code
stringlengths 4
4.48k
| docstring
stringlengths 1
6.45k
| _id
stringlengths 24
24
|
---|---|---|
def close_file(self): <NEW_LINE> <INDENT> self._flush() <NEW_LINE> self.file.close() | Closes file handle
| 625941b4a8ecb033257d2ea9 |
def calzone(year): <NEW_LINE> <INDENT> return calcium(year, weekends=False) | Prints YYYYMMDD calendar, like calcium without weekends | 625941b476d4e153a657e903 |
def check_json_precision(): <NEW_LINE> <INDENT> n = Decimal("20000000.00000003") <NEW_LINE> satoshis = int(json.loads(json.dumps(float(n))) * 1.0e8) <NEW_LINE> if satoshis != 2000000000000003: <NEW_LINE> <INDENT> raise RuntimeError("JSON encode/decode loses precision") | Make sure json library being used does not lose precision converting UCS values | 625941b42eb69b55b151c67d |
@auth.route('/register', methods=['GET', 'POST']) <NEW_LINE> def register(): <NEW_LINE> <INDENT> if user_is_registered(): <NEW_LINE> <INDENT> flash('A user is already registered. Log in.') <NEW_LINE> return redirect(url_for('auth.login')) <NEW_LINE> <DEDENT> form = RegistrationForm() <NEW_LINE> if form.validate_on_submit(): <NEW_LINE> <INDENT> password_hash = pwd_context.hash(form.password.data) <NEW_LINE> creator_id = create_user(form.email.data, password_hash) <NEW_LINE> Budget(None, None).add() <NEW_LINE> flash('Registration successful. You can login now.') <NEW_LINE> return redirect(url_for('auth.login')) <NEW_LINE> <DEDENT> return render_template('register.html', form=form) | Register user and create pagination table with one page
and no entries. | 625941b43539df3088e2e11f |
def test_get_attacking_queen_sqs(self): <NEW_LINE> <INDENT> board = Board('7k/8/7q/8/8/7K/8/8 w - - 0 1') <NEW_LINE> king = Piece.WK if board.turn == Color.WHITE else Piece.BK <NEW_LINE> king_sq = board.piece_sq[king][0] <NEW_LINE> queen_sqs = board._get_attacking_queen_sqs(king_sq) <NEW_LINE> self.assertEqual(len(queen_sqs), 1) <NEW_LINE> self.assertListEqual(sorted(queen_sqs), sorted([Sq.H6])) <NEW_LINE> board = Board('5q1Q/8/8/8/8/7K/8/3k4 w - - 0 1') <NEW_LINE> king = Piece.WK if board.turn == Color.WHITE else Piece.BK <NEW_LINE> king_sq = board.piece_sq[king][0] <NEW_LINE> queen_sqs = board._get_attacking_queen_sqs(king_sq) <NEW_LINE> self.assertEqual(len(queen_sqs), 0) <NEW_LINE> board = Board('8/8/8/5b2/q2N3K/8/8/3k4 w - - 0 1') <NEW_LINE> king = Piece.WK if board.turn == Color.WHITE else Piece.BK <NEW_LINE> king_sq = board.piece_sq[king][0] <NEW_LINE> queen_sqs = board._get_attacking_queen_sqs(king_sq) <NEW_LINE> self.assertEqual(len(queen_sqs), 0) <NEW_LINE> board = Board('7K/8/6Q1/5n2/8/3Q2k1/7Q/6b1 b - - 0 1') <NEW_LINE> king = Piece.WK if board.turn == Color.WHITE else Piece.BK <NEW_LINE> king_sq = board.piece_sq[king][0] <NEW_LINE> queen_sqs = board._get_attacking_queen_sqs(king_sq) <NEW_LINE> self.assertEqual(len(queen_sqs), 3) <NEW_LINE> self.assertListEqual(sorted(queen_sqs), sorted([Sq.H2, Sq.D3, Sq.G6])) | Tests the _get_attacking_queen_sqs() function of the Board class | 625941b44d74a7450ccd3f97 |
def test_materializations_events(self): <NEW_LINE> <INDENT> devices = self.get_fixtures_computers() <NEW_LINE> vaio, _ = self.get(self.DEVICES, '', devices[0]) <NEW_LINE> account_id = str(self.account['_id']) <NEW_LINE> materialized_events = [ {'@type': Snapshot.type_name, 'secured': False, 'byUser': account_id, 'incidence': False}, {'@type': Register.type_name, 'secured': False, 'byUser': account_id, 'incidence': False}, ] <NEW_LINE> fields = {'@type', '_id', 'byUser', 'incidence', 'secured', '_updated'} <NEW_LINE> fields_snapshot = fields | {'snapshotSoftware'} <NEW_LINE> self.assertIn('events', vaio) <NEW_LINE> for event, materialized_event in zip(vaio['events'], materialized_events): <NEW_LINE> <INDENT> assert_that(materialized_event).is_subset_of(event) <NEW_LINE> fields_to_check = fields if materialized_event['@type'] != 'devices:Snapshot' else fields_snapshot <NEW_LINE> assert_that(set(event.keys())).is_equal_to(fields_to_check) | Tests materializations related to events.
:return: | 625941b4293b9510aa2c306d |
def parse_datetime_range(time_filter): <NEW_LINE> <INDENT> if not time_filter: <NEW_LINE> <INDENT> time_filter = "[* TO *]" <NEW_LINE> <DEDENT> start, end = parse_solr_time_range_as_pair(time_filter) <NEW_LINE> start, end = parse_datetime(start), parse_datetime(end) <NEW_LINE> if None not in [start, end] and start > end: <NEW_LINE> <INDENT> raise Exception("Start must come before End: {0}".format(time_filter)) <NEW_LINE> <DEDENT> return start, end | Parse the url param to python objects.
From what time range to divide by a.time.gap into intervals.
Defaults to q.time and otherwise 90 days.
Validate in API: re.search("\[(.*) TO (.*)\]", value)
:param time_filter: [2013-03-01 TO 2013-05-01T00:00:00]
:return: datetime.datetime(2013, 3, 1, 0, 0), datetime.datetime(2013, 5, 1, 0, 0) | 625941b497e22403b379cd6c |
def _formatFilters(self, filters, validFields): <NEW_LINE> <INDENT> formatted_filters = [] <NEW_LINE> inequality_field = None <NEW_LINE> for f in filters: <NEW_LINE> <INDENT> filtr = {field.name: getattr(f, field.name) for field in f.all_fields()} <NEW_LINE> try: <NEW_LINE> <INDENT> filtr["field"] = validFields[filtr["field"]] <NEW_LINE> filtr["operator"] = OPERATORS[filtr["operator"]] <NEW_LINE> <DEDENT> except KeyError: <NEW_LINE> <INDENT> raise endpoints.BadRequestException("Filter contains invalid field (%s) or operator."%filtr["field"]) <NEW_LINE> <DEDENT> if filtr["operator"] != "=": <NEW_LINE> <INDENT> if inequality_field and inequality_field != filtr["field"]: <NEW_LINE> <INDENT> raise endpoints.BadRequestException("Inequality filter is allowed on only one field.") <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> inequality_field = filtr["field"] <NEW_LINE> <DEDENT> <DEDENT> formatted_filters.append(filtr) <NEW_LINE> <DEDENT> return (inequality_field, formatted_filters) | Parse, check validity and format user supplied filters. | 625941b421bff66bcd684729 |
def _process_notification_for_handler(self, handler, notification): <NEW_LINE> <INDENT> event_type = notification['event_type'] <NEW_LINE> payload = notification['payload'] <NEW_LINE> if event_type in handler.get_event_types(): <NEW_LINE> <INDENT> LOG.debug('Found handler for: %s' % event_type) <NEW_LINE> handler.process_notification(event_type, payload) | Processes an incoming notification for a specific handler, checking
to see if the handler is interested in the notification before
handing it over. | 625941b4cdde0d52a9e52e02 |
def change_to_tag(self, tag): <NEW_LINE> <INDENT> self.repo.git.checkout(tag) | 切换tag
:param tag:
:return: | 625941b4be8e80087fb20a23 |
def update_tabs_text(self): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> for index, fname in enumerate(self.filenames): <NEW_LINE> <INDENT> client = self.clients[index] <NEW_LINE> if fname: <NEW_LINE> <INDENT> self.rename_client_tab(client, self.disambiguate_fname(fname)) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.rename_client_tab(client, None) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> except IndexError: <NEW_LINE> <INDENT> pass | Update the text from the tabs. | 625941b4aad79263cf39080e |
def draw_ellipse(ax): <NEW_LINE> <INDENT> aux_tr_box = AuxTransformBox(ax.transData) <NEW_LINE> aux_tr_box.add_artist(Ellipse((0, 0), width=0.1, height=0.15)) <NEW_LINE> box = AnchoredOffsetbox(child=aux_tr_box, loc="lower left", frameon=True) <NEW_LINE> ax.add_artist(box) | Draw an ellipse of width=0.1, height=0.15 in data coordinates. | 625941b4167d2b6e31218972 |
def averaging_models_by_two(trainX, validX, trainy, validy, testX): <NEW_LINE> <INDENT> averaged_2models(trainX, validX, trainy, validy, testX, RF_model, XGB_model, "RF", "XGB") <NEW_LINE> averaged_2models(trainX, validX, trainy, validy, testX, RF_model, MLP_model, "RF", "MLP") <NEW_LINE> averaged_2models(trainX, validX, trainy, validy, testX, RF_model, ET_model, "RF", "Extra_tree") <NEW_LINE> averaged_2models(trainX, validX, trainy, validy, testX, XGB_model, ET_model, "XGB", "ET") <NEW_LINE> averaged_2models(trainX, validX, trainy, validy, testX, XGB_model, MLP_model, "XGB", "MLP") <NEW_LINE> averaged_2models(trainX, validX, trainy, validy, testX, MLP_model, ET_model, "MLP", "ET") | Run all combinations of 2 models for ensemble averaging
Best to use averaging_probas to avoid retraining existing models | 625941b4dd821e528d63af80 |
def render_image1(self, data, order, win_coord): <NEW_LINE> <INDENT> self.logger.debug("redraw surface") <NEW_LINE> if self.figure is None: <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> dst_x = dst_y = 0 <NEW_LINE> if self.mpimage is None: <NEW_LINE> <INDENT> self.mpimage = self.figure.figimage(data, xo=dst_x, yo=dst_y, origin='upper') <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.mpimage.ox = dst_x <NEW_LINE> self.mpimage.oy = dst_y <NEW_LINE> self.mpimage.set_data(data) | Render the image represented by (rgbobj) at dst_x, dst_y
in the pixel space.
NOTE: this version uses a Figure.FigImage to render the image. | 625941b4a8370b7717052675 |
def search_dashboard_deleted_for_facet_with_http_info(self, facet, **kwargs): <NEW_LINE> <INDENT> all_params = ['facet', 'body'] <NEW_LINE> all_params.append('async_req') <NEW_LINE> all_params.append('_return_http_data_only') <NEW_LINE> all_params.append('_preload_content') <NEW_LINE> all_params.append('_request_timeout') <NEW_LINE> params = locals() <NEW_LINE> for key, val in six.iteritems(params['kwargs']): <NEW_LINE> <INDENT> if key not in all_params: <NEW_LINE> <INDENT> raise TypeError( "Got an unexpected keyword argument '%s'" " to method search_dashboard_deleted_for_facet" % key ) <NEW_LINE> <DEDENT> params[key] = val <NEW_LINE> <DEDENT> del params['kwargs'] <NEW_LINE> if self.api_client.client_side_validation and ('facet' not in params or params['facet'] is None): <NEW_LINE> <INDENT> raise ValueError("Missing the required parameter `facet` when calling `search_dashboard_deleted_for_facet`") <NEW_LINE> <DEDENT> collection_formats = {} <NEW_LINE> path_params = {} <NEW_LINE> if 'facet' in params: <NEW_LINE> <INDENT> path_params['facet'] = params['facet'] <NEW_LINE> <DEDENT> query_params = [] <NEW_LINE> header_params = {} <NEW_LINE> form_params = [] <NEW_LINE> local_var_files = {} <NEW_LINE> body_params = None <NEW_LINE> if 'body' in params: <NEW_LINE> <INDENT> body_params = params['body'] <NEW_LINE> <DEDENT> header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) <NEW_LINE> header_params['Content-Type'] = self.api_client.select_header_content_type( ['application/json']) <NEW_LINE> auth_settings = ['api_key'] <NEW_LINE> return self.api_client.call_api( '/api/v2/search/dashboard/deleted/{facet}', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ResponseContainerFacetResponse', auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) | Lists the values of a specific facet over the customer's deleted dashboards # noqa: E501
# noqa: E501
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async_req=True
>>> thread = api.search_dashboard_deleted_for_facet_with_http_info(facet, async_req=True)
>>> result = thread.get()
:param async_req bool
:param str facet: (required)
:param FacetSearchRequestContainer body:
:return: ResponseContainerFacetResponse
If the method is called asynchronously,
returns the request thread. | 625941b47c178a314d6ef22b |
def addSliceCallback(self, callback): <NEW_LINE> <INDENT> self.SliceCallbacks.append(callback) | Add a function to call when a Slice of data is completed. | 625941b4187af65679ca4ef8 |
def get_all_tables(self) -> list: <NEW_LINE> <INDENT> tables = self.c.execute( "SELECT name FROM sqlite_master WHERE type='table';") <NEW_LINE> return [table[0] for table in tables] | Get the name of all the tables in the database. | 625941b463f4b57ef0000ef7 |
def _get_ref_network(self): <NEW_LINE> <INDENT> pass | _get_ref_network is a helper function which returns the name
of the network which references this NIC-like resource.
NOTE: It is stubbed and must be implemented by all inheriting classes. | 625941b4cc40096d61595728 |
def __init__(self, *args): <NEW_LINE> <INDENT> pass | Initialize a URI resolver plugin | 625941b48e05c05ec3eea145 |
def _load_devicelist_with_diff(output_diff: bool, old_prds: dict = {}) -> dict: <NEW_LINE> <INDENT> with open(DEVICELIST_FILE, "rt") as dlfile: <NEW_LINE> <INDENT> prds = json.load(dlfile) <NEW_LINE> <DEDENT> if old_prds and output_diff: <NEW_LINE> <INDENT> print_prd_diff(old_prds, prds) <NEW_LINE> <DEDENT> return prds | Load local devicelist and output diff if requested. | 625941b4d6c5a10208143e1a |
def M_prime(self, A): <NEW_LINE> <INDENT> res = set() <NEW_LINE> for g in self.G: <NEW_LINE> <INDENT> if all(self.ctx[(g, a)] for a in A): <NEW_LINE> <INDENT> res.add(g) <NEW_LINE> <DEDENT> <DEDENT> return res | Computes B'.
:param B: subset of objects B <= M
:returns: subset of features B' <= G | 625941b43eb6a72ae02ec2ae |
def datetime_as_str(the_datetime = None, format = '%Y-%m-%d %H:%M:%S'): <NEW_LINE> <INDENT> if the_datetime == None: <NEW_LINE> <INDENT> the_datetime = datetime.datetime.now() <NEW_LINE> <DEDENT> return the_datetime.strftime(format) | Generate a string representation of a datetime object.
@param the_datetime an object of type datetime.datetime.
@param format the desired format of the generated string. | 625941b4d6c5a10208143e1b |
def validate(val_loader, model, criterion, print_freq, filename, is_cuda=False): <NEW_LINE> <INDENT> batch_time = AverageMeter() <NEW_LINE> losses = AverageMeter() <NEW_LINE> top1 = AverageMeter() <NEW_LINE> top5 = AverageMeter() <NEW_LINE> model.eval() <NEW_LINE> end = time.time() <NEW_LINE> for i, (input, target) in enumerate(val_loader): <NEW_LINE> <INDENT> if (is_cuda): <NEW_LINE> <INDENT> target = target.cuda() <NEW_LINE> input = input.cuda() <NEW_LINE> model = model.cuda() <NEW_LINE> <DEDENT> input_var = torch.autograd.Variable(input, volatile=True) <NEW_LINE> target_var = torch.autograd.Variable(target, volatile=True) <NEW_LINE> with torch.no_grad(): <NEW_LINE> <INDENT> output = model(input_var) <NEW_LINE> loss = criterion(output, target_var) <NEW_LINE> prec1, prec5 = accuracy(output.data, target, topk=(1, 5)) <NEW_LINE> losses.update(loss.item(), input.size(0)) <NEW_LINE> top1.update(prec1[0], input.size(0)) <NEW_LINE> top5.update(prec5[0], input.size(0)) <NEW_LINE> batch_time.update(time.time() - end) <NEW_LINE> end = time.time() <NEW_LINE> if i % print_freq == 0: <NEW_LINE> <INDENT> print('Test: [{0}/{1}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( i, len(val_loader), batch_time=batch_time, loss=losses, top1=top1, top5=top5)) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> with open("/home/hongwu/python/Image/" + experience_id + "/" + filename + ".txt", "a+") as f: <NEW_LINE> <INDENT> f.write('save 1, percent: * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} \n'.format( top1=top1, top5=top5)) <NEW_LINE> <DEDENT> print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'.format(top1=top1, top5=top5)) <NEW_LINE> return top1.avg, top5.avg | 使用验证集对当前模型进行评估
:param val_loader: 使用验证集生成的dataloader
:param model: 模型
:param criterion: 评价标准
:param print_freq: 打印频率
:return: 最终的准确率 | 625941b48a43f66fc4b53e3e |
def getMotorCount(self): <NEW_LINE> <INDENT> motorCount = c_int() <NEW_LINE> result = PhidgetLibrary.getDll().CPhidgetMotorControl_getMotorCount(self.handle, byref(motorCount)) <NEW_LINE> if result > 0: <NEW_LINE> <INDENT> raise PhidgetException(result) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return motorCount.value | Returns the number of motors supported by this Phidget.
This does not neccesarily correspond to the number of motors actually attached to the board.
Returns:
The number of supported motors <int>.
Exceptions:
PhidgetException: If this Phidget is not opened and attached. | 625941b482261d6c526ab277 |
def draw_tilted_uniform_grid(img, thickness, step, bgr_color): <NEW_LINE> <INDENT> h, w, _ = img.shape <NEW_LINE> x, y = uniform(low=-w, high=-w + step, size=2) <NEW_LINE> while x < w: <NEW_LINE> <INDENT> draw_line(img, (x, h - 1), (x + w, 0), bgr_color, thickness) <NEW_LINE> x += step <NEW_LINE> <DEDENT> while y < h: <NEW_LINE> <INDENT> draw_line(img, (0, y), (w, y + h - 1), bgr_color, thickness) <NEW_LINE> y += step | Draws square-cell uniform grid with random shift, tilted on 45 degs | 625941b4377c676e91271f7f |
def _setPolicySetId(self, value): <NEW_LINE> <INDENT> if not isinstance(value, str): <NEW_LINE> <INDENT> raise TypeError('Expecting string type for "policySetId" ' 'attribute; got %r' % type(value)) <NEW_LINE> <DEDENT> self.__policySetId = value | @param value: policy set id
@type value: basestring
@raise TypeError: incorrect input type | 625941b41b99ca400220a885 |
def addTwoNumbers(self, l1, l2): <NEW_LINE> <INDENT> if l1 == None and l2 == None: <NEW_LINE> <INDENT> return l1 <NEW_LINE> <DEDENT> if l1 == None: <NEW_LINE> <INDENT> return l2 <NEW_LINE> <DEDENT> if l2 == None: <NEW_LINE> <INDENT> return l1 <NEW_LINE> <DEDENT> carry = 0 <NEW_LINE> head = None <NEW_LINE> curHead = None <NEW_LINE> while (l1 != None or l2 != None): <NEW_LINE> <INDENT> temp = carry <NEW_LINE> if l1 != None: <NEW_LINE> <INDENT> temp = temp + l1.val <NEW_LINE> l1 = l1.next <NEW_LINE> <DEDENT> if l2 != None: <NEW_LINE> <INDENT> temp = temp + l2.val <NEW_LINE> l2 = l2.next <NEW_LINE> <DEDENT> newNode = ListNode(temp % 10) <NEW_LINE> if head != None: <NEW_LINE> <INDENT> curHead.next = newNode <NEW_LINE> curHead = newNode <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> head = newNode <NEW_LINE> curHead = newNode <NEW_LINE> <DEDENT> carry = temp / 10 <NEW_LINE> <DEDENT> if carry == 1: <NEW_LINE> <INDENT> newNode = ListNode(1) <NEW_LINE> curHead.next = newNode <NEW_LINE> <DEDENT> return head | :type l1: ListNode
:type l2: ListNode
:rtype: ListNode | 625941b499fddb7c1c9de168 |
def fillListWithVideoResults(l, result): <NEW_LINE> <INDENT> l[RECALL].append(result.Recall()) <NEW_LINE> l[SPECIFICITY].append(result.Specificity()) <NEW_LINE> l[FPR].append(result.FPR()) <NEW_LINE> l[FNR].append(result.FNR()) <NEW_LINE> l[PBC].append(result.PBC()) <NEW_LINE> l[FMEASURE].append(result.FMeasure()) <NEW_LINE> l[PRECISION].append(result.Precision()) | Append a stats list with a CategoryResult. | 625941b4ec188e330fd5a57c |
def get_adjacency_matrix(self): <NEW_LINE> <INDENT> resultList = [] <NEW_LINE> for x in range(len(self.nodes) + 1): <NEW_LINE> <INDENT> rowList = [] <NEW_LINE> for y in range(len(self.nodes) + 1): <NEW_LINE> <INDENT> insertValue = 0 <NEW_LINE> for edge in self.edges: <NEW_LINE> <INDENT> if(x == edge.node_from.value and y == edge.node_to.value): <NEW_LINE> <INDENT> insertValue = edge.value <NEW_LINE> <DEDENT> <DEDENT> rowList.append(insertValue) <NEW_LINE> <DEDENT> resultList.append(rowList) <NEW_LINE> <DEDENT> return resultList | Return a matrix, or 2D list.
Row numbers represent from nodes,
column numbers represent to nodes.
Store the edge values in each spot,
and a 0 if no edge exists. | 625941b4fff4ab517eb2f20d |
@login_required(login_url='admin/') <NEW_LINE> def myadmin_object_list(request, model_name): <NEW_LINE> <INDENT> view = ListView <NEW_LINE> view.model = get_model(model_name) <NEW_LINE> view.template_name = "myadmin/object_list.html" <NEW_LINE> def get_context_data(self, **kwargs): <NEW_LINE> <INDENT> context = super(view, self).get_context_data(**kwargs) <NEW_LINE> context['model_name'] = model_name <NEW_LINE> return context <NEW_LINE> <DEDENT> view.get_context_data = get_context_data <NEW_LINE> return view.as_view()(request) | Lists objects of selected model | 625941b473bcbd0ca4b2be51 |
def set_forced_first_scattering(self, forced_first_scattering): <NEW_LINE> <INDENT> self.forced_first_scattering = forced_first_scattering | Set whether to ensure that photons scatter at least once before
escaping the grid.
Parameters
----------
forced_first_scattering : bool
Whether to force at least one scattering before escaping the
grid
References
----------
Wood & Reynolds, 1999, The Astrophysical Journal, 525, 799 | 625941b4e1aae11d1e749a88 |
def getDebug(): <NEW_LINE> <INDENT> global _DEBUG <NEW_LINE> return _DEBUG | Returns the currently active DEBUG string. | 625941b4de87d2750b85fb62 |
def print_all(self, filename=None): <NEW_LINE> <INDENT> from pprint import pprint <NEW_LINE> for k in self.data_list: <NEW_LINE> <INDENT> print("============== {} ==================".format(k)) <NEW_LINE> if filename is None: <NEW_LINE> <INDENT> pprint(self.defs[k]) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> pprint(self.file_defs[filename][k]) | Print everything parsed from files. Useful for debugging.
Parameters
----------
filename : unicode, optional
Name of the file whose definition should be printed. | 625941b416aa5153ce36224d |
def test_delivery_reports_confirmed_post(self): <NEW_LINE> <INDENT> pass | Test case for delivery_reports_confirmed_post
Confirm the receipt of delivery reports. | 625941b44f6381625f11481b |
def train(self, sess, encoder_inputs, encoder_inputs_length, decoder_inputs, decoder_inputs_length): <NEW_LINE> <INDENT> if self.mode != 'train': <NEW_LINE> <INDENT> raise ValueError('Train step can only be operated in train mode') <NEW_LINE> <DEDENT> input_feed = self.check_feeds(encoder_inputs, encoder_inputs_length, decoder_inputs, decoder_inputs_length, False) <NEW_LINE> input_feed[self.keep_prob_placeholder.name] = self.keep_prob <NEW_LINE> output_feed = [ self.train_op, self.loss, self.summary_op ] <NEW_LINE> outputs = sess.run(output_feed, input_feed) <NEW_LINE> return outputs[1], outputs[2] | Run a train step of the model feeding the given inputs.
Args:
session: tensorflow session to use.
encoder_inputs: a numpy int matrix of [batch_size, max_source_time_steps]
to feed as encoder inputs
encoder_inputs_length: a numpy int vector of [batch_size]
to feed as sequence lengths for each element in the given batch
decoder_inputs: a numpy int matrix of [batch_size, max_target_time_steps]
to feed as decoder inputs
decoder_inputs_length: a numpy int vector of [batch_size]
to feed as sequence lengths for each element in the given batch
Returns:
A triple consisting of gradient norm (or None if we did not do backward),
average perplexity, and the outputs. | 625941b497e22403b379cd6d |
def to_variable(x,requires_grad = False,cuda = False): <NEW_LINE> <INDENT> x = torch.from_numpy(x) <NEW_LINE> if(cuda): <NEW_LINE> <INDENT> x = x.cuda() <NEW_LINE> <DEDENT> x = Variable(x, requires_grad = requires_grad) <NEW_LINE> return x | Convert numpy array into a pytorch tensor | 625941b4046cf37aa974cb20 |
def get_my_spout(self): <NEW_LINE> <INDENT> if self.is_spout: <NEW_LINE> <INDENT> return self._my_spbl <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return None | Returns spout instance, or ``None`` if bolt is assigned | 625941b43346ee7daa2b2b3d |
def oddEvenList(self, head): <NEW_LINE> <INDENT> if not head: <NEW_LINE> <INDENT> return None <NEW_LINE> <DEDENT> o = ListNode(-2) <NEW_LINE> odd = ListNode(-1) <NEW_LINE> even = o <NEW_LINE> cur = head <NEW_LINE> while cur: <NEW_LINE> <INDENT> odd.next = cur <NEW_LINE> even.next = cur.next <NEW_LINE> odd = cur <NEW_LINE> even = cur.next <NEW_LINE> if cur.next: <NEW_LINE> <INDENT> cur = cur.next.next <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> break <NEW_LINE> <DEDENT> <DEDENT> odd.next = o.next <NEW_LINE> return head | :type head: ListNode
:rtype: ListNode | 625941b40a366e3fb873e5eb |
def gaussquad(n): <NEW_LINE> <INDENT> i = np.arange(n-1) <NEW_LINE> b = (i+1.) / np.sqrt(4.*(i+1)**2 - 1.) <NEW_LINE> J = np.diag(b, -1) + np.diag(b, 1) <NEW_LINE> x, ev = np.linalg.eigh(J) <NEW_LINE> w = 2 * ev[0,:]**2 <NEW_LINE> return x, w | Berechnet die Knoten und Gewichte für Gauss-Legendre Quadratur.
| 625941b491af0d3eaac9b7e8 |
def put_Description(self, desc): <NEW_LINE> <INDENT> return super(IServerObjectExtensionType2, self).put_Description(desc) | Method IServerObjectExtensionType.put_Description (from IServerObjectExtensionType)
INPUT
desc : BSTR | 625941b48c0ade5d55d3e794 |
def instantiated(self): <NEW_LINE> <INDENT> return bool(super(Panel, self).widget()) | Return True if the tool already has been loaded. | 625941b4cdde0d52a9e52e03 |
def __get_ew_pos_fft(self, times, evec_stream, f, dec, pad_fac=pad_fac_EW): <NEW_LINE> <INDENT> n = len(times) <NEW_LINE> apod = np.hanning(n) <NEW_LINE> dt = np.radians(ephemeris.lsa(times[1]) - ephemeris.lsa(times[0])) <NEW_LINE> spec = np.fft.fft(apod * evec_stream, n=n * pad_fac) <NEW_LINE> freq = np.fft.fftfreq(n * pad_fac, dt) <NEW_LINE> x_loc = freq[np.argmax(np.abs(spec))] <NEW_LINE> conv_fac = -2.99792e2 / f / np.cos(dec) <NEW_LINE> position = x_loc * conv_fac <NEW_LINE> position_resolution = np.abs(freq[1] - freq[0]) * np.abs(conv_fac) <NEW_LINE> return position, position_resolution | Routine that gets feed positions from the eigenvector data via an FFT.
The eigenvector is first apodized with ahannings window function
and then fourier transformed along the time axis.
Parameters
----------
times : np.ndarray
Unix time of the data
evec_stream : np.ndarray
The eigenvector data for a single frequency as a function of time.
f : float
The selected frequency
dec : float
The declination of the source in radians.
pad_fac: integer
The multiplicative factor by which we want to pad the data.
Returns
-------
positions: np.ndarray(ninput)
The East-West positions referenced to 2 feeds on the first
cylinder.
position_resolution: float
Position resolution, determined by number of time samples times
padding factor. | 625941b47b25080760e39231 |
@main.before_request <NEW_LINE> @rate_limit(42, 10) <NEW_LINE> def before_request(): <NEW_LINE> <INDENT> pass | All routes in this blueprint require rate limiting. | 625941b4796e427e537b0397 |
def parse_fastq(f): <NEW_LINE> <INDENT> name = f.readline().strip() <NEW_LINE> read = f.readline().strip() <NEW_LINE> plus = f.readline().strip() <NEW_LINE> qual = f.readline().strip() <NEW_LINE> return [name,read,plus,qual] | parse every 4 lines of fastq file | 625941b4283ffb24f3c556e3 |
def symmetric5(input_function, x, h): <NEW_LINE> <INDENT> f_minus_2 = input_function(x - (2.0 * h)) <NEW_LINE> f_minus_1 = input_function(x - h) <NEW_LINE> f_0 = input_function(x) <NEW_LINE> f_1 = input_function(x + h) <NEW_LINE> f_2 = input_function(x + (2.0 * h)) <NEW_LINE> return (f_minus_2 - (8.0 * f_minus_1) + (8.0 * f_1) - f_2) / (12.0 * h) | Performs the symmetric 5-point method on the input_function
Input: x -- independent variable
h -- step-size
Output: dependent variable | 625941b45f7d997b87174870 |
@render_to('googlead6c3c617c310b08.html') <NEW_LINE> def google_verify(request): <NEW_LINE> <INDENT> return {} | page used to verify for chrome store | 625941b4097d151d1a222c39 |
def previous(self): <NEW_LINE> <INDENT> return _BLISS_swig.SwigPyIterator_previous(self) | previous(self) -> PyObject | 625941b4377c676e91271f80 |
def __init__( self, *, id: Optional[str] = None, timestamp: Optional[datetime.datetime] = None, action: Optional[str] = None, target: Optional["Target"] = None, request: Optional["Request"] = None, actor: Optional["Actor"] = None, source: Optional["Source"] = None, **kwargs ): <NEW_LINE> <INDENT> super(EventContent, self).__init__(**kwargs) <NEW_LINE> self.id = id <NEW_LINE> self.timestamp = timestamp <NEW_LINE> self.action = action <NEW_LINE> self.target = target <NEW_LINE> self.request = request <NEW_LINE> self.actor = actor <NEW_LINE> self.source = source | :keyword id: The event ID.
:paramtype id: str
:keyword timestamp: The time at which the event occurred.
:paramtype timestamp: ~datetime.datetime
:keyword action: The action that encompasses the provided event.
:paramtype action: str
:keyword target: The target of the event.
:paramtype target: ~azure.mgmt.containerregistry.v2021_06_01_preview.models.Target
:keyword request: The request that generated the event.
:paramtype request: ~azure.mgmt.containerregistry.v2021_06_01_preview.models.Request
:keyword actor: The agent that initiated the event. For most situations, this could be from the
authorization context of the request.
:paramtype actor: ~azure.mgmt.containerregistry.v2021_06_01_preview.models.Actor
:keyword source: The registry node that generated the event. Put differently, while the actor
initiates the event, the source generates it.
:paramtype source: ~azure.mgmt.containerregistry.v2021_06_01_preview.models.Source | 625941b430bbd722463cbb98 |
def show_topic_words(self, id_words): <NEW_LINE> <INDENT> for i, t in enumerate(self.phi.value): <NEW_LINE> <INDENT> print("Topic %i: " % i, ", ".join(id_words[w_] for w_ in np.argsort(t[0])[-10:] if w_ < (self.vocabulary - 1 - 1))) | For each topic show a list of representative words.
:param id_words: the mapping from ids to its words
:return: topic number and its representative words | 625941b499fddb7c1c9de169 |
def discover_filtered_tests(self, filter_name, top_level_directory=None, pattern='test*.py'): <NEW_LINE> <INDENT> if top_level_directory is None: <NEW_LINE> <INDENT> top_level_directory = find_top_level_directory( os.getcwd()) <NEW_LINE> <DEDENT> logger.debug('Discovering filtered tests: filter_name=%r, ' 'top_level_directory=%r, pattern=%r', top_level_directory, top_level_directory, pattern) <NEW_LINE> suite = self.discover_by_directory( top_level_directory, top_level_directory=top_level_directory, pattern=pattern) <NEW_LINE> return self._loader.create_suite( filter_test_suite(suite, filter_name=filter_name)) | Find all tests whose package, module, class or method names match
the ``filter_name`` string.
Parameters
----------
filter_name : str
A subsection of the full dotted test name. This can be
simply a test method name (e.g. ``test_some_method``), the
TestCase class name (e.g. ``TestMyClass``), a module name
(e.g. ``test_module``), a subpackage (e.g. ``tests``). It
may also be a dotted combination of the above
(e.g. ``TestMyClass.test_some_method``).
top_level_directory : str
The path to the top-level directoy of the project. This is
the parent directory of the project'stop-level Python
package.
pattern : str
The glob pattern to match the filenames of modules to search
for tests. | 625941b42eb69b55b151c67f |
def _createIntegratedWorkspace(self, InputWorkspace=None, OutputWorkspace=None, proton_charge=None, from_pixel=0, to_pixel=303): <NEW_LINE> <INDENT> x_axis = InputWorkspace.readX(0)[:] <NEW_LINE> x_size = to_pixel - from_pixel + 1 <NEW_LINE> y_axis = zeros((self.alpha_pixel_nbr, len(x_axis) - 1)) <NEW_LINE> y_error_axis = zeros((self.alpha_pixel_nbr, len(x_axis) - 1)) <NEW_LINE> y_range = arange(x_size) + from_pixel <NEW_LINE> for x in range(self.beta_pixel_nbr): <NEW_LINE> <INDENT> for y in y_range: <NEW_LINE> <INDENT> index = int(self.alpha_pixel_nbr * x + y) <NEW_LINE> y_axis[y, :] += InputWorkspace.readY(index)[:] <NEW_LINE> y_error_axis[y, :] += ((InputWorkspace.readE(index)[:]) * (InputWorkspace.readE(index)[:])) <NEW_LINE> <DEDENT> <DEDENT> y_axis = y_axis.flatten() <NEW_LINE> y_error_axis = sqrt(y_error_axis) <NEW_LINE> y_error_axis = y_error_axis.flatten() <NEW_LINE> y_axis /= (proton_charge * 1e-12) <NEW_LINE> CreateWorkspace(OutputWorkspace=OutputWorkspace, DataX=x_axis, DataY=y_axis, DataE=y_error_axis, Nspec=self.alpha_pixel_nbr) | This creates the integrated workspace over the second pixel range
(beta_pixel_nbr here) and
returns the new workspace handle | 625941b4be383301e01b526b |
def _extend_height(glyph, carry_last): <NEW_LINE> <INDENT> if carry_last: <NEW_LINE> <INDENT> return bytematrix.vstack((glyph, glyph[-1, :])) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return glyph.vextend(1) | Extend the character height by a row. | 625941b40a50d4780f666c65 |
def _lookup(obj, prop): <NEW_LINE> <INDENT> if isinstance(prop, ast.Attribute): <NEW_LINE> <INDENT> return obj.get(prop.attr) <NEW_LINE> <DEDENT> elif isinstance(prop, ast.Name): <NEW_LINE> <INDENT> return obj.get(prop.id) <NEW_LINE> <DEDENT> elif isinstance(prop, ast.Subscript): <NEW_LINE> <INDENT> return obj[_lookup_subscript(prop.slice.value)] <NEW_LINE> <DEDENT> raise NotImplementedError(f"Node is not supported: {prop}") | Lookup a given property on the object.
Parameters
obj (Dict): A dict to lookup for properties or index
prop (ast Node): An ast.Attribute, ast.Name, or ast.Subscript node to lookup
Returns
An object result of the lookup | 625941b421a7993f00bc7abe |
def test_automatic_startup_params(self): <NEW_LINE> <INDENT> self.assert_initialize_driver() <NEW_LINE> self.assert_get(SBE37Parameter.INTERVAL, 1) | Verify that startup params are applied automatically when the driver is started. | 625941b485dfad0860c3ac2e |
def cbind(*dfseq): <NEW_LINE> <INDENT> df_res = DataFrame({}, []) <NEW_LINE> for df in dfseq: <NEW_LINE> <INDENT> for cn in df.colnameseq: <NEW_LINE> <INDENT> df_res.add_column(cn, df[cn]) <NEW_LINE> <DEDENT> <DEDENT> return df_res | 行数が同じである複数のデータフレームを渡された順番に結合した
1つのデータフレームにして返す。 | 625941b4a17c0f6771cbde2a |
def email(args): <NEW_LINE> <INDENT> if args.name: <NEW_LINE> <INDENT> add_user(name=args.name, email_address=args.email) <NEW_LINE> <DEDENT> if args.add_term: <NEW_LINE> <INDENT> Feed(Config.database).add_search_term(email_address=args.email, search_term=args.add_term.upper()) <NEW_LINE> <DEDENT> if args.terms_from_file: <NEW_LINE> <INDENT> with open(args.terms_from_file) as file: <NEW_LINE> <INDENT> for line in file: <NEW_LINE> <INDENT> Feed(Config.database).add_search_term(email_address=args.email, search_term=line.strip().upper()) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> if args.remove_term: <NEW_LINE> <INDENT> Feed(Config.database).remove_search_term(email_address=args.email, term=args.remove_term) | --email flag is used with several different options. This is split off
to make it easier to read
:param args: parser.parse_args() namespace
:return: None | 625941b48e71fb1e9831d586 |
def get_latitude_longitude(self): <NEW_LINE> <INDENT> send_url = 'http://freegeoip.net/json' <NEW_LINE> r = requests.get(send_url) <NEW_LINE> j = json.loads(r.text) <NEW_LINE> lat = j['latitude'] <NEW_LINE> lon = j['longitude'] <NEW_LINE> return lat,lon | Returns the current latitude and longitude of the user.
Do Not Use! | 625941b4596a8972360898a1 |
def dos_introspect(resPreCalc,graph_metric='median_rankpt',graph=True): <NEW_LINE> <INDENT> specFrm =pd.io.parsers.read_csv(resPreCalc,sep='\t') <NEW_LINE> specFrm.index = specFrm['pert_id'] <NEW_LINE> goldSet = countSerGold.index.values <NEW_LINE> iSpecSet = set(specFrm['pert_id']) <NEW_LINE> spectGold = iSpecSet.intersection(goldSet) <NEW_LINE> dosFrm = specFrm[specFrm.pert_id.isin(spectGold)] <NEW_LINE> if graph: <NEW_LINE> <INDENT> iRnkpt = dosFrm[graph_metric] <NEW_LINE> h1 = plt.hist(specFrm[graph_metric],30,color='b',range=[-80,100],label=['all_introspect_results'],alpha=.4,normed=True) <NEW_LINE> h2 = plt.hist(iRnkpt,30,color='r',range=[-80,100],label='DOS_results',alpha=.3,normed=True) <NEW_LINE> plt.legend() <NEW_LINE> plt.ylabel('freq',fontweight='bold') <NEW_LINE> plt.xlabel(graph_metric,fontweight='bold') <NEW_LINE> outF = os.path.join(wkdir, 'DOS_sig_introspect_'+ graph_metric+ '.png') <NEW_LINE> plt.savefig(outF, bbox_inches='tight',dpi=200) <NEW_LINE> plt.close() <NEW_LINE> <DEDENT> return specFrm, dosFrm | 1) load pre-calculated sig_introspect results | 625941b494891a1f4081b87d |
def update_speed(self, space, next_car): <NEW_LINE> <INDENT> if space <= 2: <NEW_LINE> <INDENT> self.speed = 0 <NEW_LINE> <DEDENT> elif space >= self.speed and self.speed < self.max_speed: <NEW_LINE> <INDENT> self.speed += self.acceleration <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.speed = next_car.speed | Change the car's speed based on space ahead of car. | 625941b41d351010ab8558fb |
def test_back_navigation(self): <NEW_LINE> <INDENT> self.nested_views.press_back_navigation() <NEW_LINE> for __ in range(self.NEXT_LEVEL_CLICKS): <NEW_LINE> <INDENT> self.nested_views.press_next_level() <NEW_LINE> <DEDENT> self.assertEquals(self.nested_views.get_counter(), self.BEFORE_COUNTER) <NEW_LINE> for __ in range(self.BACK_BUTTON_CLICKS): <NEW_LINE> <INDENT> self.nested_views.press_back_button() <NEW_LINE> <DEDENT> self.assertEquals(self.nested_views.get_counter(), self.AFTER_COUNTER) | Get initial page counter, press next level a NEXT_LEVEL_CLICKS times, verifies counter.
Press back button BACK_BUTTON_CLICKS times, verifies counter. | 625941b46fece00bbac2d510 |
def load_gs_to_json_schema( key: str, schema_path: str, cell_range: str = None, sheet_name: str = "schema", sheet_index: int = 0, ): <NEW_LINE> <INDENT> if cell_range: <NEW_LINE> <INDENT> df = load_gs_range_to_dataframe( key=key, cell_range=cell_range, sheet_name=sheet_name, sheet_index=sheet_index, evaluate_formulas=True ) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> df = load_gs_to_dataframe( key=key, sheet_name=sheet_name, sheet_index=sheet_index, evaluate_formulas=True ) <NEW_LINE> <DEDENT> df = df.dropna(how="all", axis=1).dropna(how="all", axis=0) <NEW_LINE> if any("Unnamed" in x for x in df.columns): <NEW_LINE> <INDENT> df = df.rename(columns=df.iloc[0]).drop(df.index[0]) <NEW_LINE> <DEDENT> assert set(df.columns).issubset(["name", "type", "mode", "description"]), ( "columns should be 'name', 'type', 'mode', 'description'" ) <NEW_LINE> assert set(["name", "type"]).issubset(list(df.columns)), ( "'name' and 'type' are mandatory columns" ) <NEW_LINE> if "mode" not in df.columns: <NEW_LINE> <INDENT> df["mode"] = "NULLABLE" <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> df["mode"] = df["mode"].fillna("NULLABLE") <NEW_LINE> <DEDENT> if "description" not in df.columns: <NEW_LINE> <INDENT> df["description"] = "" <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> df["description"] = df["description"].fillna("") <NEW_LINE> <DEDENT> df = df[[ "name", "type", "mode", "description" ]] <NEW_LINE> f_path, f_name = split_full_path(schema_path) <NEW_LINE> if f_path: <NEW_LINE> <INDENT> create_folder(f_path) <NEW_LINE> <DEDENT> json_data = [] <NEW_LINE> for _, row in df.iterrows(): <NEW_LINE> <INDENT> json_data.append( { "name": row["name"], "type": row["type"], "mode": row["mode"], "description": row["description"] } ) <NEW_LINE> <DEDENT> with open(schema_path, "w") as f: <NEW_LINE> <INDENT> json.dump(json_data, f, indent=4) <NEW_LINE> f.write("\n") <NEW_LINE> <DEDENT> print(f"Table schema file created at '{schema_path}.'") | Load table schema from google spreadsheet and write as json.
Args:
key: 44-digit spreadsheet id from the url e.g. '1DR1...k-xDU'
schema_path: path to the schema file (the output to be written)
e.g. 'path/schema.json'
cell_range: data range including column names e.g. 'B1:C10'
sheet_name: name of the sheet within the spreadsheet e.g. 'Sheet1'
sheet_index: zero-based index where the sheet is within the spreadsheet
column_order: the order of columns given for the schema, can only
contain any of
Notes:
- if no 'cell_range' is defined, the sheet has to be otherwise empty
- only one of sheet_name/sheet_index is required, defaults to the first
sheet but prioritizing sheet_name if both are given
- the gs load required the python data types otherwise it's making
incorrect transformations
- 'column mode' will be set as 'NULLABLE'
Requirements:
- share gs with the service account
- gs api enabled for the project | 625941b4be8e80087fb20a25 |
def CloneVM_Task(self, folder, name, spec): <NEW_LINE> <INDENT> return self.delegate("CloneVM_Task")(folder, name, spec) | Creates a clone of this virtual machine. If the virtual machine is used as a
template, this method corresponds to the deploy command.Creates a clone of this
virtual machine. If the virtual machine is used as a template, this method
corresponds to the deploy command.Creates a clone of this virtual machine. If
the virtual machine is used as a template, this method corresponds to the
deploy command.Creates a clone of this virtual machine. If the virtual machine
is used as a template, this method corresponds to the deploy command.Creates a
clone of this virtual machine. If the virtual machine is used as a template,
this method corresponds to the deploy command.Creates a clone of this virtual
machine. If the virtual machine is used as a template, this method corresponds
to the deploy command.
:param folder: The location of the new virtual machine.
:param name: The name of the new virtual machine.
:param spec: Specifies how to clone the virtual machine. | 625941b4dd821e528d63af82 |
def __init__(self): <NEW_LINE> <INDENT> self.TotalCount = None <NEW_LINE> self.MaterialInfoSet = None <NEW_LINE> self.RequestId = None | :param TotalCount: 符合记录总条数。
:type TotalCount: int
:param MaterialInfoSet: 素材信息,仅返回基础信息。
:type MaterialInfoSet: list of MaterialInfo
:param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。
:type RequestId: str | 625941b4a8370b7717052677 |
def canCompleteCircuit(self, gas, cost): <NEW_LINE> <INDENT> length, cache, index = len(gas), {}, 0 <NEW_LINE> while index < length: <NEW_LINE> <INDENT> current, distance = 0, 0 <NEW_LINE> while current >= 0: <NEW_LINE> <INDENT> offset = (index + distance) % length <NEW_LINE> if offset in cache and cache[offset][1] + current >= 0: <NEW_LINE> <INDENT> current = cache[offset][1] + current <NEW_LINE> distance += cache[offset][0] <NEW_LINE> offset = (index + distance) % length <NEW_LINE> <DEDENT> if distance >= length: <NEW_LINE> <INDENT> return index <NEW_LINE> <DEDENT> current += gas[offset] <NEW_LINE> current -= cost[offset] <NEW_LINE> distance += 1 <NEW_LINE> <DEDENT> cache[index] = (distance, current) <NEW_LINE> index += distance <NEW_LINE> <DEDENT> return -1 | :type gas: List[int]
:type cost: List[int]
:rtype: int | 625941b4f548e778e58cd351 |
def bulk_add_data( orgs: List[dict], org_courseid_pairs: List[Tuple[dict, str]], dry_run: bool, activate: bool, ): <NEW_LINE> <INDENT> adding_phrase = "Dry-run of bulk-adding" if dry_run else "Bulk-adding" <NEW_LINE> created_phrase = "Will create" if dry_run else "Created" <NEW_LINE> reactivated_phrase = "Will reactivate" if dry_run else "Reactivated" <NEW_LINE> print("------------------------------------------------------") <NEW_LINE> print(f"{adding_phrase} organizations...") <NEW_LINE> orgs_created, orgs_reactivated = organizations_api.bulk_add_organizations( orgs, dry_run=dry_run, activate=activate ) <NEW_LINE> print(f"{created_phrase} {len(orgs_created)} organizations:") <NEW_LINE> for org_short_name in sorted(orgs_created): <NEW_LINE> <INDENT> print(f" {org_short_name}") <NEW_LINE> <DEDENT> print(f"{reactivated_phrase} {len(orgs_reactivated)} organizations:") <NEW_LINE> for org_short_name in sorted(orgs_reactivated): <NEW_LINE> <INDENT> print(f" {org_short_name}") <NEW_LINE> <DEDENT> print("------------------------------------------------------") <NEW_LINE> print(f"{adding_phrase} organization-course linkages...") <NEW_LINE> linkages_created, linkages_reactivated = organizations_api.bulk_add_organization_courses( org_courseid_pairs, dry_run=dry_run, activate=activate ) <NEW_LINE> print(f"{created_phrase} {len(linkages_created)} organization-course linkages:") <NEW_LINE> for org_short_name, course_id in sorted(linkages_created): <NEW_LINE> <INDENT> print(f" {org_short_name},{course_id}") <NEW_LINE> <DEDENT> print(f"{reactivated_phrase} {len(linkages_reactivated)} organization-course linkages:") <NEW_LINE> for org_short_name, course_id in sorted(linkages_reactivated): <NEW_LINE> <INDENT> print(f" {org_short_name},{course_id}") <NEW_LINE> <DEDENT> print("------------------------------------------------------") | Bulk-add the organizations and organization-course linkages.
Print out list of organizations and organization-course linkages,
one per line. We distinguish between records that are added by
being created vs. those that are being added by just reactivating an
existing record.
Arguments:
orgs: org data dictionaries to bulk-add.
should each have a "short_name" and "name" key.
org_courseid_pairs
list of (org data dictionary, course key string) links to bulk-add.
each org data dictionary should have a "short_name" key.
dry_run: Whether or not this run should be "dry" (ie, don't apply changes).
activate: Whether newly-added organizations and organization-course linkages
should be activated, and whether existing-but-inactive
organizations/linkages should be reactivated. | 625941b42eb69b55b151c680 |
def _tmp_access_rule(method, ip=None, ttl=None, port=None, direction='in', port_origin='d', ip_origin='d', comment=''): <NEW_LINE> <INDENT> if _status_csf(): <NEW_LINE> <INDENT> if ip is None: <NEW_LINE> <INDENT> return {'error': 'You must supply an ip address or CIDR.'} <NEW_LINE> <DEDENT> if ttl is None: <NEW_LINE> <INDENT> return {'error': 'You must supply a ttl.'} <NEW_LINE> <DEDENT> args = _build_tmp_access_args(method, ip, ttl, port, direction, comment) <NEW_LINE> return __csf_cmd(args) | Handles the cmd execution for tempdeny and tempallow commands. | 625941b48c3a873295158194 |
def find_qemu_pid(vm_name): <NEW_LINE> <INDENT> logging.info('Finding QEMU pid for domain %s', vm_name) <NEW_LINE> libvirt_vm_pid_file = '/var/run/libvirt/qemu/{}.pid'.format(vm_name) <NEW_LINE> try: <NEW_LINE> <INDENT> with open(libvirt_vm_pid_file, 'r') as f: <NEW_LINE> <INDENT> content = f.read() <NEW_LINE> pid = int(content) <NEW_LINE> return pid <NEW_LINE> <DEDENT> <DEDENT> except IOError: <NEW_LINE> <INDENT> for proc in psutil.process_iter(): <NEW_LINE> <INDENT> cmdline = proc.cmdline()[1:] <NEW_LINE> if proc.name() == "qemu-system-x86_64" and next((True for k, v in zip(cmdline, cmdline[1:]) if k == "-name" and vm_name in v), False): <NEW_LINE> <INDENT> return proc.pid <NEW_LINE> <DEDENT> <DEDENT> logging.critical('Cannot find QEMU') <NEW_LINE> raise QEMUNotFoundError('Cannot find QEMU') | Find QEMU's PID that is associated with a given virtual machine
:param str vm_name: libvirt domain name
:rtype: int | 625941b4dc8b845886cb530a |
def __get_gamma_corrected_value(original_value): <NEW_LINE> <INDENT> return _gamma_correction_arr[original_value] | INTERNAL.
Converts a brightness value from 0-255 to the value that produces an
approximately linear scaling to the human eye. | 625941b4d10714528d5ffab4 |
def to_natural(self, *args, **kwargs): <NEW_LINE> <INDENT> return self._arrow.humanize(*args, **kwargs) | :see::meth:arrow.Arrow.humanize | 625941b463f4b57ef0000efa |
def get_offers_from_category(url): <NEW_LINE> <INDENT> markup = BeautifulSoup(domporta.utils.get_content_from_source(url), 'html.parser') <NEW_LINE> offers_urls = [] <NEW_LINE> offers = markup.find_all('article', class_='sneakpeak') <NEW_LINE> for offer in offers: <NEW_LINE> <INDENT> offers_urls.append(offer.find('a').get('href')) <NEW_LINE> <DEDENT> return offers_urls, markup | Parses available offer urls from given category from given page
:param url: Defined url for Domiporta page with offers
:type url: str
:return: List of urls from given page
:rtype: list | 625941b438b623060ff0abc8 |
def test_choice(self): <NEW_LINE> <INDENT> contact = Contact(speaker=self.speaker, kind='A', value='B') <NEW_LINE> self.assertRaises(ValidationError, contact.full_clean) | Contact kind should be limited to E or P | 625941b47047854f462a11e4 |
def test_no_common(self): <NEW_LINE> <INDENT> self.assertIs( None, _latest_common_snapshot( [Snapshot(name=b"a")], [Snapshot(name=b"b")])) | If there are no common ``Snapshot`` instances in the two ``list``\ s,
``_latest_common_snapshot`` returns ``None``. | 625941b457b8e32f52483276 |
def p_expression_list1(p): <NEW_LINE> <INDENT> p[0] = ASTNode('expression_list', p[1]) | expression_list : expression | 625941b4498bea3a759b9888 |
def get_state(self): <NEW_LINE> <INDENT> if self.is_interactive is False: <NEW_LINE> <INDENT> raise Exception('Managed engine is not active') <NEW_LINE> <DEDENT> return (self.busy, self.debug, self.profile) | Returns a tuple of engine state flags=(busy, debug, profile) | 625941b4b7558d58953c4cf2 |
def _process_data(self, data): <NEW_LINE> <INDENT> word_index=dict((w,i) for i,w in enumerate(self.vocab)) <NEW_LINE> x=[[word_index.get(w[0], 1) for w in s] for s in data] <NEW_LINE> y_chunk=[[self.tags.index(w[1]) for w in s] for s in data] <NEW_LINE> x= pad_sequences(x,self.max_len) <NEW_LINE> y_chunk=pad_sequences(y_chunk,self.max_len,value=-1) <NEW_LINE> y_chunk=np.expand_dims(y_chunk,2) <NEW_LINE> return x,y_chunk | 数据处理 | 625941b40a366e3fb873e5ec |
def listar_using_get51(self, **kwargs): <NEW_LINE> <INDENT> all_params = ['sort', 'page', 'limit', 'id', 'id_produto', 'data_entrada', 'vencimento'] <NEW_LINE> all_params.append('callback') <NEW_LINE> params = locals() <NEW_LINE> for key, val in iteritems(params['kwargs']): <NEW_LINE> <INDENT> if key not in all_params: <NEW_LINE> <INDENT> raise TypeError( "Got an unexpected keyword argument '%s'" " to method listar_using_get51" % key ) <NEW_LINE> <DEDENT> params[key] = val <NEW_LINE> <DEDENT> del params['kwargs'] <NEW_LINE> resource_path = '/api/taxas-refinanciamento'.replace('{format}', 'json') <NEW_LINE> path_params = {} <NEW_LINE> query_params = {} <NEW_LINE> if 'sort' in params: <NEW_LINE> <INDENT> query_params['sort'] = params['sort'] <NEW_LINE> <DEDENT> if 'page' in params: <NEW_LINE> <INDENT> query_params['page'] = params['page'] <NEW_LINE> <DEDENT> if 'limit' in params: <NEW_LINE> <INDENT> query_params['limit'] = params['limit'] <NEW_LINE> <DEDENT> if 'id' in params: <NEW_LINE> <INDENT> query_params['id'] = params['id'] <NEW_LINE> <DEDENT> if 'id_produto' in params: <NEW_LINE> <INDENT> query_params['idProduto'] = params['id_produto'] <NEW_LINE> <DEDENT> if 'data_entrada' in params: <NEW_LINE> <INDENT> query_params['dataEntrada'] = params['data_entrada'] <NEW_LINE> <DEDENT> if 'vencimento' in params: <NEW_LINE> <INDENT> query_params['vencimento'] = params['vencimento'] <NEW_LINE> <DEDENT> header_params = {} <NEW_LINE> form_params = [] <NEW_LINE> local_var_files = {} <NEW_LINE> body_params = None <NEW_LINE> header_params['Accept'] = self.api_client. select_header_accept(['application/json']) <NEW_LINE> if not header_params['Accept']: <NEW_LINE> <INDENT> del header_params['Accept'] <NEW_LINE> <DEDENT> header_params['Content-Type'] = self.api_client. select_header_content_type(['application/json']) <NEW_LINE> auth_settings = [] <NEW_LINE> response = self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='PageTaxasRefinanciamentoResponse', auth_settings=auth_settings, callback=params.get('callback')) <NEW_LINE> return response | {{{taxas_refinanciamento_listar}}}
{{{taxas_refinanciamento_listar_notes}}}
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please define a `callback` function
to be invoked when receiving the response.
>>> def callback_function(response):
>>> pprint(response)
>>>
>>> thread = api.listar_using_get51(callback=callback_function)
:param callback function: The callback function
for asynchronous request. (optional)
:param list[str] sort: {{{global_menssagem_sort_sort}}}
:param int page: {{{global_menssagem_sort_page_value}}}
:param int limit: {{{global_menssagem_sort_limit}}}
:param int id: {{{taxas_refinanciamento_request_id_value}}}
:param int id_produto: {{{taxas_refinanciamento_request_id_produto_value}}}
:param str data_entrada: {{{taxas_refinanciamento_request_data_entrada_value}}}
:param str vencimento: {{{taxas_refinanciamento_request_vencimento_value}}}
:return: PageTaxasRefinanciamentoResponse
If the method is called asynchronously,
returns the request thread. | 625941b40383005118ecf3bb |
def split_train_test(train_start, train_end, test_start, test_end, data): <NEW_LINE> <INDENT> train_start = dealWith_business_day(train_start).strftime('%Y-%m-%d') <NEW_LINE> train_end = dealWith_business_day(train_end).strftime('%Y-%m-%d') <NEW_LINE> test_start = dealWith_business_day(test_start).strftime('%Y-%m-%d') <NEW_LINE> test_end = dealWith_business_day(test_end).strftime('%Y-%m-%d') <NEW_LINE> train = data.loc[train_start:train_end] <NEW_LINE> test = data.loc[test_start:test_end] <NEW_LINE> return train, test | Split the data in train set and test set | 625941b455399d3f05588489 |
def testCreateLine(self): <NEW_LINE> <INDENT> a = e1 + e2* 3.451 <NEW_LINE> b = 2 * e3 - e2 * 0.4 + e1 * 0.1 <NEW_LINE> actual = createLine(up(a), up(b)) <NEW_LINE> expected = ((a ^ b ^ ninf) + ((a - b) ^ ninf ^ no)).normal() <NEW_LINE> expected2 = (up(a) ^up(b)^ninf).normal() <NEW_LINE> assert(actual == expected == expected2) <NEW_LINE> a, b = createRandomVectors(2) <NEW_LINE> actual = createLine(up(a), up(b)) <NEW_LINE> expected = ((a ^ b ^ ninf) + ((a - b) ^ ninf ^ no)).normal() <NEW_LINE> expected2 = (up(a) ^up(b)^ninf).normal() <NEW_LINE> assert(actual == expected == expected2) | Test that the create line function indeed produces the desired line,
and that it equals the representation using GA(3) vectors
$ L \propto ((a ^ b ^ n_{inf}) + ((a - b) ^ n_{\inf} ^ n_0)) $ | 625941b482261d6c526ab279 |
def test_inc_season_out_of_bounds(self): <NEW_LINE> <INDENT> tracked_show = tracker.TrackedShow( title='Game of Thrones', _next_episode='S10E01' ) <NEW_LINE> with self.assertRaises(SeasonOutOfBoundsError): <NEW_LINE> <INDENT> tracked_show._set_next_prev(self.database) | Test that we detect an invalid season | 625941b45510c4643540f1d0 |
def moveleft(self, scene): <NEW_LINE> <INDENT> if self.status == 0: <NEW_LINE> <INDENT> chk = clashcheck(scene, self, self.x, self.y - self.step) <NEW_LINE> if chk == 0: <NEW_LINE> <INDENT> self.setPos(scene, self.x, self.y - self.step) <NEW_LINE> <DEDENT> elif chk == 2: <NEW_LINE> <INDENT> killenemy(scene, self.y-self.step, Enemy1.enemies) <NEW_LINE> self.setPos(scene, self.x, self.y - self.step) <NEW_LINE> <DEDENT> elif chk == 3: <NEW_LINE> <INDENT> killenemy(scene, self.y-self.step, Enemy1.enemies) <NEW_LINE> Lives.lives -= 1 <NEW_LINE> self.setPos(scene, self.x, self.y - self.step) <NEW_LINE> <DEDENT> elif chk == 4: <NEW_LINE> <INDENT> collect_coin(scene, self.y, Coins.coins) <NEW_LINE> self.setPos(scene, self.x, self.y - self.step) <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> chk = clashcheck(scene, self, self.x + self.gravity, self.y - self.step) <NEW_LINE> if chk == 0: <NEW_LINE> <INDENT> self.setPos(scene, self.x + self.gravity, self.y - self.step) <NEW_LINE> <DEDENT> elif chk == 2: <NEW_LINE> <INDENT> killenemy(scene, self.y-self.step, Enemy1.enemies) <NEW_LINE> self.setPos(scene, self.x + self.gravity, self.y - self.step) <NEW_LINE> <DEDENT> elif chk == 3: <NEW_LINE> <INDENT> killenemy(scene, self.y-self.step, Enemy1.enemies) <NEW_LINE> Lives.lives -= 1 <NEW_LINE> self.setPos(scene, self.x + self.gravity, self.y - self.step) <NEW_LINE> <DEDENT> elif chk == 4: <NEW_LINE> <INDENT> collect_coin(scene, self.y, Coins.coins) <NEW_LINE> self.setPos(scene, self.x + self.gravity, self.y - self.step) | Make mario move left after making necessary checks | 625941b467a9b606de4a7c93 |
def _dynamodb_types_to_py(self, d): <NEW_LINE> <INDENT> if not isinstance(d, (dict, list)): <NEW_LINE> <INDENT> if isinstance(d, Decimal): <NEW_LINE> <INDENT> if abs(d % 1) > 0: <NEW_LINE> <INDENT> return float(d) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return int(d) <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> return d <NEW_LINE> <DEDENT> <DEDENT> if isinstance(d, list): <NEW_LINE> <INDENT> return [v for v in (self._dynamodb_types_to_py(v) for v in d)] <NEW_LINE> <DEDENT> return {k: v for k, v in ((k, self._dynamodb_types_to_py(v)) for k, v in d.items())} | Convert DynamoDB types to python - recurse | 625941b407f4c71912b1125c |
def generate(env): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> bld = env['BUILDERS']['Gch'] <NEW_LINE> bldsh = env['BUILDERS']['GchSh'] <NEW_LINE> <DEDENT> except KeyError: <NEW_LINE> <INDENT> bld = GchBuilder <NEW_LINE> bldsh = GchShBuilder <NEW_LINE> env['BUILDERS']['Gch'] = bld <NEW_LINE> env['BUILDERS']['GchSh'] = bldsh <NEW_LINE> <DEDENT> env['GCHCOM'] = GCHCOMString <NEW_LINE> env['GCHSHCOM'] = GCHSHCOMString <NEW_LINE> for suffix in SCons.Util.Split('.c .C .cc .cxx .cpp .c++'): <NEW_LINE> <INDENT> env['BUILDERS']['StaticObject'].add_emitter( suffix, static_pch_emitter ) <NEW_LINE> env['BUILDERS']['SharedObject'].add_emitter( suffix, shared_pch_emitter ) | Add builders and construction variables for gcc PCH to an Environment. | 625941b45fdd1c0f98dc0008 |
def get_section(config, section): <NEW_LINE> <INDENT> configtree = config_from_list(config) <NEW_LINE> return get_section_recursive(configtree, section) | return config starting from dict section with the desired matches | 625941b45e10d32532c5ed06 |
def opengl(self, dev_id=0): <NEW_LINE> <INDENT> return self.context(11, dev_id) | Construct remote OpenGL device. | 625941b421bff66bcd68472c |
def print_tree(self, traversal_type): <NEW_LINE> <INDENT> answer = None <NEW_LINE> if traversal_type.lower() == "preorder": <NEW_LINE> <INDENT> answer = self.preorder_print(self.root,[]) <NEW_LINE> <DEDENT> elif traversal_type.lower() == "inorder": <NEW_LINE> <INDENT> answer = self.inorder_print(self.root,[]) <NEW_LINE> <DEDENT> elif traversal_type.lower() == "postorder": <NEW_LINE> <INDENT> answer = self.postorder_print(self.root,[]) <NEW_LINE> <DEDENT> return "-".join(list(map(str, answer))) | Print out all tree nodes
as they are visited in
a pre-order, inorder or post-order traversal | 625941b4d7e4931a7ee9dcf2 |
def __init__(self, username: str, password: str, apiKey: str, clientCertificatePath: str, certificateKeyPath: str): <NEW_LINE> <INDENT> self.username = username <NEW_LINE> self.password = password <NEW_LINE> self.apiKey = apiKey <NEW_LINE> self.clientCertificatePath = clientCertificatePath <NEW_LINE> self.certificateKeyPath = certificateKeyPath <NEW_LINE> self.sessionToken = None <NEW_LINE> self.login() | Client for non-interactive connections to the betfair API.
Non-interactive (bot) logins require self-signed certificates: https://docs.developer.betfair.com/display/1smk3cen4v3lu3yomq5qye0ni/Non-Interactive+%28bot%29+login
:param username: (str)
:param password: (str)
:param apiKey: (str)
:param clientCertificatePath: (str) Path to self-signed client certificate.
:param certificateKeyPath: (str) Path to self-signed client certificate key. | 625941b4ec188e330fd5a57e |
def find_who_shared_post(self,html): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> aria_labelled_by = html.find('div',{"aria-labelledby" : True}) <NEW_LINE> h4_label = aria_labelled_by.find('h4',id=aria_labelled_by['aria-labelledby']) <NEW_LINE> who_shared_post = h4_label.find('span',{"class" : None}).string <NEW_LINE> post_id = self.find_post_id(aria_labelled_by.find('h4',id=aria_labelled_by['aria-labelledby']).parent.parent.parent) <NEW_LINE> return {"who_shared_post":who_shared_post,"post_id":post_id} <NEW_LINE> <DEDENT> except TypeError as e: <NEW_LINE> <INDENT> print(e) <NEW_LINE> return None | Returns id and name of who shared the post | 625941b416aa5153ce36224e |
def writePySet(self, out, names=None): <NEW_LINE> <INDENT> raise AssertionError('Lists do not have a set method.') | Write code for setter.
Raise an exception in order to ensure that our inherited "PySet"
code generation is used. | 625941b4462c4b4f79d1d4a6 |
def render_properties(self, mode, context, props): <NEW_LINE> <INDENT> return filter(None, [self.render_property(name, mode, context, props) for name in sorted(props)]) | Prepare rendering of a collection of properties. | 625941b401c39578d7e74c1b |
def _initialize(self, *args, **kwargs): <NEW_LINE> <INDENT> return _VISHNU.FileStat__initialize(self, *args, **kwargs) | _initialize(self) | 625941b4b57a9660fec33655 |
def can_blind (self): <NEW_LINE> <INDENT> return 0 | can_blind() : bool
Return a Boolean value recording whether this algorithm can
blind data. (This does not imply that this
particular key object has the private information required to
to blind a message.) | 625941b42ae34c7f2600cf08 |
def reset_regs(self): <NEW_LINE> <INDENT> for reg in self.lifter.arch.regs.all_regs_ids_no_alias: <NEW_LINE> <INDENT> self.symbols.symbols_id[reg] = m2_expr.ExprInt(0, size=reg.size) | Set registers value to 0. Ignore register aliases | 625941b4460517430c393f67 |
def StreamingRecognize(self, request_iterator, context): <NEW_LINE> <INDENT> context.set_code(grpc.StatusCode.UNIMPLEMENTED) <NEW_LINE> context.set_details('Method not implemented!') <NEW_LINE> raise NotImplementedError('Method not implemented!') | Performs asynchronous speech recognition: receive results via the
google.longrunning.Operations interface. Returns either an
`Operation.error` or an `Operation.response` which contains
a `LongRunningRecognizeResponse` message.
rpc LongRunningRecognize(LongRunningRecognizeRequest) returns (google.longrunning.Operation) {
option (google.api.http) = { post: "/v1/speech:longrunningrecognize" body: "*" };
}
Performs bidirectional streaming speech recognition: receive results while
sending audio. This method is only available via the gRPC API (not REST). | 625941b4ab23a570cc24ff56 |
def run_asp_program(program): <NEW_LINE> <INDENT> my_env = os.environ.copy() <NEW_LINE> process = subprocess.Popen(["java", "-jar", cur_dir + "solvers/sparc.jar", "-solver", "clingo", "-A"], stdout = subprocess.PIPE, stderr = subprocess.PIPE, stdin = subprocess.PIPE,env = my_env) <NEW_LINE> stdout, stderr = process.communicate(input = program.encode('ascii')) <NEW_LINE> return stdout | take clingo program and return the set of its answer sets | 625941b45166f23b2e1a4f2f |
def class_seven(self): <NEW_LINE> <INDENT> __f = open(os.path.join(self.corpus_path, 'class_seven'), 'w+', encoding='utf-8') <NEW_LINE> first_word = ['个鼓', '个鼓的'] <NEW_LINE> second_word = ['分析', '市场分析', '价值', '最新推荐', '推荐', '评级', '市场评级', '评分', '分数', '研究报告', '研报', '推荐次数', '行业报告'] <NEW_LINE> for i in first_word: <NEW_LINE> <INDENT> for j in second_word: <NEW_LINE> <INDENT> word = i + j + '\n' <NEW_LINE> __f.write(word) <NEW_LINE> <DEDENT> <DEDENT> one_word = ['板快', '板快行业的'] <NEW_LINE> two_word = ['股票推荐', '研究', '涨跌幅', '研报', '开盘价', '收盘价', '振幅', '交易额'] <NEW_LINE> for i in one_word: <NEW_LINE> <INDENT> for j in two_word: <NEW_LINE> <INDENT> word = i + j + '\n' <NEW_LINE> __f.write(word) <NEW_LINE> <DEDENT> <DEDENT> __f.write('热门的股票推荐\n') <NEW_LINE> __f.write('热门的股票\n') <NEW_LINE> __f.write('热门的股票有哪些\n') <NEW_LINE> __f.write('很火的股票\n') <NEW_LINE> __f.write('好的股票\n') <NEW_LINE> __f.write('哪些股票能赚钱\n') <NEW_LINE> __f.write('大家关注哪些股票\n') <NEW_LINE> __f.write('大家关心哪些股票\n') <NEW_LINE> __f.write('主流的股票\n') <NEW_LINE> __f.write('人们都在看的股票\n') <NEW_LINE> __f.write('看好的股票\n') <NEW_LINE> __f.write('推荐次数最多的股票\n') <NEW_LINE> __f.write('推荐次数很多的股票\n') <NEW_LINE> __f.write('推荐次数多的股票\n') <NEW_LINE> __f.write('热捧的股票\n') <NEW_LINE> __f.write('建议次数最多的股票\n') <NEW_LINE> __f.write('最热门的行业推荐\n') <NEW_LINE> __f.write('最热门的行业\n') <NEW_LINE> __f.write('好的的行业推荐\n') <NEW_LINE> __f.write('很火的行业\n') <NEW_LINE> __f.write('哪些行业能赚钱\n') <NEW_LINE> __f.write('最被关注的行业\n') <NEW_LINE> __f.write('人们关心哪些行业\n') <NEW_LINE> __f.write('主流的行业\n') <NEW_LINE> __f.write('推荐次数最多的行业\n') <NEW_LINE> __f.write('推荐次数很多的行业\n') <NEW_LINE> __f.write('推荐次数多的行业\n') <NEW_LINE> __f.write('热捧的行业\n') <NEW_LINE> __f.write('建议次数最多的行业\n') <NEW_LINE> __f.write('看好的行业\n') <NEW_LINE> __f.write('最新的研究报告\n') <NEW_LINE> __f.write('最新的研报\n') <NEW_LINE> __f.write('股票最新的情况\n') <NEW_LINE> __f.write('股票最新的消息\n') <NEW_LINE> __f.write('建议次数最多的行业\n') <NEW_LINE> __f.write('看好的行业\n') <NEW_LINE> __f.write('最准的分析师\n') <NEW_LINE> __f.write('最好分析师推荐\n') <NEW_LINE> __f.write('分析师的排名\n') <NEW_LINE> __f.write('分析师有哪些\n') <NEW_LINE> __f.write('研报最多的分析师\n') <NEW_LINE> __f.write('评分最高的研究员\n') <NEW_LINE> __f.write('分析师怎么样') <NEW_LINE> __f.close() | 生成研报模块的语料
:return: | 625941b48a43f66fc4b53e41 |
def listify(value): <NEW_LINE> <INDENT> if isinstance(value, str): <NEW_LINE> <INDENT> return value.replace(',', ' ').split() <NEW_LINE> <DEDENT> elif isinstance(value, list): <NEW_LINE> <INDENT> out_list = [] <NEW_LINE> for val in value: <NEW_LINE> <INDENT> if isinstance(val, list): <NEW_LINE> <INDENT> out_list.extend(listify(val)) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> out_list.append(val) <NEW_LINE> <DEDENT> <DEDENT> return out_list | Convert an option specified as a string to a list. Allow both
comma and space as delimiters. Passes lists transparently. | 625941b4cdde0d52a9e52e05 |
def append_genre_film_work(self, film_id: str, genre_id_list: List[str]): <NEW_LINE> <INDENT> for genre_id in genre_id_list: <NEW_LINE> <INDENT> id_ = str(uuid4()) <NEW_LINE> row = { "id": id_, "film_work_id": film_id, "genre_id": genre_id, "created": datetime.now().astimezone() } <NEW_LINE> self.genre_film_work.append(row) | Добавляет несколько строк в локальную таблицу genre_film_work.
| 625941b44e4d5625662d41b5 |
def merge(self, intervals): <NEW_LINE> <INDENT> res = [] <NEW_LINE> for i in sorted(intervals, key=lambda x: x.start): <NEW_LINE> <INDENT> if res and i.start <= res[-1].end: <NEW_LINE> <INDENT> res[-1].end = max(i.end, res[-1].end) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> res.append(i) <NEW_LINE> <DEDENT> <DEDENT> return res | :type intervals: List[Interval]
:rtype: List[Interval] | 625941b45f7d997b87174872 |
def names(as_object=True, p5_connection=None): <NEW_LINE> <INDENT> method_name = "names" <NEW_LINE> result = exec_nsdchat([module_name, method_name], p5_connection) <NEW_LINE> if not as_object: <NEW_LINE> <INDENT> return result <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return resourcelist(result, Device, p5_connection) | Syntax: Device names
Description: Returns a list of single tape device resources.
Return Values:
-On Success: the list of device names
the string "<empty>" if no devices are configured | 625941b4711fe17d82542154 |
def test_analyze_document_cluster_get(self): <NEW_LINE> <INDENT> pass | Test case for analyze_document_cluster_get
| 625941b410dbd63aa1bd2988 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.