code
stringlengths
4
4.48k
docstring
stringlengths
1
6.45k
_id
stringlengths
24
24
def map_data(self, screen_val): <NEW_LINE> <INDENT> self._compute_scale() <NEW_LINE> if self._null_screen_range: <NEW_LINE> <INDENT> return array([self.range.low]) <NEW_LINE> <DEDENT> elif self._null_data_range: <NEW_LINE> <INDENT> return array([self.range.low]) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return (screen_val - self.low_pos) / self._scale + self.range.low
map_data(screen_val) -> data_val Overrides AbstractMapper. Maps values from screen space into data space.
625941b9b5575c28eb68de81
def alluniqcharsinstr3(s): <NEW_LINE> <INDENT> r = sorted(s) <NEW_LINE> prev = '' <NEW_LINE> for c in r: <NEW_LINE> <INDENT> if c == prev: <NEW_LINE> <INDENT> return False <NEW_LINE> <DEDENT> prev = c <NEW_LINE> <DEDENT> return True
Returns True if the given string contains only unique char, False otherwise No other data structures are use >>> print(alluniqcharsinstr2('')) True >>> print(alluniqcharsinstr2('abc')) True >>> print(alluniqcharsinstr2('aab')) False
625941b923849d37ff7b2f15
def run(self): <NEW_LINE> <INDENT> if self.id: <NEW_LINE> <INDENT> sys.stdout.buffer.write(b"Content-type: text/plain;charset=utf-8") <NEW_LINE> sys.stdout.buffer.write(b"\n\n") <NEW_LINE> sys.stdout.buffer.write(self.doc.xml.encode("utf-8")) <NEW_LINE> sys.exit(0) <NEW_LINE> <DEDENT> Controller.run(self)
Override router.
625941b93617ad0b5ed67d83
def compute_volume(self): <NEW_LINE> <INDENT> return ConvexHull(self.coords).volume
Computes volume of a general polyhedron based on the convex hull of a set of points :return: volume of the polyhedron
625941b98e7ae83300e4ae4f
def initialize(context): <NEW_LINE> <INDENT> install.register_wikid_plugin_class(context)
Initializer called when used as a Zope 2 product.
625941b976e4537e8c3514fb
def states(opts, functions): <NEW_LINE> <INDENT> module_dirs = [ os.path.join(distutils.sysconfig.get_python_lib(), 'salt/states'), ] + opts['states_dirs'] <NEW_LINE> load = Loader(module_dirs, opts) <NEW_LINE> pack = {'name': '__salt__', 'value': functions} <NEW_LINE> return load.gen_functions(pack)
Returns the returner modules
625941b9d6c5a10208143ecb
def test_sxz(self): <NEW_LINE> <INDENT> nouns = { 'bass': 'basses', 'bus': 'buses', 'walrus': 'walruses', 'box': 'boxes', 'fax': 'faxes', 'suffix': 'suffixes', 'mailbox': 'mailboxes', 'buzz': 'buzzes', 'waltz': 'waltzes' } <NEW_LINE> for singular, plural in nouns.items(): <NEW_LINE> <INDENT> self.assertEqual(plural4.plural(singular), plural)
parole che finiscono con S, X, o Z
625941b9099cdd3c635f0ae0
def __init__(self, **kwargs): <NEW_LINE> <INDENT> super(BNSConstraints, self).__init__(**kwargs)
Initialize module.
625941b931939e2706e4ccf3
def nitems_written(self, *args, **kwargs): <NEW_LINE> <INDENT> return _blocks_swig5.sample_and_hold_ii_sptr_nitems_written(self, *args, **kwargs)
nitems_written(sample_and_hold_ii_sptr self, unsigned int which_output) -> uint64_t
625941b99b70327d1c4e0c57
def numPairsDivisibleBy60_error(self, time: List[int]) -> int: <NEW_LINE> <INDENT> hm = defaultdict(int) <NEW_LINE> for t in time: <NEW_LINE> <INDENT> hm[t % 60] += 1 <NEW_LINE> <DEDENT> ret = 0 <NEW_LINE> for k, v in hm.items(): <NEW_LINE> <INDENT> if k == 0: <NEW_LINE> <INDENT> ret += (v * (v - 1)) // 2 <NEW_LINE> <DEDENT> elif k <= 60 - k: <NEW_LINE> <INDENT> v2 = hm[60 - k] <NEW_LINE> ret += v2 * v <NEW_LINE> <DEDENT> <DEDENT> return ret
O(N^2) check i, j Reduce it O(N) by using hashmap, the key should mod 60 attribution error
625941b91b99ca400220a934
def rates_and_algebraic(t, y): <NEW_LINE> <INDENT> t = np.atleast_1d(t) <NEW_LINE> imax = len(t) <NEW_LINE> y = np.array(y).view(float) <NEW_LINE> ydot = np.zeros_like(y) <NEW_LINE> a = np.zeros((imax, len(alg))) <NEW_LINE> for i in range(imax): <NEW_LINE> <INDENT> ydot[i] = computeRates(t[i], y[i], p) <NEW_LINE> if len(alg): <NEW_LINE> <INDENT> a[i] = computeAlgebraic(p, y[i], np.atleast_1d(t[i])).squeeze() <NEW_LINE> <DEDENT> <DEDENT> return ydot, a
Compute rates and algebraic variables for a given state trajectory. Unfortunately, the CVODE machinery does not offer a way to return rates and algebraic variables during integration. This function re-computes the rates and algebraics at each time step for the given state. This returns a simple float array; :meth:`cgp.physmod.cellmlmodel.Cellmlmodel.rates_and_algebraic` will cast them to structured arrays with named fields. This version is pure Python; :func:`~cgp.physmod.cythonize.cythonize` will generate a faster version.
625941b97cff6e4e81117809
def get_expect_payback_date(due_date): <NEW_LINE> <INDENT> payback_date = due_date + datetime.timedelta(days=1) <NEW_LINE> if payback_date.weekday() in transaction_close_weekday: <NEW_LINE> <INDENT> payback_date = get_next_monday(payback_date) <NEW_LINE> <DEDENT> while is_national_holiday(payback_date): <NEW_LINE> <INDENT> payback_date += datetime.timedelta(days=1) <NEW_LINE> <DEDENT> return payback_date
从到期日时间计算出赎回日,包含了法定节假日等非到期日顺延规则.
625941b9f548e778e58cd400
def getPresenceReason(self, deviceReport): <NEW_LINE> <INDENT> hasPresenceFailure = deviceReport.hasPresenceFailure(); <NEW_LINE> if hasPresenceFailure: <NEW_LINE> <INDENT> devicePresence, track = deviceReport.getPresence() <NEW_LINE> _, _, _, msg = track <NEW_LINE> return { "status": self.formatStatus(hasPresenceFailure), "message": msg} <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return None
!
625941b93539df3088e2e1cf
def DribbleOn(self, fn): <NEW_LINE> <INDENT> _c.env_dribbleOn(self.__env, fn)
enable dribble on given file
625941b9566aa707497f43fd
def all_names(self): <NEW_LINE> <INDENT> assert False, 'must override in subclass'
Iterate over all the names (basestring or multilang) that this country has.
625941b9498bea3a759b9934
def get_float(key, *default): <NEW_LINE> <INDENT> return get_env(key, *default, coerce=_float)
Return env var cast as float.
625941b90a366e3fb873e69b
def execute(self, props, pv_props, context): <NEW_LINE> <INDENT> profile = context.get('profile') or 'default' <NEW_LINE> format_commercial = pv_props.get('format_commercial') <NEW_LINE> if 'codec' in props and format_commercial and 'atmos' in format_commercial.lower(): <NEW_LINE> <INDENT> props['codec'] = [props['codec'], getattr(self.audio_codecs['ATMOS'], profile)]
Execute the rule against properties.
625941b9711fe17d825421f6
def init_es(config={}): <NEW_LINE> <INDENT> global __es <NEW_LINE> __es = ElasticSearchHelper(config)
Set up the default DB instance a call to get_db() will return. :param config: See DB() docs for config dict fields. :returns: None.
625941b999cbb53fe6792a6b
def test012_get_memmory_details(self): <NEW_LINE> <INDENT> self.lg.info('get /nodes/{nodeid}/mem api.') <NEW_LINE> response = self.nodes_api.get_nodes_nodeid_mem(node_id=self.nodeid) <NEW_LINE> self.assertEqual(response.status_code, 200) <NEW_LINE> self.lg.info('compare response data with the golden values.') <NEW_LINE> result = self.core0_client.get_nodes_mem() <NEW_LINE> memory_info = response.json() <NEW_LINE> for key in memory_info.keys(): <NEW_LINE> <INDENT> if key in result.keys(): <NEW_LINE> <INDENT> self.assertAlmostEqual(memory_info[key], result[key], msg="different keys%s" % key, delta=10000000)
GAT-012 *GET:/nodes/{nodeid}/mem * **Test Scenario:** #. Choose one random node from list of running nodes. #. get /nodes/{nodeid}/mem api. #. compare response data with the golden values.
625941b926238365f5f0ecee
def coloringSupported(): <NEW_LINE> <INDENT> return True
Returns True if coloring is supported in the current environment, and False otherwise.
625941b91b99ca400220a935
def _self_shield_dens(self,redshift, temp): <NEW_LINE> <INDENT> T4 = temp/1e4 <NEW_LINE> G12 = self.photo.gH0(redshift)/1e-12 <NEW_LINE> return 6.73e-3 * (self.Gray_ss(redshift) / 2.49e-18)**(-2./3)*(T4)**0.17*(G12)**(2./3)*(self.f_bar/0.17)**(-1./3)
Calculate the critical self-shielding density. Rahmati 202 eq. 13. gray_opac is a parameter of the UVB used. gray_opac is in cm^2 (2.49e-18 is HM01 at z=3) temp is particle temperature in K f_bar is the baryon fraction. 0.17 is roughly 0.045/0.265 Returns density in atoms/cm^3
625941b915baa723493c3df6
def normalize_dataset(dataset, minmax): <NEW_LINE> <INDENT> for row in dataset: <NEW_LINE> <INDENT> for i in range(len(row) - 1): <NEW_LINE> <INDENT> row[i] = (row[i] - minmax[i][0]) / (minmax[i][1] - minmax[i][0])
normaliza os dados do dataset
625941b994891a1f4081b92c
def test_connect_device_serial_number_already_connected(self): <NEW_LINE> <INDENT> n_devices = 2 <NEW_LINE> serial_number = "54321" <NEW_LINE> id1 = AvsIdentity( bytes(str(serial_number), "ascii"), b"Fake Spectrograph 2", AvsDeviceStatus.USB_IN_USE_BY_OTHER.value, ) <NEW_LINE> def mock_getList(a_listSize, a_pRequiredSize, a_pList): <NEW_LINE> <INDENT> a_pList[:] = [self.id0, id1] <NEW_LINE> return n_devices <NEW_LINE> <DEDENT> self.patch.return_value.AVS_GetList.side_effect = mock_getList <NEW_LINE> self.patch.return_value.AVS_UpdateUSBDevices.return_value = n_devices <NEW_LINE> with pytest.raises( RuntimeError, match="Requested AVS device is already in use" ): <NEW_LINE> <INDENT> AvsFiberSpectrograph(serial_number=serial_number) <NEW_LINE> <DEDENT> self.patch.return_value.AVS_UpdateUSBDevices.assert_called_once() <NEW_LINE> self.patch.return_value.AVS_GetList.assert_called_once() <NEW_LINE> self.patch.return_value.AVS_Activate.assert_not_called()
Test that connect raises if the device requested by serial number claims to already be connected in its AvsIdentity field.
625941b9d10714528d5ffb64
def fight_round(p1, p2, p1move=None, p2move=None): <NEW_LINE> <INDENT> if not p1move: <NEW_LINE> <INDENT> p1move = p1.random_move() <NEW_LINE> <DEDENT> if not p2move: <NEW_LINE> <INDENT> p2move = p2.random_move() <NEW_LINE> <DEDENT> p1sp = random.randint(0, 10) + p1.speed <NEW_LINE> p2sp = random.randint(0, 10) + p2.speed <NEW_LINE> if p1sp > p2sp: <NEW_LINE> <INDENT> if strategy_attack(p1, p2, move=p1move): <NEW_LINE> <INDENT> return p2 <NEW_LINE> <DEDENT> if strategy_attack(p2, p1, move=p2move): <NEW_LINE> <INDENT> return p1 <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> if strategy_attack(p2, p1, move=p2move): <NEW_LINE> <INDENT> return p1 <NEW_LINE> <DEDENT> if strategy_attack(p1, p2, move=p1move): <NEW_LINE> <INDENT> return p2 <NEW_LINE> <DEDENT> <DEDENT> return None
Handles one fight turn. Returns whoever faints first, or None.
625941b94a966d76dd550e91
def contains(self, item): <NEW_LINE> <INDENT> if self.__elements_type is None or type(item) == self.__elements_type: <NEW_LINE> <INDENT> return item in self.__elements <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> raise StackTypeError("The parameter {0} is not of type {1}.".format(item, self.__elements_type))
this method checks if a value is contained in the stack :param item: the value to search for in the stack :return: True if the value is contained in the list with elements of the stack and False otherwise :raises StackTypeError: if the type of the Stack object is specified and is different from the type of the 'item' argument used when calling this method
625941b9596a89723608994e
def get_default_branch(self): <NEW_LINE> <INDENT> if self.default_branch: <NEW_LINE> <INDENT> return self.default_branch <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return self.vcs_repo().fallback_branch
Get the version representing "latest"
625941b9e8904600ed9f1dad
def add_node(self, node, parent=None): <NEW_LINE> <INDENT> if not isinstance(node, Node): <NEW_LINE> <INDENT> raise OSError("First parameter must be object of Class::Node.") <NEW_LINE> <DEDENT> if node.identifier in self.nodes: <NEW_LINE> <INDENT> node = self.get_node(node.identifier) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.nodes.update({node.identifier : node}) <NEW_LINE> <DEDENT> if parent is None: <NEW_LINE> <INDENT> if self.root is not None: <NEW_LINE> <INDENT> raise MultipleRootError <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.root = node.identifier <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> parent = Node.sanitize_id(parent) <NEW_LINE> <DEDENT> self.__update_fpointer(parent, node.identifier, Node.ADD) <NEW_LINE> self.__update_bpointer(parent, node.identifier, Node.ADD)
Add a new node to tree. The 'node' parameter refers to an instance of Class::Node
625941b9c432627299f04ac8
def draw_treasure(self): <NEW_LINE> <INDENT> for row in range(ROWS): <NEW_LINE> <INDENT> for col in range(COLUMNS): <NEW_LINE> <INDENT> if self.map.treasure[row][col] != 0: <NEW_LINE> <INDENT> treasure = pygame.image.load(IMG_DIR + 'chest.png') <NEW_LINE> self.screen.blit(treasure, (row*TILE_SIZE, col*TILE_SIZE))
Draws the treasure chests yet to be opened.
625941b98e71fb1e9831d631
def put_element_variable_values(self, blockId, name, step, values): <NEW_LINE> <INDENT> self.put_variable_values('EX_ELEM_BLOCK', blockId, name, step, values) <NEW_LINE> return True
store a list of element variable values for a specified element block, element variable name, and time step >>> status = exo.put_element_variable_values(elem_blk_id, ... evar_name, time_step, evar_vals) Parameters ---------- elem_blk_id : int element block *ID* (not *INDEX*) <string> evar_name name of element variable <int> time_step 1-based index of time step <list<float>> evar_vals Returns ------- status : bool True = successful execution
625941b9377c676e9127202e
def openebl(mapping={}): <NEW_LINE> <INDENT> print('> Reading EBL mappings...') <NEW_LINE> with gzip.open(EBL, 'rt', encoding='utf-8', errors='ignore') as data: <NEW_LINE> <INDENT> for line in data.read().splitlines(): <NEW_LINE> <INDENT> lemma, no, trans, olemma, otrans = line.split('\t') <NEW_LINE> if olemma: <NEW_LINE> <INDENT> key = olemma + '[' + otrans + ']' <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> key = lemma + '[' + otrans + ']' <NEW_LINE> <DEDENT> mapping[key] = lemma.replace("'", 'ʾ') + '_' + no <NEW_LINE> <DEDENT> return mapping
Dictionary-based EBL mappings
625941b9e64d504609d746c5
def dist_convert(distance, units="m"): <NEW_LINE> <INDENT> if units=='m': <NEW_LINE> <INDENT> return miles_to_kilometers(distance) <NEW_LINE> <DEDENT> if units=='k': <NEW_LINE> <INDENT> return kilometers_to_miles(distance)
PARAMETERS --------- distance : (float) distance in specified "units" units : (string) "m" for miles or "k" for kilometers RETURNS --------- distance : (float) distance in desired units
625941b92ae34c7f2600cfb6
def _get_fourier_filter(size, filter_name): <NEW_LINE> <INDENT> n = np.concatenate((np.arange(1, size / 2 + 1, 2, dtype=int), np.arange(size / 2 - 1, 0, -2, dtype=int))) <NEW_LINE> f = np.zeros(size) <NEW_LINE> f[0] = 0.25 <NEW_LINE> f[1::2] = -1 / (np.pi * n) ** 2 <NEW_LINE> fourier_filter = 2 * np.real(fft(f)) <NEW_LINE> if filter_name == "ramp": <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> elif filter_name == "shepp-logan": <NEW_LINE> <INDENT> omega = np.pi * fftfreq(size)[1:] <NEW_LINE> fourier_filter[1:] *= np.sin(omega) / omega <NEW_LINE> <DEDENT> elif filter_name == "cosine": <NEW_LINE> <INDENT> freq = np.linspace(0, np.pi, size, endpoint=False) <NEW_LINE> cosine_filter = fftshift(np.sin(freq)) <NEW_LINE> fourier_filter *= cosine_filter <NEW_LINE> <DEDENT> elif filter_name == "hamming": <NEW_LINE> <INDENT> fourier_filter *= fftshift(np.hamming(size)) <NEW_LINE> <DEDENT> elif filter_name == "hann": <NEW_LINE> <INDENT> fourier_filter *= fftshift(np.hanning(size)) <NEW_LINE> <DEDENT> elif filter_name is None: <NEW_LINE> <INDENT> fourier_filter[:] = 1 <NEW_LINE> <DEDENT> return fourier_filter[:, np.newaxis]
Construct the Fourier filter. This computation lessens artifacts and removes a small bias as explained in [1], Chap 3. Equation 61. Parameters ---------- size : int filter size. Must be even. filter_name : str Filter used in frequency domain filtering. Filters available: ramp, shepp-logan, cosine, hamming, hann. Assign None to use no filter. Returns ------- fourier_filter: ndarray The computed Fourier filter. References ---------- .. [1] AC Kak, M Slaney, "Principles of Computerized Tomographic Imaging", IEEE Press 1988.
625941b931939e2706e4ccf4
def insertionSortList(self, head): <NEW_LINE> <INDENT> if not head: <NEW_LINE> <INDENT> return None <NEW_LINE> <DEDENT> sorted_head, sorted_end = head, head <NEW_LINE> current = head.next <NEW_LINE> head.next = None <NEW_LINE> while current: <NEW_LINE> <INDENT> current_next = current.next <NEW_LINE> if current.val < sorted_head.val: <NEW_LINE> <INDENT> current.next = sorted_head <NEW_LINE> sorted_head = current <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> sorted_prev, sorted_current = sorted_head, sorted_head.next <NEW_LINE> while sorted_current: <NEW_LINE> <INDENT> if sorted_current.val > current.val: <NEW_LINE> <INDENT> sorted_prev.next = current <NEW_LINE> current.next = sorted_current <NEW_LINE> break <NEW_LINE> <DEDENT> sorted_prev, sorted_current = sorted_current, sorted_current.next <NEW_LINE> <DEDENT> if current.val >= sorted_end.val: <NEW_LINE> <INDENT> current.next = None <NEW_LINE> sorted_end.next = current <NEW_LINE> sorted_end = current <NEW_LINE> <DEDENT> <DEDENT> current = current_next <NEW_LINE> <DEDENT> return sorted_head
:type head: ListNode :rtype: ListNode
625941b999fddb7c1c9de217
def increment_index(self): <NEW_LINE> <INDENT> self._index += 1
Increment index. Increment index value after finished processing the current subfile from current file.
625941b9187af65679ca4fa2
def model(): <NEW_LINE> <INDENT> model = keras.models.Sequential() <NEW_LINE> model.add(keras.layers.Dense(32, activation='relu')) <NEW_LINE> model.add(keras.layers.Dropout(0.2)) <NEW_LINE> model.add(keras.layers.Dense(64, activation='relu')) <NEW_LINE> model.add(keras.layers.Dropout(0.2)) <NEW_LINE> model.add(keras.layers.Dense(1, activation='sigmoid')) <NEW_LINE> model.compile(optimizer=keras.optimizers.RMSprop(), loss=keras.losses.binary_crossentropy, metrics=['acc']) <NEW_LINE> return model
定义模型 :return: keras model
625941b97047854f462a1291
def test_predict_2_classes(): <NEW_LINE> <INDENT> check_predictions(MLPClassifier(**KWARGS), X, Y1) <NEW_LINE> check_predictions(MLPClassifier(**KWARGS), X_sp, Y1)
Test binary classification.
625941b94f88993c3716bef8
def str_match(arr, pat, case=True, flags=0, na=np.nan, as_indexer=False): <NEW_LINE> <INDENT> if not case: <NEW_LINE> <INDENT> flags |= re.IGNORECASE <NEW_LINE> <DEDENT> regex = re.compile(pat, flags=flags) <NEW_LINE> if (not as_indexer) and regex.groups > 0: <NEW_LINE> <INDENT> warnings.warn("In future versions of pandas, match will change to" " always return a bool indexer.", UserWarning) <NEW_LINE> <DEDENT> if as_indexer and regex.groups > 0: <NEW_LINE> <INDENT> warnings.warn("This pattern has match groups. To actually get the" " groups, use str.extract.", UserWarning) <NEW_LINE> <DEDENT> if (not as_indexer) and regex.groups > 0: <NEW_LINE> <INDENT> dtype = object <NEW_LINE> def f(x): <NEW_LINE> <INDENT> m = regex.match(x) <NEW_LINE> if m: <NEW_LINE> <INDENT> return m.groups() <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return [] <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> dtype = bool <NEW_LINE> f = lambda x: bool(regex.match(x)) <NEW_LINE> <DEDENT> return _na_map(f, arr, na, dtype=dtype)
Deprecated: Find groups in each string in the Series/Index using passed regular expression. If as_indexer=True, determine if each string matches a regular expression. Parameters ---------- pat : string Character sequence or regular expression case : boolean, default True If True, case sensitive flags : int, default 0 (no flags) re module flags, e.g. re.IGNORECASE na : default NaN, fill value for missing values. as_indexer : False, by default, gives deprecated behavior better achieved using str_extract. True return boolean indexer. Returns ------- Series/array of boolean values if as_indexer=True Series/Index of tuples if as_indexer=False, default but deprecated See Also -------- contains : analagous, but less strict, relying on re.search instead of re.match extract : now preferred to the deprecated usage of match (as_indexer=False) Notes ----- To extract matched groups, which is the deprecated behavior of match, use str.extract.
625941b9004d5f362079a1bb
def get_content(self, identifier): <NEW_LINE> <INDENT> post_author, post_permlink = resolveIdentifier(identifier) <NEW_LINE> return Post(self, self.rpc.get_content(post_author, post_permlink))
Get the full content of a post. :param str identifier: Identifier for the post to upvote Takes the form ``@author/permlink``
625941b98e7ae83300e4ae50
def predict_premium(model, X_raw): <NEW_LINE> <INDENT> return predict_expected_claim(model, X_raw) + 2
Model prediction function: predicts premiums based on the pricing model. This function outputs the prices that will be offered to the contracts in X_raw. premium will typically depend on the expected claim predicted in predict_expected_claim, and will add some pricing strategy on top. This is the function used in the expected profit leaderboard. Prices output here will be used in competition with other models, so feel free to use a pricing strategy. Parameters ---------- model: a Python object that describes your model. This can be anything, as long as it is consistent with what `fit` outpurs. X_raw : Pandas dataframe, with the columns described in the data dictionary. Each row is a different contract. This data has not been processed. Returns ------- prices: a one-dimensional Numpy array of the same length as X_raw, with one price per contract (in same order). These prices must be POSITIVE (>0).
625941b98c0ade5d55d3e844
def parse_server(server, as_string=False): <NEW_LINE> <INDENT> if as_string: <NEW_LINE> <INDENT> return '%s:%d' % parse_server(server) <NEW_LINE> <DEDENT> if not isinstance(server, (list, tuple)): <NEW_LINE> <INDENT> return parse_server(server.split(':')) <NEW_LINE> <DEDENT> if len(server) == 1: <NEW_LINE> <INDENT> return (server[0], DEFAULT.PORT) <NEW_LINE> <DEDENT> elif len(server) == 2: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> port = int(server[1]) <NEW_LINE> <DEDENT> except ValueError: <NEW_LINE> <INDENT> raise ParseError('Port must be a positive integer. Received `%s`' % server[1]) <NEW_LINE> <DEDENT> if port > 0: <NEW_LINE> <INDENT> return (server[0], port) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> raise ParseError('Port must be a positive integer. Received `%d`' % port) <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> raise ParseError('Don\'t know what to do with `%s`' % str(server))
Returns a (server, port) tuple filled with informations taken from the *server* argument. If *as_string* is set to True, returns a `server:port` string instead.
625941b97d847024c06be145
def _end_Hsp_identity(self): <NEW_LINE> <INDENT> self._hsp.identities = int(self._value)
Record the number of identities in the alignment (PRIVATE).
625941b97cff6e4e8111780a
def poutput(self, msg, end='\n'): <NEW_LINE> <INDENT> if msg is not None and msg != '': <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> msg_str = '{}'.format(msg) <NEW_LINE> first=True <NEW_LINE> for line in msg_str.split('\n'): <NEW_LINE> <INDENT> self.app.win.console.echo(line, style="fore:f5f5f5", ) <NEW_LINE> first=False <NEW_LINE> <DEDENT> <DEDENT> except IOError: <NEW_LINE> <INDENT> if self.broken_pipe_warning: <NEW_LINE> <INDENT> sys.stderr.write(self.broken_pipe_warning)
Adata override of cmd2.Cmd.poutput method: print to console.
625941b9ec188e330fd5a62a
def produce_random_port(ip): <NEW_LINE> <INDENT> port = random.randint(20001, 65534) <NEW_LINE> while is_port_used(ip, port): <NEW_LINE> <INDENT> port = random.randint(20001, 65534) <NEW_LINE> <DEDENT> p1 = int(port / 256) <NEW_LINE> p2 = port - p1 * 256 <NEW_LINE> return (p1, p2)
:param ip:主机的ip 生成随机的端口号,且保证端口号未被占用 :return:
625941b9d7e4931a7ee9dda0
def get_project_id(self, project_name): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> ret = self.server.getGroupsByName(self.session, [project_name]) <NEW_LINE> id = ret[0]['group_id'] <NEW_LINE> return id <NEW_LINE> <DEDENT> except Exception: <NEW_LINE> <INDENT> return -1
Return the project id (formely the group_id) for a particular name Return -1 if failed
625941b97b180e01f3dc468a
@command("kill", chan=False, pm=True, playing=True, silenced=True, phases=("night",), roles=("dullahan",)) <NEW_LINE> def dullahan_kill(wrapper: MessageDispatcher, message: str): <NEW_LINE> <INDENT> var = wrapper.game_state <NEW_LINE> if not TARGETS[wrapper.source] & set(get_players(var)): <NEW_LINE> <INDENT> wrapper.pm(messages["dullahan_targets_dead"]) <NEW_LINE> return <NEW_LINE> <DEDENT> target = get_target(wrapper, re.split(" +", message)[0], not_self_message="no_suicide") <NEW_LINE> if not target: <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> orig = target <NEW_LINE> target = try_misdirection(var, wrapper.source, target) <NEW_LINE> if try_exchange(var, wrapper.source, target): <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> KILLS[wrapper.source] = target <NEW_LINE> wrapper.pm(messages["player_kill"].format(orig))
Kill someone at night as a dullahan until everyone on your list is dead.
625941b926068e7796caeb5d
def benchmark_fp16_synth_forward_batch16(self): <NEW_LINE> <INDENT> params = self._shared_params()._replace(batch_size=16, use_fp16=True) <NEW_LINE> self._run_benchmark(params)
Tests 1 GPU batch size 16 FP16.
625941b97b25080760e392df
def example1(): <NEW_LINE> <INDENT> print("EXAMPLE 1:") <NEW_LINE> lines = filter_blank_lines(SAMPLE_INPUT.split("\n")) <NEW_LINE> result = solve(lines) <NEW_LINE> expected = 0 <NEW_LINE> print(f"'sample-input' -> {result} (expected {expected})") <NEW_LINE> assert result == expected <NEW_LINE> print("= " * 32)
Run example for problem with input lines.
625941b99c8ee82313fbb5f9
def _plotTrendChannel(self, df, ax, xIndex): <NEW_LINE> <INDENT> def _plotLine(twoPoints): <NEW_LINE> <INDENT> x = [] <NEW_LINE> for i in twoPoints.index: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> x_ = xIndex.get_loc(i) <NEW_LINE> <DEDENT> except Exception as ex: <NEW_LINE> <INDENT> x_ = None <NEW_LINE> <DEDENT> x.append(x_) <NEW_LINE> <DEDENT> ax.plot(x, twoPoints.values, '-', color='#FF6100', linewidth=2) <NEW_LINE> try: <NEW_LINE> <INDENT> y = twoPoints.values <NEW_LINE> xExtendPoint = xIndex.get_loc(df.index[-1]) <NEW_LINE> yExtendPoint = (y[1] - y[0])/(x[1] - x[0]) * (xExtendPoint - x[1]) + y[1] <NEW_LINE> ax.plot([x[1], xExtendPoint], [y[1], yExtendPoint], '-', color='#FF6100', linewidth=2) <NEW_LINE> <DEDENT> except: <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> <DEDENT> up, down = DyStockDataML.trendChannel(df, DyStockCommon.rollingWindowW) <NEW_LINE> if up is None: <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> _plotLine(up) <NEW_LINE> _plotLine(down)
绘制@df的趋势通道 @ax: matplotlib subplot axis @xIndex: 子图的x坐标值,X轴位时间
625941b938b623060ff0ac74
def parse_request_from_query_params(params, url): <NEW_LINE> <INDENT> request = f'{url} ' + (' OR '.join(params.keys())) <NEW_LINE> return request
create a string request from the query params :param params: the parameters we seek data from :param url: the url of the company we search data for. :return: string for google request
625941b93539df3088e2e1d0
def _is_null_datelike_scalar(other): <NEW_LINE> <INDENT> return (np.isscalar(other) and (isnull(other) or other == tslib.iNaT)) or other is pd.NaT or other is None
test whether the object is a null datelike, e.g. Nat but guard against passing a non-scalar
625941b98c3a873295158243
def build_model(): <NEW_LINE> <INDENT> model = Sequential() <NEW_LINE> model.add(Lambda(lambda x: (x / 255.) - 0.5, input_shape=(160, 320, 3))) <NEW_LINE> model.add(Cropping2D(cropping=((50, 20), (0, 0)))) <NEW_LINE> model.add(Convolution2D(16, 5, 5)) <NEW_LINE> model.add(MaxPooling2D((5, 5))) <NEW_LINE> model.add(Dropout(0.1)) <NEW_LINE> model.add(Activation('relu')) <NEW_LINE> model.add(Convolution2D(32, 5, 5)) <NEW_LINE> model.add(MaxPooling2D((5, 5))) <NEW_LINE> model.add(Dropout(0.1)) <NEW_LINE> model.add(Activation('relu')) <NEW_LINE> model.add(Flatten()) <NEW_LINE> model.add(Dense(128)) <NEW_LINE> model.add(Dropout(0.2)) <NEW_LINE> model.add(Activation('relu')) <NEW_LINE> model.add(Dense(1)) <NEW_LINE> model.compile(loss='mse', optimizer='adam') <NEW_LINE> return model
Definition of the Deep Learning model. The following architecture is implemented : - Normalizaiton layer - Image cropping layer - Convolution layer with 16 filters of size (5,5) - Max Pooling with a filter of size (5,5) - Dropout with a dropout rate of 10% - ReLu activation - Convolution layer with 32 filters of size (5,5) - Max Pooling with a filter of size (5,5) - Dropout with a dropout rate of 10% - ReLu activation - Dense layer with 128 hidden units - Dropout with a dropout rate of 20% - ReLu activation - Linear layer to compute the output. The loss function used is Mean Square Error. The optimizer is adam with default parameters. :return: the keras model
625941b9fff4ab517eb2f2be
@click.command() <NEW_LINE> @click.argument('name', default='smile') <NEW_LINE> def emote(name): <NEW_LINE> <INDENT> if name == 'list': <NEW_LINE> <INDENT> list_emoticons() <NEW_LINE> return <NEW_LINE> <DEDENT> string = emoticons.get(name) <NEW_LINE> if not string: <NEW_LINE> <INDENT> print(f"Sorry, {name!r} unknown. Try 'emote list'.") <NEW_LINE> return <NEW_LINE> <DEDENT> xerox.copy(string)
Return named emoticon on the clipboard.
625941b9ac7a0e7691ed3f5e
def _row_generator(self, select_cursor, arraysize): <NEW_LINE> <INDENT> outer_cursor = None <NEW_LINE> with select_cursor() as cursor: <NEW_LINE> <INDENT> outer_cursor = cursor <NEW_LINE> rowset = cursor.fetchmany(arraysize) <NEW_LINE> while rowset: <NEW_LINE> <INDENT> for row in rowset: <NEW_LINE> <INDENT> yield row <NEW_LINE> <DEDENT> rowset = cursor.fetchmany(arraysize) <NEW_LINE> <DEDENT> <DEDENT> self.assertTrue(outer_cursor.closed)
Yields individual rows until no more rows exist in query result. :param select_cursor: Object which delivers closeable psycopg2 cursor context on call. :type select_cursor: QueryCursor object.
625941b9627d3e7fe0d68cd3
def TupleTag(group_elem: Tuple[int, int]) -> BaseTag: <NEW_LINE> <INDENT> long_value = group_elem[0] << 16 | group_elem[1] <NEW_LINE> return BaseTag(long_value)
Fast factory for :class:`BaseTag` object with known safe (group, elem) :class:`tuple`
625941b966656f66f7cbc02f
def lazy_property(fn): <NEW_LINE> <INDENT> attr_name = '_lazy_' + fn.__name__ <NEW_LINE> @property <NEW_LINE> def _lazy_property(self): <NEW_LINE> <INDENT> if not hasattr(self, attr_name): <NEW_LINE> <INDENT> setattr(self, attr_name, fn(self)) <NEW_LINE> <DEDENT> return getattr(self, attr_name) <NEW_LINE> <DEDENT> return _lazy_property
Decorator that makes a property lazy-evaluated From http://stevenloria.com/lazy-evaluated-properties-in-python/
625941b963b5f9789fde6f6a
def get_closest(nums, my_num): <NEW_LINE> <INDENT> pos = bisect_left(nums, my_num) <NEW_LINE> if pos == 0: <NEW_LINE> <INDENT> return nums[0] <NEW_LINE> <DEDENT> if pos == len(nums): <NEW_LINE> <INDENT> return nums[-1] <NEW_LINE> <DEDENT> before = nums[pos - 1] <NEW_LINE> after = nums[pos] <NEW_LINE> if after - my_num < my_num - before: <NEW_LINE> <INDENT> return after <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return before
If two numbers are equally close, return the smaller number.
625941b9fb3f5b602dac3514
def test_get_group_type_education(self): <NEW_LINE> <INDENT> group_entry = MockObjects.mock_group("Some_Group") <NEW_LINE> education_entry = MockObjects.mock_education_entry('Something') <NEW_LINE> group_entry.save() <NEW_LINE> education_entry.save() <NEW_LINE> group_entry.add_entry(education_entry) <NEW_LINE> self.assertEqual(group_entry.get_group_type_str(), "EducationEntry")
Testing get_group_type when group has education entries.
625941b9d53ae8145f87a0fb
def overlap_and_add(signal, frame_step, name=None): <NEW_LINE> <INDENT> with ops.name_scope(name, "overlap_and_add", [signal, frame_step]): <NEW_LINE> <INDENT> signal = ops.convert_to_tensor(signal, name="signal") <NEW_LINE> signal.shape.with_rank_at_least(2) <NEW_LINE> frame_step = ops.convert_to_tensor(frame_step, name="frame_step") <NEW_LINE> frame_step.shape.assert_has_rank(0) <NEW_LINE> if not frame_step.dtype.is_integer: <NEW_LINE> <INDENT> raise ValueError("frame_step must be an integer. Got %s" % frame_step.dtype) <NEW_LINE> <DEDENT> signal_shape = array_ops.shape(signal) <NEW_LINE> outer_dimensions = signal_shape[:-2] <NEW_LINE> frame_step_static = tensor_util.constant_value(frame_step) <NEW_LINE> if (frame_step_static is not None and signal.shape.ndims is not None and signal.shape[-1].value is not None): <NEW_LINE> <INDENT> if frame_step_static > signal.shape[-1].value: <NEW_LINE> <INDENT> raise ValueError( "frame_step (%d) must be less than or equal to " "frame_length (%d)" % ( frame_step_static, signal.shape[-1].value)) <NEW_LINE> <DEDENT> if frame_step_static == signal.shape[-1].value: <NEW_LINE> <INDENT> return array_ops.reshape(signal, array_ops.concat( [outer_dimensions, [-1]], 0)) <NEW_LINE> <DEDENT> <DEDENT> signal_rank = array_ops.rank(signal) <NEW_LINE> frames = signal_shape[-2] <NEW_LINE> frame_length = signal_shape[-1] <NEW_LINE> subframe_length = util_ops.gcd(frame_length, frame_step) <NEW_LINE> subframe_step = frame_step // subframe_length <NEW_LINE> subframes_per_frame = frame_length // subframe_length <NEW_LINE> output_size = frame_step * (frames - 1) + frame_length <NEW_LINE> output_subframes = output_size // subframe_length <NEW_LINE> subframe_shape = array_ops.concat( [outer_dimensions, [-1, subframe_length]], 0) <NEW_LINE> subframe_signal = array_ops.reshape(signal, subframe_shape) <NEW_LINE> subframe_signal = _shuffle_to_front(subframe_signal, 2) <NEW_LINE> segment_ids = array_ops.reshape(shape_ops.frame( math_ops.range(output_subframes), subframes_per_frame, subframe_step, pad_end=False), [-1]) <NEW_LINE> result = math_ops.unsorted_segment_sum(subframe_signal, segment_ids, num_segments=output_subframes) <NEW_LINE> result_shape = array_ops.concat([outer_dimensions, [output_size]], 0) <NEW_LINE> return array_ops.reshape(_shuffle_to_front(result, signal_rank - 2), result_shape)
Reconstructs a signal from a framed representation. Adds potentially overlapping frames of a signal with shape `[..., frames, frame_length]`, offsetting subsequent frames by `frame_step`. The resulting tensor has shape `[..., output_size]` where output_size = (frames - 1) * frame_step + frame_length Args: signal: A [..., frames, frame_length] `Tensor`. All dimensions may be unknown, and rank must be at least 2. frame_step: An integer or scalar `Tensor` denoting overlap offsets. Must be less than or equal to `frame_length`. name: An optional name for the operation. Returns: A `Tensor` with shape `[..., output_size]` containing the overlap-added frames of `signal`'s inner-most two dimensions. Raises: ValueError: If `signal`'s rank is less than 2, `frame_step` is not a scalar integer or `frame_step` is greater than `frame_length`.
625941b9adb09d7d5db6c618
def parallel_coordinates( data_frame=None, dimensions=None, color=None, labels={}, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, title=None, template=None, width=None, height=None, ): <NEW_LINE> <INDENT> return make_figure(args=locals(), constructor=go.Parcoords)
In a parallel coordinates plot, each row of `data_frame` is represented by a polyline mark which traverses a set of parallel axes, one for each of the `dimensions`.
625941b915fb5d323cde098f
def get_queue(self, guild_id): <NEW_LINE> <INDENT> queue = self.queues.get(guild_id, Queue()) <NEW_LINE> self.queues.update({guild_id: queue}) <NEW_LINE> return queue
Gets a guild's queue. If the guild doesn't have one, it'll be generated. :type guild_id: int :rtype: asyncio.Queue
625941b9b57a9660fec33705
def selected_staged_paths(self, selection=None): <NEW_LINE> <INDENT> if selection is None: <NEW_LINE> <INDENT> selection = self.selected_paths() <NEW_LINE> <DEDENT> staged = utils.add_parents(main.model().staged) <NEW_LINE> return [p for p in selection if p in staged]
Return selected staged paths.
625941b92ae34c7f2600cfb7
def __rewind__(self): <NEW_LINE> <INDENT> if self._last_offset is not None: <NEW_LINE> <INDENT> self._offset = self._last_offset <NEW_LINE> self.f.seek(self._last_offset)
Rewind to previous offset position
625941b991f36d47f21ac37b
def main(event, lambda_context): <NEW_LINE> <INDENT> state_path = os.path.join(CWD, "states.yml") <NEW_LINE> os.environ["LAZYSUSAN_SESSION_STORAGE_BACKEND"] = "memory" <NEW_LINE> app = LazySusanApp(state_path, session_key="JOKES_STATE") <NEW_LINE> response = app.handle(event) <NEW_LINE> return response
Main handler which receives initial request from Lambda. Route the incoming request based on type LaunchRequest, IntentRequest, etc.). :attr event: JSON payload which is sent from the Alexa service, containing relevant info about the request :attr context: Lambda context
625941b95f7d997b87174920
def pvremove(device): <NEW_LINE> <INDENT> return subproc.check_call( [ 'lvm', 'pvremove', '--force', device, ] )
Remove LVM physical volume.
625941b9507cdc57c6306b59
def should_save(self): <NEW_LINE> <INDENT> if super().should_save(): <NEW_LINE> <INDENT> return True <NEW_LINE> <DEDENT> for _, step in self.items(): <NEW_LINE> <INDENT> if step.should_save(): <NEW_LINE> <INDENT> return True <NEW_LINE> <DEDENT> <DEDENT> return False
Returns if the step needs to be saved or not. :return: If self or any of his sub steps should be saved, returns True. .. seealso:: :class:`TruncableJoblibStepSaver`
625941b9a05bb46b383ec6b2
def test_validate_range_bad(self): <NEW_LINE> <INDENT> t = configtypes.String(minlen=2, maxlen=3) <NEW_LINE> with self.assertRaises(configtypes.ValidationError): <NEW_LINE> <INDENT> t.validate('f') <NEW_LINE> <DEDENT> with self.assertRaises(configtypes.ValidationError): <NEW_LINE> <INDENT> t.validate('fooo')
Test validate with both min/maxlen and a bad string.
625941b9e1aae11d1e749b39
def _get_argtype(self, argument): <NEW_LINE> <INDENT> argtype = type(argument) <NEW_LINE> return argtype <NEW_LINE> if isinstance(argument, builtins.int) and argtype != bool: <NEW_LINE> <INDENT> argtype = int <NEW_LINE> <DEDENT> return argtype
Returns the argument type that will be passed to the QMetaObject.invokeMethod call. Most types pass okay, but enums don't so they have to be coerced to ints. An enum is currently detected as a type that is not a bool and inherits from int
625941b9d7e4931a7ee9dda1
def start(self,page_num): <NEW_LINE> <INDENT> content = self.__calculate_content(page_num) <NEW_LINE> return content
返回第一页的内容
625941b923e79379d52ee3ed
def write_to_file(file_name, url): <NEW_LINE> <INDENT> with open(file_name, 'a') as myfile: <NEW_LINE> <INDENT> myfile.write('{}\n'.format(url))
This function writes the received url to the received file name.
625941b971ff763f4b549514
def bucketSort(arr): <NEW_LINE> <INDENT> buckets = [[] for i in range(101)] <NEW_LINE> for elem in arr: <NEW_LINE> <INDENT> buckets[elem // 10].append(elem) <NEW_LINE> <DEDENT> for lst in buckets: <NEW_LINE> <INDENT> insertSort(lst) <NEW_LINE> <DEDENT> arr.clear() <NEW_LINE> for lst in buckets: <NEW_LINE> <INDENT> arr += lst
桶排序
625941b9b5575c28eb68de83
def load_video_from_file(self, filename): <NEW_LINE> <INDENT> cap = cv2.VideoCapture(filename) <NEW_LINE> self.read_buffer = cap
Load a video file into the engine and set a read buffer
625941b94527f215b584c2e0
def get_build_dir(*append): <NEW_LINE> <INDENT> return __get_root('build', *append)
Returns 'build' directory for Desktop. This is used for temporary (and testing) artifacts. This is not the root source path.
625941b95166f23b2e1a4fde
def __init__(self, filters, strides, relu_leakiness, name): <NEW_LINE> <INDENT> self.filters = filters <NEW_LINE> self.strides = strides <NEW_LINE> self.relu_leakiness = relu_leakiness <NEW_LINE> self.in_filter = None <NEW_LINE> assert len(strides) == len(filters) <NEW_LINE> super(DCGAN.Discriminator, self).__init__(name)
Constructs the discriminator of a DCGAN Parameters ---------- filters : list or tuple filters for convolutional layers strides : list or tuple strides to be used for convolutions relu_leakiness : float leakines of relu nonlinearity name : string name of the network
625941b9462c4b4f79d1d556
def to_params(self, p): <NEW_LINE> <INDENT> return np.atleast_1d(p).view(self.dtype).squeeze()
Returns a view of the array ``p`` with named columns corresponding to the parameters of the lens model: ``log_m200`` and ``log_c`` (both natural logs).
625941b9435de62698dfdad9
def minimumTotal_dp2(self, triangle): <NEW_LINE> <INDENT> dp = [[float('inf')] * len(triangle[-1]) for _ in range(len(triangle))] <NEW_LINE> dp[0][0] = triangle[0][0] <NEW_LINE> for i in range(1, len(triangle)): <NEW_LINE> <INDENT> for j in range(i + 1): <NEW_LINE> <INDENT> if j == 0: <NEW_LINE> <INDENT> dp[i][j] = dp[i-1][0] + triangle[i][j] <NEW_LINE> <DEDENT> elif j == i: <NEW_LINE> <INDENT> dp[i][j] = dp[i-1][j-1] + triangle[i][j] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> dp[i][j] = min(dp[i-1][j-1] + triangle[i][j], dp[i-1][j] + triangle[i][j]) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> return min(dp[-1])
:type triangle: List[List[int]] :rtype: int
625941b93617ad0b5ed67d85
def to_future(self, future_ctor=None): <NEW_LINE> <INDENT> future_ctor = future_ctor or rx.config.get("Future") <NEW_LINE> if not future_ctor: <NEW_LINE> <INDENT> raise Exception('Future type not provided nor in rx.config.Future') <NEW_LINE> <DEDENT> source = self <NEW_LINE> future = future_ctor() <NEW_LINE> value = [None] <NEW_LINE> has_value = [False] <NEW_LINE> def on_next(v): <NEW_LINE> <INDENT> value[0] = v <NEW_LINE> has_value[0] = True <NEW_LINE> <DEDENT> def on_error(err): <NEW_LINE> <INDENT> future.set_exception(err) <NEW_LINE> <DEDENT> def on_completed(): <NEW_LINE> <INDENT> if has_value[0]: <NEW_LINE> <INDENT> future.set_result(value[0]) <NEW_LINE> <DEDENT> <DEDENT> source.subscribe(on_next, on_error, on_completed) <NEW_LINE> return future
Converts an existing observable sequence to a Future Example: future = rx.Observable.return(42).to_future(RSVP.Promise); With config: Rx.config.Promise = RSVP.Promise promise = rx.Observable.return(42).to_future() future_ctor -- {Function} [Optional] The constructor of the future. If not provided, it looks for it in rx.config.Future. Returns {Future} An future with the last value from the observable sequence.
625941b9f548e778e58cd401
def __enter__(self): <NEW_LINE> <INDENT> return self
Called upon entering a `with` statement.
625941b976d4e153a657e9b6
def is_float_array(l): <NEW_LINE> <INDENT> if isinstance(l, np.ndarray): <NEW_LINE> <INDENT> if l.dtype.kind == 'f': <NEW_LINE> <INDENT> return True <NEW_LINE> <DEDENT> <DEDENT> return False
Checks if l is a numpy array of floats (any dimension
625941b9cc40096d615957d8
def pattern_words(p: str, words_file='words_45k.txt'): <NEW_LINE> <INDENT> if not isinstance(p, str) or not isinstance(words_file, str): <NEW_LINE> <INDENT> raise TypeError('Param "p" and "words_file" must be str') <NEW_LINE> <DEDENT> _read_words(words_file) <NEW_LINE> global pattern_map <NEW_LINE> return pattern_map[p]
获取属于该模式的英语单词 :param p: 模式,如0.1.1.2.3 :param words_file: 单词来源文件 :return: 英语单词列表
625941b9f7d966606f6a9e8e
def _interp1d(x, y, xnew, kind='linear', fill_value=np.nan, _larch=None, **kws): <NEW_LINE> <INDENT> kwargs = {'kind': kind, 'fill_value': fill_value, 'copy': False, 'bounds_error': False} <NEW_LINE> kwargs.update(kws) <NEW_LINE> return interp1d(x, y, **kwargs)(xnew)
interpolate x, y array onto new x values, using one of linear, quadratic, or cubic interpolation > ynew = interp1d(x, y, xnew, kind='linear') arguments --------- x original x values y original y values xnew new x values for values to be interpolated to kind method to use: one of 'linear', 'quadratic', 'cubic' fill_value value to use to fill values for out-of-range x values note: unlike interp, this version will not extrapolate for values of `xnew` that are outside the range of `x` -- it will use NaN or `fill_value`. this is a bare-bones wrapping of scipy.interpolate.interp1d. see also: interp
625941b985dfad0860c3acde
def testNestedAssembliesWithVariantSetsChangeReps(self): <NEW_LINE> <INDENT> assemblyNode = self._SetupScene('SetWithModelingVariants_set.usda', '/SetWithModelingVariants_set') <NEW_LINE> varSetAttrName = 'usdVariantSet_modelingVariant' <NEW_LINE> cmds.addAttr(assemblyNode, ln=varSetAttrName, dt='string', internalSet=True) <NEW_LINE> cmds.setAttr('%s.%s' % (assemblyNode, varSetAttrName), 'Cubes', type='string') <NEW_LINE> self._ValidateUnloaded(assemblyNode) <NEW_LINE> cmds.assembly(assemblyNode, edit=True, active='Collapsed') <NEW_LINE> self._ValidateCollapsed(assemblyNode) <NEW_LINE> cmds.assembly(assemblyNode, edit=True, active='Cards') <NEW_LINE> self._ValidateCards(assemblyNode) <NEW_LINE> cmds.assembly(assemblyNode, edit=True, active='Expanded') <NEW_LINE> childNodes = self._GetChildren(assemblyNode) <NEW_LINE> cubesGroupNode = childNodes[0] <NEW_LINE> childNodes = self._GetChildren(cubesGroupNode) <NEW_LINE> cubeOneAssemblyNode = childNodes[0] <NEW_LINE> cmds.assembly(cubeOneAssemblyNode, edit=True, active='Expanded')
This tests that changing representations of a hierarchy of USD reference assembly nodes in Maya works as expected when the referenced prims have variant sets.
625941b9e1aae11d1e749b3a
def multiquery_dutch(text): <NEW_LINE> <INDENT> out = [] <NEW_LINE> for sentence in text: <NEW_LINE> <INDENT> sent = [] <NEW_LINE> for word in sentence: <NEW_LINE> <INDENT> outcome = freebase_dutch_top(word) <NEW_LINE> if outcome: <NEW_LINE> <INDENT> sent.append((word, outcome)) <NEW_LINE> <DEDENT> <DEDENT> out.append(sent) <NEW_LINE> <DEDENT> return out
Takes a text, calls freebase_dutch_top on each word in it.
625941b9b545ff76a8913ca4
def forward(self, x): <NEW_LINE> <INDENT> return self.linear(self.encode(x), self.encode(self.x_train), self.y_train)
Make prediction with model :param x: (torch.tensor) Inputs. :return: (torch.tensor) Predictive distribution (may be tuple)
625941b9baa26c4b54cb0fa9
def test_hessian_is_zero(no_loss_problem: DerivativesTestProblem) -> None: <NEW_LINE> <INDENT> backpack_res = BackpackDerivatives(no_loss_problem).hessian_is_zero() <NEW_LINE> autograd_res = AutogradDerivatives(no_loss_problem).hessian_is_zero() <NEW_LINE> if autograd_res and not backpack_res: <NEW_LINE> <INDENT> warn( "Autograd Hessian diagonal is zero for this input " " while BackPACK implementation implies inputs with non-zero Hessian." ) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> assert backpack_res == autograd_res
Check if the input-output Hessian is (non-)zero. Note: `hessian_is_zero` is a global statement that assumes arbitrary inputs. It can thus happen that the Hessian diagonal is zero for the current input, but not in general. Args: no_loss_problem: Test case whose module is not a loss.
625941b9e5267d203edcdb26
def get(self): <NEW_LINE> <INDENT> templateOps = dict( topoData=self.topoData, valueData=self.valueData ) <NEW_LINE> self.render('index.html', **templateOps)
Serves the index template to the client with topo and value data.
625941b9f548e778e58cd402
def _report_output(test_runner, xml_testsuite, xml_document, stdout, stderr): <NEW_LINE> <INDENT> systemout = xml_document.createElement('system-out') <NEW_LINE> xml_testsuite.appendChild(systemout) <NEW_LINE> systemout_text = xml_document.createCDATASection(stdout) <NEW_LINE> systemout.appendChild(systemout_text) <NEW_LINE> systemerr = xml_document.createElement('system-err') <NEW_LINE> xml_testsuite.appendChild(systemerr) <NEW_LINE> systemerr_text = xml_document.createCDATASection(stderr) <NEW_LINE> systemerr.appendChild(systemerr_text)
Appends the system-out and system-err sections to the XML document.
625941b94e4d5625662d4262
def __init__(self, ai_settings, screen): <NEW_LINE> <INDENT> super(Alien, self).__init__() <NEW_LINE> self.ai_settings = ai_settings <NEW_LINE> self.screen = screen <NEW_LINE> self.image = pygame.image.load("images/alien.png").convert_alpha() <NEW_LINE> self.rect = self.image.get_rect() <NEW_LINE> self.rect.x = self.rect.width <NEW_LINE> self.rect.y = self.rect.height <NEW_LINE> self.x = float(self.rect.x)
初始化并设置外星人的起始位置
625941b98e05c05ec3eea1f7
def f8_to_int(a_str: str): <NEW_LINE> <INDENT> return int(Decimal(a_str) * DECIMAL_1E8)
Helper function to convert a legacy string 0.8f to compact int format
625941b9091ae35668666deb
def get_extra_metadata(self, backup, volume): <NEW_LINE> <INDENT> return
S3 driver does not use any extra metadata.
625941b9cdde0d52a9e52eb5
def test_demangled_name(self) -> None: <NEW_LINE> <INDENT> self.assertEqual(self.func_entry_c.demangled_name, 'bool_exec') <NEW_LINE> self.assertEqual( self.func_entry_cxx.demangled_name, 'doStuff(int, int)' )
Test if demangled_name is saved correctly.
625941b9046cf37aa974cbd0
def test_get_host(self): <NEW_LINE> <INDENT> hostname = '127.0.0.1' <NEW_LINE> hosts = self.obj.get_host() <NEW_LINE> self.assertEqual(len(hosts), 3) <NEW_LINE> self.assertEqual(hosts[0]['hostname'], hostname) <NEW_LINE> hosts = self.obj.get_host(condition='hostname = "%s"' % hostname) <NEW_LINE> self.assertEqual(hosts[0]['hostname'], hostname)
Get host from cacti db.
625941b97d43ff24873a2b2a
def test_flowcell_project_cycle(self): <NEW_LINE> <INDENT> path = '/root/42BW9AAXX/C1-152/Project_12345_Index1' <NEW_LINE> flowcell, start, stop, project = sequences.get_flowcell_cycle(path) <NEW_LINE> self.assertEqual(flowcell, '42BW9AAXX') <NEW_LINE> self.assertEqual(start, 1) <NEW_LINE> self.assertEqual(stop, 152) <NEW_LINE> self.assertEqual(project, 'Project_12345_Index1') <NEW_LINE> path = '/root/42BW9AAXX/other' <NEW_LINE> self.assertRaises(ValueError, sequences.get_flowcell_cycle, path)
Make sure code to parse directory heirarchy works
625941b921a7993f00bc7b70
def getLowLimitValue(self): <NEW_LINE> <INDENT> return -196
Returns the controller low limit temperature. Returns ------- `float`
625941b9187af65679ca4fa3
def _check_axis(self, number, row, col): <NEW_LINE> <INDENT> for i in range(BOARD_DIMENSION): <NEW_LINE> <INDENT> if self.board[row][i] == number or self.board[i][col] == number: <NEW_LINE> <INDENT> return False <NEW_LINE> <DEDENT> <DEDENT> return True
Checks if the number is on the same vertical or horizontal axis given the (row, col).
625941b9293b9510aa2c311f
def gen_id(length=38): <NEW_LINE> <INDENT> return int(str(uuid.uuid4().int)[:length])
Not cryptographically safe, should only be used for IDs
625941b9c4546d3d9de728b7
def get_objects_async(spdb_instance, key_list, version=None): <NEW_LINE> <INDENT> loop = asyncio.get_event_loop() <NEW_LINE> tasks = [] <NEW_LINE> for idx, key in enumerate(key_list): <NEW_LINE> <INDENT> task = asyncio.ensure_future(get_single_object_async(key, version, idx)) <NEW_LINE> tasks.append(task) <NEW_LINE> <DEDENT> loop.run_until_complete(asyncio.wait(tasks)) <NEW_LINE> loop.close() <NEW_LINE> data = [x.result() for x in tasks] <NEW_LINE> data.sort(key=operator.itemgetter(0)) <NEW_LINE> _, data = zip(*data) <NEW_LINE> return data
Method to get multiple objects asyncronously using coroutines Args: key_list (list(str)): A list of cached-cuboid keys to retrieve from the object store version: TBD version of the cuboid Returns: (list(bytes)): A list of blosc compressed cuboid data
625941b963f4b57ef0000fa8
def test_find_grid_cell_by_coordinates(self): <NEW_LINE> <INDENT> my_grid = self.grid(['a,b,c,d\n', 'e,f,g,h\n', 'i,j,k,l'], x_seperator=',') <NEW_LINE> self.assertEqual(my_grid.find_value(0 ,0), 'a') <NEW_LINE> self.assertEqual(my_grid.find_value(1, 0), 'b') <NEW_LINE> self.assertEqual(my_grid.find_value(2, 0), 'c') <NEW_LINE> self.assertEqual(my_grid.find_value(3, 0), 'd') <NEW_LINE> self.assertEqual(my_grid.find_value(0, 1), 'e') <NEW_LINE> self.assertEqual(my_grid.find_value(1, 1), 'f') <NEW_LINE> self.assertEqual(my_grid.find_value(2, 1), 'g') <NEW_LINE> self.assertEqual(my_grid.find_value(3, 1), 'h') <NEW_LINE> self.assertEqual(my_grid.find_value(0, 2), 'i') <NEW_LINE> self.assertEqual(my_grid.find_value(1, 2), 'j') <NEW_LINE> self.assertEqual(my_grid.find_value(2, 2), 'k') <NEW_LINE> self.assertEqual(my_grid.find_value(3, 2), 'l')
Tests finding a cell in a grid by it's coordinates
625941b957b8e32f52483326
def asBool(*args, **kwargs): <NEW_LINE> <INDENT> pass
asBool() -> bool Returns the data represented by this handle in the data block.
625941b9a17c0f6771cbdeda
def test_execute(self): <NEW_LINE> <INDENT> airflow_key = mock.Mock(spec=tuple) <NEW_LINE> airflow_cmd = mock.Mock(spec=list) <NEW_LINE> self.executor.ecs.run_task.return_value = { 'tasks': [{ 'taskArn': '001', 'lastStatus': '', 'desiredStatus': '', 'containers': [{'name': 'some-ecs-container'}]} ], 'failures': [] } <NEW_LINE> self.assertEqual(0, len(self.executor.pending_tasks)) <NEW_LINE> self.executor.execute_async(airflow_key, airflow_cmd) <NEW_LINE> self.assertEqual(1, len(self.executor.pending_tasks)) <NEW_LINE> self.executor.attempt_task_runs() <NEW_LINE> self.executor.ecs.run_task.assert_called_once() <NEW_LINE> self.assert_botocore_call('RunTask', *self.executor.ecs.run_task.call_args) <NEW_LINE> self.assertEqual(1, len(self.executor.active_workers)) <NEW_LINE> self.assertIn(self.executor.active_workers.task_by_key(airflow_key).task_arn, '001')
Test execution from end-to-end
625941b944b2445a33931f26
def conjugacy_classes_iterator(self): <NEW_LINE> <INDENT> from sage.combinat.partition import Partitions_n <NEW_LINE> from sage.groups.perm_gps.symgp_conjugacy_class import SymmetricGroupConjugacyClass <NEW_LINE> P = Partitions_n(len(self.domain())) <NEW_LINE> for la in reversed(P): <NEW_LINE> <INDENT> yield SymmetricGroupConjugacyClass(self, la)
Iterate over the conjugacy classes of ``self``. EXAMPLES:: sage: G = SymmetricGroup(5) sage: list(G.conjugacy_classes_iterator()) == G.conjugacy_classes() True
625941b9b5575c28eb68de84