + str('{:.1f}'.format(res1[0][res2][0])) + '%)\n' + '\033[0m' ) return np.unique(Cl)[res2][0], res1[0][res2][0], accur #************************************ ''' Main initialization routine ''' #************************************ if __name__ == "__main__": sys.exit(main())
gpl-3.0
DucQuang1/BuildingMachineLearningSystemsWithPython
ch06/02_tuning.py
22
5484
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing # # It is made available under the MIT License # # This script trains tries to tweak hyperparameters to improve P/R AUC # import time start_time = time.time() import numpy as np from sklearn.metrics import precision_recall_curve, roc_curve, auc from sklearn.cross_validation import ShuffleSplit from utils import plot_pr from utils import load_sanders_data from utils import tweak_labels from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.metrics import f1_score from sklearn.naive_bayes import MultinomialNB phase = "02" def create_ngram_model(params=None): tfidf_ngrams = TfidfVectorizer(ngram_range=(1, 3), analyzer="word", binary=False) clf = MultinomialNB() pipeline = Pipeline([('vect', tfidf_ngrams), ('clf', clf)]) if params: pipeline.set_params(**params) return pipeline def grid_search_model(clf_factory, X, Y): cv = ShuffleSplit( n=len(X), n_iter=10, test_size=0.3, random_state=0) param_grid = dict(vect__ngram_range=[(1, 1), (1, 2), (1, 3)], vect__min_df=[1, 2], vect__stop_words=[None, "english"], vect__smooth_idf=[False, True], vect__use_idf=[False, True], vect__sublinear_tf=[False, True], vect__binary=[False, True], clf__alpha=[0, 0.01, 0.05, 0.1, 0.5, 1], ) grid_search = GridSearchCV(clf_factory(), param_grid=param_grid, cv=cv, score_func=f1_score, verbose=10) grid_search.fit(X, Y) clf = grid_search.best_estimator_ print(clf) return clf def train_model(clf, X, Y, name="NB ngram", plot=False): # create it again for plotting cv = ShuffleSplit( n=len(X), n_iter=10, test_size=0.3, indices=True, random_state=0) train_errors = [] test_errors = [] scores = [] pr_scores = [] precisions, recalls, thresholds = [], [], [] for train, test in cv: X_train, y_train = X[train], Y[train] X_test, y_test = X[test], Y[test] clf.fit(X_train, y_train) train_score = clf.score(X_train, y_train) test_score = clf.score(X_test, y_test) train_errors.append(1 - train_score) test_errors.append(1 - test_score) scores.append(test_score) proba = clf.predict_proba(X_test) fpr, tpr, roc_thresholds = roc_curve(y_test, proba[:, 1]) precision, recall, pr_thresholds = precision_recall_curve( y_test, proba[:, 1]) pr_scores.append(auc(recall, precision)) precisions.append(precision) recalls.append(recall) thresholds.append(pr_thresholds) if plot: scores_to_sort = pr_scores median = np.argsort(scores_to_sort)[len(scores_to_sort) / 2] plot_pr(pr_scores[median], name, phase, precisions[median], recalls[median], label=name) summary = (np.mean(scores), np.std(scores), np.mean(pr_scores), np.std(pr_scores)) print("%.3f\t%.3f\t%.3f\t%.3f\t" % summary) return np.mean(train_errors), np.mean(test_errors) def print_incorrect(clf, X, Y): Y_hat = clf.predict(X) wrong_idx = Y_hat != Y X_wrong = X[wrong_idx] Y_wrong = Y[wrong_idx] Y_hat_wrong = Y_hat[wrong_idx] for idx in range(len(X_wrong)): print("clf.predict('%s')=%i instead of %i" % (X_wrong[idx], Y_hat_wrong[idx], Y_wrong[idx])) def get_best_model(): best_params = dict(vect__ngram_range=(1, 2), vect__min_df=1, vect__stop_words=None, vect__smooth_idf=False, vect__use_idf=False, vect__sublinear_tf=True, vect__binary=False, clf__alpha=0.01, ) best_clf = create_ngram_model(best_params) return best_clf if __name__ == "__main__": X_orig, Y_orig = load_sanders_data() classes = np.unique(Y_orig) for c in classes: print("#%s: %i" % (c, sum(Y_orig == c))) print("== Pos vs. neg ==") pos_neg = np.logical_or(Y_orig == "positive", Y_orig == "negative") X = X_orig[pos_neg] Y = Y_orig[pos_neg] Y = tweak_labels(Y, ["positive"]) train_model(get_best_model(), X, Y, name="pos vs neg", plot=True) print("== Pos/neg vs. irrelevant/neutral ==") X = X_orig Y = tweak_labels(Y_orig, ["positive", "negative"]) # best_clf = grid_search_model(create_ngram_model, X, Y, name="sent vs # rest", plot=True) train_model(get_best_model(), X, Y, name="pos vs neg", plot=True) print("== Pos vs. rest ==") X = X_orig Y = tweak_labels(Y_orig, ["positive"]) train_model(get_best_model(), X, Y, name="pos vs rest", plot=True) print("== Neg vs. rest ==") X = X_orig Y = tweak_labels(Y_orig, ["negative"]) train_model(get_best_model(), X, Y, name="neg vs rest", plot=True) print("time spent:", time.time() - start_time)
mit
mariusvniekerk/ibis
ibis/impala/metadata.py
1
8500
# Copyright 2014 Cloudera Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from six import StringIO import pandas as pd def parse_metadata(descr_table): parser = MetadataParser(descr_table) return parser.parse() def _noop(tup): return None def _item_converter(i): def _get_item(converter=None): def _converter(tup): result = tup[i] if converter is not None: result = converter(result) return result return _converter return _get_item _get_type = _item_converter(1) _get_comment = _item_converter(2) def _try_timestamp(x): try: ts = pd.Timestamp(x) return ts.to_pydatetime() except (ValueError, TypeError): return x def _try_unix_timestamp(x): try: ts = pd.Timestamp.fromtimestamp(int(x)) return ts.to_pydatetime() except (ValueError, TypeError): return x def _try_boolean(x): try: x = x.lower() if x in ('true', 'yes'): return True elif x in ('false', 'no'): return False return x except (ValueError, TypeError): return x def _try_int(x): try: return int(x) except (ValueError, TypeError): return x class MetadataParser(object): """ A simple state-ish machine to parse the results of DESCRIBE FORMATTED """ def __init__(self, table): self.table = table self.tuples = list(self.table.itertuples(index=False)) def _reset(self): self.pos = 0 self.schema = None self.partitions = None self.info = None self.storage = None def _next_tuple(self): if self.pos == len(self.tuples): raise StopIteration result = self.tuples[self.pos] self.pos += 1 return result def parse(self): self._reset() self._parse() return TableMetadata(self.schema, self.info, self.storage, partitions=self.partitions) def _parse(self): self.schema = self._parse_schema() next_section = self._next_tuple() if 'partition' in next_section[0].lower(): self._parse_partitions() else: self._parse_info() def _parse_partitions(self): self.partitions = self._parse_schema() next_section = self._next_tuple() if 'table information' not in next_section[0].lower(): raise ValueError('Table information not present') self._parse_info() def _parse_schema(self): tup = self._next_tuple() if 'col_name' not in tup[0]: raise ValueError('DESCRIBE FORMATTED did not return ' 'the expected results: {0}' .format(tup)) self._next_tuple() # Use for both main schema and partition schema (if any) schema = [] while True: tup = self._next_tuple() if tup[0].strip() == '': break schema.append((tup[0], tup[1])) return schema def _parse_info(self): self.info = {} while True: tup = self._next_tuple() orig_key = tup[0].strip(':') key = _clean_param_name(tup[0]) if key == '' or key.startswith('#'): # section is done break if key == 'table parameters': self._parse_table_parameters() elif key in self._info_cleaners: result = self._info_cleaners[key](tup) self.info[orig_key] = result else: self.info[orig_key] = tup[1] if 'storage information' not in key: raise ValueError('Storage information not present') self._parse_storage_info() _info_cleaners = { 'database': _get_type(), 'owner': _get_type(), 'createtime': _get_type(_try_timestamp), 'lastaccesstime': _get_type(_try_timestamp), 'protect mode': _get_type(), 'retention': _get_type(_try_int), 'location': _get_type(), 'table type': _get_type() } def _parse_table_parameters(self): params = self._parse_nested_params(self._table_param_cleaners) self.info['Table Parameters'] = params _table_param_cleaners = { 'external': _try_boolean, 'column_stats_accurate': _try_boolean, 'numfiles': _try_int, 'totalsize': _try_int, 'stats_generated_via_stats_task': _try_boolean, 'numrows': _try_int, 'transient_lastddltime': _try_unix_timestamp, } def _parse_storage_info(self): self.storage = {} while True: # end of the road try: tup = self._next_tuple() except StopIteration: break orig_key = tup[0].strip(':') key = _clean_param_name(tup[0]) if key == '' or key.startswith('#'): # section is done break if key == 'storage desc params': self._parse_storage_desc_params() elif key in self._storage_cleaners: result = self._storage_cleaners[key](tup) self.storage[orig_key] = result else: self.storage[orig_key] = tup[1] _storage_cleaners = { 'compressed': _get_type(_try_boolean), 'num buckets': _get_type(_try_int), } def _parse_storage_desc_params(self): params = self._parse_nested_params(self._storage_param_cleaners) self.storage['Desc Params'] = params _storage_param_cleaners = {} def _parse_nested_params(self, cleaners): params = {} while True: try: tup = self._next_tuple() except StopIteration: break if pd.isnull(tup[1]): break key, value = tup[1:] if key.lower() in cleaners: cleaner = cleaners[key.lower()] value = cleaner(value) params[key] = value return params def _clean_param_name(x): return x.strip().strip(':').lower() def _get_meta(attr, key): @property def f(self): data = getattr(self, attr) if isinstance(key, list): result = data for k in key: if k not in result: raise KeyError(k) result = result[k] return result else: return data[key] return f class TableMetadata(object): """ Container for the parsed and wrangled results of DESCRIBE FORMATTED for easier Ibis use (and testing). """ def __init__(self, schema, info, storage, partitions=None): self.schema = schema self.info = info self.storage = storage self.partitions = partitions def __repr__(self): import pprint # Quick and dirty for now buf = StringIO() buf.write(str(type(self))) buf.write('\n') data = { 'schema': self.schema, 'info': self.info, 'storage info': self.storage } if self.partitions is not None: data['partition schema'] = self.partitions pprint.pprint(data, stream=buf) return buf.getvalue() @property def is_partitioned(self): return self.partitions is not None create_time = _get_meta('info', 'CreateTime') location = _get_meta('info', 'Location') owner = _get_meta('info', 'Owner') num_rows = _get_meta('info', ['Table Parameters', 'numRows']) hive_format = _get_meta('storage', 'InputFormat') tbl_properties = _get_meta('info', 'Table Parameters') serde_properties = _get_meta('storage', 'Desc Params') class TableInfo(object): pass class TableStorageInfo(object): pass
apache-2.0
DavidMcDonald1993/ghsom
effective_matplotlib.py
1
2881
# coding: utf-8 # In[56]: get_ipython().magic(u'matplotlib inline') import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatter df = pd.read_excel("https://github.com/chris1610/pbpython/blob/master/data/sample-salesv3.xlsx?raw=true") df.head(n=10) # In[57]: top_10 = (df.groupby('name')['ext price', 'quantity'].agg({'ext price': 'sum', 'quantity': 'count'}) .sort_values(by='ext price', ascending=False))[:10].reset_index() top_10.rename(columns={'name': 'Name', 'ext price': 'Sales', 'quantity': 'Purchases'}, inplace=True) # In[58]: top_10 # In[59]: plt.style.available # In[73]: plt.style.use("ggplot") # In[74]: def currency(x, pos): 'The two args are the value and tick position' if x >= 1000000: return '${:1.1f}M'.format(x*1e-6) return '${:1.0f}K'.format(x*1e-3) # In[75]: fig, ax = plt.subplots(figsize=(5, 6)) top_10.plot(kind='barh', y="Sales", x="Name", ax=ax) ax.set_xlim([-10000, 140000]) ax.set(title="2014 Revenue", xlabel="Total Revenue", ylabel="Customer") formatter = FuncFormatter(currency) ax.xaxis.set_major_formatter(formatter) ax.legend().set_visible(False) # plt.show() # In[76]: # Create the figure and the axes fig, ax = plt.subplots() # Plot the data and get the averaged top_10.plot(kind='barh', y="Sales", x="Name", ax=ax) avg = top_10['Sales'].mean() # Set limits and labels ax.set_xlim([-10000, 140000]) ax.set(title='2014 Revenue', xlabel='Total Revenue', ylabel='Customer') # Add a line for the average ax.axvline(x=avg, color='b', label='Average', linestyle='--', linewidth=1) # Annotate the new customers for cust in [3, 5, 8]: ax.text(115000, cust, "New Customer") # Format the currency formatter = FuncFormatter(currency) ax.xaxis.set_major_formatter(formatter) # Hide the legend ax.legend().set_visible(False) # plt.show() # In[77]: # Get the figure and the axes fig, (ax0, ax1) = plt.subplots(nrows=1,ncols=2, sharey=True, figsize=(7, 4)) top_10.plot(kind='barh', y="Sales", x="Name", ax=ax0) ax0.set_xlim([0, 140000]) ax0.set_xticks(np.arange(0, 150000, 50000)) formatter = FuncFormatter(currency) ax0.xaxis.set_major_formatter(formatter) ax0.set(title='Revenue', xlabel='Total Revenue', ylabel='Customers') # Plot the average as a vertical line avg = top_10['Sales'].mean() ax0.axvline(x=avg, color='b', label='Average', linestyle='--', linewidth=1) # Repeat for the unit plot top_10.plot(kind='barh', y="Purchases", x="Name", ax=ax1) avg = top_10['Purchases'].mean() ax1.set(title='Units', xlabel='Total Units') ax1.axvline(x=avg, color='b', label='Average', linestyle='--', linewidth=1) # Title the figure fig.suptitle('2014 Sales Analysis', fontsize=14, fontweight='bold'); # Hide the legends ax1.legend().set_visible(False) ax0.legend().set_visible(False) # In[45]: fig.canvas.get_supported_filetypes()
gpl-2.0
jpautom/scikit-learn
examples/plot_johnson_lindenstrauss_bound.py
127
7477
r""" ===================================================================== The Johnson-Lindenstrauss bound for embedding with random projections ===================================================================== The `Johnson-Lindenstrauss lemma`_ states that any high dimensional dataset can be randomly projected into a lower dimensional Euclidean space while controlling the distortion in the pairwise distances. .. _`Johnson-Lindenstrauss lemma`: http://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma Theoretical bounds ================== The distortion introduced by a random projection `p` is asserted by the fact that `p` is defining an eps-embedding with good probability as defined by: .. math:: (1 - eps) \|u - v\|^2 < \|p(u) - p(v)\|^2 < (1 + eps) \|u - v\|^2 Where u and v are any rows taken from a dataset of shape [n_samples, n_features] and p is a projection by a random Gaussian N(0, 1) matrix with shape [n_components, n_features] (or a sparse Achlioptas matrix). The minimum number of components to guarantees the eps-embedding is given by: .. math:: n\_components >= 4 log(n\_samples) / (eps^2 / 2 - eps^3 / 3) The first plot shows that with an increasing number of samples ``n_samples``, the minimal number of dimensions ``n_components`` increased logarithmically in order to guarantee an ``eps``-embedding. The second plot shows that an increase of the admissible distortion ``eps`` allows to reduce drastically the minimal number of dimensions ``n_components`` for a given number of samples ``n_samples`` Empirical validation ==================== We validate the above bounds on the the digits dataset or on the 20 newsgroups text document (TF-IDF word frequencies) dataset: - for the digits dataset, some 8x8 gray level pixels data for 500 handwritten digits pictures are randomly projected to spaces for various larger number of dimensions ``n_components``. - for the 20 newsgroups dataset some 500 documents with 100k features in total are projected using a sparse random matrix to smaller euclidean spaces with various values for the target number of dimensions ``n_components``. The default dataset is the digits dataset. To run the example on the twenty newsgroups dataset, pass the --twenty-newsgroups command line argument to this script. For each value of ``n_components``, we plot: - 2D distribution of sample pairs with pairwise distances in original and projected spaces as x and y axis respectively. - 1D histogram of the ratio of those distances (projected / original). We can see that for low values of ``n_components`` the distribution is wide with many distorted pairs and a skewed distribution (due to the hard limit of zero ratio on the left as distances are always positives) while for larger values of n_components the distortion is controlled and the distances are well preserved by the random projection. Remarks ======= According to the JL lemma, projecting 500 samples without too much distortion will require at least several thousands dimensions, irrespective of the number of features of the original dataset. Hence using random projections on the digits dataset which only has 64 features in the input space does not make sense: it does not allow for dimensionality reduction in this case. On the twenty newsgroups on the other hand the dimensionality can be decreased from 56436 down to 10000 while reasonably preserving pairwise distances. """ print(__doc__) import sys from time import time import numpy as np import matplotlib.pyplot as plt from sklearn.random_projection import johnson_lindenstrauss_min_dim from sklearn.random_projection import SparseRandomProjection from sklearn.datasets import fetch_20newsgroups_vectorized from sklearn.datasets import load_digits from sklearn.metrics.pairwise import euclidean_distances # Part 1: plot the theoretical dependency between n_components_min and # n_samples # range of admissible distortions eps_range = np.linspace(0.1, 0.99, 5) colors = plt.cm.Blues(np.linspace(0.3, 1.0, len(eps_range))) # range of number of samples (observation) to embed n_samples_range = np.logspace(1, 9, 9) plt.figure() for eps, color in zip(eps_range, colors): min_n_components = johnson_lindenstrauss_min_dim(n_samples_range, eps=eps) plt.loglog(n_samples_range, min_n_components, color=color) plt.legend(["eps = %0.1f" % eps for eps in eps_range], loc="lower right") plt.xlabel("Number of observations to eps-embed") plt.ylabel("Minimum number of dimensions") plt.title("Johnson-Lindenstrauss bounds:\nn_samples vs n_components") # range of admissible distortions eps_range = np.linspace(0.01, 0.99, 100) # range of number of samples (observation) to embed n_samples_range = np.logspace(2, 6, 5) colors = plt.cm.Blues(np.linspace(0.3, 1.0, len(n_samples_range))) plt.figure() for n_samples, color in zip(n_samples_range, colors): min_n_components = johnson_lindenstrauss_min_dim(n_samples, eps=eps_range) plt.semilogy(eps_range, min_n_components, color=color) plt.legend(["n_samples = %d" % n for n in n_samples_range], loc="upper right") plt.xlabel("Distortion eps") plt.ylabel("Minimum number of dimensions") plt.title("Johnson-Lindenstrauss bounds:\nn_components vs eps") # Part 2: perform sparse random projection of some digits images which are # quite low dimensional and dense or documents of the 20 newsgroups dataset # which is both high dimensional and sparse if '--twenty-newsgroups' in sys.argv: # Need an internet connection hence not enabled by default data = fetch_20newsgroups_vectorized().data[:500] else: data = load_digits().data[:500] n_samples, n_features = data.shape print("Embedding %d samples with dim %d using various random projections" % (n_samples, n_features)) n_components_range = np.array([300, 1000, 10000]) dists = euclidean_distances(data, squared=True).ravel() # select only non-identical samples pairs nonzero = dists != 0 dists = dists[nonzero] for n_components in n_components_range: t0 = time() rp = SparseRandomProjection(n_components=n_components) projected_data = rp.fit_transform(data) print("Projected %d samples from %d to %d in %0.3fs" % (n_samples, n_features, n_components, time() - t0)) if hasattr(rp, 'components_'): n_bytes = rp.components_.data.nbytes n_bytes += rp.components_.indices.nbytes print("Random matrix with size: %0.3fMB" % (n_bytes / 1e6)) projected_dists = euclidean_distances( projected_data, squared=True).ravel()[nonzero] plt.figure() plt.hexbin(dists, projected_dists, gridsize=100, cmap=plt.cm.PuBu) plt.xlabel("Pairwise squared distances in original space") plt.ylabel("Pairwise squared distances in projected space") plt.title("Pairwise distances distribution for n_components=%d" % n_components) cb = plt.colorbar() cb.set_label('Sample pairs counts') rates = projected_dists / dists print("Mean distances rate: %0.2f (%0.2f)" % (np.mean(rates), np.std(rates))) plt.figure() plt.hist(rates, bins=50, normed=True, range=(0., 2.)) plt.xlabel("Squared distances rate: projected / original") plt.ylabel("Distribution of samples pairs") plt.title("Histogram of pairwise distance rates for n_components=%d" % n_components) # TODO: compute the expected value of eps and add them to the previous plot # as vertical lines / region plt.show()
bsd-3-clause
gdetor/SI-RF-Structure
Statistics/protocols.py
1
6518
# Copyright (c) 2014, Georgios Is. Detorakis ([email protected]) and # Nicolas P. Rougier ([email protected]) # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # This file is part of the source code accompany the peer-reviewed article: # [1] "Structure of Receptive Fields in a Computational Model of Area 3b of # Primary Sensory Cortex", Georgios Is. Detorakis and Nicolas P. Rougier, # Frontiers in Computational Neuroscience, 2014. # # ----------------------------------------------------------------------------- # Structure of Receptive Fields in Area 3b of Primary Somatosensory Cortex in # the Alert Monkey - James J. DiCarlo, Kenneth O. Johnson, and Steven S. Hsiao # The Journal of Neuroscience, April 1, 1998, 18(7):2626-2645 # ----------------------------------------------------------------------------- import numpy as np import matplotlib import matplotlib.pyplot as plt def g(x,sigma = 0.1): return np.exp(-x**2/sigma**2) def fromdistance(fn, shape, center=None, dtype=float): def distance(*args): d = 0 for i in range(len(shape)): d += ((args[i]-center[i])/float(max(1,shape[i]-1)))**2 return np.sqrt(d)/np.sqrt(len(shape)) if center == None: center = np.array(list(shape))//2 return fn(np.fromfunction(distance,shape,dtype=dtype)) def Gaussian(shape,center,sigma=0.5): def g(x): return np.exp(-x**2/sigma**2) return fromdistance(g,shape,center) # ----------------------------------------------------------------------------- if __name__ == '__main__': # Seed for reproductibility # ------------------------- np.random.seed(12345) # Standard units # -------------- second = 1.0 millisecond = 1e-3 * second ms = millisecond minute = 60 * second meter = 1.0 millimeter = 1e-3 * meter mm = millimeter micrometer = 1e-6 * meter # Simulation parameters # --------------------- dots_number = 750 drum_length = 250*mm drum_width = 30*mm drum_shift = 200*micrometer drum_velocity = 40*mm / second simulation_time = 30*second sampling_rate = 5*ms dt = sampling_rate skinpatch = 10*mm,10*mm # width x height # Generate the drum pattern # ------------------------- drum = np.zeros( (dots_number,2) ) drum[:,0] = np.random.uniform(0,drum_length,dots_number) drum[:,1] = np.random.uniform(0,drum_width, dots_number) drum_x,drum_y = drum[:,0], drum[:,1] dots = [] n = 0 for t in np.arange(0.0,simulation_time,dt): z = t * drum_velocity x = z % (drum_length - skinpatch[0]) y = int(z / (drum_length - skinpatch[0])) * drum_shift # Maybe this should be adjusted since a stimulus lying outside the skin # patch may still have influence on the input (for example, if it lies # very near the border) xmin, xmax = x, x+skinpatch[0] ymin, ymax = y, y+skinpatch[1] # Get dots contained on the skin patch (and normalize coordinates) d = drum[(drum_x > (xmin)) * (drum_x < (xmax)) * (drum_y > (ymin)) * (drum_y < (ymax))] d -= (x,y) d /= skinpatch[0],skinpatch[1] dots.extend((d*5).tolist()) dots = np.array(dots) n = len(dots) X ,Y = dots[:,0], dots[:,1] plt.figure(figsize = (20,8)) ax = plt.subplot(132, aspect=1) ax.scatter(X, Y, s=1, edgecolor='none', facecolor='k') ax.set_xlim(0,5) ax.set_xlabel("mm") ax.set_ylim(0,5) ax.set_ylabel("mm") ax.set_title("Drum Protocol (30 seconds), %d stimuli" % n) ax.text(0.25, 4.75, 'B', weight='bold', fontsize=32, color='k', ha='left', va='top') ax = plt.subplot(131, aspect=1) X = np.random.uniform(0,5,50000) Y = np.random.uniform(0,5,50000) ax.scatter(X, Y, s=1, edgecolor='none', facecolor='k') ax.set_xlim(0,5) ax.set_xlabel("mm") ax.set_ylim(0,5) ax.set_ylabel("mm") ax.set_title("Training Protocol, %d stimuli" % 50000) ax.text(0.25, 4.75, 'A', weight='bold', fontsize=32, color='k', ha='left', va='top') ax = plt.subplot(133, aspect=1) XY = np.zeros((25000/2,2)) d = 5.0/4 for i in range(len(XY)): x,y = np.random.uniform(0,5,2) while d < x < 5-d and d < y < 5-d: x,y = np.random.uniform(0,5,2) XY[i] = x,y X,Y = XY[:,0], XY[:,1] ax.scatter(X, Y, s=1, edgecolor='none', facecolor='k') ax.text(0.25, 4.75, 'C', weight='bold', fontsize=32, color='k', ha='left', va='top') X = d+np.random.uniform(0,2.5,25000/2) Y = d+np.random.uniform(0,2.5,25000/2) ax.scatter(X, Y, s=1, edgecolor='none', facecolor='k') ax.set_xlim(0,5) ax.set_xlabel("mm") ax.set_ylim(0,5) ax.set_ylabel("mm") ax.set_title("RoI Protocol, %d stimuli" % 25000) plt.savefig("protocols.png", dpi=200) plt.show()
gpl-3.0
dataplumber/nexus
analysis/webservice/algorithms/doms/histogramplot.py
1
3377
import BaseDomsHandler import ResultsStorage import string from cStringIO import StringIO import matplotlib.mlab as mlab from multiprocessing import Process, Manager import numpy as np import matplotlib.pyplot as plt import matplotlib matplotlib.use('Agg') PARAMETER_TO_FIELD = { "sst": "sea_water_temperature", "sss": "sea_water_salinity" } PARAMETER_TO_UNITS = { "sst": "($^\circ$C)", "sss": "(g/L)" } class DomsHistogramPlotQueryResults(BaseDomsHandler.DomsQueryResults): def __init__(self, x, parameter, primary, secondary, args=None, bounds=None, count=None, details=None, computeOptions=None, executionId=None, plot=None): BaseDomsHandler.DomsQueryResults.__init__(self, results=x, args=args, details=details, bounds=bounds, count=count, computeOptions=computeOptions, executionId=executionId) self.__primary = primary self.__secondary = secondary self.__x = x self.__parameter = parameter self.__plot = plot def toImage(self): return self.__plot def render(d, x, primary, secondary, parameter, norm_and_curve=False): fig, ax = plt.subplots() fig.suptitle(string.upper("%s vs. %s" % (primary, secondary)), fontsize=14, fontweight='bold') n, bins, patches = plt.hist(x, 50, normed=norm_and_curve, facecolor='green', alpha=0.75) if norm_and_curve: mean = np.mean(x) variance = np.var(x) sigma = np.sqrt(variance) y = mlab.normpdf(bins, mean, sigma) l = plt.plot(bins, y, 'r--', linewidth=1) ax.set_title('n = %d' % len(x)) units = PARAMETER_TO_UNITS[parameter] if parameter in PARAMETER_TO_UNITS else PARAMETER_TO_UNITS["sst"] ax.set_xlabel("%s - %s %s" % (primary, secondary, units)) if norm_and_curve: ax.set_ylabel("Probability per unit difference") else: ax.set_ylabel("Frequency") plt.grid(True) sio = StringIO() plt.savefig(sio, format='png') d['plot'] = sio.getvalue() def renderAsync(x, primary, secondary, parameter, norm_and_curve): manager = Manager() d = manager.dict() p = Process(target=render, args=(d, x, primary, secondary, parameter, norm_and_curve)) p.start() p.join() return d['plot'] def createHistogramPlot(id, parameter, norm_and_curve=False): with ResultsStorage.ResultsRetrieval() as storage: params, stats, data = storage.retrieveResults(id) primary = params["primary"] secondary = params["matchup"][0] x = createHistTable(data, secondary, parameter) plot = renderAsync(x, primary, secondary, parameter, norm_and_curve) r = DomsHistogramPlotQueryResults(x=x, parameter=parameter, primary=primary, secondary=secondary, args=params, details=stats, bounds=None, count=None, computeOptions=None, executionId=id, plot=plot) return r def createHistTable(results, secondary, parameter): x = [] field = PARAMETER_TO_FIELD[parameter] if parameter in PARAMETER_TO_FIELD else PARAMETER_TO_FIELD["sst"] for entry in results: for match in entry["matches"]: if match["source"] == secondary: if field in entry and field in match: a = entry[field] b = match[field] x.append((a - b)) return x
apache-2.0
probml/pyprobml
scripts/lms_demo.py
1
6196
# SGD on linear regression aka least mean squares # Written by Duane Rich # Based on https://github.com/probml/pmtk3/blob/master/demos/LMSdemoSimple.m import numpy as np import matplotlib.pyplot as plt from pyprobml_utils import save_fig #from mpl_toolkits.mplot3d import Axes3D from scipy.optimize import minimize plt.rcParams["figure.figsize"] = (5,5) # width x height np.random.seed(0) #Generating synthetic data: N = 21 wTrue = np.array([1.45, 0.92]) X = np.random.uniform(-2, 2, N) X = np.column_stack((np.ones(N), X)) y = wTrue[0] * X[:, 0] + wTrue[1] * X[:, 1] + np.random.normal(0, .1, N) #Plot SSE surface over parameter space. v = np.arange(-1, 3, .1) W0, W1 = np.meshgrid(v, v) SS = np.array([sum((w0 * X[:, 0] + w1 * X[:, 1] - y) ** 2) for w0, w1 in zip(np.ravel(W0), np.ravel(W1))]) SS = SS.reshape(W0.shape) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') surf = ax.plot_surface(W0, W1, SS) save_fig('lmsSSE.pdf') plt.draw() #Mean SE with gradient and Hessian: def LinregLossScaled(w, X, y): Xt = np.transpose(X) XtX = Xt.dot(X) N = X.shape[0] err = X.dot(w) - y f = np.mean(err*err) g = (1/N) * Xt.dot(err) H = (1/N) * XtX return f, g, H #Starting point from to search for optimal parameters w0 = np.array([-0.5, 2]) # Determine loss at optimal param values: def funObj(w): out,_,_ = LinregLossScaled(w, X, y) return out res = minimize(funObj, w0, method='L-BFGS-B') wOpt = res.x fopt = funObj(wOpt) # fopt,_ ,_ = LinregLossScaled(wTrue, X, y) #Options for stochastic gradient descent opts = {} opts['batchsize'] = 1 opts['verbose'] = True opts['storeParamTrace'] = True opts['storeFvalTrace'] = True opts['storeStepTrace'] = True opts['maxUpdates'] = 30 opts['eta0'] = 0.5 opts['t0'] = 3 #Breaks the matrix X and vector y into batches def batchify(X, y, batchsize): nTrain = X.shape[0] batchdata = [] batchlabels = [] for i in range(0, nTrain, batchsize): nxt = min(i+batchsize, nTrain+1) batchdata.append(X[i:nxt, :]) batchlabels.append(y[i:nxt]) return batchdata, batchlabels def stochgradSimple(objFun, w0, X, y, *args, **kwargs): #Stochastic gradient descent. #Algorithm works by breaking up the data into batches. It #determines a gradient for each batch and moves the current #choice of parameters in that direction. The extent to which #we move in that direction is determined by our shrinking #stepsize over time. #Includes options for the batchsize, total number of sweeps over #the data (maxepoch), total number of batches inspected (maxUpdated, #whether the algo should print updates as it progresses, options #controlling what infomation we keep track of,and parameters to #determine how the step size shinks over time. #Default options batchsize = kwargs['batchsize'] if 'batchsize' in kwargs else 10 maxepoch = kwargs['maxepoch'] if 'maxepoch' in kwargs else 500 maxUpdates = kwargs['maxUpdates'] if 'maxUpdates' in kwargs else 1000 verbose = kwargs['verbose'] if 'verbose' in kwargs else False storeParamTrace = kwargs['storeParamTrace'] if 'storeParamTrace' in kwargs else False storeFvalTrace = kwargs['storeFvalTrace'] if 'storeFvalTrace' in kwargs else False storeStepTrace = kwargs['storeStepTrace'] if 'storeStepTrace' in kwargs else False t0 = kwargs['t0'] if 't0' in kwargs else 1 eta0 = kwargs['eta0'] if 'eta0' in kwargs else 0.1 stepSizeFn = kwargs['stepSizeFn'] if 'stepSizeFn' in kwargs else lambda x: eta0*t0/(x+t0) #Turn the data into batches batchdata, batchlabels = batchify(X, y, batchsize); num_batches = len(batchlabels) if verbose: print('%d batches of size %d\n' %(num_batches, batchsize)) w = w0 trace = {} trace['fvalMinibatch'] = [] trace['params'] = [] trace['stepSize'] = [] # Main loop: nupdates = 1 for epoch in range(1, maxepoch+1): if verbose: print('epoch %d\n' % epoch) for b in range(num_batches): bdata = batchdata[b] blabels = batchlabels[b] if verbose and b % 100 == 0: print('epoch %d batch %d nupdates %d\n' %(epoch, b, nupdates)) fb, g, _ = objFun(w, bdata, blabels, *args) eta = stepSizeFn(nupdates) w = w - eta*g #steepest descent nupdates += 1 if storeParamTrace: #Storing the history of the parameters may take a lot of space trace['params'].append(w) if storeFvalTrace: trace['fvalMinibatch'].append(fb) if storeStepTrace: trace['stepSize'].append(eta) if nupdates > maxUpdates: break if nupdates > maxUpdates: break return w, trace w, trace = stochgradSimple(LinregLossScaled, w0, X, y, **opts) def stochgradTracePostprocess(objFun, trace, X, y, *args): #This is to determine the losses for each set of parameters #chosen over the parameter path. fvalhist = [] for t in range(len(trace)): fval,_ ,_ = objFun(trace[t], X, y, *args) fvalhist.append(fval) return fvalhist print(w) whist = np.asarray(trace['params']) #Parameter trajectory if True: fig, ax = plt.subplots() ax.set_title('black line = LMS trajectory towards LS soln (red cross)') CS = plt.contour(W0, W1, SS) plt.plot(wOpt[0], wOpt[1], 'x', color='r', ms=10, mew=5) plt.plot(whist[:, 0], whist[:, 1], 'ko-', lw=2) save_fig('lmsTraj.pdf') plt.draw() #Loss values over the parameter path compared to the optimal loss. if True: fvalhist = np.asarray(stochgradTracePostprocess(LinregLossScaled, trace['params'], X, y)) fig, ax = plt.subplots() ax.set_title('RSS vs iteration') plt.plot(fvalhist,'ko-', lw=2) plt.axhline(fopt) save_fig('lmsRssHist.pdf') plt.draw() #Stepsize graph if desired: if True: stephist = np.asarray(trace['stepSize']) fig, ax = plt.subplots() ax.set_title('Stepsize vs iteration') plt.plot(stephist,'ko-', lw=2) save_fig('lmsStepSizeHist.pdf') plt.draw() plt.show()
mit
zerothi/sids
sisl/supercell.py
1
37042
""" Define a supercell This class is the basis of many different objects. """ import math import warnings from numbers import Integral import numpy as np from numpy import dot from ._internal import set_module from . import _plot as plt from . import _array as _a from .utils.mathematics import fnorm from .shape.prism4 import Cuboid from .quaternion import Quaternion from ._math_small import cross3, dot3 from ._supercell import cell_invert, cell_reciprocal __all__ = ['SuperCell', 'SuperCellChild'] @set_module("sisl") class SuperCell: r""" A cell class to retain lattice vectors and a supercell structure The supercell structure is comprising the *primary* unit-cell and neighbouring unit-cells. The number of supercells is given by the attribute `nsc` which is a vector with 3 elements, one per lattice vector. It describes *how many* times the primary unit-cell is extended along the i'th lattice vector. For ``nsc[i] == 3`` the supercell is made up of 3 unit-cells. One *behind*, the primary unit-cell and one *after*. Parameters ---------- cell : array_like the lattice parameters of the unit cell (the actual cell is returned from `tocell`. nsc : array_like of int number of supercells along each latticevector origo : (3,) of float the origo of the supercell. Attributes ---------- cell : (3, 3) of float the lattice vectors (``cell[i, :]`` is the i'th vector) """ # We limit the scope of this SuperCell object. __slots__ = ('cell', '_origo', 'volume', 'nsc', 'n_s', '_sc_off', '_isc_off') def __init__(self, cell, nsc=None, origo=None): if nsc is None: nsc = [1, 1, 1] # If the length of cell is 6 it must be cell-parameters, not # actual cell coordinates self.cell = self.tocell(cell) if origo is None: self._origo = _a.zerosd(3) else: self._origo = _a.arrayd(origo) if self._origo.size != 3: raise ValueError("Origo *must* be 3 numbers.") # Set the volume self._update_vol() self.nsc = _a.onesi(3) # Set the super-cell self.set_nsc(nsc=nsc) @property def length(self): """ Length of each lattice vector """ return fnorm(self.cell) @property def origo(self): """ Origo for the cell """ return self._origo @origo.setter def origo(self, origo): """ Set origo """ self._origo[:] = origo def area(self, ax0, ax1): """ Calculate the area spanned by the two axis `ax0` and `ax1` """ return (cross3(self.cell[ax0, :], self.cell[ax1, :]) ** 2).sum() ** 0.5 def toCuboid(self, orthogonal=False): """ A cuboid with vectors as this unit-cell and center with respect to its origo Parameters ---------- orthogonal : bool, optional if true the cuboid has orthogonal sides such that the entire cell is contained """ if not orthogonal: return Cuboid(self.cell.copy(), self.center() + self.origo) def find_min_max(cmin, cmax, new): for i in range(3): cmin[i] = min(cmin[i], new[i]) cmax[i] = max(cmax[i], new[i]) cmin = self.cell.min(0) cmax = self.cell.max(0) find_min_max(cmin, cmax, self.cell[[0, 1], :].sum(0)) find_min_max(cmin, cmax, self.cell[[0, 2], :].sum(0)) find_min_max(cmin, cmax, self.cell[[1, 2], :].sum(0)) find_min_max(cmin, cmax, self.cell.sum(0)) return Cuboid(cmax - cmin, self.center() + self.origo) def parameters(self, rad=False): r""" Cell parameters of this cell in 3 lengths and 3 angles Notes ----- Since we return the length and angles between vectors it may not be possible to recreate the same cell. Only in the case where the first lattice vector *only* has a Cartesian :math:`x` component will this be the case Parameters ---------- rad : bool, optional whether the angles are returned in radians (otherwise in degree) Returns ------- float length of first lattice vector float length of second lattice vector float length of third lattice vector float angle between b and c vectors float angle between a and c vectors float angle between a and b vectors """ if rad: f = 1. else: f = 180 / np.pi # Calculate length of each lattice vector cell = self.cell.copy() abc = fnorm(cell) from math import acos cell = cell / abc.reshape(-1, 1) alpha = acos(dot3(cell[1, :], cell[2, :])) * f beta = acos(dot3(cell[0, :], cell[2, :])) * f gamma = acos(dot3(cell[0, :], cell[1, :])) * f return abc[0], abc[1], abc[2], alpha, beta, gamma def _update_vol(self): self.volume = abs(dot3(self.cell[0, :], cross3(self.cell[1, :], self.cell[2, :]))) def _fill(self, non_filled, dtype=None): """ Return a zero filled array of length 3 """ if len(non_filled) == 3: return non_filled # Fill in zeros # This will purposefully raise an exception # if the dimensions of the periodic ones # are not consistent. if dtype is None: try: dtype = non_filled.dtype except Exception: dtype = np.dtype(non_filled[0].__class__) if dtype == np.dtype(int): # Never go higher than int32 for default # guesses on integer lists. dtype = np.int32 f = np.zeros(3, dtype) i = 0 if self.nsc[0] > 1: f[0] = non_filled[i] i += 1 if self.nsc[1] > 1: f[1] = non_filled[i] i += 1 if self.nsc[2] > 1: f[2] = non_filled[i] return f def _fill_sc(self, supercell_index): """ Return a filled supercell index by filling in zeros where needed """ return self._fill(supercell_index, dtype=np.int32) def set_nsc(self, nsc=None, a=None, b=None, c=None): """ Sets the number of supercells in the 3 different cell directions Parameters ---------- nsc : list of int, optional number of supercells in each direction a : integer, optional number of supercells in the first unit-cell vector direction b : integer, optional number of supercells in the second unit-cell vector direction c : integer, optional number of supercells in the third unit-cell vector direction """ if not nsc is None: for i in range(3): if not nsc[i] is None: self.nsc[i] = nsc[i] if a: self.nsc[0] = a if b: self.nsc[1] = b if c: self.nsc[2] = c # Correct for misplaced number of unit-cells for i in range(3): if self.nsc[i] == 0: self.nsc[i] = 1 if np.sum(self.nsc % 2) != 3: raise ValueError( "Supercells has to be of un-even size. The primary cell counts " + "one, all others count 2") # We might use this very often, hence we store it self.n_s = _a.prodi(self.nsc) self._sc_off = _a.zerosi([self.n_s, 3]) self._isc_off = _a.zerosi(self.nsc) n = self.nsc # We define the following ones like this: def ret_range(val): i = val // 2 return range(-i, i+1) x = ret_range(n[0]) y = ret_range(n[1]) z = ret_range(n[2]) i = 0 for iz in z: for iy in y: for ix in x: if ix == 0 and iy == 0 and iz == 0: continue # Increment index i += 1 # The offsets for the supercells in the # sparsity pattern self._sc_off[i, 0] = ix self._sc_off[i, 1] = iy self._sc_off[i, 2] = iz self._update_isc_off() def _update_isc_off(self): """ Internal routine for updating the supercell indices """ for i in range(self.n_s): d = self.sc_off[i, :] self._isc_off[d[0], d[1], d[2]] = i @property def sc_off(self): """ Integer supercell offsets """ return self._sc_off @sc_off.setter def sc_off(self, sc_off): """ Set the supercell offset """ self._sc_off[:, :] = _a.arrayi(sc_off, order='C') self._update_isc_off() @property def isc_off(self): """ Internal indexed supercell ``[ia, ib, ic] == i`` """ return self._isc_off def __iter__(self): """ Iterate the supercells and the indices of the supercells """ yield from enumerate(self.sc_off) def copy(self, cell=None, origo=None): """ A deepcopy of the object Parameters ---------- cell : array_like the new cell parameters origo : array_like the new origo """ if origo is None: origo = self.origo.copy() if cell is None: copy = self.__class__(np.copy(self.cell), nsc=np.copy(self.nsc), origo=origo) else: copy = self.__class__(np.copy(cell), nsc=np.copy(self.nsc), origo=origo) # Ensure that the correct super-cell information gets carried through if not np.allclose(copy.sc_off, self.sc_off): copy.sc_off = self.sc_off return copy def fit(self, xyz, axis=None, tol=0.05): """ Fit the supercell to `xyz` such that the unit-cell becomes periodic in the specified directions The fitted supercell tries to determine the unit-cell parameters by solving a set of linear equations corresponding to the current supercell vectors. >>> numpy.linalg.solve(self.cell.T, xyz.T) It is important to know that this routine will *only* work if at least some of the atoms are integer offsets of the lattice vectors. I.e. the resulting fit will depend on the translation of the coordinates. Parameters ---------- xyz : array_like ``shape(*, 3)`` the coordinates that we will wish to encompass and analyze. axis : None or array_like if ``None`` equivalent to ``[0, 1, 2]``, else only the cell-vectors along the provided axis will be used tol : float tolerance (in Angstrom) of the positions. I.e. we neglect coordinates which are not within the radius of this magnitude """ # In case the passed coordinates are from a Geometry from .geometry import Geometry if isinstance(xyz, Geometry): xyz = xyz.xyz[:, :] cell = np.copy(self.cell[:, :]) # Get fractional coordinates to get the divisions in the current cell x = dot(xyz, self.icell.T) # Now we should figure out the correct repetitions # by rounding to integer positions of the cell vectors ix = np.rint(x) # Figure out the displacements from integers # Then reduce search space by removing those coordinates # that are more than the tolerance. dist = np.sqrt((dot(cell.T, (x - ix).T) ** 2).sum(0)) idx = (dist <= tol).nonzero()[0] if len(idx) == 0: raise ValueError('Could not fit the cell parameters to the coordinates ' 'due to insufficient accuracy (try increase the tolerance)') # Reduce problem to allowed values below the tolerance x = x[idx, :] ix = ix[idx, :] # Reduce to total repetitions ireps = np.amax(ix, axis=0) - np.amin(ix, axis=0) + 1 # Only repeat the axis requested if isinstance(axis, Integral): axis = [axis] # Reduce the non-set axis if not axis is None: for ax in [0, 1, 2]: if ax not in axis: ireps[ax] = 1 # Enlarge the cell vectors cell[0, :] *= ireps[0] cell[1, :] *= ireps[1] cell[2, :] *= ireps[2] return self.copy(cell) def swapaxes(self, a, b): """ Swap axis `a` and `b` in a new `SuperCell` If ``swapaxes(0,1)`` it returns the 0 in the 1 values. """ # Create index vector idx = _a.arrayi([0, 1, 2]) idx[b] = a idx[a] = b # There _can_ be errors when sc_off isn't created by sisl return self.__class__(np.copy(self.cell[idx, :], order='C'), nsc=self.nsc[idx], origo=np.copy(self.origo[idx], order='C')) def plane(self, ax1, ax2, origo=True): """ Query point and plane-normal for the plane spanning `ax1` and `ax2` Parameters ---------- ax1 : int the first axis vector ax2 : int the second axis vector origo : bool, optional whether the plane intersects the origo or the opposite corner of the unit-cell. Returns ------- normal_V : numpy.ndarray planes normal vector (pointing outwards with regards to the cell) p : numpy.ndarray a point on the plane Examples -------- All 6 faces of the supercell can be retrieved like this: >>> sc = SuperCell(4) >>> n1, p1 = sc.plane(0, 1, True) >>> n2, p2 = sc.plane(0, 1, False) >>> n3, p3 = sc.plane(0, 2, True) >>> n4, p4 = sc.plane(0, 2, False) >>> n5, p5 = sc.plane(1, 2, True) >>> n6, p6 = sc.plane(1, 2, False) However, for performance critical calculations it may be advantageous to do this: >>> sc = SuperCell(4) >>> uc = sc.cell.sum(0) >>> n1, p1 = sc.plane(0, 1) >>> n2 = -n1 >>> p2 = p1 + uc >>> n3, p3 = sc.plane(0, 2) >>> n4 = -n3 >>> p4 = p3 + uc >>> n5, p5 = sc.plane(1, 2) >>> n6 = -n5 >>> p6 = p5 + uc Secondly, the variables ``p1``, ``p3`` and ``p5`` are always ``[0, 0, 0]`` and ``p2``, ``p4`` and ``p6`` are always ``uc``. Hence this may be used to further reduce certain computations. """ cell = self.cell n = cross3(cell[ax1, :], cell[ax2, :]) # Normalize n /= dot3(n, n) ** 0.5 # Now we need to figure out if the normal vector # is pointing outwards # Take the cell center up = cell.sum(0) # Calculate the distance from the plane to the center of the cell # If d is positive then the normal vector is pointing towards # the center, so rotate 180 if dot3(n, up / 2) > 0.: n *= -1 if origo: return n, _a.zerosd([3]) # We have to reverse the normal vector return -n, up def __mul__(self, m): """ Implement easy repeat function Parameters ---------- m : int or array_like of length 3 a single integer may be regarded as [m, m, m]. A list will expand the unit-cell along the equivalent lattice vector. Returns ------- SuperCell enlarged supercell """ # Simple form if isinstance(m, Integral): return self.tile(m, 0).tile(m, 1).tile(m, 2) sc = self.copy() for i, r in enumerate(m): sc = sc.tile(r, i) return sc @property def icell(self): """ Returns the reciprocal (inverse) cell for the `SuperCell`. Note: The returned vectors are still in ``[0, :]`` format and not as returned by an inverse LAPACK algorithm. """ return cell_invert(self.cell) @property def rcell(self): """ Returns the reciprocal cell for the `SuperCell` with ``2*np.pi`` Note: The returned vectors are still in [0, :] format and not as returned by an inverse LAPACK algorithm. """ return cell_reciprocal(self.cell) def cell_length(self, length): """ Calculate cell vectors such that they each have length `length` Parameters ---------- length : float or array_like length for cell vectors, if an array it corresponds to the individual vectors and it must have length 3 Returns ------- numpy.ndarray cell-vectors with prescribed length """ length = _a.asarrayd(length) if length.size == 1: length = np.tile(length, 3) if length.size != 3: raise ValueError(self.__class__.__name__ + '.cell_length length parameter should be a single ' 'float, or an array of 3 values.') return self.cell * (length.ravel() / self.length).reshape(3, 1) def rotate(self, angle, v, only='abc', rad=False): """ Rotates the supercell, in-place by the angle around the vector One can control which cell vectors are rotated by designating them individually with ``only='[abc]'``. Parameters ---------- angle : float the angle of which the geometry should be rotated v : array_like the vector around the rotation is going to happen ``v = [1,0,0]`` will rotate in the ``yz`` plane rad : bool, optional Whether the angle is in radians (True) or in degrees (False) only : ('abc'), str, optional only rotate the designated cell vectors. """ # flatten => copy vn = _a.asarrayd(v).flatten() vn /= fnorm(vn) q = Quaternion(angle, vn, rad=rad) q /= q.norm() # normalize the quaternion cell = np.copy(self.cell) if 'a' in only: cell[0, :] = q.rotate(self.cell[0, :]) if 'b' in only: cell[1, :] = q.rotate(self.cell[1, :]) if 'c' in only: cell[2, :] = q.rotate(self.cell[2, :]) return self.copy(cell) def offset(self, isc=None): """ Returns the supercell offset of the supercell index """ if isc is None: return _a.arrayd([0, 0, 0]) return dot(isc, self.cell) def add(self, other): """ Add two supercell lattice vectors to each other Parameters ---------- other : SuperCell, array_like the lattice vectors of the other supercell to add """ if not isinstance(other, SuperCell): other = SuperCell(other) cell = self.cell + other.cell origo = self.origo + other.origo nsc = np.where(self.nsc > other.nsc, self.nsc, other.nsc) return self.__class__(cell, nsc=nsc, origo=origo) def __add__(self, other): return self.add(other) __radd__ = __add__ def add_vacuum(self, vacuum, axis): """ Add vacuum along the `axis` lattice vector Parameters ---------- vacuum : float amount of vacuum added, in Ang axis : int the lattice vector to add vacuum along """ cell = np.copy(self.cell) d = cell[axis, :].copy() # normalize to get direction vector cell[axis, :] += d * (vacuum / fnorm(d)) return self.copy(cell) def sc_index(self, sc_off): """ Returns the integer index in the sc_off list that corresponds to `sc_off` Returns the index for the supercell in the global offset. Parameters ---------- sc_off : (3,) or list of (3,) super cell specification. For each axis having value ``None`` all supercells along that axis is returned. """ def _assert(m, v): if np.any(np.abs(v) > m): raise ValueError("Requesting a non-existing supercell index") hsc = self.nsc // 2 if len(sc_off) == 0: return _a.arrayi([[]]) elif isinstance(sc_off[0], np.ndarray): _assert(hsc[0], sc_off[:, 0]) _assert(hsc[1], sc_off[:, 1]) _assert(hsc[2], sc_off[:, 2]) return self._isc_off[sc_off[:, 0], sc_off[:, 1], sc_off[:, 2]] elif isinstance(sc_off[0], (tuple, list)): # We are dealing with a list of lists sc_off = np.asarray(sc_off) _assert(hsc[0], sc_off[:, 0]) _assert(hsc[1], sc_off[:, 1]) _assert(hsc[2], sc_off[:, 2]) return self._isc_off[sc_off[:, 0], sc_off[:, 1], sc_off[:, 2]] # Fall back to the other routines sc_off = self._fill_sc(sc_off) if sc_off[0] is not None and sc_off[1] is not None and sc_off[2] is not None: _assert(hsc[0], sc_off[0]) _assert(hsc[1], sc_off[1]) _assert(hsc[2], sc_off[2]) return self._isc_off[sc_off[0], sc_off[1], sc_off[2]] # We build it because there are 'none' if sc_off[0] is None: idx = _a.arangei(self.n_s) else: idx = (self.sc_off[:, 0] == sc_off[0]).nonzero()[0] if not sc_off[1] is None: idx = idx[(self.sc_off[idx, 1] == sc_off[1]).nonzero()[0]] if not sc_off[2] is None: idx = idx[(self.sc_off[idx, 2] == sc_off[2]).nonzero()[0]] return idx def scale(self, scale): """ Scale lattice vectors Does not scale `origo`. Parameters ---------- scale : ``float`` the scale factor for the new lattice vectors """ return self.copy(self.cell * scale) def tile(self, reps, axis): """ Extend the unit-cell `reps` times along the `axis` lattice vector Notes ----- This is *exactly* equivalent to the `repeat` routine. Parameters ---------- reps : int number of times the unit-cell is repeated along the specified lattice vector axis : int the lattice vector along which the repetition is performed """ cell = np.copy(self.cell) nsc = np.copy(self.nsc) origo = np.copy(self.origo) cell[axis, :] *= reps # Only reduce the size if it is larger than 5 if nsc[axis] > 3 and reps > 1: # This is number of connections for the primary cell h_nsc = nsc[axis] // 2 # The new number of supercells will then be nsc[axis] = max(1, int(math.ceil(h_nsc / reps))) * 2 + 1 return self.__class__(cell, nsc=nsc, origo=origo) def repeat(self, reps, axis): """ Extend the unit-cell `reps` times along the `axis` lattice vector Notes ----- This is *exactly* equivalent to the `tile` routine. Parameters ---------- reps : int number of times the unit-cell is repeated along the specified lattice vector axis : int the lattice vector along which the repetition is performed """ return self.tile(reps, axis) def cut(self, seps, axis): """ Cuts the cell into several different sections. """ cell = np.copy(self.cell) cell[axis, :] /= seps return self.copy(cell) def append(self, other, axis): """ Appends other `SuperCell` to this grid along axis """ cell = np.copy(self.cell) cell[axis, :] += other.cell[axis, :] return self.copy(cell) def prepend(self, other, axis): """ Prepends other `SuperCell` to this grid along axis For a `SuperCell` object this is equivalent to `append`. """ return self.append(other, axis) def move(self, v): """ Appends additional space to the object """ # check which cell vector resembles v the most, # use that cell = np.copy(self.cell) p = np.empty([3], np.float64) cl = fnorm(cell) for i in range(3): p[i] = abs(np.sum(cell[i, :] * v)) / cl[i] cell[np.argmax(p), :] += v return self.copy(cell) translate = move def center(self, axis=None): """ Returns center of the `SuperCell`, possibly with respect to an axis """ if axis is None: return self.cell.sum(0) * 0.5 return self.cell[axis, :] * 0.5 @classmethod def tocell(cls, *args): r""" Returns a 3x3 unit-cell dependent on the input 1 argument a unit-cell along Cartesian coordinates with side-length equal to the argument. 3 arguments the diagonal components of a Cartesian unit-cell 6 arguments the cell parameters give by :math:`a`, :math:`b`, :math:`c`, :math:`\alpha`, :math:`\beta` and :math:`\gamma` (angles in degrees). 9 arguments a 3x3 unit-cell. Parameters ---------- *args : float May be either, 1, 3, 6 or 9 elements. Note that the arguments will be put into an array and flattened before checking the number of arguments. Examples -------- >>> cell_1_1_1 = SuperCell.tocell(1.) >>> cell_1_2_3 = SuperCell.tocell(1., 2., 3.) >>> cell_1_2_3 = SuperCell.tocell([1., 2., 3.]) # same as above """ # Convert into true array (flattened) args = _a.asarrayd(args).ravel() nargs = len(args) # A square-box if nargs == 1: return np.diag([args[0]] * 3) # Diagonal components if nargs == 3: return np.diag(args) # Cell parameters if nargs == 6: cell = _a.zerosd([3, 3]) a = args[0] b = args[1] c = args[2] alpha = args[3] beta = args[4] gamma = args[5] from math import sqrt, cos, sin, pi pi180 = pi / 180. cell[0, 0] = a g = gamma * pi180 cg = cos(g) sg = sin(g) cell[1, 0] = b * cg cell[1, 1] = b * sg b = beta * pi180 cb = cos(b) sb = sin(b) cell[2, 0] = c * cb a = alpha * pi180 d = (cos(a) - cb * cg) / sg cell[2, 1] = c * d cell[2, 2] = c * sqrt(sb ** 2 - d ** 2) return cell # A complete cell if nargs == 9: return args.copy().reshape(3, 3) raise ValueError( "Creating a unit-cell has to have 1, 3 or 6 arguments, please correct.") def is_orthogonal(self): """ Returns true if the cell vectors are orthogonal """ # Convert to unit-vector cell cell = np.copy(self.cell) cl = fnorm(cell) cell[0, :] = cell[0, :] / cl[0] cell[1, :] = cell[1, :] / cl[1] cell[2, :] = cell[2, :] / cl[2] i_s = dot3(cell[0, :], cell[1, :]) < 0.001 i_s = dot3(cell[0, :], cell[2, :]) < 0.001 and i_s i_s = dot3(cell[1, :], cell[2, :]) < 0.001 and i_s return i_s def parallel(self, other, axis=(0, 1, 2)): """ Returns true if the cell vectors are parallel to `other` Parameters ---------- other : SuperCell the other object to check whether the axis are parallel axis : int or array_like only check the specified axis (default to all) """ axis = _a.asarrayi(axis).ravel() # Convert to unit-vector cell for i in axis: a = self.cell[i, :] / fnorm(self.cell[i, :]) b = other.cell[i, :] / fnorm(other.cell[i, :]) if abs(dot3(a, b) - 1) > 0.001: return False return True def angle(self, i, j, rad=False): """ The angle between two of the cell vectors Parameters ---------- i : int the first cell vector j : int the second cell vector rad : bool, optional whether the returned value is in radians """ n = fnorm(self.cell[[i, j], :]) ang = math.acos(dot3(self.cell[i, :], self.cell[j, :]) / (n[0] * n[1])) if rad: return ang return math.degrees(ang) @staticmethod def read(sile, *args, **kwargs): """ Reads the supercell from the `Sile` using ``Sile.read_supercell`` Parameters ---------- sile : Sile, str or pathlib.Path a `Sile` object which will be used to read the supercell if it is a string it will create a new sile using `sisl.io.get_sile`. """ # This only works because, they *must* # have been imported previously from sisl.io import get_sile, BaseSile if isinstance(sile, BaseSile): return sile.read_supercell(*args, **kwargs) else: with get_sile(sile) as fh: return fh.read_supercell(*args, **kwargs) def equal(self, other, tol=1e-4): """ Check whether two supercell are equivalent Parameters ---------- tol : float, optional tolerance value for the cell vectors and origo """ if not isinstance(other, (SuperCell, SuperCellChild)): return False for tol in [1e-2, 1e-3, 1e-4]: same = np.allclose(self.cell, other.cell, atol=tol) same = same and np.allclose(self.nsc, other.nsc) same = same and np.allclose(self.origo, other.origo, atol=tol) return same def __str__(self): """ Returns a string representation of the object """ # Create format for lattice vectors s = ',\n '.join(['ABC'[i] + '=[{:.3f}, {:.3f}, {:.3f}]'.format(*self.cell[i]) for i in (0, 1, 2)]) return self.__class__.__name__ + ('{{nsc: [{:} {:} {:}],\n ' + s + ',\n}}').format(*self.nsc) def __repr__(self): a, b, c, alpha, beta, gamma = map(lambda r: round(r, 3), self.parameters()) return f"<{self.__module__}.{self.__class__.__name__} a={a}, b={b}, c={c}, α={alpha}, β={beta}, γ={gamma}, nsc={self.nsc}>" def __eq__(self, other): """ Equality check """ return self.equal(other) def __ne__(self, b): """ In-equality check """ return not (self == b) # Create pickling routines def __getstate__(self): """ Returns the state of this object """ return {'cell': self.cell, 'nsc': self.nsc, 'sc_off': self.sc_off, 'origo': self.origo} def __setstate__(self, d): """ Re-create the state of this object """ self.__init__(d['cell'], d['nsc'], d['origo']) self.sc_off = d['sc_off'] def __plot__(self, axis=None, axes=False, *args, **kwargs): """ Plot the supercell in a specified ``matplotlib.Axes`` object. Parameters ---------- axis : array_like, optional only plot a subset of the axis, defaults to all axis axes : bool or matplotlib.Axes, optional the figure axes to plot in (if ``matplotlib.Axes`` object). If ``True`` it will create a new figure to plot in. If ``False`` it will try and grap the current figure and the current axes. """ # Default dictionary for passing to newly created figures d = dict() # Try and default the color and alpha if 'color' not in kwargs and len(args) == 0: kwargs['color'] = 'k' if 'alpha' not in kwargs: kwargs['alpha'] = 0.5 if axis is None: axis = [0, 1, 2] # Ensure we have a new 3D Axes3D if len(axis) == 3: d['projection'] = '3d' axes = plt.get_axes(axes, **d) # Create vector objects o = self.origo v = [] for a in axis: v.append(np.vstack((o[axis], o[axis] + self.cell[a, axis]))) v = np.array(v) if axes.__class__.__name__.startswith('Axes3D'): # We should plot in 3D plots for vv in v: axes.plot(vv[:, 0], vv[:, 1], vv[:, 2], *args, **kwargs) v0, v1 = v[0], v[1] - o axes.plot(v0[1, 0] + v1[:, 0], v0[1, 1] + v1[:, 1], v0[1, 2] + v1[:, 2], *args, **kwargs) axes.set_zlabel('Ang') else: for vv in v: axes.plot(vv[:, 0], vv[:, 1], *args, **kwargs) v0, v1 = v[0], v[1] - o[axis] axes.plot(v0[1, 0] + v1[:, 0], v0[1, 1] + v1[:, 1], *args, **kwargs) axes.plot(v1[1, 0] + v0[:, 0], v1[1, 1] + v0[:, 1], *args, **kwargs) axes.set_xlabel('Ang') axes.set_ylabel('Ang') return axes class SuperCellChild: """ Class to be inherited by using the ``self.sc`` as a `SuperCell` object Initialize by a `SuperCell` object and get access to several different routines directly related to the `SuperCell` class. """ def set_nsc(self, *args, **kwargs): """ Set the number of super-cells in the `SuperCell` object See `set_nsc` for allowed parameters. See Also -------- SuperCell.set_nsc : the underlying called method """ self.sc.set_nsc(*args, **kwargs) def set_supercell(self, sc): """ Overwrites the local supercell """ if sc is None: # Default supercell is a simple # 1x1x1 unit-cell self.sc = SuperCell([1., 1., 1.]) elif isinstance(sc, SuperCell): self.sc = sc elif isinstance(sc, SuperCellChild): self.sc = sc.sc else: # The supercell is given as a cell self.sc = SuperCell(sc) # Loop over attributes in this class # if it inherits SuperCellChild, we call # set_sc on that too. # Sadly, getattr fails for @property methods # which forces us to use try ... except with warnings.catch_warnings(): warnings.simplefilter("ignore") for a in dir(self): try: if isinstance(getattr(self, a), SuperCellChild): getattr(self, a).set_supercell(self.sc) except: pass set_sc = set_supercell @property def volume(self): """ Returns the inherent `SuperCell` objects `vol` """ return self.sc.volume def area(self, ax0, ax1): """ Calculate the area spanned by the two axis `ax0` and `ax1` """ return (cross3(self.sc.cell[ax0, :], self.sc.cell[ax1, :]) ** 2).sum() ** 0.5 @property def cell(self): """ Returns the inherent `SuperCell` objects `cell` """ return self.sc.cell @property def icell(self): """ Returns the inherent `SuperCell` objects `icell` """ return self.sc.icell @property def rcell(self): """ Returns the inherent `SuperCell` objects `rcell` """ return self.sc.rcell @property def origo(self): """ Returns the inherent `SuperCell` objects `origo` """ return self.sc.origo @property def n_s(self): """ Returns the inherent `SuperCell` objects `n_s` """ return self.sc.n_s @property def nsc(self): """ Returns the inherent `SuperCell` objects `nsc` """ return self.sc.nsc @property def sc_off(self): """ Returns the inherent `SuperCell` objects `sc_off` """ return self.sc.sc_off @property def isc_off(self): """ Returns the inherent `SuperCell` objects `isc_off` """ return self.sc.isc_off def add_vacuum(self, vacuum, axis): """ Add vacuum along the `axis` lattice vector Parameters ---------- vacuum : float amount of vacuum added, in Ang axis : int the lattice vector to add vacuum along """ copy = self.copy() copy.set_supercell(self.sc.add_vacuum(vacuum, axis)) return copy def _fill(self, non_filled, dtype=None): return self.sc._fill(non_filled, dtype) def _fill_sc(self, supercell_index): return self.sc._fill_sc(supercell_index) def sc_index(self, *args, **kwargs): """ Call local `SuperCell` object `sc_index` function """ return self.sc.sc_index(*args, **kwargs) def is_orthogonal(self): """ Return true if all cell vectors are linearly independent""" return self.sc.is_orthogonal()
lgpl-3.0
meduz/scikit-learn
sklearn/manifold/tests/test_mds.py
99
1873
import numpy as np from numpy.testing import assert_array_almost_equal from sklearn.manifold import mds from sklearn.utils.testing import assert_raises def test_smacof(): # test metric smacof using the data of "Modern Multidimensional Scaling", # Borg & Groenen, p 154 sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.451, .252], [.016, -.238], [-.200, .524]]) X, _ = mds.smacof(sim, init=Z, n_components=2, max_iter=1, n_init=1) X_true = np.array([[-1.415, -2.471], [1.633, 1.107], [.249, -.067], [-.468, 1.431]]) assert_array_almost_equal(X, X_true, decimal=3) def test_smacof_error(): # Not symmetric similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # Not squared similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # init not None and not correct format: sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.016, -.238], [-.200, .524]]) assert_raises(ValueError, mds.smacof, sim, init=Z, n_init=1) def test_MDS(): sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) mds_clf = mds.MDS(metric=False, n_jobs=3, dissimilarity="precomputed") mds_clf.fit(sim)
bsd-3-clause
ericmjl/influenza-reassortment
source_pair.py
1
4298
import networkx as nx import numpy as np import pickle as pkl import pandas as pd import tables as tb import sys from itertools import combinations class SourcePairSearcher(object): """ SourcePairSearcher Identifies isolates for which a source pair search will be performed. """ def __init__(self, handle, isolate_num, segment_stores): super(SourcePairSearcher, self).__init__() self.handle = handle # Open access the list of isolates for which source pairs are to be found. with open('{0} Isolates for Source Pair Search.pkllist'.format(self.handle), 'r') as f: self.sink = pkl.load(f)[isolate_num] print(self.sink) self.isolate_num = isolate_num self.G = nx.read_gpickle('{0} Initialized Graph.pkl'.format(self.handle)) # self.hdf5store = tb.open_file('{0} Segment Affmats.h5'.format(self.handle)) self.older_nodes = [] self.segment_stores = segment_stores self.maxpwi = 0 self.sources = dict() def run(self): self.get_nodes_earlier_in_time() for n in range(1, 5): combs = self.segment_combinations(n) for comb in combs: print('Currently on combination:') print('{0}'.format(comb)) comb1 = self.sum_subset_segment_pwis(comb[0]) comb2 = self.sum_subset_segment_pwis(comb[1]) sumpwi = comb1.max() + comb2.max() print("Sum PWI: {0}".format(sumpwi)) if sumpwi < self.maxpwi: pass else: filtered1 = comb1[comb1 == comb1.max()] filtered2 = comb2[comb2 == comb2.max()] if sumpwi > self.maxpwi and not np.isnan(sumpwi): self.sources = dict() self.maxpwi = sumpwi self.sources[comb[0]] = [i for i in filtered1.index] self.sources[comb[1]] = [i for i in filtered2.index] print(self.maxpwi) self.add_edges() self.extract_nodes() self.save_graph() def add_edges(self): for segs, isolates in self.sources.items(): for source in isolates: d = {'edge_type':'reassortant', 'pwi':self.maxpwi, 'segments':dict()} for s in segs: d['segments'][s] = None self.G.add_edge(source, self.sink, attr_dict=d) def save_graph(self): nx.write_gpickle(self.G, 'reassortant_edges/{0} Reassortant Edges {1}.pkl'.format(self.handle, self.isolate_num)) def extract_nodes(self): nodes_to_extract = set() for n1, n2 in self.G.edges(): nodes_to_extract.add(n1) nodes_to_extract.add(n2) self.G = self.G.subgraph(nodes_to_extract) def get_segment_store(self, segment): """ This helper function gets the particular store from the hdf5 set of stores. """ self.segment_stores[segment] = pd.read_hdf('{0} Segment Affmats.h5'.format(self.handle), key='segment{0}'.format(segment)) def segment_combinations(self, n): """ Here: n = number of segments from first source. Therefore, logically: !n = complement of segments from second source. """ segments = set(range(1,9)) return [(tuple(set(i)), tuple(segments.difference(i))) for i in combinations(segments, n)] def get_nodes_earlier_in_time(self): print('Getting earlier nodes...') isolate_date = self.G.node[self.sink]['collection_date'] self.older_nodes = [n for n, d in self.G.nodes(data=True) if d['collection_date'] < isolate_date] def get_col(self, segment): """ Gets the column of PWIs for the sink as a Pandas dataframe, filtered only to older nodes. """ df = self.segment_stores[segment].loc[self.older_nodes,self.sink] print(df) return df def sum_subset_segment_pwis(self, segments): """ Returns the summed PWIs for a given subset of segments """ sumpwis = None for i, segment in enumerate(segments): pwis = self.get_col(segment) if i == 0: sumpwis = pwis if i > 0: sumpwis = sumpwis + pwis sumpwis return sumpwis if __name__ == '__main__': handle = sys.argv[1] start = int(sys.argv[2]) end = int(sys.argv[3]) def get_segment_store(segment): """ This helper function gets the particular store from the hdf5 set of stores. """ return pd.read_hdf('{0} Segment Affmats.h5'.format(handle), key='segment{0}'.format(segment)) segment_stores = dict() for segment in range(1,9): print('Getting segment {0} store'.format(segment)) segment_stores[segment] = get_segment_store(segment) for i in range(start, end): sps = SourcePairSearcher(handle, i, segment_stores) sps.run()
mit
mnmnc/campephilus
modules/plotter/plot.py
1
2808
import matplotlib.pyplot as plt class Plot: def save(self, destination_filename="plotted.png", width=10, height=10, local_dpi=100): fig = plt.gcf() fig.set_size_inches(width, height) plt.savefig(destination_filename, dpi=local_dpi) def plot(self, xlist, ylist, marker_style='circle', def_color="r", def_alpha=0.5, mylinewidth=2.0): if marker_style == "circle": plt.plot(xlist, ylist, def_color+'o', alpha=def_alpha) elif marker_style == "pixel": plt.plot(xlist, ylist, def_color+',', alpha=def_alpha) elif marker_style == "point": plt.plot(xlist, ylist, def_color+'.', alpha=def_alpha) elif marker_style == "x": plt.plot(xlist, ylist, def_color+'x', alpha=def_alpha) elif marker_style == "line": plt.plot(xlist, ylist, def_color+'-', alpha=def_alpha, linewidth=mylinewidth) elif marker_style == "triangle": plt.plot(xlist, ylist, def_color+'^', alpha=def_alpha) else: plt.plot(xlist, ylist, def_color+'o', alpha=def_alpha) def plot_with_sizes(self, xlist, ylist, sizes, marker_style='circle', def_color="r", def_alpha=0.5): if marker_style == "circle": plt.scatter(xlist, ylist, s=sizes, alpha=def_alpha) elif marker_style == "pixel": plt.scatter(xlist, ylist, s=sizes, alpha=def_alpha) elif marker_style == "point": plt.scatter(xlist, ylist, s=sizes, alpha=def_alpha) elif marker_style == "x": plt.scatter(xlist, ylist, s=sizes, alpha=def_alpha) elif marker_style == "line": plt.scatter(xlist, ylist, s=sizes, alpha=def_alpha) elif marker_style == "triangle": plt.scatter(xlist, ylist, s=sizes, alpha=def_alpha) else: plt.scatter(xlist, ylist, s=sizes, alpha=def_alpha) def set_label(self, axis_name, label): if axis_name == "x": plt.xlabel(label) elif axis_name == "y": plt.ylabel(label) else: print("[ERR] Unknown label", label) def set_title(self, title="Title", size=12): font = {'fontname':'Courier New','fontsize':size} plt.title(title, **font) def set_text(self, x=0, y=0, text="Text missing"): plt.text(x, y, text) def set_axis_limit(self, min_x=0, max_x=100, min_y=0, max_y=100): plt.axis([min_x, max_x, min_y, max_y]) def set_note(self, x,y, text_x, text_y, text): """ x,y - pointed end text_x, text_y - location of the text """ plt.annotate(text, xy=(x, y), xytext=(text_x, text_y), arrowprops=dict( facecolor='black', shrink=0.08, width=1.0, headwidth=5.0, alpha=0.3 ) ) def clear_plot(self): plt.clf() def main(): out_image = "D:\\out.png" pl = Plot() #plt.plot([1,2,3,4], [1,4,9,16], 'ro') pl.set_axis_limit(10,10) pl.plot([1,4,9,16], [1,2,3,4], "line", "b", 0.4) #plot([8,4,9,16], [11,14,3,4], 'y^', ms=8.0, alpha=0.4) f = plt.gcf() pl.save(out_image) pass if __name__ == "__main__": main()
apache-2.0
lesteve/sphinx-gallery
examples/plot_function_identifier.py
1
1731
# -*- coding: utf-8 -*- """ Identifying function names in a script ====================================== This demonstrates how Sphinx-Gallery identifies function names to figure out which functions are called in the script and to which module do they belong. """ # Code source: Óscar Nájera # License: BSD 3 clause import os # noqa, analysis:ignore import matplotlib.pyplot as plt from sphinx_gallery.backreferences import identify_names filename = os.__file__.replace('.pyc', '.py') names = identify_names(filename) figheight = len(names) + .5 fontsize = 20 ############################################################################### # Sphinx-Gallery examines both the executed code itself, as well as the # documentation blocks (such as this one, or the top-level one), # to find backreferences. This means that by writing :obj:`numpy.sin` # and :obj:`numpy.exp` here, a backreference will be created even though # they are not explicitly used in the code. This is useful in particular when # functions return classes -- if you add them to the documented blocks of # examples that use them, they will be shown in the backreferences. fig = plt.figure(figsize=(7.5, 8)) for i, (name, obj) in enumerate(names.items()): fig.text(0.55, (float(len(names)) - 0.5 - i) / figheight, name, ha="right", size=fontsize, transform=fig.transFigure, bbox=dict(boxstyle='square', fc="w", ec="k")) fig.text(0.6, (float(len(names)) - 0.5 - i) / figheight, obj["module"], ha="left", size=fontsize, transform=fig.transFigure, bbox=dict(boxstyle='larrow', fc="w", ec="k")) # plt.draw() plt.show()
bsd-3-clause
krosaen/ml-study
kaggle/forest-cover-type-prediction/preprocess.py
1
1087
from sklearn.preprocessing import StandardScaler import functools import operator def make_preprocessor(td, column_summary): # it's important to scale consistently on all preprocessing based on # consistent scaling, so we do it once and keep ahold of it for all future # scaling. stdsc = StandardScaler() stdsc.fit(td[column_summary['quantitative']]) def scale_q(df, column_summary): df[column_summary['quantitative']] = stdsc.transform(df[column_summary['quantitative']]) return df, column_summary def scale_binary_c(df, column_summary): binary_cs = [['{}{}'.format(c, v) for v in vs] for c, vs in column_summary['categorical'].items()] all_binary_cs = functools.reduce(operator.add, binary_cs) df[all_binary_cs] = df[all_binary_cs].applymap(lambda x: 1 if x == 1 else -1) return df, column_summary def preprocess(df): fns = [scale_q, scale_binary_c] cs = column_summary for fn in fns: df, cs = fn(df, cs) return df return preprocess, column_summary
mit
yinwenpeng/rescale
examples/kinships.py
9
2823
#!/usr/bin/env python import logging logging.basicConfig(level=logging.INFO) _log = logging.getLogger('Example Kinships') import numpy as np from numpy import dot, array, zeros, setdiff1d from numpy.linalg import norm from numpy.random import shuffle from scipy.io.matlab import loadmat from scipy.sparse import lil_matrix from sklearn.metrics import precision_recall_curve, auc from rescal import rescal_als def predict_rescal_als(T): A, R, _, _, _ = rescal_als( T, 100, init='nvecs', conv=1e-3, lambda_A=10, lambda_R=10 ) n = A.shape[0] P = zeros((n, n, len(R))) for k in range(len(R)): P[:, :, k] = dot(A, dot(R[k], A.T)) return P def normalize_predictions(P, e, k): for a in range(e): for b in range(e): nrm = norm(P[a, b, :k]) if nrm != 0: # round values for faster computation of AUC-PR P[a, b, :k] = np.round_(P[a, b, :k] / nrm, decimals=3) return P def innerfold(T, mask_idx, target_idx, e, k, sz): Tc = [Ti.copy() for Ti in T] mask_idx = np.unravel_index(mask_idx, (e, e, k)) target_idx = np.unravel_index(target_idx, (e, e, k)) # set values to be predicted to zero for i in range(len(mask_idx[0])): Tc[mask_idx[2][i]][mask_idx[0][i], mask_idx[1][i]] = 0 # predict unknown values P = predict_rescal_als(Tc) P = normalize_predictions(P, e, k) # compute area under precision recall curve prec, recall, _ = precision_recall_curve(GROUND_TRUTH[target_idx], P[target_idx]) return auc(recall, prec) if __name__ == '__main__': # load data mat = loadmat('data/alyawarradata.mat') K = array(mat['Rs'], np.float32) e, k = K.shape[0], K.shape[2] SZ = e * e * k # copy ground truth before preprocessing GROUND_TRUTH = K.copy() # construct array for rescal T = [lil_matrix(K[:, :, i]) for i in range(k)] _log.info('Datasize: %d x %d x %d | No. of classes: %d' % ( T[0].shape + (len(T),) + (k,)) ) # Do cross-validation FOLDS = 10 IDX = list(range(SZ)) shuffle(IDX) fsz = int(SZ / FOLDS) offset = 0 AUC_train = zeros(FOLDS) AUC_test = zeros(FOLDS) for f in range(FOLDS): idx_test = IDX[offset:offset + fsz] idx_train = setdiff1d(IDX, idx_test) shuffle(idx_train) idx_train = idx_train[:fsz].tolist() _log.info('Train Fold %d' % f) AUC_train[f] = innerfold(T, idx_train + idx_test, idx_train, e, k, SZ) _log.info('Test Fold %d' % f) AUC_test[f] = innerfold(T, idx_test, idx_test, e, k, SZ) offset += fsz _log.info('AUC-PR Test Mean / Std: %f / %f' % (AUC_test.mean(), AUC_test.std())) _log.info('AUC-PR Train Mean / Std: %f / %f' % (AUC_train.mean(), AUC_train.std()))
gpl-3.0
havogt/serialbox2
src/serialbox-python/sdb/sdbgui/popupaboutwidget.py
2
2905
#!/usr/bin/python3 # -*- coding: utf-8 -*- ##===-----------------------------------------------------------------------------*- Python -*-===## ## ## S E R I A L B O X ## ## This file is distributed under terms of BSD license. ## See LICENSE.txt for more information. ## ##===------------------------------------------------------------------------------------------===## from PyQt5.QtCore import QT_VERSION_STR, Qt from PyQt5.QtWidgets import QLabel, QVBoxLayout, QHBoxLayout, QPushButton, QSizePolicy from sdbcore.logger import Logger from sdbcore.version import Version from sdbgui.pixmap import Pixmap from sdbgui.popupwidget import PopupWidget class PopupAboutWidget(PopupWidget): def __init__(self, parent): super().__init__(parent) Logger.info("Showing about message box") self.setWindowTitle("About sdb") image = Pixmap("logo.png") image_scaled = image.scaled(self.geometry().height(), self.geometry().width(), Qt.KeepAspectRatio) self.__widget_label_image = QLabel() self.__widget_label_image.setPixmap(image_scaled) about_txt = ("", "sdb (%s)" % Version().sdb_version(), "Serialbox (%s)" % Version().serialbox_version(), "numpy (%s)" % Version().numpy_version(), "matplotlib (%s)" % Version().matplotlib_version(), "PyQt5 (%s)" % QT_VERSION_STR, "IPython (%s)" % Version().ipython_version(), "", "Copyright (c) 2016-2017, Fabian Thuering", "", "All rights reserved.", "", "The program is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE " "WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.", "") self.__widget_label_about_txt = QLabel() self.__widget_label_about_txt.setText("\n".join(about_txt)) self.__widget_label_about_txt.setWordWrap(True) hbox = QHBoxLayout() hbox.addWidget(self.__widget_label_image) hbox.addStretch(1) hbox_button = QHBoxLayout() hbox_button.addStretch(1) cancel_button = QPushButton("Cancel") cancel_button.clicked.connect(self.close) hbox_button.addWidget(cancel_button) vbox = QVBoxLayout() vbox.addLayout(hbox) vbox.addWidget(self.__widget_label_about_txt) vbox.addLayout(hbox_button) self.setSizePolicy(QSizePolicy.Minimum, QSizePolicy.Minimum) self.setLayout(vbox) self.show() def keyPressEvent(self, QKeyEvent): if QKeyEvent.key() == Qt.Key_Escape: Logger.info("Closing about message box") self.close()
bsd-2-clause
pradyu1993/scikit-learn
examples/neighbors/plot_classification.py
7
1724
""" ================================ Nearest Neighbors Classification ================================ Sample usage of Nearest Neighbors classification. It will plot the decision boundaries for each class. """ print __doc__ import numpy as np import pylab as pl from matplotlib.colors import ListedColormap from sklearn import neighbors, datasets n_neighbors = 15 # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target h = .02 # step size in the mesh # Create color maps cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) for weights in ['uniform', 'distance']: # we create an instance of Neighbours Classifier and fit the data. clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights) clf.fit(X, y) # Plot the decision boundary. For that, we will asign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) pl.figure() pl.pcolormesh(xx, yy, Z, cmap=cmap_light) # Plot also the training points pl.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold) pl.title("3-Class classification (k = %i, weights = '%s')" % (n_neighbors, weights)) pl.axis('tight') pl.show()
bsd-3-clause
hongliuuuu/Results_Dis
finalMe/AMKLrbf.py
1
6721
from sklearn.kernel_approximation import (RBFSampler,Nystroem) from sklearn.ensemble import RandomForestClassifier import pandas import numpy as np import random from sklearn.svm import SVC from sklearn.metrics.pairwise import rbf_kernel,laplacian_kernel,chi2_kernel,linear_kernel,polynomial_kernel,cosine_similarity from sklearn import preprocessing from sklearn.model_selection import GridSearchCV def splitdata(X,Y,ratio,seed): '''This function is to split the data into train and test data randomly and preserve the pos/neg ratio''' n_samples = X.shape[0] y = Y.astype(int) y_bin = np.bincount(y) classes = np.nonzero(y_bin)[0] #fint the indices for each class indices = [] for i in classes: indice = [] for j in range(n_samples): if y[j] == i: indice.append(j) indices.append(indice) train_indices = [] for i in indices: k = int(len(i)*ratio) train_indices += (random.Random(seed).sample(i,k=k)) #find the unused indices s = np.bincount(train_indices,minlength=n_samples) mask = s==0 test_indices = np.arange(n_samples)[mask] return train_indices,test_indices def kn(X,Y): d = np.dot(X,Y) dx = np.sqrt(np.dot(X,X)) dy = np.sqrt(np.dot(Y,Y)) if(dx*dy==0): print(X,Y) k = pow((d/(dx*dy)+1),3) return k def similarity(X): n_samples = X.shape[0] dis = np.zeros((n_samples, n_samples)) for i in range(n_samples): dis[i][i] = 0 for i in range(n_samples): for j in range(i + 1, n_samples): dis[i][j] = dis[j][i] = kn(X[i],X[j]) return dis def Lsvm_patatune(train_x,train_y): tuned_parameters = [ {'kernel': ['precomputed'], 'C': [0.01, 0.1, 1, 10, 100, 1000]}] clf = GridSearchCV(SVC(C=1, probability=True), tuned_parameters, cv=5, n_jobs=1 ) # SVC(probability=True)#SVC(kernel="linear", probability=True) clf.fit(train_x, train_y) return clf.best_params_['C'] url = './MyData.csv' dataframe = pandas.read_csv(url)#, header=None) array = dataframe.values X = array[:,1:] Y = pandas.read_csv('./MyDatalabel.csv') Y = Y.values Y = Y[:,1:] Y = Y.transpose() Y = np.ravel(Y) n_samples = X.shape[0] n_features = X.shape[1] for i in range(len(Y)): if Y[i] == 4: Y[i]=1 #X = min_max_scaler.fit_transform(X) #X1_features = similarity(X[:, 0:2]) #X2_features = similarity(X[:, 2:21]) #X3_features = similarity(X[:, 21:]) """ e1 = [] X1_features = polynomial_kernel(X[:, 0:2])+linear_kernel(X[:, 0:2])+rbf_kernel(X[:, 0:2])+laplacian_kernel(X[:, 0:2]) X2_features = linear_kernel(X[:, 2:21])+polynomial_kernel(X[:, 2:21])+rbf_kernel(X[:, 2:21])+laplacian_kernel(X[:, 2:21]) X3_features = linear_kernel(X[:, 21:])+polynomial_kernel(X[:, 21:])+rbf_kernel(X[:, 21:])+laplacian_kernel(X[:, 21:]) X_features = (X1_features + X2_features + X3_features) for l in range(10): train_indices, test_indices = splitdata(X=X, Y=Y, ratio=0.7, seed=1000 + l) X_features1 = np.transpose(X_features) X_features2 = X_features1[train_indices] X_features3 = np.transpose(X_features2) clf = SVC(kernel='precomputed') clf.fit(X_features3[train_indices], Y[train_indices]) e1.append(clf.score(X_features3[test_indices], Y[test_indices])) s = "combination of %d_%d_%d" % (l, l, l) if np.mean(e1) > big: big = np.mean(e1) print(np.mean(e1)) print(s) testfile.write(s + ":%f" % (np.mean(e1)) + '\n') """ min_max_scaler = preprocessing.MinMaxScaler() svm_X = min_max_scaler.fit_transform(X) min_max_scaler = preprocessing.MinMaxScaler() X_new = X X = min_max_scaler.fit_transform(X) for r in range(3): if r==0: R = 0.3 elif r==1: R = 0.5 else: R = 0.7 testfile = open("AMKLcombinationTest%f.txt" % R, 'w') big = 0 mm = "" err = 0 for i in range(5): for j in range(5): for k in range(5): if(i==0): X1_features = polynomial_kernel(X[:, 0:2]) elif(i==1): X1_features = linear_kernel(X[:, 0:2]) elif(i==2): X1_features = rbf_kernel(X[:, 0:2]) elif(i==3): X1_features = laplacian_kernel(X[:, 0:2]) elif (i == 4): X1_features = similarity(X_new[:, 0:2]) if (j == 0): X2_features = polynomial_kernel(X[:, 2:21]) elif (j == 1): X2_features = linear_kernel(X[:, 2:21]) elif (j == 2): X2_features = rbf_kernel(X[:, 2:21]) elif (j == 3): X2_features = laplacian_kernel(X[:, 2:21]) elif (j == 4): X2_features = similarity(X_new[:, 2:21]) if (k == 0): X3_features = polynomial_kernel(X[:, 21:]) elif (k == 1): X3_features = linear_kernel(X[:, 21:]) elif (k == 2): X3_features = rbf_kernel(X[:, 21:]) elif (k == 3): X3_features = laplacian_kernel(X[:, 21:]) elif (k == 4): X3_features = similarity(X_new[:, 21:]) X_features = (X1_features + X2_features + X3_features) e1 = [] for l in range(10): train_indices, test_indices = splitdata(X=X, Y=Y, ratio=R, seed=1000 + l) X_features1 = np.transpose(X_features) X_features2 = X_features1[train_indices] X_features3 = np.transpose(X_features2) c = Lsvm_patatune(train_x=X_features3[train_indices], train_y=Y[train_indices]) print(c) clf = SVC(C=c,kernel='precomputed') clf.fit(X_features3[train_indices], Y[train_indices]) e1.append(clf.score(X_features3[test_indices], Y[test_indices])) s = "combination of %d_%d_%d"%(i,j,k) if np.mean(e1)>big: big = np.mean(e1) print(np.mean(e1)) print(s) mm=s err = big std = np.std(e1) testfile.write(s + ":%f \p %f" % (np.mean(e1), np.std(e1)) + '\n') testfile.write("best peformance is" + mm + ":%f \p %f" % (err, std) + '\n') testfile.close()
apache-2.0
vshtanko/scikit-learn
examples/feature_stacker.py
246
1906
""" ================================================= Concatenating multiple feature extraction methods ================================================= In many real-world examples, there are many ways to extract features from a dataset. Often it is beneficial to combine several methods to obtain good performance. This example shows how to use ``FeatureUnion`` to combine features obtained by PCA and univariate selection. Combining features using this transformer has the benefit that it allows cross validation and grid searches over the whole process. The combination used in this example is not particularly helpful on this dataset and is only used to illustrate the usage of FeatureUnion. """ # Author: Andreas Mueller <[email protected]> # # License: BSD 3 clause from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.grid_search import GridSearchCV from sklearn.svm import SVC from sklearn.datasets import load_iris from sklearn.decomposition import PCA from sklearn.feature_selection import SelectKBest iris = load_iris() X, y = iris.data, iris.target # This dataset is way to high-dimensional. Better do PCA: pca = PCA(n_components=2) # Maybe some original features where good, too? selection = SelectKBest(k=1) # Build estimator from PCA and Univariate selection: combined_features = FeatureUnion([("pca", pca), ("univ_select", selection)]) # Use combined features to transform dataset: X_features = combined_features.fit(X, y).transform(X) svm = SVC(kernel="linear") # Do grid search over k, n_components and C: pipeline = Pipeline([("features", combined_features), ("svm", svm)]) param_grid = dict(features__pca__n_components=[1, 2, 3], features__univ_select__k=[1, 2], svm__C=[0.1, 1, 10]) grid_search = GridSearchCV(pipeline, param_grid=param_grid, verbose=10) grid_search.fit(X, y) print(grid_search.best_estimator_)
bsd-3-clause
faroit/mir_eval
tests/test_display.py
4
11202
#!/usr/bin/env python # -*- encoding: utf-8 -*- '''Unit tests for the display module''' # For testing purposes, clobber the rcfile import matplotlib matplotlib.use('Agg') # nopep8 import matplotlib.pyplot as plt import numpy as np # Import the hacked image comparison module from mpl_ic import image_comparison from nose.tools import raises # We'll make a decorator to handle style contexts from decorator import decorator import mir_eval import mir_eval.display from mir_eval.io import load_labeled_intervals from mir_eval.io import load_valued_intervals from mir_eval.io import load_labeled_events from mir_eval.io import load_ragged_time_series from mir_eval.io import load_wav @decorator def styled(f, *args, **kwargs): matplotlib.rcdefaults() return f(*args, **kwargs) @image_comparison(baseline_images=['segment'], extensions=['png']) @styled def test_display_segment(): plt.figure() # Load some segment data intervals, labels = load_labeled_intervals('data/segment/ref00.lab') # Plot the segments with no labels mir_eval.display.segments(intervals, labels, text=False) # Draw a legend plt.legend() @image_comparison(baseline_images=['segment_text'], extensions=['png']) @styled def test_display_segment_text(): plt.figure() # Load some segment data intervals, labels = load_labeled_intervals('data/segment/ref00.lab') # Plot the segments with no labels mir_eval.display.segments(intervals, labels, text=True) @image_comparison(baseline_images=['labeled_intervals'], extensions=['png']) @styled def test_display_labeled_intervals(): plt.figure() # Load some chord data intervals, labels = load_labeled_intervals('data/chord/ref01.lab') # Plot the chords with nothing fancy mir_eval.display.labeled_intervals(intervals, labels) @image_comparison(baseline_images=['labeled_intervals_noextend'], extensions=['png']) @styled def test_display_labeled_intervals_noextend(): plt.figure() # Load some chord data intervals, labels = load_labeled_intervals('data/chord/ref01.lab') # Plot the chords with nothing fancy ax = plt.axes() ax.set_yticklabels([]) mir_eval.display.labeled_intervals(intervals, labels, label_set=[], extend_labels=False, ax=ax) @image_comparison(baseline_images=['labeled_intervals_compare'], extensions=['png']) @styled def test_display_labeled_intervals_compare(): plt.figure() # Load some chord data ref_int, ref_labels = load_labeled_intervals('data/chord/ref01.lab') est_int, est_labels = load_labeled_intervals('data/chord/est01.lab') # Plot reference and estimates using label set extension mir_eval.display.labeled_intervals(ref_int, ref_labels, alpha=0.5, label='Reference') mir_eval.display.labeled_intervals(est_int, est_labels, alpha=0.5, label='Estimate') plt.legend() @image_comparison(baseline_images=['labeled_intervals_compare_noextend'], extensions=['png']) @styled def test_display_labeled_intervals_compare_noextend(): plt.figure() # Load some chord data ref_int, ref_labels = load_labeled_intervals('data/chord/ref01.lab') est_int, est_labels = load_labeled_intervals('data/chord/est01.lab') # Plot reference and estimate, but only use the reference labels mir_eval.display.labeled_intervals(ref_int, ref_labels, alpha=0.5, label='Reference') mir_eval.display.labeled_intervals(est_int, est_labels, extend_labels=False, alpha=0.5, label='Estimate') plt.legend() @image_comparison(baseline_images=['labeled_intervals_compare_common'], extensions=['png']) @styled def test_display_labeled_intervals_compare_common(): plt.figure() # Load some chord data ref_int, ref_labels = load_labeled_intervals('data/chord/ref01.lab') est_int, est_labels = load_labeled_intervals('data/chord/est01.lab') label_set = list(sorted(set(ref_labels) | set(est_labels))) # Plot reference and estimate with a common label set mir_eval.display.labeled_intervals(ref_int, ref_labels, label_set=label_set, alpha=0.5, label='Reference') mir_eval.display.labeled_intervals(est_int, est_labels, label_set=label_set, alpha=0.5, label='Estimate') plt.legend() @image_comparison(baseline_images=['hierarchy_nolabel'], extensions=['png']) @styled def test_display_hierarchy_nolabel(): plt.figure() # Load some chord data int0, lab0 = load_labeled_intervals('data/hierarchy/ref00.lab') int1, lab1 = load_labeled_intervals('data/hierarchy/ref01.lab') # Plot reference and estimate with a common label set mir_eval.display.hierarchy([int0, int1], [lab0, lab1]) plt.legend() @image_comparison(baseline_images=['hierarchy_label'], extensions=['png']) @styled def test_display_hierarchy_label(): plt.figure() # Load some chord data int0, lab0 = load_labeled_intervals('data/hierarchy/ref00.lab') int1, lab1 = load_labeled_intervals('data/hierarchy/ref01.lab') # Plot reference and estimate with a common label set mir_eval.display.hierarchy([int0, int1], [lab0, lab1], levels=['Large', 'Small']) plt.legend() @image_comparison(baseline_images=['pitch_hz'], extensions=['png']) @styled def test_pitch_hz(): plt.figure() ref_times, ref_freqs = load_labeled_events('data/melody/ref00.txt') est_times, est_freqs = load_labeled_events('data/melody/est00.txt') # Plot pitches on a Hz scale mir_eval.display.pitch(ref_times, ref_freqs, unvoiced=True, label='Reference') mir_eval.display.pitch(est_times, est_freqs, unvoiced=True, label='Estimate') plt.legend() @image_comparison(baseline_images=['pitch_midi'], extensions=['png']) @styled def test_pitch_midi(): plt.figure() times, freqs = load_labeled_events('data/melody/ref00.txt') # Plot pitches on a midi scale with note tickers mir_eval.display.pitch(times, freqs, midi=True) mir_eval.display.ticker_notes() @image_comparison(baseline_images=['pitch_midi_hz'], extensions=['png']) @styled def test_pitch_midi_hz(): plt.figure() times, freqs = load_labeled_events('data/melody/ref00.txt') # Plot pitches on a midi scale with note tickers mir_eval.display.pitch(times, freqs, midi=True) mir_eval.display.ticker_pitch() @image_comparison(baseline_images=['multipitch_hz_unvoiced'], extensions=['png']) @styled def test_multipitch_hz_unvoiced(): plt.figure() times, pitches = load_ragged_time_series('data/multipitch/est01.txt') # Plot pitches on a midi scale with note tickers mir_eval.display.multipitch(times, pitches, midi=False, unvoiced=True) @image_comparison(baseline_images=['multipitch_hz_voiced'], extensions=['png']) @styled def test_multipitch_hz_voiced(): plt.figure() times, pitches = load_ragged_time_series('data/multipitch/est01.txt') mir_eval.display.multipitch(times, pitches, midi=False, unvoiced=False) @image_comparison(baseline_images=['multipitch_midi'], extensions=['png']) @styled def test_multipitch_midi(): plt.figure() ref_t, ref_p = load_ragged_time_series('data/multipitch/ref01.txt') est_t, est_p = load_ragged_time_series('data/multipitch/est01.txt') # Plot pitches on a midi scale with note tickers mir_eval.display.multipitch(ref_t, ref_p, midi=True, alpha=0.5, label='Reference') mir_eval.display.multipitch(est_t, est_p, midi=True, alpha=0.5, label='Estimate') plt.legend() @image_comparison(baseline_images=['piano_roll'], extensions=['png']) @styled def test_pianoroll(): plt.figure() ref_t, ref_p = load_valued_intervals('data/transcription/ref04.txt') est_t, est_p = load_valued_intervals('data/transcription/est04.txt') mir_eval.display.piano_roll(ref_t, ref_p, label='Reference', alpha=0.5) mir_eval.display.piano_roll(est_t, est_p, label='Estimate', alpha=0.5, facecolor='r') plt.legend() @image_comparison(baseline_images=['piano_roll_midi'], extensions=['png']) @styled def test_pianoroll_midi(): plt.figure() ref_t, ref_p = load_valued_intervals('data/transcription/ref04.txt') est_t, est_p = load_valued_intervals('data/transcription/est04.txt') ref_midi = mir_eval.util.hz_to_midi(ref_p) est_midi = mir_eval.util.hz_to_midi(est_p) mir_eval.display.piano_roll(ref_t, midi=ref_midi, label='Reference', alpha=0.5) mir_eval.display.piano_roll(est_t, midi=est_midi, label='Estimate', alpha=0.5, facecolor='r') plt.legend() @image_comparison(baseline_images=['ticker_midi_zoom'], extensions=['png']) @styled def test_ticker_midi_zoom(): plt.figure() plt.plot(np.arange(3)) mir_eval.display.ticker_notes() @image_comparison(baseline_images=['separation'], extensions=['png']) @styled def test_separation(): plt.figure() x0, fs = load_wav('data/separation/ref05/0.wav') x1, fs = load_wav('data/separation/ref05/1.wav') x2, fs = load_wav('data/separation/ref05/2.wav') mir_eval.display.separation([x0, x1, x2], fs=fs) @image_comparison(baseline_images=['separation_label'], extensions=['png']) @styled def test_separation_label(): plt.figure() x0, fs = load_wav('data/separation/ref05/0.wav') x1, fs = load_wav('data/separation/ref05/1.wav') x2, fs = load_wav('data/separation/ref05/2.wav') mir_eval.display.separation([x0, x1, x2], fs=fs, labels=['Alice', 'Bob', 'Carol']) plt.legend() @image_comparison(baseline_images=['events'], extensions=['png']) @styled def test_events(): plt.figure() # Load some event data beats_ref = mir_eval.io.load_events('data/beat/ref00.txt')[:30] beats_est = mir_eval.io.load_events('data/beat/est00.txt')[:30] # Plot both with labels mir_eval.display.events(beats_ref, label='reference') mir_eval.display.events(beats_est, label='estimate') plt.legend() @image_comparison(baseline_images=['labeled_events'], extensions=['png']) @styled def test_labeled_events(): plt.figure() # Load some event data beats_ref = mir_eval.io.load_events('data/beat/ref00.txt')[:10] labels = list('abcdefghijklmnop') # Plot both with labels mir_eval.display.events(beats_ref, labels) @raises(ValueError) def test_pianoroll_nopitch_nomidi(): # Issue 214 mir_eval.display.piano_roll([[0, 1]])
mit
MatthieuBizien/scikit-learn
sklearn/neighbors/tests/test_approximate.py
55
19053
""" Testing for the approximate neighbor search using Locality Sensitive Hashing Forest module (sklearn.neighbors.LSHForest). """ # Author: Maheshakya Wijewardena, Joel Nothman import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_array_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn.metrics.pairwise import pairwise_distances from sklearn.neighbors import LSHForest from sklearn.neighbors import NearestNeighbors def test_neighbors_accuracy_with_n_candidates(): # Checks whether accuracy increases as `n_candidates` increases. n_candidates_values = np.array([.1, 50, 500]) n_samples = 100 n_features = 10 n_iter = 10 n_points = 5 rng = np.random.RandomState(42) accuracies = np.zeros(n_candidates_values.shape[0], dtype=float) X = rng.rand(n_samples, n_features) for i, n_candidates in enumerate(n_candidates_values): lshf = LSHForest(n_candidates=n_candidates) ignore_warnings(lshf.fit)(X) for j in range(n_iter): query = X[rng.randint(0, n_samples)].reshape(1, -1) neighbors = lshf.kneighbors(query, n_neighbors=n_points, return_distance=False) distances = pairwise_distances(query, X, metric='cosine') ranks = np.argsort(distances)[0, :n_points] intersection = np.intersect1d(ranks, neighbors).shape[0] ratio = intersection / float(n_points) accuracies[i] = accuracies[i] + ratio accuracies[i] = accuracies[i] / float(n_iter) # Sorted accuracies should be equal to original accuracies assert_true(np.all(np.diff(accuracies) >= 0), msg="Accuracies are not non-decreasing.") # Highest accuracy should be strictly greater than the lowest assert_true(np.ptp(accuracies) > 0, msg="Highest accuracy is not strictly greater than lowest.") def test_neighbors_accuracy_with_n_estimators(): # Checks whether accuracy increases as `n_estimators` increases. n_estimators = np.array([1, 10, 100]) n_samples = 100 n_features = 10 n_iter = 10 n_points = 5 rng = np.random.RandomState(42) accuracies = np.zeros(n_estimators.shape[0], dtype=float) X = rng.rand(n_samples, n_features) for i, t in enumerate(n_estimators): lshf = LSHForest(n_candidates=500, n_estimators=t) ignore_warnings(lshf.fit)(X) for j in range(n_iter): query = X[rng.randint(0, n_samples)].reshape(1, -1) neighbors = lshf.kneighbors(query, n_neighbors=n_points, return_distance=False) distances = pairwise_distances(query, X, metric='cosine') ranks = np.argsort(distances)[0, :n_points] intersection = np.intersect1d(ranks, neighbors).shape[0] ratio = intersection / float(n_points) accuracies[i] = accuracies[i] + ratio accuracies[i] = accuracies[i] / float(n_iter) # Sorted accuracies should be equal to original accuracies assert_true(np.all(np.diff(accuracies) >= 0), msg="Accuracies are not non-decreasing.") # Highest accuracy should be strictly greater than the lowest assert_true(np.ptp(accuracies) > 0, msg="Highest accuracy is not strictly greater than lowest.") @ignore_warnings def test_kneighbors(): # Checks whether desired number of neighbors are returned. # It is guaranteed to return the requested number of neighbors # if `min_hash_match` is set to 0. Returned distances should be # in ascending order. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(min_hash_match=0) # Test unfitted estimator assert_raises(ValueError, lshf.kneighbors, X[0]) ignore_warnings(lshf.fit)(X) for i in range(n_iter): n_neighbors = rng.randint(0, n_samples) query = X[rng.randint(0, n_samples)].reshape(1, -1) neighbors = lshf.kneighbors(query, n_neighbors=n_neighbors, return_distance=False) # Desired number of neighbors should be returned. assert_equal(neighbors.shape[1], n_neighbors) # Multiple points n_queries = 5 queries = X[rng.randint(0, n_samples, n_queries)] distances, neighbors = lshf.kneighbors(queries, n_neighbors=1, return_distance=True) assert_equal(neighbors.shape[0], n_queries) assert_equal(distances.shape[0], n_queries) # Test only neighbors neighbors = lshf.kneighbors(queries, n_neighbors=1, return_distance=False) assert_equal(neighbors.shape[0], n_queries) # Test random point(not in the data set) query = rng.randn(n_features).reshape(1, -1) lshf.kneighbors(query, n_neighbors=1, return_distance=False) # Test n_neighbors at initialization neighbors = lshf.kneighbors(query, return_distance=False) assert_equal(neighbors.shape[1], 5) # Test `neighbors` has an integer dtype assert_true(neighbors.dtype.kind == 'i', msg="neighbors are not in integer dtype.") def test_radius_neighbors(): # Checks whether Returned distances are less than `radius` # At least one point should be returned when the `radius` is set # to mean distance from the considering point to other points in # the database. # Moreover, this test compares the radius neighbors of LSHForest # with the `sklearn.neighbors.NearestNeighbors`. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest() # Test unfitted estimator assert_raises(ValueError, lshf.radius_neighbors, X[0]) ignore_warnings(lshf.fit)(X) for i in range(n_iter): # Select a random point in the dataset as the query query = X[rng.randint(0, n_samples)].reshape(1, -1) # At least one neighbor should be returned when the radius is the # mean distance from the query to the points of the dataset. mean_dist = np.mean(pairwise_distances(query, X, metric='cosine')) neighbors = lshf.radius_neighbors(query, radius=mean_dist, return_distance=False) assert_equal(neighbors.shape, (1,)) assert_equal(neighbors.dtype, object) assert_greater(neighbors[0].shape[0], 0) # All distances to points in the results of the radius query should # be less than mean_dist distances, neighbors = lshf.radius_neighbors(query, radius=mean_dist, return_distance=True) assert_array_less(distances[0], mean_dist) # Multiple points n_queries = 5 queries = X[rng.randint(0, n_samples, n_queries)] distances, neighbors = lshf.radius_neighbors(queries, return_distance=True) # dists and inds should not be 1D arrays or arrays of variable lengths # hence the use of the object dtype. assert_equal(distances.shape, (n_queries,)) assert_equal(distances.dtype, object) assert_equal(neighbors.shape, (n_queries,)) assert_equal(neighbors.dtype, object) # Compare with exact neighbor search query = X[rng.randint(0, n_samples)].reshape(1, -1) mean_dist = np.mean(pairwise_distances(query, X, metric='cosine')) nbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X) distances_exact, _ = nbrs.radius_neighbors(query, radius=mean_dist) distances_approx, _ = lshf.radius_neighbors(query, radius=mean_dist) # Radius-based queries do not sort the result points and the order # depends on the method, the random_state and the dataset order. Therefore # we need to sort the results ourselves before performing any comparison. sorted_dists_exact = np.sort(distances_exact[0]) sorted_dists_approx = np.sort(distances_approx[0]) # Distances to exact neighbors are less than or equal to approximate # counterparts as the approximate radius query might have missed some # closer neighbors. assert_true(np.all(np.less_equal(sorted_dists_exact, sorted_dists_approx))) @ignore_warnings def test_radius_neighbors_boundary_handling(): X = [[0.999, 0.001], [0.5, 0.5], [0, 1.], [-1., 0.001]] n_points = len(X) # Build an exact nearest neighbors model as reference model to ensure # consistency between exact and approximate methods nnbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X) # Build a LSHForest model with hyperparameter values that always guarantee # exact results on this toy dataset. lsfh = LSHForest(min_hash_match=0, n_candidates=n_points).fit(X) # define a query aligned with the first axis query = [[1., 0.]] # Compute the exact cosine distances of the query to the four points of # the dataset dists = pairwise_distances(query, X, metric='cosine').ravel() # The first point is almost aligned with the query (very small angle), # the cosine distance should therefore be almost null: assert_almost_equal(dists[0], 0, decimal=5) # The second point form an angle of 45 degrees to the query vector assert_almost_equal(dists[1], 1 - np.cos(np.pi / 4)) # The third point is orthogonal from the query vector hence at a distance # exactly one: assert_almost_equal(dists[2], 1) # The last point is almost colinear but with opposite sign to the query # therefore it has a cosine 'distance' very close to the maximum possible # value of 2. assert_almost_equal(dists[3], 2, decimal=5) # If we query with a radius of one, all the samples except the last sample # should be included in the results. This means that the third sample # is lying on the boundary of the radius query: exact_dists, exact_idx = nnbrs.radius_neighbors(query, radius=1) approx_dists, approx_idx = lsfh.radius_neighbors(query, radius=1) assert_array_equal(np.sort(exact_idx[0]), [0, 1, 2]) assert_array_equal(np.sort(approx_idx[0]), [0, 1, 2]) assert_array_almost_equal(np.sort(exact_dists[0]), dists[:-1]) assert_array_almost_equal(np.sort(approx_dists[0]), dists[:-1]) # If we perform the same query with a slightly lower radius, the third # point of the dataset that lay on the boundary of the previous query # is now rejected: eps = np.finfo(np.float64).eps exact_dists, exact_idx = nnbrs.radius_neighbors(query, radius=1 - eps) approx_dists, approx_idx = lsfh.radius_neighbors(query, radius=1 - eps) assert_array_equal(np.sort(exact_idx[0]), [0, 1]) assert_array_equal(np.sort(approx_idx[0]), [0, 1]) assert_array_almost_equal(np.sort(exact_dists[0]), dists[:-2]) assert_array_almost_equal(np.sort(approx_dists[0]), dists[:-2]) def test_distances(): # Checks whether returned neighbors are from closest to farthest. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest() ignore_warnings(lshf.fit)(X) for i in range(n_iter): n_neighbors = rng.randint(0, n_samples) query = X[rng.randint(0, n_samples)].reshape(1, -1) distances, neighbors = lshf.kneighbors(query, n_neighbors=n_neighbors, return_distance=True) # Returned neighbors should be from closest to farthest, that is # increasing distance values. assert_true(np.all(np.diff(distances[0]) >= 0)) # Note: the radius_neighbors method does not guarantee the order of # the results. def test_fit(): # Checks whether `fit` method sets all attribute values correctly. n_samples = 12 n_features = 2 n_estimators = 5 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(n_estimators=n_estimators) ignore_warnings(lshf.fit)(X) # _input_array = X assert_array_equal(X, lshf._fit_X) # A hash function g(p) for each tree assert_equal(n_estimators, len(lshf.hash_functions_)) # Hash length = 32 assert_equal(32, lshf.hash_functions_[0].components_.shape[0]) # Number of trees_ in the forest assert_equal(n_estimators, len(lshf.trees_)) # Each tree has entries for every data point assert_equal(n_samples, len(lshf.trees_[0])) # Original indices after sorting the hashes assert_equal(n_estimators, len(lshf.original_indices_)) # Each set of original indices in a tree has entries for every data point assert_equal(n_samples, len(lshf.original_indices_[0])) def test_partial_fit(): # Checks whether inserting array is consistent with fitted data. # `partial_fit` method should set all attribute values correctly. n_samples = 12 n_samples_partial_fit = 3 n_features = 2 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) X_partial_fit = rng.rand(n_samples_partial_fit, n_features) lshf = LSHForest() # Test unfitted estimator ignore_warnings(lshf.partial_fit)(X) assert_array_equal(X, lshf._fit_X) ignore_warnings(lshf.fit)(X) # Insert wrong dimension assert_raises(ValueError, lshf.partial_fit, np.random.randn(n_samples_partial_fit, n_features - 1)) ignore_warnings(lshf.partial_fit)(X_partial_fit) # size of _input_array = samples + 1 after insertion assert_equal(lshf._fit_X.shape[0], n_samples + n_samples_partial_fit) # size of original_indices_[1] = samples + 1 assert_equal(len(lshf.original_indices_[0]), n_samples + n_samples_partial_fit) # size of trees_[1] = samples + 1 assert_equal(len(lshf.trees_[1]), n_samples + n_samples_partial_fit) def test_hash_functions(): # Checks randomness of hash functions. # Variance and mean of each hash function (projection vector) # should be different from flattened array of hash functions. # If hash functions are not randomly built (seeded with # same value), variances and means of all functions are equal. n_samples = 12 n_features = 2 n_estimators = 5 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(n_estimators=n_estimators, random_state=rng.randint(0, np.iinfo(np.int32).max)) ignore_warnings(lshf.fit)(X) hash_functions = [] for i in range(n_estimators): hash_functions.append(lshf.hash_functions_[i].components_) for i in range(n_estimators): assert_not_equal(np.var(hash_functions), np.var(lshf.hash_functions_[i].components_)) for i in range(n_estimators): assert_not_equal(np.mean(hash_functions), np.mean(lshf.hash_functions_[i].components_)) def test_candidates(): # Checks whether candidates are sufficient. # This should handle the cases when number of candidates is 0. # User should be warned when number of candidates is less than # requested number of neighbors. X_train = np.array([[5, 5, 2], [21, 5, 5], [1, 1, 1], [8, 9, 1], [6, 10, 2]], dtype=np.float32) X_test = np.array([7, 10, 3], dtype=np.float32).reshape(1, -1) # For zero candidates lshf = LSHForest(min_hash_match=32) ignore_warnings(lshf.fit)(X_train) message = ("Number of candidates is not sufficient to retrieve" " %i neighbors with" " min_hash_match = %i. Candidates are filled up" " uniformly from unselected" " indices." % (3, 32)) assert_warns_message(UserWarning, message, lshf.kneighbors, X_test, n_neighbors=3) distances, neighbors = lshf.kneighbors(X_test, n_neighbors=3) assert_equal(distances.shape[1], 3) # For candidates less than n_neighbors lshf = LSHForest(min_hash_match=31) ignore_warnings(lshf.fit)(X_train) message = ("Number of candidates is not sufficient to retrieve" " %i neighbors with" " min_hash_match = %i. Candidates are filled up" " uniformly from unselected" " indices." % (5, 31)) assert_warns_message(UserWarning, message, lshf.kneighbors, X_test, n_neighbors=5) distances, neighbors = lshf.kneighbors(X_test, n_neighbors=5) assert_equal(distances.shape[1], 5) def test_graphs(): # Smoke tests for graph methods. n_samples_sizes = [5, 10, 20] n_features = 3 rng = np.random.RandomState(42) for n_samples in n_samples_sizes: X = rng.rand(n_samples, n_features) lshf = LSHForest(min_hash_match=0) ignore_warnings(lshf.fit)(X) kneighbors_graph = lshf.kneighbors_graph(X) radius_neighbors_graph = lshf.radius_neighbors_graph(X) assert_equal(kneighbors_graph.shape[0], n_samples) assert_equal(kneighbors_graph.shape[1], n_samples) assert_equal(radius_neighbors_graph.shape[0], n_samples) assert_equal(radius_neighbors_graph.shape[1], n_samples) def test_sparse_input(): # note: Fixed random state in sp.rand is not supported in older scipy. # The test should succeed regardless. X1 = sp.rand(50, 100) X2 = sp.rand(10, 100) forest_sparse = LSHForest(radius=1, random_state=0).fit(X1) forest_dense = LSHForest(radius=1, random_state=0).fit(X1.A) d_sparse, i_sparse = forest_sparse.kneighbors(X2, return_distance=True) d_dense, i_dense = forest_dense.kneighbors(X2.A, return_distance=True) assert_almost_equal(d_sparse, d_dense) assert_almost_equal(i_sparse, i_dense) d_sparse, i_sparse = forest_sparse.radius_neighbors(X2, return_distance=True) d_dense, i_dense = forest_dense.radius_neighbors(X2.A, return_distance=True) assert_equal(d_sparse.shape, d_dense.shape) for a, b in zip(d_sparse, d_dense): assert_almost_equal(a, b) for a, b in zip(i_sparse, i_dense): assert_almost_equal(a, b)
bsd-3-clause
rubikloud/scikit-learn
examples/decomposition/plot_pca_iris.py
2
1805
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= PCA example with Iris Data-set ========================================================= Principal Component Analysis applied to the Iris dataset. See `here <http://en.wikipedia.org/wiki/Iris_flower_data_set>`_ for more information on this dataset. """ print(__doc__) # Code source: Gaël Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn import decomposition from sklearn import datasets np.random.seed(5) centers = [[1, 1], [-1, -1], [1, -1]] iris = datasets.load_iris() X = iris.data y = iris.target fig = plt.figure(1, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) plt.cla() pca = decomposition.PCA(n_components=3) pca.fit(X) X = pca.transform(X) for name, label in [('Setosa', 0), ('Versicolour', 1), ('Virginica', 2)]: ax.text3D(X[y == label, 0].mean(), X[y == label, 1].mean() + 1.5, X[y == label, 2].mean(), name, horizontalalignment='center', bbox=dict(alpha=.5, edgecolor='w', facecolor='w')) # Reorder the labels to have colors matching the cluster results y = np.choose(y, [1, 2, 0]).astype(np.float) ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=y, cmap=plt.cm.spectral) x_surf = [X[:, 0].min(), X[:, 0].max(), X[:, 0].min(), X[:, 0].max()] y_surf = [X[:, 0].max(), X[:, 0].max(), X[:, 0].min(), X[:, 0].min()] x_surf = np.array(x_surf) y_surf = np.array(y_surf) v0 = pca.transform(pca.components_[[0]]) v0 /= v0[-1] v1 = pca.transform(pca.components_[[1]]) v1 /= v1[-1] ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) plt.show()
bsd-3-clause
balajiln/mondrianforest
src/mondrianforest.py
1
72853
#!/usr/bin/env python # # Example usage: # # NOTE: # optype=real: Gaussian parametrization uses a non-linear transformation of split times # variance should decrease as split_time increases: # variance at node j = variance_coef * (sigmoid(sigmoid_coef * t_j) - sigmoid(sigmoid_coef * t_{parent(j)})) # non-linear transformation should be a monotonically non-decreasing function # sigmoid has a saturation effect: children will be similar to parent as we go down the tree # split times t_j scales inversely with the number of dimensions import sys import os import optparse import math import time import cPickle as pickle import random import pprint as pp import numpy as np from warnings import warn from utils import hist_count, logsumexp, softmax, sample_multinomial, \ sample_multinomial_scores, empty, assert_no_nan, check_if_zero, check_if_one, \ multiply_gaussians, divide_gaussians, sigmoid, logsumexp_array from mondrianforest_utils import Forest, Param, parser_add_common_options, parser_check_common_options, \ bootstrap, parser_add_mf_options, parser_check_mf_options, reset_random_seed, \ load_data, add_stuff_2_settings, compute_gaussian_pdf, compute_gaussian_logpdf, \ get_filename_mf, precompute_minimal, compute_left_right_statistics, \ create_prediction_tree, init_prediction_tree, update_predictive_posterior_node, \ compute_metrics_classification, compute_metrics_regression, \ update_posterior_node_incremental, init_update_posterior_node_incremental from itertools import izip, count, chain from collections import defaultdict try: import matplotlib #matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib import patches from matplotlib import rc rc('font', **{'family':'serif'}) rc('text', usetex=True) rc('legend', handlelength=4) rc('legend', **{'fontsize':9}) except: warn('matplotlib not loaded: plotting not possible; set draw_mondrian=0') try: import pydot except: warn('pydot not loaded: tree will not be printed; set draw_mondrian=0') # setting numpy options to debug RuntimeWarnings #np.seterr(divide='raise') np.seterr(divide='ignore') # to avoid warnings for np.log(0) np.seterr(invalid='ignore') # to avoid warnings for inf * 0 = nan np.set_printoptions(precision=3) np.set_printoptions(linewidth=200) # color scheme for mondrian # colors_list = ['DarkRed', 'Navy', 'DimGray', 'Beige'] # other nice colors: Beige, MediumBlue, DarkRed vs FireBrick colors_list = ['LightGray'] # paused leaf will always be shaded gray LW = 2 FIGSIZE = (12, 9) INF = np.inf def process_command_line(): parser = parser_add_common_options() parser = parser_add_mf_options(parser) settings, args = parser.parse_args() add_stuff_2_settings(settings) if settings.optype == 'class': settings.alpha = 0 # normalized stable prior assert settings.smooth_hierarchically parser_check_common_options(parser, settings) parser_check_mf_options(parser, settings) if settings.budget < 0: settings.budget_to_use = INF else: settings.budget_to_use = settings.budget return settings class MondrianBlock(object): """ defines Mondrian block variables: - min_d : dimension-wise min of training data in current block - max_d : dimension-wise max of training data in current block - range_d : max_d - min_d - sum_range_d : sum of range_d - left : id of left child - right : id of right child - parent : id of parent - is_leaf : boolen variable to indicate if current block is leaf - budget : remaining lifetime for subtree rooted at current block = lifetime of Mondrian - time of split of parent NOTE: time of split of parent of root node is 0 """ def __init__(self, data, settings, budget, parent, range_stats): self.min_d, self.max_d, self.range_d, self.sum_range_d = range_stats self.budget = budget + 0. self.parent = parent self.left = None self.right = None self.is_leaf = True class MondrianTree(object): """ defines a Mondrian tree variables: - node_info : stores splits for internal nodes - root : id of root node - leaf_nodes : list of leaf nodes - non_leaf_nodes: list of non-leaf nodes - max_split_costs : max_split_cost for a node is time of split of node - time of split of parent max_split_cost is drawn from an exponential - train_ids : list of train ids stored for paused Mondrian blocks - counts : stores histogram of labels at each node (when optype = 'class') - grow_nodes : list of Mondrian blocks that need to be "grown" functions: - __init__ : initialize a Mondrian tree - grow : samples Mondrian block (more precisely, restriction of blocks to training data) - extend_mondrian : extend a Mondrian to include new training data - extend_mondrian_block : conditional Mondrian algorithm """ def __init__(self, data=None, train_ids=None, settings=None, param=None, cache=None): """ initialize Mondrian tree data structure and sample restriction of Mondrian tree to current training data data is a N x D numpy array containing the entire training data train_ids is the training ids of the first minibatch """ if data is None: return root_node = MondrianBlock(data, settings, settings.budget_to_use, None, \ get_data_range(data, train_ids)) self.root = root_node self.non_leaf_nodes = [] self.leaf_nodes = [] self.node_info = {} self.max_split_costs = {} self.split_times = {} self.train_ids = {root_node: train_ids} self.copy_params(param, settings) init_prediction_tree(self, settings) if cache: if settings.optype == 'class': self.counts = {root_node: cache['y_train_counts']} else: self.sum_y = {root_node: cache['sum_y']} self.sum_y2 = {root_node: cache['sum_y2']} self.n_points = {root_node: cache['n_points']} if settings.bagging == 1 or settings.n_minibatches > 1: init_update_posterior_node_incremental(self, data, param, settings, cache, root_node, train_ids) self.grow_nodes = [root_node] self.grow(data, settings, param, cache) def copy_params(self, param, settings): if settings.optype == 'real': self.noise_variance = param.noise_variance + 0 self.noise_precision = param.noise_precision + 0 self.sigmoid_coef = param.sigmoid_coef + 0 self.variance_coef = param.variance_coef + 0 def get_average_depth(self, settings, data): """ compute average depth of tree (averaged over training data) = depth of a leaf weighted by fraction of training data at that leaf """ self.depth_nodes = {self.root: 0} tmp_node_list = [self.root] n_total = 0. average_depth = 0. self.node_size_by_depth = defaultdict(list) leaf_node_sizes = [] while True: try: node_id = tmp_node_list.pop(0) except IndexError: break if node_id.is_leaf: if settings.optype == 'class': n_points_node = np.sum(self.counts[node_id]) else: n_points_node = self.n_points[node_id] n_total += n_points_node average_depth += n_points_node * self.depth_nodes[node_id] self.node_size_by_depth[self.depth_nodes[node_id]].append(node_id.sum_range_d) if not node_id.is_leaf: self.depth_nodes[node_id.left] = self.depth_nodes[node_id] + 1 self.depth_nodes[node_id.right] = self.depth_nodes[node_id] + 1 tmp_node_list.extend([node_id.left, node_id.right]) else: leaf_node_sizes.append(node_id.sum_range_d) assert data['n_train'] == int(n_total) average_depth /= n_total average_leaf_node_size = np.mean(leaf_node_sizes) average_node_size_by_depth = {} for k in self.node_size_by_depth: average_node_size_by_depth[k] = np.mean(self.node_size_by_depth[k]) return (average_depth, average_leaf_node_size, average_node_size_by_depth) def get_print_label_draw_tree(self, node_id, graph): """ helper function for draw_tree using pydot """ name = self.node_ids_print[node_id] name2 = name if name2 == '': name2 = 'e' if node_id.is_leaf: op = name else: feat_id, split = self.node_info[node_id] op = r'x_%d > %.2f\nt = %.2f' % (feat_id+1, split, self.cumulative_split_costs[node_id]) if op == '': op = 'e' node = pydot.Node(name=name2, label=op) # latex labels don't work graph.add_node(node) return (name2, graph) def draw_tree(self, data, settings, figure_id=0, i_t=0): """ function to draw Mondrian tree using pydot NOTE: set ADD_TIME=True if you want want set edge length between parent and child to the difference in time of splits """ self.gen_node_ids_print() self.gen_cumulative_split_costs_only(settings, data) graph = pydot.Dot(graph_type='digraph') dummy, graph = self.get_print_label_draw_tree(self.root, graph) ADD_TIME = False for node_id in self.non_leaf_nodes: parent, graph = self.get_print_label_draw_tree(node_id, graph) left, graph = self.get_print_label_draw_tree(node_id.left, graph) right, graph = self.get_print_label_draw_tree(node_id.right, graph) for child, child_id in izip([left, right], [node_id.left, node_id.right]): edge = pydot.Edge(parent, child) if ADD_TIME and (not child_id.is_leaf): edge.set_minlen(self.max_split_costs[child_id]) edge2 = pydot.Edge(dummy, child) edge2.set_minlen(self.cumulative_split_costs[child_id]) edge2.set_style('invis') graph.add_edge(edge2) graph.add_edge(edge) filename_plot_tag = get_filename_mf(settings)[:-2] if settings.save: tree_name = filename_plot_tag + '-mtree_minibatch-' + str(figure_id) + '.pdf' print 'saving file: %s' % tree_name graph.write_pdf(tree_name) def draw_mondrian(self, data, settings, figure_id=None, i_t=0): """ function to draw Mondrian partitions; each Mondrian tree is one subplot. """ assert data['n_dim'] == 2 and settings.normalize_features == 1 \ and settings.n_mondrians <= 10 self.gen_node_list() if settings.n_mondrians == 1 and settings.dataset == 'toy-mf': self.draw_tree(data, settings, figure_id, i_t) if settings.n_mondrians > 2: n_row = 2 else: n_row = 1 n_col = int(math.ceil(settings.n_mondrians / n_row)) if figure_id is None: figure_id = 0 fig = plt.figure(figure_id) plt.hold(True) ax = plt.subplot(n_row, n_col, i_t+1, aspect='equal') EPS = 0. ax.set_xlim(xmin=0-EPS) ax.set_xlim(xmax=1+EPS) ax.set_ylim(ymin=0-EPS) ax.set_ylim(ymax=1+EPS) ax.autoscale(False) plt.xlabel(r'$x_1$') plt.ylabel(r'$x_2$') non_leaf_nodes = [self.root] while non_leaf_nodes: node_id = non_leaf_nodes.pop(0) try: feat_id, split = self.node_info[node_id] except: continue left, right = node_id.left, node_id.right non_leaf_nodes.append(left) non_leaf_nodes.append(right) EXTRA = 0.0 # to show splits that separate 2 data points if feat_id == 1: # axhline doesn't work if you rescale ax.hlines(split, node_id.min_d[0] - EXTRA, node_id.max_d[0] + EXTRA, lw=LW, color='k') else: ax.vlines(split, node_id.min_d[1] - EXTRA, node_id.max_d[1] + EXTRA, lw=LW, color='k') # add "outer patch" that defines the extent (not data dependent) block = patches.Rectangle((0, 0), 1, 1, facecolor='white', edgecolor='gray', ls='dashed') ax.add_patch(block) for i_, node_id in enumerate(self.node_list): # plot only the block where Mondrian has been induced (limited by extent of training data) block = patches.Rectangle((node_id.min_d[0], node_id.min_d[1]), node_id.range_d[0], \ node_id.range_d[1], facecolor='white', edgecolor='gray') ax.add_patch(block) for i_, node_id in enumerate(self.leaf_nodes): # plot only the block where Mondrian has been induced (limited by extent of training data) block = patches.Rectangle((node_id.min_d[0], node_id.min_d[1]), node_id.range_d[0], \ node_id.range_d[1], facecolor=colors_list[i_ % len(colors_list)], edgecolor='black') ax.add_patch(block) # zorder = 1 will make points inside the blocks invisible, >= 2 will make them visible x_train = data['x_train'][self.train_ids[node_id], :] #ax.scatter(x_train[:, 0], x_train[:, 1], color='k', marker='x', s=10, zorder=2) color_y = 'rbk' for y_ in range(data['n_class']): idx = data['y_train'][self.train_ids[node_id]] == y_ ax.scatter(x_train[idx, 0], x_train[idx, 1], color=color_y[y_], marker='o', s=16, zorder=2) plt.draw() def gen_node_ids_print(self): """ generate binary string label for each node root_node is denoted by empty string "e" all other node labels are defined as follows: left(j) = j0, right(j) = j1 e.g. left and right child of root_node are 0 and 1 respectively, left and right of node 0 are 00 and 01 respectively and so on. """ node_ids = [self.root] self.node_ids_print = {self.root: ''} while node_ids: node_id = node_ids.pop(0) try: feat_id, split = self.node_info[node_id] left, right = node_id.left, node_id.right node_ids.append(left) node_ids.append(right) self.node_ids_print[left] = self.node_ids_print[node_id] + '0' self.node_ids_print[right] = self.node_ids_print[node_id] + '1' except KeyError: continue def print_dict(self, d): """ print a dictionary """ for k in d: print '\tk_map = %10s, val = %s' % (self.node_ids_print[k], d[k]) def print_list(self, list_): """ print a list """ print '\t%s' % ([self.node_ids_print[x] for x in list_]) def print_tree(self, settings): """ prints some tree statistics: leaf nodes, non-leaf nodes, information and so on """ self.gen_node_ids_print() print 'printing tree:' print 'len(leaf_nodes) = %s, len(non_leaf_nodes) = %s' \ % (len(self.leaf_nodes), len(self.non_leaf_nodes)) print 'node_info =' node_ids = [self.root] while node_ids: node_id = node_ids.pop(0) node_id_print = self.node_ids_print[node_id] try: feat_id, split = self.node_info[node_id] print '%10s, feat = %5d, split = %.2f, node_id = %s' % \ (node_id_print, feat_id, split, node_id) if settings.optype == 'class': print 'counts = %s' % self.counts[node_id] else: print 'n_points = %6d, sum_y = %.2f' % (self.n_points[node_id], self.sum_y[node_id]) left, right = node_id.left, node_id.right node_ids.append(left) node_ids.append(right) except KeyError: continue print 'leaf info =' for node_id in self.leaf_nodes: node_id_print = self.node_ids_print[node_id] print '%10s, train_ids = %s, node_id = %s' % \ (node_id_print, self.train_ids[node_id], node_id) if settings.optype == 'class': print 'counts = %s' % self.counts[node_id] else: print 'n_points = %6d, sum_y = %.2f' % (self.n_points[node_id], self.sum_y[node_id]) def check_if_labels_same(self, node_id): """ checks if all labels in a node are identical """ return np.count_nonzero(self.counts[node_id]) == 1 def pause_mondrian(self, node_id, settings): """ should you pause a Mondrian block or not? pause if sum_range_d == 0 (important for handling duplicates) or - optype == class: pause if all labels in a node are identical - optype == real: pause if n_points < min_samples_split """ if settings.optype == 'class': #pause_mondrian_tmp = self.check_if_labels_same(node_id) if self.check_if_labels_same(node_id): pause_mondrian_tmp = True else: pause_mondrian_tmp = (np.sum(self.counts[node_id]) < settings.min_samples_split) else: pause_mondrian_tmp = self.n_points[node_id] < settings.min_samples_split pause_mondrian = pause_mondrian_tmp or (node_id.sum_range_d == 0) return pause_mondrian def get_parent_split_time(self, node_id, settings): if node_id == self.root: return 0. else: return self.split_times[node_id.parent] def update_gaussian_hyperparameters(self, param, data, settings): n_points = float(self.n_points[self.root]) param.prior_mean = self.sum_y[self.root] / n_points param.prior_variance = self.sum_y2[self.root] / n_points \ - param.prior_mean ** 2 param.prior_precision = 1.0 / param.prior_variance # TODO: estimate K using estimate of noise variance at leaf nodes? # TODO: need to do this once for forest, rather than for each tree # FIXME very very hacky, surely a better way to tune this? if 'sfactor' in settings.tag: s_begin = settings.tag.find('sfactor-') + 8 s_tmp = settings.tag[s_begin:] s_factor = float(s_tmp[:s_tmp.find('-')]) else: s_factor = 2.0 if 'kfactor' in settings.tag: k_begin = settings.tag.find('kfactor-') + 8 k_tmp = settings.tag[k_begin:] k_factor = float(k_tmp[:k_tmp.find('-')]) else: k_factor = min(2 * n_points, 500) # noise variance is 1/K times prior_variance if k_factor <= 0.: K = 2. * n_points else: K = k_factor param.noise_variance = param.prior_variance / K param.noise_precision = 1.0 / param.noise_variance param.variance_coef = 2.0 * param.prior_variance * K / (K + 2.) param.sigmoid_coef = data['n_dim'] / (s_factor * np.log2(n_points)) # FIXME: important to copy over since prediction accesses hyperparameters in self self.copy_params(param, settings) def get_node_mean_and_variance(self, node): n_points = float(self.n_points[node]) node_mean = self.sum_y[node] / n_points node_variance = self.sum_y2[node] / n_points - node_mean ** 2 return (node_mean, node_variance) def update_gaussian_hyperparameters_indep(self, param, data, settings): n_points = float(self.n_points[self.root]) self.prior_mean, self.prior_variance = self.get_node_mean_and_variance(self.root) self.prior_precision = 1.0 / self.prior_variance self.cumulative_split_costs = {} self.leaf_means = [] self.leaf_variances = [] node_means = [] d_node_means = {self.root: self.prior_mean} node_parent_means = [] node_split_times = [] node_parent_split_times = [] if self.root.is_leaf: self.cumulative_split_costs[self.root] = 0. remaining = [] self.max_split_time = 0.1 # NOTE: initial value, need to specify non-zero value else: self.cumulative_split_costs[self.root] = self.max_split_costs[self.root] remaining = [self.root.left, self.root.right] self.max_split_time = self.cumulative_split_costs[self.root] + 0 node_split_times.append(self.cumulative_split_costs[self.root]) node_parent_split_times.append(0.) node_means.append(self.prior_mean) node_parent_means.append(self.prior_mean) while True: try: node_id = remaining.pop(0) except IndexError: break self.cumulative_split_costs[node_id] = self.cumulative_split_costs[node_id.parent] \ + self.max_split_costs[node_id] node_mean, node_variance = self.get_node_mean_and_variance(node_id) node_split_times.append(self.cumulative_split_costs[node_id]) node_parent_split_times.append(self.cumulative_split_costs[node_id.parent]) node_means.append(node_mean) node_parent_means.append(d_node_means[node_id.parent]) d_node_means[node_id] = node_mean if not node_id.is_leaf: remaining.append(node_id.left) remaining.append(node_id.right) self.max_split_time = max(self.max_split_time, self.cumulative_split_costs[node_id]) else: self.leaf_means.append(node_mean) self.leaf_variances.append(node_variance) #self.noise_variance = np.max(self.leaf_variances) self.noise_variance = np.mean(self.leaf_variances) self.noise_precision = 1.0 / self.noise_variance self.sigmoid_coef = 3. / self.max_split_time #self.sigmoid_coef = data['n_dim'] #self.sigmoid_coef = data['n_dim'] / 5 #self.sigmoid_coef = data['n_dim'] / (2. * np.log2(n_points)) #self.sigmoid_coef = data['n_dim'] / (2. * np.log2(n_points)) #self.sigmoid_coef = data['n_dim'] / (n_points) #self.variance_leaf_from_root = 2 * np.mean((np.array(self.leaf_means) - self.prior_mean) ** 2) # set sd to 3 times the empirical sd so that leaf node means are highly plausible (avoid too much smoothing) #self.variance_coef = 1.0 * self.variance_leaf_from_root if self.root.is_leaf: self.variance_coef = 1.0 else: node_means = np.array(node_means) node_parent_means = np.array(node_parent_means) node_split_times = np.array(node_split_times) node_parent_split_times = np.array(node_parent_split_times) tmp_den = sigmoid(self.sigmoid_coef * node_split_times) \ - sigmoid(self.sigmoid_coef * node_parent_split_times) tmp_num = (node_means - node_parent_means) ** 2 variance_coef_est = np.mean(tmp_num / tmp_den) self.variance_coef = variance_coef_est print 'sigmoid_coef = %.3f, variance_coef = %.3f' % (self.sigmoid_coef, variance_coef_est) def grow(self, data, settings, param, cache): """ sample a Mondrian tree (each Mondrian block is restricted to range of training data in that block) """ if settings.debug: print 'entering grow' while self.grow_nodes: node_id = self.grow_nodes.pop(0) train_ids = self.train_ids[node_id] if settings.debug: print 'node_id = %s' % node_id pause_mondrian = self.pause_mondrian(node_id, settings) if settings.debug and pause_mondrian: print 'pausing mondrian at node = %s, train_ids = %s' % (node_id, self.train_ids[node_id]) if pause_mondrian or (node_id.sum_range_d == 0): # BL: redundant now split_cost = np.inf self.max_split_costs[node_id] = node_id.budget + 0 self.split_times[node_id] = np.inf # FIXME: is this correct? inf or budget? else: split_cost = random.expovariate(node_id.sum_range_d) self.max_split_costs[node_id] = split_cost self.split_times[node_id] = split_cost + self.get_parent_split_time(node_id, settings) new_budget = node_id.budget - split_cost if node_id.budget > split_cost: feat_id_chosen = sample_multinomial_scores(node_id.range_d) split_chosen = random.uniform(node_id.min_d[feat_id_chosen], \ node_id.max_d[feat_id_chosen]) (train_ids_left, train_ids_right, cache_tmp) = \ compute_left_right_statistics(data, param, cache, train_ids, feat_id_chosen, split_chosen, settings) left = MondrianBlock(data, settings, new_budget, node_id, get_data_range(data, train_ids_left)) right = MondrianBlock(data, settings, new_budget, node_id, get_data_range(data, train_ids_right)) node_id.left, node_id.right = left, right self.grow_nodes.append(left) self.grow_nodes.append(right) self.train_ids[left] = train_ids_left self.train_ids[right] = train_ids_right if settings.optype == 'class': self.counts[left] = cache_tmp['cnt_left_chosen'] self.counts[right] = cache_tmp['cnt_right_chosen'] else: self.sum_y[left] = cache_tmp['sum_y_left'] self.sum_y2[left] = cache_tmp['sum_y2_left'] self.n_points[left] = cache_tmp['n_points_left'] self.sum_y[right] = cache_tmp['sum_y_right'] self.sum_y2[right] = cache_tmp['sum_y2_right'] self.n_points[right] = cache_tmp['n_points_right'] self.node_info[node_id] = [feat_id_chosen, split_chosen] self.non_leaf_nodes.append(node_id) node_id.is_leaf = False if not settings.draw_mondrian: self.train_ids.pop(node_id) else: self.leaf_nodes.append(node_id) # node_id.is_leaf set to True at init def gen_cumulative_split_costs_only(self, settings, data): """ creates node_id.cumulative_split_cost as well as a dictionary self.cumulative_split_costs helper function for draw_tree """ self.cumulative_split_costs = {} if self.root.is_leaf: self.cumulative_split_costs[self.root] = 0. remaining = [] else: self.cumulative_split_costs[self.root] = self.max_split_costs[self.root] remaining = [self.root.left, self.root.right] while True: try: node_id = remaining.pop(0) except IndexError: break self.cumulative_split_costs[node_id] = self.cumulative_split_costs[node_id.parent] \ + self.max_split_costs[node_id] if not node_id.is_leaf: remaining.append(node_id.left) remaining.append(node_id.right) def gen_node_list(self): """ generates an ordered node_list such that parent appears before children useful for updating predictive posteriors """ self.node_list = [self.root] i = -1 while True: try: i += 1 node_id = self.node_list[i] except IndexError: break if not node_id.is_leaf: self.node_list.extend([node_id.left, node_id.right]) def predict_class(self, x_test, n_class, param, settings): """ predict new label (for classification tasks) """ pred_prob = np.zeros((x_test.shape[0], n_class)) prob_not_separated_yet = np.ones(x_test.shape[0]) prob_separated = np.zeros(x_test.shape[0]) node_list = [self.root] d_idx_test = {self.root: np.arange(x_test.shape[0])} while True: try: node_id = node_list.pop(0) except IndexError: break idx_test = d_idx_test[node_id] if len(idx_test) == 0: continue x = x_test[idx_test, :] expo_parameter = np.maximum(0, node_id.min_d - x).sum(1) + np.maximum(0, x - node_id.max_d).sum(1) prob_not_separated_now = np.exp(-expo_parameter * self.max_split_costs[node_id]) prob_separated_now = 1 - prob_not_separated_now if math.isinf(self.max_split_costs[node_id]): # rare scenario where test point overlaps exactly with a training data point idx_zero = expo_parameter == 0 # to prevent nan in computation above when test point overlaps with training data point prob_not_separated_now[idx_zero] = 1. prob_separated_now[idx_zero] = 0. # predictions for idx_test_zero # data dependent discounting (depending on how far test data point is from the mondrian block) idx_non_zero = expo_parameter > 0 idx_test_non_zero = idx_test[idx_non_zero] expo_parameter_non_zero = expo_parameter[idx_non_zero] base = self.get_prior_mean(node_id, param, settings) if np.any(idx_non_zero): num_tables_k, num_customers, num_tables = self.get_counts(self.cnt[node_id]) # expected discount (averaging over time of cut which is a truncated exponential) # discount = (expo_parameter_non_zero / (expo_parameter_non_zero + settings.discount_param)) * \ # (-np.expm1(-(expo_parameter_non_zero + settings.discount_param) * self.max_split_costs[node_id])) discount = (expo_parameter_non_zero / (expo_parameter_non_zero + settings.discount_param)) \ * (-np.expm1(-(expo_parameter_non_zero + settings.discount_param) * self.max_split_costs[node_id])) \ / (-np.expm1(-expo_parameter_non_zero * self.max_split_costs[node_id])) discount_per_num_customers = discount / num_customers pred_prob_tmp = num_tables * discount_per_num_customers[:, np.newaxis] * base \ + self.cnt[node_id] / num_customers - discount_per_num_customers[:, np.newaxis] * num_tables_k if settings.debug: check_if_one(np.sum(pred_prob_tmp)) pred_prob[idx_test_non_zero, :] += prob_separated_now[idx_non_zero][:, np.newaxis] \ * prob_not_separated_yet[idx_test_non_zero][:, np.newaxis] * pred_prob_tmp prob_not_separated_yet[idx_test] *= prob_not_separated_now # predictions for idx_test_zero if math.isinf(self.max_split_costs[node_id]) and np.any(idx_zero): idx_test_zero = idx_test[idx_zero] pred_prob_node_id = self.compute_posterior_mean_normalized_stable(self.cnt[node_id], \ self.get_discount_node_id(node_id, settings), base, settings) pred_prob[idx_test_zero, :] += prob_not_separated_yet[idx_test_zero][:, np.newaxis] * pred_prob_node_id try: feat_id, split = self.node_info[node_id] cond = x[:, feat_id] <= split left, right = get_children_id(node_id) d_idx_test[left], d_idx_test[right] = idx_test[cond], idx_test[~cond] node_list.append(left) node_list.append(right) except KeyError: pass if True or settings.debug: check_if_zero(np.sum(np.abs(np.sum(pred_prob, 1) - 1))) return pred_prob def predict_real(self, x_test, y_test, param, settings): """ predict new label (for regression tasks) """ pred_mean = np.zeros(x_test.shape[0]) pred_second_moment = np.zeros(x_test.shape[0]) pred_sample = np.zeros(x_test.shape[0]) log_pred_prob = -np.inf * np.ones(x_test.shape[0]) prob_not_separated_yet = np.ones(x_test.shape[0]) prob_separated = np.zeros(x_test.shape[0]) node_list = [self.root] d_idx_test = {self.root: np.arange(x_test.shape[0])} while True: try: node_id = node_list.pop(0) except IndexError: break idx_test = d_idx_test[node_id] if len(idx_test) == 0: continue x = x_test[idx_test, :] expo_parameter = np.maximum(0, node_id.min_d - x).sum(1) + np.maximum(0, x - node_id.max_d).sum(1) prob_not_separated_now = np.exp(-expo_parameter * self.max_split_costs[node_id]) prob_separated_now = 1 - prob_not_separated_now if math.isinf(self.max_split_costs[node_id]): # rare scenario where test point overlaps exactly with a training data point idx_zero = expo_parameter == 0 # to prevent nan in computation above when test point overlaps with training data point prob_not_separated_now[idx_zero] = 1. prob_separated_now[idx_zero] = 0. # predictions for idx_test_zero idx_non_zero = expo_parameter > 0 idx_test_non_zero = idx_test[idx_non_zero] n_test_non_zero = len(idx_test_non_zero) expo_parameter_non_zero = expo_parameter[idx_non_zero] if np.any(idx_non_zero): # expected variance (averaging over time of cut which is a truncated exponential) # NOTE: expected variance is approximate since E[f(x)] not equal to f(E[x]) expected_cut_time = 1.0 / expo_parameter_non_zero if not np.isinf(self.max_split_costs[node_id]): tmp_exp_term_arg = -self.max_split_costs[node_id] * expo_parameter_non_zero tmp_exp_term = np.exp(tmp_exp_term_arg) expected_cut_time -= self.max_split_costs[node_id] * tmp_exp_term / (-np.expm1(tmp_exp_term_arg)) try: assert np.all(expected_cut_time >= 0.) except AssertionError: print tmp_exp_term_arg print tmp_exp_term print expected_cut_time print np.any(np.isnan(expected_cut_time)) print 1.0 / expo_parameter_non_zero raise AssertionError if not settings.smooth_hierarchically: pred_mean_tmp = self.sum_y[node_id] / float(self.n_points[node_id]) pred_second_moment_tmp = self.sum_y2[node_id] / float(self.n_points[node_id]) + param.noise_variance else: pred_mean_tmp, pred_second_moment_tmp = self.pred_moments[node_id] # FIXME: approximate since E[f(x)] not equal to f(E[x]) expected_split_time = expected_cut_time + self.get_parent_split_time(node_id, settings) variance_from_mean = self.variance_coef * (sigmoid(self.sigmoid_coef * expected_split_time) \ - sigmoid(self.sigmoid_coef * self.get_parent_split_time(node_id, settings))) pred_second_moment_tmp += variance_from_mean pred_variance_tmp = pred_second_moment_tmp - pred_mean_tmp ** 2 pred_sample_tmp = pred_mean_tmp + np.random.randn(n_test_non_zero) * np.sqrt(pred_variance_tmp) log_pred_prob_tmp = compute_gaussian_logpdf(pred_mean_tmp, pred_variance_tmp, y_test[idx_test_non_zero]) prob_separated_now_weighted = \ prob_separated_now[idx_non_zero] * prob_not_separated_yet[idx_test_non_zero] pred_mean[idx_test_non_zero] += prob_separated_now_weighted * pred_mean_tmp pred_sample[idx_test_non_zero] += prob_separated_now_weighted * pred_sample_tmp pred_second_moment[idx_test_non_zero] += prob_separated_now_weighted * pred_second_moment_tmp log_pred_prob[idx_test_non_zero] = logsumexp_array(log_pred_prob[idx_test_non_zero], \ np.log(prob_separated_now_weighted) + log_pred_prob_tmp) prob_not_separated_yet[idx_test] *= prob_not_separated_now # predictions for idx_test_zero if math.isinf(self.max_split_costs[node_id]) and np.any(idx_zero): idx_test_zero = idx_test[idx_zero] n_test_zero = len(idx_test_zero) if not settings.smooth_hierarchically: pred_mean_node_id = self.sum_y[node_id] / float(self.n_points[node_id]) pred_second_moment_node_id = self.sum_y2[node_id] / float(self.n_points[node_id]) \ + param.noise_variance else: pred_mean_node_id, pred_second_moment_node_id = self.pred_moments[node_id] pred_variance_node_id = pred_second_moment_node_id - pred_mean_node_id ** 2 pred_sample_node_id = pred_mean_node_id + np.random.randn(n_test_zero) * np.sqrt(pred_variance_node_id) log_pred_prob_node_id = \ compute_gaussian_logpdf(pred_mean_node_id, pred_variance_node_id, y_test[idx_test_zero]) pred_mean[idx_test_zero] += prob_not_separated_yet[idx_test_zero] * pred_mean_node_id pred_sample[idx_test_zero] += prob_not_separated_yet[idx_test_zero] * pred_sample_node_id pred_second_moment[idx_test_zero] += prob_not_separated_yet[idx_test_zero] * pred_second_moment_node_id log_pred_prob[idx_test_zero] = logsumexp_array(log_pred_prob[idx_test_zero], \ np.log(prob_not_separated_yet[idx_test_zero]) + log_pred_prob_node_id) try: feat_id, split = self.node_info[node_id] cond = x[:, feat_id] <= split left, right = get_children_id(node_id) d_idx_test[left], d_idx_test[right] = idx_test[cond], idx_test[~cond] node_list.append(left) node_list.append(right) except KeyError: pass pred_var = pred_second_moment - (pred_mean ** 2) if True or settings.debug: # FIXME: remove later assert not np.any(np.isnan(pred_mean)) assert not np.any(np.isnan(pred_var)) try: assert np.all(pred_var >= 0.) except AssertionError: min_pred_var = np.min(pred_var) print 'min_pred_var = %s' % min_pred_var assert np.abs(min_pred_var) < 1e-3 # allowing some numerical errors assert not np.any(np.isnan(log_pred_prob)) return (pred_mean, pred_var, pred_second_moment, log_pred_prob, pred_sample) def extend_mondrian(self, data, train_ids_new, settings, param, cache): """ extend Mondrian tree to include new training data indexed by train_ids_new """ self.extend_mondrian_block(self.root, train_ids_new, data, settings, param, cache) if settings.debug: print 'completed extend_mondrian' self.check_tree(settings, data) def check_tree(self, settings, data): """ check if tree violates any sanity check """ if settings.debug: #print '\nchecking tree' print '\nchecking tree: printing tree first' self.print_tree(settings) for node_id in self.non_leaf_nodes: assert node_id.left.parent == node_id.right.parent == node_id assert not node_id.is_leaf if settings.optype == 'class': assert np.count_nonzero(self.counts[node_id]) > 1 assert not self.pause_mondrian(node_id, settings) if node_id != self.root: assert np.all(node_id.min_d >= node_id.parent.min_d) assert np.all(node_id.max_d <= node_id.parent.max_d) if settings.optype == 'class': try: check_if_zero(np.sum(np.abs(self.counts[node_id] - \ self.counts[node_id.left] - self.counts[node_id.right]))) except AssertionError: print 'counts: node = %s, left = %s, right = %s' \ % (self.counts[node_id], self.counts[node_id.left], self.counts[node_id.right]) raise AssertionError if settings.budget == -1: assert math.isinf(node_id.budget) check_if_zero(self.split_times[node_id] - self.get_parent_split_time(node_id, settings) \ - self.max_split_costs[node_id]) if settings.optype == 'class': num_data_points = 0 for node_id in self.leaf_nodes: assert node_id.is_leaf assert math.isinf(self.max_split_costs[node_id]) if settings.budget == -1: assert math.isinf(node_id.budget) if settings.optype == 'class': num_data_points += self.counts[node_id].sum() assert (np.count_nonzero(self.counts[node_id]) == 1) or (np.sum(self.counts[node_id]) < settings.min_samples_split) assert self.pause_mondrian(node_id, settings) if node_id != self.root: assert np.all(node_id.min_d >= node_id.parent.min_d) assert np.all(node_id.max_d <= node_id.parent.max_d) if settings.optype == 'class': print 'num_train = %s, number of data points at leaf nodes = %s' % \ (data['n_train'], num_data_points) set_non_leaf = set(self.non_leaf_nodes) set_leaf = set(self.leaf_nodes) assert (set_leaf & set_non_leaf) == set([]) assert set_non_leaf == set(self.node_info.keys()) assert len(set_leaf) == len(self.leaf_nodes) assert len(set_non_leaf) == len(self.non_leaf_nodes) def extend_mondrian_block(self, node_id, train_ids_new, data, settings, param, cache): """ conditional Mondrian algorithm that extends a Mondrian block to include new training data """ if settings.debug: print 'entered extend_mondrian_block' print '\nextend_mondrian_block: node_id = %s' % node_id if not train_ids_new.size: if settings.debug: print 'nothing to extend here; train_ids_new = %s' % train_ids_new # nothing to extend return min_d, max_d = get_data_min_max(data, train_ids_new) additional_extent_lower = np.maximum(0, node_id.min_d - min_d) additional_extent_upper = np.maximum(0, max_d - node_id.max_d) expo_parameter = float(additional_extent_lower.sum() + additional_extent_upper.sum()) if expo_parameter == 0: split_cost = np.inf else: split_cost = random.expovariate(expo_parameter) # will be updated below in case mondrian is paused unpause_paused_mondrian = False if settings.debug: print 'is_leaf = %s, pause_mondrian = %s, sum_range_d = %s' % \ (node_id.is_leaf, self.pause_mondrian(node_id, settings), node_id.sum_range_d) if self.pause_mondrian(node_id, settings): assert node_id.is_leaf split_cost = np.inf n_points_new = len(data['y_train'][train_ids_new]) # FIXME: node_id.sum_range_d not tested if settings.optype == 'class': y_unique = np.unique(data['y_train'][train_ids_new]) # unpause only if more than one unique label and number of points >= min_samples_split is_pure_leaf = (len(y_unique) == 1) and (self.counts[node_id][y_unique] > 0) \ and self.check_if_labels_same(node_id) if is_pure_leaf: unpause_paused_mondrian = False else: unpause_paused_mondrian = \ ((n_points_new + np.sum(self.counts[node_id])) >= settings.min_samples_split) else: unpause_paused_mondrian = \ not( (n_points_new + self.n_points[node_id]) < settings.min_samples_split ) if settings.debug: print 'trying to extend a paused Mondrian; is_leaf = %s, node_id = %s' % (node_id.is_leaf, node_id) if settings.optype == 'class': print 'y_unique (new) = %s, n_points_new = %s, counts = %s, split_cost = %s, max_split_costs = %s' % \ (y_unique, n_points_new, self.counts[node_id], split_cost, self.max_split_costs[node_id]) print 'unpause_paused_mondrian = %s, is_pure_leaf = %s' % (unpause_paused_mondrian, is_pure_leaf) if split_cost >= self.max_split_costs[node_id]: # take root form of node_id (no cut outside the extent of the current block) if not node_id.is_leaf: if settings.debug: print 'take root form: non-leaf node' feat_id, split = self.node_info[node_id] update_range_stats(node_id, (min_d, max_d)) # required here as well left, right = node_id.left, node_id.right cond = data['x_train'][train_ids_new, feat_id] <= split train_ids_new_left, train_ids_new_right = train_ids_new[cond], train_ids_new[~cond] self.add_training_points_to_node(node_id, train_ids_new, data, param, settings, cache, False) self.extend_mondrian_block(left, train_ids_new_left, data, settings, param, cache) self.extend_mondrian_block(right, train_ids_new_right, data, settings, param, cache) else: # reached a leaf; add train_ids_new to node_id & update range if settings.debug: print 'take root form: leaf node' assert node_id.is_leaf update_range_stats(node_id, (min_d, max_d)) self.add_training_points_to_node(node_id, train_ids_new, data, param, settings, cache, True) # FIXME: node_id.sum_range_d tested here; perhaps move this to pause_mondrian? unpause_paused_mondrian = unpause_paused_mondrian and (node_id.sum_range_d != 0) if not self.pause_mondrian(node_id, settings): assert unpause_paused_mondrian self.leaf_nodes.remove(node_id) self.grow_nodes = [node_id] self.grow(data, settings, param, cache) else: # initialize "outer mondrian" if settings.debug: print 'trying to introduce a cut outside current block' new_block = MondrianBlock(data, settings, node_id.budget, node_id.parent, \ get_data_range_from_min_max(np.minimum(min_d, node_id.min_d), np.maximum(max_d, node_id.max_d))) init_update_posterior_node_incremental(self, data, param, settings, cache, new_block, \ train_ids_new, node_id) # counts of outer block are initialized with counts of current block if node_id.is_leaf: warn('\nWARNING: a leaf should not be expanded here; printing out some diagnostics') print 'node_id = %s, is_leaf = %s, max_split_cost = %s, split_cost = %s' \ % (node_id, node_id.is_leaf, self.max_split_costs[node_id], split_cost) print 'counts = %s\nmin_d = \n%s\nmax_d = \n%s' % (self.counts[node_id], node_id.min_d, node_id.max_d) raise Exception('a leaf should be expanded via grow call; see diagnostics above') if settings.debug: print 'looks like cut possible' # there is a cut outside the extent of the current block feat_score = additional_extent_lower + additional_extent_upper feat_id = sample_multinomial_scores(feat_score) draw_from_lower = np.random.rand() <= (additional_extent_lower[feat_id] / feat_score[feat_id]) if draw_from_lower: split = random.uniform(min_d[feat_id], node_id.min_d[feat_id]) else: split = random.uniform(node_id.max_d[feat_id], max_d[feat_id]) assert (split < node_id.min_d[feat_id]) or (split > node_id.max_d[feat_id]) new_budget = node_id.budget - split_cost cond = data['x_train'][train_ids_new, feat_id] <= split train_ids_new_left, train_ids_new_right = train_ids_new[cond], train_ids_new[~cond] is_left = split > node_id.max_d[feat_id] # is existing block the left child of "outer mondrian"? if is_left: train_ids_new_child = train_ids_new_right # new_child is the other child of "outer mondrian" else: train_ids_new_child = train_ids_new_left # grow the "unconditional mondrian child" of the "outer mondrian" new_child = MondrianBlock(data, settings, new_budget, new_block, get_data_range(data, train_ids_new_child)) if settings.debug: print 'new_block = %s' % new_block print 'new_child = %s' % new_child self.train_ids[new_child] = train_ids_new_child # required for grow call below init_update_posterior_node_incremental(self, data, param, settings, cache, new_child, train_ids_new_child) self.node_info[new_block] = (feat_id, split) if settings.draw_mondrian: train_ids_new_block = np.append(self.train_ids[node_id], train_ids_new) self.train_ids[new_block] = train_ids_new_block self.non_leaf_nodes.append(new_block) new_block.is_leaf = False # update budget and call the "conditional mondrian child" of the "outer mondrian" node_id.budget = new_budget # self.max_split_costs[new_child] will be added in the grow call above self.max_split_costs[new_block] = split_cost self.split_times[new_block] = split_cost + self.get_parent_split_time(node_id, settings) self.max_split_costs[node_id] -= split_cost check_if_zero(self.split_times[node_id] - self.split_times[new_block] - self.max_split_costs[node_id]) # grow the new child of the "outer mondrian" self.grow_nodes = [new_child] self.grow(data, settings, param, cache) # update tree structure and extend "conditional mondrian child" of the "outer mondrian" if node_id == self.root: self.root = new_block else: if settings.debug: assert (node_id.parent.left == node_id) or (node_id.parent.right == node_id) if node_id.parent.left == node_id: node_id.parent.left = new_block else: node_id.parent.right = new_block node_id.parent = new_block if is_left: new_block.left = node_id new_block.right = new_child self.extend_mondrian_block(node_id, train_ids_new_left, data, settings, param, cache) else: new_block.left = new_child new_block.right = node_id self.extend_mondrian_block(node_id, train_ids_new_right, data, settings, param, cache) def add_training_points_to_node(self, node_id, train_ids_new, data, param, settings, cache, pause_mondrian=False): """ add a training data point to a node in the tree """ # range updated in extend_mondrian_block if settings.draw_mondrian or pause_mondrian: self.train_ids[node_id] = np.append(self.train_ids[node_id], train_ids_new) update_posterior_node_incremental(self, data, param, settings, cache, node_id, train_ids_new) def update_posterior_counts(self, param, data, settings): """ posterior update for hierarchical normalized stable distribution using interpolated Kneser Ney smoothing (where number of tables serving a dish at a restaurant is atmost 1) NOTE: implementation optimized for minibatch training where more than one data point added per minibatch if only 1 datapoint is added, lots of counts will be unnecesarily updated """ self.cnt = {} node_list = [self.root] while True: try: node_id = node_list.pop(0) except IndexError: break if node_id.is_leaf: cnt = self.counts[node_id] else: cnt = np.minimum(self.counts[node_id.left], 1) + np.minimum(self.counts[node_id.right], 1) node_list.extend([node_id.left, node_id.right]) self.cnt[node_id] = cnt def update_predictive_posteriors(self, param, data, settings): """ update predictive posterior for hierarchical normalized stable distribution pred_prob computes posterior mean of the label distribution at each node recursively """ node_list = [self.root] if settings.debug: self.gen_node_ids_print() while True: try: node_id = node_list.pop(0) except IndexError: break base = self.get_prior_mean(node_id, param, settings) discount = self.get_discount_node_id(node_id, settings) cnt = self.cnt[node_id] if not node_id.is_leaf: self.pred_prob[node_id] = self.compute_posterior_mean_normalized_stable(cnt, discount, base, settings) node_list.extend([node_id.left, node_id.right]) if settings.debug and False: print 'node_id = %20s, is_leaf = %5s, discount = %.2f, cnt = %s, base = %s, pred_prob = %s' \ % (self.node_ids_print[node_id], node_id.is_leaf, discount, cnt, base, self.pred_prob[node_id]) check_if_one(np.sum(self.pred_prob[node_id])) def get_variance_node(self, node_id, param, settings): # the non-linear transformation should be a monotonically non-decreasing function # if the function saturates (e.g. sigmoid) children will be closer to parent deeper down the tree # var = self.variance_coef * (sigmoid(self.sigmoid_coef * self.split_times[node_id]) \ # - sigmoid(self.sigmoid_coef * self.get_parent_split_time(node_id, settings))) var = self.variance_coef * (sigmoid(self.sigmoid_coef * self.split_times[node_id]) \ - sigmoid(self.sigmoid_coef * self.get_parent_split_time(node_id, settings))) return var def update_posterior_gaussians(self, param, data, settings): """ computes marginal gaussian distribution at each node of the tree using gaussian belief propagation the solution is exact since underlying graph is a tree solution takes O(#nodes) time, which is much more efficient than naive GP implementation which would cost O(#nodes^3) time """ self.gen_node_list() self.message_to_parent = {} self.message_from_parent = {} self.likelihood_children = {} self.pred_param = {} self.pred_moments = {} for node_id in self.node_list[::-1]: if node_id.is_leaf: # use marginal likelihood of data at this leaf mean = self.sum_y[node_id] / float(self.n_points[node_id]) variance = self.get_variance_node(node_id, param, settings) \ + self.noise_variance / float(self.n_points[node_id]) precision = 1.0 / variance self.message_to_parent[node_id] = np.array([mean, precision]) self.likelihood_children[node_id] = np.array([mean, self.noise_precision*float(self.n_points[node_id])]) else: likelihood_children = multiply_gaussians(self.message_to_parent[node_id.left], \ self.message_to_parent[node_id.right]) mean = likelihood_children[0] self.likelihood_children[node_id] = likelihood_children variance = self.get_variance_node(node_id, param, settings) + 1.0 / likelihood_children[1] precision = 1.0 / variance self.message_to_parent[node_id] = np.array([mean, precision]) variance_at_root = self.get_variance_node(node_id, param, settings) self.message_from_parent[self.root] = np.array([param.prior_mean, variance_at_root]) for node_id in self.node_list: # pred_param stores the mean and precision self.pred_param[node_id] = multiply_gaussians(self.message_from_parent[node_id], \ self.likelihood_children[node_id]) # pred_moments stores the first and second moments (useful for prediction) self.pred_moments[node_id] = np.array([self.pred_param[node_id][0], \ 1.0 / self.pred_param[node_id][1] + self.pred_param[node_id][0] ** 2 + self.noise_variance]) if not node_id.is_leaf: self.message_from_parent[node_id.left] = \ multiply_gaussians(self.message_from_parent[node_id], self.message_to_parent[node_id.right]) self.message_from_parent[node_id.right] = \ multiply_gaussians(self.message_from_parent[node_id], self.message_to_parent[node_id.left]) def update_posterior_counts_and_predictive_posteriors(self, param, data, settings): if settings.optype == 'class': # update posterior counts self.update_posterior_counts(param, data, settings) # update predictive posteriors self.update_predictive_posteriors(param, data, settings) else: # updates hyperparameters in param (common to all trees) self.update_gaussian_hyperparameters(param, data, settings) # updates hyperparameters in self (independent for each tree) # self.update_gaussian_hyperparameters_indep(param, data, settings) if settings.smooth_hierarchically: self.update_posterior_gaussians(param, data, settings) def get_prior_mean(self, node_id, param, settings): if settings.optype == 'class': if node_id == self.root: base = param.base_measure else: base = self.pred_prob[node_id.parent] else: base = None # for settings.settings.smooth_hierarchically = False return base def get_discount_node_id(self, node_id, settings): """ compute discount for a node (function of discount_param, time of split and time of split of parent) """ discount = math.exp(-settings.discount_param * self.max_split_costs[node_id]) return discount def compute_posterior_mean_normalized_stable(self, cnt, discount, base, settings): num_tables_k, num_customers, num_tables = self.get_counts(cnt) pred_prob = (cnt - discount * num_tables_k + discount * num_tables * base) / num_customers if settings.debug: check_if_one(pred_prob.sum()) return pred_prob def get_counts(self, cnt): num_tables_k = np.minimum(cnt, 1) num_customers = float(cnt.sum()) num_tables = float(num_tables_k.sum()) return (num_tables_k, num_customers, num_tables) def get_data_range(data, train_ids): """ returns min, max, range and linear dimension of training data """ min_d, max_d = get_data_min_max(data, train_ids) range_d = max_d - min_d sum_range_d = float(range_d.sum()) return (min_d, max_d, range_d, sum_range_d) def get_data_min_max(data, train_ids): """ returns min, max of training data """ x_tmp = data['x_train'].take(train_ids, 0) min_d = np.min(x_tmp, 0) max_d = np.max(x_tmp, 0) return (min_d, max_d) def get_data_range_from_min_max(min_d, max_d): range_d = max_d - min_d sum_range_d = float(range_d.sum()) return (min_d, max_d, range_d, sum_range_d) def update_range_stats(node_id, (min_d, max_d)): """ updates min and max of training data at this block """ node_id.min_d = np.minimum(node_id.min_d, min_d) node_id.max_d = np.maximum(node_id.max_d, max_d) node_id.range_d = node_id.max_d - node_id.min_d node_id.sum_range_d = float(node_id.range_d.sum()) def get_children_id(parent): return (parent.left, parent.right) class MondrianForest(Forest): """ defines Mondrian forest variables: - forest : stores the Mondrian forest methods: - fit(data, train_ids_current_minibatch, settings, param, cache) : batch training - partial_fit(data, train_ids_current_minibatch, settings, param, cache) : online training - evaluate_predictions (see Forest in mondrianforest_utils.py) : predictions """ def __init__(self, settings, data): self.forest = [None] * settings.n_mondrians if settings.optype == 'class': settings.discount_param = settings.discount_factor * data['n_dim'] def fit(self, data, train_ids_current_minibatch, settings, param, cache): for i_t, tree in enumerate(self.forest): if settings.verbose >= 2 or settings.debug: print 'tree_id = %s' % i_t tree = self.forest[i_t] = MondrianTree(data, train_ids_current_minibatch, settings, param, cache) tree.update_posterior_counts_and_predictive_posteriors(param, data, settings) def partial_fit(self, data, train_ids_current_minibatch, settings, param, cache): for i_t, tree in enumerate(self.forest): if settings.verbose >= 2 or settings.debug: print 'tree_id = %s' % i_t tree.extend_mondrian(data, train_ids_current_minibatch, settings, param, cache) tree.update_posterior_counts_and_predictive_posteriors(param, data, settings) def main(): time_0 = time.clock() settings = process_command_line() print print '%' * 120 print 'Beginning mondrianforest.py' print 'Current settings:' pp.pprint(vars(settings)) # Resetting random seed reset_random_seed(settings) # Loading data print '\nLoading data ...' data = load_data(settings) print 'Loading data ... completed' print 'Dataset name = %s' % settings.dataset print 'Characteristics of the dataset:' print 'n_train = %d, n_test = %d, n_dim = %d' %\ (data['n_train'], data['n_test'], data['n_dim']) if settings.optype == 'class': print 'n_class = %d' % (data['n_class']) # precomputation param, cache = precompute_minimal(data, settings) time_init = time.clock() - time_0 print '\nCreating Mondrian forest' # online training with minibatches time_method_sans_init = 0. time_prediction = 0. mf = MondrianForest(settings, data) if settings.store_every: log_prob_test_minibatch = -np.inf * np.ones(settings.n_minibatches) log_prob_train_minibatch = -np.inf * np.ones(settings.n_minibatches) metric_test_minibatch = -np.inf * np.ones(settings.n_minibatches) metric_train_minibatch = -np.inf * np.ones(settings.n_minibatches) time_method_minibatch = np.inf * np.ones(settings.n_minibatches) forest_numleaves_minibatch = np.zeros(settings.n_minibatches) for idx_minibatch in range(settings.n_minibatches): time_method_init = time.clock() is_last_minibatch = (idx_minibatch == settings.n_minibatches - 1) print_results = is_last_minibatch or (settings.verbose >= 2) or settings.debug if print_results: print '*' * 120 print 'idx_minibatch = %5d' % idx_minibatch train_ids_current_minibatch = data['train_ids_partition']['current'][idx_minibatch] if settings.debug: print 'bagging = %s, train_ids_current_minibatch = %s' % \ (settings.bagging, train_ids_current_minibatch) if idx_minibatch == 0: mf.fit(data, train_ids_current_minibatch, settings, param, cache) else: mf.partial_fit(data, train_ids_current_minibatch, settings, param, cache) for i_t, tree in enumerate(mf.forest): if settings.debug or settings.verbose >= 2: print '-'*100 tree.print_tree(settings) print '.'*100 if settings.draw_mondrian: tree.draw_mondrian(data, settings, idx_minibatch, i_t) if settings.save == 1: filename_plot = get_filename_mf(settings)[:-2] if settings.store_every: plt.savefig(filename_plot + '-mondrians_minibatch-' + str(idx_minibatch) + '.pdf', format='pdf') time_method_sans_init += time.clock() - time_method_init time_method = time_method_sans_init + time_init # Evaluate if is_last_minibatch or settings.store_every: time_predictions_init = time.clock() weights_prediction = np.ones(settings.n_mondrians) * 1.0 / settings.n_mondrians if False: if print_results: print 'Results on training data (log predictive prob is bogus)' train_ids_cumulative = data['train_ids_partition']['cumulative'][idx_minibatch] # NOTE: some of these data points are not used for "training" if bagging is used pred_forest_train, metrics_train = \ mf.evaluate_predictions(data, data['x_train'][train_ids_cumulative, :], \ data['y_train'][train_ids_cumulative], \ settings, param, weights_prediction, print_results) else: # not computing metrics on training data metrics_train = {'log_prob': -np.inf, 'acc': 0, 'mse': np.inf} pred_forest_train = None if print_results: print '\nResults on test data' pred_forest_test, metrics_test = \ mf.evaluate_predictions(data, data['x_test'], data['y_test'], \ settings, param, weights_prediction, print_results) name_metric = settings.name_metric # acc or mse log_prob_train = metrics_train['log_prob'] log_prob_test = metrics_test['log_prob'] metric_train = metrics_train[name_metric] metric_test = metrics_test[name_metric] if settings.store_every: log_prob_train_minibatch[idx_minibatch] = metrics_train['log_prob'] log_prob_test_minibatch[idx_minibatch] = metrics_test['log_prob'] metric_train_minibatch[idx_minibatch] = metrics_train[name_metric] metric_test_minibatch[idx_minibatch] = metrics_test[name_metric] time_method_minibatch[idx_minibatch] = time_method tree_numleaves = np.zeros(settings.n_mondrians) for i_t, tree in enumerate(mf.forest): tree_numleaves[i_t] = len(tree.leaf_nodes) forest_numleaves_minibatch[idx_minibatch] = np.mean(tree_numleaves) time_prediction += time.clock() - time_predictions_init # printing test performance: if settings.store_every: print 'printing test performance for every minibatch:' print 'idx_minibatch\tmetric_test\ttime_method\tnum_leaves' for idx_minibatch in range(settings.n_minibatches): print '%10d\t%.3f\t\t%.3f\t\t%.1f' % \ (idx_minibatch, \ metric_test_minibatch[idx_minibatch], \ time_method_minibatch[idx_minibatch], forest_numleaves_minibatch[idx_minibatch]) print '\nFinal forest stats:' tree_stats = np.zeros((settings.n_mondrians, 2)) tree_average_depth = np.zeros(settings.n_mondrians) for i_t, tree in enumerate(mf.forest): tree_stats[i_t, -2:] = np.array([len(tree.leaf_nodes), len(tree.non_leaf_nodes)]) tree_average_depth[i_t] = tree.get_average_depth(settings, data)[0] print 'mean(num_leaves) = %.1f, mean(num_non_leaves) = %.1f, mean(tree_average_depth) = %.1f' \ % (np.mean(tree_stats[:, -2]), np.mean(tree_stats[:, -1]), np.mean(tree_average_depth)) print 'n_train = %d, log_2(n_train) = %.1f, mean(tree_average_depth) = %.1f +- %.1f' \ % (data['n_train'], np.log2(data['n_train']), np.mean(tree_average_depth), np.std(tree_average_depth)) if settings.draw_mondrian: if settings.save == 1: plt.savefig(filename_plot + '-mondrians-final.pdf', format='pdf') else: plt.show() # Write results to disk (timing doesn't include saving) time_total = time.clock() - time_0 # resetting if settings.save == 1: filename = get_filename_mf(settings) print 'filename = ' + filename results = {'log_prob_test': log_prob_test, 'log_prob_train': log_prob_train, \ 'metric_test': metric_test, 'metric_train': metric_train, \ 'time_total': time_total, 'time_method': time_method, \ 'time_init': time_init, 'time_method_sans_init': time_method_sans_init,\ 'time_prediction': time_prediction} if 'log_prob2' in metrics_test: results['log_prob2_test'] = metrics_test['log_prob2'] store_data = settings.dataset[:3] == 'toy' or settings.dataset == 'sim-reg' if store_data: results['data'] = data if settings.store_every: results['log_prob_test_minibatch'] = log_prob_test_minibatch results['log_prob_train_minibatch'] = log_prob_train_minibatch results['metric_test_minibatch'] = metric_test_minibatch results['metric_train_minibatch'] = metric_train_minibatch results['time_method_minibatch'] = time_method_minibatch results['forest_numleaves_minibatch'] = forest_numleaves_minibatch results['settings'] = settings results['tree_stats'] = tree_stats results['tree_average_depth'] = tree_average_depth pickle.dump(results, open(filename, "wb"), protocol=pickle.HIGHEST_PROTOCOL) # storing final predictions as well; recreate new "results" dict results = {'pred_forest_train': pred_forest_train, \ 'pred_forest_test': pred_forest_test} filename2 = filename[:-2] + '.tree_predictions.p' pickle.dump(results, open(filename2, "wb"), protocol=pickle.HIGHEST_PROTOCOL) time_total = time.clock() - time_0 print print 'Time for initializing Mondrian forest (seconds) = %f' % (time_init) print 'Time for executing mondrianforest.py (seconds) = %f' % (time_method_sans_init) print 'Total time for executing mondrianforest.py, including init (seconds) = %f' % (time_method) print 'Time for prediction/evaluation (seconds) = %f' % (time_prediction) print 'Total time (Loading data/ initializing / running / predictions / saving) (seconds) = %f\n' % (time_total) if __name__ == "__main__": main()
mit
mganeva/mantid
MantidPlot/pymantidplot/proxies.py
1
37572
# Mantid Repository : https://github.com/mantidproject/mantid # # Copyright &copy; 2018 ISIS Rutherford Appleton Laboratory UKRI, # NScD Oak Ridge National Laboratory, European Spallation Source # & Institut Laue - Langevin # SPDX - License - Identifier: GPL - 3.0 + """ Module containing classes that act as proxies to the various MantidPlot gui objects that are accessible from python. They listen for the QObject 'destroyed' signal and set the wrapped reference to None, thus ensuring that further attempts at access do not cause a crash. """ from __future__ import (absolute_import, division, print_function) from six.moves import range from PyQt4 import QtCore, QtGui from PyQt4.QtCore import Qt, pyqtSlot try: import builtins except ImportError: import __builtin__ as builtins import mantid import mantidqtpython #----------------------------------------------------------------------------- #--------------------------- MultiThreaded Access ---------------------------- #----------------------------------------------------------------------------- class CrossThreadCall(QtCore.QObject): """ Defines a dispatch call that marshals function calls between threads """ __callable = None __args = [] __kwargs = {} __func_return = None __exception = None def __init__(self, callable): """ Construct the object """ QtCore.QObject.__init__(self) self.moveToThread(QtGui.qApp.thread()) self.__callable = callable self.__call__.__func__.__doc__ = callable.__doc__ def dispatch(self, *args, **kwargs): """Dispatches a call to callable with the given arguments using QMetaObject.invokeMethod to ensure the call happens in the object's thread """ self.__args = args self.__kwargs = kwargs self.__func_return = None self.__exception = None return self._do_dispatch() def __call__(self, *args, **kwargs): """ Calls the dispatch method """ return self.dispatch(*args, **kwargs) @pyqtSlot() def _do_dispatch(self): """Perform a call to a GUI function across a thread and return the result """ if QtCore.QThread.currentThread() != QtGui.qApp.thread(): QtCore.QMetaObject.invokeMethod(self, "_do_dispatch", Qt.BlockingQueuedConnection) else: try: self.__func_return = self.__callable(*self.__args, **self.__kwargs) except Exception as exc: self.__exception = exc if self.__exception is not None: raise self.__exception # Ensures this happens in the right thread return self.__func_return def _get_argtype(self, argument): """ Returns the argument type that will be passed to the QMetaObject.invokeMethod call. Most types pass okay, but enums don't so they have to be coerced to ints. An enum is currently detected as a type that is not a bool and inherits from int """ argtype = type(argument) return argtype if isinstance(argument, builtins.int) and argtype != bool: argtype = int return argtype def threadsafe_call(callable, *args, **kwargs): """ Calls the given function with the given arguments by passing it through the CrossThreadCall class. This ensures that the calls to the GUI functions happen on the correct thread. """ caller = CrossThreadCall(callable) return caller.dispatch(*args, **kwargs) def new_proxy(classType, callable, *args, **kwargs): """ Calls the callable object with the given args and kwargs dealing with possible thread-safety issues. If the returned value is not None it is wrapped in a new proxy of type classType @param classType :: A new proxy class for the return type @param callable :: A python callable object, i.e. a function/method @param \*args :: The positional arguments passed on as given @param \*kwargs :: The keyword arguments passed on as given """ obj = threadsafe_call(callable, *args, **kwargs) if obj is None: return obj return classType(obj) #----------------------------------------------------------------------------- #--------------------------- Proxy Objects ----------------------------------- #----------------------------------------------------------------------------- class QtProxyObject(QtCore.QObject): """Generic Proxy object for wrapping Qt C++ QObjects. This holds the QObject internally and passes methods to it. When the underlying object is deleted, the reference is set to None to avoid segfaults. """ def __init__(self, toproxy): QtCore.QObject.__init__(self) self.__obj = toproxy # Connect to track the destroyed if self.__obj is not None: self.connect(self.__obj, QtCore.SIGNAL("destroyed()"), self._kill_object, Qt.DirectConnection) def __del__(self): """ Disconnect the signal """ self._disconnect_from_destroyed() def close(self): """ Reroute a method call to the the stored object """ self._disconnect_from_destroyed() if hasattr(self.__obj, 'closeDependants'): threadsafe_call(self.__obj.closeDependants) if hasattr(self.__obj, 'close'): threadsafe_call(self.__obj.close) self._kill_object() def inherits(self, className): """ Reroute a method call to the stored object """ return threadsafe_call(self.__obj.inherits, className) def _disconnect_from_destroyed(self): """ Disconnects from the wrapped object's destroyed signal """ if self.__obj is not None: self.disconnect(self.__obj, QtCore.SIGNAL("destroyed()"), self._kill_object) def __getattr__(self, attr): """ Reroute a method call to the the stored object via the threadsafe call mechanism. Essentially this guarantees that when the method is called it will be on the GUI thread """ callable = getattr(self._getHeldObject(), attr) return CrossThreadCall(callable) def __dir__(self): return dir(self._getHeldObject()) def __str__(self): """ Return a string representation of the proxied object """ return str(self._getHeldObject()) def __repr__(self): """ Return a string representation of the proxied object """ return repr(self._getHeldObject()) def _getHeldObject(self): """ Returns a reference to the held object """ return self.__obj def _kill_object(self): """ Release the stored instance """ self.__obj = None def _swap(self, obj): """ Swap an object so that the proxy now refers to this object """ self.__obj = obj #----------------------------------------------------------------------------- class MDIWindow(QtProxyObject): """Proxy for the _qti.MDIWindow object. Also used for subclasses that do not need any methods intercepted (e.g. Table, Note, Matrix) """ def __init__(self, toproxy): QtProxyObject.__init__(self,toproxy) def folder(self): return new_proxy(Folder, self._getHeldObject().folder) #----------------------------------------------------------------------------- class Graph(MDIWindow): """Proxy for the _qti.Graph object. """ # When checking the SIP interface, remember the following name mappings (PyName): # C++ 'Multilayer' class => Python 'Graph' class # C++ 'Graph' class => Python 'Layer' class def __init__(self, toproxy): MDIWindow.__init__(self,toproxy) def activeLayer(self): """Get a handle to the presently active layer """ return new_proxy(Layer, self._getHeldObject().activeLayer) def setActiveLayer(self, layer): """Set the active layer to that specified. Args: layer: A reference to the Layer to make the active one. Must belong to this Graph. """ threadsafe_call(self._getHeldObject().setActiveLayer, layer._getHeldObject()) def layer(self, num): """ Get a handle to a specified layer Args: num: The index of the required layer """ return new_proxy(Layer, self._getHeldObject().layer, num) def addLayer(self, x=0, y=0, width=None, height=None): """Add a layer to the graph. Args: x: The coordinate in pixels (from the graph's left) of the top-left of the new layer (default: 0). y: The coordinate in pixels (from the graph's top) of the top-left of the new layer (default: 0). width: The width of the new layer (default value if not specified). height: The height of the new layer (default value if not specified). Returns: A handle to the newly created layer. """ # Turn the optional arguments into the magic numbers that the C++ expects if width is None: width=0 if height is None: height=0 return new_proxy(Layer, self._getHeldObject().addLayer, x,y,width,height) def insertCurve(self, graph, index): """Add a curve from another graph to this one. Args: graph: A reference to the graph from which the curve is coming (does nothing if this argument is the present Graph). index: The index of the curve to add (counts from zero). """ threadsafe_call(self._getHeldObject().insertCurve, graph._getHeldObject(), index) #----------------------------------------------------------------------------- class Layer(QtProxyObject): """Proxy for the _qti.Layer object. """ # These methods are used for the new matplotlib-like CLI # These ones are provided by the C++ class Graph, which in the SIP declarations is renamed as Layer # The only purpose of listing them here is that these will be returned by this class' __dir()__, and # shown interactively, while the ones not listed and/or overloaded here may not be shown in ipython, etc. additional_methods = ['logLogAxes', 'logXLinY', 'logXLinY', 'removeLegend', 'export', 'setAxisScale', 'setCurveLineColor', 'setCurveLineStyle', 'setCurveLineWidth', 'setCurveSymbol', 'setScale', 'setTitle', 'setXTitle', 'setYTitle'] def __init__(self, toproxy): QtProxyObject.__init__(self,toproxy) def insertCurve(self, *args): """Add a curve from a workspace, table or another Layer to the plot Args: The first argument should be a reference to a workspace, table or layer, or a workspace name. Subsequent arguments vary according to the type of the first. Returns: A boolean indicating success or failure. """ if isinstance(args[0],str): return threadsafe_call(self._getHeldObject().insertCurve, *args) elif hasattr(args[0], 'getName'): return threadsafe_call(self._getHeldObject().insertCurve, args[0].name(),*args[1:]) else: return threadsafe_call(self._getHeldObject().insertCurve, args[0]._getHeldObject(),*args[1:]) def addCurves(self, table, columns, style=0, lineWidth=1, symbolSize=3, startRow=0, endRow=-1): """Add curves based on table columns to the plot. Args: table: A reference to the table containing the data to plot. columns: A tuple of column indices. style: The curve style (default: Line). lineWidth: The width of the curve line (default: 1). symbolSize: The curve's symbol size (default: 3). startRow: The first row to include in the curve's data (default: the first one) endRow: The last row to include in the curve's data (default: the last one) Returns: A boolean indicating success or failure. """ return threadsafe_call(self._getHeldObject().addCurves, table._getHeldObject(),columns,style,lineWidth,symbolSize,startRow,endRow) def addCurve(self, table, columnName, style=0, lineWidth=1, symbolSize=3, startRow=0, endRow=-1): """Add a curve based on a table column to the plot. Args: table: A reference to the table containing the data to plot. columns: The name of the column to plot. style: The curve style (default: Line). lineWidth: The width of the curve line (default: 1). symbolSize: The curve's symbol size (default: 3). startRow: The first row to include in the curve's data (default: the first one) endRow: The last row to include in the curve's data (default: the last one) Returns: A boolean indicating success or failure. """ return threadsafe_call(self._getHeldObject().addCurve, table._getHeldObject(),columnName,style,lineWidth,symbolSize,startRow,endRow) def addErrorBars(self, yColName, errTable, errColName, type=1, width=1, cap=8, color=Qt.black, through=False, minus=True, plus=True): """Add error bars to a plot that was created from a table column. Args: yColName: The name of the column pertaining to the curve's data values. errTable: A reference to the table holding the error values. errColName: The name of the column containing the error values. type: The orientation of the error bars - horizontal (0) or vertical (1, the default). width: The line width of the error bars (default: 1). cap: The length of the cap on the error bars (default: 8). color: The color of error bars (default: black). through: Whether the error bars are drawn through the symbol (default: no). minus: Whether these errors should be shown as negative errors (default: yes). plus: Whether these errors should be shown as positive errors (default: yes). """ threadsafe_call(self._getHeldObject().addErrorBars, yColName,errTable._getHeldObject(),errColName,type,width,cap,color,through,minus,plus) def errorBarSettings(self, curveIndex, errorBarIndex=0): """Get a handle to the error bar settings for a specified curve. Args: curveIndex: The curve to get the settings for errorBarIndex: A curve can hold more than one set of error bars. Specify which one (default: the first). Note that a curve plotted from a workspace can have only one set of error bars (and hence settings). Returns: A handle to the error bar settings object. """ return new_proxy(QtProxyObject, self._getHeldObject().errorBarSettings, curveIndex,errorBarIndex) def addHistogram(self, matrix): """Add a matrix histogram to the graph""" threadsafe_call(self._getHeldObject().addHistogram, matrix._getHeldObject()) def newLegend(self, text): """Create a new legend. Args: text: The text of the legend. Returns: A handle to the newly created legend widget. """ return new_proxy(QtProxyObject, self._getHeldObject().newLegend, text) def legend(self): """Get a handle to the layer's legend widget.""" return new_proxy(QtProxyObject, self._getHeldObject().legend) def grid(self): """Get a handle to the grid object for this layer.""" return new_proxy(QtProxyObject, self._getHeldObject().grid) def spectrogram(self): """If the layer contains a spectrogram, get a handle to the spectrogram object.""" return new_proxy(QtProxyObject, self._getHeldObject().spectrogram) def __dir__(self): """Returns the list of attributes of this object.""" # The first part (explicitly defined ones) are here for the traditional Mantid CLI, # the additional ones have been added for the matplotlib-like CLI (without explicit # declaration/documentation here in the proxies layer. return ['insertCurve', 'addCurves', 'addCurve', 'addErrorBars', 'errorBarSettings', 'addHistogram', 'newLegend', 'legend', 'grid', 'spectrogram' ] + self.additional_methods #----------------------------------------------------------------------------- class Graph3D(QtProxyObject): """Proxy for the _qti.Graph3D object. """ def __init__(self, toproxy): QtProxyObject.__init__(self,toproxy) def setData(self, table, colName, type=0): """Set a table column to be the data source for this plot. Args: table: A reference to the table. colName: The name of the column to set as the data source. type: The plot type. """ threadsafe_call(self._getHeldObject().setData, table._getHeldObject(),colName,type) def setMatrix(self, matrix): """Set a matrix (N.B. not a MantidMatrix) to be the data source for this plot. Args: matrix: A reference to the matrix. """ threadsafe_call(self._getHeldObject().setMatrix, matrix._getHeldObject()) #----------------------------------------------------------------------------- class Spectrogram(QtProxyObject): """Proxy for the _qti.Spectrogram object. """ def __init__(self, toproxy): QtProxyObject.__init__(self,toproxy) def matrix(self): """Get a handle to the data source.""" return new_proxy(QtProxyObject, self._getHeldObject().matrix) #----------------------------------------------------------------------------- class Folder(QtProxyObject): """Proxy for the _qti.Folder object. """ def __init__(self, toproxy): QtProxyObject.__init__(self,toproxy) def windows(self): """Get a list of the windows in this folder""" f = self._getHeldObject().windows() ret = [] for item in f: ret.append(MDIWindow(item)) return ret def folders(self): """Get a list of the subfolders of this folder""" f = self._getHeldObject().folders() ret = [] for item in f: ret.append(Folder(item)) return ret def folder(self, name, caseSensitive=True, partialMatch=False): """Get a handle to a named subfolder. Args: name: The name of the subfolder. caseSensitive: Whether to search case-sensitively or not (default: yes). partialMatch: Whether to return a partial match (default: no). Returns: A handle to the requested folder, or None if no match found. """ return new_proxy(Folder, self._getHeldObject().folder, name,caseSensitive,partialMatch) def findWindow(self, name, searchOnName=True, searchOnLabel=True, caseSensitive=False, partialMatch=True): """Get a handle to the first window matching the search criteria. Args: name: The name of the window. searchOnName: Whether to search the window names (takes precedence over searchOnLabel). searchOnLabel: Whether to search the window labels. caseSensitive: Whether to search case-sensitively or not (default: no). partialMatch: Whether to return a partial match (default: yes). Returns: A handle to the requested window, or None if no match found. """ return new_proxy(MDIWindow, self._getHeldObject().findWindow, name,searchOnName,searchOnLabel,caseSensitive,partialMatch) def window(self, name, cls='MdiSubWindow', recursive=False): """Get a handle to a named window of a particular type. Args: name: The name of the window. cls: Search only for windows of type inheriting from this class (N.B. This is the C++ class name). recursive: If True, do a depth-first recursive search (default: False). Returns: A handle to the window, or None if no match found. """ return new_proxy(MDIWindow, self._getHeldObject().window, name,cls,recursive) def table(self, name, recursive=False): """Get a handle to the table with the given name. Args: name: The name of the table to search for. recursive: If True, do a depth-first recursive search (default: False). """ return new_proxy(MDIWindow, self._getHeldObject().table, name,recursive) def matrix(self, name, recursive=False): """Get a handle to the matrix with the given name. Args: name: The name of the matrix to search for. recursive: If True, do a depth-first recursive search (default: False). """ return new_proxy(MDIWindow, self._getHeldObject().matrix, name,recursive) def graph(self, name, recursive=False): """Get a handle to the graph with the given name. Args: name: The name of the graph to search for. recursive: If True, do a depth-first recursive search (default: False). """ return new_proxy(Graph, self._getHeldObject().graph, name,recursive) def rootFolder(self): """Get the folder at the root of the hierarchy""" return new_proxy(Folder, self._getHeldObject().rootFolder) #----------------------------------------------------------------------------- class MantidMatrix(MDIWindow): """Proxy for the _qti.MantidMatrix object. """ def __init__(self, toproxy): QtProxyObject.__init__(self,toproxy) def plotGraph3D(self, style=3): """Create a 3D plot of the workspace data. Args: style: The qwt3d plotstyle of the generated graph (default: filled mesh) Returns: A handle to the newly created graph (a Graph3D object) """ return new_proxy(Graph3D, self._getHeldObject().plotGraph3D, style) def plotGraph2D(self, type=16): """Create a spectrogram from the workspace data. Args: type: The style of the plot (default: ColorMap) Returns: A handle the newly created graph (a Graph object) """ return new_proxy(Graph, self._getHeldObject().plotGraph2D, type) #----------------------------------------------------------------------------- class InstrumentView(MDIWindow): """Proxy for the instrument window """ def __init__(self, toproxy): """Creates a proxy object around an instrument window Args: toproxy: The raw C object to proxy """ QtProxyObject.__init__(self, toproxy) def getTab(self, name_or_tab): """Retrieve a handle to the given tab Args: name_or_index: A string containing the title or tab type Returns: A handle to a tab widget """ handle = new_proxy(QtProxyObject, self._getHeldObject().getTab, name_or_tab) if handle is None: raise ValueError("Invalid tab title '%s'" % str(name_or_tab)) return handle # ----- Deprecated functions ----- def changeColormap(self, filename=None): import warnings warnings.warn("InstrumentWidget.changeColormap has been deprecated. Use the render tab method instead.") callable = QtProxyObject.__getattr__(self, "changeColormap") if filename is None: callable() else: callable(filename) def setColorMapMinValue(self, value): import warnings warnings.warn("InstrumentWidget.setColorMapMinValue has been deprecated. Use the render tab setMinValue method instead.") QtProxyObject.__getattr__(self, "setColorMapMinValue")(value) def setColorMapMaxValue(self, value): import warnings warnings.warn("InstrumentWidget.setColorMapMaxValue has been deprecated. Use the render tab setMaxValue method instead.") QtProxyObject.__getattr__(self, "setColorMapMaxValue")(value) def setColorMapRange(self, minvalue, maxvalue): import warnings warnings.warn("InstrumentWidget.setColorMapRange has been deprecated. Use the render tab setRange method instead.") QtProxyObject.__getattr__(self, "setColorMapRange")(minvalue,maxvalue) def setScaleType(self, scale_type): import warnings warnings.warn("InstrumentWidget.setScaleType has been deprecated. Use the render tab setScaleType method instead.") QtProxyObject.__getattr__(self, "setScaleType")(scale_type) def setViewType(self, view_type): import warnings warnings.warn("InstrumentWidget.setViewType has been deprecated. Use the render tab setSurfaceType method instead.") QtProxyObject.__getattr__(self, "setViewType")(view_type) def selectComponent(self, name): import warnings warnings.warn("InstrumentWidget.selectComponent has been deprecated. Use the tree tab selectComponentByName method instead.") QtProxyObject.__getattr__(self, "selectComponent")(name) #----------------------------------------------------------------------------- class SliceViewerWindowProxy(QtProxyObject): """Proxy for a C++ SliceViewerWindow object. It will pass-through method calls that can be applied to the SliceViewer widget contained within. """ def __init__(self, toproxy): QtProxyObject.__init__(self, toproxy) def __getattr__(self, attr): """ Reroute a method call to the the stored object """ if self._getHeldObject() is None: raise Exception("Error! The SliceViewerWindow has been deleted.") # Pass-through to the contained SliceViewer widget. sv = self.getSlicer() # But only those attributes that are methods on the SliceViewer if attr in SliceViewerProxy.slicer_methods: return getattr(sv, attr) else: # Otherwise, pass through to the stored object return getattr(self._getHeldObject(), attr) def __str__(self): """ Return a string representation of the proxied object """ if self._getHeldObject() is None: return "None" else: return 'SliceViewerWindow(workspace="%s")' % self._getHeldObject().getSlicer().getWorkspaceName() def __repr__(self): """ Return a string representation of the proxied object """ return repr(self._getHeldObject()) def __dir__(self): """ Returns the list of attributes for this object. Might allow tab-completion to work under ipython """ return SliceViewerProxy.slicer_methods + ['showLine'] def getLiner(self): """ Returns the LineViewer widget that is part of this SliceViewerWindow """ return LineViewerProxy(self._getHeldObject().getLiner()) def getSlicer(self): """ Returns the SliceViewer widget that is part of this SliceViewerWindow """ return SliceViewerProxy(self._getHeldObject().getSlicer()) def showLine(self, start, end, width=None, planar_width=0.1, thicknesses=None, num_bins=100): """Opens the LineViewer and define a 1D line along which to integrate. The line is created in the same XY dimensions and at the same slice point as is currently shown in the SliceViewer. Args: start :: (X,Y) coordinates of the start point in the XY dimensions of the current slice. end :: (X,Y) coordinates of the end point in the XY dimensions of the current slice. width :: if specified, sets all the widths (planar and other dimensions) to this integration width. planar_width :: sets the XY-planar (perpendicular to the line) integration width. Default 0.1. thicknesses :: list with one thickness value for each dimension in the workspace (including the XY dimensions, which are ignored). e.g. [0,1,2,3] in a XYZT workspace. num_bins :: number of bins by which to divide the line. Default 100. Returns: The LineViewer object of the SliceViewerWindow. There are methods available to modify the line drawn. """ # First show the lineviewer self.getSlicer().toggleLineMode(True) liner = self.getLiner() # Start and end point liner.setStartXY(start[0], start[1]) liner.setEndXY(end[0], end[1]) # Set the width. if not width is None: liner.setThickness(width) liner.setPlanarWidth(width*0.5) else: liner.setPlanarWidth(planar_width*0.5) if not thicknesses is None: for d in range(len(thicknesses)): liner.setThickness(d, thicknesses[d]) # Bins liner.setNumBins(num_bins) liner.apply() # Return the proxy to the LineViewer widget return liner #----------------------------------------------------------------------------- def getWorkspaceNames(source): """Takes a "source", which could be a WorkspaceGroup, or a list of workspaces, or a list of names, and converts it to a list of workspace names. Args: source :: input list or workspace group Returns: list of workspace names """ ws_names = [] if isinstance(source, list) or isinstance(source,tuple): for w in source: names = getWorkspaceNames(w) ws_names += names elif hasattr(source, 'name'): if hasattr(source, '_getHeldObject'): wspace = source._getHeldObject() else: wspace = source if wspace == None: return [] if hasattr(wspace, 'getNames'): grp_names = wspace.getNames() for n in grp_names: if n != wspace.name(): ws_names.append(n) else: ws_names.append(wspace.name()) elif isinstance(source,str): w = None try: # for non-existent names this raises a KeyError w = mantid.AnalysisDataService.Instance()[source] except Exception as exc: raise ValueError("Workspace '%s' not found!"%source) if w != None: names = getWorkspaceNames(w) for n in names: ws_names.append(n) else: raise TypeError('Incorrect type passed as workspace argument "' + str(source) + '"') return ws_names #----------------------------------------------------------------------------- class ProxyCompositePeaksPresenter(QtProxyObject): def __init__(self, toproxy): QtProxyObject.__init__(self,toproxy) def getPeaksPresenter(self, source): to_present = None if isinstance(source, str): to_present = source elif isinstance(source, mantid.api.Workspace): to_present = source.name() else: raise ValueError("getPeaksPresenter expects a Workspace name or a Workspace object.") if not mantid.api.mtd.doesExist(to_present): raise ValueError("%s does not exist in the workspace list" % to_present) return new_proxy(QtProxyObject, self._getHeldObject().getPeaksPresenter, to_present) #----------------------------------------------------------------------------- class SliceViewerProxy(QtProxyObject): """Proxy for a C++ SliceViewer widget. """ # These are the exposed python method names slicer_methods = ["setWorkspace", "getWorkspaceName", "showControls", "openFromXML", "getImage", "saveImage", "copyImageToClipboard", "setFastRender", "getFastRender", "toggleLineMode", "setXYDim", "setXYDim", "getDimX", "getDimY", "setSlicePoint", "setSlicePoint", "getSlicePoint", "getSlicePoint", "setXYLimits", "getXLimits", "getYLimits", "zoomBy", "setXYCenter", "resetZoom", "loadColorMap", "setColorScale", "setColorScaleMin", "setColorScaleMax", "setColorScaleLog", "getColorScaleMin", "getColorScaleMax", "getColorScaleLog", "setColorScaleAutoFull", "setColorScaleAutoSlice", "setColorMapBackground", "setTransparentZeros", "setNormalization", "getNormalization", "setRebinThickness", "setRebinNumBins", "setRebinMode", "setPeaksWorkspaces", "refreshRebin"] def __init__(self, toproxy): QtProxyObject.__init__(self, toproxy) def __dir__(self): """Returns the list of attributes for this object. """ return self.slicer_methods() def setPeaksWorkspaces(self, source): workspace_names = getWorkspaceNames(source) if len(workspace_names) == 0: raise ValueError("No workspace names given to setPeaksWorkspaces") for name in workspace_names: if not mantid.api.mtd.doesExist(name): raise ValueError("%s does not exist in the workspace list" % name) if not isinstance(mantid.api.mtd[name], mantid.api.IPeaksWorkspace): raise ValueError("%s is not an IPeaksWorkspace" % name) return new_proxy(ProxyCompositePeaksPresenter, self._getHeldObject().setPeaksWorkspaces, workspace_names) #----------------------------------------------------------------------------- class LineViewerProxy(QtProxyObject): """Proxy for a C++ LineViewer widget. """ def __init__(self, toproxy): QtProxyObject.__init__(self, toproxy) def __dir__(self): """Returns the list of attributes for this object. """ return ["apply", "showPreview", "showFull", "setStartXY", "setEndXY", "setThickness", "setThickness", "setThickness", "setPlanarWidth", "getPlanarWidth", "setNumBins", "setFixedBinWidthMode", "getFixedBinWidth", "getFixedBinWidthMode", "getNumBins", "getBinWidth", "setPlotAxis", "getPlotAxis"] #----------------------------------------------------------------------------- class FitBrowserProxy(QtProxyObject): """ Proxy for the FitPropertyBrowser object. """ def __init__(self, toproxy): QtProxyObject.__init__(self,toproxy) #----------------------------------------------------------------------------- class TiledWindowProxy(QtProxyObject): """ Proxy for the TiledWindow object. """ def __init__(self, toproxy): QtProxyObject.__init__(self,toproxy) def addWidget(self, tile, row, col): """ Add a new sub-window at a given position in the layout. The layout will re-shape itself if necessary to fit in the new tile. Args: tile :: An MdiSubWindow to add. row :: A row index at which to place the new tile. col :: A column index at which to place the new tile. """ threadsafe_call(self._getHeldObject().addWidget, tile._getHeldObject(), row, col) def insertWidget(self, tile, row, col): """ Insert a new sub-window at a given position in the layout. The widgets to the right and below the inserted tile will be shifted towards the bottom of the window. If necessary a new row will be appended. The number of columns doesn't change. Args: tile :: An MdiSubWindow to insert. row :: A row index at which to place the new tile. col :: A column index at which to place the new tile. """ threadsafe_call(self._getHeldObject().insertWidget, tile._getHeldObject(), row, col) def getWidget(self, row, col): """ Get a sub-window at a location in this TiledWindow. Args: row :: A row of a sub-window. col :: A column of a sub-window. """ return MDIWindow( threadsafe_call(self._getHeldObject().getWidget, row, col) ) def clear(self): """ Clear the content this TiledWindow. """ threadsafe_call(self._getHeldObject().clear) def showHelpPage(page_name=None): """Show a page in the help system""" window = threadsafe_call(mantidqtpython.MantidQt.API.InterfaceManager().showHelpPage, page_name) def showWikiPage(page_name=None): """Show a wiki page through the help system""" window = threadsafe_call(mantidqtpython.MantidQt.API.InterfaceManager().showWikiPage, page_name) def showAlgorithmHelp(algorithm=None, version=-1): """Show an algorithm help page""" window = threadsafe_call(mantidqtpython.MantidQt.API.InterfaceManager().showAlgorithmHelp, algorithm, version) def showConceptHelp(name=None): """Show a concept help page""" window = threadsafe_call(mantidqtpython.MantidQt.API.InterfaceManager().showConceptHelp, name) def showFitFunctionHelp(name=None): """Show a fit function help page""" window = threadsafe_call(mantidqtpython.MantidQt.API.InterfaceManager().showFitFunctionHelp, name) def showCustomInterfaceHelp(name=None): """Show a custom interface help page""" window = threadsafe_call(mantidqtpython.MantidQt.API.InterfaceManager().showCustomInterfaceHelp, name)
gpl-3.0
nickgentoo/scikit-learn-graph
scripts/Online_PassiveAggressive_ReservoirHashKernels_notanhTABLES.py
1
10510
# -*- coding: utf-8 -*- """ python -m scripts/Online_PassiveAggressive_countmeansketch LMdata 3 1 a ODDST 0.01 Created on Fri Mar 13 13:02:41 2015 Copyright 2015 Nicolo' Navarin This file is part of scikit-learn-graph. scikit-learn-graph is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. scikit-learn-graph is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with scikit-learn-graph. If not, see <http://www.gnu.org/licenses/>. """ from copy import copy import os,sys,inspect currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) sys.path.insert(0,parentdir) import sys from skgraph.feature_extraction.graph.ODDSTVectorizer import ODDSTVectorizer from skgraph.feature_extraction.graph.WLVectorizer import WLVectorizer from sklearn.linear_model import PassiveAggressiveClassifier as PAC from skgraph.datasets import load_graph_datasets import numpy as np from scipy.sparse import csc_matrix from sklearn.utils import compute_class_weight from scipy.sparse import csr_matrix from skgraph.utils.countminsketch_TABLESrandomprojectionNEWLinear import CountMinSketch from itertools import izip import time if __name__=='__main__': start_time = time.time() if len(sys.argv)<1: sys.exit("python ODDKernel_example.py dataset r l filename kernel C m seed") dataset=sys.argv[1] max_radius=int(sys.argv[2]) la=float(sys.argv[3]) #hashs=int(sys.argv[3]) njobs=1 name=str(sys.argv[4]) kernel=sys.argv[5] C=float(sys.argv[6]) m=int(sys.argv[7]) rs=int(sys.argv[8]) #lr=float(sys.argv[7]) #FIXED PARAMETERS normalization=False #working with Chemical g_it=load_graph_datasets.dispatch(dataset) f=open(name,'w') #At this point, one_hot_encoding contains the encoding for each symbol in the alphabet if kernel=="WL": print "Lambda ignored" print "Using WL fast subtree kernel" Vectorizer=WLVectorizer(r=max_radius,normalization=normalization) elif kernel=="ODDST": print "Using ST kernel" Vectorizer=ODDSTVectorizer(r=max_radius,l=la,normalization=normalization) elif kernel=="NSPDK": print "Using NSPDK kernel, lambda parameter interpreted as d" Vectorizer=NSPDKVectorizer(r=max_radius,d=int(la),normalization=normalization) else: print "Unrecognized kernel" #TODO the C parameter should probably be optimized #print zip(_letters, _one_hot) #exit() features=Vectorizer.transform(g_it.graphs) #Parallel ,njobs print "examples, features", features.shape features_time=time.time() print("Computed features in %s seconds ---" % (features_time - start_time)) errors=0 tp=0 fp=0 tn=0 fn=0 predictions=[0]*50 correct=[0]*50 #print ESN #netDataSet=[] #netTargetSet=[] #netKeyList=[] BERtotal=[] bintargets=[1,-1] #print features #print list_for_deep.keys() tp = 0 fp = 0 fn = 0 tn = 0 part_plus=0 part_minus=0 sizes=[5000]*50 transformer=CountMinSketch(m,features.shape[1],rs) WCMS=np.zeros(shape=(m,1)) cms_creation=0.0 for i in xrange(features.shape[0]): time1=time.time() ex=features[i][0].T exCMS=transformer.transform(ex) #print "exCMS", type(exCMS), exCMS.shape target=g_it.target[i] #W=csr_matrix(ex) #dot=0.0 module=np.dot(exCMS.T,exCMS)[0,0] #print "module", module time2=time.time() cms_creation+=time2 - time1 dot=np.dot(WCMS.T,exCMS) #print "dot", dot #print "dot:", dot, "dotCMS:",dot1 if (np.sign(dot) != target ): #print "error on example",i, "predicted:", dot, "correct:", target errors+=1 if target==1: fn+=1 else: fp+=1 else: #print "correct classification", target if target==1: tp+=1 else: tn+=1 if(target==1): coef=(part_minus+1.0)/(part_plus+part_minus+1.0) part_plus+=1 else: coef=(part_plus+1.0)/(part_plus+part_minus+1.0) part_minus+=1 tao = min (C, max (0.0,( (1.0 - target*dot )*coef) / module ) ); if (tao > 0.0): WCMS+=(exCMS*(tao*target)) # for row,col in zip(rows,cols): # ((row,col), ex[row,col]) # #print col, ex[row,col] # WCMS.add(col,target*tao*ex[row,col]) #print "Correct prediction example",i, "pred", score, "target",target if i%50==0 and i!=0: #output performance statistics every 50 examples if (tn+fp) > 0: pos_part= float(fp) / (tn+fp) else: pos_part=0 if (tp+fn) > 0: neg_part=float(fn) / (tp+fn) else: neg_part=0 BER = 0.5 * ( pos_part + neg_part) print "1-BER Window esempio ",i, (1.0 - BER) f.write("1-BER Window esempio "+str(i)+" "+str(1.0 - BER)+"\n") #print>>f,"1-BER Window esempio "+str(i)+" "+str(1.0 - BER) BERtotal.append(1.0 - BER) tp = 0 fp = 0 fn = 0 tn = 0 part_plus=0 part_minus=0 end_time=time.time() print("Learning phase time %s seconds ---" % (end_time - features_time )) #- cms_creation print("Total time %s seconds ---" % (end_time - start_time)) print "BER AVG", str(np.average(BERtotal)),"std", np.std(BERtotal) f.write("BER AVG "+ str(np.average(BERtotal))+" std "+str(np.std(BERtotal))+"\n") f.close() transformer.removetmp() #print "N_features", ex.shape #generate explicit W from CountMeanSketch #print W #raw_input("W (output)") #============================================================================== # # tao = /*(double)labels->get_label(idx_a) **/ min (C, max (0.0,(1.0 - (((double)labels->get_label(idx_a))*(classe_mod) )) * c_plus ) / modulo_test); # # #W=W_old #dump line # # # #set the weights of PA to the predicted values # PassiveAggressive.coef_=W # pred=PassiveAggressive.predict(ex) # # score=PassiveAggressive.decision_function(ex) # # bintargets.append(target) # if pred!=target: # errors+=1 # print "Error",errors," on example",i, "pred", score, "target",target # if target==1: # fn+=1 # else: # fp+=1 # # else: # if target==1: # tp+=1 # else: # tn+=1 # #print "Correct prediction example",i, "pred", score, "target",target # # else: # #first example is always an error! # pred=0 # score=0 # errors+=1 # print "Error",errors," on example",i # if g_it.target[i]==1: # fn+=1 # else: # fp+=1 # #print i # if i%50==0 and i!=0: # #output performance statistics every 50 examples # if (tn+fp) > 0: # pos_part= float(fp) / (tn+fp) # else: # pos_part=0 # if (tp+fn) > 0: # neg_part=float(fn) / (tp+fn) # else: # neg_part=0 # BER = 0.5 * ( pos_part + neg_part) # print "1-BER Window esempio ",i, (1.0 - BER) # print>>f,"1-BER Window esempio "+str(i)+" "+str(1.0 - BER) # BERtotal.append(1.0 - BER) # tp = 0 # fp = 0 # fn = 0 # tn = 0 # bintargets=[1,-1] # #print features[0][i] # #print features[0][i].shape # #f=features[0][i,:] # #print f.shape # #print f.shape # #print g_it.target[i] # #third parameter is compulsory just for the first call # print "prediction", pred, score # #print "intecept",PassiveAggressive.intercept_ # #raw_input() # if abs(score)<1.0 or pred!=g_it.target[i]: # # ClassWeight=compute_class_weight('auto',np.asarray([1,-1]),bintargets) # #print "class weights", {1:ClassWeight[0],-1:ClassWeight[1]} # PassiveAggressive.class_weight={1:ClassWeight[0],-1:ClassWeight[1]} # # PassiveAggressive.partial_fit(ex,np.array([g_it.target[i]]),np.unique(g_it.target)) # #PassiveAggressive.partial_fit(ex,np.array([g_it.target[i]]),np.unique(g_it.target)) # W_old=PassiveAggressive.coef_ # # # #ESN target---# # netTargetSet=[] # for key,rowDict in list_for_deep[i].iteritems(): # # # target=np.asarray( [np.asarray([W_old[0,key]])]*len(rowDict)) # # # netTargetSet.append(target) # # # # # #------------ESN TargetSetset--------------------# # # ESN Training # # #for ftDataset,ftTargetSet in zip(netDataSet,netTargetSet): # #print "Input" # #print netDataSet # #raw_input("Output") # #print netTargetSet # #raw_input("Target") # model.OnlineTrain(netDataSet,netTargetSet,lr) # #raw_input("TR") # #calcolo statistiche # # print "BER AVG", sum(BERtotal) / float(len(BERtotal)) # print>>f,"BER AVG "+str(sum(BERtotal) / float(len(BERtotal))) # f.close() #==============================================================================
gpl-3.0
pnedunuri/scikit-learn
examples/covariance/plot_lw_vs_oas.py
248
2903
""" ============================= Ledoit-Wolf vs OAS estimation ============================= The usual covariance maximum likelihood estimate can be regularized using shrinkage. Ledoit and Wolf proposed a close formula to compute the asymptotically optimal shrinkage parameter (minimizing a MSE criterion), yielding the Ledoit-Wolf covariance estimate. Chen et al. proposed an improvement of the Ledoit-Wolf shrinkage parameter, the OAS coefficient, whose convergence is significantly better under the assumption that the data are Gaussian. This example, inspired from Chen's publication [1], shows a comparison of the estimated MSE of the LW and OAS methods, using Gaussian distributed data. [1] "Shrinkage Algorithms for MMSE Covariance Estimation" Chen et al., IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy.linalg import toeplitz, cholesky from sklearn.covariance import LedoitWolf, OAS np.random.seed(0) ############################################################################### n_features = 100 # simulation covariance matrix (AR(1) process) r = 0.1 real_cov = toeplitz(r ** np.arange(n_features)) coloring_matrix = cholesky(real_cov) n_samples_range = np.arange(6, 31, 1) repeat = 100 lw_mse = np.zeros((n_samples_range.size, repeat)) oa_mse = np.zeros((n_samples_range.size, repeat)) lw_shrinkage = np.zeros((n_samples_range.size, repeat)) oa_shrinkage = np.zeros((n_samples_range.size, repeat)) for i, n_samples in enumerate(n_samples_range): for j in range(repeat): X = np.dot( np.random.normal(size=(n_samples, n_features)), coloring_matrix.T) lw = LedoitWolf(store_precision=False, assume_centered=True) lw.fit(X) lw_mse[i, j] = lw.error_norm(real_cov, scaling=False) lw_shrinkage[i, j] = lw.shrinkage_ oa = OAS(store_precision=False, assume_centered=True) oa.fit(X) oa_mse[i, j] = oa.error_norm(real_cov, scaling=False) oa_shrinkage[i, j] = oa.shrinkage_ # plot MSE plt.subplot(2, 1, 1) plt.errorbar(n_samples_range, lw_mse.mean(1), yerr=lw_mse.std(1), label='Ledoit-Wolf', color='g') plt.errorbar(n_samples_range, oa_mse.mean(1), yerr=oa_mse.std(1), label='OAS', color='r') plt.ylabel("Squared error") plt.legend(loc="upper right") plt.title("Comparison of covariance estimators") plt.xlim(5, 31) # plot shrinkage coefficient plt.subplot(2, 1, 2) plt.errorbar(n_samples_range, lw_shrinkage.mean(1), yerr=lw_shrinkage.std(1), label='Ledoit-Wolf', color='g') plt.errorbar(n_samples_range, oa_shrinkage.mean(1), yerr=oa_shrinkage.std(1), label='OAS', color='r') plt.xlabel("n_samples") plt.ylabel("Shrinkage") plt.legend(loc="lower right") plt.ylim(plt.ylim()[0], 1. + (plt.ylim()[1] - plt.ylim()[0]) / 10.) plt.xlim(5, 31) plt.show()
bsd-3-clause
BhavyaLight/kaggle-predicting-Red-Hat-Business-Value
Initial_Classification_Models/Ensemble/RandomForest500XGBoost.py
1
8265
import pandas as pd import xgboost as xgb1 from xgboost import XGBClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import OneHotEncoder from Classification import Utility import pickle import time from sklearn.preprocessing import StandardScaler # Function to change labels of categories to one-hot encoding using scikit's OneHot Encoding # pd.get_dummies(df) does the same, provides sweet header's as well but it it not fast enough, kill's memory def category_to_one_hot(dataset, non_feature, continuous_feature): # Function to change labels of categories to one-hot encoding using scikit's OneHot Encoding sparse matrix # pd.get_dummies(df) does the same, provides sweet header's as well but it kill's memory ds = dataset.drop(non_feature, axis=1, errors='ignore') boolean_column = [] counter = 0 if('days' in ds.columns): ds['weekend'] = ds['days']//5 for column in ds.columns: if column not in continuous_feature: boolean_column.append(counter) counter += 1 # boolean_column is not the column name but index print("Done filtering columns...") grd_enc = OneHotEncoder(categorical_features=boolean_column) encoded_arr = grd_enc.fit_transform(ds) return encoded_arr start_time = time.time() # features = [(1.0, 'people_group_1')] # columns = [] # # filename = "randomForest500Model" # # for val in features: # if (val[0] == 1.0): # columns.append(val[1]) # # RandomForestFilename = "randomForest500Model" # # train_dataset = pd.read_csv("../../Data/act_train_features_reduced.csv") # test_dataset = pd.read_csv("../../Data/act_test_features_reduced.csv") # train_output = pd.read_csv("../../Data/act_train_output.csv") # # train_dataset = pd.merge(train_dataset, train_output, on="activity_id", how='inner') # print("--- %s seconds ---" % (time.time() - start_time)) # # randomForestModel = Utility.loadModel("randomForestModel_OHE") # # randomForestModel = RandomForestClassifier(n_estimators=500) # # # # randomForestModel.fit(train_dataset[columns], train_dataset[["outcome"]].values.ravel()) # # prob_train = randomForestModel.predict_proba(train_dataset[columns]) # prob_test = randomForestModel.predict_proba(test_dataset[columns]) # # Utility.saveModel(randomForestModel, "randomForestModel_OHE") # # train_dataset["Random_Forest_1"] = prob_train[:,1] # # test_dataset["Random_Forest_1"] = prob_test[:,1] # # Utility.saveModel(train_dataset, "train_randomforest") # Utility.saveModel(test_dataset, "test_randomforest") train_dataset = Utility.loadModel("train_randomforest") test_dataset = Utility.loadModel("test_randomforest") print("Random Forest Done") print("--- %s seconds ---" % (time.time() - start_time)) features = [(1.0, 'Random_Forest_1'), (1.0, 'char_3'), (1.0, 'char_4'), (1.0, 'char_5'), (1.0, 'char_6'), (1.0, 'char_8'), (1.0, 'char_9'), (1.0, 'days'), (1.0, 'month'), (1.0, 'people_char_1'), (1.0, 'people_char_10'), (1.0, 'people_char_11'), (1.0, 'people_char_12'), (1.0, 'people_char_13'), (1.0, 'people_char_14'), (1.0, 'people_char_15'), (1.0, 'people_char_16'), (1.0, 'people_char_17'), (1.0, 'people_char_18'), (1.0, 'people_char_19'), (1.0, 'people_char_2'), (1.0, 'people_char_20'), (1.0, 'people_char_21'), (1.0, 'people_char_22'), (1.0, 'people_char_23'), (1.0, 'people_char_24'), (1.0, 'people_char_25'), (1.0, 'people_char_26'), (1.0, 'people_char_27'), (1.0, 'people_char_28'), (1.0, 'people_char_29'), (1.0, 'people_char_3'), (1.0, 'people_char_30'), (1.0, 'people_char_31'), (1.0, 'people_char_32'), (1.0, 'people_char_33'), (1.0, 'people_char_34'), (1.0, 'people_char_35'), (1.0, 'people_char_36'), (1.0, 'people_char_37'), (1.0, 'people_char_38'), (1.0, 'people_char_4'), (1.0, 'people_char_5'), (1.0, 'people_char_6'), (1.0, 'people_char_7'), (1.0, 'people_char_8'), (1.0, 'people_char_9'), (1.0, 'people_dayOfMonth'), (1.0, 'people_month'), (1.0, 'people_quarter'), (1.0, 'people_week'), (1.0, 'people_year'), (1.0, 'quarter'), (1.0, 'week'), (1.0, 'year'), (2.0, 'char_7'), (3.0, 'char_1'), (4.0, 'dayOfMonth'), (5.0, 'activity_category'), (6.0, 'people_days'), (7.0, 'char_2'), (8.0, 'people_group_1'), (9.0, 'people_id')] columns = [] filename = 'randomPlusXGBOHE_new_woGP10_2' for val in features: # if(val[0] == 1.0): columns.append(val[1]) train_dataset_outcome = train_dataset[["outcome"]] train_dataset = train_dataset[columns] # Non feature # Non feature NON_FEATURE=['activity_id','people_id','date','people_date'] # Categorical data that is only label encoded CATEGORICAL_DATA = ['people_char_1', 'people_char_2','people_group_1', 'people_char_3', 'people_char_4', 'people_char_5', 'people_char_6', 'people_char_7', 'people_char_8', 'people_char_9', 'activity_category', 'char_1', 'char_2', 'char_3', 'char_4', 'char_5', 'char_6', 'char_7', 'char_8', 'char_9'] #removed char_10 to check xgb # Already in a one-hot encoded form CATEGORICAL_BINARY = ['people_char_10', 'people_char_11', 'people_char_12', 'people_char_13', 'people_char_14', 'people_char_15', 'people_char_16', 'people_char_17', 'people_char_18', 'people_char_19', 'people_char_20', 'people_char_21', 'people_char_22', 'people_char_23', 'people_char_24', 'people_char_25', 'people_char_26', 'people_char_27', 'people_char_28', 'people_char_29', 'people_char_30', 'people_char_31', 'people_char_32', 'people_char_33', 'people_char_34', 'people_char_35', 'people_char_36', 'people_char_37', 'Random_Forest_1' ] # Continuous categories CONT = ['people_days', 'days', 'people_month', 'month', 'people_quarter', 'quarter', 'people_week', 'week', 'people_dayOfMonth', 'dayOfMonth', 'people_year', 'year', 'people_char_38'] train_dataset_array = (category_to_one_hot(train_dataset, NON_FEATURE, CONT)) Utility.saveModel(train_dataset_array, "ohe_log") norm = StandardScaler(with_mean=False, with_std=True) norm1 = StandardScaler(with_mean=False, with_std=True) # train_dataset_array = print("--- %s seconds ---" % (time.time() - start_time)) print("Starting Log Reg") X = train_dataset_array #norm.fit(X) #X = norm.transform(X) Y = train_dataset_outcome.values.ravel() # logisticModel = Utility.loadModel(filename) test_dataset_act_id = test_dataset[["activity_id"]] test_dataset = test_dataset[columns] test_dataset_array = (category_to_one_hot(test_dataset, NON_FEATURE, CONT)) #norm1.fit(test_dataset_array) #test_dataset_array = norm1.transform(test_dataset_array) xgb = XGBClassifier(max_depth=10, learning_rate=0.3, n_estimators=25, objective='binary:logistic', subsample=0.7, colsample_bytree=0.7, seed=0, silent=1, nthread=4, min_child_weight=0) dtrain = xgb1.DMatrix(X,label=Y) dtest = xgb1.DMatrix(test_dataset_array) param = {'max_depth':10, 'eta':0.02, 'silent':1, 'objective':'binary:logistic' } param['nthread'] = 4 param['eval_metric'] = 'auc' param['subsample'] = 0.7 param['colsample_bytree']= 0.7 param['min_child_weight'] = 0 param['booster'] = "gblinear" watchlist = [(dtrain,'train')] num_round = 1500 early_stopping_rounds=10 bst = xgb1.train(param, dtrain, num_round, watchlist,early_stopping_rounds=early_stopping_rounds) print("--- %s seconds ---" % (time.time() - start_time)) Utility.saveModel(bst, filename) # pickle.dump(logisti cModel, open(filename, 'wb')) ypred = bst.predict(dtest) # probs = (xgb.predict_proba(test_dataset_array)) # test_dataset_act_id["outcome"] = probs[:,1] test_dataset_act_id["outcome"] = ypred print("--- %s seconds ---" % (time.time() - start_time)) Utility.saveInOutputForm(test_dataset_act_id, filename + ".csv", "ensemble") # test_dataset_act_id[["activity_id", "outcome"]].set_index(["activity_id"]).to_csv("../../Data/" + filename + ".csv")
mit
harshaneelhg/scikit-learn
examples/cluster/plot_digits_linkage.py
369
2959
""" ============================================================================= Various Agglomerative Clustering on a 2D embedding of digits ============================================================================= An illustration of various linkage option for agglomerative clustering on a 2D embedding of the digits dataset. The goal of this example is to show intuitively how the metrics behave, and not to find good clusters for the digits. This is why the example works on a 2D embedding. What this example shows us is the behavior "rich getting richer" of agglomerative clustering that tends to create uneven cluster sizes. This behavior is especially pronounced for the average linkage strategy, that ends up with a couple of singleton clusters. """ # Authors: Gael Varoquaux # License: BSD 3 clause (C) INRIA 2014 print(__doc__) from time import time import numpy as np from scipy import ndimage from matplotlib import pyplot as plt from sklearn import manifold, datasets digits = datasets.load_digits(n_class=10) X = digits.data y = digits.target n_samples, n_features = X.shape np.random.seed(0) def nudge_images(X, y): # Having a larger dataset shows more clearly the behavior of the # methods, but we multiply the size of the dataset only by 2, as the # cost of the hierarchical clustering methods are strongly # super-linear in n_samples shift = lambda x: ndimage.shift(x.reshape((8, 8)), .3 * np.random.normal(size=2), mode='constant', ).ravel() X = np.concatenate([X, np.apply_along_axis(shift, 1, X)]) Y = np.concatenate([y, y], axis=0) return X, Y X, y = nudge_images(X, y) #---------------------------------------------------------------------- # Visualize the clustering def plot_clustering(X_red, X, labels, title=None): x_min, x_max = np.min(X_red, axis=0), np.max(X_red, axis=0) X_red = (X_red - x_min) / (x_max - x_min) plt.figure(figsize=(6, 4)) for i in range(X_red.shape[0]): plt.text(X_red[i, 0], X_red[i, 1], str(y[i]), color=plt.cm.spectral(labels[i] / 10.), fontdict={'weight': 'bold', 'size': 9}) plt.xticks([]) plt.yticks([]) if title is not None: plt.title(title, size=17) plt.axis('off') plt.tight_layout() #---------------------------------------------------------------------- # 2D embedding of the digits dataset print("Computing embedding") X_red = manifold.SpectralEmbedding(n_components=2).fit_transform(X) print("Done.") from sklearn.cluster import AgglomerativeClustering for linkage in ('ward', 'average', 'complete'): clustering = AgglomerativeClustering(linkage=linkage, n_clusters=10) t0 = time() clustering.fit(X_red) print("%s : %.2fs" % (linkage, time() - t0)) plot_clustering(X_red, X, clustering.labels_, "%s linkage" % linkage) plt.show()
bsd-3-clause
sss1/DeepInteractions
pairwise/util.py
2
5513
import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix, log_loss, roc_curve, auc, precision_recall_curve, average_precision_score def initialize_with_JASPAR(enhancer_conv_layer, promoter_conv_layer): JASPAR_motifs = list(np.load('/home/sss1/Desktop/projects/DeepInteractions/JASPAR_CORE_2016_vertebrates.npy')) print 'Initializing ' + str(len(JASPAR_motifs)) + ' kernels with JASPAR motifs.' enhancer_conv_weights = enhancer_conv_layer.get_weights() promoter_conv_weights = promoter_conv_layer.get_weights() reverse_motifs = [JASPAR_motifs[19][::-1,::-1], JASPAR_motifs[97][::-1,::-1], JASPAR_motifs[98][::-1,::-1], JASPAR_motifs[99][::-1,::-1], JASPAR_motifs[100][::-1,::-1], JASPAR_motifs[101][::-1,::-1]] JASPAR_motifs = JASPAR_motifs + reverse_motifs for i in xrange(len(JASPAR_motifs)): m = JASPAR_motifs[i][::-1,:] w = len(m) start = np.random.randint(low=3, high=30-w+1-3) enhancer_conv_weights[0][i,:,start:start+w,0] = m.T - 0.25 enhancer_conv_weights[1][i] = np.random.uniform(low=-1.0,high=0.0) promoter_conv_weights[0][i,:,start:start+w,0] = m.T - 0.25 promoter_conv_weights[1][i] = np.random.uniform(low=-1.0,high=0.0) enhancer_conv_layer.set_weights(enhancer_conv_weights) promoter_conv_layer.set_weights(promoter_conv_weights) # Splits the data into training and validation data, keeping training_frac of # the input samples in the training set and the rest for validation def split_train_and_val_data(X_enhancer_train, X_promoter_train, y_train, training_frac): n_train = int(training_frac * np.shape(y_train)[0]) # number of training samples X_enhancer_val = X_enhancer_train[n_train:, :] X_enhancer_train = X_enhancer_train[:n_train, :] X_promoter_val = X_promoter_train[n_train:, :] X_promoter_train = X_promoter_train[:n_train, :] y_val = y_train[n_train:] y_train = y_train[:n_train] return X_enhancer_train, X_promoter_train, y_train, X_enhancer_val, X_promoter_val, y_val # Calculates and prints several metrics (confusion matrix, Precision/Recall/F1) # in real time; also updates the values in the conf_mat_callback so they can be # plotted or analyzed later def print_live(conf_mat_callback, y_val, val_predict, logs): conf_mat = confusion_matrix(y_val, val_predict).astype(float) precision = conf_mat[1, 1] / conf_mat[:, 1].sum() recall = conf_mat[1, 1] / conf_mat[1, :].sum() f1_score = 2 * precision * recall / (precision + recall) acc = (conf_mat[0, 0] + conf_mat[1, 1]) / np.sum(conf_mat) loss = log_loss(y_val, val_predict) conf_mat_callback.precisions.append(precision) conf_mat_callback.recalls.append(recall) conf_mat_callback.f1_scores.append(f1_score) conf_mat_callback.losses.append(loss) conf_mat_callback.accs.append(acc) print '\nConfusion matrix:\n' + str(conf_mat) + '\n' print 'Precision: ' + str(precision) + \ ' Recall: ' + str(recall) + \ ' F1: ' + str(f1_score) + \ ' Accuracy: ' + str(acc) + \ ' Log Loss: ' + str(loss) print 'Predicted fractions: ' + str(val_predict.mean()) print 'Actual fractions: ' + str(y_val.mean()) + '\n' # Plots several metrics (Precision/Recall/F1, loss, Accuracy) in real time # (i.e., after each epoch) def plot_live(conf_mat_callback): epoch = conf_mat_callback.epoch plt.clf() xs = [1 + i for i in range(epoch)] precisions_plot = plt.plot(xs, conf_mat_callback.precisions, label = 'Precision') recalls_plot = plt.plot(xs, conf_mat_callback.recalls, label = 'Recall') f1_scores_plot = plt.plot(xs, conf_mat_callback.f1_scores, label = 'F1 score') accs_plot = plt.plot(xs, conf_mat_callback.accs, label = 'Accuracy') losses_plot = plt.plot(xs, conf_mat_callback.losses / max(conf_mat_callback.losses), label = 'Loss') batch_xs = [1 + epoch * float(i)/len(conf_mat_callback.training_losses) for i in range(len(conf_mat_callback.training_losses))] training_losses_plot = plt.plot(batch_xs, conf_mat_callback.training_losses / max(conf_mat_callback.training_losses), label = 'Training Loss') training_losses_plot = plt.plot(batch_xs, conf_mat_callback.training_accs, label = 'Training Accuracy') plt.legend(bbox_to_anchor = (0, 1), loc = 4, borderaxespad = 0., prop={'size':6}) plt.ylim([0, 1]) plt.pause(.001) # Given a (nearly) balanced data set (i.e., labeled enhancer and promoter # sequence pairs), subsamples the positive samples to produce the desired # fraction of positive samples; retains all negative samples def subsample_imbalanced(X_enhancer, X_promoter, y, positive_subsample_frac): n = np.shape(y_train)[0] # sample size (i.e., number of pairs) # indices that are positive and selected to be retained or negative to_keep = (np.random(n) < positive_subsample_frac) or (y == 1) return X_enhancer[to_keep, :], X_promoter[to_keep, :], y[to_keep] def compute_AUPR(y, y_score): # print 'Computing Precision-Recall curve...' precision, recall, _ = precision_recall_curve(y, y_score) average_precision = average_precision_score(y, y_score) def plot_PR_curve(y, y_score): # print 'Computing Precision-Recall curve...' precision, recall, _ = precision_recall_curve(y, y_score) return average_precision_score(y, y_score) def plot_ROC_curve(y, y_score): # print 'Computing ROC curve...' fpr, tpr, thresholds = roc_curve(y, y_score) return auc(fpr, tpr)
gpl-3.0
joshloyal/scikit-learn
examples/calibration/plot_compare_calibration.py
82
5012
""" ======================================== Comparison of Calibration of Classifiers ======================================== Well calibrated classifiers are probabilistic classifiers for which the output of the predict_proba method can be directly interpreted as a confidence level. For instance a well calibrated (binary) classifier should classify the samples such that among the samples to which it gave a predict_proba value close to 0.8, approx. 80% actually belong to the positive class. LogisticRegression returns well calibrated predictions as it directly optimizes log-loss. In contrast, the other methods return biased probabilities, with different biases per method: * GaussianNaiveBayes tends to push probabilities to 0 or 1 (note the counts in the histograms). This is mainly because it makes the assumption that features are conditionally independent given the class, which is not the case in this dataset which contains 2 redundant features. * RandomForestClassifier shows the opposite behavior: the histograms show peaks at approx. 0.2 and 0.9 probability, while probabilities close to 0 or 1 are very rare. An explanation for this is given by Niculescu-Mizil and Caruana [1]: "Methods such as bagging and random forests that average predictions from a base set of models can have difficulty making predictions near 0 and 1 because variance in the underlying base models will bias predictions that should be near zero or one away from these values. Because predictions are restricted to the interval [0,1], errors caused by variance tend to be one- sided near zero and one. For example, if a model should predict p = 0 for a case, the only way bagging can achieve this is if all bagged trees predict zero. If we add noise to the trees that bagging is averaging over, this noise will cause some trees to predict values larger than 0 for this case, thus moving the average prediction of the bagged ensemble away from 0. We observe this effect most strongly with random forests because the base-level trees trained with random forests have relatively high variance due to feature subseting." As a result, the calibration curve shows a characteristic sigmoid shape, indicating that the classifier could trust its "intuition" more and return probabilities closer to 0 or 1 typically. * Support Vector Classification (SVC) shows an even more sigmoid curve as the RandomForestClassifier, which is typical for maximum-margin methods (compare Niculescu-Mizil and Caruana [1]), which focus on hard samples that are close to the decision boundary (the support vectors). .. topic:: References: .. [1] Predicting Good Probabilities with Supervised Learning, A. Niculescu-Mizil & R. Caruana, ICML 2005 """ print(__doc__) # Author: Jan Hendrik Metzen <[email protected]> # License: BSD Style. import numpy as np np.random.seed(0) import matplotlib.pyplot as plt from sklearn import datasets from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.svm import LinearSVC from sklearn.calibration import calibration_curve X, y = datasets.make_classification(n_samples=100000, n_features=20, n_informative=2, n_redundant=2) train_samples = 100 # Samples used for training the models X_train = X[:train_samples] X_test = X[train_samples:] y_train = y[:train_samples] y_test = y[train_samples:] # Create classifiers lr = LogisticRegression() gnb = GaussianNB() svc = LinearSVC(C=1.0) rfc = RandomForestClassifier(n_estimators=100) ############################################################################### # Plot calibration plots plt.figure(figsize=(10, 10)) ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2) ax2 = plt.subplot2grid((3, 1), (2, 0)) ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated") for clf, name in [(lr, 'Logistic'), (gnb, 'Naive Bayes'), (svc, 'Support Vector Classification'), (rfc, 'Random Forest')]: clf.fit(X_train, y_train) if hasattr(clf, "predict_proba"): prob_pos = clf.predict_proba(X_test)[:, 1] else: # use decision function prob_pos = clf.decision_function(X_test) prob_pos = \ (prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min()) fraction_of_positives, mean_predicted_value = \ calibration_curve(y_test, prob_pos, n_bins=10) ax1.plot(mean_predicted_value, fraction_of_positives, "s-", label="%s" % (name, )) ax2.hist(prob_pos, range=(0, 1), bins=10, label=name, histtype="step", lw=2) ax1.set_ylabel("Fraction of positives") ax1.set_ylim([-0.05, 1.05]) ax1.legend(loc="lower right") ax1.set_title('Calibration plots (reliability curve)') ax2.set_xlabel("Mean predicted value") ax2.set_ylabel("Count") ax2.legend(loc="upper center", ncol=2) plt.tight_layout() plt.show()
bsd-3-clause
thundertrick/imagePicker
imageProcesser.py
1
16389
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2015-2016, Xuyang Hu <[email protected]> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License version 2.1 # as published by the Free Software Foundation """ imageProcesser is used to process images received from UI. This file can be test standalone using cmd: python imageProcesser.py """ import cv2 import os import re import sys import matplotlib.pyplot as plt import numpy as np from PySide import QtGui, QtCore import math import time # pylint: disable=C0103,R0904,W0102,W0201 testPath = './lena.jpeg' def fileExp(matchedSuffixes=['bmp', 'jpg', 'jpeg', 'png']): """ Returns a compiled regexp matcher object for given list of suffixes. """ # Create a regular expression string to match all the suffixes matchedString = r'|'.join([r'^.*\.' + s + '$' for s in matchedSuffixes]) return re.compile(matchedString, re.IGNORECASE) class SingleImageProcess(QtCore.QObject): """ Process single image. Note: Batch process will use the class, so less `print` is recommoned. """ # Public sel = None # can be set from outside selSignal = QtCore.Signal(list) def __init__(self, fileName=testPath, isGray=False, parent=None): """ Load the image in gray scale (isGray=False) """ super(SingleImageProcess, self).__init__(parent) self.fileName = fileName self.img = cv2.imread(fileName, isGray) # private for safty self.dragStart = None self.roiNeedUpadte = False self.isInWaitLoop = False def simpleDemo(self): """ Print image shape and gray level info And show the image with highgui. Usage: press esc to quit image window. """ width, height = self.img.shape meanVal, meanStdDevVal = cv2.meanStdDev(self.img) minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc(self.img) print "Size:" print (width, height) print "(min, max, mean, meanStdDev):" print (minVal, maxVal, meanVal[0][0], meanStdDevVal[0][0]) cv2.imshow("SingleImageWindow", self.img) cv2.setMouseCallback("SingleImageWindow", self.onMouse) print "Press esc to exit" # any key except q in fact self.isInWaitLoop = True while True: ch = cv2.waitKey() if ch == 27: # ESC break elif self.roiNeedUpadte and ch == 97: # selection is made print "Accept ROI (minX, minY, maxX, maxY): " + str(self.sel) self.selSignal.emit(self.sel) self.setROI() self.roiNeedUpadte = False break elif ch == ord('b'): self.getButterworthBlur(stopband2=35, showResult=True) cv2.destroyAllWindows() self.isInWaitLoop = False def setROI(self, showPatch=False): if not(self.sel): return self.img patch = self.img[self.sel[1]:self.sel[3],self.sel[0]:self.sel[2]] if showPatch: cv2.imshow("patch", patch) self.enterWaitLoop() self.roiNeedUpadte = False return patch def saveFile(self): """ Save the file with the time stamp. """ # TODO: make it work!! print "This function has not been implemented yet. It is recommand to "+ " use matplotlib instead." return False # newName = time.strftime('%Y%m%d_%H%M%S') + self.fileName # if cv2.imwrite(newName, self.img): # print "Image is saved @ " + newName # return True # else: # print "Error: Fasiled to save image" # return False # --------------------------------------------------- Get image info def getCenterPoint(self): """ Blur image and return the center point of image. """ gaussianImg = cv2.GaussianBlur(self.img, (9,9), 3) centerPoint = self.getAvgIn4x4rect( self.img.shape[0]/2 - 2, self.img.shape[1]/2 - 2) return centerPoint def getAvgIn4x4rect(self, LocX=2, LocY=2): """ Calculate average value of a 4x4 rect in the image. Note: this function do not check if the rect is fully inside the image! @param (LocX, LocY) start point of rect @reutrn retval average value in float """ imROI = self.img[LocX:LocX+4, LocY:LocY+4] return cv2.mean(imROI)[0] def getGaussaianBlur(self, size=(33,33)): """ Return the blurred image with size and sigmaX=9 """ blurImg = cv2.GaussianBlur(self.img, size, 9) # self.showImage(blurImg) return blurImg def getButterworthBlur(self, stopband2=5, showResult=False): """ Apply Butterworth filter to image. @param stopband2 stopband^2 """ dft4img = self.getDFT() bwfilter = self.getButterworthFilter(stopband2=stopband2) dstimg = dft4img * bwfilter dstimg = cv2.idft(np.fft.ifftshift(dstimg)) dstimg = np.uint8(cv2.magnitude(dstimg[:,:,0], dstimg[:,:,1])) if showResult: # cv2.imshow("test", dstimg) # self.enterWaitLoop() plt.imshow(dstimg) plt.show() return dstimg def getAverageValue(self): return cv2.mean(self.img)[0] def getDFT(self, img2dft=None, showdft=False): """ Return the spectrum in log scale. """ if img2dft == None: img2dft = self.img dft_A = cv2.dft(np.float32(self.img),flags = cv2.DFT_COMPLEX_OUTPUT|cv2.DFT_SCALE) dft_A = np.fft.fftshift(dft_A) if showdft: self.showSpecturm(dft_A) return dft_A def getButterworthFilter(self, stopband2=5, order=3, showdft=False): """ Get Butterworth filter in frequency domain. """ h, w = self.img.shape[0], self.img.shape[1] # no optimization P = h/2 Q = w/2 dst = np.zeros((h, w, 2), np.float64) for i in range(h): for j in range(w): r2 = float((i-P)**2+(j-Q)**2) if r2 == 0: r2 = 1.0 dst[i,j] = 1/(1+(r2/stopband2)**order) dst = np.float64(dst) if showdft: f = cv2.magnitude(dst[:,:,0], dst[:,:,1]) # cv2.imshow("butterworth", f) # self.enterWaitLoop() plt.imshow(f) plt.show() return dst def getShannonEntropy(self, srcImage=None): """ calculate the shannon entropy for an image """ if not(srcImage): srcImage = self.img histogram = cv2.calcHist(srcImage, [0],None,[256],[0,256]) histLen = sum(histogram) samplesPossiblity = [float(h) / histLen for h in histogram] return -sum([p * math.log(p, 2) for p in samplesPossiblity if p != 0]) # ------------------------------------------------ Highgui functions def showImage(self, img): """ Show input image with highgui. """ cv2.imshow("test", img) self.enterWaitLoop() def showSpecturm(self, dft_result): """ Show spectrun graph. """ cv2.normalize(dft_result, dft_result, 0.0, 1.0, cv2.cv.CV_MINMAX) # Split fourier into real and imaginary parts image_Re, image_Im = cv2.split(dft_result) # Compute the magnitude of the spectrum Mag = sqrt(Re^2 + Im^2) magnitude = cv2.sqrt(image_Re ** 2.0 + image_Im ** 2.0) # Compute log(1 + Mag) log_spectrum = cv2.log(1.0 + magnitude) # normalize and display the results as rgb cv2.normalize(log_spectrum, log_spectrum, 0.0, 1.0, cv2.cv.CV_MINMAX) cv2.imshow("Spectrum", log_spectrum) self.enterWaitLoop() def onMouse(self, event, x, y, flags, param): """ Mouse callback funtion for setting ROI. """ if event == cv2.EVENT_LBUTTONDOWN: self.dragStart = x, y self.sel = 0,0,0,0 elif self.dragStart: #print flags if flags & cv2.EVENT_FLAG_LBUTTON: minpos = min(self.dragStart[0], x), min(self.dragStart[1], y) maxpos = max(self.dragStart[0], x), max(self.dragStart[1], y) self.sel = minpos[0], minpos[1], maxpos[0], maxpos[1] img = cv2.cvtColor(self.img, cv2.COLOR_GRAY2BGR) cv2.rectangle(img, (self.sel[0], self.sel[1]), (self.sel[2], self.sel[3]), (0,255,255), 1) cv2.imshow("SingleImageWindow", img) else: print "selection is complete. Press a to accept." self.roiNeedUpadte = True self.dragStart = None def enterWaitLoop(self): """ Enter waitKey loop. This function can make sure that there is only 1 wait loop running. """ if not(self.isInWaitLoop): self.isInWaitLoop = True print "DO NOT close the window directly. Press Esc to enter next step!!!" while self.isInWaitLoop: ch = cv2.waitKey() if ch == 27: break if ch == ord('s'): self.saveFile() break cv2.destroyAllWindows() self.isInWaitLoop = False class BatchProcessing(): """ Process all the images in the given folder. """ resultArray = [] globalROI = None def __init__(self, rootPath='./', roi=None): print "Batch path: " + rootPath if not os.path.isdir(rootPath): rootPath = repr(rootPath)[2:-1] if not os.path.isdir(rootPath): return self.rootPath = rootPath self.listPaths = [] self.listFileNames = [] for fileName in os.listdir(rootPath): if fileExp().match(fileName): absPath = os.path.join(self.rootPath, fileName) self.listPaths.append(absPath) self.listFileNames.append(fileName) print "Files count: " + str(len(self.listFileNames)) print self.listFileNames self.processQueue = [] if roi: self.globalROI = roi self.loadImages() def loadImages(self): """ Load all the images in the selected folder. """ for path in self.listPaths: im = SingleImageProcess(fileName=path) im.sel = self.globalROI im.img = im.setROI() # im.img = im.getGaussaianBlur() im.img = im.getButterworthBlur() self.processQueue.append(im) def getCenterPoints(self, showResult=False): """ Calculate center points of all the iamges and save them into resultArray """ print "============== Getting Center Point ==========" centerPoints = [] for im in self.processQueue: pcenter = im.getCenterPoint() centerPoints.append(pcenter) if showResult: plt.plot(self.resultArray) plt.title('Center Points') plt.xlabel('Picture numbers') plt.ylabel('Gray scale') plt.show() self.resultArray = centerPoints return centerPoints def getPointsInACol(self, LocX=0, pointCount=10, showResult=False): """ Return value of pointCount=10 points when x = LocX resultArray includes pointCount=10 arrays, each array has len(self.processQueue) numbers in float. """ print "========================= getPointsInACol ==========================" self.resultArray = [[]]*pointCount height = self.processQueue[0].img.shape[1] yInterval = height/pointCount for i in range(pointCount): tmpArr = [] for im in self.processQueue: avg4x4Val = im.getAvgIn4x4rect(LocX, i*yInterval) tmpArr.append(avg4x4Val) self.resultArray[i] = tmpArr if showResult: plt.plot(range(0,height,yInterval), self.resultArray) plt.title('Points in a col when x==' + str(LocX) ) plt.xlabel('Y position') plt.ylabel('Gray scale') plt.show() return self.resultArray def getPointsInARow(self, LocY=0, pointCount=10, showResult=False): """ Return value of pointCount=10 points when y = LocY resultArray includes pointCount=10 arrays, each array has len(self.processQueue) numbers in float. """ print "========================= getPointsInARow ==========================" self.resultArray = [[]]*pointCount width = self.processQueue[0].img.shape[0] xInterval = width/pointCount for i in range(pointCount): tmpArr = [] for im in self.processQueue: avg4x4Val = im.getAvgIn4x4rect(i*xInterval, LocY) tmpArr.append(avg4x4Val) self.resultArray[i] = tmpArr if showResult: plt.plot(range(0,width,xInterval), self.resultArray) plt.title('Points in a row when y==' + str(LocY) ) plt.xlabel('X position') plt.ylabel('Gray scale') plt.show() return self.resultArray def getAverageValues(self, showResult=False): """ Return average value of all images. """ averageArr = [] for im in self.processQueue: averageArr.append(im.getAverageValue()) if showResult: plt.plot(range(len(self.processQueue)), averageArr) plt.title('Average value') plt.xlabel('Picture numbers') plt.ylabel('Gray scale') plt.show() return averageArr def getCenterPointsWithoutShift(self, LocX=0, pointCount=10, showResult=False): """ Return gray scale of center points removing average value as global shift. """ centerPoints = self.getCenterPoints() avgPoints = self.getAverageValues() dstPoints = np.subtract(centerPoints, avgPoints) self.resultArray = dstPoints if showResult: plt.plot(dstPoints) plt.title('Center value without shift') plt.xlabel('Picture numbers') plt.ylabel('Center Point\'s Gray scale') plt.show() return dstPoints def getShannonEntropies(self, showResult=False): """ Return average value of all images. """ entropyArr = [] for im in self.processQueue: entropyArr.append(im.getShannonEntropy()) if showResult: plt.plot(range(len(self.processQueue)), entropyArr) plt.title('Entropy value') plt.xlabel('Picture numbers') plt.ylabel('Entropy') plt.show() return entropyArr def plotGraphs(dataArr): dataCount = len(dataArr) graphLayout = 2 * 100 + (dataCount / 2)*10 + 1 for i,data in enumerate(dataArr): plt.subplot(graphLayout + i) plt.plot(data) plt.show() if __name__ == "__main__": """ Following codes are for test. """ singleTest = SingleImageProcess() singleTest.simpleDemo() print "Entropy: " + str(singleTest.getShannonEntropy()) singleTest.getGaussaianBlur() singleTest.getDFT(showdft=True) singleTest.getButterworthFilter(showdft=True) singleTest.getButterworthBlur(stopband2=100,showResult=True) print "avg=" + str(singleTest.getAverageValue()) print singleTest.getAvgIn4x4rect() print singleTest.getCenterPoint() batchTest = BatchProcessing() batchTest.getCenterPoints(showResult=True) batchTest.getShannonEntropies(showResult=True) batchTest.getPointsInACol(100, showResult=True) avgArr = batchTest.getAverageValues(showResult=True) batchTest.getCenterPointsWithoutShift(50, showResult=True) entpArr = batchTest.getShannonEntropies(showResult=True) plotGraphs([avgArr, entpArr])
lgpl-2.1
public-ink/public-ink
server/appengine/lib/matplotlib/gridspec.py
10
16112
""" :mod:`~matplotlib.gridspec` is a module which specifies the location of the subplot in the figure. ``GridSpec`` specifies the geometry of the grid that a subplot will be placed. The number of rows and number of columns of the grid need to be set. Optionally, the subplot layout parameters (e.g., left, right, etc.) can be tuned. ``SubplotSpec`` specifies the location of the subplot in the given *GridSpec*. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import zip import matplotlib rcParams = matplotlib.rcParams import matplotlib.transforms as mtransforms import numpy as np import warnings class GridSpecBase(object): """ A base class of GridSpec that specifies the geometry of the grid that a subplot will be placed. """ def __init__(self, nrows, ncols, height_ratios=None, width_ratios=None): """ The number of rows and number of columns of the grid need to be set. Optionally, the ratio of heights and widths of rows and columns can be specified. """ #self.figure = figure self._nrows , self._ncols = nrows, ncols self.set_height_ratios(height_ratios) self.set_width_ratios(width_ratios) def get_geometry(self): 'get the geometry of the grid, e.g., 2,3' return self._nrows, self._ncols def get_subplot_params(self, fig=None): pass def new_subplotspec(self, loc, rowspan=1, colspan=1): """ create and return a SuplotSpec instance. """ loc1, loc2 = loc subplotspec = self[loc1:loc1+rowspan, loc2:loc2+colspan] return subplotspec def set_width_ratios(self, width_ratios): if width_ratios is not None and len(width_ratios) != self._ncols: raise ValueError('Expected the given number of width ratios to ' 'match the number of columns of the grid') self._col_width_ratios = width_ratios def get_width_ratios(self): return self._col_width_ratios def set_height_ratios(self, height_ratios): if height_ratios is not None and len(height_ratios) != self._nrows: raise ValueError('Expected the given number of height ratios to ' 'match the number of rows of the grid') self._row_height_ratios = height_ratios def get_height_ratios(self): return self._row_height_ratios def get_grid_positions(self, fig): """ return lists of bottom and top position of rows, left and right positions of columns. """ nrows, ncols = self.get_geometry() subplot_params = self.get_subplot_params(fig) left = subplot_params.left right = subplot_params.right bottom = subplot_params.bottom top = subplot_params.top wspace = subplot_params.wspace hspace = subplot_params.hspace totWidth = right-left totHeight = top-bottom # calculate accumulated heights of columns cellH = totHeight/(nrows + hspace*(nrows-1)) sepH = hspace*cellH if self._row_height_ratios is not None: netHeight = cellH * nrows tr = float(sum(self._row_height_ratios)) cellHeights = [netHeight*r/tr for r in self._row_height_ratios] else: cellHeights = [cellH] * nrows sepHeights = [0] + ([sepH] * (nrows-1)) cellHs = np.add.accumulate(np.ravel(list(zip(sepHeights, cellHeights)))) # calculate accumulated widths of rows cellW = totWidth/(ncols + wspace*(ncols-1)) sepW = wspace*cellW if self._col_width_ratios is not None: netWidth = cellW * ncols tr = float(sum(self._col_width_ratios)) cellWidths = [netWidth*r/tr for r in self._col_width_ratios] else: cellWidths = [cellW] * ncols sepWidths = [0] + ([sepW] * (ncols-1)) cellWs = np.add.accumulate(np.ravel(list(zip(sepWidths, cellWidths)))) figTops = [top - cellHs[2*rowNum] for rowNum in range(nrows)] figBottoms = [top - cellHs[2*rowNum+1] for rowNum in range(nrows)] figLefts = [left + cellWs[2*colNum] for colNum in range(ncols)] figRights = [left + cellWs[2*colNum+1] for colNum in range(ncols)] return figBottoms, figTops, figLefts, figRights def __getitem__(self, key): """ create and return a SuplotSpec instance. """ nrows, ncols = self.get_geometry() total = nrows*ncols if isinstance(key, tuple): try: k1, k2 = key except ValueError: raise ValueError("unrecognized subplot spec") if isinstance(k1, slice): row1, row2, _ = k1.indices(nrows) else: if k1 < 0: k1 += nrows if k1 >= nrows or k1 < 0 : raise IndexError("index out of range") row1, row2 = k1, k1+1 if isinstance(k2, slice): col1, col2, _ = k2.indices(ncols) else: if k2 < 0: k2 += ncols if k2 >= ncols or k2 < 0 : raise IndexError("index out of range") col1, col2 = k2, k2+1 num1 = row1*ncols + col1 num2 = (row2-1)*ncols + (col2-1) # single key else: if isinstance(key, slice): num1, num2, _ = key.indices(total) num2 -= 1 else: if key < 0: key += total if key >= total or key < 0 : raise IndexError("index out of range") num1, num2 = key, None return SubplotSpec(self, num1, num2) class GridSpec(GridSpecBase): """ A class that specifies the geometry of the grid that a subplot will be placed. The location of grid is determined by similar way as the SubplotParams. """ def __init__(self, nrows, ncols, left=None, bottom=None, right=None, top=None, wspace=None, hspace=None, width_ratios=None, height_ratios=None): """ The number of rows and number of columns of the grid need to be set. Optionally, the subplot layout parameters (e.g., left, right, etc.) can be tuned. """ #self.figure = figure self.left=left self.bottom=bottom self.right=right self.top=top self.wspace=wspace self.hspace=hspace GridSpecBase.__init__(self, nrows, ncols, width_ratios=width_ratios, height_ratios=height_ratios) #self.set_width_ratios(width_ratios) #self.set_height_ratios(height_ratios) _AllowedKeys = ["left", "bottom", "right", "top", "wspace", "hspace"] def update(self, **kwargs): """ Update the current values. If any kwarg is None, default to the current value, if set, otherwise to rc. """ for k, v in six.iteritems(kwargs): if k in self._AllowedKeys: setattr(self, k, v) else: raise AttributeError("%s is unknown keyword" % (k,)) from matplotlib import _pylab_helpers from matplotlib.axes import SubplotBase for figmanager in six.itervalues(_pylab_helpers.Gcf.figs): for ax in figmanager.canvas.figure.axes: # copied from Figure.subplots_adjust if not isinstance(ax, SubplotBase): # Check if sharing a subplots axis if ax._sharex is not None and isinstance(ax._sharex, SubplotBase): if ax._sharex.get_subplotspec().get_gridspec() == self: ax._sharex.update_params() ax.set_position(ax._sharex.figbox) elif ax._sharey is not None and isinstance(ax._sharey,SubplotBase): if ax._sharey.get_subplotspec().get_gridspec() == self: ax._sharey.update_params() ax.set_position(ax._sharey.figbox) else: ss = ax.get_subplotspec().get_topmost_subplotspec() if ss.get_gridspec() == self: ax.update_params() ax.set_position(ax.figbox) def get_subplot_params(self, fig=None): """ return a dictionary of subplot layout parameters. The default parameters are from rcParams unless a figure attribute is set. """ from matplotlib.figure import SubplotParams import copy if fig is None: kw = dict([(k, rcParams["figure.subplot."+k]) \ for k in self._AllowedKeys]) subplotpars = SubplotParams(**kw) else: subplotpars = copy.copy(fig.subplotpars) update_kw = dict([(k, getattr(self, k)) for k in self._AllowedKeys]) subplotpars.update(**update_kw) return subplotpars def locally_modified_subplot_params(self): return [k for k in self._AllowedKeys if getattr(self, k)] def tight_layout(self, fig, renderer=None, pad=1.08, h_pad=None, w_pad=None, rect=None): """ Adjust subplot parameters to give specified padding. Parameters: pad : float padding between the figure edge and the edges of subplots, as a fraction of the font-size. h_pad, w_pad : float padding (height/width) between edges of adjacent subplots. Defaults to `pad_inches`. rect : if rect is given, it is interpreted as a rectangle (left, bottom, right, top) in the normalized figure coordinate that the whole subplots area (including labels) will fit into. Default is (0, 0, 1, 1). """ from .tight_layout import (get_subplotspec_list, get_tight_layout_figure, get_renderer) subplotspec_list = get_subplotspec_list(fig.axes, grid_spec=self) if None in subplotspec_list: warnings.warn("This figure includes Axes that are not " "compatible with tight_layout, so its " "results might be incorrect.") if renderer is None: renderer = get_renderer(fig) kwargs = get_tight_layout_figure(fig, fig.axes, subplotspec_list, renderer, pad=pad, h_pad=h_pad, w_pad=w_pad, rect=rect, ) self.update(**kwargs) class GridSpecFromSubplotSpec(GridSpecBase): """ GridSpec whose subplot layout parameters are inherited from the location specified by a given SubplotSpec. """ def __init__(self, nrows, ncols, subplot_spec, wspace=None, hspace=None, height_ratios=None, width_ratios=None): """ The number of rows and number of columns of the grid need to be set. An instance of SubplotSpec is also needed to be set from which the layout parameters will be inherited. The wspace and hspace of the layout can be optionally specified or the default values (from the figure or rcParams) will be used. """ self._wspace=wspace self._hspace=hspace self._subplot_spec = subplot_spec GridSpecBase.__init__(self, nrows, ncols, width_ratios=width_ratios, height_ratios=height_ratios) def get_subplot_params(self, fig=None): """ return a dictionary of subplot layout parameters. """ if fig is None: hspace = rcParams["figure.subplot.hspace"] wspace = rcParams["figure.subplot.wspace"] else: hspace = fig.subplotpars.hspace wspace = fig.subplotpars.wspace if self._hspace is not None: hspace = self._hspace if self._wspace is not None: wspace = self._wspace figbox = self._subplot_spec.get_position(fig, return_all=False) left, bottom, right, top = figbox.extents from matplotlib.figure import SubplotParams sp = SubplotParams(left=left, right=right, bottom=bottom, top=top, wspace=wspace, hspace=hspace) return sp def get_topmost_subplotspec(self): 'get the topmost SubplotSpec instance associated with the subplot' return self._subplot_spec.get_topmost_subplotspec() class SubplotSpec(object): """ specifies the location of the subplot in the given *GridSpec*. """ def __init__(self, gridspec, num1, num2=None): """ The subplot will occupy the num1-th cell of the given gridspec. If num2 is provided, the subplot will span between num1-th cell and num2-th cell. The index stars from 0. """ rows, cols = gridspec.get_geometry() total = rows*cols self._gridspec = gridspec self.num1 = num1 self.num2 = num2 def get_gridspec(self): return self._gridspec def get_geometry(self): """ get the subplot geometry, e.g., 2,2,3. Unlike SuplorParams, index is 0-based """ rows, cols = self.get_gridspec().get_geometry() return rows, cols, self.num1, self.num2 def get_position(self, fig, return_all=False): """ update the subplot position from fig.subplotpars """ gridspec = self.get_gridspec() nrows, ncols = gridspec.get_geometry() figBottoms, figTops, figLefts, figRights = \ gridspec.get_grid_positions(fig) rowNum, colNum = divmod(self.num1, ncols) figBottom = figBottoms[rowNum] figTop = figTops[rowNum] figLeft = figLefts[colNum] figRight = figRights[colNum] if self.num2 is not None: rowNum2, colNum2 = divmod(self.num2, ncols) figBottom2 = figBottoms[rowNum2] figTop2 = figTops[rowNum2] figLeft2 = figLefts[colNum2] figRight2 = figRights[colNum2] figBottom = min(figBottom, figBottom2) figLeft = min(figLeft, figLeft2) figTop = max(figTop, figTop2) figRight = max(figRight, figRight2) figbox = mtransforms.Bbox.from_extents(figLeft, figBottom, figRight, figTop) if return_all: return figbox, rowNum, colNum, nrows, ncols else: return figbox def get_topmost_subplotspec(self): 'get the topmost SubplotSpec instance associated with the subplot' gridspec = self.get_gridspec() if hasattr(gridspec, "get_topmost_subplotspec"): return gridspec.get_topmost_subplotspec() else: return self def __eq__(self, other): # check to make sure other has the attributes # we need to do the comparison if not (hasattr(other, '_gridspec') and hasattr(other, 'num1') and hasattr(other, 'num2')): return False return all((self._gridspec == other._gridspec, self.num1 == other.num1, self.num2 == other.num2)) def __hash__(self): return (hash(self._gridspec) ^ hash(self.num1) ^ hash(self.num2))
gpl-3.0
kylerbrown/scikit-learn
examples/linear_model/plot_logistic_path.py
349
1195
#!/usr/bin/env python """ ================================= Path with L1- Logistic Regression ================================= Computes path on IRIS dataset. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause from datetime import datetime import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model from sklearn import datasets from sklearn.svm import l1_min_c iris = datasets.load_iris() X = iris.data y = iris.target X = X[y != 2] y = y[y != 2] X -= np.mean(X, 0) ############################################################################### # Demo path functions cs = l1_min_c(X, y, loss='log') * np.logspace(0, 3) print("Computing regularization path ...") start = datetime.now() clf = linear_model.LogisticRegression(C=1.0, penalty='l1', tol=1e-6) coefs_ = [] for c in cs: clf.set_params(C=c) clf.fit(X, y) coefs_.append(clf.coef_.ravel().copy()) print("This took ", datetime.now() - start) coefs_ = np.array(coefs_) plt.plot(np.log10(cs), coefs_) ymin, ymax = plt.ylim() plt.xlabel('log(C)') plt.ylabel('Coefficients') plt.title('Logistic Regression Path') plt.axis('tight') plt.show()
bsd-3-clause
nrhine1/scikit-learn
examples/covariance/plot_robust_vs_empirical_covariance.py
248
6359
r""" ======================================= Robust vs Empirical covariance estimate ======================================= The usual covariance maximum likelihood estimate is very sensitive to the presence of outliers in the data set. In such a case, it would be better to use a robust estimator of covariance to guarantee that the estimation is resistant to "erroneous" observations in the data set. Minimum Covariance Determinant Estimator ---------------------------------------- The Minimum Covariance Determinant estimator is a robust, high-breakdown point (i.e. it can be used to estimate the covariance matrix of highly contaminated datasets, up to :math:`\frac{n_\text{samples} - n_\text{features}-1}{2}` outliers) estimator of covariance. The idea is to find :math:`\frac{n_\text{samples} + n_\text{features}+1}{2}` observations whose empirical covariance has the smallest determinant, yielding a "pure" subset of observations from which to compute standards estimates of location and covariance. After a correction step aiming at compensating the fact that the estimates were learned from only a portion of the initial data, we end up with robust estimates of the data set location and covariance. The Minimum Covariance Determinant estimator (MCD) has been introduced by P.J.Rousseuw in [1]_. Evaluation ---------- In this example, we compare the estimation errors that are made when using various types of location and covariance estimates on contaminated Gaussian distributed data sets: - The mean and the empirical covariance of the full dataset, which break down as soon as there are outliers in the data set - The robust MCD, that has a low error provided :math:`n_\text{samples} > 5n_\text{features}` - The mean and the empirical covariance of the observations that are known to be good ones. This can be considered as a "perfect" MCD estimation, so one can trust our implementation by comparing to this case. References ---------- .. [1] P. J. Rousseeuw. Least median of squares regression. J. Am Stat Ass, 79:871, 1984. .. [2] Johanna Hardin, David M Rocke. Journal of Computational and Graphical Statistics. December 1, 2005, 14(4): 928-946. .. [3] Zoubir A., Koivunen V., Chakhchoukh Y. and Muma M. (2012). Robust estimation in signal processing: A tutorial-style treatment of fundamental concepts. IEEE Signal Processing Magazine 29(4), 61-80. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt import matplotlib.font_manager from sklearn.covariance import EmpiricalCovariance, MinCovDet # example settings n_samples = 80 n_features = 5 repeat = 10 range_n_outliers = np.concatenate( (np.linspace(0, n_samples / 8, 5), np.linspace(n_samples / 8, n_samples / 2, 5)[1:-1])) # definition of arrays to store results err_loc_mcd = np.zeros((range_n_outliers.size, repeat)) err_cov_mcd = np.zeros((range_n_outliers.size, repeat)) err_loc_emp_full = np.zeros((range_n_outliers.size, repeat)) err_cov_emp_full = np.zeros((range_n_outliers.size, repeat)) err_loc_emp_pure = np.zeros((range_n_outliers.size, repeat)) err_cov_emp_pure = np.zeros((range_n_outliers.size, repeat)) # computation for i, n_outliers in enumerate(range_n_outliers): for j in range(repeat): rng = np.random.RandomState(i * j) # generate data X = rng.randn(n_samples, n_features) # add some outliers outliers_index = rng.permutation(n_samples)[:n_outliers] outliers_offset = 10. * \ (np.random.randint(2, size=(n_outliers, n_features)) - 0.5) X[outliers_index] += outliers_offset inliers_mask = np.ones(n_samples).astype(bool) inliers_mask[outliers_index] = False # fit a Minimum Covariance Determinant (MCD) robust estimator to data mcd = MinCovDet().fit(X) # compare raw robust estimates with the true location and covariance err_loc_mcd[i, j] = np.sum(mcd.location_ ** 2) err_cov_mcd[i, j] = mcd.error_norm(np.eye(n_features)) # compare estimators learned from the full data set with true # parameters err_loc_emp_full[i, j] = np.sum(X.mean(0) ** 2) err_cov_emp_full[i, j] = EmpiricalCovariance().fit(X).error_norm( np.eye(n_features)) # compare with an empirical covariance learned from a pure data set # (i.e. "perfect" mcd) pure_X = X[inliers_mask] pure_location = pure_X.mean(0) pure_emp_cov = EmpiricalCovariance().fit(pure_X) err_loc_emp_pure[i, j] = np.sum(pure_location ** 2) err_cov_emp_pure[i, j] = pure_emp_cov.error_norm(np.eye(n_features)) # Display results font_prop = matplotlib.font_manager.FontProperties(size=11) plt.subplot(2, 1, 1) plt.errorbar(range_n_outliers, err_loc_mcd.mean(1), yerr=err_loc_mcd.std(1) / np.sqrt(repeat), label="Robust location", color='m') plt.errorbar(range_n_outliers, err_loc_emp_full.mean(1), yerr=err_loc_emp_full.std(1) / np.sqrt(repeat), label="Full data set mean", color='green') plt.errorbar(range_n_outliers, err_loc_emp_pure.mean(1), yerr=err_loc_emp_pure.std(1) / np.sqrt(repeat), label="Pure data set mean", color='black') plt.title("Influence of outliers on the location estimation") plt.ylabel(r"Error ($||\mu - \hat{\mu}||_2^2$)") plt.legend(loc="upper left", prop=font_prop) plt.subplot(2, 1, 2) x_size = range_n_outliers.size plt.errorbar(range_n_outliers, err_cov_mcd.mean(1), yerr=err_cov_mcd.std(1), label="Robust covariance (mcd)", color='m') plt.errorbar(range_n_outliers[:(x_size / 5 + 1)], err_cov_emp_full.mean(1)[:(x_size / 5 + 1)], yerr=err_cov_emp_full.std(1)[:(x_size / 5 + 1)], label="Full data set empirical covariance", color='green') plt.plot(range_n_outliers[(x_size / 5):(x_size / 2 - 1)], err_cov_emp_full.mean(1)[(x_size / 5):(x_size / 2 - 1)], color='green', ls='--') plt.errorbar(range_n_outliers, err_cov_emp_pure.mean(1), yerr=err_cov_emp_pure.std(1), label="Pure data set empirical covariance", color='black') plt.title("Influence of outliers on the covariance estimation") plt.xlabel("Amount of contamination (%)") plt.ylabel("RMSE") plt.legend(loc="upper center", prop=font_prop) plt.show()
bsd-3-clause
sdadia/helper_functions
setup.py
1
1455
from distutils.core import setup setup( name = 'helper_functions', version = '2.0.10', py_modules = ['helper_functions'], author = 'Sahil Dadia', author_email = '[email protected]', url = 'https://github.com/sdadia/helper_functions.git',# use the URL to the github repo description = 'A simple module of simple function, for opencv and python3', license = 'MIT', keywords = ['opencv', 'helper', 'scripts'], # arbitrary keywords classifiers = [ 'Topic :: Utilities', 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 3', 'Natural Language :: English' ], install_requires= [ 'numpy', 'scipy', 'sklearn', 'matplotlib', 'imutils', 'natsort', ], )
mit
henrykironde/scikit-learn
sklearn/tests/test_calibration.py
213
12219
# Authors: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import numpy as np from scipy import sparse from sklearn.utils.testing import (assert_array_almost_equal, assert_equal, assert_greater, assert_almost_equal, assert_greater_equal, assert_array_equal, assert_raises, assert_warns_message) from sklearn.datasets import make_classification, make_blobs from sklearn.naive_bayes import MultinomialNB from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor from sklearn.svm import LinearSVC from sklearn.linear_model import Ridge from sklearn.pipeline import Pipeline from sklearn.preprocessing import Imputer from sklearn.metrics import brier_score_loss, log_loss from sklearn.calibration import CalibratedClassifierCV from sklearn.calibration import _sigmoid_calibration, _SigmoidCalibration from sklearn.calibration import calibration_curve def test_calibration(): """Test calibration objects with isotonic and sigmoid""" n_samples = 100 X, y = make_classification(n_samples=2 * n_samples, n_features=6, random_state=42) sample_weight = np.random.RandomState(seed=42).uniform(size=y.size) X -= X.min() # MultinomialNB only allows positive X # split train and test X_train, y_train, sw_train = \ X[:n_samples], y[:n_samples], sample_weight[:n_samples] X_test, y_test = X[n_samples:], y[n_samples:] # Naive-Bayes clf = MultinomialNB().fit(X_train, y_train, sample_weight=sw_train) prob_pos_clf = clf.predict_proba(X_test)[:, 1] pc_clf = CalibratedClassifierCV(clf, cv=y.size + 1) assert_raises(ValueError, pc_clf.fit, X, y) # Naive Bayes with calibration for this_X_train, this_X_test in [(X_train, X_test), (sparse.csr_matrix(X_train), sparse.csr_matrix(X_test))]: for method in ['isotonic', 'sigmoid']: pc_clf = CalibratedClassifierCV(clf, method=method, cv=2) # Note that this fit overwrites the fit on the entire training # set pc_clf.fit(this_X_train, y_train, sample_weight=sw_train) prob_pos_pc_clf = pc_clf.predict_proba(this_X_test)[:, 1] # Check that brier score has improved after calibration assert_greater(brier_score_loss(y_test, prob_pos_clf), brier_score_loss(y_test, prob_pos_pc_clf)) # Check invariance against relabeling [0, 1] -> [1, 2] pc_clf.fit(this_X_train, y_train + 1, sample_weight=sw_train) prob_pos_pc_clf_relabeled = pc_clf.predict_proba(this_X_test)[:, 1] assert_array_almost_equal(prob_pos_pc_clf, prob_pos_pc_clf_relabeled) # Check invariance against relabeling [0, 1] -> [-1, 1] pc_clf.fit(this_X_train, 2 * y_train - 1, sample_weight=sw_train) prob_pos_pc_clf_relabeled = pc_clf.predict_proba(this_X_test)[:, 1] assert_array_almost_equal(prob_pos_pc_clf, prob_pos_pc_clf_relabeled) # Check invariance against relabeling [0, 1] -> [1, 0] pc_clf.fit(this_X_train, (y_train + 1) % 2, sample_weight=sw_train) prob_pos_pc_clf_relabeled = \ pc_clf.predict_proba(this_X_test)[:, 1] if method == "sigmoid": assert_array_almost_equal(prob_pos_pc_clf, 1 - prob_pos_pc_clf_relabeled) else: # Isotonic calibration is not invariant against relabeling # but should improve in both cases assert_greater(brier_score_loss(y_test, prob_pos_clf), brier_score_loss((y_test + 1) % 2, prob_pos_pc_clf_relabeled)) # check that calibration can also deal with regressors that have # a decision_function clf_base_regressor = CalibratedClassifierCV(Ridge()) clf_base_regressor.fit(X_train, y_train) clf_base_regressor.predict(X_test) # Check failure cases: # only "isotonic" and "sigmoid" should be accepted as methods clf_invalid_method = CalibratedClassifierCV(clf, method="foo") assert_raises(ValueError, clf_invalid_method.fit, X_train, y_train) # base-estimators should provide either decision_function or # predict_proba (most regressors, for instance, should fail) clf_base_regressor = \ CalibratedClassifierCV(RandomForestRegressor(), method="sigmoid") assert_raises(RuntimeError, clf_base_regressor.fit, X_train, y_train) def test_sample_weight_warning(): n_samples = 100 X, y = make_classification(n_samples=2 * n_samples, n_features=6, random_state=42) sample_weight = np.random.RandomState(seed=42).uniform(size=len(y)) X_train, y_train, sw_train = \ X[:n_samples], y[:n_samples], sample_weight[:n_samples] X_test = X[n_samples:] for method in ['sigmoid', 'isotonic']: base_estimator = LinearSVC(random_state=42) calibrated_clf = CalibratedClassifierCV(base_estimator, method=method) # LinearSVC does not currently support sample weights but they # can still be used for the calibration step (with a warning) msg = "LinearSVC does not support sample_weight." assert_warns_message( UserWarning, msg, calibrated_clf.fit, X_train, y_train, sample_weight=sw_train) probs_with_sw = calibrated_clf.predict_proba(X_test) # As the weights are used for the calibration, they should still yield # a different predictions calibrated_clf.fit(X_train, y_train) probs_without_sw = calibrated_clf.predict_proba(X_test) diff = np.linalg.norm(probs_with_sw - probs_without_sw) assert_greater(diff, 0.1) def test_calibration_multiclass(): """Test calibration for multiclass """ # test multi-class setting with classifier that implements # only decision function clf = LinearSVC() X, y_idx = make_blobs(n_samples=100, n_features=2, random_state=42, centers=3, cluster_std=3.0) # Use categorical labels to check that CalibratedClassifierCV supports # them correctly target_names = np.array(['a', 'b', 'c']) y = target_names[y_idx] X_train, y_train = X[::2], y[::2] X_test, y_test = X[1::2], y[1::2] clf.fit(X_train, y_train) for method in ['isotonic', 'sigmoid']: cal_clf = CalibratedClassifierCV(clf, method=method, cv=2) cal_clf.fit(X_train, y_train) probas = cal_clf.predict_proba(X_test) assert_array_almost_equal(np.sum(probas, axis=1), np.ones(len(X_test))) # Check that log-loss of calibrated classifier is smaller than # log-loss of naively turned OvR decision function to probabilities # via softmax def softmax(y_pred): e = np.exp(-y_pred) return e / e.sum(axis=1).reshape(-1, 1) uncalibrated_log_loss = \ log_loss(y_test, softmax(clf.decision_function(X_test))) calibrated_log_loss = log_loss(y_test, probas) assert_greater_equal(uncalibrated_log_loss, calibrated_log_loss) # Test that calibration of a multiclass classifier decreases log-loss # for RandomForestClassifier X, y = make_blobs(n_samples=100, n_features=2, random_state=42, cluster_std=3.0) X_train, y_train = X[::2], y[::2] X_test, y_test = X[1::2], y[1::2] clf = RandomForestClassifier(n_estimators=10, random_state=42) clf.fit(X_train, y_train) clf_probs = clf.predict_proba(X_test) loss = log_loss(y_test, clf_probs) for method in ['isotonic', 'sigmoid']: cal_clf = CalibratedClassifierCV(clf, method=method, cv=3) cal_clf.fit(X_train, y_train) cal_clf_probs = cal_clf.predict_proba(X_test) cal_loss = log_loss(y_test, cal_clf_probs) assert_greater(loss, cal_loss) def test_calibration_prefit(): """Test calibration for prefitted classifiers""" n_samples = 50 X, y = make_classification(n_samples=3 * n_samples, n_features=6, random_state=42) sample_weight = np.random.RandomState(seed=42).uniform(size=y.size) X -= X.min() # MultinomialNB only allows positive X # split train and test X_train, y_train, sw_train = \ X[:n_samples], y[:n_samples], sample_weight[:n_samples] X_calib, y_calib, sw_calib = \ X[n_samples:2 * n_samples], y[n_samples:2 * n_samples], \ sample_weight[n_samples:2 * n_samples] X_test, y_test = X[2 * n_samples:], y[2 * n_samples:] # Naive-Bayes clf = MultinomialNB() clf.fit(X_train, y_train, sw_train) prob_pos_clf = clf.predict_proba(X_test)[:, 1] # Naive Bayes with calibration for this_X_calib, this_X_test in [(X_calib, X_test), (sparse.csr_matrix(X_calib), sparse.csr_matrix(X_test))]: for method in ['isotonic', 'sigmoid']: pc_clf = CalibratedClassifierCV(clf, method=method, cv="prefit") for sw in [sw_calib, None]: pc_clf.fit(this_X_calib, y_calib, sample_weight=sw) y_prob = pc_clf.predict_proba(this_X_test) y_pred = pc_clf.predict(this_X_test) prob_pos_pc_clf = y_prob[:, 1] assert_array_equal(y_pred, np.array([0, 1])[np.argmax(y_prob, axis=1)]) assert_greater(brier_score_loss(y_test, prob_pos_clf), brier_score_loss(y_test, prob_pos_pc_clf)) def test_sigmoid_calibration(): """Test calibration values with Platt sigmoid model""" exF = np.array([5, -4, 1.0]) exY = np.array([1, -1, -1]) # computed from my python port of the C++ code in LibSVM AB_lin_libsvm = np.array([-0.20261354391187855, 0.65236314980010512]) assert_array_almost_equal(AB_lin_libsvm, _sigmoid_calibration(exF, exY), 3) lin_prob = 1. / (1. + np.exp(AB_lin_libsvm[0] * exF + AB_lin_libsvm[1])) sk_prob = _SigmoidCalibration().fit(exF, exY).predict(exF) assert_array_almost_equal(lin_prob, sk_prob, 6) # check that _SigmoidCalibration().fit only accepts 1d array or 2d column # arrays assert_raises(ValueError, _SigmoidCalibration().fit, np.vstack((exF, exF)), exY) def test_calibration_curve(): """Check calibration_curve function""" y_true = np.array([0, 0, 0, 1, 1, 1]) y_pred = np.array([0., 0.1, 0.2, 0.8, 0.9, 1.]) prob_true, prob_pred = calibration_curve(y_true, y_pred, n_bins=2) prob_true_unnormalized, prob_pred_unnormalized = \ calibration_curve(y_true, y_pred * 2, n_bins=2, normalize=True) assert_equal(len(prob_true), len(prob_pred)) assert_equal(len(prob_true), 2) assert_almost_equal(prob_true, [0, 1]) assert_almost_equal(prob_pred, [0.1, 0.9]) assert_almost_equal(prob_true, prob_true_unnormalized) assert_almost_equal(prob_pred, prob_pred_unnormalized) # probabilities outside [0, 1] should not be accepted when normalize # is set to False assert_raises(ValueError, calibration_curve, [1.1], [-0.1], normalize=False) def test_calibration_nan_imputer(): """Test that calibration can accept nan""" X, y = make_classification(n_samples=10, n_features=2, n_informative=2, n_redundant=0, random_state=42) X[0, 0] = np.nan clf = Pipeline( [('imputer', Imputer()), ('rf', RandomForestClassifier(n_estimators=1))]) clf_c = CalibratedClassifierCV(clf, cv=2, method='isotonic') clf_c.fit(X, y) clf_c.predict(X)
bsd-3-clause
jniediek/mne-python
examples/preprocessing/plot_find_ecg_artifacts.py
14
1313
""" ================== Find ECG artifacts ================== Locate QRS component of ECG. """ # Authors: Alexandre Gramfort <[email protected]> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne import io from mne.datasets import sample print(__doc__) data_path = sample.data_path() ############################################################################### # Set parameters raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' # Setup for reading the raw data raw = io.read_raw_fif(raw_fname) event_id = 999 ecg_events, _, _ = mne.preprocessing.find_ecg_events(raw, event_id, ch_name='MEG 1531') # Read epochs picks = mne.pick_types(raw.info, meg=False, eeg=False, stim=False, eog=False, include=['MEG 1531'], exclude='bads') tmin, tmax = -0.1, 0.1 epochs = mne.Epochs(raw, ecg_events, event_id, tmin, tmax, picks=picks, proj=False) data = epochs.get_data() print("Number of detected ECG artifacts : %d" % len(data)) ############################################################################### # Plot ECG artifacts plt.plot(1e3 * epochs.times, np.squeeze(data).T) plt.xlabel('Times (ms)') plt.ylabel('ECG') plt.show()
bsd-3-clause
ndingwall/scikit-learn
sklearn/cluster/tests/test_bicluster.py
6
9508
"""Testing for Spectral Biclustering methods""" import numpy as np import pytest from scipy.sparse import csr_matrix, issparse from sklearn.model_selection import ParameterGrid from sklearn.utils._testing import assert_almost_equal from sklearn.utils._testing import assert_array_equal from sklearn.utils._testing import assert_array_almost_equal from sklearn.base import BaseEstimator, BiclusterMixin from sklearn.cluster import SpectralCoclustering from sklearn.cluster import SpectralBiclustering from sklearn.cluster._bicluster import _scale_normalize from sklearn.cluster._bicluster import _bistochastic_normalize from sklearn.cluster._bicluster import _log_normalize from sklearn.metrics import (consensus_score, v_measure_score) from sklearn.datasets import make_biclusters, make_checkerboard class MockBiclustering(BiclusterMixin, BaseEstimator): # Mock object for testing get_submatrix. def __init__(self): pass def get_indices(self, i): # Overridden to reproduce old get_submatrix test. return (np.where([True, True, False, False, True])[0], np.where([False, False, True, True])[0]) def test_get_submatrix(): data = np.arange(20).reshape(5, 4) model = MockBiclustering() for X in (data, csr_matrix(data), data.tolist()): submatrix = model.get_submatrix(0, X) if issparse(submatrix): submatrix = submatrix.toarray() assert_array_equal(submatrix, [[2, 3], [6, 7], [18, 19]]) submatrix[:] = -1 if issparse(X): X = X.toarray() assert np.all(X != -1) def _test_shape_indices(model): # Test get_shape and get_indices on fitted model. for i in range(model.n_clusters): m, n = model.get_shape(i) i_ind, j_ind = model.get_indices(i) assert len(i_ind) == m assert len(j_ind) == n def test_spectral_coclustering(): # Test Dhillon's Spectral CoClustering on a simple problem. param_grid = {'svd_method': ['randomized', 'arpack'], 'n_svd_vecs': [None, 20], 'mini_batch': [False, True], 'init': ['k-means++'], 'n_init': [10]} random_state = 0 S, rows, cols = make_biclusters((30, 30), 3, noise=0.5, random_state=random_state) S -= S.min() # needs to be nonnegative before making it sparse S = np.where(S < 1, 0, S) # threshold some values for mat in (S, csr_matrix(S)): for kwargs in ParameterGrid(param_grid): model = SpectralCoclustering(n_clusters=3, random_state=random_state, **kwargs) model.fit(mat) assert model.rows_.shape == (3, 30) assert_array_equal(model.rows_.sum(axis=0), np.ones(30)) assert_array_equal(model.columns_.sum(axis=0), np.ones(30)) assert consensus_score(model.biclusters_, (rows, cols)) == 1 _test_shape_indices(model) def test_spectral_biclustering(): # Test Kluger methods on a checkerboard dataset. S, rows, cols = make_checkerboard((30, 30), 3, noise=0.5, random_state=0) non_default_params = {'method': ['scale', 'log'], 'svd_method': ['arpack'], 'n_svd_vecs': [20], 'mini_batch': [True]} for mat in (S, csr_matrix(S)): for param_name, param_values in non_default_params.items(): for param_value in param_values: model = SpectralBiclustering( n_clusters=3, n_init=3, init='k-means++', random_state=0, ) model.set_params(**dict([(param_name, param_value)])) if issparse(mat) and model.get_params().get('method') == 'log': # cannot take log of sparse matrix with pytest.raises(ValueError): model.fit(mat) continue else: model.fit(mat) assert model.rows_.shape == (9, 30) assert model.columns_.shape == (9, 30) assert_array_equal(model.rows_.sum(axis=0), np.repeat(3, 30)) assert_array_equal(model.columns_.sum(axis=0), np.repeat(3, 30)) assert consensus_score(model.biclusters_, (rows, cols)) == 1 _test_shape_indices(model) def _do_scale_test(scaled): """Check that rows sum to one constant, and columns to another.""" row_sum = scaled.sum(axis=1) col_sum = scaled.sum(axis=0) if issparse(scaled): row_sum = np.asarray(row_sum).squeeze() col_sum = np.asarray(col_sum).squeeze() assert_array_almost_equal(row_sum, np.tile(row_sum.mean(), 100), decimal=1) assert_array_almost_equal(col_sum, np.tile(col_sum.mean(), 100), decimal=1) def _do_bistochastic_test(scaled): """Check that rows and columns sum to the same constant.""" _do_scale_test(scaled) assert_almost_equal(scaled.sum(axis=0).mean(), scaled.sum(axis=1).mean(), decimal=1) def test_scale_normalize(): generator = np.random.RandomState(0) X = generator.rand(100, 100) for mat in (X, csr_matrix(X)): scaled, _, _ = _scale_normalize(mat) _do_scale_test(scaled) if issparse(mat): assert issparse(scaled) def test_bistochastic_normalize(): generator = np.random.RandomState(0) X = generator.rand(100, 100) for mat in (X, csr_matrix(X)): scaled = _bistochastic_normalize(mat) _do_bistochastic_test(scaled) if issparse(mat): assert issparse(scaled) def test_log_normalize(): # adding any constant to a log-scaled matrix should make it # bistochastic generator = np.random.RandomState(0) mat = generator.rand(100, 100) scaled = _log_normalize(mat) + 1 _do_bistochastic_test(scaled) def test_fit_best_piecewise(): model = SpectralBiclustering(random_state=0) vectors = np.array([[0, 0, 0, 1, 1, 1], [2, 2, 2, 3, 3, 3], [0, 1, 2, 3, 4, 5]]) best = model._fit_best_piecewise(vectors, n_best=2, n_clusters=2) assert_array_equal(best, vectors[:2]) def test_project_and_cluster(): model = SpectralBiclustering(random_state=0) data = np.array([[1, 1, 1], [1, 1, 1], [3, 6, 3], [3, 6, 3]]) vectors = np.array([[1, 0], [0, 1], [0, 0]]) for mat in (data, csr_matrix(data)): labels = model._project_and_cluster(mat, vectors, n_clusters=2) assert_almost_equal(v_measure_score(labels, [0, 0, 1, 1]), 1.0) def test_perfect_checkerboard(): # XXX Previously failed on build bot (not reproducible) model = SpectralBiclustering(3, svd_method="arpack", random_state=0) S, rows, cols = make_checkerboard((30, 30), 3, noise=0, random_state=0) model.fit(S) assert consensus_score(model.biclusters_, (rows, cols)) == 1 S, rows, cols = make_checkerboard((40, 30), 3, noise=0, random_state=0) model.fit(S) assert consensus_score(model.biclusters_, (rows, cols)) == 1 S, rows, cols = make_checkerboard((30, 40), 3, noise=0, random_state=0) model.fit(S) assert consensus_score(model.biclusters_, (rows, cols)) == 1 @pytest.mark.parametrize( "args", [{'n_clusters': (3, 3, 3)}, {'n_clusters': 'abc'}, {'n_clusters': (3, 'abc')}, {'method': 'unknown'}, {'n_components': 0}, {'n_best': 0}, {'svd_method': 'unknown'}, {'n_components': 3, 'n_best': 4}] ) def test_errors(args): data = np.arange(25).reshape((5, 5)) model = SpectralBiclustering(**args) with pytest.raises(ValueError): model.fit(data) def test_wrong_shape(): model = SpectralBiclustering() data = np.arange(27).reshape((3, 3, 3)) with pytest.raises(ValueError): model.fit(data) @pytest.mark.parametrize('est', (SpectralBiclustering(), SpectralCoclustering())) def test_n_features_in_(est): X, _, _ = make_biclusters((3, 3), 3, random_state=0) assert not hasattr(est, 'n_features_in_') est.fit(X) assert est.n_features_in_ == 3 @pytest.mark.parametrize("klass", [SpectralBiclustering, SpectralCoclustering]) @pytest.mark.parametrize("n_jobs", [None, 1]) def test_n_jobs_deprecated(klass, n_jobs): # FIXME: remove in 0.25 depr_msg = ("'n_jobs' was deprecated in version 0.23 and will be removed " "in 0.25.") S, _, _ = make_biclusters((30, 30), 3, noise=0.5, random_state=0) est = klass(random_state=0, n_jobs=n_jobs) with pytest.warns(FutureWarning, match=depr_msg): est.fit(S)
bsd-3-clause
marcharper/stationary
examples/entropic_equilibria_plots.py
1
9181
"""Figures for the publication "Entropic Equilibria Selection of Stationary Extrema in Finite Populations" """ from __future__ import print_function import math import os import pickle import sys import matplotlib from matplotlib import pyplot as plt import matplotlib.gridspec as gridspec import numpy as np import scipy.misc import ternary import stationary from stationary.processes import incentives, incentive_process ## Global Font config for plots ### font = {'size': 14} matplotlib.rc('font', **font) def compute_entropy_rate(N=30, n=2, m=None, incentive_func=None, beta=1., mu=None, exact=False, lim=1e-13, logspace=False): if not m: m = np.ones((n, n)) if not incentive_func: incentive_func = incentives.fermi if not mu: # mu = (n-1.)/n * 1./(N+1) mu = 1. / N fitness_landscape = incentives.linear_fitness_landscape(m) incentive = incentive_func(fitness_landscape, beta=beta, q=1) edges = incentive_process.multivariate_transitions( N, incentive, num_types=n, mu=mu) s = stationary.stationary_distribution(edges, exact=exact, lim=lim, logspace=logspace) e = stationary.entropy_rate(edges, s) return e, s # Entropy Characterization Plots def dict_max(d): k0, v0 = list(d.items())[0] for k, v in d.items(): if v > v0: k0, v0 = k, v return k0, v0 def plot_data_sub(domain, plot_data, gs, labels=None, sci=True, use_log=False): # Plot Entropy Rate ax1 = plt.subplot(gs[0, 0]) ax1.plot(domain, [x[0] for x in plot_data[0]], linewidth=2) # Plot Stationary Probabilities and entropies ax2 = plt.subplot(gs[1, 0]) ax3 = plt.subplot(gs[2, 0]) if use_log: transform = math.log else: transform = lambda x: x for i, ax, t in [(1, ax2, lambda x: x), (2, ax3, transform)]: if labels: for data, label in zip(plot_data, labels): ys = list(map(t, [x[i] for x in data])) ax.plot(domain, ys, linewidth=2, label=label) else: for data in plot_data: ys = list(map(t, [x[i] for x in data])) ax.plot(domain, ys, linewidth=2) ax1.set_ylabel("Entropy Rate") ax2.set_ylabel("Stationary\nExtrema") if use_log: ax3.set_ylabel("log RTE $H_v$") else: ax3.set_ylabel("RTE $H_v$") if sci: ax2.yaxis.get_major_formatter().set_powerlimits((0, 0)) ax3.yaxis.get_major_formatter().set_powerlimits((0, 0)) return ax1, ax2, ax3 def ER_figure_beta2(N, m, betas): """Varying Beta, two dimensional example""" # Beta test # m = [[1, 4], [4, 1]] # Compute the data ss = [] plot_data = [[]] for beta in betas: print(beta) e, s = compute_entropy_rate(N=N, m=m, beta=beta, exact=True) ss.append(s) state, s_max = dict_max(s) plot_data[0].append((e, s_max, e / s_max)) gs = gridspec.GridSpec(3, 2) ax1, ax2, ax3 = plot_data_sub(betas, plot_data, gs, sci=False) ax3.set_xlabel("Strength of Selection $\\beta$") # Plot stationary distribution ax4 = plt.subplot(gs[:, 1]) for s in ss[::4]: ax4.plot(range(0, N+1), [s[(i, N-i)] for i in range(0, N+1)]) ax4.set_title("Stationary Distributions") ax4.set_xlabel("Population States $(i , N - i)$") def remove_boundary(s): s1 = dict() for k, v in s.items(): a, b, c = k if a * b * c != 0: s1[k] = v return s1 def ER_figure_beta3(N, m, mu, betas, iss_states, labels, stationary_beta=0.35, pickle_filename="figure_beta3.pickle"): """Varying Beta, three dimensional example""" ss = [] plot_data = [[] for _ in range(len(iss_states))] if os.path.exists(pickle_filename): with open(pickle_filename, 'rb') as f: plot_data = pickle.load(f) else: for beta in betas: print(beta) e, s = compute_entropy_rate( N=N, m=m, n=3, beta=beta, exact=False, mu=mu, lim=1e-10) ss.append(s) for i, iss_state in enumerate(iss_states): s_max = s[iss_state] plot_data[i].append((e, s_max, e / s_max)) with open(pickle_filename, 'wb') as f: pickle.dump(plot_data, f) gs = gridspec.GridSpec(3, 2) ax1, ax2, ax3 = plot_data_sub(betas, plot_data, gs, labels=labels, use_log=True, sci=False) ax3.set_xlabel("Strength of selection $\\beta$") ax2.legend(loc="upper right") # Plot example stationary ax4 = plt.subplot(gs[:, 1]) _, s = compute_entropy_rate( N=N, m=m, n=3, beta=stationary_beta, exact=False, mu=mu, lim=1e-15) _, tax = ternary.figure(ax=ax4, scale=N,) tax.heatmap(s, cmap="jet", style="triangular") tax.ticks(axis='lbr', linewidth=1, multiple=10, offset=0.015) tax.clear_matplotlib_ticks() ax4.set_xlabel("Population States $a_1 + a_2 + a_3 = N$") # tax.left_axis_label("$a_1$") # tax.right_axis_label("$a_2$") # tax.bottom_axis_label("$a_3$") def ER_figure_N(Ns, m, beta=1, labels=None): """Varying population size.""" ss = [] plot_data = [[] for _ in range(3)] n = len(m[0]) for N in Ns: print(N) mu = 1 / N norm = float(scipy.misc.comb(N+n, n)) e, s = compute_entropy_rate( N=N, m=m, n=3, beta=beta, exact=False, mu=mu, lim=1e-10) ss.append(s) iss_states = [(N, 0, 0), (N / 2, N / 2, 0), (N / 3, N / 3, N / 3)] for i, iss_state in enumerate(iss_states): s_max = s[iss_state] plot_data[i].append((e, s_max, e / (s_max * norm))) # Plot data gs = gridspec.GridSpec(3, 1) ax1, ax2, ax3 = plot_data_sub(Ns, plot_data, gs, labels, use_log=True, sci=False) ax2.legend(loc="upper right") ax3.set_xlabel("Population Size $N$") def ER_figure_mu(N, mus, m, iss_states, labels, beta=1., pickle_filename="figure_mu.pickle"): """ Plot entropy rates and trajectory entropies for varying mu. """ # Compute the data ss = [] plot_data = [[] for _ in range(len(iss_states))] if os.path.exists(pickle_filename): with open(pickle_filename, 'rb') as f: plot_data = pickle.load(f) else: for mu in mus: print(mu) e, s = compute_entropy_rate( N=N, m=m, n=3, beta=beta, exact=False, mu=mu, lim=1e-10, logspace=True) ss.append(s) for i, iss_state in enumerate(iss_states): s_max = s[iss_state] plot_data[i].append((e, s_max, e / s_max)) with open(pickle_filename, 'wb') as f: pickle.dump(plot_data, f) # Plot data gs = gridspec.GridSpec(3, 1) gs.update(hspace=0.5) ax1, ax2, ax3 = plot_data_sub(mus, plot_data, gs, labels, use_log=True) ax2.legend(loc="upper right") ax3.set_xlabel("Mutation rate $\mu$") if __name__ == '__main__': fig_num = sys.argv[1] if fig_num == "1": ## Figure 1 # Varying beta, two dimensional N = 30 m = [[1, 2], [2, 1]] betas = np.arange(0, 8, 0.2) ER_figure_beta2(N, m, betas) plt.tight_layout() plt.show() if fig_num == "2": ## Figure 2 # # Varying beta, three dimensional N = 60 mu = 1. / N m = [[0, 1, 1], [1, 0, 1], [1, 1, 0]] iss_states = [(N, 0, 0), (N / 2, N / 2, 0), (N / 3, N / 3, N / 3)] labels = ["$v_0$", "$v_1$", "$v_2$"] betas = np.arange(0.02, 0.6, 0.02) ER_figure_beta3(N, m, mu, betas, iss_states, labels) plt.show() if fig_num == "3": ## Figure 3 # Varying mutation rate figure N = 42 mus = np.arange(0.0001, 0.015, 0.0005) m = [[0, 1, 1], [1, 0, 1], [1, 1, 0]] iss_states = [(N, 0, 0), (N / 2, N / 2, 0), (N / 3, N / 3, N / 3)] labels = ["$v_0$: (42, 0, 0)", "$v_1$: (21, 21, 0)", "$v_2$: (14, 14, 14)"] # labels = ["$v_0$", "$v_1$", "$v_2$"] ER_figure_mu(N, mus, m, iss_states, labels, beta=1.) plt.show() if fig_num == "4": ## Figure 4 # Note: The RPS landscape takes MUCH longer to converge! # Consider using the C++ implementation instead for larger N. N = 120 # Manuscript uses 180 mu = 1. / N m = incentives.rock_paper_scissors(a=-1, b=-1) _, s = compute_entropy_rate( N=N, m=m, n=3, beta=1.5, exact=False, mu=mu, lim=1e-16) _, tax = ternary.figure(scale=N) tax.heatmap(remove_boundary(s), cmap="jet", style="triangular") tax.ticks(axis='lbr', linewidth=1, multiple=60) tax.clear_matplotlib_ticks() plt.show() if fig_num == "5": # ## Figure 5 # Varying Population Size Ns = range(6, 6*6, 6) m = [[0, 1, 1], [1, 0, 1], [1, 1, 0]] labels = ["$v_0$", "$v_1$", "$v_2$"] ER_figure_N(Ns, m, beta=1, labels=labels) plt.show()
mit
xubenben/scikit-learn
sklearn/linear_model/tests/test_sparse_coordinate_descent.py
244
9986
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_greater from sklearn.utils.testing import ignore_warnings from sklearn.linear_model.coordinate_descent import (Lasso, ElasticNet, LassoCV, ElasticNetCV) def test_sparse_coef(): # Check that the sparse_coef propery works clf = ElasticNet() clf.coef_ = [1, 2, 3] assert_true(sp.isspmatrix(clf.sparse_coef_)) assert_equal(clf.sparse_coef_.toarray().tolist()[0], clf.coef_) def test_normalize_option(): # Check that the normalize option in enet works X = sp.csc_matrix([[-1], [0], [1]]) y = [-1, 0, 1] clf_dense = ElasticNet(fit_intercept=True, normalize=True) clf_sparse = ElasticNet(fit_intercept=True, normalize=True) clf_dense.fit(X, y) X = sp.csc_matrix(X) clf_sparse.fit(X, y) assert_almost_equal(clf_dense.dual_gap_, 0) assert_array_almost_equal(clf_dense.coef_, clf_sparse.coef_) def test_lasso_zero(): # Check that the sparse lasso can handle zero data without crashing X = sp.csc_matrix((3, 1)) y = [0, 0, 0] T = np.array([[1], [2], [3]]) clf = Lasso().fit(X, y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0]) assert_array_almost_equal(pred, [0, 0, 0]) assert_almost_equal(clf.dual_gap_, 0) def test_enet_toy_list_input(): # Test ElasticNet for various values of alpha and l1_ratio with list X X = np.array([[-1], [0], [1]]) X = sp.csc_matrix(X) Y = [-1, 0, 1] # just a straight line T = np.array([[2], [3], [4]]) # test sample # this should be the same as unregularized least squares clf = ElasticNet(alpha=0, l1_ratio=1.0) # catch warning about alpha=0. # this is discouraged but should work. ignore_warnings(clf.fit)(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=1000) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.45454], 3) assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3) assert_almost_equal(clf.dual_gap_, 0) def test_enet_toy_explicit_sparse_input(): # Test ElasticNet for various values of alpha and l1_ratio with sparse X f = ignore_warnings # training samples X = sp.lil_matrix((3, 1)) X[0, 0] = -1 # X[1, 0] = 0 X[2, 0] = 1 Y = [-1, 0, 1] # just a straight line (the identity function) # test samples T = sp.lil_matrix((3, 1)) T[0, 0] = 2 T[1, 0] = 3 T[2, 0] = 4 # this should be the same as lasso clf = ElasticNet(alpha=0, l1_ratio=1.0) f(clf.fit)(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=1000) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.45454], 3) assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3) assert_almost_equal(clf.dual_gap_, 0) def make_sparse_data(n_samples=100, n_features=100, n_informative=10, seed=42, positive=False, n_targets=1): random_state = np.random.RandomState(seed) # build an ill-posed linear regression problem with many noisy features and # comparatively few samples # generate a ground truth model w = random_state.randn(n_features, n_targets) w[n_informative:] = 0.0 # only the top features are impacting the model if positive: w = np.abs(w) X = random_state.randn(n_samples, n_features) rnd = random_state.uniform(size=(n_samples, n_features)) X[rnd > 0.5] = 0.0 # 50% of zeros in input signal # generate training ground truth labels y = np.dot(X, w) X = sp.csc_matrix(X) if n_targets == 1: y = np.ravel(y) return X, y def _test_sparse_enet_not_as_toy_dataset(alpha, fit_intercept, positive): n_samples, n_features, max_iter = 100, 100, 1000 n_informative = 10 X, y = make_sparse_data(n_samples, n_features, n_informative, positive=positive) X_train, X_test = X[n_samples // 2:], X[:n_samples // 2] y_train, y_test = y[n_samples // 2:], y[:n_samples // 2] s_clf = ElasticNet(alpha=alpha, l1_ratio=0.8, fit_intercept=fit_intercept, max_iter=max_iter, tol=1e-7, positive=positive, warm_start=True) s_clf.fit(X_train, y_train) assert_almost_equal(s_clf.dual_gap_, 0, 4) assert_greater(s_clf.score(X_test, y_test), 0.85) # check the convergence is the same as the dense version d_clf = ElasticNet(alpha=alpha, l1_ratio=0.8, fit_intercept=fit_intercept, max_iter=max_iter, tol=1e-7, positive=positive, warm_start=True) d_clf.fit(X_train.toarray(), y_train) assert_almost_equal(d_clf.dual_gap_, 0, 4) assert_greater(d_clf.score(X_test, y_test), 0.85) assert_almost_equal(s_clf.coef_, d_clf.coef_, 5) assert_almost_equal(s_clf.intercept_, d_clf.intercept_, 5) # check that the coefs are sparse assert_less(np.sum(s_clf.coef_ != 0.0), 2 * n_informative) def test_sparse_enet_not_as_toy_dataset(): _test_sparse_enet_not_as_toy_dataset(alpha=0.1, fit_intercept=False, positive=False) _test_sparse_enet_not_as_toy_dataset(alpha=0.1, fit_intercept=True, positive=False) _test_sparse_enet_not_as_toy_dataset(alpha=1e-3, fit_intercept=False, positive=True) _test_sparse_enet_not_as_toy_dataset(alpha=1e-3, fit_intercept=True, positive=True) def test_sparse_lasso_not_as_toy_dataset(): n_samples = 100 max_iter = 1000 n_informative = 10 X, y = make_sparse_data(n_samples=n_samples, n_informative=n_informative) X_train, X_test = X[n_samples // 2:], X[:n_samples // 2] y_train, y_test = y[n_samples // 2:], y[:n_samples // 2] s_clf = Lasso(alpha=0.1, fit_intercept=False, max_iter=max_iter, tol=1e-7) s_clf.fit(X_train, y_train) assert_almost_equal(s_clf.dual_gap_, 0, 4) assert_greater(s_clf.score(X_test, y_test), 0.85) # check the convergence is the same as the dense version d_clf = Lasso(alpha=0.1, fit_intercept=False, max_iter=max_iter, tol=1e-7) d_clf.fit(X_train.toarray(), y_train) assert_almost_equal(d_clf.dual_gap_, 0, 4) assert_greater(d_clf.score(X_test, y_test), 0.85) # check that the coefs are sparse assert_equal(np.sum(s_clf.coef_ != 0.0), n_informative) def test_enet_multitarget(): n_targets = 3 X, y = make_sparse_data(n_targets=n_targets) estimator = ElasticNet(alpha=0.01, fit_intercept=True, precompute=None) # XXX: There is a bug when precompute is not None! estimator.fit(X, y) coef, intercept, dual_gap = (estimator.coef_, estimator.intercept_, estimator.dual_gap_) for k in range(n_targets): estimator.fit(X, y[:, k]) assert_array_almost_equal(coef[k, :], estimator.coef_) assert_array_almost_equal(intercept[k], estimator.intercept_) assert_array_almost_equal(dual_gap[k], estimator.dual_gap_) def test_path_parameters(): X, y = make_sparse_data() max_iter = 50 n_alphas = 10 clf = ElasticNetCV(n_alphas=n_alphas, eps=1e-3, max_iter=max_iter, l1_ratio=0.5, fit_intercept=False) ignore_warnings(clf.fit)(X, y) # new params assert_almost_equal(0.5, clf.l1_ratio) assert_equal(n_alphas, clf.n_alphas) assert_equal(n_alphas, len(clf.alphas_)) sparse_mse_path = clf.mse_path_ ignore_warnings(clf.fit)(X.toarray(), y) # compare with dense data assert_almost_equal(clf.mse_path_, sparse_mse_path) def test_same_output_sparse_dense_lasso_and_enet_cv(): X, y = make_sparse_data(n_samples=40, n_features=10) for normalize in [True, False]: clfs = ElasticNetCV(max_iter=100, cv=5, normalize=normalize) ignore_warnings(clfs.fit)(X, y) clfd = ElasticNetCV(max_iter=100, cv=5, normalize=normalize) ignore_warnings(clfd.fit)(X.toarray(), y) assert_almost_equal(clfs.alpha_, clfd.alpha_, 7) assert_almost_equal(clfs.intercept_, clfd.intercept_, 7) assert_array_almost_equal(clfs.mse_path_, clfd.mse_path_) assert_array_almost_equal(clfs.alphas_, clfd.alphas_) clfs = LassoCV(max_iter=100, cv=4, normalize=normalize) ignore_warnings(clfs.fit)(X, y) clfd = LassoCV(max_iter=100, cv=4, normalize=normalize) ignore_warnings(clfd.fit)(X.toarray(), y) assert_almost_equal(clfs.alpha_, clfd.alpha_, 7) assert_almost_equal(clfs.intercept_, clfd.intercept_, 7) assert_array_almost_equal(clfs.mse_path_, clfd.mse_path_) assert_array_almost_equal(clfs.alphas_, clfd.alphas_)
bsd-3-clause
pylayers/pylayers
pylayers/antprop/examples/ex_antenna2.py
3
1396
from pylayers.antprop.antenna import * from pylayers.antprop.antvsh import * import matplotlib.pylab as plt from numpy import * import pdb """ This test : 1 : loads a measured antenna 2 : applies an electrical delay obtained from data with getdelay method 3 : evaluate the antenna vsh coefficient with a downsampling factor of 2 4 : display the 16 first """ filename = 'S1R1.mat' A = Antenna(filename,directory='ant/UWBAN/Matfile') #plot(freq,angle(A.Ftheta[:,maxPowerInd[1],maxPowerInd[2]]*exp(2j*pi*freq.reshape(len(freq))*electricalDelay))) freq = A.fa.reshape(104,1,1) delayCandidates = arange(-10,10,0.001) electricalDelay = A.getdelay(freq,delayCandidates) disp('Electrical Delay = ' + str(electricalDelay)+' ns') A.Ftheta = A.Ftheta*exp(2*1j*pi*freq*electricalDelay) A.Fphi = A.Fphi*exp(2*1j*pi*freq*electricalDelay) dsf = 2 # # Calculate Vector Spherical Harmonics # A = vsh(A,dsf) v = np.abs(A.C.Br.s1) u = np.nonzero(v==v.max()) plt.figure(figsize=(15,15)) for l in range(16): plt.subplot(4,4,l+1) plt.plot(np.real(A.C.Br.s1[:,l,0]),np.imag(A.C.Br.s1[:,l,0]),'k') plt.plot(np.real(A.C.Br.s1[:,l,1]),np.imag(A.C.Br.s1[:,l,1]),'b') plt.plot(np.real(A.C.Br.s1[:,l,2]),np.imag(A.C.Br.s1[:,l,2]),'r') plt.plot(np.real(A.C.Br.s1[:,l,2]),np.imag(A.C.Br.s1[:,l,2]),'g') plt.axis([-0.6,0.6,-0.6,0.6]) plt.title('l='+str(l)) plt.show()
mit
yonglehou/scikit-learn
benchmarks/bench_multilabel_metrics.py
276
7138
#!/usr/bin/env python """ A comparison of multilabel target formats and metrics over them """ from __future__ import division from __future__ import print_function from timeit import timeit from functools import partial import itertools import argparse import sys import matplotlib.pyplot as plt import scipy.sparse as sp import numpy as np from sklearn.datasets import make_multilabel_classification from sklearn.metrics import (f1_score, accuracy_score, hamming_loss, jaccard_similarity_score) from sklearn.utils.testing import ignore_warnings METRICS = { 'f1': partial(f1_score, average='micro'), 'f1-by-sample': partial(f1_score, average='samples'), 'accuracy': accuracy_score, 'hamming': hamming_loss, 'jaccard': jaccard_similarity_score, } FORMATS = { 'sequences': lambda y: [list(np.flatnonzero(s)) for s in y], 'dense': lambda y: y, 'csr': lambda y: sp.csr_matrix(y), 'csc': lambda y: sp.csc_matrix(y), } @ignore_warnings def benchmark(metrics=tuple(v for k, v in sorted(METRICS.items())), formats=tuple(v for k, v in sorted(FORMATS.items())), samples=1000, classes=4, density=.2, n_times=5): """Times metric calculations for a number of inputs Parameters ---------- metrics : array-like of callables (1d or 0d) The metric functions to time. formats : array-like of callables (1d or 0d) These may transform a dense indicator matrix into multilabel representation. samples : array-like of ints (1d or 0d) The number of samples to generate as input. classes : array-like of ints (1d or 0d) The number of classes in the input. density : array-like of ints (1d or 0d) The density of positive labels in the input. n_times : int Time calling the metric n_times times. Returns ------- array of floats shaped like (metrics, formats, samples, classes, density) Time in seconds. """ metrics = np.atleast_1d(metrics) samples = np.atleast_1d(samples) classes = np.atleast_1d(classes) density = np.atleast_1d(density) formats = np.atleast_1d(formats) out = np.zeros((len(metrics), len(formats), len(samples), len(classes), len(density)), dtype=float) it = itertools.product(samples, classes, density) for i, (s, c, d) in enumerate(it): _, y_true = make_multilabel_classification(n_samples=s, n_features=1, n_classes=c, n_labels=d * c, random_state=42) _, y_pred = make_multilabel_classification(n_samples=s, n_features=1, n_classes=c, n_labels=d * c, random_state=84) for j, f in enumerate(formats): f_true = f(y_true) f_pred = f(y_pred) for k, metric in enumerate(metrics): t = timeit(partial(metric, f_true, f_pred), number=n_times) out[k, j].flat[i] = t return out def _tabulate(results, metrics, formats): """Prints results by metric and format Uses the last ([-1]) value of other fields """ column_width = max(max(len(k) for k in formats) + 1, 8) first_width = max(len(k) for k in metrics) head_fmt = ('{:<{fw}s}' + '{:>{cw}s}' * len(formats)) row_fmt = ('{:<{fw}s}' + '{:>{cw}.3f}' * len(formats)) print(head_fmt.format('Metric', *formats, cw=column_width, fw=first_width)) for metric, row in zip(metrics, results[:, :, -1, -1, -1]): print(row_fmt.format(metric, *row, cw=column_width, fw=first_width)) def _plot(results, metrics, formats, title, x_ticks, x_label, format_markers=('x', '|', 'o', '+'), metric_colors=('c', 'm', 'y', 'k', 'g', 'r', 'b')): """ Plot the results by metric, format and some other variable given by x_label """ fig = plt.figure('scikit-learn multilabel metrics benchmarks') plt.title(title) ax = fig.add_subplot(111) for i, metric in enumerate(metrics): for j, format in enumerate(formats): ax.plot(x_ticks, results[i, j].flat, label='{}, {}'.format(metric, format), marker=format_markers[j], color=metric_colors[i % len(metric_colors)]) ax.set_xlabel(x_label) ax.set_ylabel('Time (s)') ax.legend() plt.show() if __name__ == "__main__": ap = argparse.ArgumentParser() ap.add_argument('metrics', nargs='*', default=sorted(METRICS), help='Specifies metrics to benchmark, defaults to all. ' 'Choices are: {}'.format(sorted(METRICS))) ap.add_argument('--formats', nargs='+', choices=sorted(FORMATS), help='Specifies multilabel formats to benchmark ' '(defaults to all).') ap.add_argument('--samples', type=int, default=1000, help='The number of samples to generate') ap.add_argument('--classes', type=int, default=10, help='The number of classes') ap.add_argument('--density', type=float, default=.2, help='The average density of labels per sample') ap.add_argument('--plot', choices=['classes', 'density', 'samples'], default=None, help='Plot time with respect to this parameter varying ' 'up to the specified value') ap.add_argument('--n-steps', default=10, type=int, help='Plot this many points for each metric') ap.add_argument('--n-times', default=5, type=int, help="Time performance over n_times trials") args = ap.parse_args() if args.plot is not None: max_val = getattr(args, args.plot) if args.plot in ('classes', 'samples'): min_val = 2 else: min_val = 0 steps = np.linspace(min_val, max_val, num=args.n_steps + 1)[1:] if args.plot in ('classes', 'samples'): steps = np.unique(np.round(steps).astype(int)) setattr(args, args.plot, steps) if args.metrics is None: args.metrics = sorted(METRICS) if args.formats is None: args.formats = sorted(FORMATS) results = benchmark([METRICS[k] for k in args.metrics], [FORMATS[k] for k in args.formats], args.samples, args.classes, args.density, args.n_times) _tabulate(results, args.metrics, args.formats) if args.plot is not None: print('Displaying plot', file=sys.stderr) title = ('Multilabel metrics with %s' % ', '.join('{0}={1}'.format(field, getattr(args, field)) for field in ['samples', 'classes', 'density'] if args.plot != field)) _plot(results, args.metrics, args.formats, title, steps, args.plot)
bsd-3-clause
UNR-AERIAL/scikit-learn
examples/semi_supervised/plot_label_propagation_digits.py
268
2723
""" =================================================== Label Propagation digits: Demonstrating performance =================================================== This example demonstrates the power of semisupervised learning by training a Label Spreading model to classify handwritten digits with sets of very few labels. The handwritten digit dataset has 1797 total points. The model will be trained using all points, but only 30 will be labeled. Results in the form of a confusion matrix and a series of metrics over each class will be very good. At the end, the top 10 most uncertain predictions will be shown. """ print(__doc__) # Authors: Clay Woolam <[email protected]> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn import datasets from sklearn.semi_supervised import label_propagation from sklearn.metrics import confusion_matrix, classification_report digits = datasets.load_digits() rng = np.random.RandomState(0) indices = np.arange(len(digits.data)) rng.shuffle(indices) X = digits.data[indices[:330]] y = digits.target[indices[:330]] images = digits.images[indices[:330]] n_total_samples = len(y) n_labeled_points = 30 indices = np.arange(n_total_samples) unlabeled_set = indices[n_labeled_points:] # shuffle everything around y_train = np.copy(y) y_train[unlabeled_set] = -1 ############################################################################### # Learn with LabelSpreading lp_model = label_propagation.LabelSpreading(gamma=0.25, max_iter=5) lp_model.fit(X, y_train) predicted_labels = lp_model.transduction_[unlabeled_set] true_labels = y[unlabeled_set] cm = confusion_matrix(true_labels, predicted_labels, labels=lp_model.classes_) print("Label Spreading model: %d labeled & %d unlabeled points (%d total)" % (n_labeled_points, n_total_samples - n_labeled_points, n_total_samples)) print(classification_report(true_labels, predicted_labels)) print("Confusion matrix") print(cm) # calculate uncertainty values for each transduced distribution pred_entropies = stats.distributions.entropy(lp_model.label_distributions_.T) # pick the top 10 most uncertain labels uncertainty_index = np.argsort(pred_entropies)[-10:] ############################################################################### # plot f = plt.figure(figsize=(7, 5)) for index, image_index in enumerate(uncertainty_index): image = images[image_index] sub = f.add_subplot(2, 5, index + 1) sub.imshow(image, cmap=plt.cm.gray_r) plt.xticks([]) plt.yticks([]) sub.set_title('predict: %i\ntrue: %i' % ( lp_model.transduction_[image_index], y[image_index])) f.suptitle('Learning with small amount of labeled data') plt.show()
bsd-3-clause
AleKit/TFGDM17
dm_spectra_f.py
1
30644
import numpy as np import pylab as pl import scipy as sp import bisect from scipy.interpolate import interp1d from scipy.interpolate import spline from matplotlib import pyplot as plt import pyfits pl.rcParams['figure.figsize'] = (10.0, 7.0) pl.rcParams['font.size'] = 18 pl.rcParams['font.family'] = 'serif' pl.rcParams['lines.linewidth'] = 3 pathforfigs ='/home/ale/TFGF/' pathforaux='/home/ale/TFGF' filename=pathforaux+'/CascadeSpectra/Spectra/AtProduction_gammas.dat' path=pathforaux+"/sensitivities/" #vts_file = np.genfromtxt(path+"Instrument/VERITAS_V6_std_50hr_5sigma_VERITAS2014_DiffSens.dat") vts_file = np.genfromtxt(path+"Instrument/VERITAS_ICRC2015_envelope.dat") magic_file = np.genfromtxt(path+"Instrument/MAGIC_DiffSensCU.dat") hess_file_combined = np.genfromtxt(path+"Instrument/HESS_August2015_CT15_Combined_Std.dat") hess_file_stereo = np.genfromtxt(path+"Instrument/HESS_August2015_CT15_Stereo_Std.dat") hess_file_envelope = np.genfromtxt(path+"Instrument/HESS_ICRC2015_envelope.dat") hawc_1yr_file = np.genfromtxt(path+"Instrument/HAWC300_1y_QuarterDecade_DiffSens.dat") hawc_5yr_file = np.genfromtxt(path+"Instrument/HAWC300_5y_QuarterDecade_DiffSens.dat") fermi_b0_file = np.genfromtxt(path+"Instrument/fermi_lat_pass8_l0_b0.dat") fermi_b30_file = np.genfromtxt(path+"Instrument/fermi_lat_pass8_l0_b30.dat") fermi_b90_file = np.genfromtxt(path+"Instrument/fermi_lat_pass8_l0_b90.dat") hs_file = np.genfromtxt(path+"Instrument/hiscore.dat") lhaaso_file = np.genfromtxt(path+"Instrument/lhaaso.dat") cta_n_file = np.genfromtxt(path+"North/CTA-Performance-North-50h-DiffSens.txt",skip_header=9) cta_s_file = np.genfromtxt(path+"South/CTA-Performance-South-50h-DiffSens.txt",skip_header=9) Qe = 1.602176462e-19 TeV = 1 GeV = 1e-3 * TeV MeV = 1e-6 * TeV erg = 0.624151 * TeV eV = 1e-9 * GeV def Smooth(E, F): logE = np.log10(E) logF = np.log10(F) logEnew = np.linspace(logE.min(), logE.max(), 300) logF_smooth = spline(logE, logF, logEnew) Enew = [10**x for x in logEnew] F_smooth = [10**x for x in logF_smooth] return (Enew, F_smooth) def getMAGIC(magic_file, Escale = GeV, smooth=True): x = 0.5*(magic_file[:,0] + magic_file[:,1]) * Escale y = magic_file[:,2] y_m = [y0 * 3.39e-11 * x0**(-2.51 - 0.21*np.log10(x0)) * x0 * x0 * 1e12 * Qe / 1e-7 for (x0, y0) in zip(x,y)] if smooth: return Smooth(x, y_m) else: return (x,y_m) def getVERITAS(veritas_file, index=1, smooth=True): x = veritas_file[:,0] y = veritas_file[:,index] y_m = [y0 * 3.269e-11 * x0**(-2.474 - 0.191*np.log10(x0)) * x0 * x0 * 1e12 * Qe / 1e-7 for (x0, y0) in zip(x,y)] if smooth: return Smooth(x, y_m) else: return (x,y_m) def getHESS(hess_file, smooth=True): x = hess_file[:,0] y = hess_file[:,1] x_m = [10**x0 for x0 in x] y_m = [y0 * x0 * x0 * 1e12 * Qe / 1e-7 for (x0,y0) in zip(x_m,y)] if smooth: return Smooth(x_m, y_m) else: return (x_m,y_m) def getHESSEnvelope(hess_file, smooth=True): x = hess_file[:,0] y = hess_file[:,1] y_m = [y0 * x0 * x0 / erg for (x0,y0) in zip(x,y)] if smooth: return Smooth(x, y_m) else: return (x,y_m) def getHAWCFermi(hfile, Escale = GeV, smooth=True): # MeV scale for Fermi, GeV for HAWC x = hfile[:,0] y = hfile[:,1] if smooth: return Smooth(x * Escale, y) else: return (x * Escale,y) def getCTA(ctafile, smooth=True): x = (ctafile[:,0] + ctafile[:,1])/2. y = ctafile[:,2] if smooth: return Smooth(x, y) else: return (x,y) # Some useful units #GeV = 1 #TeV = 1e3 * GeV #erg = 624.15 * GeV #eV = 1e-9 * GeV def InterpolateTauEBL(E, redshift): #filename = "/a/home/tehanu/santander/ebl/ebl_z%0.1f.dat" % redshift filename = path + "ebl_z%0.1f.dat" % redshift eblfile = np.genfromtxt(filename) z = eblfile[:,0] Egamma = eblfile[:,1] * TeV Tau = eblfile[:,3] EBLInterp = interp1d(np.log10(Egamma), np.log10(Tau), kind='linear') TauValues = [] for i in range(len(E)): if E[i] < Egamma[0]: TauValues.append(np.log10(Tau[0])) elif E[i] > Egamma[-1]: TauValues.append(np.log10(Tau[-1])) else: TauValues.append(EBLInterp(np.log10(E[i]))) return [10**tau for tau in TauValues] def SpectrumFlux(A, E, gamma, redshift = 0, Enorm = 1 * GeV, b = 0): if redshift > 0: tau = InterpolateTauEBL(E, redshift) else: tau = [0 for x in E] opacity = [np.exp(-t) for t in tau] return [A * (E0/Enorm)**(-gamma + b * np.log(E0/Enorm)) * exptau for (E0, exptau) in zip(E, opacity)] def CrabSpectrumBroad(E): C = -0.12 logf0 = -10.248 Eic = 48*GeV # GeV a = 2.5 return E**(-2)* 10**(logf0+C*(np.abs(np.log10(E/Eic)))**a) def SpectrumIntegrator(Ec, Ewidths, Flux): nbins = 500 Ebins = np.logspace(np.log10(Emin), np.log10(Emax), nbins) Ecenters = (Ebins[:-1]+Ebins[1:])/2 Flux = SpectrumFlux(A, Ecenters, gamma) Ewidths = (Ebins[1:]-Ebins[:-1]) return (Ecenters, np.sum(Ewidths * Flux)) def SpectrumIntAboveEnergy(Ec, Ewidths, Flux): prod = np.array([f * ew for (f, ew) in zip(Flux, Ewidths)]) return [np.sum(prod[bisect.bisect(Ec,En):]) / TeV for En in Ec] def plotSensitivity(ax, filename, legend="", xscale = 1, yscale=1., color='black', ls='-', lw=3, multE=False, delim=',', inCU=False, CrabEscale = 1): (Ec, flux) = plotCrabSpectrum(ax, scale=1, plot=False) f = interp1d(Ec, flux) if legend == "": legend = filename eblfile = np.genfromtxt(filename, delimiter=delim) x = eblfile[:,0] * xscale y = eblfile[:,1] * yscale l = zip(x,y) l.sort() xx = [x for (x,y) in l] yy = [y for (x,y) in l] if inCU: yy = f(xx) * yy * 1e-2 if multE: zz = [xi * yi / TeV for (xi, yi) in zip(xx, yy)] ax.loglog(xx, zz, label=legend, linewidth=lw, color=color, ls=ls) else: ax.loglog(xx,yy, label=legend, linewidth=lw, color=color, ls=ls) e=1*GeV e**2*CrabSpectrumBroad(e) def plotIntegralSpectrum(ax, legend="", color='black', redshift=0, gamma=2, A=1e-8, Enorm = 1 * GeV, scale=1e-2, b = 0, fill=True, lwf=0.8, lwe=1, plot=True): Emin = 0.1 * GeV Emax = 1e8 * GeV nbins = 1500 Ebins = np.logspace(np.log10(Emin), np.log10(Emax), nbins) Ec = (Ebins[:-1]+Ebins[1:])/2 Ewidths = (Ebins[1:]-Ebins[:-1]) Flux = SpectrumFlux(A, Ec, gamma, redshift, Enorm, b) IntFlux = SpectrumIntAboveEnergy(Ec, Ewidths, Flux) if fill: lowedge = [1e-16 for x in IntFlux] if plot: ax.fill_between(Ec,scale*Ec*IntFlux, lowedge, label="z = " + str(redshift),lw=0, alpha=0.08, color='#009933') ax.loglog(Ec,scale*Ec*IntFlux,lw=lwf, color='#009933', ls='-',alpha=0.5) return (Ec, scale*Ec*IntFlux) else: if plot: ax.loglog(Ec,scale*Ec*IntFlux,lw=lwe, color=color, ls='--') return (Ec, scale*Ec*IntFlux) def plotSpectrum(ax, legend="", color='black', redshift=0, gamma=2, A=1e-8, Enorm = 1 * GeV, scale=1e-2, b = 0, fill=True, lwf=0.8, lwe=1, plot=True, fcolor='#009933', alpha=0.03): Emin = 0.1 * GeV Emax = 1e8 * GeV nbins = 1500 Ebins = np.logspace(np.log10(Emin), np.log10(Emax), nbins) Ec = (Ebins[:-1]+Ebins[1:])/2 Ewidths = (Ebins[1:]-Ebins[:-1]) Flux = SpectrumFlux(A, Ec, gamma, redshift, Enorm, b) if fill: lowedge = [1e-16 for x in Flux] if plot: ax.fill_between(Ec,scale*Ec*Ec*Flux, lowedge, label="z = " + str(redshift),lw=0, alpha=alpha, color=fcolor) ax.loglog(Ec,scale*Ec*Ec*Flux,lw=lwf, color=color, ls='-',alpha=0.5) return (Ec, scale*Ec*Ec*Flux) else: if plot: ax.loglog(Ec,scale*Ec*Ec*Flux,lw=lwe, color=color, ls='--') return (Ec, scale*Ec*Ec*Flux) def plotCrabSpectrumBroad(ax, legend="", color='black', scale=1, fill=True, lwf=0.8, lwe=1, plot=True, fcolor='grey', alpha=0.03): Emin = 0.1 * GeV Emax = 1e8 * GeV nbins = 1500 Ebins = np.logspace(np.log10(Emin), np.log10(Emax), nbins) Ec = (Ebins[:-1]+Ebins[1:])/2 Flux = CrabSpectrumBroad(Ec) if fill: lowedge = [1e-16 for x in Flux] if plot: ax.fill_between(Ec,scale*Ec*Ec*Flux, lowedge, lw=0, alpha=alpha, color=fcolor) ax.loglog(Ec,scale*Ec*Ec*Flux,lw=lwf, color=color, ls='-',alpha=0.5) return (Ec, scale*Ec*Ec*Flux) else: if plot: ax.loglog(Ec,scale*Ec*Ec*Flux,lw=lwe, color=color, ls='--') return (Ec, scale*Ec*Ec*Flux) Ns=1e3 fullsky = 4 * np.pi def getDMspectrum(option='e',finalstate='b',mass=1000,Jfactor=1.7e19,boost=1): #Options: # e: outputs (E, dN/dE) # e2: outputs (E, E**2 dN/dE) # x: outputs (x,dN/dx) # mass in GeV # Jfactor in GeV2cm-5 sigmav=3*1e-26 # annihilation cross section in cm3s-1 data = np.genfromtxt (filename, names = True ,dtype = None,comments='#') massvals = data["mDM"] index = np.where(np.abs( (massvals - mass) / mass) < 1.e-3) xvals = 10**(data["Log10x"][index]) def branchingratios(m_branon): #<sigmav>_particle / <sigmav>_total #PhysRevD.68.103505 m_top = 172.44 m_W = 80.4 m_Z = 91.2 m_h = 125.1 m_c = 1.275 m_b = 4.18 m_tau = 1.7768 if m_branon > m_top: c_0_top = 3.0 / 16 * m_branon ** 2 * m_top ** 2 * (m_branon ** 2 - m_top ** 2) * (1 - m_top ** 2 / m_branon ** 2) ** (1.0 / 2) else: c_0_top = 0 if m_branon > m_Z: c_0_Z = 1.0 / 64 * m_branon ** 2 * (1 - m_Z ** 2 / m_branon ** 2) ** (1.0 / 2) * (4 * m_branon ** 4 - 4 * m_branon ** 2 * m_Z ** 2 + 3 * m_Z ** 4) else: c_0_Z = 0 if m_branon > m_W: c_0_W = 2.0 / 64 * m_branon ** 2 * (1 - m_W ** 2 / m_branon ** 2) ** (1.0 / 2) * (4 * m_branon ** 4 - 4 * m_branon ** 2 * m_W ** 2 + 3 * m_W ** 4) else: c_0_W = 0 if m_branon > m_h: c_0_h = 1.0 / 64 * m_branon ** 2 * (2 * m_branon ** 2 + m_h ** 2) ** 2 * (1 - m_h ** 2 / m_branon ** 2) ** (1.0 / 2) else: c_0_h = 0 if m_branon > m_c: c_0_c = 3.0 / 16 * m_branon ** 2 * m_c ** 2 * (m_branon ** 2 - m_c ** 2) * (1 - m_c ** 2 / m_branon ** 2) ** (1.0 / 2) else: c_0_c = 0 if m_branon > m_b: c_0_b = 3.0 / 16 * m_branon ** 2 * m_b ** 2 * (m_branon ** 2 - m_b ** 2) * (1 - m_b ** 2 / m_branon ** 2) ** (1.0 / 2) else: c_0_b = 0 if m_branon > m_tau: c_0_tau = 1.0 / 16 * m_branon ** 2 * m_tau ** 2 * (m_branon ** 2 - m_tau ** 2) * (1 - m_tau ** 2 / m_branon ** 2) ** (1.0 / 2) else: c_0_tau = 0 c_0_T = c_0_top + c_0_Z + c_0_W + c_0_h + c_0_c + c_0_b + c_0_tau br_t = (c_0_top / c_0_T) br_Z = c_0_Z / c_0_T br_W = c_0_W / c_0_T br_h = c_0_h / c_0_T br_c = c_0_c / c_0_T br_b = c_0_b / c_0_T br_tau = c_0_tau / c_0_T #f.append((c_0_T/(3*10**(-26)*math.pi**2))**(1./8)) return {'masas': m_branon, 't': br_t, 'Z': br_Z, 'W': br_W, 'h': br_h, 'c': br_c, 'b': br_b, 'Tau': br_tau} #tau name modified in AtProduction_Gammas.dat if finalstate == "new": di = branchingratios(mass) flux_c = data[di.keys()[1]][index]/(np.log(10)*xvals) flux_tau = data[di.keys()[2]][index]/(np.log(10)*xvals) flux_b = data[di.keys()[3]][index]/(np.log(10)*xvals) flux_t = data[di.keys()[4]][index]/(np.log(10)*xvals) flux_W = data[di.keys()[5]][index]/(np.log(10)*xvals) flux_Z = data[di.keys()[7]][index]/(np.log(10)*xvals) flux_h = data[di.keys()[6]][index]/(np.log(10)*xvals) loadspec_h = interp1d(xvals,flux_h) loadspec_Z = interp1d(xvals,flux_Z) loadspec_t = interp1d(xvals,flux_t) loadspec_W = interp1d(xvals,flux_W) loadspec_b = interp1d(xvals,flux_b) loadspec_c = interp1d(xvals,flux_c) loadspec_tau = interp1d(xvals,flux_tau) else: flux = data[finalstate][index]/(np.log(10)*xvals) #data is given in dN/d(log10(X)) = x ln10 dN/dx #flux = data[finalstate][index] loadspec = interp1d(xvals,flux) def dNdx(x): fluxval = loadspec(x) if (x>1 or fluxval<0): return 0 else: return fluxval def dNdx_new(x,di): fluxval_h = loadspec_h(x) if (x>1 or fluxval_h<0): fluxval_h = 0 fluxval_Z = loadspec_Z(x) if (x>1 or fluxval_Z<0): fluxval_Z = 0 fluxval_t = loadspec_t(x) if (x>1 or fluxval_t<0): fluxval_t = 0 fluxval_W = loadspec_W(x) if (x>1 or fluxval_W<0): fluxval_W = 0 fluxval_b = loadspec_b(x) if (x>1 or fluxval_b<0): fluxval_b = 0 fluxval_c = loadspec_c(x) if (x>1 or fluxval_c<0): fluxval_c = 0 fluxval_tau = loadspec_tau(x) if (x>1 or fluxval_tau<0): fluxval_tau = 0 return (di.values()[1]*fluxval_c + di.values()[2]*fluxval_tau + di.values()[3]*fluxval_b + di.values()[4]*fluxval_t + di.values()[5]*fluxval_W + di.values()[7]*fluxval_Z + di.values()[6]*fluxval_h) vdNdx = [] x2vdNdx = [] dNde = [] e2dNde = [] evals = [] xvals2 = [] #aportacion mia if option is 'e': #and boost > 1: #if mass == 5000: sigmavboost = sigmav * boost #no era necesario file1 = open("tabla"+str(mass)+str(finalstate)+str(sigmavboost)+".txt","w") logxvalsnew = np.linspace(-8.9,0,10000) xvalsnew = 10**logxvalsnew for i in range(len(xvalsnew)): x=xvalsnew[i] xvals2.append(x) #aportacion mia #vdNdx.append(dNdx(x)) #x2vdNdx.append(x**2*dNdx(x)) #dNde.append(dNdx(x)*Jfactor*GeV**2*sigmav*boost/(8*np.pi*(mass*GeV)**3)) #e2dNde.append((1/erg)*x**2*dNdx(x)*Jfactor*GeV**2*sigmav*boost/(8*np.pi*mass*GeV)) if finalstate == 'new': aux = dNdx_new(x,di) else: aux = dNdx(x) vdNdx.append(aux) x2vdNdx.append(x**2*aux) dNdeaux = aux*Jfactor*GeV**2*sigmav*boost/(8*np.pi*(mass*GeV)**3) dNde.append(dNdeaux) e2dNde.append((1/erg)*x**2*aux*Jfactor*GeV**2*sigmav*boost/(8*np.pi*mass*GeV)) evals.append(x*mass*GeV) if option is 'e': #and boost > 1: #if mass == 5000 and dNdeaux != 0: if dNdeaux != 0: file1.write(str(x*mass*10**3) + " " + str(dNdeaux/(10**6)) + "\n") #print i #print(option, boost, mass, x*mass*10**3, dNdeaux/(10**6)) #print(x, vdNdx[i], evals[i], e2dNde[i]) # if x == 1: # break if option is 'e': #if mass == 5000 and boost > 1: file1.write(str(x*mass*10**3+1) + " " + "1e-99" + "\n") file1.write(str(x*mass*10**3+5) + " " + "1e-99" + "\n") file1.write(str(x*mass*10**3+10) + " " + "1e-99" + "\n") file1.close() return (evals,dNde) if option is 'e2': return (evals,e2dNde) if option is 'x': return (xvals2,vdNdx) if option is 'x2': return (xvals2,x2vdNdx) else: print('Option '+str(option)+' not supported') fig=pl.figure(figsize=(15,10)) ax=fig.add_subplot(221) ax.set_yscale('log') ax.set_xscale('log') ax.set_xlim(1e-7, 1) ax.set_ylim(1e-7,1e6) #ax.set_xlim(1e-5, 1) #ax.set_ylim(1e-2,1e3) ax.set_xlabel('$x$') ax.set_ylabel('$dN/dx$') (Edm,Fdm) = getDMspectrum('x','new',50) ax.plot(Edm, Fdm, label="m = 0.05 TeV", color='red', linewidth=1) (Edm,Fdm) = getDMspectrum('x','new',100) ax.plot(Edm, Fdm, label="m = 0.1 TeV", color='blue', linewidth=1) (Edm,Fdm) = getDMspectrum('x','new',150) ax.plot(Edm, Fdm, label="m = 0.15 TeV", color='green', linewidth=1) (Edm,Fdm) = getDMspectrum('x','new',250) ax.plot(Edm, Fdm, label="m = 0.25 TeV", color='pink', linewidth=1) (Edm,Fdm) = getDMspectrum('x','new',500) ax.plot(Edm, Fdm, label="m = 0.5 TeV", color='#00CCFF', linewidth=1) (Edm,Fdm) = getDMspectrum('x','new',1000) ax.plot(Edm, Fdm, label="m = 1 TeV", color='#FF66FF', linewidth=1) (Edm,Fdm) = getDMspectrum('x','new',5000) ax.plot(Edm, Fdm, label="m = 5 TeV", color='#CC0066', linewidth=1) (Edm,Fdm) = getDMspectrum('x','new',10000) ax.plot(Edm, Fdm, label="m = 10 TeV", color='orange', linewidth=1) (Edm,Fdm) = getDMspectrum('x','new',50000) ax.plot(Edm, Fdm, label="m = 50 TeV", color='purple', linewidth=1) plt.legend(loc=3, prop={'size':12}) ax=fig.add_subplot(223) ax.set_yscale('log') ax.set_xscale('log') ax.set_xlim(1e-7, 1) ax.set_ylim(1e-7,1) ax.set_xlabel('$x$') ax.set_ylabel('$x^2 dN/dx$') #(Edm,Fdm) = getDMspectrum('x2','b',10000) #ax.plot(Edm, Fdm, label="DM", color='pink', linewidth=1) (Edm,Fdm) = getDMspectrum('x2','new',50) ax.plot(Edm, Fdm, label="m = 0.05 TeV", color='red', linewidth=1) (Edm,Fdm) = getDMspectrum('x2','new',100) ax.plot(Edm, Fdm, label="m = 0.1 TeV", color='blue', linewidth=1) (Edm,Fdm) = getDMspectrum('x2','new',150) ax.plot(Edm, Fdm, label="m = 0.15 TeV", color='green', linewidth=1) (Edm,Fdm) = getDMspectrum('x2','new',250) ax.plot(Edm, Fdm, label="m = 0.25 TeV", color='pink', linewidth=1) (Edm,Fdm) = getDMspectrum('x2','new',500) ax.plot(Edm, Fdm, label="m = 0.5 TeV", color='#00CCFF', linewidth=1) (Edm,Fdm) = getDMspectrum('x2','new',1000) ax.plot(Edm, Fdm, label="m = 1 TeV", color='#FF66FF', linewidth=1) (Edm,Fdm) = getDMspectrum('x2','new',5000) ax.plot(Edm, Fdm, label="m = 5 TeV", color='#CC0066', linewidth=1) (Edm,Fdm) = getDMspectrum('x2','new',10000) ax.plot(Edm, Fdm, label="m = 10 TeV", color='orange', linewidth=1) (Edm,Fdm) = getDMspectrum('x2','new',50000) ax.plot(Edm, Fdm, label="m = 50 TeV", color='purple', linewidth=1) plt.legend(loc=2, prop={'size':12}) ax=fig.add_subplot(222) ax.set_yscale('log') ax.set_xscale('log') ax.set_xlim(2e-4, 60) ax.set_ylim(5e-22,1e-5) ax.set_xlabel('$E$ [TeV]') ax.set_ylabel('$dN/dE$ [cm$^{-2}$ s$^{-1}$ TeV$^{-1}$]') #(Edm,Fdm) = getDMspectrum('e','b',10) #ax.plot(Edm, Fdm, label="DM", color='red', linewidth=1) (Edm,Fdm) = getDMspectrum('e','new',50) ax.plot(Edm, Fdm, label="m = 0.05 TeV", color='red', linewidth=1) (Edm,Fdm) = getDMspectrum('e','new',100) ax.plot(Edm, Fdm, label="m = 0.1 TeV", color='blue', linewidth=1) (Edm,Fdm) = getDMspectrum('e','new',150) ax.plot(Edm, Fdm, label="m = 0.15 TeV", color='green', linewidth=1) (Edm,Fdm) = getDMspectrum('e','new',250) ax.plot(Edm, Fdm, label="m = 0.25 TeV", color='pink', linewidth=1) (Edm,Fdm) = getDMspectrum('e','new',500) ax.plot(Edm, Fdm, label="m = 0.5 TeV", color='#00CCFF', linewidth=1) (Edm,Fdm) = getDMspectrum('e','new',1000) ax.plot(Edm, Fdm, label="m = 1 TeV", color='#FF66FF', linewidth=1) (Edm,Fdm) = getDMspectrum('e','b',5000,boost=4e4) ####### (Edm,Fdm) = getDMspectrum('e','Tau',5000,boost=2e4) ####### (Edm,Fdm) = getDMspectrum('e','W',5000,boost=4e4) ####### (Edm,Fdm) = getDMspectrum('e','new',5000) ax.plot(Edm, Fdm, label="m = 5 TeV", color='#CC0066', linewidth=1) (Edm,Fdm) = getDMspectrum('e','new',10000) ax.plot(Edm, Fdm, label="m = 10 TeV", color='orange', linewidth=1) (Edm,Fdm) = getDMspectrum('e','new',50000) ax.plot(Edm, Fdm, label="m = 50 TeV", color='purple', linewidth=1) plt.legend(loc=3, prop={'size':12}) ax=fig.add_subplot(224) ax.set_yscale('log') ax.set_xscale('log') ax.set_xlim(2e-4, 60) ax.set_ylim(5e-22,1e-12) ax.set_xlabel('$E$ [TeV]') ax.set_ylabel('$E^2 dN/dE$ [erg cm$^{-2}$ s$^{-1}$]') #(Edm,Fdm) = getDMspectrum('e2','b',10) #ax.plot(Edm, Fdm, label="DM", color='red', linewidth=1) (Edm,Fdm) = getDMspectrum('e2','new',50) ax.plot(Edm, Fdm, label="m = 0.05 TeV", color='red', linewidth=1) (Edm,Fdm) = getDMspectrum('e2','new',100) ax.plot(Edm, Fdm, label="m = 0.1 TeV", color='blue', linewidth=1) (Edm,Fdm) = getDMspectrum('e2','new',150) ax.plot(Edm, Fdm, label="m = 0.15 TeV", color='green', linewidth=1) (Edm,Fdm) = getDMspectrum('e2','new',250) ax.plot(Edm, Fdm, label="m = 0.25 TeV", color='pink', linewidth=1) (Edm,Fdm) = getDMspectrum('e2','new',500) ax.plot(Edm, Fdm, label="m = 0.5 TeV", color='#00CCFF', linewidth=1) (Edm,Fdm) = getDMspectrum('e2','new',1000) ax.plot(Edm, Fdm, label="m = 1 TeV", color='#FF66FF', linewidth=1) (Edm,Fdm) = getDMspectrum('e2','new',5000) ax.plot(Edm, Fdm, label="m = 5 TeV", color='#CC0066', linewidth=1) (Edm,Fdm) = getDMspectrum('e2','new',10000) ax.plot(Edm, Fdm, label="m = 10 TeV", color='orange', linewidth=1) (Edm,Fdm) = getDMspectrum('e2','new',50000) ax.plot(Edm, Fdm, label="m = 50 TeV", color='purple', linewidth=1) plt.legend(loc=3, prop={'size':12}) #plt.show() fig=pl.figure() ax=fig.add_subplot(111) legends = [] ctain=True (Emagic, Fmagic) = getMAGIC(magic_file) ax.plot(Emagic, Fmagic, label="MAGIC", color='#A20025', linewidth=0.7) #(Evts, Fvts) = getVERITAS(vts_file,index=1) #vtsplot, = ax.plot(Evts, Fvts, label="VERITAS (50 hr)", color='red', linewidth=2) #(Ehess, Fhess) = getHESS(hess_file_combined) #ax.plot(Ehess, Fhess, label="HESS", color='#0050EF') #(Ehess, Fhess) = getHESS(hess_file_stereo) #ax.plot(Ehess, Fhess, label="HESS", color="#1BA1E2") #(Ehess, Fhess) = getHESSEnvelope(hess_file_envelope) #ax.plot(Ehess, Fhess, label="H.E.S.S.", color="#F0A30A",linewidth=4) #(Ehawc, Fhawc) = getHAWCFermi(hawc_1yr_file) #hawcplot1, = ax.plot(Ehawc, Fhawc, label="HAWC-300 - 1yr", color='#008A00', linewidth=2) #(Ehawc, Fhawc) = getHAWCFermi(hawc_5yr_file) #hawcplot2, = ax.plot(Ehawc, Fhawc, label="HAWC-300 - 5yr", color='#A4C400', linewidth=2) #(Efermi, Ffermi) = getHAWCFermi(fermi_b0_file, Escale=MeV) #ax.plot(Efermi, Ffermi, label="Fermi - b0", color='#bbbbbb') #(Efermi, Ffermi) = getHAWCFermi(fermi_b30_file, Escale=MeV) #ax.plot(Efermi, Ffermi, label="Fermi-LAT ($b = 30^{\circ})$ ", color='#00ABA9') (Efermi, Ffermi) = getHAWCFermi(fermi_b90_file, Escale=MeV) fermiplot, = ax.plot(Efermi, Ffermi, label="LAT (Pass8) - 10yr", color="#1BA1E2", linewidth=0.7) #(Ehs, Fhs) = getHAWCFermi(hs_file, Escale=TeV) #ax.plot(Ehs, Fhs, label="HiSCORE", color="#AA00FF", linestyle='-',linewidth=0.7) #(Ehs, Fhs) = getHAWCFermi(lhaaso_file, Escale=TeV) #ax.plot(Ehs, Fhs, label="LHAASO", color="#0050EF", linestyle='-',linewidth=0.7) (Ecta, Fcta) = getCTA(cta_n_file) ax.plot(Ecta, Fcta, label="CTA (50h, North)", linestyle='-', color='goldenrod',linewidth=1) if ctain: (Ecta, Fcta) = getCTA(cta_s_file) ctaplot, = ax.plot(Ecta, Fcta, label="CTA (50h, South)", linestyle='-', color='#825A2C',linewidth=1) #### Fermi IGRB #### #figrb = np.genfromtxt(pathforaux+"/igrb.dat") #Emean = 1000*(figrb[:,0] + figrb[:,1])/2. #Ewidth = (figrb[:,1]-figrb[:,0]) * 1000 #Figrb = [4 * np.pi * (F/Ew) * scale * 1.60218e-6 * 1e-3 * E**2 for (F, scale, E, Ew) in zip(figrb[:,2], figrb[:,5], Emean, Ewidth)] #Figrb_err = [4 * np.pi * (F_err/Ew) * 1.60218e-6 * 1e-3 * scale * E**2 for (F_err, scale, E, Ew) in zip(figrb[:,3], figrb[:,5], Emean, Ewidth)] #Figrb_err[-1] = 3e-14 #Flims = figrb[:,3] < 1e-3 #DNC ax.errorbar(Emean/1e6, Figrb, yerr=Figrb_err, xerr=Ewidth/2e6, marker='o',linestyle='',ecolor='red',color='red',mec='red',ms=3,uplims=Flims,capsize=3, linewidth=1) #DNC ax.fill_between(Emean/1e6, [mean - err for (mean,err) in zip(Figrb, Figrb_err)], [mean + err for (mean,err) in zip(Figrb, Figrb_err)], zorder=0, alpha=0.5, color="#cccccc") #ax.set_yscale('log') #ax.set_xscale('log') #ax.grid('on') #if ctain: # first_legend = plt.legend(handles=[fermiplot,vtsplot,hawcplot1,hawcplot2,ctaplot], loc='upper left', bbox_to_anchor=(1.01, 1),fontsize=12) #else: # first_legend = plt.legend(handles=[fermiplot,vtsplot,hawcplot1,hawcplot2], loc='upper left', bbox_to_anchor=(1.01, 1),fontsize=12) #ax.add_artist(first_legend) #legends.append(first_legend) #ax.legend(bbox_to_anchor=(1.05, 1), ncol=1, loc=2, fontsize=14) #ax.plot(hess_file[:,0], hess_file[:,1]) #ax.set_yscale('log') #ax.set_xscale('log') #ax.set_xlim(2e-4, 40) #ax.set_ylim(4e-14,1e-10) #ax.set_ylim(5e-14,1e-9) #ax.set_xlabel('$E$ [TeV]') #ax.set_ylabel('$E^2 d\Phi/dE$ [erg cm$^{-2}$ s$^{-1}$]') #plotCrabSpectrum(ax, scale=1./(erg*GeV), fill=True, lwf=0.3, fcolor='#009933', alpha=0.05) #plotCrabSpectrum(ax, scale=1e-1/(erg*GeV), fill=True, lwf=0.3, fcolor='#009933', alpha=0.05) #plotCrabSpectrum(ax, scale=1e-2/(erg*GeV), fill=True, lwf=0.3, fcolor='#009933', alpha=0.05) #plotCrabSpectrum(ax, scale=1e-3/(erg*GeV), fill=True, lwf=0.3, fcolor='#009933', alpha=0.05) # Global fit nu gamma=2.5 A0= (2/3.) * 6.7e-18 * fullsky / (erg*GeV) Enorm = 100 * TeV gamma=2.3 A0=1.5e-18 * fullsky / (GeV*erg) Enorm = 100 * TeV #gamma_wb = 2 #A_wb = 1e-8 * fullsky / GeV*erg #Enorm_wb = 1 * GeV #gamma=2.0 #A0=1.5e-18 * fullsky / (erg*GeV) #Enorm = 100 * TeV #plotSpectrum(ax, color='#009933',redshift=0, scale=1/Ns, gamma=gamma, A=A0, Enorm=Enorm, fcolor='#009933', alpha=0.1) #plotSpectrum(ax, color='#009933',redshift=0.5, scale=1/Ns, gamma=gamma_wb, A=A_wb, Enorm=Enorm_wb, alpha=0.1, fcolor='#009933') #plotSpectrum(ax, color='#666666',redshift=0.5, scale=1/Ns, gamma=gamma, A=A0, Enorm=Enorm) #plotSpectrum(ax, color='#999999',redshift=1, scale=1/Ns, gamma=gamma, A=A0, Enorm=Enorm) #plotSpectrum(ax, color='#000000',redshift=0, scale=1/Ns, gamma=gamma, A=A0, Enorm=Enorm) #plotSpectrum(ax, color='#333333',redshift=0.1, scale=1/Ns, gamma=gamma, A=A0, Enorm=Enorm) #plotSpectrum(ax, color='#666666',redshift=0.5, scale=1/Ns, gamma=gamma, A=A0, Enorm=Enorm) #plotSpectrum(ax, color='#999999',redshift=1, scale=1/Ns, gamma=gamma, A=A0, Enorm=Enorm) myalpha=0.015 myfcolor='blue' mycolor='grey' annotE=0.5*GeV myfontsize=10 myrot=30 if 1: plotCrabSpectrumBroad(ax,color=mycolor,scale=1/erg,alpha=myalpha,fcolor=myfcolor) ax.annotate('Crab', xy=(annotE,2*annotE**2*CrabSpectrumBroad(annotE)), xycoords='data', horizontalalignment='center', verticalalignment='center',fontsize=myfontsize,rotation=myrot) if 1: plotCrabSpectrumBroad(ax,color=mycolor,scale=1e-1/erg,alpha=myalpha,fcolor=myfcolor) ax.annotate('10% Crab', xy=(annotE,2e-1*annotE**2*CrabSpectrumBroad(annotE)), xycoords='data', horizontalalignment='center', verticalalignment='center',fontsize=myfontsize,rotation=myrot) if 1: plotCrabSpectrumBroad(ax,color=mycolor,scale=1e-2/erg,alpha=myalpha,fcolor=myfcolor) ax.annotate('1% Crab', xy=(annotE,2e-2*annotE**2*CrabSpectrumBroad(annotE)), xycoords='data', horizontalalignment='center', verticalalignment='center',fontsize=myfontsize,rotation=myrot) if 1: plotCrabSpectrumBroad(ax,color=mycolor,scale=1e-3/erg,alpha=myalpha,fcolor=myfcolor) ax.annotate('0.1% Crab', xy=(annotE,2e-3*annotE**2*CrabSpectrumBroad(annotE)), xycoords='data', horizontalalignment='center', verticalalignment='center',fontsize=myfontsize,rotation=myrot) if 1: hdulist1 = pyfits.open('spectrumdmbboost.fits') hdulist1.info() datos = hdulist1[1].data energ = datos['Energy'] ed_energ = datos['ed_Energy'] eu_energ = datos['eu_Energy'] flux = datos['Flux'] e_flux = datos['e_Flux'] plt.errorbar(energ, flux, xerr=(ed_energ, eu_energ), yerr = e_flux, color = 'red', marker = 'o', label = r'spectrum $b\bar b$', fmt = '', zorder = 0) hdulist1.close() hdulist2 = pyfits.open('spectrumdmWboost.fits') hdulist2.info() datos = hdulist2[1].data energ = datos['Energy'] ed_energ = datos['ed_Energy'] eu_energ = datos['eu_Energy'] flux = datos['Flux'] e_flux = datos['e_Flux'] plt.errorbar(energ, flux, xerr=(ed_energ, eu_energ), yerr = e_flux, color = 'green', marker = 'o', label = 'spectrum $W^+ W^-$', fmt = '', zorder = 0) hdulist2.close() mylinestyle='--' #mymass=3 myboost=1 (Edm,Fdm) = getDMspectrum('e2','b',5e3,boost=myboost) dmplot1 = ax.plot(Edm, Fdm, label=r"$m_\chi$ = "+str(5)+r" TeV ($b\bar b$, B$_f$=1e"+str("{:.1f}".format(np.log10(myboost)))+")", color='red', linewidth=1,linestyle=mylinestyle) (Edm,Fdm) = getDMspectrum('e2','Tau',5e3,boost=myboost) dmplot2 = ax.plot(Edm, Fdm, label=r"$m_\chi$ = "+str(5)+r" TeV ($\tau^- \tau^+$, B$_f$=1e"+str("{:.1f}".format(np.log10(myboost)))+")", color='blue', linewidth=1,linestyle=mylinestyle) (Edm,Fdm) = getDMspectrum('e2','W',5e3,boost=myboost) dmplot3 = ax.plot(Edm, Fdm, label=r"$m_\chi$ = "+str(5)+r" TeV ($W^+ W^-$, B$_f$=1e"+str("{:.1f}".format(np.log10(myboost)))+")", color='green', linewidth=1,linestyle=mylinestyle) myboost2 = 2e4 myboost3 = 4e4 (Edm,Fdm) = getDMspectrum('e2','b',5e3,boost=myboost3) dmplot4 = ax.plot(Edm, Fdm, label=r"$m_\chi$ = "+str(5)+r" TeV ($b\bar b$, B$_f$=1e"+str("{:.1f}".format(np.log10(myboost2)))+")", color='pink', linewidth=1,linestyle=mylinestyle) (Edm,Fdm) = getDMspectrum('e2','Tau',5e3,boost=myboost2) dmplot5 = ax.plot(Edm, Fdm, label=r"$m_\chi$ = "+str(5)+r" TeV ($\tau^- \tau^+$, B$_f$=1e"+str("{:.1f}".format(np.log10(myboost2)))+")", color='orange', linewidth=1,linestyle=mylinestyle) (Edm,Fdm) = getDMspectrum('e2','W',5e3,boost=myboost3) dmplot6 = ax.plot(Edm, Fdm, label=r"$m_\chi$ = "+str(5)+r" TeV ($W^+ W^-$, B$_f$=1e"+str("{:.1f}".format(np.log10(myboost3)))+")", color='purple', linewidth=1,linestyle=mylinestyle) plt.legend(loc=4, prop={'size':9}) #aportacion mia dmplots= [] dmplots.append(dmplot1) dmplots.append(dmplot2) dmplots.append(dmplot3) dmplots.append(dmplot4) dmplots.append(dmplot5) dmplots.append(dmplot6) ax.set_xlim(1e-4, 1e3) ax.set_ylim(1e-16,1e-10) ax.set_xlabel('$E$ [TeV]') ax.set_ylabel('$E^2 dN/dE$ [erg cm$^{-2}$ s$^{-1}$]') #second_legend = plt.legend(handles=dmplots, ncol=1, loc='upper left',bbox_to_anchor=(1.01, .25), fontsize=12) #ax.add_artist(second_legend) #legends.append(second_legend) #dummy = [] #aux_legend = plt.legend(handles=dummy,bbox_to_anchor=(1.5, .2),frameon=False) #legends.append(aux_legend) #fig.savefig(pathforfigs+'ic_sensitivities_cta_dm_'+str(mymass)+'_'+str(myboost)+'.pdf',bbox_extra_artists=legends,bbox_inches='tight') plt.show() #aportacion mia fig.savefig(pathforfigs+'ic_sensitivities_prueba.pdf',bbox_extra_artists=legends,bbox_inches='tight')
gpl-3.0
nmayorov/scikit-learn
benchmarks/bench_plot_lasso_path.py
301
4003
"""Benchmarks of Lasso regularization path computation using Lars and CD The input data is mostly low rank but is a fat infinite tail. """ from __future__ import print_function from collections import defaultdict import gc import sys from time import time import numpy as np from sklearn.linear_model import lars_path from sklearn.linear_model import lasso_path from sklearn.datasets.samples_generator import make_regression def compute_bench(samples_range, features_range): it = 0 results = defaultdict(lambda: []) max_it = len(samples_range) * len(features_range) for n_samples in samples_range: for n_features in features_range: it += 1 print('====================') print('Iteration %03d of %03d' % (it, max_it)) print('====================') dataset_kwargs = { 'n_samples': n_samples, 'n_features': n_features, 'n_informative': n_features / 10, 'effective_rank': min(n_samples, n_features) / 10, #'effective_rank': None, 'bias': 0.0, } print("n_samples: %d" % n_samples) print("n_features: %d" % n_features) X, y = make_regression(**dataset_kwargs) gc.collect() print("benchmarking lars_path (with Gram):", end='') sys.stdout.flush() tstart = time() G = np.dot(X.T, X) # precomputed Gram matrix Xy = np.dot(X.T, y) lars_path(X, y, Xy=Xy, Gram=G, method='lasso') delta = time() - tstart print("%0.3fs" % delta) results['lars_path (with Gram)'].append(delta) gc.collect() print("benchmarking lars_path (without Gram):", end='') sys.stdout.flush() tstart = time() lars_path(X, y, method='lasso') delta = time() - tstart print("%0.3fs" % delta) results['lars_path (without Gram)'].append(delta) gc.collect() print("benchmarking lasso_path (with Gram):", end='') sys.stdout.flush() tstart = time() lasso_path(X, y, precompute=True) delta = time() - tstart print("%0.3fs" % delta) results['lasso_path (with Gram)'].append(delta) gc.collect() print("benchmarking lasso_path (without Gram):", end='') sys.stdout.flush() tstart = time() lasso_path(X, y, precompute=False) delta = time() - tstart print("%0.3fs" % delta) results['lasso_path (without Gram)'].append(delta) return results if __name__ == '__main__': from mpl_toolkits.mplot3d import axes3d # register the 3d projection import matplotlib.pyplot as plt samples_range = np.linspace(10, 2000, 5).astype(np.int) features_range = np.linspace(10, 2000, 5).astype(np.int) results = compute_bench(samples_range, features_range) max_time = max(max(t) for t in results.values()) fig = plt.figure('scikit-learn Lasso path benchmark results') i = 1 for c, (label, timings) in zip('bcry', sorted(results.items())): ax = fig.add_subplot(2, 2, i, projection='3d') X, Y = np.meshgrid(samples_range, features_range) Z = np.asarray(timings).reshape(samples_range.shape[0], features_range.shape[0]) # plot the actual surface ax.plot_surface(X, Y, Z.T, cstride=1, rstride=1, color=c, alpha=0.8) # dummy point plot to stick the legend to since surface plot do not # support legends (yet?) #ax.plot([1], [1], [1], color=c, label=label) ax.set_xlabel('n_samples') ax.set_ylabel('n_features') ax.set_zlabel('Time (s)') ax.set_zlim3d(0.0, max_time * 1.1) ax.set_title(label) #ax.legend() i += 1 plt.show()
bsd-3-clause
ifuding/Kaggle
TCCC/Code/philly/PoolGRU.py
1
10263
import numpy as np import pandas as pd import sklearn import tensorflow as tf from sklearn import feature_extraction, ensemble, decomposition, pipeline from sklearn.model_selection import KFold # from textblob import TextBlob from nfold_train import nfold_train, models_eval import time from time import gmtime, strftime from tensorflow.python.keras.preprocessing.text import Tokenizer, text_to_word_sequence from tensorflow.python.keras.preprocessing.sequence import pad_sequences from data_helper import data_helper import shutil import os from contextlib import contextmanager # from nltk.stem import PorterStemmer # ps = PorterStemmer() import gensim from CNN_Keras import CNN_Model, get_word2vec_embedding zpolarity = {0:'zero',1:'one',2:'two',3:'three',4:'four',5:'five',6:'six',7:'seven',8:'eight',9:'nine',10:'ten'} zsign = {-1:'negative', 0.: 'neutral', 1:'positive'} flags = tf.app.flags flags.DEFINE_string('input-training-data-path', "../../Data/", 'data dir override') flags.DEFINE_string('output-model-path', ".", 'model dir override') flags.DEFINE_string('model_type', "cnn", 'model type') flags.DEFINE_integer('vocab_size', 300000, 'vocab size') flags.DEFINE_integer('max_seq_len', 100, 'max sequence length') flags.DEFINE_integer('nfold', 10, 'number of folds') flags.DEFINE_integer('ensemble_nfold', 5, 'number of ensemble models') flags.DEFINE_integer('emb_dim', 300, 'term embedding dim') flags.DEFINE_string('rnn_unit', 0, 'RNN Units') flags.DEFINE_integer('epochs', 1, 'number of Epochs') flags.DEFINE_integer('batch_size', 128, 'Batch size') flags.DEFINE_bool("load_wv_model", True, "Whether to load word2vec model") flags.DEFINE_string('wv_model_type', "fast_text", 'word2vec model type') flags.DEFINE_string('wv_model_file', "wiki.en.vec.indata", 'word2vec model file') flags.DEFINE_bool("char_split", False, "Whether to split text into character") flags.DEFINE_string('filter_size', 100, 'CNN filter size') flags.DEFINE_bool("fix_wv_model", True, "Whether to fix word2vec model") flags.DEFINE_integer('batch_interval', 1000, 'batch print interval') flags.DEFINE_float("emb_dropout", 0, "embedding dropout") flags.DEFINE_string('full_connect_hn', "64, 32", 'full connect hidden units') flags.DEFINE_float("full_connect_dropout", 0, "full connect drop out") flags.DEFINE_string('vdcnn_filters', "64, 128, 256", 'vdcnn filters') flags.DEFINE_integer('vdcc_top_k', 1, 'vdcc top_k') flags.DEFINE_bool("separate_label_layer", False, "Whether to separate label layer") flags.DEFINE_bool("stem", False, "Whether to stem") flags.DEFINE_bool("resnet_hn", False, "Whether to concatenate hn and rcnn") flags.DEFINE_integer('letter_num', 3, 'letter number to aggregate') flags.DEFINE_string('kernel_size_list', "1,2,3,4,5,6,7", 'kernel size list') flags.DEFINE_float("rnn_input_dropout", 0, "rnn input drop out") flags.DEFINE_float("rnn_state_dropout", 0, "rnn state drop out") flags.DEFINE_bool("stacking", False, "Whether to stacking") flags.DEFINE_bool("uniform_init_emb", False, "Whether to uniform init the embedding") flags.DEFINE_bool("load_stacking_data", False, "Whether to load stacking data") FLAGS = flags.FLAGS def load_data(): train = pd.read_csv(FLAGS.input_training_data_path + '/train.csv') #.iloc[:200] test = pd.read_csv(FLAGS.input_training_data_path + '/test.csv') #.iloc[:200] # sub1 = pd.read_csv(data_dir + '/submission_ensemble.csv') nrow = train.shape[0] print("Train Size: {0}".format(nrow)) print("Test Size: {0}".format(test.shape[0])) coly = [c for c in train.columns if c not in ['id','comment_text']] print("Label columns: {0}".format(coly)) y = train[coly] tid = test['id'].values if FLAGS.load_stacking_data: data_dir = "../../Data/2fold/" svd_features = np.load(data_dir + 'svd.npy') svd_train = svd_features[:nrow] svd_test = svd_features[nrow:] kf = KFold(n_splits=2, shuffle=False) for train_index, test_index in kf.split(svd_train): svd_train_part = svd_train[test_index] break train_data = np.load(data_dir + 'stacking_train_data.npy') print(train_data.shape, svd_train_part.shape) train_data = np.c_[train_data, svd_train_part] train_label = np.load(data_dir + 'stacking_train_label.npy') # train_data = train_data[:100] # train_label = train_label[:100] test_data = np.load(data_dir + 'stacking_test_data.npy') emb_weight = None else: df = pd.concat([train['comment_text'], test['comment_text']], axis=0) df = df.fillna("unknown") data = df.values # Text to sequence @contextmanager def timer(name): """ Taken from Konstantin Lopuhin https://www.kaggle.com/lopuhin in script named : Mercari Golf: 0.3875 CV in 75 LOC, 1900 s https://www.kaggle.com/lopuhin/mercari-golf-0-3875-cv-in-75-loc-1900-s """ t0 = time.time() yield print('[{0}] done in {1} s'.format(name, time.time() - t0)) with timer("Performing stemming"): if FLAGS.stem: # stem_sentence = lambda s: " ".join(ps.stem(word) for word in s.strip().split()) data = [gensim.parsing.stem_text(comment) for comment in data] print('Tokenizer...') if not FLAGS.char_split: tokenizer = Tokenizer(num_words = FLAGS.vocab_size) tokenizer.fit_on_texts(data) data = tokenizer.texts_to_sequences(data) data = pad_sequences(data, maxlen = FLAGS.max_seq_len) if FLAGS.load_wv_model: emb_weight = get_word2vec_embedding(location = FLAGS.input_training_data_path + FLAGS.wv_model_file, \ tokenizer = tokenizer, nb_words = FLAGS.vocab_size, embed_size = FLAGS.emb_dim, \ model_type = FLAGS.wv_model_type, uniform_init_emb = FLAGS.uniform_init_emb) else: if FLAGS.uniform_init_emb: emb_weight = np.random.uniform(0, 1, (FLAGS.vocab_size, FLAGS.emb_dim)) else: emb_weight = np.zeros((FLAGS.vocab_size, FLAGS.emb_dim)) else: tokenizer = None data_helper = data_helper(sequence_max_length = FLAGS.max_seq_len, \ wv_model_path = FLAGS.input_training_data_path + FLAGS.wv_model_file, \ letter_num = FLAGS.letter_num, emb_dim = FLAGS.emb_dim, load_wv_model = FLAGS.load_wv_model) data, emb_weight, FLAGS.vocab_size = data_helper.text_to_triletter_sequence(data) train_data, train_label = data[:nrow], y.values[:nrow] test_data = data[nrow:] return train_data, train_label, test_data, coly, tid, emb_weight def sub(mdoels, stacking_data = None, stacking_label = None, stacking_test_data = None, test = None, \ scores_text = None, coly = None, tid = None, sub_re = None): tmp_model_dir = "./model_dir/" if not os.path.isdir(tmp_model_dir): os.makedirs(tmp_model_dir, exist_ok=True) if FLAGS.stacking: np.save(os.path.join(tmp_model_dir, "stacking_train_data.npy"), stacking_data) np.save(os.path.join(tmp_model_dir, "stacking_train_label.npy"), stacking_label) np.save(os.path.join(tmp_model_dir, "stacking_test_data.npy"), stacking_test_data) else: sub2 = pd.DataFrame(np.zeros((test.shape[0], len(coly))), columns = coly) if FLAGS.load_stacking_data: sub2[coly] = sub_re else: sub2[coly] = models_eval(models, test) sub2['id'] = tid for c in coly: sub2[c] = sub2[c].clip(0+1e12, 1-1e12) blend = sub2 #blend[sub2.columns] time_label = strftime('_%Y_%m_%d_%H_%M_%S', gmtime()) sub_name = tmp_model_dir + "sub" + time_label + ".csv" blend.to_csv(sub_name, index=False) scores_text_frame = pd.DataFrame(scores_text, columns = ["score_text"]) score_text_file = tmp_model_dir + "score_text" + time_label + ".csv" scores_text_frame.to_csv(score_text_file, index=False) scores = scores_text_frame["score_text"] for i in range(FLAGS.epochs): scores_epoch = scores.loc[scores.str.startswith('epoch:{0}'.format(i + 1))].map(lambda s: float(s.split()[1])) print ("Epoch{0} mean:{1} std:{2} min:{3} max:{4} median:{5}".format(i + 1, \ scores_epoch.mean(), scores_epoch.std(), scores_epoch.min(), scores_epoch.max(), scores_epoch.median())) if not os.path.isdir(FLAGS.output_model_path): os.makedirs(FLAGS.output_model_path, exist_ok=True) for fileName in os.listdir(tmp_model_dir): dst_file = os.path.join(FLAGS.output_model_path, fileName) if os.path.exists(dst_file): os.remove(dst_file) shutil.move(os.path.join(tmp_model_dir, fileName), FLAGS.output_model_path) if __name__ == "__main__": print("Training------") scores_text = [] train_data, train_label, test_data, coly, tid, emb_weight = load_data() sub_re = np.zeros((test_data.shape[0], len(coly))) if not FLAGS.load_stacking_data: # for i in range(train_label.shape[1]): models, stacking_data, stacking_label, stacking_test_data = nfold_train(train_data, train_label, flags = FLAGS, \ model_types = [FLAGS.model_type], scores = scores_text, emb_weight = emb_weight, test_data = test_data) #, valide_data = train_data, valide_label = train_label) else: for i in range(train_label.shape[1]): models, stacking_data, stacking_label, stacking_test_data = nfold_train(train_data, train_label[:, i], flags = FLAGS, \ model_types = [FLAGS.model_type], scores = scores_text, emb_weight = emb_weight, test_data = test_data \ # , valide_data = train_data[:100], valide_label = train_label[:100, i] ) sub_re[:, i] = models_eval(models, test_data) sub(models, stacking_data = stacking_data, stacking_label = stacking_label, stacking_test_data = stacking_test_data, \ test = test_data, scores_text = scores_text, coly = coly, tid = tid, sub_re = sub_re)
apache-2.0