code
stringlengths
1
46.1k
label
class label
1.18k classes
domain_label
class label
21 classes
index
stringlengths
4
5
package main import "fmt" func main() { sieve(1e6) if !search(6, 1e6, "left", func(n, pot int) int { return n % pot }) { panic("997?") } if !search(6, 1e6, "right", func(n, _ int) int { return n / 10 }) { panic("7393?") } } var c []bool func sieve(ss int) { c = make([]bool, ss) c[1] = true for p := 2; ; { p2 := p * p if p2 >= ss { break } for i := p2; i < ss; i += p { c[i] = true } for { p++ if !c[p] { break } } } } func search(digits, pot int, s string, truncFunc func(n, pot int) int) bool { n := pot - 1 pot /= 10 smaller: for ; n >= pot; n -= 2 { for tn, tp := n, pot; tp > 0; tp /= 10 { if tn < tp || c[tn] { continue smaller } tn = truncFunc(tn, tp) } fmt.Println("max", s, "truncatable:", n) return true } if digits > 1 { return search(digits-1, pot, s, truncFunc) } return false }
102Truncatable primes
0go
5l4ul
package main import ( "flag" "fmt" "math" "runtime" "sort" )
107Total circles area
0go
q11xz
sub truth_table { my $s = shift; my (%seen, @vars); for ($s =~ /([a-zA-Z_]\w*)/g) { $seen{$_} //= do { push @vars, $_; 1 }; } print "\n", join("\t", @vars, $s), "\n", '-' x 40, "\n"; @vars = map("\$$_", @vars); $s =~ s/([a-zA-Z_]\w*)/\$$1/g; $s = "print(".join(',"\t", ', map("($_?'T':'F')", @vars, $s)).",\"\\n\")"; $s = "for my $_ (0, 1) { $s }" for (reverse @vars); eval $s; } truth_table 'A ^ A_1'; truth_table 'foo & bar | baz'; truth_table 'Jim & (Spock ^ Bones) | Scotty';
98Truth table
2perl
75prh
import Data.Numbers.Primes(primes, isPrime) import Data.List import Control.Arrow primes1e6 = reverse. filter (notElem '0'. show) $ takeWhile(<=1000000) primes rightT, leftT :: Int -> Bool rightT = all isPrime. takeWhile(>0). drop 1. iterate (`div`10) leftT x = all isPrime. takeWhile(<x).map (x`mod`) $ iterate (*10) 10 main = do let (ltp, rtp) = (head. filter leftT &&& head. filter rightT) primes1e6 putStrLn $ "Left truncatable " ++ show ltp putStrLn $ "Right truncatable " ++ show rtp
102Truncatable primes
8haskell
x1qw4
uint64_t modpow(uint64_t a, uint64_t b, uint64_t n) { uint64_t x = 1, y = a; while (b > 0) { if (b % 2 == 1) { x = (x * y) % n; } y = (y * y) % n; b /= 2; } return x % n; } struct Solution { uint64_t root1, root2; bool exists; }; struct Solution makeSolution(uint64_t root1, uint64_t root2, bool exists) { struct Solution sol; sol.root1 = root1; sol.root2 = root2; sol.exists = exists; return sol; } struct Solution ts(uint64_t n, uint64_t p) { uint64_t q = p - 1; uint64_t ss = 0; uint64_t z = 2; uint64_t c, r, t, m; if (modpow(n, (p - 1) / 2, p) != 1) { return makeSolution(0, 0, false); } while ((q & 1) == 0) { ss += 1; q >>= 1; } if (ss == 1) { uint64_t r1 = modpow(n, (p + 1) / 4, p); return makeSolution(r1, p - r1, true); } while (modpow(z, (p - 1) / 2, p) != p - 1) { z++; } c = modpow(z, q, p); r = modpow(n, (q + 1) / 2, p); t = modpow(n, q, p); m = ss; while (true) { uint64_t i = 0, zz = t; uint64_t b = c, e; if (t == 1) { return makeSolution(r, p - r, true); } while (zz != 1 && i < (m - 1)) { zz = zz * zz % p; i++; } e = m - i - 1; while (e > 0) { b = b * b % p; e--; } r = r * b % p; c = b * b % p; t = t * c % p; m = i; } } void test(uint64_t n, uint64_t p) { struct Solution sol = ts(n, p); printf(, n); printf(, p); if (sol.exists) { printf(, sol.root1); printf(, sol.root2); } else { printf(); } printf(); } int main() { test(10, 13); test(56, 101); test(1030, 10009); test(1032, 10009); test(44402, 100049); return 0; }
109Tonelli-Shanks algorithm
5c
wbhec
data Circle = Circle { cx :: Double, cy :: Double, cr :: Double } isInside :: Double -> Double -> Circle -> Bool isInside x y c = (x - cx c) ^ 2 + (y - cy c) ^ 2 <= (cr c ^ 2) isInsideAny :: Double -> Double -> [Circle] -> Bool isInsideAny x y = any (isInside x y) approximatedArea :: [Circle] -> Int -> Double approximatedArea cs box_side = (fromIntegral count) * dx * dy where x_min = minimum [cx c - cr c | c <- circles] x_max = maximum [cx c + cr c | c <- circles] y_min = minimum [cy c - cr c | c <- circles] y_max = maximum [cy c + cr c | c <- circles] dx = (x_max - x_min) / (fromIntegral box_side) dy = (y_max - y_min) / (fromIntegral box_side) count = length [0 | r <- [0 .. box_side - 1], c <- [0 .. box_side - 1], isInsideAny (posx c) (posy r) circles] posy r = y_min + (fromIntegral r) * dy posx c = x_min + (fromIntegral c) * dx circles :: [Circle] circles = [Circle ( 1.6417233788) ( 1.6121789534) 0.0848270516, Circle (-1.4944608174) ( 1.2077959613) 1.1039549836, Circle ( 0.6110294452) (-0.6907087527) 0.9089162485, Circle ( 0.3844862411) ( 0.2923344616) 0.2375743054, Circle (-0.2495892950) (-0.3832854473) 1.0845181219, Circle ( 1.7813504266) ( 1.6178237031) 0.8162655711, Circle (-0.1985249206) (-0.8343333301) 0.0538864941, Circle (-1.7011985145) (-0.1263820964) 0.4776976918, Circle (-0.4319462812) ( 1.4104420482) 0.7886291537, Circle ( 0.2178372997) (-0.9499557344) 0.0357871187, Circle (-0.6294854565) (-1.3078893852) 0.7653357688, Circle ( 1.7952608455) ( 0.6281269104) 0.2727652452, Circle ( 1.4168575317) ( 1.0683357171) 1.1016025378, Circle ( 1.4637371396) ( 0.9463877418) 1.1846214562, Circle (-0.5263668798) ( 1.7315156631) 1.4428514068, Circle (-1.2197352481) ( 0.9144146579) 1.0727263474, Circle (-0.1389358881) ( 0.1092805780) 0.7350208828, Circle ( 1.5293954595) ( 0.0030278255) 1.2472867347, Circle (-0.5258728625) ( 1.3782633069) 1.3495508831, Circle (-0.1403562064) ( 0.2437382535) 1.3804956588, Circle ( 0.8055826339) (-0.0482092025) 0.3327165165, Circle (-0.6311979224) ( 0.7184578971) 0.2491045282, Circle ( 1.4685857879) (-0.8347049536) 1.3670667538, Circle (-0.6855727502) ( 1.6465021616) 1.0593087096, Circle ( 0.0152957411) ( 0.0638919221) 0.9771215985] main = putStrLn $ "Approximated area: " ++ (show $ approximatedArea circles 5000)
107Total circles area
8haskell
mttyf
char input[] = ; typedef struct item_t item_t, *item; struct item_t { const char *name; int *deps, n_deps, idx, depth; }; int get_item(item *list, int *len, const char *name) { int i; item lst = *list; for (i = 0; i < *len; i++) if (!strcmp(lst[i].name, name)) return i; lst = *list = realloc(lst, ++*len * sizeof(item_t)); i = *len - 1; memset(lst + i, 0, sizeof(item_t)); lst[i].idx = i; lst[i].name = name; return i; } void add_dep(item it, int i) { if (it->idx == i) return; it->deps = realloc(it->deps, (it->n_deps + 1) * sizeof(int)); it->deps[it->n_deps++] = i; } int parse_input(item *ret) { int n_items = 0; int i, parent, idx; item list = 0; char *s, *e, *word, *we; for (s = input; ; s = 0) { if (!(s = strtok_r(s, , &e))) break; for (i = 0, word = s; ; i++, word = 0) { if (!(word = strtok_r(word, , &we))) break; idx = get_item(&list, &n_items, word); if (!i) parent = idx; else add_dep(list + parent, idx); } } *ret = list; return n_items; } int get_depth(item list, int idx, int bad) { int max, i, t; if (!list[idx].deps) return list[idx].depth = 1; if ((t = list[idx].depth) < 0) return t; list[idx].depth = bad; for (max = i = 0; i < list[idx].n_deps; i++) { if ((t = get_depth(list, list[idx].deps[i], bad)) < 0) { max = t; break; } if (max < t + 1) max = t + 1; } return list[idx].depth = max; } int main() { int i, j, n, bad = -1, max, min; item items; n = parse_input(&items); for (i = 0; i < n; i++) if (!items[i].depth && get_depth(items, i, bad) < 0) bad--; for (i = 0, max = min = 0; i < n; i++) { if (items[i].depth > max) max = items[i].depth; if (items[i].depth < min) min = items[i].depth; } printf(); for (i = min; i <= max; i++) { if (!i) continue; if (i < 0) printf(); else printf(, i); for (j = 0; j < n || !putchar('\n'); j++) if (items[j].depth == i) printf(, items[j].name); } return 0; }
110Topological sort
5c
c3f9c
public class Topswops { static final int maxBest = 32; static int[] best; static private void trySwaps(int[] deck, int f, int d, int n) { if (d > best[n]) best[n] = d; for (int i = n - 1; i >= 0; i--) { if (deck[i] == -1 || deck[i] == i) break; if (d + best[i] <= best[n]) return; } int[] deck2 = deck.clone(); for (int i = 1; i < n; i++) { final int k = 1 << i; if (deck2[i] == -1) { if ((f & k) != 0) continue; } else if (deck2[i] != i) continue; deck2[0] = i; for (int j = i - 1; j >= 0; j--) deck2[i - j] = deck[j];
104Topswops
9java
p7kb3
int main() { double pi = 4 * atan(1); double radians = pi / 4; double degrees = 45.0; double temp; printf(, sin(radians), sin(degrees * pi / 180)); printf(, cos(radians), cos(degrees * pi / 180)); printf(, tan(radians), tan(degrees * pi / 180)); temp = asin(sin(radians)); printf(, temp, temp * 180 / pi); temp = acos(cos(radians)); printf(, temp, temp * 180 / pi); temp = atan(tan(radians)); printf(, temp, temp * 180 / pi); return 0; }
111Trigonometric functions
5c
l6fcy
constraints = [ ->(st) { st.size == 12 }, ->(st) { st.last(6).count(true) == 3 }, ->(st) { st.each_slice(2).map(&:last).count(true) == 2 }, ->(st) { st[4]? (st[5] & st[6]): true }, ->(st) { st[1..3].none? }, ->(st) { st.each_slice(2).map(&:first).count(true) == 4 }, ->(st) { st[1] ^ st[2] }, ->(st) { st[6]? (st[4] & st[5]): true }, ->(st) { st.first(6).count(true) == 3 }, ->(st) { st[10] & st[11] }, ->(st) { st[6..8].one? }, ->(st) { st[0,11].count(true) == 4 }, ] Result = Struct.new(:truths, :consistency) results = [true, false].repeated_permutation(12).map do |truths| Result.new(truths, constraints.zip(truths).map {|cn,truth| cn[truths] == truth }) end puts , results.find {|r| r.consistency.all? }.truths.to_s puts near_misses = results.select {|r| r.consistency.count(false) == 1 } near_misses.each do |r| puts , r.truths.to_s end
100Twelve statements
14ruby
2m5lw
class LogicPuzzle { val s = new Array[Boolean](13) var count = 0 def check2: Boolean = { var count = 0 for (k <- 7 to 12) if (s(k)) count += 1 s(2) == (count == 3) } def check3: Boolean = { var count = 0 for (k <- 2 to 12 by 2) if (s(k)) count += 1 s(3) == (count == 2) } def check4: Boolean = s(4) == (!s(5) || s(6) && s(7)) def check5: Boolean = s(5) == (!s(2) && !s(3) && !s(4)) def check6: Boolean = { var count = 0 for (k <- 1 to 11 by 2) if (s(k)) count += 1 s(6) == (count == 4) } def check7: Boolean = s(7) == ((s(2) || s(3)) && !(s(2) && s(3))) def check8: Boolean = s(8) == (!s(7) || s(5) && s(6)) def check9: Boolean = { var count = 0 for (k <- 1 to 6) if (s(k)) count += 1 s(9) == (count == 3) } def check10: Boolean = s(10) == (s(11) && s(12)) def check11: Boolean = { var count = 0 for (k <- 7 to 9) if (s(k)) count += 1 s(11) == (count == 1) } def check12: Boolean = { var count = 0 for (k <- 1 to 11) if (s(k)) count += 1 s(12) == (count == 4) } def check(): Unit = { if (check2 && check3 && check4 && check5 && check6 && check7 && check8 && check9 && check10 && check11 && check12) { for (k <- 1 to 12) if (s(k)) print(k + " ") println() count += 1 } } def recurseAll(k: Int): Unit = { if (k == 13) check() else { s(k) = false recurseAll(k + 1) s(k) = true recurseAll(k + 1) } } } object LogicPuzzle extends App { val p = new LogicPuzzle p.s(1) = true p.recurseAll(2) println() println(s"${p.count} Solutions found.") }
100Twelve statements
16scala
42750
from __future__ import print_function, division from math import sqrt def cell(n, x, y, start=1): d, y, x = 0, y - n l = 2*max(abs(x), abs(y)) d = (l*3 + x + y) if y >= x else (l - x - y) return (l - 1)**2 + d + start - 1 def show_spiral(n, symbol=' top = start + n*n + 1 is_prime = [False,False,True] + [True,False]*(top for x in range(3, 1 + int(sqrt(top))): if not is_prime[x]: continue for i in range(x*x, top, x*2): is_prime[i] = False cell_str = lambda x: f(x) if is_prime[x] else space f = lambda _: symbol if space == None: space = ' '*len(symbol) if not len(symbol): max_str = len(str(n*n + start - 1)) if space == None: space = '.'*max_str + ' ' f = lambda x: ('%' + str(max_str) + 'd ')%x for y in range(n): print(''.join(cell_str(v) for v in [cell(n, x, y, start) for x in range(n)])) print() show_spiral(10, symbol=u'', space=u'') show_spiral(9, symbol='', space=' - ')
97Ulam spiral (for primes)
3python
hgejw
(defn find-first " Finds first element of collection that satisifies predicate function pred " [pred coll] (first (filter pred coll))) (defn modpow " b^e mod m (using Java which solves some cases the pure clojure method has to be modified to tackle--i.e. with large b & e and calculation simplications when gcd(b, m) == 1 and gcd(e, m) == 1) " [b e m] (.modPow (biginteger b) (biginteger e) (biginteger m))) (defn legendre [a p] (modpow a (quot (dec p) 2) p) ) (defn tonelli [n p] " Following Wikipedia https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm " (assert (= (legendre n p) 1) "not a square (mod p)") (loop [q (dec p) s 0] (if (zero? (rem q 2)) (recur (quot q 2) (inc s)) (if (= s 1) (modpow n (quot (inc p) 4) p) (let [z (find-first #(= (dec p) (legendre % p)) (range 2 p))] (loop [ M s c (modpow z q p) t (modpow n q p) R (modpow n (quot (inc q) 2) p)] (if (= t 1) R (let [i (long (find-first #(= 1 (modpow t (bit-shift-left 1 %) p)) (range 1 M))) b (modpow c (bit-shift-left 1 (- M i 1)) p) M i c (modpow b 2 p) t (rem (* t c) p) R (rem (* R b) p)] (recur M c t R) ) ) ) ) ) ) ) ) (doseq [[n p] [[10, 13], [56, 101], [1030, 10009], [44402, 100049], [665820697, 1000000009], [881398088036, 1000000000039], [41660815127637347468140745042827704103445750172002, 100000000000000000000000000000000000000000000000577]] :let [r (tonelli n p)]] (println (format "n:%5d p:%d \n\troots:%5d%5d" (biginteger n) (biginteger p) (biginteger r) (biginteger (- p r)))))
109Tonelli-Shanks algorithm
6clojure
8wa05
public class CirclesTotalArea { private static double distSq(double x1, double y1, double x2, double y2) { return (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1); } private static boolean rectangleFullyInsideCircle(double[] rect, double[] circ) { double r2 = circ[2] * circ[2];
107Total circles area
9java
f88dv
null
104Topswops
11kotlin
7ugr4
package main import ( "fmt" "log" "math" ) func main() {
106Trabb Pardo–Knuth algorithm
0go
h4gjq
require(numbers); plotulamspirR <- function(n, clr, fn, ttl, psz=600) { cat(" *** START:", date(), "n=",n, "clr=",clr, "psz=", psz, "\n"); if (n%%2==0) {n=n+1}; n2=n*n; x=y=floor(n/2); xmx=ymx=cnt=1; dir="R"; ttl= paste(c(ttl, n,"x",n," matrix."), sep="", collapse=""); cat(" ***", ttl, "\n"); M <- matrix(c(0), ncol=n, nrow=n, byrow=TRUE); for (i in 1:n2) { if(isPrime(i)) {M[x,y]=1}; if(dir=="R") {if(xmx>0) {x=x+1;xmx=xmx-1} else {dir="U";ymx=cnt;y=y-1;ymx=ymx-1}; next}; if(dir=="U") {if(ymx>0) {y=y-1;ymx=ymx-1} else {dir="L";cnt=cnt+1;xmx=cnt;x=x-1;xmx=xmx-1}; next}; if(dir=="L") {if(xmx>0) {x=x-1;xmx=xmx-1} else {dir="D";ymx=cnt;y=y+1;ymx=ymx-1}; next}; if(dir=="D") {if(ymx>0) {y=y+1;ymx=ymx-1} else {dir="R";cnt=cnt+1;xmx=cnt;x=x+1;xmx=xmx-1}; next}; }; plotmat(M, fn, clr, ttl,,psz); cat(" *** END:",date(),"\n"); } plotulamspirR(100, "red", "UlamSpiralR1", "Ulam Spiral: "); plotulamspirR(200, "red", "UlamSpiralR2", "Ulam Spiral: ",1240);
97Ulam spiral (for primes)
13r
gvb47
import java.util.BitSet; public class Main { public static void main(String[] args){ final int MAX = 1000000;
102Truncatable primes
9java
b7pk3
typedef char* Str; unsigned int ElQ( const char *s, char sep, char esc ); Str *Tokenize( char *s, char sep, char esc, unsigned int *q ); int main() { char s[] = STR_DEMO; unsigned int i, q; Str *list = Tokenize( s, SEP, ESC, &q ); if( list != NULL ) { printf( , STR_DEMO ); printf( , q ); for( i=0; i<q; ++i ) printf( , i+1, list[i] ); free( list ); } return 0; } unsigned int ElQ( const char *s, char sep, char esc ) { unsigned int q, e; const char *p; for( e=0, q=1, p=s; *p; ++p ) { if( *p == esc ) e = !e; else if( *p == sep ) q += !e; else e = 0; } return q; } Str *Tokenize( char *s, char sep, char esc, unsigned int *q ) { Str *list = NULL; *q = ElQ( s, sep, esc ); list = malloc( *q * sizeof(Str) ); if( list != NULL ) { unsigned int e, i; char *p; i = 0; list[i++] = s; for( e=0, p=s; *p; ++p ) { if( *p == esc ) { e = !e; } else if( *p == sep && !e ) { list[i++] = p+1; *p = '\0'; } else { e = 0; } } } return list; }
112Tokenize a string with escaping
5c
ziqtx
(use 'clojure.set) (use 'clojure.contrib.seq-utils) (defn dep "Constructs a single-key dependence, represented as a map from item to a set of items, ensuring that item is not in the set." [item items] {item (difference (set items) (list item))}) (defn empty-dep "Constructs a single-key dependence from item to an empty set." [item] (dep item '())) (defn pair-dep "Invokes dep after destructuring item and items from the argument." [[item items]] (dep item items)) (defn default-deps "Constructs a default dependence map taking every item in the argument to an empty set" [items] (apply merge-with union (map empty-dep (flatten items)))) (defn declared-deps "Constructs a dependence map from a list containaining alternating items and list of their predecessor items." [items] (apply merge-with union (map pair-dep (partition 2 items)))) (defn deps "Constructs a full dependence map containing both explicitly represented dependences and default empty dependences for items without explicit predecessors." [items] (merge (default-deps items) (declared-deps items))) (defn no-dep-items "Returns all keys from the argument which have no (i.e. empty) dependences." [deps] (filter #(empty? (deps %)) (keys deps))) (defn remove-items "Returns a dependence map with the specified items removed from keys and from all dependence sets of remaining keys." [deps items] (let [items-to-remove (set items) remaining-keys (difference (set (keys deps)) items-to-remove) remaining-deps (fn [x] (dep x (difference (deps x) items-to-remove)))] (apply merge (map remaining-deps remaining-keys)))) (defn topo-sort-deps "Given a dependence map, returns either a list of items in which each item follows all of its predecessors, or a string showing the items among which there is a cyclic dependence preventing a linear order." [deps] (loop [remaining-deps deps result '()] (if (empty? remaining-deps) (reverse result) (let [ready-items (no-dep-items remaining-deps)] (if (empty? ready-items) (str "ERROR: cycles remain among " (keys remaining-deps)) (recur (remove-items remaining-deps ready-items) (concat ready-items result))))))) (defn topo-sort "Given a list of alternating items and predecessor lists, constructs a full dependence map and then applies topo-sort-deps to that map." [items] (topo-sort-deps (deps items)))
110Topological sort
6clojure
5cyuz
package turing type Symbol byte type Motion byte const ( Left Motion = 'L' Right Motion = 'R' Stay Motion = 'N' ) type Tape struct { data []Symbol pos, left int blank Symbol }
103Universal Turing machine
0go
v9v2m
null
104Topswops
1lua
j5r71
(ns user (:require [clojure.contrib.generic.math-functions :as generic])) (def pi (* 4 (atan 1))) (def dtor (/ pi 180)) (def rtod (/ 180 pi)) (def radians (/ pi 4)) (def degrees 45) (println (str (sin radians) " " (sin (* degrees dtor)))) (println (str (cos radians) " " (cos (* degrees dtor)))) (println (str (tan radians) " " (tan (* degrees dtor)))) (println (str (asin (sin radians) ) " " (* (asin (sin (* degrees dtor))) rtod))) (println (str (acos (cos radians) ) " " (* (acos (cos (* degrees dtor))) rtod))) (println (str (atan (tan radians) ) " " (* (atan (tan (* degrees dtor))) rtod)))
111Trigonometric functions
6clojure
4ly5o
import Control.Monad (replicateM, mapM_) f :: Floating a => a -> a f x = sqrt (abs x) + 5 * x ** 3 main :: IO () main = do putStrLn "Enter 11 numbers for evaluation" x <- replicateM 11 readLn mapM_ ((\x -> if x > 400 then putStrLn "OVERFLOW" else print x) . f) $ reverse x
106Trabb Pardo–Knuth algorithm
8haskell
iqsor
from itertools import product while True: bexp = input('\nBoolean expression: ') bexp = bexp.strip() if not bexp: print() break code = compile(bexp, '<string>', 'eval') names = code.co_names print('\n' + ' '.join(names), ':', bexp) for values in product(range(2), repeat=len(names)): env = dict(zip(names, values)) print(' '.join(str(v) for v in values), ':', eval(code, env))
98Truth table
3python
j417p
null
107Total circles area
11kotlin
8ww0q
data Move = MLeft | MRight | Stay deriving (Show, Eq) data Tape a = Tape a [a] [a] data Action state val = Action val Move state deriving (Show) instance (Show a) => Show (Tape a) where show (Tape x lts rts) = concat $ left ++ [hd] ++ right where hd = "[" ++ show x ++ "]" left = map show $ reverse $ take 10 lts right = map show $ take 10 rts tape blank lts rts | null rts = Tape blank left blanks | otherwise = Tape (head rts) left right where blanks = repeat blank left = reverse lts ++ blanks right = tail rts ++ blanks step rules (state, Tape x (lh:lts) (rh:rts)) = (state', tape') where Action x' dir state' = rules state x tape' = move dir move Stay = Tape x' (lh:lts) (rh:rts) move MLeft = Tape lh lts (x':rh:rts) move MRight = Tape rh (x':lh:lts) rts runUTM rules stop start tape = steps ++ [final] where (steps, final:_) = break ((== stop) . fst) $ iterate (step rules) (start, tape)
103Universal Turing machine
8haskell
ebeai
import java.util.*; import java.io.*; public class TPKA { public static void main(String... args) { double[] input = new double[11]; double userInput = 0.0; Scanner in = new Scanner(System.in); for(int i = 0; i < 11; i++) { System.out.print("Please enter a number: "); String s = in.nextLine(); try { userInput = Double.parseDouble(s); } catch (NumberFormatException e) { System.out.println("You entered invalid input, exiting"); System.exit(1); } input[i] = userInput; } for(int j = 10; j >= 0; j--) { double x = input[j]; double y = f(x); if( y < 400.0) { System.out.printf("f(%.2f ) =%.2f\n", x, y); } else { System.out.printf("f(%.2f ) =%s\n", x, "TOO LARGE"); } } } private static double f(double x) { return Math.pow(Math.abs(x), 0.5) + (5*(Math.pow(x, 3))); } }
106Trabb Pardo–Knuth algorithm
9java
xp1wy
truth_table <- function(x) { vars <- unique(unlist(strsplit(x, "[^a-zA-Z]+"))) vars <- vars[vars!= ""] perm <- expand.grid(rep(list(c(FALSE, TRUE)), length(vars))) names(perm) <- vars perm[ , x] <- with(perm, eval(parse(text = x))) perm } "%^%" <- xor truth_table("!A") truth_table("A | B") truth_table("A & B") truth_table("A%^% B") truth_table("S | (T%^% U)") truth_table("A%^% (B%^% (C%^% D))")
98Truth table
13r
42h5y
null
102Truncatable primes
11kotlin
ru7go
typedef struct node_s { int value; struct node_s* left; struct node_s* right; } *node; node tree(int v, node l, node r) { node n = malloc(sizeof(struct node_s)); n->value = v; n->left = l; n->right = r; return n; } void destroy_tree(node n) { if (n->left) destroy_tree(n->left); if (n->right) destroy_tree(n->right); free(n); } void preorder(node n, void (*f)(int)) { f(n->value); if (n->left) preorder(n->left, f); if (n->right) preorder(n->right, f); } void inorder(node n, void (*f)(int)) { if (n->left) inorder(n->left, f); f(n->value); if (n->right) inorder(n->right, f); } void postorder(node n, void (*f)(int)) { if (n->left) postorder(n->left, f); if (n->right) postorder(n->right, f); f(n->value); } typedef struct qnode_s { struct qnode_s* next; node value; } *qnode; typedef struct { qnode begin, end; } queue; void enqueue(queue* q, node n) { qnode node = malloc(sizeof(struct qnode_s)); node->value = n; node->next = 0; if (q->end) q->end->next = node; else q->begin = node; q->end = node; } node dequeue(queue* q) { node tmp = q->begin->value; qnode second = q->begin->next; free(q->begin); q->begin = second; if (!q->begin) q->end = 0; return tmp; } int queue_empty(queue* q) { return !q->begin; } void levelorder(node n, void(*f)(int)) { queue nodequeue = {}; enqueue(&nodequeue, n); while (!queue_empty(&nodequeue)) { node next = dequeue(&nodequeue); f(next->value); if (next->left) enqueue(&nodequeue, next->left); if (next->right) enqueue(&nodequeue, next->right); } } void print(int n) { printf(, n); } int main() { node n = tree(1, tree(2, tree(4, tree(7, 0, 0), 0), tree(5, 0, 0)), tree(3, tree(6, tree(8, 0, 0), tree(9, 0, 0)), 0)); printf(); preorder(n, print); printf(); printf(); inorder(n, print); printf(); printf(); postorder(n, print); printf(); printf(); levelorder(n, print); printf(); destroy_tree(n); return 0; }
113Tree traversal
5c
6ds32
int main(int argc, char *argv[]){ char sequence[256+1] = ; char inverse[256+1] = ; char buffer[256+1]; int i; for(i = 0; i < 8; i++){ strcpy(buffer, sequence); strcat(sequence, inverse); strcat(inverse, buffer); } puts(sequence); return 0; }
114Thue-Morse
5c
l6icy
package main import "fmt"
109Tonelli-Shanks algorithm
0go
c3t9g
sub next_swop { my( $max, $level, $p, $d ) = @_; my $swopped = 0; for( 2..@$p ){ my @now = @$p; if( $_ == $now[$_-1] ) { splice @now, 0, 0, reverse splice @now, 0, $_; $swopped = 1; next_swop( $max, $level+1, \@now, [ @$d ] ); } } for( 1..@$d ) { my @now = @$p; my $next = shift @$d; if( not $now[$next-1] ) { $now[$next-1] = $next; splice @now, 0, 0, reverse splice @now, 0, $next; $swopped = 1; next_swop( $max, $level+1, \@now, [ @$d ] ); } push @$d, $next; } $$max = $level if !$swopped and $level > $$max; } sub topswops { my $n = shift; my @d = 2..$n; my @p = ( 1, (0) x ($n-1) ); my $max = 0; next_swop( \$max, 0, \@p, \@d ); return $max; } printf "Maximum swops for%2d cards:%2d\n", $_, topswops $_ for 1..10;
104Topswops
2perl
f8nd7
#!/usr/bin/env js function main() { var nums = getNumbers(11); nums.reverse(); for (var i in nums) { pardoKnuth(nums[i], fn, 400); } } function pardoKnuth(n, f, max) { var res = f(n); putstr('f(' + String(n) + ')'); if (res > max) { print(' is too large'); } else { print(' = ' + String(res)); } } function fn(x) { return Math.pow(Math.abs(x), 0.5) + 5 * Math.pow(x, 3); } function getNumbers(n) { var nums = []; print('Enter', n, 'numbers.'); for (var i = 1; i <= n; i++) { putstr(' ' + i + ': '); var num = readline(); nums.push(Number(num)); } return nums; } main();
106Trabb Pardo–Knuth algorithm
10javascript
oxq86
max_number = 1000000 numbers = {} for i = 2, max_number do numbers[i] = i; end for i = 2, max_number do for j = i+1, max_number do if numbers[j] ~= 0 and j % i == 0 then numbers[j] = 0 end end end max_prime_left, max_prime_right = 2, 2 for i = 2, max_number do if numbers[i] ~= 0 then local is_prime = true local l = math.floor( i / 10 ) while l > 1 do if numbers[l] == 0 then is_prime = false break end l = math.floor( l / 10 ) end if is_prime then max_prime_left = i end is_prime = true local n = 10; while math.floor( i % 10 ) ~= 0 and n < max_number do if numbers[ math.floor( i % 10 ) ] ~= 0 then is_prime = false break end n = n * 10 end if is_prime then max_prime_right = i end end end print( "max_prime_left = ", max_prime_left ) print( "max_prime_right = ", max_prime_right )
102Truncatable primes
1lua
75jru
import Data.List (genericTake, genericLength) import Data.Bits (shiftR) powMod :: Integer -> Integer -> Integer -> Integer powMod m b e = go b e 1 where go b e r | e == 0 = r | odd e = go ((b*b) `mod` m) (e `div` 2) ((r*b) `mod` m) | even e = go ((b*b) `mod` m) (e `div` 2) r legendre :: Integer -> Integer -> Integer legendre a p = powMod p a ((p - 1) `div` 2) tonelli :: Integer -> Integer -> Maybe (Integer, Integer) tonelli n p | legendre n p /= 1 = Nothing tonelli n p = let s = length $ takeWhile even $ iterate (`div` 2) (p-1) q = shiftR (p-1) s in if s == 1 then let r = powMod p n ((p+1) `div` 4) in Just (r, p - r) else let z = (2 +) . genericLength $ takeWhile (\i -> p - 1 /= legendre i p) $ [2..p-1] in loop s ( powMod p z q ) ( powMod p n $ (q+1) `div` 2 ) ( powMod p n q ) where loop m c r t | (t - 1) `mod` p == 0 = Just (r, p - r) | otherwise = let i = (1 +) . genericLength . genericTake (m - 2) $ takeWhile (\t2 -> (t2 - 1) `mod` p /= 0) $ iterate (\t2 -> (t2*t2) `mod` p) $ (t*t) `mod` p b = powMod p c (2^(m - i - 1)) r' = (r*b) `mod` p c' = (b*b) `mod` p t' = (t*c') `mod` p in loop i c' r' t'
109Tonelli-Shanks algorithm
8haskell
p7gbt
use strict; use warnings; use feature 'say'; use List::AllUtils <min max>; my @circles = ( [ 1.6417233788, 1.6121789534, 0.0848270516], [-1.4944608174, 1.2077959613, 1.1039549836], [ 0.6110294452, -0.6907087527, 0.9089162485], [ 0.3844862411, 0.2923344616, 0.2375743054], [-0.2495892950, -0.3832854473, 1.0845181219], [ 1.7813504266, 1.6178237031, 0.8162655711], [-0.1985249206, -0.8343333301, 0.0538864941], [-1.7011985145, -0.1263820964, 0.4776976918], [-0.4319462812, 1.4104420482, 0.7886291537], [ 0.2178372997, -0.9499557344, 0.0357871187], [-0.6294854565, -1.3078893852, 0.7653357688], [ 1.7952608455, 0.6281269104, 0.2727652452], [ 1.4168575317, 1.0683357171, 1.1016025378], [ 1.4637371396, 0.9463877418, 1.1846214562], [-0.5263668798, 1.7315156631, 1.4428514068], [-1.2197352481, 0.9144146579, 1.0727263474], [-0.1389358881, 0.1092805780, 0.7350208828], [ 1.5293954595, 0.0030278255, 1.2472867347], [-0.5258728625, 1.3782633069, 1.3495508831], [-0.1403562064, 0.2437382535, 1.3804956588], [ 0.8055826339, -0.0482092025, 0.3327165165], [-0.6311979224, 0.7184578971, 0.2491045282], [ 1.4685857879, -0.8347049536, 1.3670667538], [-0.6855727502, 1.6465021616, 1.0593087096], [ 0.0152957411, 0.0638919221, 0.9771215985], ); my $x_min = min map { $_->[0] - $_->[2] } @circles; my $x_max = max map { $_->[0] + $_->[2] } @circles; my $y_min = min map { $_->[1] - $_->[2] } @circles; my $y_max = max map { $_->[1] + $_->[2] } @circles; my $box_side = 500; my $dx = ($x_max - $x_min) / $box_side; my $dy = ($y_max - $y_min) / $box_side; my $count = 0; for my $r (0..$box_side) { my $y = $y_min + $r * $dy; for my $c (0..$box_side) { my $x = $x_min + $c * $dx; for my $c (@circles) { $count++ and last if ($x - $$c[0])**2 + ($y - $$c[1])**2 <= $$c[2]**2 } } } printf "Approximated area:%.9f\n", $count * $dx * $dy;
107Total circles area
2perl
4ll5d
import java.util.HashMap; import java.util.HashSet; import java.util.LinkedList; import java.util.ListIterator; import java.util.List; import java.util.Set; import java.util.Map; public class UTM { private List<String> tape; private String blankSymbol; private ListIterator<String> head; private Map<StateTapeSymbolPair, Transition> transitions = new HashMap<StateTapeSymbolPair, Transition>(); private Set<String> terminalStates; private String initialState; public UTM(Set<Transition> transitions, Set<String> terminalStates, String initialState, String blankSymbol) { this.blankSymbol = blankSymbol; for (Transition t: transitions) { this.transitions.put(t.from, t); } this.terminalStates = terminalStates; this.initialState = initialState; } public static class StateTapeSymbolPair { private String state; private String tapeSymbol; public StateTapeSymbolPair(String state, String tapeSymbol) { this.state = state; this.tapeSymbol = tapeSymbol; }
103Universal Turing machine
9java
hghjm
package main import "fmt" func gcd(n, k int) int { if n < k || k < 1 { panic("Need n >= k and k >= 1") } s := 1 for n&1 == 0 && k&1 == 0 { n >>= 1 k >>= 1 s <<= 1 } t := n if n&1 != 0 { t = -k } for t != 0 { for t&1 == 0 { t >>= 1 } if t > 0 { n = t } else { k = -t } t = n - k } return n * s } func totient(n int) int { tot := 0 for k := 1; k <= n; k++ { if gcd(n, k) == 1 { tot++ } } return tot } func main() { fmt.Println(" n phi prime") fmt.Println("---------------") count := 0 for n := 1; n <= 25; n++ { tot := totient(n) isPrime := n-1 == tot if isPrime { count++ } fmt.Printf("%2d %2d %t\n", n, tot, isPrime) } fmt.Println("\nNumber of primes up to 25 =", count) for n := 26; n <= 100000; n++ { tot := totient(n) if tot == n-1 { count++ } if n == 100 || n == 1000 || n%10000 == 0 { fmt.Printf("\nNumber of primes up to%-6d =%d\n", n, count) } } }
108Totient function
0go
6dn3p
require 'prime' def cell(n, x, y, start=1) y, x = y - n/2, x - (n - 1)/2 l = 2 * [x.abs, y.abs].max d = y >= x? l*3 + x + y: l - x - y (l - 1)**2 + d + start - 1 end def show_spiral(n, symbol=nil, start=1) puts format = n.times do |y| n.times do |x| i = cell(n,x,y,start) if symbol print i.prime?? symbol[0]: symbol[1] else print format % (i.prime?? i: '') end end puts end end show_spiral(9) show_spiral(25) show_spiral(25, )
97Ulam spiral (for primes)
14ruby
b7xkq
function tm(d,s,e,i,b,t,... r) { document.write(d, '<br>') if (i<0||i>=t.length) return var re=new RegExp(b,'g') write('*',s,i,t=t.split('')) var p={}; r.forEach(e=>((s,r,w,m,n)=>{p[s+'.'+r]={w,n,m:[0,1,-1][1+'RL'.indexOf(m)]}})(... e.split(/[ .:,]+/))) for (var n=1; s!=e; n+=1) { with (p[s+'.'+t[i]]) t[i]=w,s=n,i+=m if (i==-1) i=0,t.unshift(b) else if (i==t.length) t[i]=b write(n,s,i,t) } document.write('<br>') function write(n, s, i, t) { t = t.join('') t = t.substring(0,i) + '<u>' + t.charAt(i) + '</u>' + t.substr(i+1) document.write((' '+n).slice(-3).replace(/ /g,'&nbsp;'), ': ', s, ' [', t.replace(re,'&nbsp;'), ']', '<br>') } } tm( 'Unary incrementer',
103Universal Turing machine
10javascript
aka10
import Control.Monad (when) import Data.Bool (bool) totient :: (Integral a) => a -> a totient n | n == 0 = 1 | n < 0 = totient (-n) | otherwise = loop n n 2 where loop !m !tot !i | i * i > m = bool tot (tot - (tot `div` m)) (1 < m) | m `mod` i == 0 = loop m_ tot_ i_ | otherwise = loop m tot i_ where i_ | i == 2 = 3 | otherwise = 2 + i m_ = nextM m tot_ = tot - (tot `div` i) nextM !x | x `mod` i == 0 = nextM $ x `div` i | otherwise = x main :: IO () main = do putStrLn "n\tphi\tprime\n let loop !i !count | i >= 10 ^ 6 = return () | otherwise = do let i_ = succ i tot = totient i_ isPrime = tot == pred i_ count_ | isPrime = succ count | otherwise = count when (25 >= i_) $ putStrLn $ show i_ ++ "\t" ++ show tot ++ "\t" ++ show isPrime when (i_ `elem` 25: [ 10 ^ k | k <- [2 .. 6] ]) $ putStrLn $ "Number of primes up to " ++ show i_ ++ " = " ++ show count_ loop (i + 1) count_ loop 0 0
108Totient function
8haskell
j5u7g
null
106Trabb Pardo–Knuth algorithm
11kotlin
p7jb6
use std::fmt; enum Direction { RIGHT, UP, LEFT, DOWN } use ulam::Direction::*;
97Ulam spiral (for primes)
15rust
pjqbu
object Ulam extends App { generate(9)() generate(9)('*') private object Direction extends Enumeration { val RIGHT, UP, LEFT, DOWN = Value } private def generate(n: Int, i: Int = 1)(c: Char = 0) { assert(n > 1, "n > 1") val s = new Array[Array[String]](n).transform {_ => new Array[String](n) } import Direction._ var dir = RIGHT var y = n / 2 var x = if (n % 2 == 0) y - 1 else y
97Ulam spiral (for primes)
16scala
eb8ab
typedef struct { const char *name, *id, *dept; int sal; } person; person ppl[] = { {, , , 32000}, {, , , 47000}, {, , , 53500}, {, , , 18000}, {, , , 27800}, {, , , 41500}, {, , , 49500}, {, , , 21900}, {, , , 15900}, {, , , 19250}, {, , , 27000}, {, , , 57000}, {, , , 29900}, }; int pcmp(const void *a, const void *b) { const person *aa = a, *bb = b; int x = strcmp(aa->dept, bb->dept); if (x) return x; return aa->sal > bb->sal ? -1 : aa->sal < bb->sal; } void top(int n) { int i, rank; qsort(ppl, N, sizeof(person), pcmp); for (i = rank = 0; i < N; i++) { if (i && strcmp(ppl[i].dept, ppl[i - 1].dept)) { rank = 0; printf(); } if (rank++ < n) printf(, ppl[i].dept, ppl[i].sal, ppl[i].name); } } int main() { top(2); return 0; }
115Top rank per group
5c
7u6rg
import java.math.BigInteger; import java.util.List; import java.util.Map; import java.util.function.BiFunction; import java.util.function.Function; public class TonelliShanks { private static final BigInteger ZERO = BigInteger.ZERO; private static final BigInteger ONE = BigInteger.ONE; private static final BigInteger TEN = BigInteger.TEN; private static final BigInteger TWO = BigInteger.valueOf(2); private static final BigInteger FOUR = BigInteger.valueOf(4); private static class Solution { private BigInteger root1; private BigInteger root2; private boolean exists; Solution(BigInteger root1, BigInteger root2, boolean exists) { this.root1 = root1; this.root2 = root2; this.exists = exists; } } private static Solution ts(Long n, Long p) { return ts(BigInteger.valueOf(n), BigInteger.valueOf(p)); } private static Solution ts(BigInteger n, BigInteger p) { BiFunction<BigInteger, BigInteger, BigInteger> powModP = (BigInteger a, BigInteger e) -> a.modPow(e, p); Function<BigInteger, BigInteger> ls = (BigInteger a) -> powModP.apply(a, p.subtract(ONE).divide(TWO)); if (!ls.apply(n).equals(ONE)) return new Solution(ZERO, ZERO, false); BigInteger q = p.subtract(ONE); BigInteger ss = ZERO; while (q.and(ONE).equals(ZERO)) { ss = ss.add(ONE); q = q.shiftRight(1); } if (ss.equals(ONE)) { BigInteger r1 = powModP.apply(n, p.add(ONE).divide(FOUR)); return new Solution(r1, p.subtract(r1), true); } BigInteger z = TWO; while (!ls.apply(z).equals(p.subtract(ONE))) z = z.add(ONE); BigInteger c = powModP.apply(z, q); BigInteger r = powModP.apply(n, q.add(ONE).divide(TWO)); BigInteger t = powModP.apply(n, q); BigInteger m = ss; while (true) { if (t.equals(ONE)) return new Solution(r, p.subtract(r), true); BigInteger i = ZERO; BigInteger zz = t; while (!zz.equals(BigInteger.ONE) && i.compareTo(m.subtract(ONE)) < 0) { zz = zz.multiply(zz).mod(p); i = i.add(ONE); } BigInteger b = c; BigInteger e = m.subtract(i).subtract(ONE); while (e.compareTo(ZERO) > 0) { b = b.multiply(b).mod(p); e = e.subtract(ONE); } r = r.multiply(b).mod(p); c = b.multiply(b).mod(p); t = t.multiply(c).mod(p); m = i; } } public static void main(String[] args) { List<Map.Entry<Long, Long>> pairs = List.of( Map.entry(10L, 13L), Map.entry(56L, 101L), Map.entry(1030L, 10009L), Map.entry(1032L, 10009L), Map.entry(44402L, 100049L), Map.entry(665820697L, 1000000009L), Map.entry(881398088036L, 1000000000039L) ); for (Map.Entry<Long, Long> pair : pairs) { Solution sol = ts(pair.getKey(), pair.getValue()); System.out.printf("n =%s\n", pair.getKey()); System.out.printf("p =%s\n", pair.getValue()); if (sol.exists) { System.out.printf("root1 =%s\n", sol.root1); System.out.printf("root2 =%s\n", sol.root2); } else { System.out.println("No solution exists"); } System.out.println(); } BigInteger bn = new BigInteger("41660815127637347468140745042827704103445750172002"); BigInteger bp = TEN.pow(50).add(BigInteger.valueOf(577)); Solution sol = ts(bn, bp); System.out.printf("n =%s\n", bn); System.out.printf("p =%s\n", bp); if (sol.exists) { System.out.printf("root1 =%s\n", sol.root1); System.out.printf("root2 =%s\n", sol.root2); } else { System.out.println("No solution exists"); } } }
109Tonelli-Shanks algorithm
9java
rvlg0
from collections import namedtuple Circle = namedtuple(, ) circles = [ Circle( 1.6417233788, 1.6121789534, 0.0848270516), Circle(-1.4944608174, 1.2077959613, 1.1039549836), Circle( 0.6110294452, -0.6907087527, 0.9089162485), Circle( 0.3844862411, 0.2923344616, 0.2375743054), Circle(-0.2495892950, -0.3832854473, 1.0845181219), Circle( 1.7813504266, 1.6178237031, 0.8162655711), Circle(-0.1985249206, -0.8343333301, 0.0538864941), Circle(-1.7011985145, -0.1263820964, 0.4776976918), Circle(-0.4319462812, 1.4104420482, 0.7886291537), Circle( 0.2178372997, -0.9499557344, 0.0357871187), Circle(-0.6294854565, -1.3078893852, 0.7653357688), Circle( 1.7952608455, 0.6281269104, 0.2727652452), Circle( 1.4168575317, 1.0683357171, 1.1016025378), Circle( 1.4637371396, 0.9463877418, 1.1846214562), Circle(-0.5263668798, 1.7315156631, 1.4428514068), Circle(-1.2197352481, 0.9144146579, 1.0727263474), Circle(-0.1389358881, 0.1092805780, 0.7350208828), Circle( 1.5293954595, 0.0030278255, 1.2472867347), Circle(-0.5258728625, 1.3782633069, 1.3495508831), Circle(-0.1403562064, 0.2437382535, 1.3804956588), Circle( 0.8055826339, -0.0482092025, 0.3327165165), Circle(-0.6311979224, 0.7184578971, 0.2491045282), Circle( 1.4685857879, -0.8347049536, 1.3670667538), Circle(-0.6855727502, 1.6465021616, 1.0593087096), Circle( 0.0152957411, 0.0638919221, 0.9771215985)] def main(): x_min = min(c.x - c.r for c in circles) x_max = max(c.x + c.r for c in circles) y_min = min(c.y - c.r for c in circles) y_max = max(c.y + c.r for c in circles) box_side = 500 dx = (x_max - x_min) / box_side dy = (y_max - y_min) / box_side count = 0 for r in xrange(box_side): y = y_min + r * dy for c in xrange(box_side): x = x_min + c * dx if any((x-circle.x)**2 + (y-circle.y)**2 <= (circle.r ** 2) for circle in circles): count += 1 print , count * dx * dy main()
107Total circles area
3python
g224h
function f (x) return math.abs(x)^0.5 + 5*x^3 end function reverse (t) local rev = {} for i, v in ipairs(t) do rev[#t - (i-1)] = v end return rev end local sequence, result = {} print("Enter 11 numbers...") for n = 1, 11 do io.write(n .. ": ") sequence[n] = io.read() end for _, x in ipairs(reverse(sequence)) do result = f(x) if result > 400 then print("Overflow!") else print(result) end end
106Trabb Pardo–Knuth algorithm
1lua
1jhpo
loop do print expr = gets.strip.downcase break if expr.empty? vars = expr.scan(/\p{Alpha}+/) if vars.empty? puts next end vars.each {|v| print } puts prefix = [] suffix = [] vars.each do |v| prefix << suffix << end body = vars.inject() {|str, v| str + } body += ' + eval(expr).to_s' eval (prefix + [body] + suffix).join() end
98Truth table
14ruby
krehg
(defn walk [node f order] (when node (doseq [o order] (if (= o:visit) (f (:val node)) (walk (node o) f order))))) (defn preorder [node f] (walk node f [:visit:left:right])) (defn inorder [node f] (walk node f [:left:visit:right])) (defn postorder [node f] (walk node f [:left:right:visit])) (defn queue [& xs] (when (seq xs) (apply conj clojure.lang.PersistentQueue/EMPTY xs))) (defn level-order [root f] (loop [q (queue root)] (when-not (empty? q) (if-let [node (first q)] (do (f (:val node)) (recur (conj (pop q) (:left node) (:right node)))) (recur (pop q)))))) (defn vec-to-tree [t] (if (vector? t) (let [[val left right] t] {:val val :left (vec-to-tree left) :right (vec-to-tree right)}) t)) (let [tree (vec-to-tree [1 [2 [4 [7]] [5]] [3 [6 [8] [9]]]]) fs '[preorder inorder postorder level-order] pr-node #(print (format "%2d" %))] (doseq [f fs] (print (format "%-12s" (str f ":"))) ((resolve f) tree pr-node) (println)))
113Tree traversal
6clojure
l6ncb
null
109Tonelli-Shanks algorithm
11kotlin
vm621
null
103Universal Turing machine
11kotlin
42457
public class TotientFunction { public static void main(String[] args) { computePhi(); System.out.println("Compute and display phi for the first 25 integers."); System.out.printf("n Phi IsPrime%n"); for ( int n = 1 ; n <= 25 ; n++ ) { System.out.printf("%2d %2d %b%n", n, phi[n], (phi[n] == n-1)); } for ( int i = 2 ; i < 8 ; i++ ) { int max = (int) Math.pow(10, i); System.out.printf("The count of the primes up to%,10d =%d%n", max, countPrimes(1, max)); } } private static int countPrimes(int min, int max) { int count = 0; for ( int i = min ; i <= max ; i++ ) { if ( phi[i] == i-1 ) { count++; } } return count; } private static final int max = 10000000; private static final int[] phi = new int[max+1]; private static final void computePhi() { for ( int i = 1 ; i <= max ; i++ ) { phi[i] = i; } for ( int i = 2 ; i <= max ; i++ ) { if (phi[i] < i) continue; for ( int j = i ; j <= max ; j += i ) { phi[j] -= phi[j] / i; } } } }
108Totient function
9java
u9mvv
>>> from itertools import permutations >>> def f1(p): i = 0 while True: p0 = p[0] if p0 == 1: break p[:p0] = p[:p0][::-1] i += 1 return i >>> def fannkuch(n): return max(f1(list(p)) for p in permutations(range(1, n+1))) >>> for n in range(1, 11): print(n,fannkuch(n)) 1 0 2 1 3 2 4 4 5 7 6 10 7 16 8 22 9 30 10 38 >>>
104Topswops
3python
todfw
use std::{ collections::HashMap, fmt::{Display, Formatter}, iter::FromIterator, };
98Truth table
15rust
b7wkx
topswops <- function(x){ i <- 0 while(x[1]!= 1){ first <- x[1] if(first == length(x)){ x <- rev(x) } else{ x <- c(x[first:1], x[(first+1):length(x)]) } i <- i + 1 } return(i) } library(iterpc) result <- NULL for(i in 1:10){ I <- iterpc(i, labels = 1:i, ordered = T) A <- getall(I) A <- data.frame(A) A$flips <- apply(A, 1, topswops) result <- rbind(result, c(i, max(A$flips))) }
104Topswops
13r
iq8o5
use bigint; use ntheory qw(is_prime powmod kronecker); sub tonelli_shanks { my($n,$p) = @_; return if kronecker($n,$p) <= 0; my $Q = $p - 1; my $S = 0; $Q >>= 1 and $S++ while 0 == $Q%2; return powmod($n,int(($p+1)/4), $p) if $S == 1; my $c; for $n (2..$p) { next if kronecker($n,$p) >= 0; $c = powmod($n, $Q, $p); last; } my $R = powmod($n, ($Q+1) >> 1, $p ); my $t = powmod($n, $Q, $p ); while (($t-1) % $p) { my $b; my $t2 = $t**2 % $p; for (1 .. $S) { if (0 == ($t2-1)%$p) { $b = powmod($c, 1 << ($S-1-$_), $p); $S = $_; last; } $t2 = $t2**2 % $p; } $R = ($R * $b) % $p; $c = $b**2 % $p; $t = ($t * $c) % $p; } $R; } my @tests = ( (10, 13), (56, 101), (1030, 10009), (1032, 10009), (44402, 100049), (665820697, 1000000009), (881398088036, 1000000000039), ); while (@tests) { $n = shift @tests; $p = shift @tests; my $t = tonelli_shanks($n, $p); if (!$t or ($t**2 - $n) % $p) { printf "No solution for (%d,%d)\n", $n, $p; } else { printf "Roots of%d are (%d,%d) mod%d\n", $n, $t, $p-$t, $p; } }
109Tonelli-Shanks algorithm
2perl
0e1s4
null
103Universal Turing machine
1lua
gvg4j
(use '[clojure.contrib.seq-utils :only (group-by)]) (defstruct employee :Name :ID :Salary :Department) (def data (->> '(("Tyler Bennett" E10297 32000 D101) ("John Rappl" E21437 47000 D050) ("George Woltman" E00127 53500 D101) ("Adam Smith" E63535 18000 D202) ("Claire Buckman" E39876 27800 D202) ("David McClellan" E04242 41500 D101) ("Rich Holcomb" E01234 49500 D202) ("Nathan Adams" E41298 21900 D050) ("Richard Potter" E43128 15900 D101) ("David Motsinger" E27002 19250 D202) ("Tim Sampair" E03033 27000 D101) ("Kim Arlich" E10001 57000 D190) ("Timothy Grove" E16398 29900 D190)) (map #(apply (partial struct employee) %)))) (doseq [[dep emps] (group-by :Department data)] (println "Department:" dep) (doseq [e (take 3 (reverse (sort-by :Salary emps)))] (println e)))
115Top rank per group
6clojure
p7lbd
package main import ( "errors" "fmt" ) func TokenizeString(s string, sep, escape rune) (tokens []string, err error) { var runes []rune inEscape := false for _, r := range s { switch { case inEscape: inEscape = false fallthrough default: runes = append(runes, r) case r == escape: inEscape = true case r == sep: tokens = append(tokens, string(runes)) runes = runes[:0] } } tokens = append(tokens, string(runes)) if inEscape { err = errors.New("invalid terminal escape") } return tokens, err } func main() { const sample = "one^|uno||three^^^^|four^^^|^cuatro|" const separator = '|' const escape = '^' fmt.Printf("Input: %q\n", sample) tokens, err := TokenizeString(sample, separator, escape) if err != nil { fmt.Println("error:", err) } else { fmt.Printf("Tokens:%q\n", tokens) } }
112Tokenize a string with escaping
0go
kg2hz
circles = [ [ 1.6417233788, 1.6121789534, 0.0848270516], [-1.4944608174, 1.2077959613, 1.1039549836], [ 0.6110294452, -0.6907087527, 0.9089162485], [ 0.3844862411, 0.2923344616, 0.2375743054], [-0.2495892950, -0.3832854473, 1.0845181219], [ 1.7813504266, 1.6178237031, 0.8162655711], [-0.1985249206, -0.8343333301, 0.0538864941], [-1.7011985145, -0.1263820964, 0.4776976918], [-0.4319462812, 1.4104420482, 0.7886291537], [ 0.2178372997, -0.9499557344, 0.0357871187], [-0.6294854565, -1.3078893852, 0.7653357688], [ 1.7952608455, 0.6281269104, 0.2727652452], [ 1.4168575317, 1.0683357171, 1.1016025378], [ 1.4637371396, 0.9463877418, 1.1846214562], [-0.5263668798, 1.7315156631, 1.4428514068], [-1.2197352481, 0.9144146579, 1.0727263474], [-0.1389358881, 0.1092805780, 0.7350208828], [ 1.5293954595, 0.0030278255, 1.2472867347], [-0.5258728625, 1.3782633069, 1.3495508831], [-0.1403562064, 0.2437382535, 1.3804956588], [ 0.8055826339, -0.0482092025, 0.3327165165], [-0.6311979224, 0.7184578971, 0.2491045282], [ 1.4685857879, -0.8347049536, 1.3670667538], [-0.6855727502, 1.6465021616, 1.0593087096], [ 0.0152957411, 0.0638919221, 0.9771215985], ] def minmax_circle(circles) xmin = circles.map {|xc, yc, radius| xc - radius}.min xmax = circles.map {|xc, yc, radius| xc + radius}.max ymin = circles.map {|xc, yc, radius| yc - radius}.min ymax = circles.map {|xc, yc, radius| yc + radius}.max [xmin, xmax, ymin, ymax] end def select_circle(circles) circles = circles.sort_by{|cx,cy,r| -r} size = circles.size select = [*0...size] for i in 0...size-1 xi,yi,ri = circles[i].to_a for j in i+1...size xj,yj,rj = circles[j].to_a select -= [j] if (xi-xj)**2 + (yi-yj)**2 <= (ri-rj)**2 end end circles.values_at(*select) end circles = select_circle(circles)
107Total circles area
14ruby
7uuri
null
108Totient function
11kotlin
9ztmh
use ntheory ":all"; sub isltrunc { my $n = shift; return (is_prime($n) && $n !~ /0/ && ($n < 10 || isltrunc(substr($n,1)))); } sub isrtrunc { my $n = shift; return (is_prime($n) && $n !~ /0/ && ($n < 10 || isrtrunc(substr($n,0,-1)))); } for (reverse @{primes(1e6)}) { if (isltrunc($_)) { print "ltrunc: $_\n"; last; } } for (reverse @{primes(1e6)}) { if (isrtrunc($_)) { print "rtrunc: $_\n"; last; } }
102Truncatable primes
2perl
d8fnw
def legendre(a, p): return pow(a, (p - 1) def tonelli(n, p): assert legendre(n, p) == 1, q = p - 1 s = 0 while q% 2 == 0: q s += 1 if s == 1: return pow(n, (p + 1) for z in range(2, p): if p - 1 == legendre(z, p): break c = pow(z, q, p) r = pow(n, (q + 1) t = pow(n, q, p) m = s t2 = 0 while (t - 1)% p != 0: t2 = (t * t)% p for i in range(1, m): if (t2 - 1)% p == 0: break t2 = (t2 * t2)% p b = pow(c, 1 << (m - i - 1), p) r = (r * b)% p c = (b * b)% p t = (t * c)% p m = i return r if __name__ == '__main__': ttest = [(10, 13), (56, 101), (1030, 10009), (44402, 100049), (665820697, 1000000009), (881398088036, 1000000000039), (41660815127637347468140745042827704103445750172002, 10**50 + 577)] for n, p in ttest: r = tonelli(n, p) assert (r * r - n)% p == 0 print(% (n, p)) print(% (r, p - r))
109Tonelli-Shanks algorithm
3python
8wa0o
splitEsc :: (Foldable t1, Eq t) => t -> t -> t1 t -> [[t]] splitEsc sep esc = reverse . map reverse . snd . foldl process (0, [[]]) where process (st, r:rs) ch | st == 0 && ch == esc = (1, r:rs) | st == 0 && ch == sep = (0, []:r:rs) | st == 1 && sep == esc && ch /= sep = (0, [ch]:r:rs) | otherwise = (0, (ch:r):rs)
112Tokenize a string with escaping
8haskell
nsaie
null
108Totient function
1lua
c3z92
def f1(a) i = 0 while (a0 = a[0]) > 1 a[0...a0] = a[0...a0].reverse i += 1 end i end def fannkuch(n) [*1..n].permutation.map{|a| f1(a)}.max end for n in 1..10 puts % [n, fannkuch(n)] end
104Topswops
14ruby
3ntz7
print "Enter 11 numbers:\n"; for ( 1..11 ) { $number = <STDIN>; chomp $number; push @sequence, $number; } for $n (reverse @sequence) { my $result = sqrt( abs($n) ) + 5 * $n**3; printf "f(%6.2f )%s\n", $n, $result > 400 ? " too large!" : sprintf "=%6.2f", $result }
106Trabb Pardo–Knuth algorithm
2perl
yft6u
int main(void) { char *a[5]; const char *s=; int n=0, nn; char *ds=strdup(s); a[n]=strtok(ds, ); while(a[n] && n<4) a[++n]=strtok(NULL, ); for(nn=0; nn<=n; ++nn) printf(, a[nn]); putchar('\n'); free(ds); return 0; }
116Tokenize a string
5c
f8pd3
declare -a B=( e e e e e e e e e ) function show(){ local -i p POS=${1:-9}; local UL BOLD="\e[1m" GREEN="\e[32m" DIM="\e[2m" OFF="\e[m" ULC="\e[4m" for p in 0 1 2 3 4 5 6 7 8; do [[ p%3 -eq 0 ]] && printf " " UL=""; [[ p/3 -lt 2 ]] && UL=$ULC [[ p -eq POS ]] && printf "$BOLD$GREEN" [[ ${B[p]} = e ]] && printf "$UL$DIM%d$OFF" $p || printf "$UL%s$OFF" ${B[p]} { [[ p%3 -lt 2 ]] && printf "$UL | $OFF"; } || printf "\n" done }; function win(){ local ME=$1; local -i p=$2 [[ ${B[p/3*3]} = $ME && ${B[p/3*3+1]} = $ME && ${B[p/3*3+2]} = $ME ]] && return 0 [[ ${B[p]} = $ME && ${B[(p+3)%9]} = $ME && ${B[(p+6)%9]} = $ME ]] && return 0 [[ ${B[4]} != $ME ]] && return 1 [[ p%4 -eq 0 && ${B[0]} = $ME && ${B[8]} = $ME ]] && return 0 [[ p%4 -eq 2 || p -eq 4 ]] && [[ ${B[2]} = $ME && ${B[6]} = $ME ]] }; function bestMove(){ local ME=$1 OP=$2; local -i o s p local -ia S=( -9 -9 -9 -9 -9 -9 -9 -9 -9 ) local -a SB [[ ${B[*]//[!e]} = "" ]] && return 9 SB=( ${B[*]} ) for p in 0 1 2 3 4 5 6 7 8; do [[ ${B[p]} != e ]] && continue B[p]=$ME win $ME $p && { S[p]=2; B=( ${SB[*]} ); return $p; } bestMove $OP $ME; o=$? [[ o -le 8 ]] && { B[o]=$OP; win $OP $o; s=$?; } S[p]=${s:-1} B=( ${SB[*]} ) done local -i best=-1; local -ia MOV=() for p in 0 1 2 3 4 5 6 7 8; do [[ S[p] -lt 0 ]] && continue [[ S[p] -eq S[best] ]] && { MOV+=(p); best=p; } [[ S[p] -gt S[best] ]] && { MOV=(p); best=p; } done return ${MOV[ RANDOM%${ }; function getMove(){ [[ $ME = X ]] && { bestMove $ME $OP; return $?; } read -p "O move: " -n 1; printf "\n"; return $REPLY }; function turn(){ local -i p; local ME=$1 OP=$2 getMove; p=$?; [[ p -gt 8 ]] && { printf "Draw!\n"; show; return 1; } B[p]=$ME; printf "%s moves%d\n" $ME $p win $ME $p && { printf "%s wins!\n" $ME; show $p; [[ $ME = X ]] && return 2; return 0; } [[ ${B[*]//[!e]} = "" ]] && { printf "Draw!\n"; show; return 1; } show $p; turn $OP $ME }; printf "Bic Bash Bow\n" show; [[ RANDOM%2 -eq 0 ]] && { turn O X; exit $?; } || turn X O
117Tic-tac-toe
4bash
q15xu
null
114Thue-Morse
0go
xpgwf
thueMorsePxs :: [[Int]] thueMorsePxs = iterate ((++) <*> map (1 -)) [0] main :: IO () main = print $ thueMorsePxs !! 5
114Thue-Morse
8haskell
yfs66
import java.util.*; public class TokenizeStringWithEscaping { public static void main(String[] args) { String sample = "one^|uno||three^^^^|four^^^|^cuatro|"; char separator = '|'; char escape = '^'; System.out.println(sample); try { System.out.println(tokenizeString(sample, separator, escape)); } catch (Exception e) { System.out.println(e); } } public static List<String> tokenizeString(String s, char sep, char escape) throws Exception { List<String> tokens = new ArrayList<>(); StringBuilder sb = new StringBuilder(); boolean inEscape = false; for (char c : s.toCharArray()) { if (inEscape) { inEscape = false; } else if (c == escape) { inEscape = true; continue; } else if (c == sep) { tokens.add(sb.toString()); sb.setLength(0); continue; } sb.append(c); } if (inEscape) throw new Exception("Invalid terminal escape"); tokens.add(sb.toString()); return tokens; } }
112Tokenize a string with escaping
9java
q1jxa
package main import ( "fmt" "strings" ) var data = ` LIBRARY LIBRARY DEPENDENCIES ======= ==================== des_system_lib std synopsys std_cell_lib des_system_lib dw02 dw01 ramlib ieee dw01 ieee dw01 dware gtech dw02 ieee dw02 dware dw03 std synopsys dware dw03 dw02 dw01 ieee gtech dw04 dw04 ieee dw01 dware gtech dw05 dw05 ieee dware dw06 dw06 ieee dware dw07 ieee dware dware ieee dware gtech ieee gtech ramlib std ieee std_cell_lib ieee std_cell_lib synopsys ` func main() { g, in, err := parseLibComp(data) if err != nil { fmt.Println(err) return } order, cyclic := topSortKahn(g, in) if cyclic != nil { fmt.Println("Cyclic:", cyclic) return } fmt.Println("Order:", order) } type graph map[string][]string type inDegree map[string]int
110Topological sort
0go
wbjeg
use itertools::Itertools; fn solve(deck: &[usize]) -> usize { let mut counter = 0_usize; let mut shuffle = deck.to_vec(); loop { let p0 = shuffle[0]; if p0 == 1 { break; } shuffle[..p0].reverse(); counter += 1; } counter }
104Topswops
15rust
6dz3l
object Fannkuch extends App { def fannkuchen(l: List[Int], n: Int, i: Int, acc: Int): Int = { def flips(l: List[Int]): Int = (l: @unchecked) match { case 1 :: ls => 0 case (n :: ls) => val splitted = l.splitAt(n) flips(splitted._2.reverse_:::(splitted._1)) + 1 } def rotateLeft(l: List[Int]) = l match { case Nil => List() case x :: xs => xs ::: List(x) } if (i >= n) acc else { if (n == 1) acc.max(flips(l)) else { val split = l.splitAt(n) fannkuchen(rotateLeft(split._1) ::: split._2, n, i + 1, fannkuchen(l, n - 1, 0, acc)) } } }
104Topswops
16scala
9zym5
function tokenize(s, esc, sep) { for (var a=[], t='', i=0, e=s.length; i<e; i+=1) { var c = s.charAt(i) if (c == esc) t+=s.charAt(++i) else if (c != sep) t+=c else a.push(t), t='' } a.push(t) return a } var s = 'one^|uno||three^^^^|four^^^|^cuatro|' document.write(s, '<br>') for (var a=tokenize(s,'^','|'), i=0; i<a.length; i+=1) document.write(i, ': ', a[i], '<br>')
112Tokenize a string with escaping
10javascript
iq1ol
import Data.List ((\\), elemIndex, intersect, nub) import Data.Bifunctor (bimap, first) combs 0 _ = [[]] combs _ [] = [] combs k (x:xs) = ((x:) <$> combs (k - 1) xs) ++ combs k xs depLibs :: [(String, String)] depLibs = [ ( "des_system_lib" , "std synopsys std_cell_lib des_system_lib dw02 dw01 ramlib ieee") , ("dw01", "ieee dw01 dware gtech") , ("dw02", "ieee dw02 dware") , ("dw03", "std synopsys dware dw03 dw02 dw01 ieee gtech") , ("dw04", "dw04 ieee dw01 dware gtech") , ("dw05", "dw05 ieee dware") , ("dw06", "dw06 ieee dware") , ("dw07", "ieee dware") , ("dware", "ieee dware") , ("gtech", "ieee gtech") , ("ramlib", "std ieee") , ("std_cell_lib", "ieee std_cell_lib") , ("synopsys", []) ] toposort :: [(String, String)] -> [String] toposort xs | (not . null) cycleDetect = error $ "Dependency cycle detected for libs " ++ show cycleDetect | otherwise = foldl makePrecede [] dB where dB = (\(x, y) -> (x, y \\ x)) . bimap return words <$> xs makePrecede ts ([x], xs) = nub $ case elemIndex x ts of Just i -> uncurry (++) $ first (++ xs) $ splitAt i ts _ -> ts ++ xs ++ [x] cycleDetect = filter ((> 1) . length) $ (\[(a, as), (b, bs)] -> (a `intersect` bs) ++ (b `intersect` as)) <$> combs 2 dB main :: IO () main = print $ toposort depLibs
110Topological sort
8haskell
6do3k
int identity(int x) { return x; } int sum(int s) { int i; for(i=0; i < 1000000; i++) s += i; return s; } double time_it(int (*action)(int), int arg) { struct timespec tsi, tsf; clock_gettime(CLOCKTYPE, &tsi); action(arg); clock_gettime(CLOCKTYPE, &tsf); double elaps_s = difftime(tsf.tv_sec, tsi.tv_sec); long elaps_ns = tsf.tv_nsec - tsi.tv_nsec; return elaps_s + ((double)elaps_ns) / 1.0e9; } int main() { printf(, time_it(identity, 4)); printf(, time_it(sum, 4)); return 0; }
118Time a function
5c
d0hnv
public class ThueMorse { public static void main(String[] args) { sequence(6); } public static void sequence(int steps) { StringBuilder sb1 = new StringBuilder("0"); StringBuilder sb2 = new StringBuilder("1"); for (int i = 0; i < steps; i++) { String tmp = sb1.toString(); sb1.append(sb2); sb2.append(tmp); } System.out.println(sb1); } }
114Thue-Morse
9java
d01n9
(function(steps) { 'use strict'; var i, tmp, s1 = '0', s2 = '1'; for (i = 0; i < steps; i++) { tmp = s1; s1 += s2; s2 += tmp; } console.log(s1); })(6);
114Thue-Morse
10javascript
6dq38
package main import ( "fmt" "math" ) const d = 30. const r = d * math.Pi / 180 var s = .5 var c = math.Sqrt(3) / 2 var t = 1 / math.Sqrt(3) func main() { fmt.Printf("sin(%9.6f deg) =%f\n", d, math.Sin(d*math.Pi/180)) fmt.Printf("sin(%9.6f rad) =%f\n", r, math.Sin(r)) fmt.Printf("cos(%9.6f deg) =%f\n", d, math.Cos(d*math.Pi/180)) fmt.Printf("cos(%9.6f rad) =%f\n", r, math.Cos(r)) fmt.Printf("tan(%9.6f deg) =%f\n", d, math.Tan(d*math.Pi/180)) fmt.Printf("tan(%9.6f rad) =%f\n", r, math.Tan(r)) fmt.Printf("asin(%f) =%9.6f deg\n", s, math.Asin(s)*180/math.Pi) fmt.Printf("asin(%f) =%9.6f rad\n", s, math.Asin(s)) fmt.Printf("acos(%f) =%9.6f deg\n", c, math.Acos(c)*180/math.Pi) fmt.Printf("acos(%f) =%9.6f rad\n", c, math.Acos(c)) fmt.Printf("atan(%f) =%9.6f deg\n", t, math.Atan(t)*180/math.Pi) fmt.Printf("atan(%f) =%9.6f rad\n", t, math.Atan(t)) }
111Trigonometric functions
0go
xpjwf
(apply str (interpose "." (.split #"," "Hello,How,Are,You,Today")))
116Tokenize a string
6clojure
yfx6b
fun thueMorse(n: Int): String { val sb0 = StringBuilder("0") val sb1 = StringBuilder("1") repeat(n) { val tmp = sb0.toString() sb0.append(sb1) sb1.append(tmp) } return sb0.toString() } fun main() { for (i in 0..6) println("$i: ${thueMorse(i)}") }
114Thue-Morse
11kotlin
0ejsf
null
112Tokenize a string with escaping
11kotlin
1j5pd
use utf8; binmode STDOUT, ":utf8"; sub gcd { my ($u, $v) = @_; while ($v) { ($u, $v) = ($v, $u % $v); } return abs($u); } push @, 0; for $t (1..10000) { push @, scalar grep { 1 == gcd($_,$t) } 1..$t; } printf "(%2d) =%3d%s\n", $_, $[$_], $_ - $[$_] - 1 ? '' : ' Prime' for 1 .. 25; print "\n"; for $limit (100, 1000, 10000) { printf "Count of primes <= $limit:%d\n", scalar grep {$_ == $[$_] + 1} 0..$limit; }
108Totient function
2perl
wbke6
def radians = Math.PI/4 def degrees = 45 def d2r = { it*Math.PI/180 } def r2d = { it*180/Math.PI } println "sin(\u03C0/4) = ${Math.sin(radians)} == sin(45\u00B0) = ${Math.sin(d2r(degrees))}" println "cos(\u03C0/4) = ${Math.cos(radians)} == cos(45\u00B0) = ${Math.cos(d2r(degrees))}" println "tan(\u03C0/4) = ${Math.tan(radians)} == tan(45\u00B0) = ${Math.tan(d2r(degrees))}" println "asin(\u221A2/2) = ${Math.asin(2**(-0.5))} == asin(\u221A2/2)\u00B0 = ${r2d(Math.asin(2**(-0.5)))}\u00B0" println "acos(\u221A2/2) = ${Math.acos(2**(-0.5))} == acos(\u221A2/2)\u00B0 = ${r2d(Math.acos(2**(-0.5)))}\u00B0" println "atan(1) = ${Math.atan(1)} == atan(1)\u00B0 = ${r2d(Math.atan(1))}\u00B0"
111Trigonometric functions
7groovy
p75bo
Python 3.2.2 (default, Sep 4 2011, 09:51:08) [MSC v.1500 32 bit (Intel)] on win32 Type , or for more information. >>> def f(x): return abs(x) ** 0.5 + 5 * x**3 >>> print(', '.join('%s:%s'% (x, v if v<=400 else ) for x,v in ((y, f(float(y))) for y in input('\nnumbers: ').strip().split()[:11][::-1]))) 11 numbers: 1 2 3 4 5 6 7 8 9 10 11 11:TOO LARGE!, 10:TOO LARGE!, 9:TOO LARGE!, 8:TOO LARGE!, 7:TOO LARGE!, 6:TOO LARGE!, 5:TOO LARGE!, 4:322.0, 3:136.73205080756887, 2:41.41421356237309, 1:6.0 >>>
106Trabb Pardo–Knuth algorithm
3python
mtzyh
S <- scan(n=11) f <- function(x) sqrt(abs(x)) + 5*x^3 for (i in rev(S)) { res <- f(i) if (res > 400) print("Too large!") else print(res) }
106Trabb Pardo–Knuth algorithm
13r
zinth
(defn fib [] (map first (iterate (fn [[a b]] [b (+ a b)]) [0 1]))) (time (take 100 (fib)))
118Time a function
6clojure
6da3q
int b[3][3]; int check_winner() { int i; for (i = 0; i < 3; i++) { if (b[i][0] && b[i][1] == b[i][0] && b[i][2] == b[i][0]) return b[i][0]; if (b[0][i] && b[1][i] == b[0][i] && b[2][i] == b[0][i]) return b[0][i]; } if (!b[1][1]) return 0; if (b[1][1] == b[0][0] && b[2][2] == b[0][0]) return b[0][0]; if (b[1][1] == b[2][0] && b[0][2] == b[1][1]) return b[1][1]; return 0; } void showboard() { const char *t = ; int i, j; for (i = 0; i < 3; i++, putchar('\n')) for (j = 0; j < 3; j++) printf(, t[ b[i][j] + 1 ]); printf(); } int best_i, best_j; int test_move(int val, int depth) { int i, j, score; int best = -1, changed = 0; if ((score = check_winner())) return (score == val) ? 1 : -1; for_ij { if (b[i][j]) continue; changed = b[i][j] = val; score = -test_move(-val, depth + 1); b[i][j] = 0; if (score <= best) continue; if (!depth) { best_i = i; best_j = j; } best = score; } return changed ? best : 0; } const char* game(int user) { int i, j, k, move, win = 0; for_ij b[i][j] = 0; printf(); printf(); for (k = 0; k < 9; k++, user = !user) { while(user) { printf(); if (!scanf(, &move)) { scanf(); continue; } if (--move < 0 || move >= 9) continue; if (b[i = move / 3][j = move % 3]) continue; b[i][j] = 1; break; } if (!user) { if (!k) { best_i = rand() % 3; best_j = rand() % 3; } else test_move(-1, 0); b[best_i][best_j] = -1; printf(, best_i * 3 + best_j + 1); } showboard(); if ((win = check_winner())) return win == 1 ? : ; } return ; } int main() { int first = 0; while (1) printf(, game(first = !first)); return 0; }
117Tic-tac-toe
5c
0egst
ThueMorse = {sequence = "0"} function ThueMorse:show () print(self.sequence) end function ThueMorse:addBlock () local newBlock = "" for bit = 1, self.sequence:len() do if self.sequence:sub(bit, bit) == "1" then newBlock = newBlock .. "0" else newBlock = newBlock .. "1" end end self.sequence = self.sequence .. newBlock end for i = 1, 5 do ThueMorse:show() ThueMorse:addBlock() end
114Thue-Morse
1lua
8wh0e
function tokenise (str, sep, esc) local strList, word, escaped, ch = {}, "", false for pos = 1, #str do ch = str:sub(pos, pos) if ch == esc then if escaped then word = word .. ch escaped = false else escaped = true end elseif ch == sep then if escaped then word = word .. ch escaped = false else table.insert(strList, word) word = "" end else escaped = false word = word .. ch end end table.insert(strList, word) return strList end local testStr = "one^|uno||three^^^^|four^^^|^cuatro|" local testSep, testEsc = "|", "^" for k, v in pairs(tokenise(testStr, testSep, testEsc)) do print(k, v) end
112Tokenize a string with escaping
1lua
ah41v
use strict; use warnings; sub run_utm { my %o = @_; my $st = $o{state} // die "init head state undefined"; my $blank = $o{blank} // die "blank symbol undefined"; my @rules = @{$o{rules}} or die "rules undefined"; my @tape = $o{tape} ? @{$o{tape}} : ($blank); my $halt = $o{halt}; my $pos = $o{pos} // 0; $pos += @tape if $pos < 0; die "bad init position" if $pos >= @tape || $pos < 0; step: while (1) { print "$st\t"; for (0 .. $ my $v = $tape[$_]; print $_ == $pos ? "[$v]" : " $v "; } print "\n"; last if $st eq $halt; for (@rules) { my ($s0, $v0, $v1, $dir, $s1) = @$_; next unless $s0 eq $st and $tape[$pos] eq $v0; $tape[$pos] = $v1; if ($dir eq 'left') { if ($pos == 0) { unshift @tape, $blank} else { $pos-- } } elsif ($dir eq 'right') { push @tape, $blank if ++$pos >= @tape } $st = $s1; next step; } die "no matching rules"; } } print "incr machine\n"; run_utm halt=>'qf', state=>'q0', tape=>[1,1,1], blank=>'B', rules=>[[qw/q0 1 1 right q0/], [qw/q0 B 1 stay qf/]]; print "\nbusy beaver\n"; run_utm halt=>'halt', state=>'a', blank=>'0', rules=>[[qw/a 0 1 right b/], [qw/a 1 1 left c/], [qw/b 0 1 left a/], [qw/b 1 1 right b/], [qw/c 0 1 left b/], [qw/c 1 1 stay halt/]]; print "\nsorting test\n"; run_utm halt=>'STOP', state=>'A', blank=>'0', tape=>[qw/2 2 2 1 2 2 1 2 1 2 1 2 1 2/], rules=>[[qw/A 1 1 right A/], [qw/A 2 3 right B/], [qw/A 0 0 left E/], [qw/B 1 1 right B/], [qw/B 2 2 right B/], [qw/B 0 0 left C/], [qw/C 1 2 left D/], [qw/C 2 2 left C/], [qw/C 3 2 left E/], [qw/D 1 1 left D/], [qw/D 2 2 left D/], [qw/D 3 1 right A/], [qw/E 1 1 left E/], [qw/E 0 0 right STOP/]];
103Universal Turing machine
2perl
isio3
fromDegrees :: Floating a => a -> a fromDegrees deg = deg * pi / 180 toDegrees :: Floating a => a -> a toDegrees rad = rad * 180 / pi main :: IO () main = mapM_ print [ sin (pi / 6) , sin (fromDegrees 30) , cos (pi / 6) , cos (fromDegrees 30) , tan (pi / 6) , tan (fromDegrees 30) , asin 0.5 , toDegrees (asin 0.5) , acos 0.5 , toDegrees (acos 0.5) , atan 0.5 , toDegrees (atan 0.5) ]
111Trigonometric functions
8haskell
yfo66
maxprime = 1000000 def primes(n): multiples = set() prime = [] for i in range(2, n+1): if i not in multiples: prime.append(i) multiples.update(set(range(i*i, n+1, i))) return prime def truncatableprime(n): 'Return a longest left and right truncatable primes below n' primelist = [str(x) for x in primes(n)[::-1]] primeset = set(primelist) for n in primelist: alltruncs = set(n[i:] for i in range(len(n))) if alltruncs.issubset(primeset): truncateleft = int(n) break for n in primelist: alltruncs = set([n[:i+1] for i in range(len(n))]) if alltruncs.issubset(primeset): truncateright = int(n) break return truncateleft, truncateright print(truncatableprime(maxprime))
102Truncatable primes
3python
fotde
import java.util.*; public class TopologicalSort { public static void main(String[] args) { String s = "std, ieee, des_system_lib, dw01, dw02, dw03, dw04, dw05," + "dw06, dw07, dware, gtech, ramlib, std_cell_lib, synopsys"; Graph g = new Graph(s, new int[][]{ {2, 0}, {2, 14}, {2, 13}, {2, 4}, {2, 3}, {2, 12}, {2, 1}, {3, 1}, {3, 10}, {3, 11}, {4, 1}, {4, 10}, {5, 0}, {5, 14}, {5, 10}, {5, 4}, {5, 3}, {5, 1}, {5, 11}, {6, 1}, {6, 3}, {6, 10}, {6, 11}, {7, 1}, {7, 10}, {8, 1}, {8, 10}, {9, 1}, {9, 10}, {10, 1}, {11, 1}, {12, 0}, {12, 1}, {13, 1} }); System.out.println("Topologically sorted order: "); System.out.println(g.topoSort()); } } class Graph { String[] vertices; boolean[][] adjacency; int numVertices; public Graph(String s, int[][] edges) { vertices = s.split(","); numVertices = vertices.length; adjacency = new boolean[numVertices][numVertices]; for (int[] edge : edges) adjacency[edge[0]][edge[1]] = true; } List<String> topoSort() { List<String> result = new ArrayList<>(); List<Integer> todo = new LinkedList<>(); for (int i = 0; i < numVertices; i++) todo.add(i); try { outer: while (!todo.isEmpty()) { for (Integer r : todo) { if (!hasDependency(r, todo)) { todo.remove(r); result.add(vertices[r]);
110Topological sort
9java
nswih
const libs = `des_system_lib std synopsys std_cell_lib des_system_lib dw02 dw01 ramlib ieee dw01 ieee dw01 dware gtech dw02 ieee dw02 dware dw03 std synopsys dware dw03 dw02 dw01 ieee gtech dw04 dw04 ieee dw01 dware gtech dw05 dw05 ieee dware dw06 dw06 ieee dware dw07 ieee dware dware ieee dware gtech ieee gtech ramlib std ieee std_cell_lib ieee std_cell_lib synopsys`;
110Topological sort
10javascript
3n8z0