code
stringlengths 4
4.48k
| docstring
stringlengths 1
6.45k
| _id
stringlengths 24
24
|
---|---|---|
def test_resend_confirmation_success_message(self, app, db): <NEW_LINE> <INDENT> user = make_dummy_user() <NEW_LINE> user.confirmed = False <NEW_LINE> db.session.add(user) <NEW_LINE> db.session.commit() <NEW_LINE> with app.test_client() as tc: <NEW_LINE> <INDENT> rv = tc.post(url_for('auth.resend_confirmation'), data=dict(email=user.email), follow_redirects=True) <NEW_LINE> <DEDENT> assert 'Confirmation email sent to' in str(rv.data) | resend_confirmation flashes a success message on successful sub. | 625941b86aa9bd52df036bf6 |
def handleV2(self, info): <NEW_LINE> <INDENT> return 'V2: %s' % info | handles v2 | 625941b867a9b606de4a7d11 |
def make_float(self, s, ): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> f = float(s) <NEW_LINE> return f <NEW_LINE> <DEDENT> except: <NEW_LINE> <INDENT> print('error, cannot convert string to float') <NEW_LINE> raise | Converts string "s" into a float. | 625941b8851cf427c661a36f |
@exit_with_status('!= 0') <NEW_LINE> def test_non_json_file(text_file): <NEW_LINE> <INDENT> gjtk.cli.main(argv=[text_file]) | Test invocation with a file that does not contain JSON. | 625941b855399d3f05588508 |
def say(self, message): <NEW_LINE> <INDENT> self.parent.say(message) | Tell the player something, long wait. | 625941b89c8ee82313fbb5c9 |
def is_bool(value): <NEW_LINE> <INDENT> return bool(value) == value | Return True if `value` is a boolean. | 625941b8f9cc0f698b14045a |
def initialize(self): <NEW_LINE> <INDENT> self.assmts = {} <NEW_LINE> bit = 1 <NEW_LINE> for entry in self.entries: <NEW_LINE> <INDENT> assmts = AssignmentList() <NEW_LINE> assmts.mask = assmts.bit = bit <NEW_LINE> self.assmts[entry] = assmts <NEW_LINE> bit <<= 1 <NEW_LINE> <DEDENT> for block in self.blocks: <NEW_LINE> <INDENT> for stat in block.stats: <NEW_LINE> <INDENT> if isinstance(stat, NameAssignment): <NEW_LINE> <INDENT> stat.bit = bit <NEW_LINE> assmts = self.assmts[stat.entry] <NEW_LINE> assmts.stats.append(stat) <NEW_LINE> assmts.mask |= bit <NEW_LINE> bit <<= 1 <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> for block in self.blocks: <NEW_LINE> <INDENT> for entry, stat in list(block.gen.items()): <NEW_LINE> <INDENT> assmts = self.assmts[entry] <NEW_LINE> if stat is Uninitialized: <NEW_LINE> <INDENT> block.i_gen |= assmts.bit <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> block.i_gen |= stat.bit <NEW_LINE> <DEDENT> block.i_kill |= assmts.mask <NEW_LINE> <DEDENT> block.i_output = block.i_gen <NEW_LINE> for entry in block.bounded: <NEW_LINE> <INDENT> block.i_kill |= self.assmts[entry].bit <NEW_LINE> <DEDENT> <DEDENT> for assmts in self.assmts.values(): <NEW_LINE> <INDENT> self.entry_point.i_gen |= assmts.bit <NEW_LINE> <DEDENT> self.entry_point.i_output = self.entry_point.i_gen | Set initial state, map assignments to bits. | 625941b84c3428357757c17f |
def ipam_roles_delete(self, id, **kwargs): <NEW_LINE> <INDENT> kwargs['_return_http_data_only'] = True <NEW_LINE> if kwargs.get('async_req'): <NEW_LINE> <INDENT> return self.ipam_roles_delete_with_http_info(id, **kwargs) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> (data) = self.ipam_roles_delete_with_http_info(id, **kwargs) <NEW_LINE> return data | ipam_roles_delete # noqa: E501
# noqa: E501
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async_req=True
>>> thread = api.ipam_roles_delete(id, async_req=True)
>>> result = thread.get()
:param async_req bool
:param int id: A unique integer value identifying this role. (required)
:return: None
If the method is called asynchronously,
returns the request thread. | 625941b80383005118ecf439 |
def save(self, *args, **kwargs): <NEW_LINE> <INDENT> if self.published and self.pub_date is None: <NEW_LINE> <INDENT> self.pub_date = datetime.now() <NEW_LINE> <DEDENT> elif not self.published and self.pub_date is not None: <NEW_LINE> <INDENT> self.pub_date = None <NEW_LINE> <DEDENT> super().save(*args, **kwargs) | Set publish date to the date when object published status is switched to True, reset the date if object is
unpublished | 625941b83539df3088e2e1a0 |
def apply(self, arg2, out): <NEW_LINE> <INDENT> return _Resampler.ResamplerCC_apply(self, arg2, out) | apply(ResamplerCC self, complex< double > * arg2, complex< double > * out) -> int | 625941b89b70327d1c4e0c28 |
def get_type(self): <NEW_LINE> <INDENT> obj = self._get_db_obj_query().first() <NEW_LINE> return obj.type if obj else None | Return the provider type.
Args:
None
Returns:
(String): "Provider type. Cloud backend name",
example: "AWS" | 625941b8cdde0d52a9e52e83 |
def __init__(self, *args): <NEW_LINE> <INDENT> _itkOffsetPython.itkOffset2_swiginit(self,_itkOffsetPython.new_itkOffset2(*args)) | __init__(self) -> itkOffset2
__init__(self, itkOffset2 arg0) -> itkOffset2 | 625941b8aad79263cf390890 |
def get_weight_range(self): <NEW_LINE> <INDENT> return self._mins[1], self._maxs[1] | Returns the range of weight data in the set.
get_weight_range() -> tuple<float, float> | 625941b8091ae35668666dba |
def from_radians(self, radians): <NEW_LINE> <INDENT> if isinstance(radians, basestring): <NEW_LINE> <INDENT> radians = self.from_sexegesimal(radians) <NEW_LINE> <DEDENT> self.degrees = math.degrees(radians) | Set the Angle using a value provided in radians. | 625941b87d43ff24873a2af8 |
def deserialize_numpy(self, str, numpy): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> if self.timestamp is None: <NEW_LINE> <INDENT> self.timestamp = genpy.Time() <NEW_LINE> <DEDENT> end = 0 <NEW_LINE> _x = self <NEW_LINE> start = end <NEW_LINE> end += 28 <NEW_LINE> (_x.timestamp.secs, _x.timestamp.nsecs, _x.id, _x.enabled, _x.calibrated, _x.ready, _x.moving, _x.gripping, _x.missed, _x.error, _x.reverse, _x.position, _x.force,) = _get_struct_3I8B2f().unpack(str[start:end]) <NEW_LINE> start = end <NEW_LINE> end += 4 <NEW_LINE> (length,) = _struct_I.unpack(str[start:end]) <NEW_LINE> start = end <NEW_LINE> end += length <NEW_LINE> if python3: <NEW_LINE> <INDENT> self.state = str[start:end].decode('utf-8') <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.state = str[start:end] <NEW_LINE> <DEDENT> start = end <NEW_LINE> end += 4 <NEW_LINE> (length,) = _struct_I.unpack(str[start:end]) <NEW_LINE> start = end <NEW_LINE> end += length <NEW_LINE> if python3: <NEW_LINE> <INDENT> self.command = str[start:end].decode('utf-8') <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.command = str[start:end] <NEW_LINE> <DEDENT> start = end <NEW_LINE> end += 4 <NEW_LINE> (length,) = _struct_I.unpack(str[start:end]) <NEW_LINE> start = end <NEW_LINE> end += length <NEW_LINE> if python3: <NEW_LINE> <INDENT> self.command_sender = str[start:end].decode('utf-8') <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.command_sender = str[start:end] <NEW_LINE> <DEDENT> start = end <NEW_LINE> end += 4 <NEW_LINE> (self.command_sequence,) = _get_struct_I().unpack(str[start:end]) <NEW_LINE> self.timestamp.canon() <NEW_LINE> return self <NEW_LINE> <DEDENT> except struct.error as e: <NEW_LINE> <INDENT> raise genpy.DeserializationError(e) | unpack serialized message in str into this message instance using numpy for array types
:param str: byte array of serialized message, ``str``
:param numpy: numpy python module | 625941b8d10714528d5ffb34 |
def read_catalog(self, file): <NEW_LINE> <INDENT> self.set_catalog_version(file) <NEW_LINE> if not self.error: <NEW_LINE> <INDENT> self.df.dropna(subset=['KPI name'], inplace=True) <NEW_LINE> if not len(self.df): <NEW_LINE> <INDENT> self.error = True <NEW_LINE> error_msg = 'Empty catalog file\r\n\r\n %s \r\n\r\n ' <NEW_LINE> self.error_type = error_msg % file <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> if 'Zone' not in self.df.columns: <NEW_LINE> <INDENT> self.df['Zone'] = self.zone <NEW_LINE> <DEDENT> self.df = self.df[COLS_OUTPUT] | Retrieve catalog information | 625941b89f2886367277a6e6 |
def dot(a, b): <NEW_LINE> <INDENT> with tf.name_scope("dot"): <NEW_LINE> <INDENT> a_ndim = a.get_shape().ndims <NEW_LINE> b_ndim = b.get_shape().ndims <NEW_LINE> assert a_ndim is not None <NEW_LINE> if a_ndim == 0: <NEW_LINE> <INDENT> return tf.scalar_mul(a, b) <NEW_LINE> <DEDENT> assert b_ndim is not None <NEW_LINE> if b_ndim == 0: <NEW_LINE> <INDENT> return tf.scalar_mul(b, a) <NEW_LINE> <DEDENT> a = check_dim_equal(a, -1, b, 0) <NEW_LINE> if a_ndim == b_ndim == 1: <NEW_LINE> <INDENT> return tf.reduce_sum(a * b) <NEW_LINE> <DEDENT> d = get_shape_dim(b, 0) <NEW_LINE> assert a_ndim >= 2 and b_ndim >= 2 <NEW_LINE> res_shape = None <NEW_LINE> if a_ndim > 2 or b_ndim > 2: <NEW_LINE> <INDENT> res_shape = [get_shape_dim(a, i) for i in range(0, a_ndim - 1)] + [get_shape_dim(b, i) for i in range(1, b_ndim)] <NEW_LINE> <DEDENT> if a_ndim > 2: <NEW_LINE> <INDENT> a = tf.reshape(a, (-1, d)) <NEW_LINE> <DEDENT> if b_ndim > 2: <NEW_LINE> <INDENT> b = tf.reshape(b, (d, -1)) <NEW_LINE> <DEDENT> res = tf.matmul(a, b) <NEW_LINE> if a_ndim > 2 or b_ndim > 2: <NEW_LINE> <INDENT> res = tf.reshape(res, res_shape) <NEW_LINE> <DEDENT> return res | :param tf.Tensor a: shape [...da...,d]
:param tf.Tensor b: shape [d,...db...]
:return: tensor of shape [...da...,d,...db...]
:rtype: tf.Tensor | 625941b8462c4b4f79d1d525 |
def compute_coupling_matrix(self,fl1,fl2,bins,nell_rebin=2,method=203,ell_cut_x=[1.,-1.],ell_cut_y=[1.,-1.]) : <NEW_LINE> <INDENT> if self.wsp!=None : <NEW_LINE> <INDENT> lib.workspace_flat_free(self.wsp) <NEW_LINE> <DEDENT> self.wsp=lib.compute_coupling_matrix_flat(fl1.fl,fl2.fl,bins.bin,nell_rebin,method, ell_cut_x[0],ell_cut_x[1],ell_cut_y[0],ell_cut_y[1]) | Computes coupling matrix associated with the cross-power spectrum of two NmtFieldFlats and an NmtBinFlat binning scheme.
:param NmtFieldFlat fl1,fl2: fields to correlate
:param NmtBinFlat bin: binning scheme
:param int nell_rebin: number of sub-intervals into which the base k-intervals will be sub-sampled to compute the coupling matrix
:param int method: algorithm to compute the coupling matrix (only 203 has been fully validated so far).
:param float(2) ell_cut_x: remove all modes with ell_x in the interval [ell_cut_x[0],ell_cut_x[1]] from the calculation.
:param float(2) ell_cut_y: remove all modes with ell_y in the interval [ell_cut_y[0],ell_cut_y[1]] from the calculation. | 625941b830dc7b76659017bf |
def test_yaml_dump(self): <NEW_LINE> <INDENT> yaml = yaml_dump("{\"key\":\"value\"}") <NEW_LINE> self.assertEqual(yaml, "key: value\n") | dump json string to yaml | 625941b8090684286d50eb35 |
def get_properties(self): <NEW_LINE> <INDENT> if self.features_layer is not None: <NEW_LINE> <INDENT> for property in self.features_layer.get_properties(): <NEW_LINE> <INDENT> yield propertyfound_entities.get(mention.string) | Returns all the properties of the features layer (iterator)
@rtype: L{Cproperty}
@return: list of properties | 625941b83cc13d1c6d3c71d9 |
@workflow <NEW_LINE> def heal(ctx, graph, node_id): <NEW_LINE> <INDENT> failing_node = ctx.model.node.get(node_id) <NEW_LINE> host_node = ctx.model.node.get(failing_node.host.id) <NEW_LINE> failed_node_subgraph = _get_contained_subgraph(ctx, host_node) <NEW_LINE> failed_node_ids = list(n.id for n in failed_node_subgraph) <NEW_LINE> targeted_nodes = [node for node in ctx.nodes if node.id not in failed_node_ids] <NEW_LINE> uninstall_subgraph = task.WorkflowTask( heal_uninstall, failing_nodes=failed_node_subgraph, targeted_nodes=targeted_nodes ) <NEW_LINE> install_subgraph = task.WorkflowTask( heal_install, failing_nodes=failed_node_subgraph, targeted_nodes=targeted_nodes) <NEW_LINE> graph.sequence(uninstall_subgraph, install_subgraph) | Built-in heal workflow..
:param ctx: workflow context
:param graph: graph which will describe the workflow.
:param node_id: ID of the node to heal
:return: | 625941b8bf627c535bc1302b |
def connect_JSON(config): <NEW_LINE> <INDENT> testnet = config.get('testnet', '0') <NEW_LINE> testnet = (int(testnet) > 0) <NEW_LINE> if not 'rpcport' in config: <NEW_LINE> <INDENT> config['rpcport'] = 19887 if testnet else 9887 <NEW_LINE> <DEDENT> connect = "http://%s:%[email protected]:%s"%(config['rpcuser'], config['rpcpassword'], config['rpcport']) <NEW_LINE> try: <NEW_LINE> <INDENT> result = ServiceProxy(connect) <NEW_LINE> if result.getmininginfo()['testnet'] != testnet: <NEW_LINE> <INDENT> sys.stderr.write("RPC server at "+connect+" testnet setting mismatch\n") <NEW_LINE> sys.exit(1) <NEW_LINE> <DEDENT> return result <NEW_LINE> <DEDENT> except: <NEW_LINE> <INDENT> sys.stderr.write("Error connecting to RPC server at "+connect+"\n") <NEW_LINE> sys.exit(1) | Connect to a bitcoin JSON-RPC server | 625941b8435de62698dfdaa9 |
def uid(self, coordinates): <NEW_LINE> <INDENT> return "{:2.6f}{:2.6f}{}".format( coordinates[CONF_LATITUDE], coordinates[CONF_LONGITUDE], self.type ) | Generate a unique id using coordinates and sensor type. | 625941b82ae34c7f2600cf87 |
def __init__(self, patterns, n=None): <NEW_LINE> <INDENT> self.patterns = np.array([pattern.flatten() for pattern in patterns]) <NEW_LINE> self.unique_patterns, idx, counts = np.unique(self.patterns, axis=0, return_index=True, return_counts=True) <NEW_LINE> self.pattern_dim = dict(zip(idx, counts)) <NEW_LINE> self.N = np.shape(self.patterns)[1] <NEW_LINE> if n is None: <NEW_LINE> <INDENT> self.n = 1/self.N <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.n = n <NEW_LINE> <DEDENT> self.W = self.get_weights() | patterns : list or array of flatten patterns to be stored
n : learning rate | 625941b88c0ade5d55d3e814 |
def on_session_ended(session_ended_request, context): <NEW_LINE> <INDENT> pass | Handle session clean up when the session should end. | 625941b810dbd63aa1bd2a04 |
def get_vels_Crust1(location): <NEW_LINE> <INDENT> lat, lon = location <NEW_LINE> all_lons = np.arange(-179.5,180,1) <NEW_LINE> all_lats = np.arange(89.5,-90,-1) <NEW_LINE> i = int((lon - all_lons[0]) + ((all_lats[0] - lat) // 1) * len(all_lons)) <NEW_LINE> nm = 'data/earth_models/crust1/crust1.' <NEW_LINE> try: <NEW_LINE> <INDENT> cb = pd.read_csv(nm + 'bnds', skiprows=i, nrows=1, header=None, sep='\s+' ).values.flatten() <NEW_LINE> vs = pd.read_csv(nm + 'vs', skiprows=i, nrows=1, header=None, sep='\s+' ).values.flatten() <NEW_LINE> <DEDENT> except: <NEW_LINE> <INDENT> crust1url = 'http://igppweb.ucsd.edu/~gabi/crust1/crust1.0.tar.gz' <NEW_LINE> print( 'You need to download (and extract) the Crust1.0 model' + ' from \n\t{} \nand save to \n\t{}'.format(crust1url, nm[:-7]) ) <NEW_LINE> return <NEW_LINE> <DEDENT> thickness = -np.diff(cb) <NEW_LINE> ib = 0 <NEW_LINE> m_t = [0] <NEW_LINE> m_vs = [] <NEW_LINE> for t in thickness: <NEW_LINE> <INDENT> if t > 0: <NEW_LINE> <INDENT> m_vs += [vs[ib]] <NEW_LINE> m_t += [t] <NEW_LINE> <DEDENT> ib += 1 <NEW_LINE> <DEDENT> m_vs += [vs[ib]] <NEW_LINE> return m_t, m_vs | Crust 1.0 is given in a 1 degree x 1 degree grid (i.e. 360 lon points, 180
lat points). The downloads are structured as
crust1.bnds (360 * 180) x 9 depths to top of each layer
0. water (i.e. topography)
1. ice (i.e. bathymetry)
2. upper sediments (i.e. depth to rock)
3. middle sediments
4. lower sediments
5. upper crust (i.e. depth to bedrock)
6. middle crust
7. lower crust
8. mantle (i.e. Moho depth)
Note that for places where a layer doesn't exist, the difference between
bnds[i, n] and bnds[i, n+1] = 0; i.e. for continents, the top of the ice is
the same as the top of the water; where there are no glaciers, the top of
sediments is the same as the top of the ice, etc.
crust1.[rho|vp|vs] (360 * 180) x 9 values of density, Vp, Vs for each
of the layers specified in bnds
Each row in these datasets steps first in longitude (from -179.5 to +179.5)
then in latitude (from 89.5 to -89.5).
i.e. index of (lat, lon) will be at (lon + 179.5) + (89.5 - lat) * 360 | 625941b8baa26c4b54cb0f78 |
def bulk_lookup(datasets, cell, method='poisson'): <NEW_LINE> <INDENT> comp_func = None <NEW_LINE> if method == 'poisson': <NEW_LINE> <INDENT> comp_func = log_prob_poisson <NEW_LINE> <DEDENT> elif method == 'spearman' or method == 'rank_corr': <NEW_LINE> <INDENT> comp_func = rank_correlation <NEW_LINE> <DEDENT> elif method == 'cosine': <NEW_LINE> <INDENT> comp_func = cosine <NEW_LINE> <DEDENT> elif method == 'corr' or method == 'pearson': <NEW_LINE> <INDENT> comp_func = pearson_correlation <NEW_LINE> <DEDENT> scores = [] <NEW_LINE> for name, d in datasets.items(): <NEW_LINE> <INDENT> s = comp_func(d, cell) <NEW_LINE> scores.append((name, s)) <NEW_LINE> <DEDENT> scores.sort(key=lambda x: x[1], reverse=True) <NEW_LINE> return scores | Returns a list of (dataset, value) pairs sorted by descending value,
where value indicates similarity between the cell and the dataset.
Potential metrics:
- corr/pearson
- rank_corr/spearman
- cosine (normalized cosine distance)
- poisson (log-probability)
Test NMI results on 10x_400, all genes:
Poisson: 1.0
Spearman: 0.97
Cosine: 0.85
Pearson: 0.85
Args:
bulk_datasets (dict): dict of (name, 1d np array)
cell (array): 1d array
Returns:
list of (bulk_name, similarity_value) sorted in descending
similarity | 625941b8796e427e537b0417 |
def post(): <NEW_LINE> <INDENT> return db.test_post.insert(**dict (request.vars)) | Test for JSON POST
#curl -i -X POST http://127.0.0.1:8000/sahana/test/post -H "Content-Type: application/json" -d {"name": "John"}
#curl -i -X POST http://127.0.0.1:8000/sahana/test/post -H "Content-Type: application/json" -d @test.json
Web2Py forms are multipart/form-data POST forms
curl -i -X POST http://127.0.0.1:8000/sahana/test/post -F name=john
curl -i -X POST --data-urlencode "name=Colombo Shelter" http://127.0.0.1:8000/sahana/test/post | 625941b824f1403a926009bf |
def randomcase(payload, **kwargs): <NEW_LINE> <INDENT> retVal = payload <NEW_LINE> if payload: <NEW_LINE> <INDENT> for match in re.finditer(r"[A-Za-z_]+", retVal): <NEW_LINE> <INDENT> word = match.group() <NEW_LINE> if word.upper() in kb.keywords: <NEW_LINE> <INDENT> while True: <NEW_LINE> <INDENT> _ = "" <NEW_LINE> for i in xrange(len(word)): <NEW_LINE> <INDENT> _ += word[i].upper() if randomRange(0, 1) else word[i].lower() <NEW_LINE> <DEDENT> if len(_) > 1 and _ not in (_.lower(), _.upper()): <NEW_LINE> <INDENT> break <NEW_LINE> <DEDENT> <DEDENT> retVal = retVal.replace(word, _) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> return retVal | Replaces each keyword character with random case value
Tested against:
* Microsoft SQL Server 2005
* MySQL 4, 5.0 and 5.5
* Oracle 10g
* PostgreSQL 8.3, 8.4, 9.0
Notes:
* Useful to bypass very weak and bespoke web application firewalls
that has poorly written permissive regular expressions
* This tamper script should work against all (?) databases
>>> import random
>>> random.seed(0)
>>> tamper('INSERT')
'INseRt' | 625941b8be7bc26dc91cd45a |
def do_update(self, name, data): <NEW_LINE> <INDENT> self.emit("update", data) | Send a websocket update event to the client. | 625941b80c0af96317bb803e |
def show(self): <NEW_LINE> <INDENT> sHtml = '<div class="tmvcstimeline tmvcstimelinetooltip">\n'; <NEW_LINE> oCurDate = None; <NEW_LINE> for oEntry in self.aoEntries: <NEW_LINE> <INDENT> oTsZulu = db.dbTimestampToZuluDatetime(oEntry.tsCreated); <NEW_LINE> if oCurDate is None or oCurDate != oTsZulu.date(): <NEW_LINE> <INDENT> if oCurDate is not None: <NEW_LINE> <INDENT> sHtml += ' </dl>\n' <NEW_LINE> <DEDENT> oCurDate = oTsZulu.date(); <NEW_LINE> sHtml += ' <h2>%s:</h2>\n' ' <dl>\n' % (oTsZulu.strftime('%Y-%m-%d'),); <NEW_LINE> <DEDENT> sEntry = ' <dt id="r%s">' % (oEntry.iRevision, ); <NEW_LINE> sEntry += '<a href="%s">' % ( webutils.escapeAttr(config.g_ksTracChangsetUrlFmt % { 'iRevision': oEntry.iRevision, 'sRepository': oEntry.sRepository,}), ); <NEW_LINE> sEntry += '<span class="tmvcstimeline-time">%s</span>' % ( oTsZulu.strftime('%H:%MZ'), ); <NEW_LINE> sEntry += ' Changeset <span class="tmvcstimeline-rev">[%s]</span>' % ( oEntry.iRevision, ); <NEW_LINE> sEntry += ' by <span class="tmvcstimeline-author">%s</span>' % ( webutils.escapeElem(oEntry.sAuthor), ); <NEW_LINE> sEntry += '</a>\n'; <NEW_LINE> sEntry += '</dt>\n'; <NEW_LINE> sEntry += ' <dd>%s</dd>\n' % ( webutils.escapeElem(oEntry.sMessage), ); <NEW_LINE> sHtml += sEntry; <NEW_LINE> <DEDENT> if oCurDate is not None: <NEW_LINE> <INDENT> sHtml += ' </dl>\n'; <NEW_LINE> <DEDENT> sHtml += '</div>\n'; <NEW_LINE> return ('VCS History Tooltip', sHtml); | Generates the tooltip.
Returns (sTitle, HTML). | 625941b8e8904600ed9f1d7e |
def nameserver_check_scheduler(heartbeat_obj): <NEW_LINE> <INDENT> sched = BackgroundScheduler() <NEW_LINE> sched.start() <NEW_LINE> sched.add_job(heartbeat_obj.nameserver_check, 'cron', second=("*/%s" % int(heartbeat_obj.configuration['heartbeat']['default']['interval']))) <NEW_LINE> retries_check = int(heartbeat_obj.configuration['heartbeat']['default']['init_retries']) <NEW_LINE> retry_wait = int(10) <NEW_LINE> while(retries_check != 0): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> heartbeat_obj.nameservers.next() <NEW_LINE> <DEDENT> except StopIteration: <NEW_LINE> <INDENT> pretty_log("Heartbeat scheduler not initialized yet... Will retry %s times..." % retries_check) <NEW_LINE> pretty_log("Will retry in %s seconds" % retry_wait) <NEW_LINE> retries_check -= 1 <NEW_LINE> sleep(retry_wait) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> pretty_log("Heartbeat scheduler initalized...") <NEW_LINE> return True <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> pretty_log("Heartbeat scheduler error!") <NEW_LINE> return False | Schedule the check using the heartbeat object | 625941b8293b9510aa2c30ee |
def start_interpetration_reforms(self): <NEW_LINE> <INDENT> self.__reforms__ = [] <NEW_LINE> reform_apply_fun_found = False <NEW_LINE> current_reform_index = -1 <NEW_LINE> current_reform = None <NEW_LINE> reform_found = False <NEW_LINE> with open(self.__reforms_file_path__,'r') as content_variable: <NEW_LINE> <INDENT> for line in content_variable.readlines(): <NEW_LINE> <INDENT> line = line.strip() <NEW_LINE> if '#' in line: <NEW_LINE> <INDENT> line = line[:line.find('#')] <NEW_LINE> <DEDENT> if line: <NEW_LINE> <INDENT> if reform_apply_fun_found: <NEW_LINE> <INDENT> if 'class' in line and '(Reform):' in line: <NEW_LINE> <INDENT> reform_apply_fun_found = False <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> dict_action = {} <NEW_LINE> if 'modify_parameters' in line: <NEW_LINE> <INDENT> line = line.split('=')[1] <NEW_LINE> line = (line[:line.find(')')].strip()).replace("self.","") <NEW_LINE> dict_action[line] = "modify_parameters" <NEW_LINE> current_reform.append_reform_action(dict_action) <NEW_LINE> <DEDENT> elif 'update_variable' in line: <NEW_LINE> <INDENT> line = (line [(line.find('(') + 1):line.find(')')].strip()).replace("self.","") <NEW_LINE> line = line.replace("\'", "") <NEW_LINE> dict_action[line] = "update_variable" <NEW_LINE> current_reform.append_reform_action(dict_action) <NEW_LINE> <DEDENT> elif 'add_variable' in line: <NEW_LINE> <INDENT> line = (line[(line.find('(') + 1):line.find(')')].strip()).replace("self.","") <NEW_LINE> line = line.replace("\'", "") <NEW_LINE> dict_action[line] = "add_variable" <NEW_LINE> current_reform.append_reform_action(dict_action) <NEW_LINE> <DEDENT> elif 'neutralize_variable' in line: <NEW_LINE> <INDENT> line = (line[(line.find('(\'') + 2):line.find('\')')].strip()).replace("self.","") <NEW_LINE> line = line.replace("\'", "") <NEW_LINE> dict_action[line] = "neutralize_variable" <NEW_LINE> current_reform.append_reform_action(dict_action) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> pieces = line.split('=') <NEW_LINE> if 'class' in pieces[0] and '(Reform):' in pieces[0]: <NEW_LINE> <INDENT> reform_found = True <NEW_LINE> reform_apply_fun_found = False <NEW_LINE> current_reform_index = current_reform_index + 1 <NEW_LINE> reform_name = pieces[0] <NEW_LINE> for chs in ['class','(Reform):']: <NEW_LINE> <INDENT> reform_name = reform_name.replace(chs,'') <NEW_LINE> <DEDENT> current_reform = Reform_for_writing(reform_name = reform_name) <NEW_LINE> current_reform.set_reform_actions(reform_actions=[]) <NEW_LINE> self.__reforms__.append(current_reform) <NEW_LINE> <DEDENT> elif 'name ' in pieces[0] and reform_found == True: <NEW_LINE> <INDENT> full_name = pieces[1] <NEW_LINE> for chs in ['u"','\"']: <NEW_LINE> <INDENT> full_name = full_name.replace(chs,'') <NEW_LINE> <DEDENT> current_reform.set_reform_full_name(full_name) <NEW_LINE> <DEDENT> elif 'def apply(self):' in pieces[0]: <NEW_LINE> <INDENT> reform_found = False <NEW_LINE> reform_apply_fun_found = True <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> <DEDENT> self.__find_and_bind_variables__() <NEW_LINE> self.__find_and_bind_modifier_func__() | Start interpretation reform | 625941b8442bda511e8be27b |
def adapt(self, data, reset_state=True): <NEW_LINE> <INDENT> if not reset_state: <NEW_LINE> <INDENT> raise ValueError("CategoricalEncoding does not support streaming adapts.") <NEW_LINE> <DEDENT> if self._called and self._max_tokens is None: <NEW_LINE> <INDENT> raise RuntimeError( "CategoricalEncoding can't be adapted after being called " "if max_tokens is None.") <NEW_LINE> <DEDENT> super(CategoricalEncoding, self).adapt(data, reset_state) | Fits the state of the preprocessing layer to the dataset.
Overrides the default adapt method to apply relevant preprocessing to the
inputs before passing to the combiner.
Arguments:
data: The data to train on. It can be passed either as a tf.data Dataset,
or as a numpy array.
reset_state: Optional argument specifying whether to clear the state of
the layer at the start of the call to `adapt`. This must be True for
this layer, which does not support repeated calls to `adapt`.
Raises:
RuntimeError: if the layer cannot be adapted at this time. | 625941b856ac1b37e6264035 |
def is_prime(n): <NEW_LINE> <INDENT> for i in range(2, int(math.sqrt(n)) + 1): <NEW_LINE> <INDENT> if n%i == 0: <NEW_LINE> <INDENT> return False <NEW_LINE> <DEDENT> <DEDENT> return True | Returns True if a positive integer n is prime and False otherwise
n: A positive integer | 625941b821a7993f00bc7b3f |
def blpop(self, keys, timeout=0, **options): <NEW_LINE> <INDENT> keys = native_str(keys) <NEW_LINE> if isinstance(keys, str): <NEW_LINE> <INDENT> keys = [keys] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> keys = list(keys) <NEW_LINE> <DEDENT> keys.append(timeout) <NEW_LINE> return self.execute_command('BLPOP', *keys, **options) | LPOP a value off of the first non-empty list
named in the ``keys`` list.
If none of the lists in ``keys`` has a value to LPOP, then block
for ``timeout`` seconds, or until a value gets pushed on to one
of the lists.
If timeout is 0, then block indefinitely. | 625941b823e79379d52ee3bd |
def htmlentities_decode(self, string): <NEW_LINE> <INDENT> return htmlentities_decode(string) | decodes htmlentities | 625941b87cff6e4e811177db |
def main(argv): <NEW_LINE> <INDENT> data = load_data("car_sales.json") <NEW_LINE> summary = process_data(data) <NEW_LINE> new_summary = '\n'.join(summary) <NEW_LINE> print(summary) <NEW_LINE> report('/tmp/cars.pdf', "Cars report", new_summary, cars_dict_to_table(data)) <NEW_LINE> msg = email_generate("[email protected]", "[email protected]", "Sales summary for last month", new_summary, "/tmp/cars.pdf") <NEW_LINE> email_send(msg) | Process the JSON data and generate a full report out of it. | 625941b8a8ecb033257d2f2b |
def _sanitize_key(key) -> str: <NEW_LINE> <INDENT> return str(key).lower().replace(" ", "_") | Sanitize the location or group key to look up
Args:
key: The key to sanitize | 625941b80c0af96317bb803f |
def update(self): <NEW_LINE> <INDENT> if self.__health_points <=0: <NEW_LINE> <INDENT> self.__dead = True <NEW_LINE> <DEDENT> if self.__finished: <NEW_LINE> <INDENT> self.rect.center= (1500,0) <NEW_LINE> <DEDENT> if self.__counter % self.__counter_list1[self.__current_monster-1] == 0 and not self.__dead: <NEW_LINE> <INDENT> if self.__current_monster != 4: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> self.__index += 1 <NEW_LINE> self.image = self.__moving[self.__index] <NEW_LINE> <DEDENT> except IndexError: <NEW_LINE> <INDENT> self.__index = 0 <NEW_LINE> <DEDENT> if self.rect.left > 0 and self.__dx <0: <NEW_LINE> <INDENT> self.rect.left += 3 *self.__dx <NEW_LINE> <DEDENT> elif self.rect.right < self.__screen.get_width() and self.__dx >0: <NEW_LINE> <INDENT> self.rect.left += 3 * self.__dx <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> self.__index += 1 <NEW_LINE> if self.__going_left: <NEW_LINE> <INDENT> self.image = self.__attacking_left4[self.__index] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.image = self.__attacking_right4[self.__index] <NEW_LINE> <DEDENT> <DEDENT> except IndexError: <NEW_LINE> <INDENT> self.__index = 0 <NEW_LINE> <DEDENT> if ((self.rect.left > 0) and (self.__dx < 0)) or ((self.rect.right < self.__screen.get_width()) and (self.__dx > 0)): <NEW_LINE> <INDENT> self.rect.left += 3* self.__dx <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.__dx = self.__dx * -1 <NEW_LINE> self.__going_left = not self.__going_left <NEW_LINE> <DEDENT> if ((self.rect.top > 0) and (self.__dy > 0)) or ((self.rect.bottom < self.__screen.get_height() - 70) and (self.__dy < 0)): <NEW_LINE> <INDENT> self.rect.top -= 3*self.__dy <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.__dy = -self.__dy <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> if self.__counter %self.__counter_list2[self.__current_monster-1] == 0 and self.__dead: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> self.__dying_index += 1 <NEW_LINE> if self.__current_monster !=4: <NEW_LINE> <INDENT> self.image = self.__dying[self.__dying_index] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> if self.__going_left: <NEW_LINE> <INDENT> self.image = self.__dying_left4[self.__dying_index] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.image = self.__dying_right4[self.__dying_index] <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> except IndexError: <NEW_LINE> <INDENT> self.__finished = True <NEW_LINE> self.__dead = False <NEW_LINE> <DEDENT> <DEDENT> if self.__map_moving: <NEW_LINE> <INDENT> self.rect.centerx += self.__move <NEW_LINE> self.__map_moving = False <NEW_LINE> <DEDENT> if not self.__finished: <NEW_LINE> <INDENT> self.__position = self.rect.center <NEW_LINE> <DEDENT> self.__counter += 1 | This method will be responsible for repositioning the image on the
screen as well as iterating through lists of images according to
different Boolean variables, ultimately, causing the animations to occur.
It will also check if the monster has reached the end of the screen.
If the monster died, it will move it outside of the screen where it
will not be hit by the player | 625941b83c8af77a43ae35f4 |
def __init__(self, algorithm, length, value, format_type=enums.KeyFormatType.X_509, masks=None, name='Public Key', key_wrapping_data=None): <NEW_LINE> <INDENT> super(PublicKey, self).__init__( key_wrapping_data=key_wrapping_data ) <NEW_LINE> self._object_type = enums.ObjectType.PUBLIC_KEY <NEW_LINE> self._valid_formats = [ enums.KeyFormatType.RAW, enums.KeyFormatType.X_509, enums.KeyFormatType.PKCS_1] <NEW_LINE> self.value = value <NEW_LINE> self.cryptographic_algorithm = algorithm <NEW_LINE> self.cryptographic_length = length <NEW_LINE> self.key_format_type = format_type <NEW_LINE> self.names = [name] <NEW_LINE> if masks: <NEW_LINE> <INDENT> self.cryptographic_usage_masks = masks <NEW_LINE> <DEDENT> self._cryptographic_domain_parameters = list() <NEW_LINE> self.validate() | Create a PublicKey.
Args:
algorithm(CryptographicAlgorithm): An enumeration identifying the
type of algorithm for the key.
length(int): The length in bits of the key.
value(bytes): The bytes representing the key.
format_type(KeyFormatType): An enumeration defining the format of
the key value. Optional, defaults to enums.KeyFormatType.X_509.
masks(list): A list of CryptographicUsageMask enumerations
defining how the key will be used. Optional, defaults to None.
name(string): The string name of the key. Optional, defaults to
'Public Key'.
key_wrapping_data(dict): A dictionary containing key wrapping data
settings, describing how the key value has been wrapped.
Optional, defaults to None. | 625941b85166f23b2e1a4faf |
def _test_path(self, path, expected_posix_path, expected_windows_path, relative_to_posix=None, relative_to_windows=None): <NEW_LINE> <INDENT> self.assertEqual( normalize_platform_path(path, relative_to=relative_to_posix, target_platform=PathPlatform.POSIX), expected_posix_path) <NEW_LINE> self.assertEqual( normalize_platform_path(path, relative_to=relative_to_windows, target_platform=PathPlatform.WINDOWS), expected_windows_path) | Test path normalization against Windows and POSIX paths.
This will test that a path normalizes correctly on both Windows and
Linux, with or without relative paths.
Args:
path (unicode):
The path to normalize.
expected_posix_path (unicode):
The expected resulting POSIX path.
expected_windows_path (unicode):
The expected resulting Windows path.
relative_to_posix (unicode, optional):
An optional path to prepend to the normalized POSIX path.
relative_to_windows (unicode, optional):
An optional path to prepend to the normalized Windows path.
Raises:
AssertionError:
A normalized path did not equal the expected result. | 625941b8e5267d203edcdaf6 |
def p_for(p): <NEW_LINE> <INDENT> p[0] = AST.ForNode([AST.IdNumNode(p[3]), p[5], p[7], p[9]]) | instruction : FOR EXPR_START IDENTIFIANT FOR_SEP expression FOR_SEP expression EXPR_END bloc | 625941b8009cb60464c63212 |
def reset_logging(): <NEW_LINE> <INDENT> for handler in logging.getLogger().handlers: <NEW_LINE> <INDENT> if getattr(handler, '_debug_handler', False): <NEW_LINE> <INDENT> handler.stream.close() <NEW_LINE> <DEDENT> <DEDENT> logging.getLogger().handlers = [] | Reset logging config | 625941b821bff66bcd6847ab |
def __str__(self): <NEW_LINE> <INDENT> return self.nama_bahan | String for representing the MyModelName object (in Admin site etc.) | 625941b8cc40096d615957a9 |
def test_link_self(self): <NEW_LINE> <INDENT> self.component.repo = "weblate://test/test" <NEW_LINE> self.component.push = "" <NEW_LINE> self.assertRaisesMessage( ValidationError, "Invalid link to a Weblate project, cannot link it to itself!", self.component.full_clean, ) | Link pointing to self. | 625941b87b180e01f3dc465b |
def draw_maze_obstacle(x,y): <NEW_LINE> <INDENT> draw_obstacle_line_x_pos(x,y) <NEW_LINE> draw_obstacle_line_x_neg(x,y) <NEW_LINE> draw_obstacle_line_y_neg(x,y) <NEW_LINE> draw_obstacle_line_y_pos(x,y) | This function will be draw | 625941b8e5267d203edcdaf7 |
def GetStore(location=None, only_files=()): <NEW_LINE> <INDENT> global _pid_store <NEW_LINE> if not _pid_store: <NEW_LINE> <INDENT> _pid_store = PidStore() <NEW_LINE> if not location: <NEW_LINE> <INDENT> location = PidStoreLocation.location <NEW_LINE> <DEDENT> pid_files = [] <NEW_LINE> for file_name in os.listdir(location): <NEW_LINE> <INDENT> if not file_name.endswith('.proto'): <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> if only_files and file_name not in only_files: <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> pid_files.append(os.path.join(location, file_name)) <NEW_LINE> <DEDENT> _pid_store.Load(pid_files) <NEW_LINE> <DEDENT> REQUIRED_PIDS = [ 'DEVICE_INFO', 'QUEUED_MESSAGE', 'SUPPORTED_PARAMETERS' ] <NEW_LINE> for pid in REQUIRED_PIDS: <NEW_LINE> <INDENT> if not _pid_store.GetName(pid): <NEW_LINE> <INDENT> raise MissingPLASAPIDs( 'Could not find %s in PID datastore, check the directory contains ' 'the ESTA (PLASA) PIDs.' % pid) <NEW_LINE> <DEDENT> <DEDENT> return _pid_store | Get the instance of the PIDStore.
Args:
location: The location to load the store from. If not specified it uses the
location defined in PidStoreLocation.py
only_files: Load a subset of the files in the location.
Returns:
An instance of PidStore. | 625941b891af0d3eaac9b86a |
def test_rebuild(self): <NEW_LINE> <INDENT> instance = jsonutils.to_primitive(self._create_fake_instance()) <NEW_LINE> instance_uuid = instance['uuid'] <NEW_LINE> image_ref = instance['image_ref'] <NEW_LINE> self.compute.run_instance(self.context, instance_uuid) <NEW_LINE> self.compute.rebuild_instance(self.context, image_ref, image_ref, instance=instance) <NEW_LINE> self.compute.terminate_instance(self.context, instance=instance) | Ensure instance can be rebuilt | 625941b80a366e3fb873e66d |
def RemoveScheduledComponent(self, comp): <NEW_LINE> <INDENT> self._scheduled_instances.remove(comp) | Remove a component that was scheduled. | 625941b8283ffb24f3c55762 |
def reset_window(self): <NEW_LINE> <INDENT> self.ui.graphicsView_plotView.reset_plots() | reset the window to the initial state, such that no plot is made on the canvas
:return: | 625941b894891a1f4081b8fe |
def choose_best_feature(dataset): <NEW_LINE> <INDENT> if not dataset: <NEW_LINE> <INDENT> raise ValueError("dataset is empty.") <NEW_LINE> <DEDENT> num_feature = len(dataset[0]) - 1 <NEW_LINE> base_entropy = calc_shannon_ent(dataset) <NEW_LINE> best_info_gain, best_feature = 0.0, -1 <NEW_LINE> for i in range(num_feature): <NEW_LINE> <INDENT> ret = split_dataset(dataset, i) <NEW_LINE> new_entropy = 0.0 <NEW_LINE> for feat, items in ret.items(): <NEW_LINE> <INDENT> prob = len(items) / float(len(dataset)) <NEW_LINE> new_entropy += prob * calc_shannon_ent(items) <NEW_LINE> <DEDENT> info_gain = base_entropy - new_entropy <NEW_LINE> if info_gain > best_info_gain: <NEW_LINE> <INDENT> best_info_gain = info_gain <NEW_LINE> best_feature = i <NEW_LINE> <DEDENT> <DEDENT> return best_feature | 选择信息增益最大的feature
:param dataset: 数据集
:return: 信息增益最大的feature的id | 625941b8187af65679ca4f73 |
@celery_app.task(name='send_sms_code') <NEW_LINE> def send_sms_code(mobile, sms_code): <NEW_LINE> <INDENT> CPP().send_sms_code(mobile, [sms_code, constants.SMS_CODE_REDIS_EXPIRES], 1) | 定义发短信异步任务
:param mobile: 手机号
:param sms_code: 短信验证码
:return: None | 625941b899cbb53fe6792a3d |
def get_filepath(self, len_thresh): <NEW_LINE> <INDENT> if len(self.url_path.rsplit('/')) >= URL_PATH_DEPTH_THRESH: <NEW_LINE> <INDENT> filepath = '/'.join(self.url_path.rsplit('/')[-1*URL_PATH_DEPTH_THRESH:-1]) <NEW_LINE> if len(filepath) > len_thresh: <NEW_LINE> <INDENT> return filepath <NEW_LINE> <DEDENT> <DEDENT> return "" | 获取文件路径
:param len_thresh:
:return: | 625941b866656f66f7cbc000 |
def test_2_Reward_shopping_order_refund(self): <NEW_LINE> <INDENT> logging.debug("test_2_return_sameCodeAndBar_order") <NEW_LINE> market_service.rewards_order_refund(globals()['shopping_order_id'] ) <NEW_LINE> self._test_data.update_post_verify_data() <NEW_LINE> self.expectedData(0 ,121 , 2 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) <NEW_LINE> self._data_assertion() | 后台退积分商品
‘hmr组合商品’ 1件
:return: | 625941b88e7ae83300e4ae22 |
def test_basic_file_mapping(): <NEW_LINE> <INDENT> assert_raises(ValueError, get_file_paths, subject=tconf.subject, data_type='sushi', output='raw', run_index=0, hcp_path=tconf.hcp_path) <NEW_LINE> assert_raises(ValueError, get_file_paths, subject=tconf.subject, data_type='rest', output='kimchi', run_index=0, hcp_path=tconf.hcp_path) <NEW_LINE> for run_index in range(3): <NEW_LINE> <INDENT> for output in tconf.hcp_outputs: <NEW_LINE> <INDENT> for data_type in tconf.hcp_data_types: <NEW_LINE> <INDENT> if run_index >= len(run_map[data_type]): <NEW_LINE> <INDENT> assert_raises( ValueError, get_file_paths, subject=tconf.subject, data_type=data_type, output=output, run_index=run_index, hcp_path=tconf.hcp_path) <NEW_LINE> <DEDENT> elif (data_type in ('rest', 'noise_subject', 'noise_empty_room') and output in ('trial_info', 'evoked')): <NEW_LINE> <INDENT> assert_raises( ValueError, get_file_paths, subject=tconf.subject, data_type=data_type, output=output, run_index=run_index, hcp_path=tconf.hcp_path) <NEW_LINE> <DEDENT> elif (data_type in ('noise_subject', 'noise_empty_room') and output in ('epochs', 'evoked', 'ica', 'annot')): <NEW_LINE> <INDENT> assert_raises( ValueError, get_file_paths, subject=tconf.subject, data_type=data_type, output=output, run_index=run_index, hcp_path=tconf.hcp_path) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> file_names = get_file_paths( subject=tconf.subject, data_type=data_type, output=output, run_index=run_index, hcp_path=tconf.hcp_path) <NEW_LINE> if output == 'raw': <NEW_LINE> <INDENT> assert_equal( sum('config' in fn for fn in file_names), 1) <NEW_LINE> assert_equal( sum('c,rfDC' in fn for fn in file_names), 1) | Test construction of file paths and names | 625941b8d58c6744b4257ab7 |
def __init__(self, token=None): <NEW_LINE> <INDENT> self._token = None <NEW_LINE> self.discriminator = None <NEW_LINE> if token is not None: <NEW_LINE> <INDENT> self.token = token | BTDeviceTokenParams - a model defined in OpenAPI | 625941b885dfad0860c3acaf |
def WaitForEvent(self, tab, selector, event_name, timeout): <NEW_LINE> <INDENT> util.WaitFor(lambda: self.HasEventCompleted(tab, selector, event_name), timeout=timeout) | Halts media action until the selector's event is fired.
Args:
tab: The tab to check for event on.
selector: Media element selector.
event_name: Name of the event to check if fired or not.
timeout: Timeout to check for event, throws an exception if not fired. | 625941b8a17c0f6771cbdeaa |
def dist (a, b=Atoms('X', positions=[(0,0,0)])): <NEW_LINE> <INDENT> return ((a.x-b.x) ** 2 + (a.y-b.y) ** 2 + (a.z-b.z) ** 2) ** 0.5 | this function calculates the distance that the atom a is
from atom b. Default for atom b is X species at origin | 625941b8be383301e01b52e3 |
def addResiduesToSeqToStructMap(self, chainType, chainId, seqStr, resIds): <NEW_LINE> <INDENT> assert len(seqStr)== len(resIds), "error, there must be the same number of residues as amino acids are in sequence" <NEW_LINE> for key in sorted(self.seqToStruct): <NEW_LINE> <INDENT> if key[:2]== (chainType, chainId): <NEW_LINE> <INDENT> del self.seqToStruct[key] <NEW_LINE> <DEDENT> <DEDENT> listOfResIdsSeqIds=[] <NEW_LINE> for i, resId in enumerate(resIds): <NEW_LINE> <INDENT> key_seq2Struct= (chainType, chainId, i) <NEW_LINE> flag=" " <NEW_LINE> if resId=="-" : continue <NEW_LINE> if not resId[-1].isdigit(): <NEW_LINE> <INDENT> flag= resId[-1] <NEW_LINE> resId= resId[:-1] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> resId= int(resId) <NEW_LINE> <DEDENT> tuple_resId= (" ",resId,flag) <NEW_LINE> self.seqToStruct[key_seq2Struct]= tuple_resId <NEW_LINE> listOfResIdsSeqIds.append( (i, seqStr[i], tuple_resId ) ) <NEW_LINE> key_struct2Seq= (chainType, chainId, tuple_resId ) <NEW_LINE> if key_struct2Seq in self.structToSeq: <NEW_LINE> <INDENT> self.structToSeq[key_struct2Seq]= i <NEW_LINE> <DEDENT> <DEDENT> outNameSeqStructMap, prefixAndChainType= self.seqToStructFnames[(chainType, chainId)] <NEW_LINE> __, outNameFasta= self.seqsDict[chainType][chainId] <NEW_LINE> self.seqsDict[chainType][chainId]= (seqStr, outNameFasta) <NEW_LINE> self.saveFasta(seqStr, outNameFasta) <NEW_LINE> self.saveSeqStructMap( listOfResIdsSeqIds, outNameSeqStructMap) | Given an already mapped seq to struct object, modify one chain to potentially add new residues
Needed if 3dcons is used as it generally report all residues in sequence and not just the included in pdb | 625941b8ac7a0e7691ed3f30 |
def check_fleet_edges(ai_settings, aliens): <NEW_LINE> <INDENT> for alien in aliens.sprites(): <NEW_LINE> <INDENT> if alien.check_edges(): <NEW_LINE> <INDENT> change_fleet_direction(ai_settings, aliens) <NEW_LINE> break | Responde apropriadamente se algun alienúgena alcançar a borda da tela | 625941b89f2886367277a6e7 |
def __init__(self, gen_pref, gen_feat, dim, n_cols, solver): <NEW_LINE> <INDENT> self.gen_pref = gen_pref <NEW_LINE> self.gen_feat = gen_feat <NEW_LINE> self.n_cols = n_cols <NEW_LINE> self.dim = dim <NEW_LINE> self.solver = solver <NEW_LINE> self.pref_list = self.gen_pref.get_all_prefs() <NEW_LINE> self.n_rows = len(self.pref_list) <NEW_LINE> self.col_list = [] <NEW_LINE> self.col_set = set() <NEW_LINE> self.M = np.zeros((self.n_rows, self.n_cols)) <NEW_LINE> self.Q = None | Initializes all the useful structures.
:param gen_pref: the preference generator. See <:genP.GenMacroP> and <:genP.GenMicroP>
:param gen_feat: the feature generator
:param dim: number of possible labels
:param n_cols: number of columns of the matrix sub-game
:param solver: game solver. See for example <:solvers.FictitiousPlay>
:type gen_pref: object of class which inherits from <:genP.GenP>, e.g., GenMacroP
:type gen_feat: object of class which inherits from <:genF.GenF>, e.g., GenHPolyF
:type dim: int
:type n_cols: int
:type solver: object of class which inherits from <:solvers.Solver> | 625941b8c4546d3d9de72887 |
def drop(n, L): <NEW_LINE> <INDENT> if n == 0: <NEW_LINE> <INDENT> return L <NEW_LINE> <DEDENT> if L == []: <NEW_LINE> <INDENT> return [] <NEW_LINE> <DEDENT> return drop(n-1, L[1:]) | Returns the list L[n:]. | 625941b83eb6a72ae02ec331 |
def copy_statistics_csv_file(self): <NEW_LINE> <INDENT> webpath = os.path.join(self.config['AUTOCMS_WEBDIR'], self.testname) <NEW_LINE> src_stats = os.path.join(self.config['AUTOCMS_BASEDIR'], self.testname, 'statistics.csv') <NEW_LINE> dst_stats = os.path.join(webpath, 'statistics.csv') <NEW_LINE> shutil.copyfile(src_stats, dst_stats) | Copy the statistics file to the webdir. | 625941b83d592f4c4ed1ced6 |
def get_select_query_results(connection, query, parameters=None): <NEW_LINE> <INDENT> cursor = connection.cursor() <NEW_LINE> if parameters is not None: <NEW_LINE> <INDENT> cursor.execute(query, parameters) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> cursor.execute(query) <NEW_LINE> <DEDENT> return cursor | Executes the specified query with the specified tuple of
parameters. Returns a cursor for the query results.
Raises an exception if the query fails for any reason. | 625941b8d8ef3951e3243394 |
def onEnemyHit(self, laser): <NEW_LINE> <INDENT> self.lasers.remove(laser) <NEW_LINE> self.score += Level.SCORE_PER_HIT <NEW_LINE> if self.score >= Level.SCORE_TO_WIN: <NEW_LINE> <INDENT> self.endTheGame() | Perform on Enemy Hit | 625941b8ec188e330fd5a5fd |
def make_copies(service, draft_id, n): <NEW_LINE> <INDENT> draft_response = service.users().drafts().get(userId="me", id=draft_id, format="raw").execute() <NEW_LINE> raw_response = {'raw': draft_response["message"]["raw"]} <NEW_LINE> message = {'message': raw_response} <NEW_LINE> try: <NEW_LINE> <INDENT> for x in range(int(n)): <NEW_LINE> <INDENT> draft = service.users().drafts().create(userId="me", body=message).execute() <NEW_LINE> print("draft number "+str(x+1)+" created") <NEW_LINE> <DEDENT> return True <NEW_LINE> <DEDENT> except Exception as err: <NEW_LINE> <INDENT> print(err) <NEW_LINE> return False | make copies of the draft
:param service: authenticated gmail service
:param draft_id: GMail draft ID
:param n: number of copies
:return: True if successful, False otherwise | 625941b8cb5e8a47e48b7906 |
def list_sheets(self, spreadsheet_id: str) -> List[str]: <NEW_LINE> <INDENT> with self.build_sheets_api() as sheets_api: <NEW_LINE> <INDENT> spreadsheet_data = ( sheets_api.spreadsheets() .get( spreadsheetId=spreadsheet_id, fields='sheets.properties.title,sheets.properties.sheetType', ) .execute(**self._google_client_request_kwargs()) ) <NEW_LINE> <DEDENT> return [ sheet['properties']['title'] for sheet in spreadsheet_data['sheets'] if sheet['properties']['sheetType'] == 'GRID' ] | List available sheets | 625941b838b623060ff0ac45 |
def test_callback(self): <NEW_LINE> <INDENT> callback ='jsonp123' <NEW_LINE> response = self.call(self.url, {'appId':self.app.get_token(), 'callback': callback}) <NEW_LINE> self.assert_(self._assertJson(json_string=response.content, status=200, message="", expected_data = ['users'], callback = callback )) | Test that the users for a valid app are retrieved in callbacks | 625941b855399d3f0558850a |
def reduce(self, ratings): <NEW_LINE> <INDENT> ratings_copy = ratings[::] <NEW_LINE> for index, item in enumerate(ratings_copy): <NEW_LINE> <INDENT> restaurant, score = ratings_copy[index] <NEW_LINE> if score is None: ratings.remove(item) <NEW_LINE> <DEDENT> return ratings | Remove ratings from heap that are None. | 625941b89c8ee82313fbb5cb |
def get_processing_value( param: QgsProcessingParameterDefinition, inp: WPSInput, context: ProcessingContext) -> Any: <NEW_LINE> <INDENT> typ = param.type() <NEW_LINE> if typ in ('fileDestination','folderDestination'): <NEW_LINE> <INDENT> value = basename(normpath(inp[0].data)) <NEW_LINE> if value != inp[0].data: <NEW_LINE> <INDENT> LOGGER.warning("Value for file or folder destination '%s' has been truncated from '%s' to '%s'", param.name(), inp[0].data, value ) <NEW_LINE> <DEDENT> if typ == 'fileDestination': <NEW_LINE> <INDENT> value = Path(value).with_suffix('.'+param.defaultFileExtension()).as_posix() <NEW_LINE> <DEDENT> <DEDENT> elif typ == 'file': <NEW_LINE> <INDENT> outputfile = (Path(context.workdir)/param.name()).with_suffix(param.extension()) <NEW_LINE> LOGGER.debug("Saving input data as %s", outputfile.as_posix()) <NEW_LINE> inp[0].download_ref(outputfile) <NEW_LINE> value = outputfile.name <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> value = None <NEW_LINE> <DEDENT> return value | Return processing value from wps inputs
Processes other inputs than layers | 625941b8f9cc0f698b14045c |
def _yank_particles(self, num_records): <NEW_LINE> <INDENT> particles_returned = 0 <NEW_LINE> if self._state is not None and StateKey.PARTICLES_RETURNED in self._state and self._state[StateKey.PARTICLES_RETURNED] > 0: <NEW_LINE> <INDENT> particles_returned = self._state[StateKey.PARTICLES_RETURNED] <NEW_LINE> <DEDENT> total_num_records = len(self._record_buffer) <NEW_LINE> num_records_remaining = total_num_records - particles_returned <NEW_LINE> if num_records_remaining < num_records: <NEW_LINE> <INDENT> num_to_fetch = num_records_remaining <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> num_to_fetch = num_records <NEW_LINE> <DEDENT> log.debug("Yanking %s records of %s requested", num_to_fetch, num_records) <NEW_LINE> return_list = [] <NEW_LINE> end_range = particles_returned + num_to_fetch <NEW_LINE> records_to_return = self._record_buffer[particles_returned:end_range] <NEW_LINE> if len(records_to_return) > 0: <NEW_LINE> <INDENT> self._state[StateKey.PARTICLES_RETURNED] = particles_returned+num_to_fetch <NEW_LINE> for item in records_to_return: <NEW_LINE> <INDENT> log.debug("Record to return: %s", item) <NEW_LINE> return_list.append(item) <NEW_LINE> <DEDENT> self._publish_sample(return_list) <NEW_LINE> log.trace("Sending parser state [%s] to driver", self._state) <NEW_LINE> file_ingested = False <NEW_LINE> if self.file_complete and total_num_records == self._state[StateKey.PARTICLES_RETURNED]: <NEW_LINE> <INDENT> file_ingested = True <NEW_LINE> <DEDENT> self._state_callback(self._state, file_ingested) <NEW_LINE> <DEDENT> return return_list | Get particles out of the buffer and publish them. Update the state
of what has been published, too.
@param num_records The number of particles to remove from the buffer
@retval A list with num_records elements from the buffer. If num_records
cannot be collected (perhaps due to an EOF), the list will have the
elements it was able to collect. | 625941b830bbd722463cbc19 |
def test_market_survey_ontime(self): <NEW_LINE> <INDENT> self.t1.engage_date = '2011-05-01' <NEW_LINE> self.t2.engage_date = '2011-05-01' <NEW_LINE> self.nl1.market_survey = True <NEW_LINE> self.nl1.market_survey_date = '2011-05-03' <NEW_LINE> self.nl2.market_survey = True <NEW_LINE> self.nl2.market_survey_date = '2011-06-15' <NEW_LINE> self.store.commit() <NEW_LINE> r = Report(trans_obj='acquisition') <NEW_LINE> r.buildReport() <NEW_LINE> self.assertEqual(r.market_survey_ontime, Dec('50.0')) | Test that the market survey on time percentage is correct | 625941b8b830903b967e976d |
def input_path(self, *args): <NEW_LINE> <INDENT> return os.path.join(self.sim_dir, self.get_name(), *args) | Given any arguments, relative to the simulation dir, return
the absolute path. | 625941b84c3428357757c181 |
def sample(self, A, c): <NEW_LINE> <INDENT> k = np.round(c - c/5.0) <NEW_LINE> greedy_mdl = GREEDY(A, k=k, num_bases=c) <NEW_LINE> greedy_mdl.factorize(compute_h=False, compute_err=False, niter=1) <NEW_LINE> return greedy_mdl.select | Arguments
---------
A :
c :
Returns
-------
s : selection of samples/indices | 625941b80383005118ecf43b |
def show_fom(self, show=True): <NEW_LINE> <INDENT> if show: <NEW_LINE> <INDENT> self._fom_widget.show() <NEW_LINE> fom = str(self._main_widget.fom) <NEW_LINE> self._fom_line.setText(fom) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self._fom_widget.hide() | slot for fom calculable
:param show: if it's true it show the fom widget and hide it if not
:type show: bool | 625941b83c8af77a43ae35f5 |
def cancel(self): <NEW_LINE> <INDENT> new_act = self.actvalidationstate_set.count() > 1 <NEW_LINE> if self.date <= date.today(): <NEW_LINE> <INDENT> if new_act: <NEW_LINE> <INDENT> self.set_state('ANNUL_NOUS', get_request().user) <NEW_LINE> <DEDENT> self.parent_event = None <NEW_LINE> self.save() <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.delete() | Parent event is canceled completely, or partially, act upon it.
| 625941b8a4f1c619b28afe98 |
def push(self, item): <NEW_LINE> <INDENT> self.items.append(item) | 添加一个新的元素item到栈顶 | 625941b807f4c71912b112dd |
def test_list_projects_default_domain(self): <NEW_LINE> <INDENT> domain = unit.new_domain_ref() <NEW_LINE> self.resource_api.create_domain(domain['id'], domain) <NEW_LINE> project1 = unit.new_project_ref(domain_id=domain['id']) <NEW_LINE> self.resource_api.create_project(project1['id'], project1) <NEW_LINE> refs = self.resource_api.list_projects() <NEW_LINE> self.assertThat( refs, matchers.HasLength(len(default_fixtures.TENANTS) + 3)) <NEW_LINE> refs = self.tenant_controller.get_all_projects( self.make_request(is_admin=True)) <NEW_LINE> self.assertEqual(len(default_fixtures.TENANTS), len(refs['tenants'])) <NEW_LINE> for tenant in default_fixtures.TENANTS: <NEW_LINE> <INDENT> tenant_copy = tenant.copy() <NEW_LINE> tenant_copy.pop('domain_id') <NEW_LINE> tenant_copy.pop('parent_id') <NEW_LINE> tenant_copy.pop('is_domain') <NEW_LINE> self.assertIn(tenant_copy, refs['tenants']) | Test that list projects only returns those in the default domain. | 625941b8d164cc6175782ba4 |
def quit(self): <NEW_LINE> <INDENT> self.session.quit() | Quit session | 625941b857b8e32f524832f7 |
def p_modset_lcb_rcb(p): <NEW_LINE> <INDENT> p[0] = [] | modset : LCB RCB | 625941b8fbf16365ca6f6013 |
def __init__( self, export_name=None, member=None, ): <NEW_LINE> <INDENT> if export_name is not None: <NEW_LINE> <INDENT> self.export_name = export_name <NEW_LINE> <DEDENT> if member is not None: <NEW_LINE> <INDENT> self.member = member | Keyword args:
export_name (str): The name of the export to create when applying the export policy to the directory.
member (ReferenceWithType): Reference to the directory to which the export policy may be applied. The `id` or `name` parameter is required, but cannot be set together. If the `name` parameter is set, `resource_type` must also be set. | 625941b838b623060ff0ac46 |
def save_parameters(self, filetype='text'): <NEW_LINE> <INDENT> if self.hasRider: <NEW_LINE> <INDENT> pathToData = os.path.split(os.path.split(self.directory)[0])[0] <NEW_LINE> pathToParDir = os.path.join(pathToData, 'riders', self.riderName, 'Parameters') <NEW_LINE> pathToCombDir = os.path.join(pathToParDir, 'Combined') <NEW_LINE> if not os.path.exists(pathToCombDir): <NEW_LINE> <INDENT> os.makedirs(pathToCombDir) <NEW_LINE> <DEDENT> fileName = self.riderName + self.bicycleName <NEW_LINE> psets = [x for x in self.riderPar.keys() if x != 'Measured'] <NEW_LINE> parameters = self.riderPar <NEW_LINE> print(('This bicycle has a rider, {0}, so the data will be ' + 'saved here: {1}').format(self.riderName, pathToParDir)) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> pathToParDir = os.path.join(self.directory, 'Parameters') <NEW_LINE> fileName = self.bicycleName <NEW_LINE> psets = [x for x in self.parameters.keys() if x != 'Measured'] <NEW_LINE> parameters = self.parameters <NEW_LINE> print(('This bicycle has no rider so the data will be ' + 'saved here: {0}').format(pathToParDir)) <NEW_LINE> <DEDENT> if filetype == 'text': <NEW_LINE> <INDENT> for pset in psets: <NEW_LINE> <INDENT> fileName = fileName + pset + '.txt' <NEW_LINE> pathToTxtFile = os.path.join(pathToParDir, fileName) <NEW_LINE> io.write_parameter_text_file(pathToTxtFile, parameters[pset]) <NEW_LINE> if self.hasRider: <NEW_LINE> <INDENT> pathToCombFile = os.path.join(pathToCombDir, fileName) <NEW_LINE> io.write_parameter_text_file(pathToCombFile, self.parameters[pset]) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> elif filetype == 'matlab': <NEW_LINE> <INDENT> raise NotImplementedError("Doesn't work yet.") <NEW_LINE> <DEDENT> elif filetype == 'pickle': <NEW_LINE> <INDENT> raise NotImplementedError("Doesn't work yet.") | Saves all the parameter sets to file.
Parameters
----------
filetype : string, optional
- 'text' : a text file with parameters as `c = 0.10+/-0.01
`
- 'matlab' : matlab .mat file
- 'pickle' : python pickled dictionary
| 625941b80a50d4780f666ce6 |
def setUp(self): <NEW_LINE> <INDENT> from hardest.binary_validator import BinaryValidator <NEW_LINE> self.instance = BinaryValidator() | Test setup. | 625941b899cbb53fe6792a3e |
def limit_offset_sql(self, low_mark, high_mark): <NEW_LINE> <INDENT> limit, offset = self._get_limit_offset_params(low_mark, high_mark) <NEW_LINE> return '%s%s' % ( (' LIMIT %d' % limit) if limit else '', (' OFFSET %d' % offset) if offset else '', ) | Return LIMIT/OFFSET SQL clause. | 625941b8d99f1b3c44c673ed |
def rob(self, root): <NEW_LINE> <INDENT> def helper(root): <NEW_LINE> <INDENT> if not root: <NEW_LINE> <INDENT> return 0, 0 <NEW_LINE> <DEDENT> left = helper(root.left) <NEW_LINE> right = helper(root.right) <NEW_LINE> v1 = root.val + left[1] + right[1] <NEW_LINE> v2 = max(left) + max(right) <NEW_LINE> return v1, v2 <NEW_LINE> <DEDENT> return max(helper(root)) | :type root: TreeNode
:rtype: int | 625941b86fece00bbac2d592 |
def assert_fetch_redirects(self, view_name, args=None, kwargs=None): <NEW_LINE> <INDENT> response = response_from_view(view_name, args=args, kwargs=kwargs) <NEW_LINE> self.assertRedirects(response, reverse('openstates:api-key-required')) | Assert view redirects to error page when api-key is missing and in debug mode. | 625941b8bf627c535bc1302d |
def updateData_nv(self, entries): <NEW_LINE> <INDENT> self.ax.cla() <NEW_LINE> self.plotNvisits() <NEW_LINE> nv = float(entries['Nvisits'].get()) <NEW_LINE> if nv > 0: <NEW_LINE> <INDENT> self.plotnvisits(nvisits=nv) <NEW_LINE> <DEDENT> self.ax.set_xlim(self.zmin, self.zmax) <NEW_LINE> self.canvas.draw() | Method to update the figure according to request made on entries
zlim and filter allocation will be plotted here.
Parameters
---------------
entries: dict of tk.Entry | 625941b88c0ade5d55d3e816 |
def sw_align(seqA, seqB, scorer=False, gap=-1): <NEW_LINE> <INDENT> seqA, seqB = _as_lists(seqA, seqB) <NEW_LINE> return malign.sw_align(seqA, seqB, scorer or _get_scorer(seqA, seqB), gap) | Carry out the traditional Smith-Waterman algorithm.
Parameters
----------
seqA, seqB : {str, list, tuple}
The input strings. These should be iterables, so you can use tuples,
lists, or strings.
scorer : dict (default=False)
If set to c{False} a scorer will automatically be calculated,
otherwise, the scorer needs to be passed as a dictionary that covers
all segment matches between the input strings.
gap : int (default=-1)
The gap penalty.
Notes
-----
The Smith-Waterman algorithm (see :evobib:`Smith1981`) returns a local
alignment between two sequences. A local alignment is an alignment of those
subsequences of the input sequences that yields the highest score.
Returns
-------
alm : tuple
A tuple consisting of prefix, alignment, and suffix of the first and
the second sequence, and the alignment score.
Examples
--------
Align two sequences::
>>> seqA = 'fat cat'
>>> seqB = 'catfat'
>>> sw_align(seqA, seqB)
(([], ['f', 'a', 't'], [' ', 'c', 'a', 't']),
(['c', 'a', 't'], ['f', 'a', 't'], []),
3.0) | 625941b82ae34c7f2600cf89 |
def forward(self, x): <NEW_LINE> <INDENT> return PlusConstantOp.apply(x, self.const) | Use `PlusConstantOp.apply` to call the defined custom operator. | 625941b8dc8b845886cb538b |
def num_deriv3(f, x, incr=0.001): <NEW_LINE> <INDENT> return (-f(x+3.*incr)+8.*f(x+2.*incr)-13.*f(x+incr)+13.*f(x-incr) - 8.*f(x-2.*incr)+f(x-3.*incr))/(8.*incr**3) | Return third derivative of f at x. | 625941b8dc8b845886cb538c |
def wls_fit_dki(design_matrix, data): <NEW_LINE> <INDENT> tol = 1e-6 <NEW_LINE> data = np.asarray(data) <NEW_LINE> data_flat = data.reshape((-1, data.shape[-1])) <NEW_LINE> dki_params = np.empty((len(data_flat), 27)) <NEW_LINE> min_diffusivity = tol / -design_matrix.min() <NEW_LINE> inv_design = np.linalg.pinv(design_matrix) <NEW_LINE> for vox in range(len(data_flat)): <NEW_LINE> <INDENT> dki_params[vox] = _wls_iter(design_matrix, inv_design, data_flat[vox], min_diffusivity) <NEW_LINE> <DEDENT> dki_params = dki_params.reshape((data.shape[:-1]) + (27,)) <NEW_LINE> return dki_params | Computes weighted linear least squares (WLS) fit to calculate
the diffusion tensor and kurtosis tensor using a weighted linear
regression diffusion kurtosis model [1]_.
Parameters
----------
design_matrix : array (g, 22)
Design matrix holding the covariants used to solve for the regression
coefficients.
data : array (N, g)
Data or response variables holding the data. Note that the last
dimension should contain the data. It makes no copies of data.
min_signal : default = 1
All values below min_signal are repalced with min_signal. This is done
in order to avoid taking log(0) durring the tensor fitting.
Returns
-------
dki_params : array (N, 27)
All parameters estimated from the diffusion kurtosis model for all N
voxels.
Parameters are ordered as follows:
1) Three diffusion tensor's eigenvalues
2) Three lines of the eigenvector matrix each containing the first
second and third coordinates of the eigenvector
3) Fifteen elements of the kurtosis tensor
References
----------
[1] Veraart, J., Sijbers, J., Sunaert, S., Leemans, A., Jeurissen, B.,
2013. Weighted linear least squares estimation of diffusion MRI
parameters: Strengths, limitations, and pitfalls. Magn Reson Med 81,
335-346. | 625941b8d164cc6175782ba5 |
def __bool__(self): <NEW_LINE> <INDENT> return _math.VectorOfUInt64___bool__(self) | __bool__(self) -> bool | 625941b8adb09d7d5db6c5ea |
def get_env_type(env_name): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> env = gym.make(env_name) <NEW_LINE> del env <NEW_LINE> return 'gym' <NEW_LINE> print('{} is not a viable environment.'.format(env_name)) <NEW_LINE> <DEDENT> except: <NEW_LINE> <INDENT> return 'rl' | Get the type of environment from the env_name string | 625941b88da39b475bd64dce |
def __getattr__(self,a,FloatOnly=False): <NEW_LINE> <INDENT> if a == 'comment': <NEW_LINE> <INDENT> return self.mergeComments() <NEW_LINE> <DEDENT> if a == 'props': <NEW_LINE> <INDENT> if self.geoms: <NEW_LINE> <INDENT> return self[0].props <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return [] <NEW_LINE> <DEDENT> <DEDENT> r = [] <NEW_LINE> for g in self.geoms: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> v = getattr(g,a) <NEW_LINE> if FloatOnly: <NEW_LINE> <INDENT> if type(v) is float: <NEW_LINE> <INDENT> r.append(v) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> r.append('') <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> r.append(v) <NEW_LINE> <DEDENT> <DEDENT> except: <NEW_LINE> <INDENT> r.append('') <NEW_LINE> <DEDENT> <DEDENT> return r | returns: parameter values collected from all geometries
rtype: list (or string, if 'comment' was requested) | 625941b850485f2cf553cbf0 |
def __init__(self, name='u_net', pretrained_weights=None, input_size=(64, 64, 1)): <NEW_LINE> <INDENT> super(UNet, self).__init__(name, input_size) <NEW_LINE> self.layer_dict = dict([]) <NEW_LINE> self.architecture = Model() <NEW_LINE> self.define() <NEW_LINE> if pretrained_weights is not None: <NEW_LINE> <INDENT> self.architecture.load_weights(pretrained_weights) | :param pretrained_weights:
:param input_size: should be 64 multiple | 625941b8a17c0f6771cbdeab |
def test_known_issues(self): <NEW_LINE> <INDENT> Triton = TritonContext() <NEW_LINE> Triton.setArchitecture(ARCH.X86) <NEW_LINE> Triton.taintRegister(Triton.registers.eax) <NEW_LINE> inst = Instruction() <NEW_LINE> inst.setOpcode(b"\x8D\x04\x06") <NEW_LINE> Triton.processing(inst) <NEW_LINE> self.assertTrue(Triton.isRegisterTainted(Triton.registers.eax)) <NEW_LINE> self.assertFalse(Triton.isRegisterTainted(Triton.registers.ebx)) | Check tainting result after processing. | 625941b81f5feb6acb0c49ac |
def getTimeStepDuration(self): <NEW_LINE> <INDENT> return self.instance.timeStepDuration; | Returns the timeStepDuration, it is a it datetime.timedelta. It defines the size of the time step, | 625941b8be383301e01b52e4 |
@cli.group() <NEW_LINE> @click.pass_context <NEW_LINE> def monitor(ctx): <NEW_LINE> <INDENT> from .monitor import calculate_parallelism, get_user_logs, postprocess_jobdict, JobMonitor <NEW_LINE> moddict = {"calculate_parallelism":calculate_parallelism,"get_user_logs":get_user_logs,"postprocess_jobdict":postprocess_jobdict,"JobMonitor":JobMonitor} <NEW_LINE> ctx.obj["monitormod"] = moddict <NEW_LINE> return | Job monitoring functions.
| 625941b80c0af96317bb8040 |
def deserialize_grades(json_string): <NEW_LINE> <INDENT> grades = dict() <NEW_LINE> if json_string: <NEW_LINE> <INDENT> data = json.loads(json_string) <NEW_LINE> if 'scores' in data: <NEW_LINE> <INDENT> for grade in data['scores']: <NEW_LINE> <INDENT> if 'studentId' in grade and 'value' in grade: <NEW_LINE> <INDENT> grades[grade['studentId']] = Grade(grade['studentId'], grade['value']) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> <DEDENT> return grades | Deserializes the JSON representation received as arguments to a map of student ids to Grade objects.
:param json_string: JSON representation of the grades objects
:return: a map of student ids to Grade objects | 625941b899fddb7c1c9de1ea |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.