code
stringlengths 4
4.48k
| docstring
stringlengths 1
6.45k
| _id
stringlengths 24
24
|
---|---|---|
def fetchall_datatypes(self, **kwargs): <NEW_LINE> <INDENT> sql = "SELECT * FROM datatype" <NEW_LINE> return self.fetchall_astropy(sql) | Fetch all existing datatypes from the database | 625941b6be7bc26dc91cd429 |
def save_service(self, service): <NEW_LINE> <INDENT> if not self.initialized: <NEW_LINE> <INDENT> raise NotInitializedError <NEW_LINE> <DEDENT> if not isinstance(service, SSSDService): <NEW_LINE> <INDENT> raise TypeError <NEW_LINE> <DEDENT> name = service.get_name() <NEW_LINE> index = self.delete_option('section', name) <NEW_LINE> addkw = [] <NEW_LINE> for option,value in service.get_all_options().items(): <NEW_LINE> <INDENT> if (type(value) == list): <NEW_LINE> <INDENT> value = ', '.join(value) <NEW_LINE> <DEDENT> addkw.append( { 'type' : 'option', 'name' : option, 'value' : str(value) } ) <NEW_LINE> <DEDENT> self.add_section(name, addkw, index) | Save the changes made to the service object back to the SSSDConfig
object.
service_object:
The SSSDService object to save to the configuration.
=== Returns ===
No return value
=== Errors ===
NotInitializedError:
This SSSDConfig object has not had import_config() or new_config()
run on it yet.
TypeError:
service_object was not of the type SSSDService | 625941b631939e2706e4cc94 |
@app.route('/gdisconnect') <NEW_LINE> def gdisconnect(): <NEW_LINE> <INDENT> access_token = login_session.get('access_token') <NEW_LINE> if access_token is None: <NEW_LINE> <INDENT> response = make_response( json.dumps('Current user not connected.'), 401) <NEW_LINE> response.headers['Content-Type'] = 'application/json' <NEW_LINE> return response <NEW_LINE> <DEDENT> url = 'https://accounts.google.com/o/oauth2/revoke?token=%s' % access_token <NEW_LINE> h = httplib2.Http() <NEW_LINE> result = h.request(url, 'GET')[0] <NEW_LINE> if result['status'] == '200': <NEW_LINE> <INDENT> del login_session['access_token'] <NEW_LINE> del login_session['gplus_id'] <NEW_LINE> del login_session['username'] <NEW_LINE> del login_session['email'] <NEW_LINE> del login_session['picture'] <NEW_LINE> del login_session['user_id'] <NEW_LINE> response = make_response(json.dumps('Successfully disconnected.'), 200) <NEW_LINE> response.headers['Content-Type'] = 'application/json' <NEW_LINE> flash('Successfully disconnected.') <NEW_LINE> return redirect(url_for('show_catalog')) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> response = make_response(json.dumps('Failed to revoke token for given user.', 400)) <NEW_LINE> response.headers['Content-Type'] = 'application/json' <NEW_LINE> flash('Failed to revoke token for given user.') <NEW_LINE> return redirect(url_for('show_catalog')) | Disconnects the client from the server.
Args:
None
Returns:
Redirect to catelog.htlm through show_catelog() | 625941b6009cb60464c631e0 |
@pytest.mark.django_db(transaction=True) <NEW_LINE> def test_cached_db_backend_log_session_access_not_recently_used(api_session): <NEW_LINE> <INDENT> backend = CachedDBSessionAccessBackend() <NEW_LINE> with pytest.raises(SessionExpiredError): <NEW_LINE> <INDENT> backend.log_session_access(api_session, INACTIVITY_TIMEOUT, False) <NEW_LINE> <DEDENT> cache_key = backend._get_key(api_session) <NEW_LINE> assert cache.get(cache_key) is None <NEW_LINE> assert api_session.accesses.count() == 0 | Test when user has not accessed | 625941b6377c676e91271fcd |
def accept(address): <NEW_LINE> <INDENT> while True: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> listener = multiprocessing.connection.Listener(address, authkey=USERPREF['authkey']) <NEW_LINE> conn = listener.accept() <NEW_LINE> break <NEW_LINE> <DEDENT> except: <NEW_LINE> <INDENT> listener.close() <NEW_LINE> del listener <NEW_LINE> raise Exception(sys.exc_info()[1]) <NEW_LINE> <DEDENT> <DEDENT> client = listener.last_accepted <NEW_LINE> return Connection(conn), client[0] | Accept a connection and return a Connection object. | 625941b68a43f66fc4b53e8d |
def get_numeric_cardinality(factor,exclude=None): <NEW_LINE> <INDENT> if exclude != None: <NEW_LINE> <INDENT> fscope = list(factor.scope()) <NEW_LINE> for var in exclude: <NEW_LINE> <INDENT> fscope.var(exclude) <NEW_LINE> <DEDENT> card = factor.get_cardinality(fscope) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> card = factor.get_cardinality(factor.scope()) <NEW_LINE> <DEDENT> num_cardinality = 1 <NEW_LINE> for i in card: <NEW_LINE> <INDENT> num_cardinality *= card[i] <NEW_LINE> <DEDENT> return num_cardinality | Input: factor, list of variables to exclude
Get the numeric cardinality of a cpd
subject to variables to exclude | 625941b64a966d76dd550e2f |
def test_input_4(): <NEW_LINE> <INDENT> helper.cleanup() <NEW_LINE> shutil.copyfile(process.TESTING_DIRECTORY + '/test_history_3', process.HISTORY_FILE) <NEW_LINE> file_path = process.TESTING_DIRECTORY + '/test_input_4' <NEW_LINE> assert (helper.run_processing_engine(file_path) == 0) <NEW_LINE> helper.cleanup() | Test with a valid input file:
- Single tweet
- 2 companies (AMD and GM)
- Negative sentiment
- History file: base | 625941b6507cdc57c6306af6 |
def get_all_data(self): <NEW_LINE> <INDENT> self.check_validity() <NEW_LINE> return GetAllData(*self.ipcon.send_request(self, BrickIMU.FUNCTION_GET_ALL_DATA, (), '', 28, 'h h h h h h h h h h')) | Returns the data from :func:`Get Acceleration`, :func:`Get Magnetic Field`
and :func:`Get Angular Velocity` as well as the temperature of the IMU Brick.
If you want to get the data periodically, it is recommended
to use the :cb:`All Data` callback and set the period with
:func:`Set All Data Period`. | 625941b6046cf37aa974cb6e |
def weights_given_SR_diff( SR_diff, avg_correlation, confidence_interval, years_of_data, avg_SR=0.5, std=0.15, how_many_assets=2, ): <NEW_LINE> <INDENT> average_mean = avg_SR * std <NEW_LINE> asset1_mean = (SR_diff + avg_SR) * std <NEW_LINE> mean_difference = asset1_mean - average_mean <NEW_LINE> confident_mean_difference = calculate_confident_mean_difference( std, years_of_data, mean_difference, confidence_interval, avg_correlation ) <NEW_LINE> confident_asset1_mean = confident_mean_difference + average_mean <NEW_LINE> mean_list = [confident_asset1_mean] + [average_mean] * (how_many_assets - 1) <NEW_LINE> weights = optimise_using_correlation(mean_list, avg_correlation, std) <NEW_LINE> return list(weights) | Return the ratio of weight to 1/N weight for an asset with unusual SR
:param SR_diff: Difference between the SR and the average SR. 0.0 indicates same as average
:param avg_correlation: Average correlation amongst assets
:param years_of_data: How long has this been going one
:param avg_SR: Average SR to use for other asset
:param confidence_interval: How confident are we about our mean estimate (i.e. cdf point)
:param how_many_assets: .... are we optimising over (I only consider 2, but let's keep it general)
:param std: Standard deviation to use
:return: Ratio of weight, where 1.0 means no difference | 625941b621a7993f00bc7b0c |
def testClientStatsCollectionAlwaysHappensAfterHandleMessage(self): <NEW_LINE> <INDENT> now = 1000000 <NEW_LINE> self.client_communicator.client_worker.last_stats_sent_time = ( rdfvalue.RDFDatetime().FromSecondsFromEpoch(now)) <NEW_LINE> with test_lib.FakeTime(now): <NEW_LINE> <INDENT> self.client_communicator.client_worker.CheckStats() <NEW_LINE> <DEDENT> runs = [] <NEW_LINE> action_cls = actions.ActionPlugin.classes.get("GetClientStatsAuto") <NEW_LINE> with utils.Stubber(action_cls, "Run", lambda cls, _: runs.append(1)): <NEW_LINE> <INDENT> with test_lib.FakeTime(now + 30): <NEW_LINE> <INDENT> self.client_communicator.client_worker.CheckStats() <NEW_LINE> self.assertEqual(len(runs), 0) <NEW_LINE> <DEDENT> self.client_communicator.client_worker.HandleMessage( rdf_flows.GrrMessage()) <NEW_LINE> with test_lib.FakeTime(now + 59): <NEW_LINE> <INDENT> self.client_communicator.client_worker.CheckStats() <NEW_LINE> self.assertEqual(len(runs), 0) <NEW_LINE> <DEDENT> with test_lib.FakeTime(now + 61): <NEW_LINE> <INDENT> self.client_communicator.client_worker.CheckStats() <NEW_LINE> self.assertEqual(len(runs), 1) | Tests that client stats are collected more often when client is busy. | 625941b69b70327d1c4e0bf7 |
def greedy_nearest_neighbour_heuristic(data): <NEW_LINE> <INDENT> stars, matrix, n, limit = data['star_list'], data['matrix'], len(data['matrix']), data['c_limit'] <NEW_LINE> tour = [0] <NEW_LINE> stars_in_tour = stars[0] <NEW_LINE> length_already_without_back = 0 <NEW_LINE> was_node_added = True <NEW_LINE> while was_node_added: <NEW_LINE> <INDENT> possible_points = zip(range(n), matrix[tour[-1]], stars) <NEW_LINE> possible_points = (point for point in possible_points if point[0] not in tour) <NEW_LINE> ratios = ((i, stars*1000/(dist+0.1)) for i, dist, stars in possible_points) <NEW_LINE> ratios = sorted(ratios, key=lambda k: k[1], reverse=True) <NEW_LINE> was_node_added = False <NEW_LINE> for node_nr, _ in ratios: <NEW_LINE> <INDENT> new_length = length_already_without_back + matrix[tour[-1]][node_nr] + matrix[node_nr][0] <NEW_LINE> if new_length <= limit: <NEW_LINE> <INDENT> tour.append(node_nr) <NEW_LINE> was_node_added = True <NEW_LINE> length_already_without_back = new_length - matrix[node_nr][0] <NEW_LINE> stars_in_tour += stars[node_nr] <NEW_LINE> break <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> tour_length = length_already_without_back + matrix[tour[-1]][0] <NEW_LINE> tour.append(0) <NEW_LINE> return {'tour' : tour, 'stars': stars_in_tour, 'length': tour_length} | This function tries to solve the Orientieering Problem starting at index 0.
At each step, it calculates stars/kilometer for each neighbour and picks the neighbour
with best stars/kilometer into its route
Returns: A solution dictionary having keys:
tour: like [0, 1, 2, 4, 0]
stars: the amount of stars of the route
length: length of the tour in cumulated distance | 625941b6c432627299f04a67 |
def is_unnecessary(self, operator): <NEW_LINE> <INDENT> if operator in self.operator_flags: <NEW_LINE> <INDENT> return self.operator_flags[operator] & self.UNNECESSARY != 0 <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return False | operatorが再起動及びexit_all()により不要となったものなら真を返す
| 625941b691af0d3eaac9b837 |
def create_user(self, email, password=None, **extra_fields): <NEW_LINE> <INDENT> if not email: <NEW_LINE> <INDENT> raise ValueError('Users must have an email address') <NEW_LINE> <DEDENT> user = self.model(email=self.normalize_email(email), **extra_fields) <NEW_LINE> user.set_password(password) <NEW_LINE> user.save(using=self.db) <NEW_LINE> return user | creates and saves a new user | 625941b632920d7e50b27fef |
def list_activity_types(domain=None, name=None, registrationStatus=None, nextPageToken=None, maximumPageSize=None, reverseOrder=None): <NEW_LINE> <INDENT> pass | Returns information about all activities registered in the specified domain that match the specified name and registration status. The result includes information like creation date, current status of the activity, etc. The results may be split into multiple pages. To retrieve subsequent pages, make the call again using the nextPageToken returned by the initial call.
Access Control
You can use IAM policies to control this action's access to Amazon SWF resources as follows:
If the caller does not have sufficient permissions to invoke the action, or the parameter values fall outside the specified constraints, the action fails. The associated event attribute's cause parameter will be set to OPERATION_NOT_PERMITTED. For details and example IAM policies, see Using IAM to Manage Access to Amazon SWF Workflows .
See also: AWS API Documentation
:example: response = client.list_activity_types(
domain='string',
name='string',
registrationStatus='REGISTERED'|'DEPRECATED',
nextPageToken='string',
maximumPageSize=123,
reverseOrder=True|False
)
:type domain: string
:param domain: [REQUIRED]
The name of the domain in which the activity types have been registered.
:type name: string
:param name: If specified, only lists the activity types that have this name.
:type registrationStatus: string
:param registrationStatus: [REQUIRED]
Specifies the registration status of the activity types to list.
:type nextPageToken: string
:param nextPageToken: If a NextPageToken was returned by a previous call, there are more results available. To retrieve the next page of results, make the call again using the returned token in nextPageToken . Keep all other arguments unchanged.
The configured maximumPageSize determines how many results can be returned in a single call.
:type maximumPageSize: integer
:param maximumPageSize: The maximum number of results that will be returned per call. nextPageToken can be used to obtain futher pages of results. The default is 1000, which is the maximum allowed page size. You can, however, specify a page size smaller than the maximum.
This is an upper limit only; the actual number of results returned per call may be fewer than the specified maximum.
:type reverseOrder: boolean
:param reverseOrder: When set to true , returns the results in reverse order. By default, the results are returned in ascending alphabetical order by name of the activity types.
:rtype: dict
:return: {
'typeInfos': [
{
'activityType': {
'name': 'string',
'version': 'string'
},
'status': 'REGISTERED'|'DEPRECATED',
'description': 'string',
'creationDate': datetime(2015, 1, 1),
'deprecationDate': datetime(2015, 1, 1)
},
],
'nextPageToken': 'string'
}
:returns:
domain (string) -- [REQUIRED]
The name of the domain in which the activity types have been registered.
name (string) -- If specified, only lists the activity types that have this name.
registrationStatus (string) -- [REQUIRED]
Specifies the registration status of the activity types to list.
nextPageToken (string) -- If a NextPageToken was returned by a previous call, there are more results available. To retrieve the next page of results, make the call again using the returned token in nextPageToken . Keep all other arguments unchanged.
The configured maximumPageSize determines how many results can be returned in a single call.
maximumPageSize (integer) -- The maximum number of results that will be returned per call. nextPageToken can be used to obtain futher pages of results. The default is 1000, which is the maximum allowed page size. You can, however, specify a page size smaller than the maximum.
This is an upper limit only; the actual number of results returned per call may be fewer than the specified maximum.
reverseOrder (boolean) -- When set to true , returns the results in reverse order. By default, the results are returned in ascending alphabetical order by name of the activity types. | 625941b68e71fb1e9831d5d1 |
def get_random_emoji(): <NEW_LINE> <INDENT> emoji_choices = filter(lambda x: not x.startswith('.'), os.listdir('./emoji')) <NEW_LINE> rand_choice = random.choice(emoji_choices) <NEW_LINE> new_name = str(random.randint(0, 99999999)) + '.png' <NEW_LINE> new_dest = '{}/{}'.format(TMP_FOLDER, new_name) <NEW_LINE> copyfile('./emoji/{}'.format(rand_choice), new_dest) <NEW_LINE> return new_dest | Return a random emoji file from './emoji'. To avoid errors when using the
same file more than once, each file is given a random name and copied into './tmp' | 625941b68c3a8732951581e1 |
def test_td04ad_case1(self): <NEW_LINE> <INDENT> n = 2 <NEW_LINE> m = 2 <NEW_LINE> p = 3 <NEW_LINE> num = np.array([ [ [0.0, 0.0, 1.0 ], [ 1.0, 0.0, 0.0 ] ], [ [3.0, -1.0, 1.0 ], [ 0.0, 1.0, 0.0 ] ], [ [0.0, 0.0, 1.0], [ 0.0, 2.0, 0.0 ] ] ]) <NEW_LINE> p, m, d = num.shape <NEW_LINE> numc = np.zeros((max(1, m, p), max(1, m, p), d), dtype=float) <NEW_LINE> numc[:p,:m,:] = num <NEW_LINE> denc = np.array( [ [1.0, 0.4, 3.0], [ 1.0, 1.0, 0.0 ] ]) <NEW_LINE> indc = np.array( [ 2, 1 ], dtype=int) <NEW_LINE> denr = np.array( [ [1.0, 0.4, 3.0], [ 1.0, 1.0, 0.0 ], [1.0, 0.0, 0.0] ]) <NEW_LINE> indr = np.array( [ 2, 1, 0 ], dtype=int) <NEW_LINE> n, A, B, C, D = transform.td04ad('C', 2, 3, indc, denc, numc) <NEW_LINE> Ac = [ [-1, 0, 0], [ 0, -0.4, -0.3], [ 0, 10, 0]] <NEW_LINE> Bc = [ [0, -1] ,[ 1 , 0], [ 0, 0]] <NEW_LINE> Cc = [ [1, 0, 0.1], [-1, -2.2, -0.8], [ -2, 0, 0.1] ] <NEW_LINE> Dc = [ [0, 1], [ 3, 0], [ 0, 0]] <NEW_LINE> np.testing.assert_array_almost_equal(A, Ac) <NEW_LINE> np.testing.assert_array_almost_equal(B, Bc) <NEW_LINE> np.testing.assert_array_almost_equal(C, Cc) <NEW_LINE> np.testing.assert_array_almost_equal(D, Dc) <NEW_LINE> resr = transform.td04ad('R', 2, 3, indr, denr, num) | td04ad: Convert with both 'C' and 'R' options | 625941b645492302aab5e0e3 |
def get_refactor(self): <NEW_LINE> <INDENT> if self.assertion: <NEW_LINE> <INDENT> return self.assertion.get_line(self.line_nr - self.assertion.line_nr) <NEW_LINE> <DEDENT> return self.get_original() | return the line in pytest formatting if available, else it returns the original line
:return: line (str) | 625941b6dc8b845886cb5358 |
def check_groups_exist(ctx, param, value): <NEW_LINE> <INDENT> groups = ctx.obj.api.relay_groups(*value) <NEW_LINE> raise_if_not_all_present(value, groups, "The following relay groups do not exist: {}") <NEW_LINE> return groups | Ensure that all given names refer to existing relay groups. | 625941b6d53ae8145f87a09a |
@all_parameters_as_numpy_arrays <NEW_LINE> def minimum(aabb): <NEW_LINE> <INDENT> return aabb[0].copy() | Returns the minimum point of the AABB.
| 625941b64c3428357757c14e |
def tank_respawns(self) -> list: <NEW_LINE> <INDENT> return [obj for obj in self.map_objs if obj.tank_respawn] | Return a list of map_objs that includes all tank respawns currently in the match
Returns:
List of map_objs of found tank respawns | 625941b694891a1f4081b8cb |
def __init__(self, luthor, tokenfile): <NEW_LINE> <INDENT> self.luth = luthor | luthor: luthor file (on disk, not LuthorFile instance) to create a lexer
from.
tokenfile: file to import in the generated lexer | 625941b676d4e153a657e953 |
def InertiaMatrix(x, y, z): <NEW_LINE> <INDENT> q = zeros((3,3), float) <NEW_LINE> q[0,0] = y**2 + z**2 <NEW_LINE> q[0,1] = -x * y <NEW_LINE> q[0,2] = -x * z <NEW_LINE> q[1,0] = -y * x <NEW_LINE> q[1,1] = x**2 + z**2 <NEW_LINE> q[1,2] = -y * z <NEW_LINE> q[2,0] = -z * x <NEW_LINE> q[2,1] = -z * y <NEW_LINE> q[2,2] = x**2 + y**2 <NEW_LINE> return q | Calculate the inertia matrix for a single mass sans mass. | 625941b6d18da76e235322f5 |
def extensions(self): <NEW_LINE> <INDENT> open_position = [-1,-1] <NEW_LINE> y = 0 <NEW_LINE> grid_list = [] <NEW_LINE> for row in self.from_grid: <NEW_LINE> <INDENT> grid_list.append(list(row)) <NEW_LINE> <DEDENT> while open_position[0] == -1: <NEW_LINE> <INDENT> x = 0 <NEW_LINE> while open_position[1] == -1 and x < len(self.from_grid[y]): <NEW_LINE> <INDENT> if self.from_grid[y][x] == '*': <NEW_LINE> <INDENT> open_position = [y, x] <NEW_LINE> <DEDENT> x += 1 <NEW_LINE> <DEDENT> y += 1 <NEW_LINE> <DEDENT> possible_moves = [] <NEW_LINE> def list_to_tuple(grid): <NEW_LINE> <INDENT> result = [] <NEW_LINE> for rows in grid: <NEW_LINE> <INDENT> result.append(tuple(rows)) <NEW_LINE> <DEDENT> return tuple(result) <NEW_LINE> <DEDENT> def move_left(grid,open_position): <NEW_LINE> <INDENT> left = [a[:] for a in grid] <NEW_LINE> y = open_position[0] <NEW_LINE> x = open_position[1] <NEW_LINE> left[y][x] = left[y][x + 1] <NEW_LINE> left[y][x + 1] = "*" <NEW_LINE> return list_to_tuple(left) <NEW_LINE> <DEDENT> def move_right(grid,open_position): <NEW_LINE> <INDENT> right = [a[:] for a in grid] <NEW_LINE> y = open_position[0] <NEW_LINE> x = open_position[1] <NEW_LINE> right[y][x] = right[y][x - 1] <NEW_LINE> right[y][x - 1] = "*" <NEW_LINE> return list_to_tuple(right) <NEW_LINE> <DEDENT> def move_up(grid,open_position): <NEW_LINE> <INDENT> up = [a[:] for a in grid] <NEW_LINE> y = open_position[0] <NEW_LINE> x = open_position[1] <NEW_LINE> up[y][x] = up[y + 1][x] <NEW_LINE> up[y + 1][x] = "*" <NEW_LINE> return list_to_tuple(up) <NEW_LINE> <DEDENT> def move_down(grid,open_position): <NEW_LINE> <INDENT> down = [a[:] for a in grid] <NEW_LINE> y = open_position[0] <NEW_LINE> x = open_position[1] <NEW_LINE> down[y][x] = down[y - 1][x] <NEW_LINE> down[y - 1][x] = "*" <NEW_LINE> return list_to_tuple(down) <NEW_LINE> <DEDENT> if open_position[0] != 0: <NEW_LINE> <INDENT> possible_moves.append(MNPuzzle(move_down(grid_list,open_position),self.to_grid)) <NEW_LINE> <DEDENT> if open_position[0] != len(self.from_grid) - 1: <NEW_LINE> <INDENT> possible_moves.append(MNPuzzle(move_up(grid_list,open_position),self.to_grid)) <NEW_LINE> <DEDENT> if open_position[1] != 0: <NEW_LINE> <INDENT> possible_moves.append(MNPuzzle(move_right(grid_list,open_position),self.to_grid)) <NEW_LINE> <DEDENT> if open_position[1] != len(self.from_grid[0]) - 1: <NEW_LINE> <INDENT> possible_moves.append(MNPuzzle(move_left(grid_list,open_position),self.to_grid)) <NEW_LINE> <DEDENT> return possible_moves | Returns a list of possible extensions to
@rtype: list[MNPuzzle]
>>> test = MNPuzzle([1,2,3,4,'*'],[1,2,3,4,'*'])
>>> extension = test.extensions()
>>> extension
[1,2,3,*,4] | 625941b663d6d428bbe44313 |
def generate_hosts(addr): <NEW_LINE> <INDENT> if "/" in addr: <NEW_LINE> <INDENT> hosts = netaddr.IPNetwork(addr) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> hosts = netaddr.IPGlob(addr) <NEW_LINE> <DEDENT> return hosts | 生成主机列表
:param addr: 地址
:type addr: str
:return: 主机列表
:rtype: netaddr.ip.glob.IPGlob | 625941b621a7993f00bc7b0d |
def patch_quotas_groups( self, file_systems=None, groups=None, references=None, file_system_names=None, file_system_ids=None, gids=None, group_names=None, names=None, quota=None, async_req=False, _return_http_data_only=False, _preload_content=True, _request_timeout=None, ): <NEW_LINE> <INDENT> kwargs = dict( file_system_names=file_system_names, file_system_ids=file_system_ids, gids=gids, group_names=group_names, names=names, quota=quota, async_req=async_req, _return_http_data_only=_return_http_data_only, _preload_content=_preload_content, _request_timeout=_request_timeout, ) <NEW_LINE> kwargs = {k: v for k, v in kwargs.items() if v is not None} <NEW_LINE> endpoint = self._quotas_api.api20_quotas_groups_patch_with_http_info <NEW_LINE> _process_references(file_systems, ['file_system_names', 'file_system_ids'], kwargs) <NEW_LINE> _process_references(groups, ['group_names'], kwargs) <NEW_LINE> _process_references(references, ['names'], kwargs) <NEW_LINE> return self._call_api(endpoint, kwargs) | Modify a quota for a group. Note that if you modify a group's quota to a lower
value and that group's usage has already exceeded the new value, writes will
automatically halt until usage decreases below the new quota setting.
Args:
file_systems (list[FixedReference], optional):
A list of file_systems to query for. Overrides file_system_names and file_system_ids keyword arguments.
groups (list[FixedReference], optional):
A list of groups to query for. Overrides group_names keyword arguments.
references (list[FixedReference], optional):
A list of references to query for. Overrides names keyword arguments.
file_system_names (list[str], optional):
A list of file system names. If there is not at least one resource that matches
each of the elements of `file_system_names`, then an error is returned.
file_system_ids (list[str], optional):
A list of file system IDs. If after filtering, there is not at least one
resource that matches each of the elements of `file_system_ids`, then an error
is returned. This cannot be provided together with the `file_system_names` query
parameter.
gids (list[int], optional):
A list of group IDs. If there is not at least one resource that matches each of
the elements of `gids`, then an error is returned. This cannot be provided
together with `group_names` query parameter.
group_names (list[str], optional):
A list of group names. If there is not at least one resource that matches each
of the elements of `group_names`, then an error is returned. This cannot be
provided together with `gids` query parameter.
names (list[str], optional):
A list of resource names. If there is not at least one resource that matches
each of the elements of `names`, then an error is returned.
async_req (bool, optional):
Request runs in separate thread and method returns
multiprocessing.pool.ApplyResult.
_return_http_data_only (bool, optional):
Returns only data field.
_preload_content (bool, optional):
Response is converted into objects.
_request_timeout (int, optional):
Total request timeout in seconds.
Returns:
ValidResponse: If the call was successful.
ErrorResponse: If the call was not successful.
Raises:
PureError: If calling the API fails.
ValueError: If a parameter is of an invalid type.
TypeError: If invalid or missing parameters are used. | 625941b6a8370b77170526c5 |
def add_file_handler(self): <NEW_LINE> <INDENT> file_handler = RotatingFileHandler(config.LOGGER_PATH,maxBytes=1024*1024*500,delay=False,backupCount=20) <NEW_LINE> file_handler.setLevel(logging.INFO) <NEW_LINE> file_handler.setFormatter(logging.Formatter('%(asctime)s %(levelname)s %(message)s [%(pathname)s:%(lineno)d]')) <NEW_LINE> logging.getLogger(self.logger_name).addHandler(file_handler) | 输出到文件日志
:return: | 625941b650812a4eaa59c149 |
def __init__(self, rating): <NEW_LINE> <INDENT> self._rating = rating | Wrap trueskill.Rating object. | 625941b6925a0f43d2549c97 |
def simple_equality(cls: Type) -> Type: <NEW_LINE> <INDENT> eq_attr = '__eq__' <NEW_LINE> ne_attr = '__ne__' <NEW_LINE> has_eq = getattr(cls, eq_attr, None) is not getattr(object, eq_attr, None) <NEW_LINE> has_ne = getattr(cls, ne_attr, None) is not getattr(object, ne_attr, None) <NEW_LINE> if has_eq == has_ne: <NEW_LINE> <INDENT> raise ValueError('must define exactly one equality operation: == !=') <NEW_LINE> <DEDENT> elif has_eq: <NEW_LINE> <INDENT> def __ne__(a: object, b: object) -> bool: <NEW_LINE> <INDENT> return not a.__eq__(b) <NEW_LINE> <DEDENT> setattr(cls, ne_attr, __ne__) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> def __eq__(a: object, b: object) -> bool: <NEW_LINE> <INDENT> return not a.__ne__(b) <NEW_LINE> <DEDENT> setattr(cls, eq_attr, __eq__) <NEW_LINE> <DEDENT> return cls | Decorator that fills in the missing equality operation for a class.
The missing equality operation (__eq__ or __ne__) is defined as the logical
inverse of whichever operation is defined for the decorated class cls. | 625941b682261d6c526ab2c7 |
def unpack_dosdate(self, offset): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> o = self._offset + offset <NEW_LINE> return dosdate(self._buf[o:o + 2], self._buf[o + 2:o + 4]) <NEW_LINE> <DEDENT> except struct.error: <NEW_LINE> <INDENT> raise OverrunBufferException(o, len(self._buf)) | Returns a datetime from the DOSDATE and DOSTIME starting at
the relative offset.
Arguments:
- `offset`: The relative offset from the start of the block.
Throws:
- `OverrunBufferException` | 625941b621bff66bcd684779 |
def read_cash_flow_statements(self, format_value=False): <NEW_LINE> <INDENT> self._serial_printer.print_begin('Reading cash_flow_statements') <NEW_LINE> df = pd.read_csv(self.ys.cash_flow_statements.path) <NEW_LINE> self._serial_printer.print_end('Complete.') <NEW_LINE> if format_value: <NEW_LINE> <INDENT> df = self.format(df) <NEW_LINE> <DEDENT> self.ys.cash_flow_statements = df <NEW_LINE> return self.ys | Method for reading the data from the file.
:param format_value: Whether or not to format the data. | 625941b6fb3f5b602dac34b2 |
def connect(self): <NEW_LINE> <INDENT> import sys <NEW_LINE> self.ftp = MyFtp() <NEW_LINE> self.ftp.connect() <NEW_LINE> self.ftp.login() <NEW_LINE> self.ftp.__class__.encoding = sys.getfilesystemencoding() | Метод для соединения с ftp | 625941b650812a4eaa59c14a |
def parse(self, response): <NEW_LINE> <INDENT> all_urls = response.css("a::attr(href)").extract() <NEW_LINE> all_urls = [urljoin(response.url, url) for url in all_urls] <NEW_LINE> all_urls = filter(lambda x: True if x.startswith("https") else False, all_urls) <NEW_LINE> for url in all_urls: <NEW_LINE> <INDENT> match_obj = re.match("(.*zhihu.com/question/(\d+))(/|$).*?", url) <NEW_LINE> if match_obj: <NEW_LINE> <INDENT> request_url = match_obj.group(1) <NEW_LINE> yield scrapy.Request(request_url, headers=self.headers, callback=self.parse_question) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> yield scrapy.Request(url, headers=self.headers, callback=self.parse) | 提取出html页面的所有url,并跟踪这些url进行一步爬取
如果提取的url中格式为 /question/xxx 就下载之后进入解析函数
:param response:
:return: | 625941b6be7bc26dc91cd42a |
def __init__(self, debugger): <NEW_LINE> <INDENT> super(ThreadManager, self).__init__(debugger) <NEW_LINE> self.parser = Parser() | @type debugger: debugger.Debugger | 625941b68e05c05ec3eea195 |
def xor(a,b): <NEW_LINE> <INDENT> assert len(a) == len(b) <NEW_LINE> x = [] <NEW_LINE> for i in range(len(a)): <NEW_LINE> <INDENT> x.append( chr(ord(a[i])^ord(b[i]))) <NEW_LINE> <DEDENT> return ''.join(x) | XOR two strings of same length | 625941b655399d3f055884d7 |
def SetDirty(self, name): <NEW_LINE> <INDENT> self.__dict__['__dirty'].append(name) | Mark a flag as dirty so that accessing it will case a reparse. | 625941b6293b9510aa2c30bd |
def write(self, data_set, io_manager, location, write_metadata=True): <NEW_LINE> <INDENT> raise NotImplementedError | Write the DataSet to storage.
Subclasses must override this method.
It is up to the Formatter to decide when to overwrite completely,
and when to just append or otherwise update the file(s).
Args:
data_set (DataSet): the data we are writing.
io_manager (io_manager): base physical location to write to.
location (str): the file location within the io_manager.
write_metadata (bool): if True, then the metadata is written to disk | 625941b6b57a9660fec336a4 |
def build(self,l,r,arr): <NEW_LINE> <INDENT> if(l>r): <NEW_LINE> <INDENT> return None <NEW_LINE> <DEDENT> if(l==r): <NEW_LINE> <INDENT> return TreeNode(arr[l],l,r) <NEW_LINE> <DEDENT> m = (l+r)//2 <NEW_LINE> temp = TreeNode(None,l,r) <NEW_LINE> temp.left = self.build(l,m,arr) <NEW_LINE> temp.right = self.build(m+1,r,arr) <NEW_LINE> temp.summ = temp.left.summ + temp.right.summ <NEW_LINE> return temp | TC: O(n) | 625941b6c4546d3d9de72854 |
def __init__(self, email, principal=None): <NEW_LINE> <INDENT> body = M.GetDelegate( {'IncludePermissions': 'true'}, M.Mailbox(T.EmailAddress(email)) ) <NEW_LINE> kwargs = {} <NEW_LINE> if principal: <NEW_LINE> <INDENT> kwargs['impersonation'] = principal <NEW_LINE> <DEDENT> super().__init__(body, **kwargs) | Initialize the request.
:param email: Email address of the user to query. | 625941b6046cf37aa974cb6f |
def experiment_info(observer): <NEW_LINE> <INDENT> now = datetime.datetime.now() <NEW_LINE> date = now.strftime("%Y-%m-%d %H:%M") <NEW_LINE> my_dlg = gui.Dlg(title="Go No-Go") <NEW_LINE> my_dlg.addText('Subject info') <NEW_LINE> my_dlg.addField('ID:') <NEW_LINE> my_dlg.addField('Age:') <NEW_LINE> my_dlg.addField('Sex:', choices=['MALE', "FEMALE"]) <NEW_LINE> my_dlg.addText('Observer info') <NEW_LINE> my_dlg.addField('Observer:', observer) <NEW_LINE> my_dlg.show() <NEW_LINE> if not my_dlg.OK: <NEW_LINE> <INDENT> exit(1) <NEW_LINE> <DEDENT> return my_dlg.data[0], my_dlg.data[2], my_dlg.data[1], my_dlg.data[3], date | okienko dialogowe na podczas uruchomienia procedury
:param observer: observer_id
:return: part_id, observer_id, date | 625941b69c8ee82313fbb599 |
def get_delta_fmt(delta): <NEW_LINE> <INDENT> col = (0, 0, 0, 255) <NEW_LINE> n = abs(delta) <NEW_LINE> s = delta <NEW_LINE> if delta < 0: <NEW_LINE> <INDENT> sat = min(n/200 + 0.2, 1) <NEW_LINE> r, g, b = hsv_to_rgb(0, sat, 1) <NEW_LINE> col = (r, g, b, 1) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> s = "+"+str(n) <NEW_LINE> sat = min(n/100 + 0.2, 1) <NEW_LINE> r, g, b = hsv_to_rgb(1/3, sat, 1) <NEW_LINE> col = (r, g, b, 1) <NEW_LINE> <DEDENT> return "(" + str(s) + ")", col | arbitrary colour formatting of rank delta
more red for bigger losses, more green for bigger gains | 625941b6dd821e528d63afd0 |
def route_count_by_ipv(self, ipv): <NEW_LINE> <INDENT> return len(self.dyn_routes_by_ipv[ipv]) | Return route table count for specified IP version on this VLAN. | 625941b67d847024c06be0e4 |
def test_concurrent_count_udp_vanilla(self): <NEW_LINE> <INDENT> if self.socketType != socket.SOCK_DGRAM: <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> X = [] <NEW_LINE> for i in self.ephemeral_ports(): <NEW_LINE> <INDENT> sd = self.socket() <NEW_LINE> sd.connect(self.remoteA) <NEW_LINE> self.assertEcho(sd) <NEW_LINE> X.append(sd) <NEW_LINE> <DEDENT> self.assertEqual(len(X), len(self.ephemeral_ports())) <NEW_LINE> sd = self.socket() <NEW_LINE> with self.assertRaises(OSError) as x: <NEW_LINE> <INDENT> sd.connect(self.remoteB) <NEW_LINE> <DEDENT> self.assertEqual(x.exception.errno, errno.EAGAIN) | #ephemeral to first host, EAGAIN later | 625941b6cb5e8a47e48b78d4 |
@pytest.mark.parametrize( "user", [dummy_user_john, dummy_user_jane, dummy_user_alice, dummy_user_bob], ) <NEW_LINE> def test_list_permissions(user, acl_fixture): <NEW_LINE> <INDENT> from fastapi_permissions import list_permissions <NEW_LINE> result = list_permissions(user.principals, acl_fixture) <NEW_LINE> assert result == permission_results[user] | tests the list_permissions function | 625941b6f8510a7c17cf9529 |
def write_config(self): <NEW_LINE> <INDENT> self.filename = "motors.ini" <NEW_LINE> config = SafeConfigParser() <NEW_LINE> if os.path.isfile(self.filename): <NEW_LINE> <INDENT> config.read(self.filename) <NEW_LINE> <DEDENT> try: <NEW_LINE> <INDENT> config.add_section('motors') <NEW_LINE> <DEDENT> except: <NEW_LINE> <INDENT> print("Failed to add, could already exist") <NEW_LINE> <DEDENT> for item in self.menu_list.items(): <NEW_LINE> <INDENT> item_enum_str = str(item[0]).split('.') <NEW_LINE> item_min_str = "{}_MIN".format(item_enum_str[0]) <NEW_LINE> item_mid_str = "{}_MID".format(item_enum_str[0]) <NEW_LINE> item_max_str = "{}_MAX".format(item_enum_str[0]) <NEW_LINE> config.set( 'motors', item_min_str, str(self.core.servos[item[0]][0].servo_min)) <NEW_LINE> config.set( 'motors', item_mid_str, str(self.core.servos[item[0]][0].servo_mid)) <NEW_LINE> config.set( 'motors', item_max_str, str(self.core.servos[item[0]][0].servo_max)) | Read the motor defaults from the config file. | 625941b6d99f1b3c44c673bc |
def codeComplete(self, path, line, column, unsaved_files=None, include_macros=False, include_code_patterns=False, include_brief_comments=False): <NEW_LINE> <INDENT> options = 0 <NEW_LINE> if include_macros: <NEW_LINE> <INDENT> options += 1 <NEW_LINE> <DEDENT> if include_code_patterns: <NEW_LINE> <INDENT> options += 2 <NEW_LINE> <DEDENT> if include_brief_comments: <NEW_LINE> <INDENT> options += 4 <NEW_LINE> <DEDENT> if unsaved_files is None: <NEW_LINE> <INDENT> unsaved_files = [] <NEW_LINE> <DEDENT> unsaved_files_array = 0 <NEW_LINE> if len(unsaved_files): <NEW_LINE> <INDENT> unsaved_files_array = (_CXUnsavedFile * len(unsaved_files))() <NEW_LINE> for i,(name,value) in enumerate(unsaved_files): <NEW_LINE> <INDENT> if hasattr(value, "read"): <NEW_LINE> <INDENT> value = value.read() <NEW_LINE> <DEDENT> unsaved_files_array[i].name = name <NEW_LINE> unsaved_files_array[i].contents = value <NEW_LINE> unsaved_files_array[i].length = len(value) <NEW_LINE> <DEDENT> <DEDENT> ptr = conf.lib.clang_codeCompleteAt(self, path, line, column, unsaved_files_array, len(unsaved_files), options) <NEW_LINE> if ptr: <NEW_LINE> <INDENT> return CodeCompletionResults(ptr) <NEW_LINE> <DEDENT> return None | Code complete in this translation unit.
In-memory contents for files can be provided by passing a list of pairs
as unsaved_files, the first items should be the filenames to be mapped
and the second should be the contents to be substituted for the
file. The contents may be passed as strings or file objects. | 625941b6ab23a570cc24ffa4 |
def test_basic_reduction_completes(self): <NEW_LINE> <INDENT> wks = ISISIndirectDiffractionReduction(InputFiles=['IRS26176.RAW'], Instrument='IRIS', Mode='diffspec', SpectraRange=[105, 112]) <NEW_LINE> self.assertTrue(isinstance(wks, WorkspaceGroup), 'Result workspace should be a workspace group.') <NEW_LINE> self.assertEqual(len(wks), 1) <NEW_LINE> self.assertEqual(wks.getNames()[0], 'iris26176_diffspec_red') <NEW_LINE> red_ws = wks[0] <NEW_LINE> self.assertEqual(red_ws.getAxis(0).getUnit().unitID(), 'dSpacing') <NEW_LINE> self.assertEqual(red_ws.getNumberHistograms(), 1) | Sanity test to ensure the most basic reduction actually completes. | 625941b63c8af77a43ae35c3 |
def linearInterpolate(self, other, t): <NEW_LINE> <INDENT> return Vec4(self._rtval.linearInterpolate('Vec4', ks.rtVal('Scalar', t))) | Linearly interpolates this vector with another one based on a scalar
blend value (0.0 to 1.0).
Args:
other (Vec4): vector to blend to.
t (float): Blend value.
Returns:
Vec4: New vector blended between this and the input vector. | 625941b66e29344779a6243a |
@active_list_required <NEW_LINE> def add_remove_item(request): <NEW_LINE> <INDENT> list_name = lists.get_list_name(request) <NEW_LINE> action = request.POST.get('action', 'add') <NEW_LINE> content_type = request.POST.get('content_type', None) <NEW_LINE> object_id = request.POST.get('object_id', None) <NEW_LINE> ct = ContentType.objects.get(name=content_type) <NEW_LINE> co = ct.get_object_for_this_type(pk=object_id) <NEW_LINE> item_key = lists.make_item_key(co, ct) <NEW_LINE> if action == "add": <NEW_LINE> <INDENT> object_hash = lists.make_object_hash(co) <NEW_LINE> lists.add_item(list_name, item_key, object_hash) <NEW_LINE> <DEDENT> if action == "remove": <NEW_LINE> <INDENT> lists.remove_item(list_name, item_key) <NEW_LINE> <DEDENT> if hasattr(co, 'list_total_field'): <NEW_LINE> <INDENT> total_field = getattr(co, co.list_total_field) <NEW_LINE> list_total = lists.make_total(list_name, action, total_field) <NEW_LINE> <DEDENT> t = select_template(["blocks/ahah_list.html",]) <NEW_LINE> c = RequestContext(request, RequestContext(request)) <NEW_LINE> html = t.render(c) <NEW_LINE> if request.META.get('HTTP_X_REQUESTED_WITH') == 'XMLHttpRequest': <NEW_LINE> <INDENT> return HttpResponse(json.dumps( { 'total' : list_total, 'html' : html, 'action' : action, 'list_item_id' : item_key, })) <NEW_LINE> <DEDENT> res = HttpResponseRedirect(request.META['HTTP_REFERER']) <NEW_LINE> return res | Expects POST data with the following values:
* content_type
* object_id
Only content types (models) with a valid `LIST_ENABLED` attribute will be allowed | 625941b64527f215b584c280 |
def set_background(self, background=None): <NEW_LINE> <INDENT> if background is not None: <NEW_LINE> <INDENT> self.background.update(background) <NEW_LINE> keys = self.background.keys() <NEW_LINE> if not background: <NEW_LINE> <INDENT> self.background = {} <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> background = self.background <NEW_LINE> keys = self.background.keys() <NEW_LINE> <DEDENT> for channelidx in keys: <NEW_LINE> <INDENT> bgcolor = background.get(channelidx, None) <NEW_LINE> groupidx = self.get_groupidx(channelidx) <NEW_LINE> if groupidx is None: <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> group = self.get_group(groupidx) <NEW_LINE> channel = self.get_channel(channelidx) <NEW_LINE> index = self.index(channel.row(), 0, parent=group.index) <NEW_LINE> index1 = self.index(channel.row(), 1, parent=group.index) <NEW_LINE> if index.isValid(): <NEW_LINE> <INDENT> item = index.internalPointer() <NEW_LINE> item.bgcolor = bgcolor <NEW_LINE> self.dataChanged.emit(index, index1) | Set the background of some channels. The argument is a dictionary
channelidx ==> color index. | 625941b624f1403a9260098e |
def remove_group_user(self, u_name, c_name): <NEW_LINE> <INDENT> return self.remove_group(u_name, 'user', c_name) | Args:
u_name: user to removed the group from
c_name: group to remove
Return:
``True`` if the group was removed from the profile
``False`` otherwise | 625941b6d486a94d0b98df73 |
def test_properties(self): <NEW_LINE> <INDENT> for mode in ADDRESSING_MODE_TABLE: <NEW_LINE> <INDENT> name, syntax, formatter = mode <NEW_LINE> addrmode = get_addressing_mode(name) <NEW_LINE> self.assertIsNotNone(addrmode) <NEW_LINE> self.assertEqual(addrmode.name, name.strip()) <NEW_LINE> self.assertEqual(addrmode.syntax, syntax.strip()) <NEW_LINE> if formatter: <NEW_LINE> <INDENT> self.assertEqual(addrmode.formatter.__name__, formatter.__func__.__name__) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.assertIsNone(addrmode.formatter) | Test AbstractAddressingMode for its properties. | 625941b60383005118ecf409 |
def open(self): <NEW_LINE> <INDENT> console.output("The doors seem to be sealed shut. " "Hopefully you'll be able to open them when you leave.") <NEW_LINE> return False | The doors will refuse to open. | 625941b6d7e4931a7ee9dd40 |
def _closest_file(self, file_name='settings.py', path='.', prev_path=None): <NEW_LINE> <INDENT> if path == prev_path: <NEW_LINE> <INDENT> return '' <NEW_LINE> <DEDENT> path = os.path.abspath(path) <NEW_LINE> settings_file = os.path.join(path, file_name) <NEW_LINE> if os.path.exists(settings_file): <NEW_LINE> <INDENT> return settings_file <NEW_LINE> <DEDENT> return self._closest_file(file_name=file_name, path=os.path.dirname(path), prev_path=path) | return the path of the closest settings.py file
:param file_name: default get file name
:param path:
:param prev_path:
:return: | 625941b6baa26c4b54cb0f48 |
def __init__(self, **kwargs): <NEW_LINE> <INDENT> self.etatRequisCibleDirect = kwargs.get('etat_requis', "").split("|") <NEW_LINE> if self.etatRequisCibleDirect[-1] == "": <NEW_LINE> <INDENT> self.etatRequisCibleDirect = [] <NEW_LINE> <DEDENT> self.etatRequisCibles = kwargs.get('etat_requis_cibles', "").split("|") <NEW_LINE> if self.etatRequisCibles[-1] == "": <NEW_LINE> <INDENT> self.etatRequisCibles = [] <NEW_LINE> <DEDENT> self.etatRequisLanceur = kwargs.get('etat_requis_lanceur', "").split("|") <NEW_LINE> if self.etatRequisLanceur[-1] == "": <NEW_LINE> <INDENT> self.etatRequisLanceur = [] <NEW_LINE> <DEDENT> self.consommeEtat = kwargs.get('consomme_etat', False) <NEW_LINE> self.ciblesPossibles = kwargs.get( 'cibles_possibles', "Allies|Ennemis|Lanceur").split("|") <NEW_LINE> self.ciblesExclues = kwargs.get('cibles_exclues', "").split("|") <NEW_LINE> self.ciblesPossiblesDirect = kwargs.get('cibles_possibles_direct', "|".join(self.ciblesPossibles)).split("|") <NEW_LINE> self.cibleNonRequise = kwargs.get('cible_non_requise', False) <NEW_LINE> if kwargs.get('zone', None) is not None: <NEW_LINE> <INDENT> self.typeZone = kwargs.get('zone', Zones.TypeZoneCercle(0)) <NEW_LINE> del kwargs["zone"] <NEW_LINE> kwargs["typeZone"] = self.typeZone.__class__.__name__.replace("TypeZone", "") <NEW_LINE> kwargs["tailleZone"] = int(self.typeZone.zonePO) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.typeZone = Zones.TypeZone.getZoneFromName(kwargs.get("typeZone", "Cercle"), kwargs.get("tailleZone", 0)) <NEW_LINE> <DEDENT> self.pile = kwargs.get("pile", True) <NEW_LINE> self.kwargs = kwargs | @summary: Initialise un Effet.
@kwargs: Options de l'effets
, possibilitées: etat_requis (string séparé par |, aucun par défaut),
etat_requis_cibles (string séparé par |, aucun par défaut),
etat_requis_lanceur (string séparé par |, aucun par défaut),
consomme_etat (booléen, Faux par défaut),
cibles_possibles (string, "Allies|Ennemis|Lanceur" par défaut)
cibles_exclues (string, aucune par défaut)
cible_non_requise (booléen, Faux par défaut).
Indique si l'effet peut être lancé s'il n'a pas de cible direct
(autrement dit si le sort est lancé sur une case vide).
zone (Zone, Zones.TypeZoneCercle(0) par défaut = sort mono cible)
@type: **kwargs | 625941b69b70327d1c4e0bf8 |
def calc_statistics(self): <NEW_LINE> <INDENT> self._ydata = [] <NEW_LINE> for patt_ind in range(len(self._rb_pattern)): <NEW_LINE> <INDENT> self._ydata.append({}) <NEW_LINE> self._ydata[-1]['mean'] = np.mean(self._raw_data[patt_ind], 0) <NEW_LINE> if len(self._raw_data[patt_ind]) == 1: <NEW_LINE> <INDENT> self._ydata[-1]['std'] = None <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self._ydata[-1]['std'] = np.std(self._raw_data[patt_ind], 0) | Extract averages and std dev from the raw data (self._raw_data).
Assumes that self._calc_data has been run. Output into internal
_ydata variable. ydata is a list of dictionaries (length number of
patterns). Dictionary ydata[i]:
* ydata[i]['mean'] is a numpy_array of length n;
entry j of this array contains the mean probability of
success over seeds, for vector length
self._cliff_lengths[i][j].
* ydata[i]['std'] is a numpy_array of length n;
entry j of this array contains the std
of the probability of success over seeds,
for vector length self._cliff_lengths[i][j]. | 625941b6c4546d3d9de72855 |
def _get_processor(v): <NEW_LINE> <INDENT> if context.executing_eagerly(): <NEW_LINE> <INDENT> if isinstance(v, ops.Tensor): <NEW_LINE> <INDENT> return _TensorProcessor(v) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return _DenseResourceVariableProcessor(v) <NEW_LINE> <DEDENT> <DEDENT> if resource_variable_ops.is_resource_variable(v) and not v._in_graph_mode: <NEW_LINE> <INDENT> return _DenseResourceVariableProcessor(v) <NEW_LINE> <DEDENT> if v.op.type == "VarHandleOp": <NEW_LINE> <INDENT> return _DenseResourceVariableProcessor(v) <NEW_LINE> <DEDENT> if isinstance(v, variables.Variable): <NEW_LINE> <INDENT> return _RefVariableProcessor(v) <NEW_LINE> <DEDENT> if isinstance(v, ops.Tensor): <NEW_LINE> <INDENT> return _TensorProcessor(v) <NEW_LINE> <DEDENT> raise NotImplementedError("Trying to optimize unsupported type ", v) | The processor of v. | 625941b66aa9bd52df036bc7 |
def is_unique(self) -> bool: <NEW_LINE> <INDENT> return (self.get_civ_id() != 0 and len(self.civ_lines) == 0 and self.get_enabling_research_id() > -1) | Groups are unique if they belong to a specific civ.
:returns: True if the civ id is not Gaia's and no alternative lines
for this unit line exist. | 625941b6b545ff76a8913c44 |
def getCardTestStatesDates(cards, tests, attempts): <NEW_LINE> <INDENT> numTests = len(tests) <NEW_LINE> testsToInd = {} <NEW_LINE> for i in xrange(numTests): <NEW_LINE> <INDENT> testsToInd[tests[i].pk] = i <NEW_LINE> <DEDENT> state = {} <NEW_LINE> for card in cards: <NEW_LINE> <INDENT> state[card.pk] = [(0, 0)] * numTests <NEW_LINE> <DEDENT> for attempt in attempts: <NEW_LINE> <INDENT> if not attempt.revoked: <NEW_LINE> <INDENT> testInd = testsToInd[attempt.test_type_id]; <NEW_LINE> if not attempt.num_failed == 0: <NEW_LINE> <INDENT> if state[attempt.card_id][testInd][1] == 0: <NEW_LINE> <INDENT> state[attempt.card_id][testInd] = (2, attempt.date_tested) <NEW_LINE> <DEDENT> elif state[attempt.card_id][testInd][1] < attempt.date_tested: <NEW_LINE> <INDENT> state[attempt.card_id][testInd] = (2, attempt.date_tested) <NEW_LINE> <DEDENT> <DEDENT> elif not attempt.num_passed == 0 and state[attempt.card_id][testInd][0] == 0: <NEW_LINE> <INDENT> if state[attempt.card_id][testInd][1] == 0: <NEW_LINE> <INDENT> state[attempt.card_id][testInd] = (1, attempt.date_tested) <NEW_LINE> <DEDENT> elif state[attempt.card_id][testInd][1] < attempt.date_tested: <NEW_LINE> <INDENT> state[attempt.card_id][testInd] = (1, attempt.date_tested) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> <DEDENT> cardStat = [] <NEW_LINE> for i in xrange(len(cards)): <NEW_LINE> <INDENT> card = cards[i] <NEW_LINE> curFail = [] <NEW_LINE> curPass = [] <NEW_LINE> curRem = [] <NEW_LINE> tempDict = {} <NEW_LINE> curState = state[card.pk] <NEW_LINE> for i in xrange(numTests): <NEW_LINE> <INDENT> if curState[i][0] == 0: <NEW_LINE> <INDENT> curRem.append((tests[i].name, curState[i][1])) <NEW_LINE> <DEDENT> elif curState[i][0] == 1: <NEW_LINE> <INDENT> curPass.append((tests[i].name, curState[i][1])) <NEW_LINE> <DEDENT> elif curState[i][0] == 2: <NEW_LINE> <INDENT> curFail.append((tests[i].name, curState[i][1])) <NEW_LINE> <DEDENT> <DEDENT> tempDict['barcode'] = card.barcode <NEW_LINE> tempDict['failed'] = curFail <NEW_LINE> tempDict['passed'] = curPass <NEW_LINE> tempDict['remaining'] = curRem <NEW_LINE> cardStat.append(tempDict) <NEW_LINE> <DEDENT> return cardStat | This function returns an array of cards and tests based on passes or fails | 625941b630dc7b766590178f |
def test_options(self): <NEW_LINE> <INDENT> class api: <NEW_LINE> <INDENT> @staticmethod <NEW_LINE> def is_production_mode(): <NEW_LINE> <INDENT> return False <NEW_LINE> <DEDENT> <DEDENT> o = self.cls(api) <NEW_LINE> o.finalize() <NEW_LINE> assert type(o.options) is NameSpace <NEW_LINE> assert len(o.options) == 1 <NEW_LINE> options = ('target', 'files*') <NEW_LINE> ns = self.get_instance(options=options).options <NEW_LINE> assert type(ns) is NameSpace <NEW_LINE> assert len(ns) == len(options) + 1 <NEW_LINE> assert list(ns) == ['target', 'files', 'version'] <NEW_LINE> assert type(ns.target) is parameters.Str <NEW_LINE> assert type(ns.files) is parameters.Str <NEW_LINE> assert ns.target.required is True <NEW_LINE> assert ns.target.multivalue is False <NEW_LINE> assert ns.files.required is False <NEW_LINE> assert ns.files.multivalue is True | Test the ``ipalib.frontend.Command.options`` instance attribute. | 625941b6627d3e7fe0d68c73 |
def update(self, volume_type, specs, **kwargs): <NEW_LINE> <INDENT> raise NotImplementedError() | Update the encryption type information for the specified volume type.
:param volume_type: the volume type whose encryption type information
must be updated
:param specs: the encryption type specifications to update
:return: an instance of :class: VolumeEncryptionType | 625941b68e7ae83300e4adf0 |
def _find_component(graph, vertex, component): <NEW_LINE> <INDENT> for n in graph.neighbors(vertex): <NEW_LINE> <INDENT> if n not in component: <NEW_LINE> <INDENT> component.add(n) <NEW_LINE> _find_component(graph, n, component) | Function to aid in finding all vertices in the same component as vertex.
Args:
graph: Graph made up of vertices and edges.
vertex: Single vertex in graph.
component: Component containing vertex. | 625941b6711fe17d825421a1 |
def list(self, bucket, prefix=None, marker=None, limit=None, delimiter=None): <NEW_LINE> <INDENT> options = { 'bucket': bucket, } <NEW_LINE> if marker is not None: <NEW_LINE> <INDENT> options['marker'] = marker <NEW_LINE> <DEDENT> if limit is not None: <NEW_LINE> <INDENT> options['limit'] = limit <NEW_LINE> <DEDENT> if prefix is not None: <NEW_LINE> <INDENT> options['prefix'] = prefix <NEW_LINE> <DEDENT> if delimiter is not None: <NEW_LINE> <INDENT> options['delimiter'] = delimiter <NEW_LINE> <DEDENT> url = 'http://{0}/list'.format(config.get_default('default_rsf_host')) <NEW_LINE> ret, info = self.__get(url, options) <NEW_LINE> eof = False <NEW_LINE> if ret and not ret.get('marker'): <NEW_LINE> <INDENT> eof = True <NEW_LINE> <DEDENT> return ret, eof, info | 前缀查询:
1. 首次请求 marker = None
2. 无论 err 值如何,均应该先看 ret.get('items') 是否有内容
3. 如果后续没有更多数据,err 返回 EOF,marker 返回 None(但不通过该特征来判断是否结束)
具体规格参考:
http://developer.qiniu.com/docs/v6/api/reference/rs/list.html
Args:
bucket: 空间名
prefix: 列举前缀
marker: 列举标识符
limit: 单次列举个数限制
delimiter: 指定目录分隔符
Returns:
一个dict变量,类似 {"hash": "<Hash string>", "key": "<Key string>"}
一个ReponseInfo对象
一个EOF信息。 | 625941b663f4b57ef0000f47 |
def itkScalarImageKmeansImageFilterIUS2IUS2_cast(*args): <NEW_LINE> <INDENT> return _itkScalarImageKmeansImageFilterPython.itkScalarImageKmeansImageFilterIUS2IUS2_cast(*args) | itkScalarImageKmeansImageFilterIUS2IUS2_cast(itkLightObject obj) -> itkScalarImageKmeansImageFilterIUS2IUS2 | 625941b656ac1b37e6264005 |
def length(data_hex): <NEW_LINE> <INDENT> n = len(bytes.fromhex(data_hex)) <NEW_LINE> if n >= 0 and n <= 127: <NEW_LINE> <INDENT> return '0' + '{0:07b}'.format(n) <NEW_LINE> <DEDENT> elif n >= 128 and n <= 255: <NEW_LINE> <INDENT> return '10000001' + '{0:08b}'.format(n) <NEW_LINE> <DEDENT> elif n >= 256 and n <= 65535: <NEW_LINE> <INDENT> return '10000010' + '{0:016b}'.format(n) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> print("ERROR: Data too long.") <NEW_LINE> sys.exit(1) | Retorna o comprimento, em bytes, de uma string hexdecimal.
O comprimento (n) é devolvido em formato binário (b), tal que:
- se 0 <= n <= 127, então b = 0[bin(n,7)]
- se 128 <= n <= 255, então b = 10000001 [bin(n,8)]
- se 256 <= n <= 65535, então b = 10000010 [bin(n,16)]
- senão, exceção
Note-se que [bin(x,k)] representa o valor de x em binário,
com k bits.
Parâmetros
----------
data_hex : str
string com dados, no formato hexadecimal, cujo comprimento
em bytes se pretende obter
Retorna
-------
length_bin : int
comprimento de 'data_hex' em bytes, em formato binário
Levanta
-------
Exception
se comprimento dos dados é superior a 65535 | 625941b62ae34c7f2600cf57 |
def deserialize(self, data): <NEW_LINE> <INDENT> self.index = 0 <NEW_LINE> return self.parse_deserialize(data) | Decodes your encoded data to tree.
:type data: str
:rtype: TreeNode | 625941b6e1aae11d1e749ad8 |
def get_summoners_by_name(names): <NEW_LINE> <INDENT> summoners = cassiopeia.core.requests.data_store.get(cassiopeia.type.core.summoner.Summoner, names, "name") <NEW_LINE> missing = [] <NEW_LINE> loc = [] <NEW_LINE> for i in range(len(names)): <NEW_LINE> <INDENT> if not summoners[i]: <NEW_LINE> <INDENT> missing.append(names[i]) <NEW_LINE> loc.append(i) <NEW_LINE> <DEDENT> <DEDENT> if not missing: <NEW_LINE> <INDENT> return summoners <NEW_LINE> <DEDENT> new = cassiopeia.core.requests.call_with_ensured_size(cassiopeia.dto.summonerapi.get_summoners_by_name, 40, missing) <NEW_LINE> to_store = [] <NEW_LINE> for i in range(len(missing)): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> summoner = cassiopeia.type.core.summoner.Summoner(new[__standardize(missing[i])]) <NEW_LINE> to_store.append(summoner) <NEW_LINE> <DEDENT> except KeyError: <NEW_LINE> <INDENT> summoner = None <NEW_LINE> <DEDENT> summoners[loc[i]] = summoner <NEW_LINE> <DEDENT> cassiopeia.core.requests.data_store.store(to_store, [summoner.id for summoner in to_store]) <NEW_LINE> cassiopeia.core.requests.data_store.store(to_store, [summoner.name for summoner in to_store]) <NEW_LINE> return summoners | Gets a bunch of summoners by name
names list<str> the names of the summoners
return list<Summoner> the summoners | 625941b607d97122c41786b0 |
def _ratio_enum(anchor, ratios): <NEW_LINE> <INDENT> w, h, x_ctr, y_ctr = _whctrs(anchor) <NEW_LINE> size = w * h <NEW_LINE> size_ratios = size / ratios <NEW_LINE> hs = np.round(np.sqrt(size_ratios)) <NEW_LINE> ws = np.round(hs * ratios) <NEW_LINE> anchors = _mkanchors(ws, hs, x_ctr, y_ctr) <NEW_LINE> return anchors | Enumerate a set of anchors for each aspect ratio wrt an anchor. | 625941b663d6d428bbe44314 |
def __init__(self, *nested_rules): <NEW_LINE> <INDENT> def _onerror(): <NEW_LINE> <INDENT> return abort(500) <NEW_LINE> <DEDENT> Rule.__init__(self, vfunc=is_request(), errfunc=_onerror, nested_rules=list(nested_rules)) | Constructs a new Rule for validating requests. Any
nested rules needed for validating parts of the request
(such as headers, query string params, etc) should
also be passed in.
:param nested_rules: Any sub rules that also should be
used for validation | 625941b6fff4ab517eb2f25e |
def transform(self, X): <NEW_LINE> <INDENT> return self.onehot.transform([[x] for x in self.label.transform(X)]) | Transform using fitted label encoder and onehot encoder | 625941b657b8e32f524832c5 |
def testGroups(self): <NEW_LINE> <INDENT> pass | Test Groups | 625941b6507cdc57c6306af8 |
def get_service_class(service_name): <NEW_LINE> <INDENT> name = service_name.capitalize() <NEW_LINE> if name not in __services: <NEW_LINE> <INDENT> service_module = get_module_for_service(service_name) <NEW_LINE> cls = _get_service_class(service_module) <NEW_LINE> if cls is None or cls[0][0:-len(SERVICE)] != name: <NEW_LINE> <INDENT> raise ImportError(ERR_UNEXPECTED_SERVICE_CLASS_IN_MODULE.format(name, service_module, cls[0] if cls else "None")) <NEW_LINE> <DEDENT> __services[name] = cls <NEW_LINE> <DEDENT> return __services[name][1] | Gets the class that implements a service
:param service_name: Name of the service
:return: Class that implements the service | 625941b6097d151d1a222c81 |
def random(self): <NEW_LINE> <INDENT> high, low = unpack('II', rand_bytes(8)) <NEW_LINE> high >>= 5 <NEW_LINE> low >>= 6 <NEW_LINE> return (high * 67108864.0 + low) * (1.0 / 9007199254740992.0) | Return a random float in the half-open interval [0, 1).
Copied from Python's _randommodule.c.
Returns
-------
x : float | 625941b632920d7e50b27ff1 |
def boundingRect(self): <NEW_LINE> <INDENT> extra = self._halfLength / 2.0 <NEW_LINE> return QRectF(self._origin, QSizeF(self._end.x() - self._origin.x(), self._end.y() - self._origin.y())) .normalized() .adjusted(-extra, -extra, extra, extra) | Public method to return the bounding rectangle.
@return bounding rectangle (QRectF) | 625941b696565a6dacc8f4fa |
def vector_mean(vectors): <NEW_LINE> <INDENT> n = len(vectors) <NEW_LINE> return scalar_multiply(1/n, vector_sum(vectors)) | compute the vector whose ith element is the mean of the ith elements of
the input vectors | 625941b6187af65679ca4f42 |
def self_destruct(self): <NEW_LINE> <INDENT> for bkfobj in self.bkup_file_objs: <NEW_LINE> <INDENT> bkfobj.self_destruct() | Delete all files associated with this instance | 625941b6379a373c97cfa970 |
def deleteExistingBadDataTrainingFolder(self): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> path = 'Training_Raw_files_validated/' <NEW_LINE> if os.path.isdir(path + 'Bad_Raw/'): <NEW_LINE> <INDENT> shutil.rmtree(path + 'Bad_Raw/') <NEW_LINE> file = open("Training_Logs/GeneralLog.txt", 'a+') <NEW_LINE> self.logger.log(file,"BadRaw directory deleted before starting validation!!!") <NEW_LINE> file.close() <NEW_LINE> <DEDENT> <DEDENT> except OSError as s: <NEW_LINE> <INDENT> file = open("Training_Logs/GeneralLog.txt", 'a+') <NEW_LINE> self.logger.log(file,"Error while Deleting Directory : %s" %s) <NEW_LINE> file.close() <NEW_LINE> raise OSError | Method Name: deleteExistingBadDataTrainingFolder
Description: This method deletes the directory made to store the bad Data.
Output: None
On Failure: OSError
| 625941b626068e7796caeafd |
def forward(self, pred, target, normalize=False): <NEW_LINE> <INDENT> if normalize: <NEW_LINE> <INDENT> target = 2 * target - 1 <NEW_LINE> pred = 2 * pred - 1 <NEW_LINE> <DEDENT> dist = self.model.forward_pair(target, pred) <NEW_LINE> return dist | Pred and target are Variables.
If normalize is on, assumes the images are between [0,1] and then scales thembetween [-1, 1]
If normalize is false, assumes the images are already between [-1,+1]
Inputs pred and target are Nx3xHxW
Output pytorch Variable N long | 625941b60c0af96317bb800f |
def __setChildDict(self, child): <NEW_LINE> <INDENT> d = self[self._name] <NEW_LINE> d[child.getName()] = child.getDict() | 私有方法来设置子对象的'child'的字典在内部字典 | 625941b6090684286d50eb05 |
def __get_special_fake_value(self, name, func_name, inner_type_index): <NEW_LINE> <INDENT> if func_name == 'pylist': <NEW_LINE> <INDENT> temp_list = list() <NEW_LINE> for i in range(self.list_value_count): <NEW_LINE> <INDENT> temp_list.append(self.get_optimum_fake_value(name, inner_type_index)) <NEW_LINE> <DEDENT> return temp_list <NEW_LINE> <DEDENT> elif func_name == 'object_id': <NEW_LINE> <INDENT> return str(ObjectId()) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return None | 获取特殊mock值 | 625941b6004d5f362079a15d |
@events.route(namespace + '/venues', methods=['GET']) <NEW_LINE> def get_venues(): <NEW_LINE> <INDENT> venues = queries.random_venues(10) <NEW_LINE> venues = [venue_schema.dump(v).data for v in venues] <NEW_LINE> result = { 'success': True, 'data': { 'venues': venues } } <NEW_LINE> return jsonify(result) | Grab a sample list of venues | 625941b67047854f462a1233 |
def calculate_variance_impurity(positives, negatives): <NEW_LINE> <INDENT> total = positives + negatives <NEW_LINE> if total == 0: <NEW_LINE> <INDENT> return 0.0 <NEW_LINE> <DEDENT> positive_ratio = positives / total <NEW_LINE> negative_ratio = negatives / total <NEW_LINE> result = round(positive_ratio * negative_ratio, 5) <NEW_LINE> return result | Calculate the variance impurity for data given positives and negatives
Parameters
----------
positives: int
Number of rows with positive attributes
negatives
Number of rows with negative attributes
Returns
-------
float | 625941b6099cdd3c635f0a82 |
def test_lines(self): <NEW_LINE> <INDENT> filename = join_data_path('pagelist-lines.txt') <NEW_LINE> site = self.get_site() <NEW_LINE> titles = list(pagegenerators.TextfilePageGenerator(filename, site)) <NEW_LINE> self.assertEqual(len(titles), len(self.expected_titles)) <NEW_LINE> expected_titles = [ expected_title[self.title_columns[site.namespaces[page.namespace()].case]] for expected_title, page in zip(self.expected_titles, titles)] <NEW_LINE> self.assertPageTitlesEqual(titles, expected_titles) | Test TextfilePageGenerator with newlines. | 625941b6283ffb24f3c55732 |
def gaussian(a, b, s): <NEW_LINE> <INDENT> return a * np.exp(-b * s**2) | General Gaussian | 625941b6fbf16365ca6f5fe1 |
def __init__(self, name, aliases=None): <NEW_LINE> <INDENT> if not isinstance(name, str): <NEW_LINE> <INDENT> raise ValueError('Field name must be a string') <NEW_LINE> <DEDENT> if aliases is not None: <NEW_LINE> <INDENT> name = aliases.get(name, name) <NEW_LINE> <DEDENT> if self.PICK_SEP in name: <NEW_LINE> <INDENT> self._name, self._subname = name.split(self.PICK_SEP) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self._name, self._subname = name, None | Create from field name.
:param name: Field name.
:type name: str
:param aliases: Aliases for all fields
:type aliases: dict
:raise: ValueError for non-string name | 625941b66e29344779a6243b |
def forward(self, x): <NEW_LINE> <INDENT> x = self.fc(x) <NEW_LINE> x = self.dropout(x) <NEW_LINE> x = x.view(-1, self.conv_dim*4, 4, 4) <NEW_LINE> x = F.relu(self.t_conv1(x)) <NEW_LINE> x = F.relu(self.t_conv2(x)) <NEW_LINE> x = F.tanh(self.t_conv3(x)) <NEW_LINE> return x | Forward propagation of the neural network
:param x: The input to the neural network
:return: A 32x32x3 Tensor image as output | 625941b6d6c5a10208143e6c |
def classMerge(data,y): <NEW_LINE> <INDENT> crtab = pd.crosstab(data, y, margins=True).drop('All') <NEW_LINE> crtab.columns = ['good', 'bad', 'total'] <NEW_LINE> crtab['bad_ratio'] = crtab['bad']/crtab['total'] <NEW_LINE> kmeans = KMeans(n_clusters=5, random_state=0).fit(crtab[['good','bad','bad_ratio']]) <NEW_LINE> dict_class = dict(zip(crtab.index.tolist(),kmeans.labels_)) <NEW_LINE> return dict_class | kmeans merge variable
:param data:
:param i:
:param y:
:return: dict_class | 625941b6fff4ab517eb2f25f |
def test_no_coalitions(self): <NEW_LINE> <INDENT> from nuorisovaalit.results import dhont_selection <NEW_LINE> district = self._populate(quota=3) <NEW_LINE> self._add_votes(district.candidates[0], 2) <NEW_LINE> self._add_votes(district.candidates[1], 3) <NEW_LINE> self._add_votes(district.candidates[2], 2) <NEW_LINE> self._add_votes(district.candidates[3], 4) <NEW_LINE> self._add_votes(district.candidates[4], 1) <NEW_LINE> self._add_votes(district.candidates[5], 2) <NEW_LINE> self._add_votes(district.candidates[6], 4) <NEW_LINE> self._add_votes(district.candidates[7], 3) <NEW_LINE> winners = dhont_selection(district) <NEW_LINE> self.assertEquals(8, len(winners)) <NEW_LINE> self.assertOrdering( district.candidates[2], district.candidates[6], district.candidates[5], district.candidates[7], district.candidates[0], district.candidates[4], district.candidates[3], district.candidates[1], ) <NEW_LINE> self.assertCandidate(winners[0], { 'name': u'6, Candidate', 'proportional_votes': Decimal('7'), 'absolute_votes': 4, }) <NEW_LINE> self.assertCandidate(winners[1], { 'name': u'3, Candidate', 'proportional_votes': Decimal('6'), 'absolute_votes': 4, }) <NEW_LINE> self.assertCandidate(winners[2], { 'name': u'1, Candidate', 'proportional_votes': Decimal('5'), 'absolute_votes': 3, }) <NEW_LINE> self.assertCandidate(winners[3], { 'name': u'5, Candidate', 'proportional_votes': Decimal('3.5'), 'absolute_votes': 2, }) <NEW_LINE> self.assertCandidate(winners[4], { 'name': u'2, Candidate', 'proportional_votes': Decimal('3'), 'absolute_votes': 2, }) <NEW_LINE> self.assertCandidate(winners[5], { 'name': u'7, Candidate', 'proportional_votes': Decimal('3'), 'absolute_votes': 3, }) <NEW_LINE> self.assertCandidate(winners[6], { 'name': u'0, Candidate', 'proportional_votes': Decimal('2.5'), 'absolute_votes': 2, }) <NEW_LINE> self.assertCandidate(winners[7], { 'name': u'4, Candidate', 'proportional_votes': Decimal('7') / Decimal('3'), 'absolute_votes': 1, }) | Test the results when there are no coalitions. | 625941b6adb09d7d5db6c5b9 |
def get_dataset(name: str, root: str, waveform_transform=None, utterance_transform=None, *args) -> Union[LIBRISPEECH, Numbers]: <NEW_LINE> <INDENT> if name == "librispeech": <NEW_LINE> <INDENT> return LIBRISPEECH(root=root, waveform_transform=waveform_transform, utterance_transform=utterance_transform, *args) <NEW_LINE> <DEDENT> elif name == "numbers": <NEW_LINE> <INDENT> return Numbers(root=root, waveform_transform=waveform_transform, utterance_transform=utterance_transform) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> raise ValueError(f"Unknown dataset name: \"{name}\"") | Get dataset by its name
:param name: One of {"librispeech", "numbers"}
:param root:
:param waveform_transform: audiomentations transform for waveform
:param utterance_transform: transform for utterance
:return: either LIBRISPEECH or Numbers dataset | 625941b676d4e153a657e955 |
def peek_active_groups(self): <NEW_LINE> <INDENT> bytes = self._peek_active_groups_func(self.alprstream_pointer) <NEW_LINE> results = _convert_bytes_to_json(bytes) <NEW_LINE> return results | Check the grouping list for active groups (but don't remove any entries from the grouping queue).
:return list results: All currently active groups. | 625941b6a8ecb033257d2efc |
def add_attachment(self, attach_id, data): <NEW_LINE> <INDENT> if attach_id in self.zf_filelist and attach_id not in self.deleted_files_attachments: <NEW_LINE> <INDENT> raise Exception("Attachment %s already in model." % attach_id) <NEW_LINE> <DEDENT> self.attachments[attach_id] = data <NEW_LINE> if attach_id not in self.modified_attachments: <NEW_LINE> <INDENT> self.modified_attachments.append(attach_id) | Add new attachment to the attachment folder. NOTE: For now only add new files and not new directories.
NOTE: You can only add a new attachment, if you delete the old one first.
TODO: Change to just overwrite.
:param attach_id:
:param data:
:return: | 625941b6925a0f43d2549c99 |
def set_name(self, name: str) -> None: <NEW_LINE> <INDENT> gdict = self._anydict <NEW_LINE> if len(gdict) == 1: <NEW_LINE> <INDENT> newdict = {name : [*gdict.values()][0]} <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> newdict = {} <NEW_LINE> for i, (k,v) in enumerate(gdict.items()): <NEW_LINE> <INDENT> if k == GROUPBY_KEY_PREFIX+'_'+str(i): <NEW_LINE> <INDENT> k = name+'_'+str(i) <NEW_LINE> <DEDENT> newdict[k] = v <NEW_LINE> <DEDENT> <DEDENT> self._set_anydict(newdict) | If the grouping dict contains a single item, rename it.
This will make categorical results consistent with groupby results if they've been constructed
before being added to a dataset.
Ensures that label names are consistent with categorical names.
Parameters
----------
name : str
The new name to use for the single column in the internal grouping dictionary.
Examples
--------
Single key Categorical added to a Dataset, grouping picks up name:
>>> c = rt.Categorical(['a','a','b','c','a'])
>>> print(c.get_name())
None
>>> ds = rt.Dataset({'catcol':c})
>>> ds.catcol.sum(rt.arange(5))
*catcol col_0
------- -----
a 5
b 2
c 3
Multikey Categorical, no names:
>>> c = rt.Categorical([rt.FA(['a','a','b','c','a']), rt.FA([1,1,2,3,1])])
>>> print(c.get_name())
None
>>> ds = rt.Dataset({'mkcol': c})
>>> ds.mkcol.sum(rt.arange(5))
*mkcol_0 *mkcol_1 col_0
-------- -------- -----
a 1 5
b 2 2
c 3 3
Multikey Categorical, already has names for its columns (names are preserved):
>>> arr1 = rt.FA(['a','a','b','c','a'])
>>> arr1.set_name('mystrings')
>>> arr2 = rt.FA([1,1,2,3,1])
>>> arr2.set_name('myints')
>>> c = rt.Categorical([arr1, arr2])
>>> ds = rt.Dataset({'mkcol': c})
>>> ds.mkcol.sum(rt.arange(5))
*mystrings *myints col_0
---------- ------- -----
a 1 5
b 2 2
c 3 3 | 625941b623849d37ff7b2eb8 |
def set_envelope_level4(self, arg0, arg1): <NEW_LINE> <INDENT> return self.sampler.execute(self.set_envelope_level4_cmd, (arg0, arg1, )) | Set Envelope Level 4 (FILTER and AUX only)
| 625941b6eab8aa0e5d26d984 |
def transform(line, known_fields=ENRICHED_EVENT_FIELD_TYPES, add_geolocation_data=True): <NEW_LINE> <INDENT> return jsonify_good_event(line.split('\t'), known_fields, add_geolocation_data) | Convert a Snowplow enriched event TSV into a JSON | 625941b64d74a7450ccd3fe8 |
def get_image(self, x, y, width, height): <NEW_LINE> <INDENT> image = pygame.Surface([width, height]).convert() <NEW_LINE> image.blit(self.sprite_sheet, (0, 0), (x, y, width, height)) <NEW_LINE> image.set_colorkey(constants.PURPLE) <NEW_LINE> return image | Grab a single image out of a larger spritesheet
Pass in the x, y location of the sprite
and the width and height of the sprite. | 625941b6fb3f5b602dac34b4 |
def findSecondMinimumValue(self, root): <NEW_LINE> <INDENT> if not root.right: return None <NEW_LINE> secMin = root.val <NEW_LINE> while root.right.right: <NEW_LINE> <INDENT> root = root.right <NEW_LINE> secMin = root.val <NEW_LINE> <DEDENT> return secMin | :type root: TreeNode
:rtype: int | 625941b63617ad0b5ed67d25 |
def err(self,stderr,append=False): <NEW_LINE> <INDENT> return self._init_runner().err(stderr,append) | !Returns a new Runner that is like self in all ways except
with a different stderr.
@param stderr the stderr filename
@param append if True, append to the file, otherwise truncate | 625941b6187af65679ca4f43 |
def max_value(self, brd, alpha, beta, depth): <NEW_LINE> <INDENT> successors = self.get_successors(brd) <NEW_LINE> if depth == 0 or brd.get_outcome() != 0 or len(successors) == 0: <NEW_LINE> <INDENT> return self.heuristic(brd), -1 <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> value = -sys.maxsize+1 <NEW_LINE> col = -1 <NEW_LINE> for b in successors: <NEW_LINE> <INDENT> bValue = self.min_value(b[0], alpha, beta, depth-1)[0] <NEW_LINE> if bValue > value: <NEW_LINE> <INDENT> value = bValue <NEW_LINE> col = b[1] <NEW_LINE> <DEDENT> if value >= beta: <NEW_LINE> <INDENT> return value, col <NEW_LINE> <DEDENT> alpha = max(alpha, value) <NEW_LINE> <DEDENT> return value, col | Get the max value | 625941b650812a4eaa59c14c |
def draw_px_point(self, context): <NEW_LINE> <INDENT> color = (0, 0, 0, 1.0) <NEW_LINE> v1 = [self.center_area.x, self.center_area.y] <NEW_LINE> v2 = [self.mouse_pos.x, self.mouse_pos.y] <NEW_LINE> if self.mouse_pos != Vector([-1, -1]): <NEW_LINE> <INDENT> draw_stippled_line(v1, v2, 0.5, 4, color) <NEW_LINE> if hasattr(self, 'rot_prev'): <NEW_LINE> <INDENT> draw_arrows(v1, v2, 1.5, 12, color, angle_offset=90) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> draw_arrows(v1, v2, 1.5, 12, color) | Draws the handle seen when rotating or scaling | 625941b626238365f5f0ec8f |
def set_student_choices_list(query,student_choice): <NEW_LINE> <INDENT> index = 0 <NEW_LINE> for choice in student_choice: <NEW_LINE> <INDENT> for internship in query: <NEW_LINE> <INDENT> if internship.organization == choice.organization and internship.speciality == choice.speciality: <NEW_LINE> <INDENT> choice.maximum_enrollments = internship.maximum_enrollments <NEW_LINE> choice.selectable = internship.selectable <NEW_LINE> query[index] = 0 <NEW_LINE> <DEDENT> index += 1 <NEW_LINE> <DEDENT> query = [x for x in query if x != 0] <NEW_LINE> index = 0 <NEW_LINE> <DEDENT> query = [x for x in query if x != 0] <NEW_LINE> return query | Function to set the list of the student's choices
Params :
query : the list of all internships
student_choice : the list of the internships choose by the student
Check if the internships and the choice are the same,
if yes put the param of the max enrollments and if there are selectable.
Then delete the internships in the list of the list of all internships
(because it's all ready in the choices list wich it display first) | 625941b64d74a7450ccd3fe9 |
def validate_status_cd(df): <NEW_LINE> <INDENT> val = [x for x in df.status if x not in status_list] <NEW_LINE> if len(val) ==0 : <NEW_LINE> <INDENT> print('No Outliers found in Status Code column.') <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> print('Outliers found in Status Code column in rows: {}'.format(val)) <NEW_LINE> <DEDENT> return | Takes up the unique values from status code column in data. | 625941b65fdd1c0f98dc0058 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.