code
stringlengths 4
4.48k
| docstring
stringlengths 1
6.45k
| _id
stringlengths 24
24
|
---|---|---|
def tearDown(self): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> os.remove(self.filepath) <NEW_LINE> <DEDENT> except OSError: <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> if self.backed_up: <NEW_LINE> <INDENT> log.debug('Restoring original config.') <NEW_LINE> os.rename(self.backup_path, self.config_path) | Delete a tempfile if it exists. Otherwise carry on. | 625941b755399d3f055884e0 |
def on_vsb(self, *args): <NEW_LINE> <INDENT> self.box_one.yview(*args) <NEW_LINE> self.box_two.yview(*args) | Vertical Scrolling event
| 625941b738b623060ff0ac1b |
def Display(self, args, result): <NEW_LINE> <INDENT> self.context['api_adapter'].PrintNodePools([result]) | This method is called to print the result of the Run() method.
Args:
args: The arguments that command was run with.
result: The value returned from the Run() method. | 625941b71f037a2d8b94602b |
def _load_identifiers(self, attrs, meta, model, resource_name): <NEW_LINE> <INDENT> for identifier in model.identifiers: <NEW_LINE> <INDENT> meta.identifiers.append(identifier.name) <NEW_LINE> attrs[identifier.name] = self._create_identifier( identifier, resource_name) | Populate required identifiers. These are arguments without which
the resource cannot be used. Identifiers become arguments for
operations on the resource. | 625941b74527f215b584c288 |
def verify(self, hash, sig): <NEW_LINE> <INDENT> return _ssl.ECDSA_verify(0, hash, len(hash), sig, len(sig), self.k) == 1 | Verify a DER signature | 625941b70383005118ecf411 |
def predict(theta, X): <NEW_LINE> <INDENT> m = len(X) <NEW_LINE> p = np.zeros(m) <NEW_LINE> predictions = sigmoid(np.dot(X, theta)) <NEW_LINE> pos = np.where(predictions >= 0.5) <NEW_LINE> neg = np.where(predictions < 0.5) <NEW_LINE> p[pos] = 1 <NEW_LINE> return p | predict() - Logistic Regression Prediction Function | 625941b773bcbd0ca4b2beaa |
def content( userName = '', accessLevel = '', newUrl = '', command = '', queryString = '', postData = '', cookies = '', uploadFile = '' ): <NEW_LINE> <INDENT> cacheFile = cache.cacheFile( '_____', module ) <NEW_LINE> noCache = 0 <NEW_LINE> data = '' <NEW_LINE> if ENABLECACHING is 1: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> cacheStream = open ( cacheFile, 'r') <NEW_LINE> data = pickle.load( cacheStream ) <NEW_LINE> cacheStream.close () <NEW_LINE> <DEDENT> except IOError: <NEW_LINE> <INDENT> logger.error( 'failed to load cacheFile: \'%s\'' % cacheFile ) <NEW_LINE> noCache = 1 <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> noCache = 1 <NEW_LINE> <DEDENT> if len(data) is 0: <NEW_LINE> <INDENT> noCache = 1 <NEW_LINE> <DEDENT> if noCache: <NEW_LINE> <INDENT> data = buildData(userName) <NEW_LINE> if ENABLECACHING is 1: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> cacheStream = open ( cacheFile, 'w') <NEW_LINE> pickle.dump( data, cacheStream ) <NEW_LINE> cacheStream.close() <NEW_LINE> <DEDENT> except IOError: <NEW_LINE> <INDENT> logger.error( 'failed to save cacheFile: \'%s\'' % cacheFile ) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> returnStatus = "200 OK" <NEW_LINE> cnt = buildHtml(data) <NEW_LINE> responseHeaders = [ ( "Content-Type", CONTENT_HTML ), ( "Content-Length", str( len( cnt ) ) ) ] <NEW_LINE> return responseHeaders, returnStatus, cnt | What this module does? | 625941b7ff9c53063f47c02a |
def p_comp_exp(p): <NEW_LINE> <INDENT> if len(p) == 4: <NEW_LINE> <INDENT> p[0] = ga.c_comp_exp__op_arithmetic(p[1], p[2], p[3]) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> p[0] = ga.c_comp_exp(p[1]) | comp_exp : comp_exp comp_op op_arithmetic
| op_arithmetic | 625941b7c4546d3d9de7285d |
def forward(self,example): <NEW_LINE> <INDENT> pillar_x = example[0] <NEW_LINE> pillar_y = example[1] <NEW_LINE> pillar_z = example[2] <NEW_LINE> pillar_i = example[3] <NEW_LINE> num_points = example[4] <NEW_LINE> x_sub_shaped = example[5] <NEW_LINE> y_sub_shaped = example[6] <NEW_LINE> mask = example[7] <NEW_LINE> voxel_features = self.pfn(pillar_x, pillar_y, pillar_z, pillar_i, num_points, x_sub_shaped, y_sub_shaped, mask) <NEW_LINE> voxel_features = voxel_features.squeeze() <NEW_LINE> voxel_features = voxel_features.permute(1, 0) <NEW_LINE> coors = example[8] <NEW_LINE> spatial_features = self.mfe(voxel_features, coors,example[9]) <NEW_LINE> preds_dict = self.rpn(spatial_features) <NEW_LINE> return self.predict(example, preds_dict) | nutonomy/second.pytorch | 625941b7baa26c4b54cb0f50 |
def _read_from_memory(self): <NEW_LINE> <INDENT> return self.bin_data | Override for getting buffer for converter | 625941b7d8ef3951e324336a |
def add_task(self, task_name, task_status, task_project, task_description): <NEW_LINE> <INDENT> tasks_table = TasksTable(task_name, task_project) <NEW_LINE> self.database.create(tasks_table) <NEW_LINE> self.database.commit() <NEW_LINE> task_id = self.get_task_id_by_name(task_name) <NEW_LINE> self.set_start_date(task_id) <NEW_LINE> self.set_status(task_id, IN_PROGRESS) <NEW_LINE> self.set_task_assignee(task_id) <NEW_LINE> self.set_task_description(task_id, task_description) | Create new task
:param task_name:
:param task_status:
:param task_project:
:param task_description:
:return: | 625941b767a9b606de4a7cea |
def cross_reference(self, model): <NEW_LINE> <INDENT> msg = ' which is required by SPLINE2 sid=%s' % self.eid <NEW_LINE> self.caero = model.CAero(self.caero, msg=msg) <NEW_LINE> self.setg = model.Set(self.setg, msg=msg) | Cross links the card
:param self: the SPLINE2 object pointer
:param model: the BDF object
:type model: BDF() | 625941b726238365f5f0ec96 |
def input(self, args, key): <NEW_LINE> <INDENT> if self._container.process_user_input(key): <NEW_LINE> <INDENT> return InputState.PROCESSED <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> if key == Prompt.CONTINUE: <NEW_LINE> <INDENT> for spoke in self._spokes.values(): <NEW_LINE> <INDENT> if not spoke.completed and spoke.mandatory: <NEW_LINE> <INDENT> print(_("Please complete all spokes before continuing")) <NEW_LINE> return InputState.DISCARDED <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> elif key == Prompt.HELP: <NEW_LINE> <INDENT> if self.has_help: <NEW_LINE> <INDENT> help_path = get_help_path(self.helpFile, True) <NEW_LINE> ScreenHandler.push_screen_modal(HelpScreen(help_path)) <NEW_LINE> return InputState.PROCESSED_AND_REDRAW <NEW_LINE> <DEDENT> <DEDENT> return key | Handle user input. Numbers are used to show a spoke, the rest is passed
to the higher level for processing. | 625941b7627d3e7fe0d68c7b |
def finish_parse(self): <NEW_LINE> <INDENT> pass | Finalize parse details. | 625941b738b623060ff0ac1c |
def allocateSkillPoints(self, skill_points): <NEW_LINE> <INDENT> self.points = int(math.floor(skill_points)) <NEW_LINE> self.chooseSkills() | Allocate a number of points to be divided in some way between the skills | 625941b7e1aae11d1e749ae0 |
def train(X,vectorizer, true_k=10,minibatch=False,showLable =False): <NEW_LINE> <INDENT> if minibatch: <NEW_LINE> <INDENT> km = MiniBatchKMeans(n_clusters=true_k,init='k-means++',n_init=1, init_size=1000,batch_size=1000,verbose=False) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> km = KMeans(n_clusters=true_k,init='k-means++',max_iter=300,n_init=1,verbose=False) <NEW_LINE> <DEDENT> km.fit(X) <NEW_LINE> if showLable: <NEW_LINE> <INDENT> print("Top terms per cluster:") <NEW_LINE> order_centroids= km.cluster_centers_.argsort()[:,::-1] <NEW_LINE> terms =vectorizer.get_feature_names() <NEW_LINE> print(vectorizer.get_stop_words()) <NEW_LINE> for i in range(true_k): <NEW_LINE> <INDENT> print("Cluster %d:" % i ,end='') <NEW_LINE> for ind in order_centroids[i,:10]: <NEW_LINE> <INDENT> print(' %s' % terms[ind],end='') <NEW_LINE> <DEDENT> print() <NEW_LINE> <DEDENT> <DEDENT> result = list(km.predict(X)) <NEW_LINE> print('Cluster distribution:') <NEW_LINE> print(dict([(i,result.count(i)) for i in result])) <NEW_LINE> return -km.score(X) | 输入:数据集的向量,多少簇,输出:K族分类 | 625941b7711fe17d825421a9 |
def add_vel_to_base(self, frame_name, twist_base, vel): <NEW_LINE> <INDENT> if not frame_name in self.transforms: <NEW_LINE> <INDENT> raise SpeedLimitException("no transform exists for frame '{}'".format(frame_name)) <NEW_LINE> <DEDENT> ang_base = self.vect(twist_base.angular) <NEW_LINE> lin_base = self.vect(twist_base.linear) <NEW_LINE> trp = self.no_z(self.vect(self.transforms[frame_name].translation)) <NEW_LINE> rot_part = numpy.cross(trp, vel) / numpy.linalg.norm(trp) / numpy.linalg.norm(trp) <NEW_LINE> lin_part = vel - numpy.cross(rot_part, trp) <NEW_LINE> ang_base[2] = self.clamp(ang_base[2] + rot_part[2], 0.0, ang_base[2]) <NEW_LINE> lin_base[0] += lin_part[0] <NEW_LINE> out_twist = GM.Twist() <NEW_LINE> out_twist.linear = GM.Vector3(*lin_base) <NEW_LINE> out_twist.angular = GM.Vector3(*ang_base) <NEW_LINE> return out_twist | This method merges a velocity applied to one of the sensors into
the mobile base velocity. It uses tricks to provide an acceptable
behavior. | 625941b763f4b57ef0000f4f |
def _pre_execute(self): <NEW_LINE> <INDENT> LOG.info("Initializing " + self.get_display_name()) <NEW_LINE> if not self.compute_model: <NEW_LINE> <INDENT> raise exception.ClusterStateNotDefined() <NEW_LINE> <DEDENT> if self.compute_model.stale: <NEW_LINE> <INDENT> raise exception.ClusterStateStale() <NEW_LINE> <DEDENT> LOG.debug(self.compute_model.to_string()) | Base Pre-execution phase
This will perform basic pre execution operations most strategies
should perform. | 625941b71d351010ab85594b |
def load_df(file, columns): <NEW_LINE> <INDENT> df = sqlContext.read.format('com.databricks.spark.csv').options(header='true', inferschema='true').load(file) <NEW_LINE> sel_df = df.select(columns) <NEW_LINE> return sel_df | load csv file as dataframe
Read the csv file with it's headers, automatically generate schema by
databricks package.
Args:
file: string. Input filename with its path
column: list. the column name want to be select | 625941b7a4f1c619b28afe6f |
def isclose(bb1, bb2): <NEW_LINE> <INDENT> dist = distance(bb1,bb2) <NEW_LINE> dim2 = characteristic_dimension(bb2) <NEW_LINE> return dist < 2 * dim2 | Returns True if the first object is close to the second.
More precisely, returns True if the first bounding box is within a radius R
(R = 2 X second bounding box dimension) of the second bounding box.
Note that in general, isclose(bb1, bb2) != isclose(bb2, bb1) | 625941b7cdde0d52a9e52e5c |
def clear(self): <NEW_LINE> <INDENT> super(OpenImagesChallengeEvaluator, self).clear() <NEW_LINE> self._evaluatable_labels.clear() | Clears stored data. | 625941b73eb6a72ae02ec307 |
def transform(self, T): <NEW_LINE> <INDENT> T = assertion.ensure_tmatrix(T, dim=self.dim) <NEW_LINE> tcoords = transformation.transform(self.flattened, T) <NEW_LINE> return tcoords.reshape(self.shape).view(Coords) | Transform coordinates.
Parameters
----------
T : array_like(Number, shape=(self.dim+1, self.dim+1))
Transformation matrix to apply.
Returns
-------
Coords(shape=self.shape)
transformed coords.
Examples
--------
Transform structured coordinates.
>>> coords = Coords(
... [[(2, 3), (2, 4), (3, 2)], [(0, 0), (3, 5), (9, 4)]])
>>> print_rounded(coords)
[[[2 3]
[2 4]
[3 2]]
<BLANKLINE>
[[0 0]
[3 5]
[9 4]]]
>>> T = transformation.matrix(t=[10, 20], s=[0.5, 1])
>>> tcoords = coords.transform(T)
>>> print_rounded(tcoords)
[[[ 11. 23. ]
[ 11. 24. ]
[ 11.5 22. ]]
<BLANKLINE>
[[ 10. 20. ]
[ 11.5 25. ]
[ 14.5 24. ]]] | 625941b7a05bb46b383ec65a |
def __neq__(self, other): <NEW_LINE> <INDENT> if isinstance(other, self.__class__): <NEW_LINE> <INDENT> return not self.__eq__(other) <NEW_LINE> <DEDENT> return NotImplemented | Test the non-equality of SingleScatteringData. | 625941b791f36d47f21ac323 |
def restricted_loads(s): <NEW_LINE> <INDENT> return RestrictedUnpickler(io.BytesIO(s)).load() | Helper function analogous to pickle.loads() | 625941b77047854f462a123a |
def on_deploy(self, *args): <NEW_LINE> <INDENT> self.ui_creator.kivy_console.unbind(on_command_list_done=self.on_deploy) <NEW_LINE> self.project_watcher.resume_watching(delay=0) <NEW_LINE> self.profiler.dispatch('on_message', 'Installed on device', 5) <NEW_LINE> self.profiler.dispatch('on_deploy') | on_build event handler
| 625941b78e71fb1e9831d5da |
def main(fileInput, everyStr, homology, kind): <NEW_LINE> <INDENT> allMotifs = readFasta(fileInput, everyStr=everyStr) <NEW_LINE> allMotifs = removeEqualentSeq(allMotifs, homology=homology) <NEW_LINE> results = [] <NEW_LINE> for n in range(len(allMotifs)): <NEW_LINE> <INDENT> subMotifs = list(allMotifs) <NEW_LINE> subMotifs.remove(allMotifs[n]) <NEW_LINE> background = backgroundFreq(subMotifs, kind=kind) <NEW_LINE> PCM = makePCM(subMotifs, kind=kind) <NEW_LINE> PWM = makePWMfromPCM(PCM, background=background, kind=kind) <NEW_LINE> treshold = score(allMotifs[n], PWM, kind=kind) <NEW_LINE> minS = minScore(PWM) <NEW_LINE> maxS = maxScore(PWM) <NEW_LINE> normTreshold = toNorm(treshold, minS, maxS) <NEW_LINE> FP = int() <NEW_LINE> totalLen = int() <NEW_LINE> while FP <= 150: <NEW_LINE> <INDENT> randomMotifs = [] <NEW_LINE> for i in subMotifs: <NEW_LINE> <INDENT> randomMotifs += randomSeq(i, 20) <NEW_LINE> <DEDENT> totalLen += len(randomMotifs) <NEW_LINE> FP += scanSequences(randomMotifs, PWM, treshold, kind=kind) <NEW_LINE> if totalLen >= 150000: <NEW_LINE> <INDENT> break <NEW_LINE> <DEDENT> <DEDENT> if FP == 0: <NEW_LINE> <INDENT> FP = 1.0/(2*totalLen) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> FP = FP/totalLen <NEW_LINE> <DEDENT> results.append([normTreshold, FP]) <NEW_LINE> <DEDENT> results.sort(key=lambda x: x[1]) <NEW_LINE> results = results[::-1] <NEW_LINE> for i in range(len(results)): <NEW_LINE> <INDENT> results[i].append((i + 1) / len(allMotifs)) <NEW_LINE> <DEDENT> return(results) | Основная функция | 625941b7460517430c393fbc |
def compute_ratio(background, measured): <NEW_LINE> <INDENT> both = np.logical_and(background > 0, measured > 0) <NEW_LINE> background = background.astype(np.float32, copy=False) <NEW_LINE> measured = measured.astype(np.float32, copy=False) <NEW_LINE> ratio = background[both]/measured[both] <NEW_LINE> lower, upper = np.percentile(ratio, [5, 95]) <NEW_LINE> return np.mean(ratio[np.logical_and(ratio >= lower, ratio <= upper)]) | Compute the mean ratio of non extrem values between `background` and
`measured` where both occured. | 625941b71f5feb6acb0c4982 |
def update_when_older(self, days): <NEW_LINE> <INDENT> last_cache = self._get_last_cachefile_modification() <NEW_LINE> if last_cache is None: <NEW_LINE> <INDENT> return self.update() <NEW_LINE> <DEDENT> time_to_update = last_cache + timedelta(days=days) <NEW_LINE> if datetime.now() >= time_to_update: <NEW_LINE> <INDENT> return self.update() <NEW_LINE> <DEDENT> return True | Update TLD list cache file if the list is older than
number of days given in parameter `days` or if does not exist.
:param int days: number of days from last change
:return: True if update was successful, False otherwise
:rtype: bool | 625941b796565a6dacc8f502 |
def test_entity_asset_status_by_id_get(self): <NEW_LINE> <INDENT> pass | Test case for entity_asset_status_by_id_get
EntityAssetStatusById_GET # noqa: E501 | 625941b7090684286d50eb0d |
def use(self, middleware, path = None): <NEW_LINE> <INDENT> print("[Router::use] Adding middleware", middleware) <NEW_LINE> self.middleware.append(middleware) <NEW_LINE> return self | Use the middleware (a callable with parameters res, req, next) upon requests
match the provided path. A None path matches every request. | 625941b7ad47b63b2c509db7 |
def commit(self): <NEW_LINE> <INDENT> pass | commit transaction | 625941b78c0ade5d55d3e7ed |
def __len__(self): <NEW_LINE> <INDENT> return len(self.verses) | Returns the length of the parallel text in number of verses.
| 625941b7ac7a0e7691ed3f07 |
def fit(self, S, A, R): <NEW_LINE> <INDENT> action_onehot = np_utils.to_categorical(A, num_classes=self.output_dim) <NEW_LINE> discounted_return = self.compute_discounted_R(R) <NEW_LINE> assert S.shape[1] == self.input_dim, "{} != {}".format(S.shape[1], self.input_dim) <NEW_LINE> assert action_onehot.shape[0] == S.shape[0], "{} != {}".format(action_onehot.shape[0], S.shape[0]) <NEW_LINE> assert action_onehot.shape[1] == self.output_dim, "{} != {}".format(action_onehot.shape[1], self.output_dim) <NEW_LINE> assert len(discounted_return.shape) == 1, "{} != 1".format(len(discounted_return.shape)) <NEW_LINE> self.train_fn([S, action_onehot, discounted_return]) | Train a network
Args:
S (2-D Array): `state` array of shape (n_samples, state_dimension)
A (1-D Array): `action` array of shape (n_samples,)
It's simply a list of int that stores which actions the agent chose
R (1-D Array): `reward` array of shape (n_samples,)
A reward is given after each action. | 625941b7d99f1b3c44c673c5 |
def get_name(self): <NEW_LINE> <INDENT> raise NotImplementedError() | :returns: the string name of the filesystem | 625941b77047854f462a123b |
def step(self, alive_components, thermals): <NEW_LINE> <INDENT> return self._update_agings(alive_components, thermals) | Increment a single timestep regarding the aging process of the simulation
:param alive_components: 2D numpy boolean array indicating the position of alive components.
:param thermals: 2D numpy float array with the current local thermals at this iteration.
:return: Boolean - indicating if any new failures have occurred (which should be handled). | 625941b70fa83653e4656dea |
def convert_to_dot(self, show_probabilities=True): <NEW_LINE> <INDENT> s = 'digraph DT{\n' <NEW_LINE> s += 'node[fontname="Arial"];\n' <NEW_LINE> s += self._convert_node_to_dot(show_probabilities=show_probabilities) <NEW_LINE> s += '}' <NEW_LINE> return s | Converts a decision tree object to DOT code
**Params**
----------
- `show_probabilities` (boolean) - if this is `True`, probabilities will be displayed in the leafs too
**Returns**
-----------
a string with the dot code for the decision tree | 625941b7d10714528d5ffb0d |
def Encrypt(self): <NEW_LINE> <INDENT> pass | Encrypt(self: FileInfo)
Encrypts a file so that only the account used to encrypt the file can decrypt it. | 625941b721a7993f00bc7b17 |
def test_empty_constructor(self): <NEW_LINE> <INDENT> self.assertEqual(self.f(), 0) <NEW_LINE> self.assertEqual(self.f.size(), 1) <NEW_LINE> self.assertEqual(self.f.emit(), b'\x00') | The no argument constructor is equivalent to 0. | 625941b78e7ae83300e4adf9 |
def set_assertions(self, list_of_z3_assertions: List[BoolRef]) -> None: <NEW_LINE> <INDENT> if self.optional: <NEW_LINE> <INDENT> self.scheduled = Bool("%s_scheduled" % self.name) <NEW_LINE> point_in_past = -self.task_number <NEW_LINE> not_scheduled_assertion = And( self.start == point_in_past, self.end == point_in_past, self.duration == 0, ) <NEW_LINE> self.append_z3_assertion( If(self.scheduled, And(list_of_z3_assertions), not_scheduled_assertion) ) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.append_z3_assertion(And(list_of_z3_assertions)) | Take a list of constraint to satisfy. Create two cases: if the task is scheduled,
nothing is done; if the task is optional, move task to the past | 625941b7eab8aa0e5d26d98c |
def gen_blocks(self, count=None): <NEW_LINE> <INDENT> if not count: <NEW_LINE> <INDENT> count = self._num_blk <NEW_LINE> <DEDENT> for x in range(0, count * 32, 32): <NEW_LINE> <INDENT> buf = self._read(x) <NEW_LINE> yield x, buf | generator that returns consecutive blocks of station memory | 625941b75510c4643540f226 |
def reactivate_post_author(self, request, queryset): <NEW_LINE> <INDENT> for denuncia in queryset: <NEW_LINE> <INDENT> denuncia.post.activate_post_author() | Turn Authors of selected Posts to an active state | 625941b7a8370b77170526ce |
def rSNP(self): <NEW_LINE> <INDENT> return self.rChrom().rSNP() | returns a random 'SNP' from the genome | 625941b7656771135c3eb6a0 |
@must_be_logged_in <NEW_LINE> def dataverse_user_config_get(auth, **kwargs): <NEW_LINE> <INDENT> user_addon = auth.user.get_addon('dataverse') <NEW_LINE> user_has_auth = False <NEW_LINE> if user_addon: <NEW_LINE> <INDENT> user_has_auth = user_addon.has_auth <NEW_LINE> <DEDENT> return { 'result': { 'userHasAuth': user_has_auth, 'urls': { 'create': api_url_for('dataverse_add_user_account'), 'accounts': api_url_for('dataverse_account_list'), }, 'hosts': DEFAULT_HOSTS, }, }, http_status.HTTP_200_OK | View for getting a JSON representation of the logged-in user's
Dataverse user settings. | 625941b71b99ca400220a8de |
def pelllucas(): <NEW_LINE> <INDENT> pelllucases = [2,2] <NEW_LINE> while pelllucases[-1] < 10000: <NEW_LINE> <INDENT> pelllucases.append(pelllucases[-1]*2+pelllucases[-2]) <NEW_LINE> <DEDENT> del pelllucases[-1] <NEW_LINE> return set(pelllucases) | The pell lucas numbers are recursively defined numbers. the series starts with 2 and
2. Each subsequent number is the sum of twice the previous number and the number before
that: 2, 2, 2*2+2=6, 2*6+2=14, 2*14+6=34, and so on. | 625941b723849d37ff7b2ec0 |
def generateData(self): <NEW_LINE> <INDENT> self.cohort.aggregateDataFromSQL(verbose=True) <NEW_LINE> dest = self.createDirectory(base=REPORTDATA) <NEW_LINE> self.cohort.saveDataToDisk(destination=dest) <NEW_LINE> self.freeData() | Generates and saves the cohort data. Calls the :meth:`.aggregateDataFromSQL` method from the :class:`.Cohort` instance passed as argument. The collected data matrices are stored in the :attr:`.Cohort.data` attribute. The data matrices are saved as txt files in the data destination directory. | 625941b74d74a7450ccd3ff0 |
def main(): <NEW_LINE> <INDENT> base_path = 'D:/Transfer/Research/' <NEW_LINE> raw_data_paths = ['Data', 'Data_Ampt', 'Data_Sim'] <NEW_LINE> mix_data_paths = ['Data_Mix', 'Data_Ampt_Mix', 'Data_Sim_Mix'] <NEW_LINE> total_proton_shift = -1 <NEW_LINE> fix = True <NEW_LINE> fix_time = 1640293741 <NEW_LINE> n_fix_files = 0 <NEW_LINE> for data_type, paths in zip(['raw', 'mix'], [raw_data_paths, mix_data_paths]): <NEW_LINE> <INDENT> for data_path in paths: <NEW_LINE> <INDENT> data_full_path = f'{base_path}{data_path}/' <NEW_LINE> for set_dir in os.listdir(data_full_path): <NEW_LINE> <INDENT> if '_resample' in set_dir: <NEW_LINE> <INDENT> set_path = f'{data_full_path}{set_dir}/' <NEW_LINE> print(set_path) <NEW_LINE> for subset_dir in os.listdir(set_path): <NEW_LINE> <INDENT> subset_path = f'{set_path}{subset_dir}/' <NEW_LINE> for energy_dir in os.listdir(subset_path): <NEW_LINE> <INDENT> energy_path = f'{subset_path}{energy_dir}/' <NEW_LINE> for file_name in os.listdir(energy_path): <NEW_LINE> <INDENT> if 'ratios_divisions_' in file_name: <NEW_LINE> <INDENT> file_path = f'{energy_path}{file_name}' <NEW_LINE> if os.path.getmtime(file_path) < fix_time: <NEW_LINE> <INDENT> n_fix_files += 1 <NEW_LINE> if fix: <NEW_LINE> <INDENT> fix_file(file_path, data_type, total_proton_shift) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> <DEDENT> <DEDENT> <DEDENT> <DEDENT> <DEDENT> <DEDENT> <DEDENT> print(f'Number of fix files: {n_fix_files}') <NEW_LINE> print('donzo') | Due to bug all total protons were shifted by 1 (except default raw dists). Go through resample files and correct.
:return: | 625941b7b830903b967e9745 |
def set_children(self, child_nodes): <NEW_LINE> <INDENT> if not self.children: <NEW_LINE> <INDENT> self.children = [] <NEW_LINE> <DEDENT> for child in child_nodes: <NEW_LINE> <INDENT> self.children.append(child) | Set the children of this tree node | 625941b73617ad0b5ed67d2d |
def test_post_with_interdiff(self): <NEW_LINE> <INDENT> comment_text = "Test diff comment" <NEW_LINE> review_request, filediff = self._create_diff_review_request() <NEW_LINE> interdiffset = self.create_diffset(review_request) <NEW_LINE> interfilediff = self.create_filediff(interdiffset) <NEW_LINE> review = self.create_review(review_request, user=self.user) <NEW_LINE> rsp = self.api_post( get_review_diff_comment_list_url(review), { 'filediff_id': filediff.pk, 'interfilediff_id': interfilediff.pk, 'issue_opened': True, 'first_line': 1, 'num_lines': 5, 'text': comment_text, }, expected_mimetype=review_diff_comment_item_mimetype) <NEW_LINE> self.assertEqual(rsp['stat'], 'ok') <NEW_LINE> self.assertIn('diff_comment', rsp) <NEW_LINE> self.assertEqual(rsp['diff_comment']['text'], comment_text) <NEW_LINE> comment = Comment.objects.get(pk=rsp['diff_comment']['id']) <NEW_LINE> self.assertEqual(comment.filediff_id, filediff.pk) <NEW_LINE> self.assertEqual(comment.interfilediff_id, interfilediff.pk) | Testing the
POST review-requests/<id>/reviews/<id>/diff-comments/ API
with interdiff | 625941b763b5f9789fde6f13 |
def __init__(self, board_area, markers, stability_level, reporter_id, callback_function): <NEW_LINE> <INDENT> super(FindMarkersReporter, self).__init__(reporter_id, callback_function) <NEW_LINE> self.board_area = board_area <NEW_LINE> self.markers = markers <NEW_LINE> self.stability_level = stability_level | :param board_area: Board area
:param markers: Markers to search for
:param stability_level Minimum board area stability level before searching for markers | 625941b7a79ad161976cbf73 |
def assign_crew(starship, crew): <NEW_LINE> <INDENT> for key,value in crew.items(): <NEW_LINE> <INDENT> starship[key] = value <NEW_LINE> <DEDENT> return starship | This function assigns crew members to a starship.
Parameters:
starship (dict): source entity.
crew (dict): source entity.
Returns:
updated starship with one or more new crew member key-value pairs added to the caller. | 625941b70a366e3fb873e645 |
def __init__(self, instance, prop_type, networked): <NEW_LINE> <INDENT> self._instance = instance <NEW_LINE> self._prop_type = prop_type <NEW_LINE> self._networked = networked | Store the base attributes on instantiation. | 625941b755399d3f055884e1 |
def main(): <NEW_LINE> <INDENT> os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'pythonDjango.settings') <NEW_LINE> try: <NEW_LINE> <INDENT> from django.core.management import execute_from_command_line <NEW_LINE> <DEDENT> except ImportError as exc: <NEW_LINE> <INDENT> raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc <NEW_LINE> <DEDENT> execute_from_command_line(sys.argv) | Run administrative tasks. | 625941b74d74a7450ccd3ff1 |
def BindCallbacks(self): <NEW_LINE> <INDENT> callbacks = [ (wx.EVT_CLOSE, [ (ID_MAIN_FRAME, self.OnClose) ]), (wx.EVT_MENU, [ (wx.ID_EXIT, self.OnExit), (wx.ID_OPEN, self.OnOpen), (wx.ID_SAVE, self.OnSave), (wx.ID_ABOUT, self.OnAbout), ]), (wx.EVT_BUTTON, [ (ID_EXPOSURE_ADD, self.OnAddExposures), (ID_EXPOSURE_DEL, self.OnDeleteSelected), ]), (wx.EVT_SPINCTRL, [ (ID_INDIVIDUAL_MIN, self.OnIndividualMin), (ID_INDIVIDUAL_MAX, self.OnIndividualMax), (ID_INDIVIDUAL_EXP, self.OnIndividualExp), (ID_CIRCLE_RADIUS, self.OnCircleRadius), ]), (wx.EVT_RADIOBOX, [ (ID_SELECT_MODE, self.OnSelectionMode), ]), (EVT_COORDS, [ (ID_EXPOSURE_VIEW, self.OnImageCoords), ]), ] <NEW_LINE> for event, bindings in callbacks: <NEW_LINE> <INDENT> for id, callback in bindings: <NEW_LINE> <INDENT> self.view.Bind(event, callback, id=id) <NEW_LINE> <DEDENT> <DEDENT> self.view.image_view.Bind(wx.EVT_KEY_DOWN, self.OnImageKeyDown) | Connect up event handlers | 625941b7596a8972360898f8 |
def lnprob(self, tipmag, alphargb, alphaother, fracother): <NEW_LINE> <INDENT> return self._lnprob_func(self.magdata, tipmag, alphargb, alphaother, fracother) | This does *not* sum up the lnprobs - that goes in __call__. Instead it
gives the lnprob per data point | 625941b7462c4b4f79d1d4fe |
def show_kernels_dense(weights, name=None): <NEW_LINE> <INDENT> fig, axs = plt.subplots(1, 1, figsize=FIG_SIZE) <NEW_LINE> axs.imshow(weights, cmap='gray') <NEW_LINE> axs.axis('off') <NEW_LINE> axs.set_yticks([]) <NEW_LINE> axs.set_xticks([]) <NEW_LINE> save_figure(fig, name) | 2 dimensional images of dense weights. | 625941b7e5267d203edcdacf |
def test_long_line_include_rule(self): <NEW_LINE> <INDENT> text = ( 'x' * 90 + '\n' + '\tthis line has a tab' ) <NEW_LINE> m = linkwort.lint.MarkdownLint(include_rules=['hard-tabs']) <NEW_LINE> v = m.parse(text) <NEW_LINE> assert len(v) == 1 <NEW_LINE> assert v[0].ruleid == 'hard-tabs' | test that when we include a rule, only that rule is checked | 625941b77cff6e4e811177b4 |
def get_scrambled_order(total_lines): <NEW_LINE> <INDENT> scrambled_order = [[i] for i in range(total_lines)] <NEW_LINE> random.shuffle(scrambled_order) <NEW_LINE> return [item[0] for item in scrambled_order] | (int) --> array
Return an array containing the numbers 0 to total_lines - 1 in random order | 625941b7287bf620b61d389d |
@app.route('/restaurant/<int:restaurant_id>/<int:menu_id>/edit/', methods=['GET', 'POST']) <NEW_LINE> def editMenuItem(restaurant_id, menu_id): <NEW_LINE> <INDENT> restaurant = session.query(Restaurant).filter_by(id = restaurant_id).one() <NEW_LINE> menu_item = session.query(MenuItem).filter_by(id = menu_id).one() <NEW_LINE> if request.method == 'POST': <NEW_LINE> <INDENT> data = ({'name': request.form['name'], 'description': request.form['description'], 'price': request.form['price']} ) <NEW_LINE> session.query(MenuItem).filter_by(id=menu_id).update(data) <NEW_LINE> session.commit() <NEW_LINE> flash('Congratulations! Menu Item Successfully Edited!') <NEW_LINE> return redirect(url_for('menu', restaurant_id = restaurant.id)) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return render_template('edit_menu_item.html', menu_item = menu_item, restaurant = restaurant) | Form to edit a menu item, and logic to POST updates to db | 625941b7de87d2750b85fbbc |
def loglike(self, params): <NEW_LINE> <INDENT> r <NEW_LINE> return 0.5*(-np.sum((self.y - self.X@params)**2) - self.m*self.log2pi) | ... | 625941b7a4f1c619b28afe70 |
def attention(decoder_state, coverage=None): <NEW_LINE> <INDENT> with variable_scope.variable_scope("Attention"): <NEW_LINE> <INDENT> decoder_features = linear(decoder_state, attention_vec_size, True) <NEW_LINE> decoder_features = tf.expand_dims(tf.expand_dims(decoder_features, 1), 1) <NEW_LINE> def masked_attention(e): <NEW_LINE> <INDENT> attn_dist = nn_ops.softmax(e) <NEW_LINE> attn_dist *= enc_padding_mask <NEW_LINE> masked_sums = tf.reduce_sum(attn_dist, axis=1) <NEW_LINE> return attn_dist / tf.reshape(masked_sums, [-1, 1]) <NEW_LINE> <DEDENT> if use_coverage and coverage is not None: <NEW_LINE> <INDENT> coverage_features = nn_ops.conv2d(coverage, w_c, [1, 1, 1, 1], "SAME") <NEW_LINE> e = math_ops.reduce_sum(v * math_ops.tanh(encoder_features + decoder_features + coverage_features), [2, 3]) <NEW_LINE> attn_dist = masked_attention(e) <NEW_LINE> coverage += array_ops.reshape(attn_dist, [batch_size, -1, 1, 1]) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> e = math_ops.reduce_sum(v * math_ops.tanh(encoder_features + decoder_features), [2, 3]) <NEW_LINE> attn_dist = masked_attention(e) <NEW_LINE> if use_coverage: <NEW_LINE> <INDENT> coverage = tf.expand_dims(tf.expand_dims(attn_dist, 2), 2) <NEW_LINE> <DEDENT> <DEDENT> context_vector = math_ops.reduce_sum( array_ops.reshape(attn_dist, [batch_size, -1, 1, 1]) * encoder_states, [1, 2]) <NEW_LINE> context_vector = array_ops.reshape(context_vector, [-1, attn_size]) <NEW_LINE> <DEDENT> return context_vector, attn_dist, coverage | Calculate the context vector and attention distribution from the decoder state.
Args:
decoder_state: state of the decoder
coverage: Optional. Previous timestep's coverage vector, shape (batch_size, attn_len, 1, 1).
Returns:
context_vector: weighted sum of encoder_states
attn_dist: attention distribution
coverage: new coverage vector. shape (batch_size, attn_len, 1, 1) | 625941b792d797404e303fb8 |
@commandWrap <NEW_LINE> def AppendToHairCache(*args, **kwargs): <NEW_LINE> <INDENT> return cmds.AppendToHairCache(*args, **kwargs) | :rtype: list|str|DagNode|AttrObject|ArrayAttrObject|Components1Base | 625941b7d53ae8145f87a0a5 |
def get_last_sync(self, device_id): <NEW_LINE> <INDENT> self.log.debug('get-last-sync', device_id=device_id) <NEW_LINE> try: <NEW_LINE> <INDENT> device_proxy = self._device_proxy(device_id) <NEW_LINE> data = device_proxy.get(depth=0) <NEW_LINE> return self._string_to_time(data.last_sync_time) <NEW_LINE> <DEDENT> except KeyError: <NEW_LINE> <INDENT> return None <NEW_LINE> <DEDENT> except Exception as e: <NEW_LINE> <INDENT> self.log.exception('get-last-sync-exception', e=e) <NEW_LINE> raise | Get the Last Sync Time saved to the database for a device
:param device_id: (str) ONU Device ID
:return: (int) The Value or None if not found | 625941b7d99f1b3c44c673c6 |
def get_hosts(self): <NEW_LINE> <INDENT> return [x for x in self.node if self.node[x]['type'] == 'host'] | Returns all the nodes that are hosts | 625941b724f1403a92600998 |
def __repr__(self) -> str: <NEW_LINE> <INDENT> return self.to_string("%s:%s" % (self.server, self.port)) | String representation | 625941b7d486a94d0b98df7d |
def Vector_generate(prop): <NEW_LINE> <INDENT> return [[Vector(v) for v in obj] for obj in prop] | return a list of Vector() objects from a standard Sverchok data | 625941b70383005118ecf413 |
def energy(self, mass = 100): <NEW_LINE> <INDENT> energy = [self.proteins, self.fats, self.carbs, self.calories] <NEW_LINE> energy = map(lambda x: x / 100 * mass, energy) <NEW_LINE> return energy | Return list with proteins, fats, carbs and calories in amount(gr) of product | 625941b74527f215b584c28a |
def twoSum(self, nums, target): <NEW_LINE> <INDENT> hash_map = {} <NEW_LINE> for idx, num in enumerate(nums): <NEW_LINE> <INDENT> if target - num in hash_map.keys(): <NEW_LINE> <INDENT> return [hash_map[target - num], idx] <NEW_LINE> <DEDENT> hash_map[num] = idx | Parameters
----------
nums: List[int]
target: int
Returns
-------
List[int]
⇨ return a list including the numbers' indexes which the total is target. | 625941b7d4950a0f3b08c189 |
def __call__(self, trainer): <NEW_LINE> <INDENT> reporter = reporter_module.Reporter() <NEW_LINE> if hasattr(self, 'name'): <NEW_LINE> <INDENT> prefix = self.name + '/' <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> prefix = '' <NEW_LINE> <DEDENT> for name, target in six.iteritems(self._targets): <NEW_LINE> <INDENT> reporter.add_observer(prefix + name, target) <NEW_LINE> reporter.add_observers(prefix + name, target.namedlinks(skipself=True)) <NEW_LINE> <DEDENT> with reporter: <NEW_LINE> <INDENT> self.patch_image_dir = os.path.join(trainer.out, self.layer_name) <NEW_LINE> if not os.path.exists(self.patch_image_dir): <NEW_LINE> <INDENT> os.makedirs(self.patch_image_dir) <NEW_LINE> <DEDENT> result, locs, bounds = self.evaluate() <NEW_LINE> outputdir = os.path.join(trainer.out, 'features') <NEW_LINE> if not os.path.exists(outputdir): <NEW_LINE> <INDENT> os.makedirs(outputdir) <NEW_LINE> <DEDENT> if locs: <NEW_LINE> <INDENT> self.save_tuple_list(os.path.join(outputdir, 'maxloc_' + self.layer_name + '.txt'), locs) <NEW_LINE> <DEDENT> if bounds: <NEW_LINE> <INDENT> self.save_tuple_list(os.path.join(outputdir, 'maxbounds_' + self.layer_name + '.txt'), bounds) <NEW_LINE> <DEDENT> <DEDENT> reporter_module.report(result) <NEW_LINE> return result | override method of extensions.Evaluator. | 625941b7d8ef3951e324336c |
def _get_connection(self): <NEW_LINE> <INDENT> if not hasattr(self, 'ldap'): <NEW_LINE> <INDENT> self.ldap = ldap <NEW_LINE> <DEDENT> if not hasattr(self, '_connection'): <NEW_LINE> <INDENT> self._connection = None <NEW_LINE> <DEDENT> if self._connection is None: <NEW_LINE> <INDENT> self._connection = self.ldap.initialize(settings.ldap_settings.AUTH_LDAP_SERVER_URI) <NEW_LINE> for opt, value in settings.ldap_settings.AUTH_LDAP_CONNECTION_OPTIONS.iteritems(): <NEW_LINE> <INDENT> self._connection.set_option(opt, value) <NEW_LINE> <DEDENT> if settings.ldap_settings.AUTH_LDAP_START_TLS: <NEW_LINE> <INDENT> self._connection.start_tls_s() <NEW_LINE> <DEDENT> <DEDENT> return self._connection | Returns our cached LDAPObject, which may or may not be bound. | 625941b7b5575c28eb68de2c |
def random_erasing(self, probability, rectangle_area): <NEW_LINE> <INDENT> if not 0 < probability <= 1: <NEW_LINE> <INDENT> raise ValueError(Pipeline._probability_error_text) <NEW_LINE> <DEDENT> elif not 0.1 < rectangle_area <= 1: <NEW_LINE> <INDENT> raise ValueError("The rectangle_area must be between 0.1 and 1.") <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.add_operation(RandomErasing(probability=probability, rectangle_area=rectangle_area)) | Work in progress. This operation performs a Random Erasing operation,
as described in
`https://arxiv.org/abs/1708.04896 <https://arxiv.org/abs/1708.04896>`_
by Zhong et al.
Its purpose is to make models robust to occlusion, by randomly
replacing rectangular regions with random pixel values.
For greyscale images the random pixels values will also be greyscale,
and for RGB images the random pixels values will be in RGB.
This operation is subject to change, the original work describes
several ways of filling the random regions, including a random
solid colour or greyscale value. Currently this operations uses
the method which yielded the best results in the tests performed
by Zhong et al.
:param probability: A value between 0 and 1 representing the
probability that the operation should be performed.
:param rectangle_area: The percentage area of the image to occlude
with the random rectangle, between 0.1 and 1.
:return: None | 625941b776e4537e8c3514a6 |
def __init__( self, *, enabled: bool, encryption_settings: Optional[List["EncryptionSettingsElement"]] = None, encryption_settings_version: Optional[str] = None, **kwargs ): <NEW_LINE> <INDENT> super(EncryptionSettingsCollection, self).__init__(**kwargs) <NEW_LINE> self.enabled = enabled <NEW_LINE> self.encryption_settings = encryption_settings <NEW_LINE> self.encryption_settings_version = encryption_settings_version | :keyword enabled: Required. Set this flag to true and provide DiskEncryptionKey and optional
KeyEncryptionKey to enable encryption. Set this flag to false and remove DiskEncryptionKey and
KeyEncryptionKey to disable encryption. If EncryptionSettings is null in the request object,
the existing settings remain unchanged.
:paramtype enabled: bool
:keyword encryption_settings: A collection of encryption settings, one for each disk volume.
:paramtype encryption_settings:
list[~azure.mgmt.compute.v2019_03_01.models.EncryptionSettingsElement]
:keyword encryption_settings_version: Describes what type of encryption is used for the disks.
Once this field is set, it cannot be overwritten. '1.0' corresponds to Azure Disk Encryption
with AAD app.'1.1' corresponds to Azure Disk Encryption.
:paramtype encryption_settings_version: str | 625941b78e7ae83300e4adfa |
def IsLicensedForProduct(self): <NEW_LINE> <INDENT> return super(IGPToolExtensionGen, self).IsLicensedForProduct() | Method IGPToolExtensionGen.IsLicensedForProduct
OUTPUT
IsLicensed : VARIANT_BOOL* | 625941b7566aa707497f43a9 |
def cleanup(self) -> None: <NEW_LINE> <INDENT> if self._homedir is not None and not self._failed: <NEW_LINE> <INDENT> shutil.rmtree(str(self._homedir)) | Clean up the temporary home directory for asciidoc. | 625941b738b623060ff0ac1e |
def add_arguments(self, parser): <NEW_LINE> <INDENT> parser.add_argument('schema_name', nargs='+', type=str) | Run manually in console:
python manage.py hotfix_15 "london" | 625941b7627d3e7fe0d68c7d |
def numberOfBoomerangs3(self, points): <NEW_LINE> <INDENT> if len(points) < 3: <NEW_LINE> <INDENT> return 0 <NEW_LINE> <DEDENT> res = 0 <NEW_LINE> for i in range(len(points)): <NEW_LINE> <INDENT> pDict = {} <NEW_LINE> for j in range(len(points)): <NEW_LINE> <INDENT> if j == i: <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> dis = pow(points[i][0] - points[j][0], 2) + pow(points[i][1] - points[j][1], 2) <NEW_LINE> key = str(dis) <NEW_LINE> if key in pDict: <NEW_LINE> <INDENT> pDict[key] += 1 <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> pDict[key] = 1 <NEW_LINE> <DEDENT> <DEDENT> for p in pDict: <NEW_LINE> <INDENT> if pDict[p] > 1: <NEW_LINE> <INDENT> res += pDict[p] * (pDict[p] - 1) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> return res | :type points: List[List[int]]
:rtype: int | 625941b72ae34c7f2600cf61 |
def contains_prop(self, name): <NEW_LINE> <INDENT> new_list = [x for x in self._props if x.get_name() == name] <NEW_LINE> if(len(new_list) == 0): <NEW_LINE> <INDENT> return None <NEW_LINE> <DEDENT> return new_list[0] | Checks if the block contains the property with
the following name. If it does return the property | 625941b7dc8b845886cb5363 |
def _lineToPointList(self, polyline): <NEW_LINE> <INDENT> return [polyline[i:i + self.INTERPOLATION + 1] for i in range(0, len(polyline), self.INTERPOLATION)][:-1] | convert to pointList from polyline. pointList is points list between anchor to anchor
The number of elements in pointList is INTERPOLATION + 1 because each anchor overlaps. | 625941b715baa723493c3da1 |
def get( self, banana_id=None ): <NEW_LINE> <INDENT> if not banana_id: <NEW_LINE> <INDENT> self.write( { "error": "Missing argument: id", "errorCode": 400, } ) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> conn = self.connect_db() <NEW_LINE> try: <NEW_LINE> <INDENT> with conn.cursor() as cursor: <NEW_LINE> <INDENT> sql = 'SELECT * FROM `bananas` WHERE `id` = %s' <NEW_LINE> qty = cursor.execute(sql, banana_id) <NEW_LINE> query = cursor.fetchone() <NEW_LINE> <DEDENT> if not qty: <NEW_LINE> <INDENT> raise tornado.web.HTTPError(404) <NEW_LINE> <DEDENT> <DEDENT> except tornado.web.HTTPError: <NEW_LINE> <INDENT> self.write( { "error": "This banana doesn't exist", "errorCode": 404 } ) <NEW_LINE> <DEDENT> except Exception as e: <NEW_LINE> <INDENT> self.write( { "error": "Couldn't query Bananas: " + str(e), "errorCode": 500 } ) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.write( { "id": query[0], "color": query[1], "size": query[2], "price": query[3], } ) <NEW_LINE> <DEDENT> finally: <NEW_LINE> <INDENT> conn.close() | Get a single banana
Get a single banana identified by the mandatory banana_id param
Handle common errors such as banana_id arg missing, not
existing or DB errors.
Args:
INT banana_id: mandatory to identify which banana to return
Returns:
A dict describing all data (id, color, size, price) related
to the chosen banana.
Example (banana_id = 1):
{
"id": 1,
"color": "yellow",
"size": 10.5,
"price": 4.99,
}
If banana_id arg is missing, doesn't exist in the DB, or
there is an issue to query it from the DB, it will return a
dict describing an error instead.
Example (doesn't exist in the DB):
{
"error": "This banana doesn't exist",
"errorCode": 404
} | 625941b791f36d47f21ac325 |
def bloated(self,material,spacing=None): <NEW_LINE> <INDENT> if spacing is None: <NEW_LINE> <INDENT> spacing = material_spacing[material] <NEW_LINE> <DEDENT> x = self.x - spacing <NEW_LINE> y = self.y - spacing <NEW_LINE> w = self.w + 2 * spacing <NEW_LINE> h = self.h + 2 * spacing <NEW_LINE> return Rect(x,y,w,h,material) | Returns bloated rectangle (with spacing)
| 625941b7c432627299f04a73 |
def dan_acf(x, axis=0, fast=False): <NEW_LINE> <INDENT> x = np.atleast_1d(x) <NEW_LINE> m = [slice(None), ] * len(x.shape) <NEW_LINE> if fast: <NEW_LINE> <INDENT> n = int(2**np.floor(np.log2(x.shape[axis]))) <NEW_LINE> m[axis] = slice(0, n) <NEW_LINE> x = x <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> n = x.shape[axis] <NEW_LINE> <DEDENT> f = np.fft.fft(x-np.mean(x, axis=axis), n=2*n, axis=axis) <NEW_LINE> m[axis] = slice(0, n) <NEW_LINE> acf = np.fft.ifft(f * np.conjugate(f), axis=axis)[m].real <NEW_LINE> m[axis] = 0 <NEW_LINE> return acf / acf[m] | Estimate the autocorrelation function of a time series using the FFT.
:param x:
The time series. If multidimensional, set the time axis using the
``axis`` keyword argument and the function will be computed for every
other axis.
:param axis: (optional)
The time axis of ``x``. Assumed to be the first axis if not specified.
:param fast: (optional)
If ``True``, only use the largest ``2^n`` entries for efficiency.
(default: False) | 625941b7d7e4931a7ee9dd4b |
def infer(self, patternNZ, actValueList): <NEW_LINE> <INDENT> if self.steps[0] == 0 or actValueList is None: <NEW_LINE> <INDENT> defaultValue = 0 <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> defaultValue = actValueList[0] <NEW_LINE> <DEDENT> actValues = [x if x is not None else defaultValue for x in self._actualValues] <NEW_LINE> retval = {"actualValues": actValues} <NEW_LINE> for nSteps in self.steps: <NEW_LINE> <INDENT> predictDist = self.inferSingleStep(patternNZ, self._weightMatrix[nSteps]) <NEW_LINE> retval[nSteps] = predictDist <NEW_LINE> <DEDENT> return retval | Return the inference value from one input sample. The actual
learning happens in compute().
:param patternNZ: list of the active indices from the output below
:param classification: dict of the classification information:
bucketIdx: index of the encoder bucket
actValue: actual value going into the encoder
:return: dict containing inference results, one entry for each step in
self.steps. The key is the number of steps, the value is an
array containing the relative likelihood for each bucketIdx
starting from bucketIdx 0.
for example:
.. code-block:: python
{'actualValues': [0.0, 1.0, 2.0, 3.0]
1 : [0.1, 0.3, 0.2, 0.7]
4 : [0.2, 0.4, 0.3, 0.5]} | 625941b7187af65679ca4f4c |
def execute(self, GFDI, WindGust,Wind, RH, Curing, T, GridTimeRange,editArea, varDict): <NEW_LINE> <INDENT> myTimeRange=GridTimeRange <NEW_LINE> tc = 5.0/9.0*(T-32.0) <NEW_LINE> windSustained = self.getGrids("Fcst","Wind","SFC", myTimeRange, noDataError=0) <NEW_LINE> windGust = self.getGrids("Fcst","WindGust","SFC", myTimeRange, noDataError=0) <NEW_LINE> wspd_kph = (windSustained[0]+windGust)* 1.85325*0.5 <NEW_LINE> Curing = self.getGrids("Fcst", "Curing", "SFC", myTimeRange, noDataError=0) <NEW_LINE> rh = self.getGrids("Fcst", "RH", "SFC", myTimeRange, noDataError=0) <NEW_LINE> GFDI = pow(10,(0.009254 -0.004096*pow((100.0-Curing),1.536) +0.01201*tc +0.2789*pow(wspd_kph,0.5) -0.09577*pow(rh,0.5) )) <NEW_LINE> GFDI = around(GFDI,0) <NEW_LINE> GFDI = clip(GFDI,0.1,150.0) <NEW_LINE> return GFDI | Calculates the GFDI based on T, RH, Wind and Curing grids | 625941b750485f2cf553cbc8 |
def create_augmentation_func(**kwargs): <NEW_LINE> <INDENT> def augmentation_func(X): <NEW_LINE> <INDENT> return random_transformations(X=X, **kwargs) <NEW_LINE> <DEDENT> return augmentation_func | Args:
shadow: (tuple of two floats) (min, max) shadow intensity
shadow_file: (str) Path fo image file containing shadow pattern
shadow_crop_range: (tuple of two floats) min and max proportion of
shadow image to take crop from.
shadow_crop_range: ()(default=(0.02, 0.25))
rotate: (int)(default=180)
Max angle to rotate in each direction
crop: (float)(default=0.5)
lr_flip: (bool)(default=True)
tb_flip: (bool)(default=True)
brightness: ()(default=) (std, min, max)
contrast: ()(default=) (std, min, max)
blur: ()(default=3)
noise: ()(default=10)
resampling:PIL.Image.BICUBIC | 625941b7377c676e91271fda |
def __init__(self, api_key, client_key, platform, *access_token, **kwargs): <NEW_LINE> <INDENT> self.headers = {'apikey':api_key,'clientkey':client_key,'platform':platform} <NEW_LINE> if access_token: <NEW_LINE> <INDENT> self.headers['token'] = access_token[0] <NEW_LINE> <DEDENT> if kwargs.get('serverRoot'): <NEW_LINE> <INDENT> self.serverRoot = kwargs.get('serverRoot') <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.serverRoot = 'https://wordhopapi.herokuapp.com' <NEW_LINE> <DEDENT> if kwargs.get('socketServer'): <NEW_LINE> <INDENT> self.socketServer = kwargs.get('socketServer') <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.socketServer = 'https://wordhop-socket-server.herokuapp.com' <NEW_LINE> <DEDENT> if kwargs.get('path'): <NEW_LINE> <INDENT> self.path = kwargs.get('path') <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.path = '/api/v1/' <NEW_LINE> <DEDENT> self.apiUrl = self.serverRoot + self.path <NEW_LINE> self.platform = platform <NEW_LINE> self.clientkey = client_key <NEW_LINE> self.start() | @required:
api_key
client_key
platform
@optional:
access_token
kwargs | 625941b7009cb60464c631ec |
def load_data(img_dir, valid_split_size): <NEW_LINE> <INDENT> data_df = pd.read_csv(os.path.join(img_dir, 'driving_log.csv')) <NEW_LINE> X = data_df[['center', 'left', 'right']].values <NEW_LINE> y = data_df['steering'].values <NEW_LINE> X, y = shuffle(X, y) <NEW_LINE> X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=valid_split_size, random_state=0) <NEW_LINE> return X_train, X_valid, y_train, y_valid | Load training data and split it into training and validation set | 625941b726068e7796caeb07 |
def random_element(self, degree=2, *args, **kwds): <NEW_LINE> <INDENT> if isinstance(degree, (list, tuple)): <NEW_LINE> <INDENT> if len(degree) != 2: <NEW_LINE> <INDENT> raise ValueError("degree argument must be an integer or a tuple of 2 integers (min_degree, max_degree)") <NEW_LINE> <DEDENT> if degree[0] > degree[1]: <NEW_LINE> <INDENT> raise ValueError("minimum degree must be less or equal than maximum degree") <NEW_LINE> <DEDENT> degree = randint(*degree) <NEW_LINE> <DEDENT> R = self.base_ring() <NEW_LINE> return self([R.random_element(*args, **kwds) for _ in xrange(degree+1)]) | Return a random polynomial.
INPUT:
- ``degree`` - Integer with degree (default: 2)
or a tuple of integers with minimum and maximum degrees
- ``*args, **kwds`` - Passed on to the ``random_element`` method for
the base ring
OUTPUT:
- Polynomial such that the coefficients of `x^i`, for `i` up to
``degree``, are random elements from the base ring, randomized
subject to the arguments ``*args`` and ``**kwds``
EXAMPLES::
sage: R.<x> = ZZ[]
sage: R.random_element(10, 5,10)
9*x^10 + 8*x^9 + 6*x^8 + 8*x^7 + 8*x^6 + 9*x^5 + 8*x^4 + 8*x^3 + 6*x^2 + 8*x + 8
sage: R.random_element(6)
x^6 - 3*x^5 - x^4 + x^3 - x^2 + x + 1
sage: R.random_element(6)
-2*x^5 + 2*x^4 - 3*x^3 + 1
sage: R.random_element(6)
x^4 - x^3 + x - 2
If a tuple of two integers is given for the degree argument, a random
integer will be chosen between the first and second element of the
tuple as the degree::
sage: R.random_element(degree=(0,8))
2*x^7 - x^5 + 4*x^4 - 5*x^3 + x^2 + 14*x - 1
sage: R.random_element(degree=(0,8))
-2*x^3 + x^2 + x + 4
TESTS::
sage: R.random_element(degree=[5])
Traceback (most recent call last):
...
ValueError: degree argument must be an integer or a tuple of 2 integers (min_degree, max_degree)
sage: R.random_element(degree=(5,4))
Traceback (most recent call last):
...
ValueError: minimum degree must be less or equal than maximum degree | 625941b78c3a8732951581ed |
def _measurement_start_cb(self, sender): <NEW_LINE> <INDENT> pass | Things to do at starting of measurement | 625941b7ad47b63b2c509db9 |
def poke_watchdog(self): <NEW_LINE> <INDENT> logging.debug("Poking watchdog") <NEW_LINE> self.fd.write("\n") <NEW_LINE> self.fd.flush() | Write something to the watchdog file. | 625941b74c3428357757c15a |
def nLLeval(ldelta, Uy, S, REML=True): <NEW_LINE> <INDENT> n_s = Uy.shape[0] <NEW_LINE> delta = scipy.exp(ldelta) <NEW_LINE> Sd = S + delta <NEW_LINE> ldet = scipy.sum(scipy.log(Sd)) <NEW_LINE> Sdi = 1.0 / Sd <NEW_LINE> Uy = Uy.flatten() <NEW_LINE> ss = 1. / n_s * (Uy * Uy * Sdi).sum() <NEW_LINE> nLL = 0.5 * (n_s * scipy.log(2.0 * scipy.pi) + ldet + n_s + n_s * scipy.log(ss)) <NEW_LINE> if REML: <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> return nLL | evaluate the negative log likelihood of a random effects model:
nLL = 1/2(n_s*log(2pi) + logdet(K) + 1/ss * y^T(K + deltaI)^{-1}y,
where K = USU^T.
Uy: transformed outcome: n_s x 1
S: eigenvectors of K: n_s
ldelta: log-transformed ratio sigma_gg/sigma_ee | 625941b7d99f1b3c44c673c7 |
def set_application_config(self, release): <NEW_LINE> <INDENT> version = 'v{}'.format(release.version) <NEW_LINE> try: <NEW_LINE> <INDENT> labels = { 'version': version, 'type': 'env' } <NEW_LINE> secrets_env = {} <NEW_LINE> for key, value in self._build_env_vars(release).items(): <NEW_LINE> <INDENT> secrets_env[key.lower().replace('_', '-')] = str(value) <NEW_LINE> <DEDENT> secrets_env = OrderedDict(sorted(secrets_env.items(), key=lambda t: t[0])) <NEW_LINE> secret_name = "{}-{}-env".format(self.id, version) <NEW_LINE> self._scheduler.secret.get(self.id, secret_name) <NEW_LINE> <DEDENT> except KubeHTTPException: <NEW_LINE> <INDENT> self._scheduler.secret.create(self.id, secret_name, secrets_env, labels=labels) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self._scheduler.secret.update(self.id, secret_name, secrets_env, labels=labels) | Creates the application config as a secret in Kubernetes and
updates it if it already exists | 625941b730c21e258bdfa2cc |
def setHeliocentricTextFlag(self, flag): <NEW_LINE> <INDENT> self.showHeliocentricTextFlag = flag | Sets the flag that indicates that the planet geocentric
longitude movement should be measured, where retrograde
movements count as negative.
Arguments:
flag - bool value for the enabled flag. | 625941b77b25080760e3928a |
def setContent(self, list, index): <NEW_LINE> <INDENT> self._list = list <NEW_LINE> self._index = index <NEW_LINE> self._displayItem(self._list[self._index]) | Set the content and the displayed index
Arguments
list -- a list containing the content
index -- the currently active index | 625941b799fddb7c1c9de1c3 |
def __ne__(self, other): <NEW_LINE> <INDENT> if not isinstance(other, NewSOROrder): <NEW_LINE> <INDENT> return True <NEW_LINE> <DEDENT> return self.to_dict() != other.to_dict() | Returns true if both objects are not equal | 625941b74428ac0f6e5ba621 |
def led_off(self, id): <NEW_LINE> <INDENT> self.blinker_off(id) | | Turns *OFF* one of the 2 red blinkers that `GoPiGo3`_ has.
| The same as :py:meth:`~easygopigo3.EasyGoPiGo3.blinker_off`.
:param int|str id: **0** / **1** for the right / left led or string literals can be used : ``"right"`` and ``"left"``. | 625941b7460517430c393fbf |
def getRandom(self): <NEW_LINE> <INDENT> idx = random.randint(0, self.len) <NEW_LINE> return self.l[idx] | Get a random element from the set.
:rtype: int | 625941b7b57a9660fec336af |
def __eq__(self, other): <NEW_LINE> <INDENT> if not isinstance(other, FirewallStatus): <NEW_LINE> <INDENT> return False <NEW_LINE> <DEDENT> return self.__dict__ == other.__dict__ | Returns true if both objects are equal | 625941b7004d5f362079a167 |
def __init__(self): <NEW_LINE> <INDENT> self.swagger_types = { 'phy_identifier': 'int', 'is_valid': 'bool', 'current_speed': 'str', 'maximum_speed': 'str', 'error_counts': 'SasPhyErrorCounts' } <NEW_LINE> self.attribute_map = { 'phy_identifier': 'phyIdentifier', 'is_valid': 'isValid', 'current_speed': 'currentSpeed', 'maximum_speed': 'maximumSpeed', 'error_counts': 'errorCounts' } <NEW_LINE> self._phy_identifier = None <NEW_LINE> self._is_valid = None <NEW_LINE> self._current_speed = None <NEW_LINE> self._maximum_speed = None <NEW_LINE> self._error_counts = None | SasPhyData - a model defined in Swagger
:param dict swaggerTypes: The key is attribute name
and the value is attribute type.
:param dict attributeMap: The key is attribute name
and the value is json key in definition. | 625941b72c8b7c6e89b355f3 |
def inorder_print_tree(self): <NEW_LINE> <INDENT> if (self.left != None): <NEW_LINE> <INDENT> self.left.inorder_print_tree() <NEW_LINE> <DEDENT> self.print_node() <NEW_LINE> if (self.right != None): <NEW_LINE> <INDENT> self.right.inorder_print_tree() | Print tree content inorder | 625941b7091ae35668666d95 |
def set(self, key: str, value: Any) -> None: <NEW_LINE> <INDENT> self._data[key] = value | Sets key and value in the data set.
Args:
key: The key of the data set value.
value: The data set value. | 625941b721bff66bcd684785 |
def prepare_network_operation(vca_client, operation): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> gateway = get_gateway( vca_client, ctx.target.node.properties['nat']['edge_gateway']) <NEW_LINE> public_ip = _obtain_public_ip(vca_client, ctx, gateway, operation) <NEW_LINE> private_ip = _create_ip_range(vca_client, gateway) <NEW_LINE> for rule in ctx.target.node.properties['rules']: <NEW_LINE> <INDENT> rule_type = rule['type'] <NEW_LINE> nat_network_operation( vca_client, gateway, operation, rule_type, public_ip, private_ip, "any", "any", "any") <NEW_LINE> <DEDENT> <DEDENT> except KeyError as e: <NEW_LINE> <INDENT> raise cfy_exc.NonRecoverableError( "Parameter not found: {0}".format(e) ) <NEW_LINE> <DEDENT> return _save_configuration(gateway, vca_client, operation, public_ip) | create nat rules by rules from network node | 625941b74d74a7450ccd3ff2 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.