sentence1
stringlengths
52
3.87M
sentence2
stringlengths
1
47.2k
label
stringclasses
1 value
def parse_value(self, value): """Cast value to `bool`.""" parsed = super(BoolField, self).parse_value(value) return bool(parsed) if parsed is not None else None
Cast value to `bool`.
entailment
def parse_value(self, values): """Cast value to proper collection.""" result = self.get_default_value() if not values: return result if not isinstance(values, list): return values return [self._cast_value(value) for value in values]
Cast value to proper collection.
entailment
def parse_value(self, value): """Parse value to proper model type.""" if not isinstance(value, dict): return value embed_type = self._get_embed_type() return embed_type(**value)
Parse value to proper model type.
entailment
def to_struct(self, value): """Cast `time` object to string.""" if self.str_format: return value.strftime(self.str_format) return value.isoformat()
Cast `time` object to string.
entailment
def parse_value(self, value): """Parse string into instance of `time`.""" if value is None: return value if isinstance(value, datetime.time): return value return parse(value).timetz()
Parse string into instance of `time`.
entailment
def to_struct(self, value): """Cast `date` object to string.""" if self.str_format: return value.strftime(self.str_format) return value.strftime(self.default_format)
Cast `date` object to string.
entailment
def parse_value(self, value): """Parse string into instance of `datetime`.""" if isinstance(value, datetime.datetime): return value if value: return parse(value) else: return None
Parse string into instance of `datetime`.
entailment
def validate(self, value): """Validate value.""" if self.exclusive: if value <= self.minimum_value: tpl = "'{value}' is lower or equal than minimum ('{min}')." raise ValidationError( tpl.format(value=value, min=self.minimum_value)) else: if value < self.minimum_value: raise ValidationError( "'{value}' is lower than minimum ('{min}').".format( value=value, min=self.minimum_value))
Validate value.
entailment
def modify_schema(self, field_schema): """Modify field schema.""" field_schema['minimum'] = self.minimum_value if self.exclusive: field_schema['exclusiveMinimum'] = True
Modify field schema.
entailment
def validate(self, value): """Validate value.""" if self.exclusive: if value >= self.maximum_value: tpl = "'{val}' is bigger or equal than maximum ('{max}')." raise ValidationError( tpl.format(val=value, max=self.maximum_value)) else: if value > self.maximum_value: raise ValidationError( "'{value}' is bigger than maximum ('{max}').".format( value=value, max=self.maximum_value))
Validate value.
entailment
def modify_schema(self, field_schema): """Modify field schema.""" field_schema['maximum'] = self.maximum_value if self.exclusive: field_schema['exclusiveMaximum'] = True
Modify field schema.
entailment
def validate(self, value): """Validate value.""" flags = self._calculate_flags() try: result = re.search(self.pattern, value, flags) except TypeError as te: raise ValidationError(*te.args) if not result: raise ValidationError( 'Value "{value}" did not match pattern "{pattern}".'.format( value=value, pattern=self.pattern ))
Validate value.
entailment
def modify_schema(self, field_schema): """Modify field schema.""" field_schema['pattern'] = utilities.convert_python_regex_to_ecma( self.pattern, self.flags)
Modify field schema.
entailment
def validate(self, value): """Validate value.""" len_ = len(value) if self.minimum_value is not None and len_ < self.minimum_value: tpl = "Value '{val}' length is lower than allowed minimum '{min}'." raise ValidationError(tpl.format( val=value, min=self.minimum_value )) if self.maximum_value is not None and len_ > self.maximum_value: raise ValidationError( "Value '{val}' length is bigger than " "allowed maximum '{max}'.".format( val=value, max=self.maximum_value, ))
Validate value.
entailment
def modify_schema(self, field_schema): """Modify field schema.""" if self.minimum_value: field_schema['minLength'] = self.minimum_value if self.maximum_value: field_schema['maxLength'] = self.maximum_value
Modify field schema.
entailment
def to_struct(model): """Cast instance of model to python structure. :param model: Model to be casted. :rtype: ``dict`` """ model.validate() resp = {} for _, name, field in model.iterate_with_name(): value = field.__get__(model) if value is None: continue value = field.to_struct(value) resp[name] = value return resp
Cast instance of model to python structure. :param model: Model to be casted. :rtype: ``dict``
entailment
def run_from_argv(self, argv): """ Set up any environment changes requested (e.g., Python path and Django settings), then run this command. If the command raises a ``CommandError``, intercept it and print it sensibly to stderr. """ parser = self.create_parser(argv[0], argv[1]) args = parser.parse_args(argv[2:]) handle_default_options(args) try: self.execute(args) except Exception as e: # self.stderr is not guaranteed to be set here try: fallback_stderr = OutputWrapper(sys.stderr, self.style.ERROR) except: fallback_stderr = self.stdout stderr = getattr(self, 'stderr', fallback_stderr) if args.traceback: stderr.write(traceback.format_exc()) else: stderr.write('%s: %s' % (e.__class__.__name__, e)) sys.exit(1)
Set up any environment changes requested (e.g., Python path and Django settings), then run this command. If the command raises a ``CommandError``, intercept it and print it sensibly to stderr.
entailment
def create_parser(self, prog_name, subcommand): """ Create and return the ``OptionParser`` which will be used to parse the arguments to this command. """ parser = argparse.ArgumentParser(prog='%s %s' % (prog_name, subcommand), description=self.help) parser.add_argument('-v', '--verbosity', action='store', default=1, type=int, choices=range(4), help='Verbosity level; 0=minimal output, 1=normal output, 2=verbose output, 3=very verbose output'), parser.add_argument('--settings', help='The Python path to a settings module, e.g. "myproject.settings.main". ' 'If this isn\'t provided, the DJANGO_SETTINGS_MODULE environment variable will be used.'), parser.add_argument('--pythonpath', help='A directory to add to the Python path, e.g. "/home/djangoprojects/myproject".'), parser.add_argument('--traceback', action='store_true', help='Print traceback on exception'), subparsers = parser.add_subparsers(description='JavaScript command to execute') for subparser in self.subparsers: subparser(self, subparsers) return parser
Create and return the ``OptionParser`` which will be used to parse the arguments to this command.
entailment
def rst(filename): ''' Load rst file and sanitize it for PyPI. Remove unsupported github tags: - code-block directive - travis ci build badge ''' content = codecs.open(filename, encoding='utf-8').read() for regex, replacement in PYPI_RST_FILTERS: content = re.sub(regex, replacement, content) return content
Load rst file and sanitize it for PyPI. Remove unsupported github tags: - code-block directive - travis ci build badge
entailment
def javascript(filename, type='text/javascript'): '''A simple shortcut to render a ``script`` tag to a static javascript file''' if '?' in filename and len(filename.split('?')) is 2: filename, params = filename.split('?') return '<script type="%s" src="%s?%s"></script>' % (type, staticfiles_storage.url(filename), params) else: return '<script type="%s" src="%s"></script>' % (type, staticfiles_storage.url(filename))
A simple shortcut to render a ``script`` tag to a static javascript file
entailment
def jquery_js(version=None, migrate=False): '''A shortcut to render a ``script`` tag for the packaged jQuery''' version = version or settings.JQUERY_VERSION suffix = '.min' if not settings.DEBUG else '' libs = [js_lib('jquery-%s%s.js' % (version, suffix))] if _boolean(migrate): libs.append(js_lib('jquery-migrate-%s%s.js' % (JQUERY_MIGRATE_VERSION, suffix))) return '\n'.join(libs)
A shortcut to render a ``script`` tag for the packaged jQuery
entailment
def django_js(context, jquery=True, i18n=True, csrf=True, init=True): '''Include Django.js javascript library in the page''' return { 'js': { 'minified': not settings.DEBUG, 'jquery': _boolean(jquery), 'i18n': _boolean(i18n), 'csrf': _boolean(csrf), 'init': _boolean(init), } }
Include Django.js javascript library in the page
entailment
def django_js_init(context, jquery=False, i18n=True, csrf=True, init=True): '''Include Django.js javascript library initialization in the page''' return { 'js': { 'jquery': _boolean(jquery), 'i18n': _boolean(i18n), 'csrf': _boolean(csrf), 'init': _boolean(init), } }
Include Django.js javascript library initialization in the page
entailment
def as_dict(self): ''' Serialize the context as a dictionnary from a given request. ''' data = {} if settings.JS_CONTEXT_ENABLED: for context in RequestContext(self.request): for key, value in six.iteritems(context): if settings.JS_CONTEXT and key not in settings.JS_CONTEXT: continue if settings.JS_CONTEXT_EXCLUDE and key in settings.JS_CONTEXT_EXCLUDE: continue handler_name = 'process_%s' % key if hasattr(self, handler_name): handler = getattr(self, handler_name) data[key] = handler(value, data) elif isinstance(value, SERIALIZABLE_TYPES): data[key] = value if settings.JS_USER_ENABLED: self.handle_user(data) return data
Serialize the context as a dictionnary from a given request.
entailment
def process_LANGUAGE_CODE(self, language_code, data): ''' Fix language code when set to non included default `en` and add the extra variables ``LANGUAGE_NAME`` and ``LANGUAGE_NAME_LOCAL``. ''' # Dirty hack to fix non included default language_code = 'en-us' if language_code == 'en' else language_code language = translation.get_language_info('en' if language_code == 'en-us' else language_code) if not settings.JS_CONTEXT or 'LANGUAGE_NAME' in settings.JS_CONTEXT \ or (settings.JS_CONTEXT_EXCLUDE and 'LANGUAGE_NAME' in settings.JS_CONTEXT_EXCLUDE): data['LANGUAGE_NAME'] = language['name'] if not settings.JS_CONTEXT or 'LANGUAGE_NAME_LOCAL' in settings.JS_CONTEXT \ or (settings.JS_CONTEXT_EXCLUDE and 'LANGUAGE_NAME_LOCAL' in settings.JS_CONTEXT_EXCLUDE): data['LANGUAGE_NAME_LOCAL'] = language['name_local'] return language_code
Fix language code when set to non included default `en` and add the extra variables ``LANGUAGE_NAME`` and ``LANGUAGE_NAME_LOCAL``.
entailment
def handle_user(self, data): ''' Insert user informations in data Override it to add extra user attributes. ''' # Default to unauthenticated anonymous user data['user'] = { 'username': '', 'is_authenticated': False, 'is_staff': False, 'is_superuser': False, 'permissions': tuple(), } if 'django.contrib.sessions.middleware.SessionMiddleware' in settings.MIDDLEWARE_CLASSES: user = self.request.user data['user']['is_authenticated'] = user.is_authenticated() if hasattr(user, 'username'): data['user']['username'] = user.username elif hasattr(user, 'get_username'): data['user']['username'] = user.get_username() if hasattr(user, 'is_staff'): data['user']['is_staff'] = user.is_staff if hasattr(user, 'is_superuser'): data['user']['is_superuser'] = user.is_superuser if hasattr(user, 'get_all_permissions'): data['user']['permissions'] = tuple(user.get_all_permissions())
Insert user informations in data Override it to add extra user attributes.
entailment
def class_from_string(name): ''' Get a python class object from its name ''' module_name, class_name = name.rsplit('.', 1) __import__(module_name) module = sys.modules[module_name] return getattr(module, class_name)
Get a python class object from its name
entailment
def glob(cls, files=None): ''' Glob a pattern or a list of pattern static storage relative(s). ''' files = files or [] if isinstance(files, str): files = os.path.normpath(files) matches = lambda path: matches_patterns(path, [files]) return [path for path in cls.get_static_files() if matches(path)] elif isinstance(files, (list, tuple)): all_files = cls.get_static_files() files = [os.path.normpath(f) for f in files] sorted_result = [] for pattern in files: sorted_result.extend([f for f in all_files if matches_patterns(f, [pattern])]) return sorted_result
Glob a pattern or a list of pattern static storage relative(s).
entailment
def execute(self, command): ''' Execute a subprocess yielding output lines ''' process = Popen(command, stdout=PIPE, stderr=STDOUT, universal_newlines=True) while True: if process.poll() is not None: self.returncode = process.returncode # pylint: disable=W0201 break yield process.stdout.readline()
Execute a subprocess yielding output lines
entailment
def phantomjs(self, *args, **kwargs): ''' Execute PhantomJS by giving ``args`` as command line arguments. If test are run in verbose mode (``-v/--verbosity`` = 2), it output: - the title as header (with separators before and after) - modules and test names - assertions results (with ``django.utils.termcolors`` support) In case of error, a JsTestException is raised to give details about javascript errors. ''' separator = '=' * LINE_SIZE title = kwargs['title'] if 'title' in kwargs else 'phantomjs output' nb_spaces = (LINE_SIZE - len(title)) // 2 if VERBOSE: print('') print(separator) print(' ' * nb_spaces + title) print(separator) sys.stdout.flush() with NamedTemporaryFile(delete=True) as cookies_file: cmd = ('phantomjs', '--cookies-file=%s' % cookies_file.name) + args if self.timeout: cmd += (str(self.timeout),) parser = TapParser(debug=VERBOSITY > 2) output = self.execute(cmd) for item in parser.parse(output): if VERBOSE: print(item.display()) sys.stdout.flush() if VERBOSE: print(separator) sys.stdout.flush() failures = parser.suites.get_all_failures() if failures: raise JsTestException('Failed javascript assertions', failures) if self.returncode > 0: raise JsTestException('PhantomJS return with non-zero exit code (%s)' % self.returncode)
Execute PhantomJS by giving ``args`` as command line arguments. If test are run in verbose mode (``-v/--verbosity`` = 2), it output: - the title as header (with separators before and after) - modules and test names - assertions results (with ``django.utils.termcolors`` support) In case of error, a JsTestException is raised to give details about javascript errors.
entailment
def run_suite(self): ''' Run a phantomjs test suite. - ``phantomjs_runner`` is mandatory. - Either ``url`` or ``url_name`` needs to be defined. ''' if not self.phantomjs_runner: raise JsTestException('phantomjs_runner need to be defined') url = self.get_url() self.phantomjs(self.phantomjs_runner, url, title=self.title) self.cleanup()
Run a phantomjs test suite. - ``phantomjs_runner`` is mandatory. - Either ``url`` or ``url_name`` needs to be defined.
entailment
def write(self, rows, keyed=False): """Write rows/keyed_rows to table """ for row in rows: keyed_row = row if not keyed: keyed_row = dict(zip(self.__schema.field_names, row)) keyed_row = self.__convert_row(keyed_row) if self.__check_existing(keyed_row): for wr in self.__insert(): yield wr ret = self.__update(keyed_row) if ret is not None: yield WrittenRow(keyed_row, True, ret if self.__autoincrement else None) continue self.__buffer.append(keyed_row) if len(self.__buffer) > BUFFER_SIZE: for wr in self.__insert(): yield wr for wr in self.__insert(): yield wr
Write rows/keyed_rows to table
entailment
def __prepare_bloom(self): """Prepare bloom for existing checks """ self.__bloom = pybloom_live.ScalableBloomFilter() columns = [getattr(self.__table.c, key) for key in self.__update_keys] keys = select(columns).execution_options(stream_results=True).execute() for key in keys: self.__bloom.add(tuple(key))
Prepare bloom for existing checks
entailment
def __insert(self): """Insert rows to table """ if len(self.__buffer) > 0: # Insert data statement = self.__table.insert() if self.__autoincrement: statement = statement.returning( getattr(self.__table.c, self.__autoincrement)) statement = statement.values(self.__buffer) res = statement.execute() for id, in res: row = self.__buffer.pop(0) yield WrittenRow(row, False, id) else: statement.execute(self.__buffer) for row in self.__buffer: yield WrittenRow(row, False, None) # Clean memory self.__buffer = []
Insert rows to table
entailment
def __update(self, row): """Update rows in table """ expr = self.__table.update().values(row) for key in self.__update_keys: expr = expr.where(getattr(self.__table.c, key) == row[key]) if self.__autoincrement: expr = expr.returning(getattr(self.__table.c, self.__autoincrement)) res = expr.execute() if res.rowcount > 0: if self.__autoincrement: first = next(iter(res)) last_row_id = first[0] return last_row_id return 0 return None
Update rows in table
entailment
def __check_existing(self, row): """Check if row exists in table """ if self.__update_keys is not None: key = tuple(row[key] for key in self.__update_keys) if key in self.__bloom: return True self.__bloom.add(key) return False return False
Check if row exists in table
entailment
def buckets(self): """https://github.com/frictionlessdata/tableschema-sql-py#storage """ buckets = [] for table in self.__metadata.sorted_tables: bucket = self.__mapper.restore_bucket(table.name) if bucket is not None: buckets.append(bucket) return buckets
https://github.com/frictionlessdata/tableschema-sql-py#storage
entailment
def create(self, bucket, descriptor, force=False, indexes_fields=None): """https://github.com/frictionlessdata/tableschema-sql-py#storage """ # Make lists buckets = bucket if isinstance(bucket, six.string_types): buckets = [bucket] descriptors = descriptor if isinstance(descriptor, dict): descriptors = [descriptor] if indexes_fields is None or len(indexes_fields) == 0: indexes_fields = [()] * len(descriptors) elif type(indexes_fields[0][0]) not in {list, tuple}: indexes_fields = [indexes_fields] # Check dimensions if not (len(buckets) == len(descriptors) == len(indexes_fields)): raise tableschema.exceptions.StorageError('Wrong argument dimensions') # Check buckets for existence for bucket in reversed(self.buckets): if bucket in buckets: if not force: message = 'Bucket "%s" already exists.' % bucket raise tableschema.exceptions.StorageError(message) self.delete(bucket) # Define buckets for bucket, descriptor, index_fields in zip(buckets, descriptors, indexes_fields): tableschema.validate(descriptor) table_name = self.__mapper.convert_bucket(bucket) columns, constraints, indexes, fallbacks, table_comment = self.__mapper \ .convert_descriptor(bucket, descriptor, index_fields, self.__autoincrement) Table(table_name, self.__metadata, *(columns + constraints + indexes), comment=table_comment) self.__descriptors[bucket] = descriptor self.__fallbacks[bucket] = fallbacks # Create tables, update metadata self.__metadata.create_all()
https://github.com/frictionlessdata/tableschema-sql-py#storage
entailment
def delete(self, bucket=None, ignore=False): """https://github.com/frictionlessdata/tableschema-sql-py#storage """ # Make lists buckets = bucket if isinstance(bucket, six.string_types): buckets = [bucket] elif bucket is None: buckets = reversed(self.buckets) # Iterate tables = [] for bucket in buckets: # Check existent if bucket not in self.buckets: if not ignore: message = 'Bucket "%s" doesn\'t exist.' % bucket raise tableschema.exceptions.StorageError(message) return # Remove from buckets if bucket in self.__descriptors: del self.__descriptors[bucket] # Add table to tables table = self.__get_table(bucket) tables.append(table) # Drop tables, update metadata self.__metadata.drop_all(tables=tables) self.__metadata.clear() self.__reflect()
https://github.com/frictionlessdata/tableschema-sql-py#storage
entailment
def describe(self, bucket, descriptor=None): """https://github.com/frictionlessdata/tableschema-sql-py#storage """ # Set descriptor if descriptor is not None: self.__descriptors[bucket] = descriptor # Get descriptor else: descriptor = self.__descriptors.get(bucket) if descriptor is None: table = self.__get_table(bucket) descriptor = self.__mapper.restore_descriptor( table.name, table.columns, table.constraints, self.__autoincrement) return descriptor
https://github.com/frictionlessdata/tableschema-sql-py#storage
entailment
def iter(self, bucket): """https://github.com/frictionlessdata/tableschema-sql-py#storage """ # Get table and fallbacks table = self.__get_table(bucket) schema = tableschema.Schema(self.describe(bucket)) # Open and close transaction with self.__connection.begin(): # Streaming could be not working for some backends: # http://docs.sqlalchemy.org/en/latest/core/connections.html select = table.select().execution_options(stream_results=True) result = select.execute() for row in result: row = self.__mapper.restore_row(row, schema=schema) yield row
https://github.com/frictionlessdata/tableschema-sql-py#storage
entailment
def write(self, bucket, rows, keyed=False, as_generator=False, update_keys=None): """https://github.com/frictionlessdata/tableschema-sql-py#storage """ # Check update keys if update_keys is not None and len(update_keys) == 0: message = 'Argument "update_keys" cannot be an empty list' raise tableschema.exceptions.StorageError(message) # Get table and description table = self.__get_table(bucket) schema = tableschema.Schema(self.describe(bucket)) fallbacks = self.__fallbacks.get(bucket, []) # Write rows to table convert_row = partial(self.__mapper.convert_row, schema=schema, fallbacks=fallbacks) writer = Writer(table, schema, update_keys, self.__autoincrement, convert_row) with self.__connection.begin(): gen = writer.write(rows, keyed=keyed) if as_generator: return gen collections.deque(gen, maxlen=0)
https://github.com/frictionlessdata/tableschema-sql-py#storage
entailment
def __get_table(self, bucket): """Get table by bucket """ table_name = self.__mapper.convert_bucket(bucket) if self.__dbschema: table_name = '.'.join((self.__dbschema, table_name)) return self.__metadata.tables[table_name]
Get table by bucket
entailment
def __reflect(self): """Reflect metadata """ def only(name, _): return self.__only(name) and self.__mapper.restore_bucket(name) is not None self.__metadata.reflect(only=only)
Reflect metadata
entailment
def _get_field_comment(field, separator=' - '): """ Create SQL comment from field's title and description :param field: tableschema-py Field, with optional 'title' and 'description' values :param separator: :return: >>> _get_field_comment(tableschema.Field({'title': 'my_title', 'description': 'my_desc'})) 'my_title - my_desc' >>> _get_field_comment(tableschema.Field({'title': 'my_title', 'description': None})) 'my_title' >>> _get_field_comment(tableschema.Field({'title': '', 'description': 'my_description'})) 'my_description' >>> _get_field_comment(tableschema.Field({})) '' """ title = field.descriptor.get('title') or '' description = field.descriptor.get('description') or '' return _get_comment(description, title, separator)
Create SQL comment from field's title and description :param field: tableschema-py Field, with optional 'title' and 'description' values :param separator: :return: >>> _get_field_comment(tableschema.Field({'title': 'my_title', 'description': 'my_desc'})) 'my_title - my_desc' >>> _get_field_comment(tableschema.Field({'title': 'my_title', 'description': None})) 'my_title' >>> _get_field_comment(tableschema.Field({'title': '', 'description': 'my_description'})) 'my_description' >>> _get_field_comment(tableschema.Field({})) ''
entailment
def convert_descriptor(self, bucket, descriptor, index_fields=[], autoincrement=None): """Convert descriptor to SQL """ # Prepare columns = [] indexes = [] fallbacks = [] constraints = [] column_mapping = {} table_name = self.convert_bucket(bucket) table_comment = _get_comment(descriptor.get('title', ''), descriptor.get('description', '')) schema = tableschema.Schema(descriptor) # Autoincrement if autoincrement is not None: columns.append(sa.Column( autoincrement, sa.Integer, autoincrement=True, nullable=False)) # Fields for field in schema.fields: column_type = self.convert_type(field.type) if not column_type: column_type = sa.Text fallbacks.append(field.name) nullable = not field.required table_comment = _get_field_comment(field) unique = field.constraints.get('unique', False) column = sa.Column(field.name, column_type, nullable=nullable, comment=table_comment, unique=unique) columns.append(column) column_mapping[field.name] = column # Primary key pk = descriptor.get('primaryKey', None) if pk is not None: if isinstance(pk, six.string_types): pk = [pk] if autoincrement is not None: if pk is not None: pk = [autoincrement] + pk else: pk = [autoincrement] if pk is not None: constraint = sa.PrimaryKeyConstraint(*pk) constraints.append(constraint) # Foreign keys if self.__dialect == 'postgresql': fks = descriptor.get('foreignKeys', []) for fk in fks: fields = fk['fields'] resource = fk['reference']['resource'] foreign_fields = fk['reference']['fields'] if isinstance(fields, six.string_types): fields = [fields] if resource != '': table_name = self.convert_bucket(resource) if isinstance(foreign_fields, six.string_types): foreign_fields = [foreign_fields] composer = lambda field: '.'.join([table_name, field]) foreign_fields = list(map(composer, foreign_fields)) constraint = sa.ForeignKeyConstraint(fields, foreign_fields) constraints.append(constraint) # Indexes if self.__dialect == 'postgresql': for index, index_definition in enumerate(index_fields): name = table_name + '_ix%03d' % index index_columns = [column_mapping[field] for field in index_definition] indexes.append(sa.Index(name, *index_columns)) return columns, constraints, indexes, fallbacks, table_comment
Convert descriptor to SQL
entailment
def convert_row(self, keyed_row, schema, fallbacks): """Convert row to SQL """ for key, value in list(keyed_row.items()): field = schema.get_field(key) if not field: del keyed_row[key] if key in fallbacks: value = _uncast_value(value, field=field) else: value = field.cast_value(value) keyed_row[key] = value return keyed_row
Convert row to SQL
entailment
def convert_type(self, type): """Convert type to SQL """ # Default dialect mapping = { 'any': sa.Text, 'array': None, 'boolean': sa.Boolean, 'date': sa.Date, 'datetime': sa.DateTime, 'duration': None, 'geojson': None, 'geopoint': None, 'integer': sa.Integer, 'number': sa.Float, 'object': None, 'string': sa.Text, 'time': sa.Time, 'year': sa.Integer, 'yearmonth': None, } # Postgresql dialect if self.__dialect == 'postgresql': mapping.update({ 'array': JSONB, 'geojson': JSONB, 'number': sa.Numeric, 'object': JSONB, }) # Not supported type if type not in mapping: message = 'Field type "%s" is not supported' raise tableschema.exceptions.StorageError(message % type) return mapping[type]
Convert type to SQL
entailment
def restore_bucket(self, table_name): """Restore bucket from SQL """ if table_name.startswith(self.__prefix): return table_name.replace(self.__prefix, '', 1) return None
Restore bucket from SQL
entailment
def restore_descriptor(self, table_name, columns, constraints, autoincrement_column=None): """Restore descriptor from SQL """ # Fields fields = [] for column in columns: if column.name == autoincrement_column: continue field_type = self.restore_type(column.type) field = {'name': column.name, 'type': field_type} if not column.nullable: field['constraints'] = {'required': True} fields.append(field) # Primary key pk = [] for constraint in constraints: if isinstance(constraint, sa.PrimaryKeyConstraint): for column in constraint.columns: if column.name == autoincrement_column: continue pk.append(column.name) # Foreign keys fks = [] if self.__dialect == 'postgresql': for constraint in constraints: if isinstance(constraint, sa.ForeignKeyConstraint): resource = '' own_fields = [] foreign_fields = [] for element in constraint.elements: own_fields.append(element.parent.name) if element.column.table.name != table_name: resource = self.restore_bucket(element.column.table.name) foreign_fields.append(element.column.name) if len(own_fields) == len(foreign_fields) == 1: own_fields = own_fields.pop() foreign_fields = foreign_fields.pop() fks.append({ 'fields': own_fields, 'reference': {'resource': resource, 'fields': foreign_fields}, }) # Desscriptor descriptor = {} descriptor['fields'] = fields if len(pk) > 0: if len(pk) == 1: pk = pk.pop() descriptor['primaryKey'] = pk if len(fks) > 0: descriptor['foreignKeys'] = fks return descriptor
Restore descriptor from SQL
entailment
def restore_row(self, row, schema): """Restore row from SQL """ row = list(row) for index, field in enumerate(schema.fields): if self.__dialect == 'postgresql': if field.type in ['array', 'object']: continue row[index] = field.cast_value(row[index]) return row
Restore row from SQL
entailment
def restore_type(self, type): """Restore type from SQL """ # All dialects mapping = { ARRAY: 'array', sa.Boolean: 'boolean', sa.Date: 'date', sa.DateTime: 'datetime', sa.Float: 'number', sa.Integer: 'integer', JSONB: 'object', JSON: 'object', sa.Numeric: 'number', sa.Text: 'string', sa.Time: 'time', sa.VARCHAR: 'string', UUID: 'string', } # Get field type field_type = None for key, value in mapping.items(): if isinstance(type, key): field_type = value # Not supported if field_type is None: message = 'Type "%s" is not supported' raise tableschema.exceptions.StorageError(message % type) return field_type
Restore type from SQL
entailment
def open_hierarchy(self, path, relative_to_object_id, object_id, create_file_type=0): """ CreateFileType 0 - Creates no new object. 1 - Creates a notebook with the specified name at the specified location. 2 - Creates a section group with the specified name at the specified location. 3 - Creates a section with the specified name at the specified location. """ try: return(self.process.OpenHierarchy(path, relative_to_object_id, "", create_file_type)) except Exception as e: print(e) print("Could not Open Hierarchy")
CreateFileType 0 - Creates no new object. 1 - Creates a notebook with the specified name at the specified location. 2 - Creates a section group with the specified name at the specified location. 3 - Creates a section with the specified name at the specified location.
entailment
def create_new_page (self, section_id, new_page_style=0): """ NewPageStyle 0 - Create a Page that has Default Page Style 1 - Create a blank page with no title 2 - Createa blank page that has no title """ try: self.process.CreateNewPage(section_id, "", new_page_style) except Exception as e: print(e) print("Unable to create the page")
NewPageStyle 0 - Create a Page that has Default Page Style 1 - Create a blank page with no title 2 - Createa blank page that has no title
entailment
def get_page_content(self, page_id, page_info=0): """ PageInfo 0 - Returns only basic page content, without selection markup and binary data objects. This is the standard value to pass. 1 - Returns page content with no selection markup, but with all binary data. 2 - Returns page content with selection markup, but no binary data. 3 - Returns page content with selection markup and all binary data. """ try: return(self.process.GetPageContent(page_id, "", page_info)) except Exception as e: print(e) print("Could not get Page Content")
PageInfo 0 - Returns only basic page content, without selection markup and binary data objects. This is the standard value to pass. 1 - Returns page content with no selection markup, but with all binary data. 2 - Returns page content with selection markup, but no binary data. 3 - Returns page content with selection markup and all binary data.
entailment
def publish(self, hierarchy_id, target_file_path, publish_format, clsid_of_exporter=""): """ PublishFormat 0 - Published page is in .one format. 1 - Published page is in .onea format. 2 - Published page is in .mht format. 3 - Published page is in .pdf format. 4 - Published page is in .xps format. 5 - Published page is in .doc or .docx format. 6 - Published page is in enhanced metafile (.emf) format. """ try: self.process.Publish(hierarchy_id, target_file_path, publish_format, clsid_of_exporter) except Exception as e: print(e) print("Could not Publish")
PublishFormat 0 - Published page is in .one format. 1 - Published page is in .onea format. 2 - Published page is in .mht format. 3 - Published page is in .pdf format. 4 - Published page is in .xps format. 5 - Published page is in .doc or .docx format. 6 - Published page is in enhanced metafile (.emf) format.
entailment
def get_special_location(self, special_location=0): """ SpecialLocation 0 - Gets the path to the Backup Folders folder location. 1 - Gets the path to the Unfiled Notes folder location. 2 - Gets the path to the Default Notebook folder location. """ try: return(self.process.GetSpecialLocation(special_location)) except Exception as e: print(e) print("Could not retreive special location")
SpecialLocation 0 - Gets the path to the Backup Folders folder location. 1 - Gets the path to the Unfiled Notes folder location. 2 - Gets the path to the Default Notebook folder location.
entailment
def memory(): """Determine memory specifications of the machine. Returns ------- mem_info : dictonary Holds the current values for the total, free and used memory of the system. """ mem_info = dict() for k, v in psutil.virtual_memory()._asdict().items(): mem_info[k] = int(v) return mem_info
Determine memory specifications of the machine. Returns ------- mem_info : dictonary Holds the current values for the total, free and used memory of the system.
entailment
def get_chunk_size(N, n): """Given a two-dimensional array with a dimension of size 'N', determine the number of rows or columns that can fit into memory. Parameters ---------- N : int The size of one of the dimensions of a two-dimensional array. n : int The number of arrays of size 'N' times 'chunk_size' that can fit in memory. Returns ------- chunk_size : int The size of the dimension orthogonal to the one of size 'N'. """ mem_free = memory()['free'] if mem_free > 60000000: chunk_size = int(((mem_free - 10000000) * 1000) / (4 * n * N)) return chunk_size elif mem_free > 40000000: chunk_size = int(((mem_free - 7000000) * 1000) / (4 * n * N)) return chunk_size elif mem_free > 14000000: chunk_size = int(((mem_free - 2000000) * 1000) / (4 * n * N)) return chunk_size elif mem_free > 8000000: chunk_size = int(((mem_free - 1400000) * 1000) / (4 * n * N)) return chunk_size elif mem_free > 2000000: chunk_size = int(((mem_free - 900000) * 1000) / (4 * n * N)) return chunk_size elif mem_free > 1000000: chunk_size = int(((mem_free - 400000) * 1000) / (4 * n * N)) return chunk_size else: print("\nERROR: Cluster_Ensembles: get_chunk_size: " "this machine does not have enough free memory resources " "to perform ensemble clustering.\n") sys.exit(1)
Given a two-dimensional array with a dimension of size 'N', determine the number of rows or columns that can fit into memory. Parameters ---------- N : int The size of one of the dimensions of a two-dimensional array. n : int The number of arrays of size 'N' times 'chunk_size' that can fit in memory. Returns ------- chunk_size : int The size of the dimension orthogonal to the one of size 'N'.
entailment
def get_compression_filter(byte_counts): """Determine whether or not to use a compression on the array stored in a hierarchical data format, and which compression library to use to that purpose. Compression reduces the HDF5 file size and also helps improving I/O efficiency for large datasets. Parameters ---------- byte_counts : int Returns ------- FILTERS : instance of the tables.Filters class """ assert isinstance(byte_counts, numbers.Integral) and byte_counts > 0 if 2 * byte_counts > 1000 * memory()['free']: try: FILTERS = tables.filters(complevel = 5, complib = 'blosc', shuffle = True, least_significant_digit = 6) except tables.FiltersWarning: FILTERS = tables.filters(complevel = 5, complib = 'lzo', shuffle = True, least_significant_digit = 6) else: FILTERS = None return FILTERS
Determine whether or not to use a compression on the array stored in a hierarchical data format, and which compression library to use to that purpose. Compression reduces the HDF5 file size and also helps improving I/O efficiency for large datasets. Parameters ---------- byte_counts : int Returns ------- FILTERS : instance of the tables.Filters class
entailment
def build_hypergraph_adjacency(cluster_runs): """Return the adjacency matrix to a hypergraph, in sparse matrix representation. Parameters ---------- cluster_runs : array of shape (n_partitions, n_samples) Returns ------- hypergraph_adjacency : compressed sparse row matrix Represents the hypergraph associated with an ensemble of partitions, each partition corresponding to a row of the array 'cluster_runs' provided at input. """ N_runs = cluster_runs.shape[0] hypergraph_adjacency = create_membership_matrix(cluster_runs[0]) for i in range(1, N_runs): hypergraph_adjacency = scipy.sparse.vstack([hypergraph_adjacency, create_membership_matrix(cluster_runs[i])], format = 'csr') return hypergraph_adjacency
Return the adjacency matrix to a hypergraph, in sparse matrix representation. Parameters ---------- cluster_runs : array of shape (n_partitions, n_samples) Returns ------- hypergraph_adjacency : compressed sparse row matrix Represents the hypergraph associated with an ensemble of partitions, each partition corresponding to a row of the array 'cluster_runs' provided at input.
entailment
def store_hypergraph_adjacency(hypergraph_adjacency, hdf5_file_name): """Write an hypergraph adjacency to disk to disk in an HDF5 data structure. Parameters ---------- hypergraph_adjacency : compressed sparse row matrix hdf5_file_name : file handle or string """ assert(hypergraph_adjacency.__class__ == scipy.sparse.csr.csr_matrix) byte_counts = hypergraph_adjacency.data.nbytes + hypergraph_adjacency.indices.nbytes + hypergraph_adjacency.indptr.nbytes FILTERS = get_compression_filter(byte_counts) with tables.open_file(hdf5_file_name, 'r+') as fileh: for par in ('data', 'indices', 'indptr', 'shape'): try: n = getattr(fileh.root.consensus_group, par) n._f_remove() except AttributeError: pass array = np.array(getattr(hypergraph_adjacency, par)) atom = tables.Atom.from_dtype(array.dtype) ds = fileh.create_carray(fileh.root.consensus_group, par, atom, array.shape, filters = FILTERS) ds[:] = array
Write an hypergraph adjacency to disk to disk in an HDF5 data structure. Parameters ---------- hypergraph_adjacency : compressed sparse row matrix hdf5_file_name : file handle or string
entailment
def load_hypergraph_adjacency(hdf5_file_name): """ Parameters ---------- hdf5_file_name : file handle or string Returns ------- hypergraph_adjacency : compressed sparse row matrix """ with tables.open_file(hdf5_file_name, 'r+') as fileh: pars = [] for par in ('data', 'indices', 'indptr', 'shape'): pars.append(getattr(fileh.root.consensus_group, par).read()) hypergraph_adjacency = scipy.sparse.csr_matrix(tuple(pars[:3]), shape = pars[3]) return hypergraph_adjacency
Parameters ---------- hdf5_file_name : file handle or string Returns ------- hypergraph_adjacency : compressed sparse row matrix
entailment
def cluster_ensembles(cluster_runs, hdf5_file_name = None, verbose = False, N_clusters_max = None): """Call up to three different functions for heuristic ensemble clustering (namely CSPA, HGPA and MCLA) then select as the definitive consensus clustering the one with the highest average mutual information score between its vector of consensus labels and the vectors of labels associated to each partition from the ensemble. Parameters ---------- cluster_runs : array of shape (n_partitions, n_samples) Each row of this matrix is such that the i-th entry corresponds to the cluster ID to which the i-th sample of the data-set has been classified by this particular clustering. Samples not selected for clustering in a given round are are tagged by an NaN. hdf5_file_name : file object or string, optional (default = None) The handle or name of an HDF5 file where any array needed for consensus_clustering and too large to fit into memory is to be stored. Created if not specified at input. verbose : Boolean, optional (default = False) Specifies if messages concerning the status of the many functions subsequently called 'cluster_ensembles' will be displayed on the standard output. N_clusters_max : int, optional The number of clusters in which to partition the samples into a consensus clustering. This defaults to the highest number of clusters encountered in the sets of independent clusterings on subsamples of the data-set (i.e. the maximum of the entries in "cluster_runs"). Returns ------- cluster_ensemble : array of shape (n_samples,) For the final ensemble clustering, this vector contains the cluster IDs of each sample in the whole data-set. Reference --------- A. Strehl and J. Ghosh, "Cluster Ensembles - A Knowledge Reuse Framework for Combining Multiple Partitions". In: Journal of Machine Learning Research, 3, pp. 583-617. 2002 """ if hdf5_file_name is None: hdf5_file_name = './Cluster_Ensembles.h5' fileh = tables.open_file(hdf5_file_name, 'w') fileh.create_group(fileh.root, 'consensus_group') fileh.close() cluster_ensemble = [] score = np.empty(0) if cluster_runs.shape[1] > 10000: consensus_functions = [HGPA, MCLA] function_names = ['HGPA', 'MCLA'] print("\nINFO: Cluster_Ensembles: cluster_ensembles: " "due to a rather large number of cells in your data-set, " "using only 'HyperGraph Partitioning Algorithm' (HGPA) " "and 'Meta-CLustering Algorithm' (MCLA) " "as ensemble consensus functions.\n") else: consensus_functions = [CSPA, HGPA, MCLA] function_names = ['CSPA', 'HGPA', 'MCLA'] hypergraph_adjacency = build_hypergraph_adjacency(cluster_runs) store_hypergraph_adjacency(hypergraph_adjacency, hdf5_file_name) for i in range(len(consensus_functions)): cluster_ensemble.append(consensus_functions[i](hdf5_file_name, cluster_runs, verbose, N_clusters_max)) score = np.append(score, ceEvalMutual(cluster_runs, cluster_ensemble[i], verbose)) print("\nINFO: Cluster_Ensembles: cluster_ensembles: " "{0} at {1}.".format(function_names[i], score[i])) print('*****') return cluster_ensemble[np.argmax(score)]
Call up to three different functions for heuristic ensemble clustering (namely CSPA, HGPA and MCLA) then select as the definitive consensus clustering the one with the highest average mutual information score between its vector of consensus labels and the vectors of labels associated to each partition from the ensemble. Parameters ---------- cluster_runs : array of shape (n_partitions, n_samples) Each row of this matrix is such that the i-th entry corresponds to the cluster ID to which the i-th sample of the data-set has been classified by this particular clustering. Samples not selected for clustering in a given round are are tagged by an NaN. hdf5_file_name : file object or string, optional (default = None) The handle or name of an HDF5 file where any array needed for consensus_clustering and too large to fit into memory is to be stored. Created if not specified at input. verbose : Boolean, optional (default = False) Specifies if messages concerning the status of the many functions subsequently called 'cluster_ensembles' will be displayed on the standard output. N_clusters_max : int, optional The number of clusters in which to partition the samples into a consensus clustering. This defaults to the highest number of clusters encountered in the sets of independent clusterings on subsamples of the data-set (i.e. the maximum of the entries in "cluster_runs"). Returns ------- cluster_ensemble : array of shape (n_samples,) For the final ensemble clustering, this vector contains the cluster IDs of each sample in the whole data-set. Reference --------- A. Strehl and J. Ghosh, "Cluster Ensembles - A Knowledge Reuse Framework for Combining Multiple Partitions". In: Journal of Machine Learning Research, 3, pp. 583-617. 2002
entailment
def ceEvalMutual(cluster_runs, cluster_ensemble = None, verbose = False): """Compute a weighted average of the mutual information with the known labels, the weights being proportional to the fraction of known labels. Parameters ---------- cluster_runs : array of shape (n_partitions, n_samples) Each row of this matrix is such that the i-th entry corresponds to the cluster ID to which the i-th sample of the data-set has been classified by this particular clustering. Samples not selected for clustering in a given round are are tagged by an NaN. cluster_ensemble : array of shape (n_samples,), optional (default = None) The identity of the cluster to which each sample of the whole data-set belong to according to consensus clustering. verbose : Boolean, optional (default = False) Specifies if status messages will be displayed on the standard output. Returns ------- unnamed variable : float The weighted average of the mutual information between the consensus clustering and the many runs from the ensemble of independent clusterings on subsamples of the data-set. """ if cluster_ensemble is None: return 0.0 if reduce(operator.mul, cluster_runs.shape, 1) == max(cluster_runs.shape): cluster_runs = cluster_runs.reshape(1, -1) weighted_average_mutual_information = 0 N_labelled_indices = 0 for i in range(cluster_runs.shape[0]): labelled_indices = np.where(np.isfinite(cluster_runs[i]))[0] N = labelled_indices.size x = np.reshape(checkcl(cluster_ensemble[labelled_indices], verbose), newshape = N) y = np.reshape(checkcl(np.rint(cluster_runs[i, labelled_indices]), verbose), newshape = N) q = normalized_mutual_info_score(x, y) weighted_average_mutual_information += q * N N_labelled_indices += N return float(weighted_average_mutual_information) / N_labelled_indices
Compute a weighted average of the mutual information with the known labels, the weights being proportional to the fraction of known labels. Parameters ---------- cluster_runs : array of shape (n_partitions, n_samples) Each row of this matrix is such that the i-th entry corresponds to the cluster ID to which the i-th sample of the data-set has been classified by this particular clustering. Samples not selected for clustering in a given round are are tagged by an NaN. cluster_ensemble : array of shape (n_samples,), optional (default = None) The identity of the cluster to which each sample of the whole data-set belong to according to consensus clustering. verbose : Boolean, optional (default = False) Specifies if status messages will be displayed on the standard output. Returns ------- unnamed variable : float The weighted average of the mutual information between the consensus clustering and the many runs from the ensemble of independent clusterings on subsamples of the data-set.
entailment
def checkcl(cluster_run, verbose = False): """Ensure that a cluster labelling is in a valid format. Parameters ---------- cluster_run : array of shape (n_samples,) A vector of cluster IDs for each of the samples selected for a given round of clustering. The samples not selected are labelled with NaN. verbose : Boolean, optional (default = False) Specifies if status messages will be displayed on the standard output. Returns ------- cluster_run : array of shape (n_samples,) The input vector is modified in place, such that invalid values are either rejected or altered. In particular, the labelling of cluster IDs starts at zero and increases by 1 without any gap left. """ cluster_run = np.asanyarray(cluster_run) if cluster_run.size == 0: raise ValueError("\nERROR: Cluster_Ensembles: checkcl: " "empty vector provided as input.\n") elif reduce(operator.mul, cluster_run.shape, 1) != max(cluster_run.shape): raise ValueError("\nERROR: Cluster_Ensembles: checkl: " "problem in dimensions of the cluster label vector " "under consideration.\n") elif np.where(np.isnan(cluster_run))[0].size != 0: raise ValueError("\nERROR: Cluster_Ensembles: checkl: vector of cluster " "labellings provided as input contains at least one 'NaN'.\n") else: min_label = np.amin(cluster_run) if min_label < 0: if verbose: print("\nINFO: Cluster_Ensembles: checkcl: detected negative values " "as cluster labellings.") cluster_run -= min_label if verbose: print("\nINFO: Cluster_Ensembles: checkcl: " "offset to a minimum value of '0'.") x = one_to_max(cluster_run) if np.amax(cluster_run) != np.amax(x): if verbose: print("\nINFO: Cluster_Ensembles: checkcl: the vector cluster " "labellings provided is not a dense integer mapping.") cluster_run = x if verbose: print("INFO: Cluster_Ensembles: checkcl: brought modification " "to this vector so that its labels range " "from 0 to {0}, included.\n".format(np.amax(cluster_run))) return cluster_run
Ensure that a cluster labelling is in a valid format. Parameters ---------- cluster_run : array of shape (n_samples,) A vector of cluster IDs for each of the samples selected for a given round of clustering. The samples not selected are labelled with NaN. verbose : Boolean, optional (default = False) Specifies if status messages will be displayed on the standard output. Returns ------- cluster_run : array of shape (n_samples,) The input vector is modified in place, such that invalid values are either rejected or altered. In particular, the labelling of cluster IDs starts at zero and increases by 1 without any gap left.
entailment
def one_to_max(array_in): """Alter a vector of cluster labels to a dense mapping. Given that this function is herein always called after passing a vector to the function checkcl, one_to_max relies on the assumption that cluster_run does not contain any NaN entries. Parameters ---------- array_in : a list or one-dimensional array The list of cluster IDs to be processed. Returns ------- result : one-dimensional array A massaged version of the input vector of cluster identities. """ x = np.asanyarray(array_in) N_in = x.size array_in = x.reshape(N_in) sorted_array = np.sort(array_in) sorting_indices = np.argsort(array_in) last = np.nan current_index = -1 for i in range(N_in): if last != sorted_array[i] or np.isnan(last): last = sorted_array[i] current_index += 1 sorted_array[i] = current_index result = np.empty(N_in, dtype = int) result[sorting_indices] = sorted_array return result
Alter a vector of cluster labels to a dense mapping. Given that this function is herein always called after passing a vector to the function checkcl, one_to_max relies on the assumption that cluster_run does not contain any NaN entries. Parameters ---------- array_in : a list or one-dimensional array The list of cluster IDs to be processed. Returns ------- result : one-dimensional array A massaged version of the input vector of cluster identities.
entailment
def checks(similarities, verbose = False): """Check that a matrix is a proper similarity matrix and bring appropriate changes if applicable. Parameters ---------- similarities : array of shape (n_samples, n_samples) A matrix of pairwise similarities between (sub)-samples of the data-set. verbose : Boolean, optional (default = False) Alerts of any issue with the similarities matrix provided and of any step possibly taken to remediate such problem. """ if similarities.size == 0: raise ValueError("\nERROR: Cluster_Ensembles: checks: the similarities " "matrix provided as input happens to be empty.\n") elif np.where(np.isnan(similarities))[0].size != 0: raise ValueError("\nERROR: Cluster_Ensembles: checks: input similarities " "matrix contains at least one 'NaN'.\n") elif np.where(np.isinf(similarities))[0].size != 0: raise ValueError("\nERROR: Cluster_Ensembles: checks: at least one infinite entry " "detected in input similarities matrix.\n") else: if np.where(np.logical_not(np.isreal(similarities)))[0].size != 0: if verbose: print("\nINFO: Cluster_Ensembles: checks: complex entries found " "in the similarities matrix.") similarities = similarities.real if verbose: print("\nINFO: Cluster_Ensembles: checks: " "truncated to their real components.") if similarities.shape[0] != similarities.shape[1]: if verbose: print("\nINFO: Cluster_Ensembles: checks: non-square matrix provided.") N_square = min(similarities.shape) similarities = similarities[:N_square, :N_square] if verbose: print("\nINFO: Cluster_Ensembles: checks: using largest square sub-matrix.") max_sim = np.amax(similarities) min_sim = np.amin(similarities) if max_sim > 1 or min_sim < 0: if verbose: print("\nINFO: Cluster_Ensembles: checks: strictly negative " "or bigger than unity entries spotted in input similarities matrix.") indices_too_big = np.where(similarities > 1) indices_negative = np.where(similarities < 0) similarities[indices_too_big] = 1.0 similarities[indices_negative] = 0.0 if verbose: print("\nINFO: Cluster_Ensembles: checks: done setting them to " "the lower or upper accepted values.") if not np.allclose(similarities, np.transpose(similarities)): if verbose: print("\nINFO: Cluster_Ensembles: checks: non-symmetric input " "similarities matrix.") similarities = np.divide(similarities + np.transpose(similarities), 2.0) if verbose: print("\nINFO: Cluster_Ensembles: checks: now symmetrized.") if not np.allclose(np.diag(similarities), np.ones(similarities.shape[0])): if verbose: print("\nINFO: Cluster_Ensembles: checks: the self-similarities " "provided as input are not all of unit value.") similarities[np.diag_indices(similarities.shape[0])] = 1 if verbose: print("\nINFO: Cluster_Ensembles: checks: issue corrected.")
Check that a matrix is a proper similarity matrix and bring appropriate changes if applicable. Parameters ---------- similarities : array of shape (n_samples, n_samples) A matrix of pairwise similarities between (sub)-samples of the data-set. verbose : Boolean, optional (default = False) Alerts of any issue with the similarities matrix provided and of any step possibly taken to remediate such problem.
entailment
def CSPA(hdf5_file_name, cluster_runs, verbose = False, N_clusters_max = None): """Cluster-based Similarity Partitioning Algorithm for a consensus function. Parameters ---------- hdf5_file_name : file handle or string cluster_runs : array of shape (n_partitions, n_samples) verbose : bool, optional (default = False) N_clusters_max : int, optional (default = None) Returns ------- A vector specifying the cluster label to which each sample has been assigned by the CSPA heuristics for consensus clustering. Reference --------- A. Strehl and J. Ghosh, "Cluster Ensembles - A Knowledge Reuse Framework for Combining Multiple Partitions". In: Journal of Machine Learning Research, 3, pp. 583-617. 2002 """ print('*****') print("INFO: Cluster_Ensembles: CSPA: consensus clustering using CSPA.") if N_clusters_max == None: N_clusters_max = int(np.nanmax(cluster_runs)) + 1 N_runs = cluster_runs.shape[0] N_samples = cluster_runs.shape[1] if N_samples > 20000: raise ValueError("\nERROR: Cluster_Ensembles: CSPA: cannot efficiently " "deal with too large a number of cells.") hypergraph_adjacency = load_hypergraph_adjacency(hdf5_file_name) s = scipy.sparse.csr_matrix.dot(hypergraph_adjacency.transpose().tocsr(), hypergraph_adjacency) s = np.squeeze(np.asarray(s.todense())) del hypergraph_adjacency gc.collect() checks(np.divide(s, float(N_runs)), verbose) e_sum_before = s.sum() sum_after = 100000000.0 scale_factor = sum_after / float(e_sum_before) with tables.open_file(hdf5_file_name, 'r+') as fileh: atom = tables.Float32Atom() FILTERS = get_compression_filter(4 * (N_samples ** 2)) S = fileh.create_carray(fileh.root.consensus_group, 'similarities_CSPA', atom, (N_samples, N_samples), "Matrix of similarities arising " "in Cluster-based Similarity Partitioning", filters = FILTERS) expr = tables.Expr("s * scale_factor") expr.set_output(S) expr.eval() chunks_size = get_chunk_size(N_samples, 3) for i in range(0, N_samples, chunks_size): tmp = S[i:min(i+chunks_size, N_samples)] S[i:min(i+chunks_size, N_samples)] = np.rint(tmp) return metis(hdf5_file_name, N_clusters_max)
Cluster-based Similarity Partitioning Algorithm for a consensus function. Parameters ---------- hdf5_file_name : file handle or string cluster_runs : array of shape (n_partitions, n_samples) verbose : bool, optional (default = False) N_clusters_max : int, optional (default = None) Returns ------- A vector specifying the cluster label to which each sample has been assigned by the CSPA heuristics for consensus clustering. Reference --------- A. Strehl and J. Ghosh, "Cluster Ensembles - A Knowledge Reuse Framework for Combining Multiple Partitions". In: Journal of Machine Learning Research, 3, pp. 583-617. 2002
entailment
def HGPA(hdf5_file_name, cluster_runs, verbose = False, N_clusters_max = None): """HyperGraph-Partitioning Algorithm for a consensus function. Parameters ---------- hdf5_file_name : string or file handle cluster_runs: array of shape (n_partitions, n_samples) verbose : bool, optional (default = False) N_clusters_max : int, optional (default = None) Returns ------- A vector specifying the cluster label to which each sample has been assigned by the HGPA approximation algorithm for consensus clustering. Reference --------- A. Strehl and J. Ghosh, "Cluster Ensembles - A Knowledge Reuse Framework for Combining Multiple Partitions". In: Journal of Machine Learning Research, 3, pp. 583-617. 2002 """ print('\n*****') print("INFO: Cluster_Ensembles: HGPA: consensus clustering using HGPA.") if N_clusters_max == None: N_clusters_max = int(np.nanmax(cluster_runs)) + 1 return hmetis(hdf5_file_name, N_clusters_max)
HyperGraph-Partitioning Algorithm for a consensus function. Parameters ---------- hdf5_file_name : string or file handle cluster_runs: array of shape (n_partitions, n_samples) verbose : bool, optional (default = False) N_clusters_max : int, optional (default = None) Returns ------- A vector specifying the cluster label to which each sample has been assigned by the HGPA approximation algorithm for consensus clustering. Reference --------- A. Strehl and J. Ghosh, "Cluster Ensembles - A Knowledge Reuse Framework for Combining Multiple Partitions". In: Journal of Machine Learning Research, 3, pp. 583-617. 2002
entailment
def MCLA(hdf5_file_name, cluster_runs, verbose = False, N_clusters_max = None): """Meta-CLustering Algorithm for a consensus function. Parameters ---------- hdf5_file_name : file handle or string cluster_runs : array of shape (n_partitions, n_samples) verbose : bool, optional (default = False) N_clusters_max : int, optional (default = None) Returns ------- A vector specifying the cluster label to which each sample has been assigned by the MCLA approximation algorithm for consensus clustering. Reference --------- A. Strehl and J. Ghosh, "Cluster Ensembles - A Knowledge Reuse Framework for Combining Multiple Partitions". In: Journal of Machine Learning Research, 3, pp. 583-617. 2002 """ print('\n*****') print('INFO: Cluster_Ensembles: MCLA: consensus clustering using MCLA.') if N_clusters_max == None: N_clusters_max = int(np.nanmax(cluster_runs)) + 1 N_runs = cluster_runs.shape[0] N_samples = cluster_runs.shape[1] print("INFO: Cluster_Ensembles: MCLA: preparing graph for meta-clustering.") hypergraph_adjacency = load_hypergraph_adjacency(hdf5_file_name) w = hypergraph_adjacency.sum(axis = 1) N_rows = hypergraph_adjacency.shape[0] print("INFO: Cluster_Ensembles: MCLA: done filling hypergraph adjacency matrix. " "Starting computation of Jaccard similarity matrix.") # Next, obtain a matrix of pairwise Jaccard similarity scores between the rows of the hypergraph adjacency matrix. with tables.open_file(hdf5_file_name, 'r+') as fileh: FILTERS = get_compression_filter(4 * (N_rows ** 2)) similarities_MCLA = fileh.create_carray(fileh.root.consensus_group, 'similarities_MCLA', tables.Float32Atom(), (N_rows, N_rows), "Matrix of pairwise Jaccard " "similarity scores", filters = FILTERS) scale_factor = 100.0 print("INFO: Cluster_Ensembles: MCLA: " "starting computation of Jaccard similarity matrix.") squared_MCLA = hypergraph_adjacency.dot(hypergraph_adjacency.transpose()) squared_sums = hypergraph_adjacency.sum(axis = 1) squared_sums = np.squeeze(np.asarray(squared_sums)) chunks_size = get_chunk_size(N_rows, 7) for i in range(0, N_rows, chunks_size): n_dim = min(chunks_size, N_rows - i) temp = squared_MCLA[i:min(i+chunks_size, N_rows), :].todense() temp = np.squeeze(np.asarray(temp)) x = squared_sums[i:min(i+chunks_size, N_rows)] x = x.reshape(-1, 1) x = np.dot(x, np.ones((1, squared_sums.size))) y = np.dot(np.ones((n_dim, 1)), squared_sums.reshape(1, -1)) temp = np.divide(temp, x + y - temp) temp *= scale_factor Jaccard_matrix = np.rint(temp) similarities_MCLA[i:min(i+chunks_size, N_rows)] = Jaccard_matrix del Jaccard_matrix, temp, x, y gc.collect() # Done computing the matrix of pairwise Jaccard similarity scores. print("INFO: Cluster_Ensembles: MCLA: done computing the matrix of " "pairwise Jaccard similarity scores.") cluster_labels = cmetis(hdf5_file_name, N_clusters_max, w) cluster_labels = one_to_max(cluster_labels) # After 'cmetis' returns, we are done with clustering hyper-edges # We are now ready to start the procedure meant to collapse meta-clusters. N_consensus = np.amax(cluster_labels) + 1 fileh = tables.open_file(hdf5_file_name, 'r+') FILTERS = get_compression_filter(4 * N_consensus * N_samples) clb_cum = fileh.create_carray(fileh.root.consensus_group, 'clb_cum', tables.Float32Atom(), (N_consensus, N_samples), 'Matrix of mean memberships, forming meta-clusters', filters = FILTERS) chunks_size = get_chunk_size(N_samples, 7) for i in range(0, N_consensus, chunks_size): x = min(chunks_size, N_consensus - i) matched_clusters = np.where(cluster_labels == np.reshape(np.arange(i, min(i + chunks_size, N_consensus)), newshape = (x, 1))) M = np.zeros((x, N_samples)) for j in range(x): coord = np.where(matched_clusters[0] == j)[0] M[j] = np.asarray(hypergraph_adjacency[matched_clusters[1][coord], :].mean(axis = 0)) clb_cum[i:min(i+chunks_size, N_consensus)] = M # Done with collapsing the hyper-edges into a single meta-hyper-edge, # for each of the (N_consensus - 1) meta-clusters. del hypergraph_adjacency gc.collect() # Each object will now be assigned to its most associated meta-cluster. chunks_size = get_chunk_size(N_consensus, 4) N_chunks, remainder = divmod(N_samples, chunks_size) if N_chunks == 0: null_columns = np.where(clb_cum[:].sum(axis = 0) == 0)[0] else: szumsz = np.zeros(0) for i in range(N_chunks): M = clb_cum[:, i*chunks_size:(i+1)*chunks_size] szumsz = np.append(szumsz, M.sum(axis = 0)) if remainder != 0: M = clb_cum[:, N_chunks*chunks_size:N_samples] szumsz = np.append(szumsz, M.sum(axis = 0)) null_columns = np.where(szumsz == 0)[0] if null_columns.size != 0: print("INFO: Cluster_Ensembles: MCLA: {} objects with all zero associations " "in 'clb_cum' matrix of meta-clusters.".format(null_columns.size)) clb_cum[:, null_columns] = np.random.rand(N_consensus, null_columns.size) random_state = np.random.RandomState() tmp = fileh.create_carray(fileh.root.consensus_group, 'tmp', tables.Float32Atom(), (N_consensus, N_samples), "Temporary matrix to help with " "collapsing to meta-hyper-edges", filters = FILTERS) chunks_size = get_chunk_size(N_samples, 2) N_chunks, remainder = divmod(N_consensus, chunks_size) if N_chunks == 0: tmp[:] = random_state.rand(N_consensus, N_samples) else: for i in range(N_chunks): tmp[i*chunks_size:(i+1)*chunks_size] = random_state.rand(chunks_size, N_samples) if remainder !=0: tmp[N_chunks*chunks_size:N_consensus] = random_state.rand(remainder, N_samples) expr = tables.Expr("clb_cum + (tmp / 10000)") expr.set_output(clb_cum) expr.eval() expr = tables.Expr("abs(tmp)") expr.set_output(tmp) expr.eval() chunks_size = get_chunk_size(N_consensus, 2) N_chunks, remainder = divmod(N_samples, chunks_size) if N_chunks == 0: sum_diag = tmp[:].sum(axis = 0) else: sum_diag = np.empty(0) for i in range(N_chunks): M = tmp[:, i*chunks_size:(i+1)*chunks_size] sum_diag = np.append(sum_diag, M.sum(axis = 0)) if remainder != 0: M = tmp[:, N_chunks*chunks_size:N_samples] sum_diag = np.append(sum_diag, M.sum(axis = 0)) fileh.remove_node(fileh.root.consensus_group, "tmp") # The corresponding disk space will be freed after a call to 'fileh.close()'. inv_sum_diag = np.reciprocal(sum_diag.astype(float)) if N_chunks == 0: clb_cum *= inv_sum_diag max_entries = np.amax(clb_cum, axis = 0) else: max_entries = np.zeros(N_samples) for i in range(N_chunks): clb_cum[:, i*chunks_size:(i+1)*chunks_size] *= inv_sum_diag[i*chunks_size:(i+1)*chunks_size] max_entries[i*chunks_size:(i+1)*chunks_size] = np.amax(clb_cum[:, i*chunks_size:(i+1)*chunks_size], axis = 0) if remainder != 0: clb_cum[:, N_chunks*chunks_size:N_samples] *= inv_sum_diag[N_chunks*chunks_size:N_samples] max_entries[N_chunks*chunks_size:N_samples] = np.amax(clb_cum[:, N_chunks*chunks_size:N_samples], axis = 0) cluster_labels = np.zeros(N_samples, dtype = int) winner_probabilities = np.zeros(N_samples) chunks_size = get_chunk_size(N_samples, 2) for i in reversed(range(0, N_consensus, chunks_size)): ind = np.where(np.tile(max_entries, (min(chunks_size, N_consensus - i), 1)) == clb_cum[i:min(i+chunks_size, N_consensus)]) cluster_labels[ind[1]] = i + ind[0] winner_probabilities[ind[1]] = clb_cum[(ind[0] + i, ind[1])] # Done with competing for objects. cluster_labels = one_to_max(cluster_labels) print("INFO: Cluster_Ensembles: MCLA: delivering " "{} clusters.".format(np.unique(cluster_labels).size)) print("INFO: Cluster_Ensembles: MCLA: average posterior " "probability is {}".format(np.mean(winner_probabilities))) if cluster_labels.size <= 7: print("INFO: Cluster_Ensembles: MCLA: the winning posterior probabilities are:") print(winner_probabilities) print("'INFO: Cluster_Ensembles: MCLA: the full posterior probabilities are:") print(clb_cum) fileh.remove_node(fileh.root.consensus_group, "clb_cum") fileh.close() return cluster_labels
Meta-CLustering Algorithm for a consensus function. Parameters ---------- hdf5_file_name : file handle or string cluster_runs : array of shape (n_partitions, n_samples) verbose : bool, optional (default = False) N_clusters_max : int, optional (default = None) Returns ------- A vector specifying the cluster label to which each sample has been assigned by the MCLA approximation algorithm for consensus clustering. Reference --------- A. Strehl and J. Ghosh, "Cluster Ensembles - A Knowledge Reuse Framework for Combining Multiple Partitions". In: Journal of Machine Learning Research, 3, pp. 583-617. 2002
entailment
def create_membership_matrix(cluster_run): """For a label vector represented by cluster_run, constructs the binary membership indicator matrix. Such matrices, when concatenated, contribute to the adjacency matrix for a hypergraph representation of an ensemble of clusterings. Parameters ---------- cluster_run : array of shape (n_partitions, n_samples) Returns ------- An adjacnecy matrix in compressed sparse row form. """ cluster_run = np.asanyarray(cluster_run) if reduce(operator.mul, cluster_run.shape, 1) != max(cluster_run.shape): raise ValueError("\nERROR: Cluster_Ensembles: create_membership_matrix: " "problem in dimensions of the cluster label vector " "under consideration.") else: cluster_run = cluster_run.reshape(cluster_run.size) cluster_ids = np.unique(np.compress(np.isfinite(cluster_run), cluster_run)) indices = np.empty(0, dtype = np.int32) indptr = np.zeros(1, dtype = np.int32) for elt in cluster_ids: indices = np.append(indices, np.where(cluster_run == elt)[0]) indptr = np.append(indptr, indices.size) data = np.ones(indices.size, dtype = int) return scipy.sparse.csr_matrix((data, indices, indptr), shape = (cluster_ids.size, cluster_run.size))
For a label vector represented by cluster_run, constructs the binary membership indicator matrix. Such matrices, when concatenated, contribute to the adjacency matrix for a hypergraph representation of an ensemble of clusterings. Parameters ---------- cluster_run : array of shape (n_partitions, n_samples) Returns ------- An adjacnecy matrix in compressed sparse row form.
entailment
def metis(hdf5_file_name, N_clusters_max): """METIS algorithm by Karypis and Kumar. Partitions the induced similarity graph passed by CSPA. Parameters ---------- hdf5_file_name : string or file handle N_clusters_max : int Returns ------- labels : array of shape (n_samples,) A vector of labels denoting the cluster to which each sample has been assigned as a result of the CSPA heuristics for consensus clustering. Reference --------- G. Karypis and V. Kumar, "A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs" In: SIAM Journal on Scientific Computing, Vol. 20, No. 1, pp. 359-392, 1999. """ file_name = wgraph(hdf5_file_name) labels = sgraph(N_clusters_max, file_name) subprocess.call(['rm', file_name]) return labels
METIS algorithm by Karypis and Kumar. Partitions the induced similarity graph passed by CSPA. Parameters ---------- hdf5_file_name : string or file handle N_clusters_max : int Returns ------- labels : array of shape (n_samples,) A vector of labels denoting the cluster to which each sample has been assigned as a result of the CSPA heuristics for consensus clustering. Reference --------- G. Karypis and V. Kumar, "A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs" In: SIAM Journal on Scientific Computing, Vol. 20, No. 1, pp. 359-392, 1999.
entailment
def hmetis(hdf5_file_name, N_clusters_max, w = None): """Gives cluster labels ranging from 1 to N_clusters_max for hypergraph partitioning required for HGPA. Parameters ---------- hdf5_file_name : file handle or string N_clusters_max : int w : array, optional (default = None) Returns ------- labels : array of shape (n_samples,) A vector of labels denoting the cluster to which each sample has been assigned as a result of the HGPA approximation algorithm for consensus clustering. Reference --------- G. Karypis, R. Aggarwal, V. Kumar and S. Shekhar, "Multilevel hypergraph partitioning: applications in VLSI domain" In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 7, No. 1, pp. 69-79, 1999. """ if w is None: file_name = wgraph(hdf5_file_name, None, 2) else: file_name = wgraph(hdf5_file_name, w, 3) labels = sgraph(N_clusters_max, file_name) labels = one_to_max(labels) subprocess.call(['rm', file_name]) return labels
Gives cluster labels ranging from 1 to N_clusters_max for hypergraph partitioning required for HGPA. Parameters ---------- hdf5_file_name : file handle or string N_clusters_max : int w : array, optional (default = None) Returns ------- labels : array of shape (n_samples,) A vector of labels denoting the cluster to which each sample has been assigned as a result of the HGPA approximation algorithm for consensus clustering. Reference --------- G. Karypis, R. Aggarwal, V. Kumar and S. Shekhar, "Multilevel hypergraph partitioning: applications in VLSI domain" In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 7, No. 1, pp. 69-79, 1999.
entailment
def wgraph(hdf5_file_name, w = None, method = 0): """Write a graph file in a format apposite to later use by METIS or HMETIS. Parameters ---------- hdf5_file_name : file handle or string w : list or array, optional (default = None) method : int, optional (default = 0) Returns ------- file_name : string """ print('\n#') if method == 0: fileh = tables.open_file(hdf5_file_name, 'r+') e_mat = fileh.root.consensus_group.similarities_CSPA file_name = 'wgraph_CSPA' elif method == 1: fileh = tables.open_file(hdf5_file_name, 'r+') e_mat = fileh.root.consensus_group.similarities_MCLA file_name = 'wgraph_MCLA' elif method in {2, 3}: hypergraph_adjacency = load_hypergraph_adjacency(hdf5_file_name) e_mat = hypergraph_adjacency.copy().transpose() file_name = 'wgraph_HGPA' fileh = tables.open_file(hdf5_file_name, 'r+') else: raise ValueError("\nERROR: Cluster_Ensembles: wgraph: " "invalid code for choice of method; " "choose either 0, 1, 2 or 3.") if w is None: w = [] N_rows = e_mat.shape[0] N_cols = e_mat.shape[1] if method in {0, 1}: diag_ind = np.diag_indices(N_rows) e_mat[diag_ind] = 0 if method == 1: scale_factor = 100.0 w_sum_before = np.sum(w) w *= scale_factor w = np.rint(w) with open(file_name, 'w') as file: print("INFO: Cluster_Ensembles: wgraph: writing {}.".format(file_name)) if method == 0: sz = float(np.sum(e_mat[:] > 0)) / 2 if int(sz) == 0: return 'DO_NOT_PROCESS' else: file.write('{} {} 1\n'.format(N_rows, int(sz))) elif method == 1: chunks_size = get_chunk_size(N_cols, 2) N_chunks, remainder = divmod(N_rows, chunks_size) if N_chunks == 0: sz = float(np.sum(e_mat[:] > 0)) / 2 else: sz = 0 for i in range(N_chunks): M = e_mat[i*chunks_size:(i+1)*chunks_size] sz += float(np.sum(M > 0)) if remainder != 0: M = e_mat[N_chunks*chunks_size:N_rows] sz += float(np.sum(M > 0)) sz = float(sz) / 2 file.write('{} {} 11\n'.format(N_rows, int(sz))) else: file.write('{} {} 1\n'.format(N_cols, N_rows)) if method in {0, 1}: chunks_size = get_chunk_size(N_cols, 2) for i in range(0, N_rows, chunks_size): M = e_mat[i:min(i+chunks_size, N_rows)] for j in range(M.shape[0]): edges = np.where(M[j] > 0)[0] weights = M[j, edges] if method == 0: interlaced = np.zeros(2 * edges.size, dtype = int) # METIS and hMETIS have vertices numbering starting from 1: interlaced[::2] = edges + 1 interlaced[1::2] = weights else: interlaced = np.zeros(1 + 2 * edges.size, dtype = int) interlaced[0] = w[i + j] # METIS and hMETIS have vertices numbering starting from 1: interlaced[1::2] = edges + 1 interlaced[2::2] = weights for elt in interlaced: file.write('{} '.format(int(elt))) file.write('\n') else: print("INFO: Cluster_Ensembles: wgraph: {N_rows} vertices and {N_cols} " "non-zero hyper-edges.".format(**locals())) chunks_size = get_chunk_size(N_rows, 2) for i in range(0, N_cols, chunks_size): M = np.asarray(e_mat[:, i:min(i+chunks_size, N_cols)].todense()) for j in range(M.shape[1]): edges = np.where(M[:, j] > 0)[0] if method == 2: weight = np.array(M[:, j].sum(), dtype = int) else: weight = w[i + j] # METIS and hMETIS require vertices numbering starting from 1: interlaced = np.append(weight, edges + 1) for elt in interlaced: file.write('{} '.format(int(elt))) file.write('\n') if method in {0, 1}: fileh.remove_node(fileh.root.consensus_group, e_mat.name) fileh.close() print('#') return file_name
Write a graph file in a format apposite to later use by METIS or HMETIS. Parameters ---------- hdf5_file_name : file handle or string w : list or array, optional (default = None) method : int, optional (default = 0) Returns ------- file_name : string
entailment
def sgraph(N_clusters_max, file_name): """Runs METIS or hMETIS and returns the labels found by those (hyper-)graph partitioning algorithms. Parameters ---------- N_clusters_max : int file_name : string Returns ------- labels : array of shape (n_samples,) A vector of labels denoting the cluster to which each sample has been assigned as a result of any of three approximation algorithms for consensus clustering (either of CSPA, HGPA or MCLA). """ if file_name == 'DO_NOT_PROCESS': return [] print('\n#') k = str(N_clusters_max) out_name = file_name + '.part.' + k if file_name == 'wgraph_HGPA': print("INFO: Cluster_Ensembles: sgraph: " "calling shmetis for hypergraph partitioning.") if sys.platform.startswith('linux'): shmetis_path = pkg_resources.resource_filename(__name__, 'Hypergraph_Partitioning/hmetis-1.5-linux/shmetis') elif sys.platform.startswith('darwin'): shmetis_path = pkg_resources.resource_filename(__name__, 'Hypergraph_Partitioning/hmetis-1.5-osx-i686/shmetis') else: print("ERROR: Cluster_Ensembles: sgraph:\n" "your platform is not supported. Some code required for graph partition " "is only available for Linux distributions and OS X.") sys.exit(1) args = "{0} ./".format(shmetis_path) + file_name + " " + k + " 15" subprocess.call(args, shell = True) elif file_name == 'wgraph_CSPA' or file_name == 'wgraph_MCLA': print("INFO: Cluster_Ensembles: sgraph: " "calling gpmetis for graph partitioning.") args = "gpmetis ./" + file_name + " " + k subprocess.call(args, shell = True) else: raise NameError("ERROR: Cluster_Ensembles: sgraph: {} is not an acceptable " "file-name.".format(file_name)) labels = np.empty(0, dtype = int) with open(out_name, 'r') as file: print("INFO: Cluster_Ensembles: sgraph: (hyper)-graph partitioning completed; " "loading {}".format(out_name)) labels = np.loadtxt(out_name, dtype = int) labels = labels.reshape(labels.size) labels = one_to_max(labels) subprocess.call(['rm', out_name]) print('#') return labels
Runs METIS or hMETIS and returns the labels found by those (hyper-)graph partitioning algorithms. Parameters ---------- N_clusters_max : int file_name : string Returns ------- labels : array of shape (n_samples,) A vector of labels denoting the cluster to which each sample has been assigned as a result of any of three approximation algorithms for consensus clustering (either of CSPA, HGPA or MCLA).
entailment
def overlap_matrix(hdf5_file_name, consensus_labels, cluster_runs): """Writes on disk (in an HDF5 file whose handle is provided as the first argument to this function) a stack of matrices, each describing for a particular run the overlap of cluster ID's that are matching each of the cluster ID's stored in 'consensus_labels' (the vector of labels obtained by ensemble clustering). Returns also the adjacency matrix for consensus clustering and a vector of mutual informations between each of the clusterings from the ensemble and their consensus. Parameters ---------- hdf5_file_name : file handle or string consensus_labels : array of shape (n_samples,) cluster_runs : array of shape (n_partitions, n_samples) Returns ------- cluster_dims_list : mutual_info_list : consensus_adjacency : """ if reduce(operator.mul, cluster_runs.shape, 1) == max(cluster_runs.shape): cluster_runs = cluster_runs.reshape(1, -1) N_runs, N_samples = cluster_runs.shape N_consensus_labels = np.unique(consensus_labels).size indices_consensus_adjacency = np.empty(0, dtype = np.int32) indptr_consensus_adjacency = np.zeros(1, dtype = np.int64) for k in range(N_consensus_labels): indices_consensus_adjacency = np.append(indices_consensus_adjacency, np.where(consensus_labels == k)[0]) indptr_consensus_adjacency = np.append(indptr_consensus_adjacency, indices_consensus_adjacency.size) data_consensus_adjacency = np.ones(indices_consensus_adjacency.size, dtype = int) consensus_adjacency = scipy.sparse.csr_matrix((data_consensus_adjacency, indices_consensus_adjacency, indptr_consensus_adjacency), shape = (N_consensus_labels, N_samples)) fileh = tables.open_file(hdf5_file_name, 'r+') FILTERS = get_compression_filter(4 * N_consensus_labels * N_runs) overlap_matrix = fileh.create_earray(fileh.root.consensus_group, 'overlap_matrix', tables.Float32Atom(), (0, N_consensus_labels), "Matrix of overlaps between each run and " "the consensus labellings", filters = FILTERS, expectedrows = N_consensus_labels * N_runs) mutual_info_list = [] cluster_dims_list = [0] for i in range(N_runs): M = cluster_runs[i] mutual_info_list.append(ceEvalMutual(M, consensus_labels)) finite_indices = np.where(np.isfinite(M))[0] positive_indices = np.where(M >= 0)[0] selected_indices = np.intersect1d(finite_indices, positive_indices, assume_unique = True) cluster_ids = np.unique(M[selected_indices]) n_ids = cluster_ids.size cluster_dims_list.append(n_ids) unions = np.zeros((n_ids, N_consensus_labels), dtype = float) indices = np.empty(0, dtype = int) indptr = [0] c = 0 for elt in cluster_ids: indices = np.append(indices, np.where(M == elt)[0]) indptr.append(indices.size) for k in range(N_consensus_labels): x = indices_consensus_adjacency[indptr_consensus_adjacency[k]:indptr_consensus_adjacency[k+1]] unions[c, k] = np.union1d(indices, x).size c += 1 data = np.ones(indices.size, dtype = int) I = scipy.sparse.csr_matrix((data, indices, indptr), shape = (n_ids, N_samples)) intersections = I.dot(consensus_adjacency.transpose()) intersections = np.squeeze(np.asarray(intersections.todense())) overlap_matrix.append(np.divide(intersections, unions)) fileh.close() return cluster_dims_list, mutual_info_list, consensus_adjacency
Writes on disk (in an HDF5 file whose handle is provided as the first argument to this function) a stack of matrices, each describing for a particular run the overlap of cluster ID's that are matching each of the cluster ID's stored in 'consensus_labels' (the vector of labels obtained by ensemble clustering). Returns also the adjacency matrix for consensus clustering and a vector of mutual informations between each of the clusterings from the ensemble and their consensus. Parameters ---------- hdf5_file_name : file handle or string consensus_labels : array of shape (n_samples,) cluster_runs : array of shape (n_partitions, n_samples) Returns ------- cluster_dims_list : mutual_info_list : consensus_adjacency :
entailment
def obfuscate(p, action): """Obfuscate the auth details to avoid easy snatching. It's best to use a throw away account for these alerts to avoid having your authentication put at risk by storing it locally. """ key = "ru7sll3uQrGtDPcIW3okutpFLo6YYtd5bWSpbZJIopYQ0Du0a1WlhvJOaZEH" s = list() if action == 'store': if PY2: for i in range(len(p)): kc = key[i % len(key)] ec = chr((ord(p[i]) + ord(kc)) % 256) s.append(ec) return base64.urlsafe_b64encode("".join(s)) else: return base64.urlsafe_b64encode(p.encode()).decode() else: if PY2: e = base64.urlsafe_b64decode(p) for i in range(len(e)): kc = key[i % len(key)] dc = chr((256 + ord(e[i]) - ord(kc)) % 256) s.append(dc) return "".join(s) else: e = base64.urlsafe_b64decode(p) return e.decode()
Obfuscate the auth details to avoid easy snatching. It's best to use a throw away account for these alerts to avoid having your authentication put at risk by storing it locally.
entailment
def _config_bootstrap(self): """Go through and establish the defaults on the file system. The approach here was stolen from the CLI tool provided with the module. Idea being that the user should not always need to provide a username and password in order to run the script. If the configuration file is already present with valid data, then lets use it. """ if not os.path.exists(CONFIG_PATH): os.makedirs(CONFIG_PATH) if not os.path.exists(CONFIG_FILE): json.dump(CONFIG_DEFAULTS, open(CONFIG_FILE, 'w'), indent=4, separators=(',', ': ')) config = CONFIG_DEFAULTS if self._email and self._password: # Save the configuration locally to pull later on config['email'] = self._email config['password'] = str(obfuscate(self._password, 'store')) self._log.debug("Caching authentication in config file") json.dump(config, open(CONFIG_FILE, 'w'), indent=4, separators=(',', ': ')) else: # Load the config file and override the class config = json.load(open(CONFIG_FILE)) if config.get('py2', PY2) != PY2: raise Exception("Python versions have changed. Please run `setup` again to reconfigure the client.") if config['email'] and config['password']: self._email = config['email'] self._password = obfuscate(str(config['password']), 'fetch') self._log.debug("Loaded authentication from config file")
Go through and establish the defaults on the file system. The approach here was stolen from the CLI tool provided with the module. Idea being that the user should not always need to provide a username and password in order to run the script. If the configuration file is already present with valid data, then lets use it.
entailment
def _session_check(self): """Attempt to authenticate the user through a session file. This process is done to avoid having to authenticate the user every single time. It uses a session file that is saved when a valid session is captured and then reused. Because sessions can expire, we need to test the session prior to calling the user authenticated. Right now that is done with a test string found in an unauthenticated session. This approach is not an ideal method, but it works. """ if not os.path.exists(SESSION_FILE): self._log.debug("Session file does not exist") return False with open(SESSION_FILE, 'rb') as f: cookies = requests.utils.cookiejar_from_dict(pickle.load(f)) self._session.cookies = cookies self._log.debug("Loaded cookies from session file") response = self._session.get(url=self.TEST_URL, headers=self.HEADERS) if self.TEST_KEY in str(response.content): self._log.debug("Session file appears invalid") return False self._is_authenticated = True self._process_state() return True
Attempt to authenticate the user through a session file. This process is done to avoid having to authenticate the user every single time. It uses a session file that is saved when a valid session is captured and then reused. Because sessions can expire, we need to test the session prior to calling the user authenticated. Right now that is done with a test string found in an unauthenticated session. This approach is not an ideal method, but it works.
entailment
def _logger(self): """Create a logger to be used between processes. :returns: Logging instance. """ logger = logging.getLogger(self.NAME) logger.setLevel(self.LOG_LEVEL) shandler = logging.StreamHandler(sys.stdout) fmt = '\033[1;32m%(levelname)-5s %(module)s:%(funcName)s():' fmt += '%(lineno)d %(asctime)s\033[0m| %(message)s' shandler.setFormatter(logging.Formatter(fmt)) logger.addHandler(shandler) return logger
Create a logger to be used between processes. :returns: Logging instance.
entailment
def set_log_level(self, level): """Override the default log level of the class""" if level == 'info': level = logging.INFO if level == 'debug': level = logging.DEBUG if level == 'error': level = logging.ERROR self._log.setLevel(level)
Override the default log level of the class
entailment
def _process_state(self): """Process the application state configuration. Google Alerts manages the account information and alert data through some custom state configuration. Not all values have been completely enumerated. """ self._log.debug("Capturing state from the request") response = self._session.get(url=self.ALERTS_URL, headers=self.HEADERS) soup = BeautifulSoup(response.content, "html.parser") for i in soup.findAll('script'): if i.text.find('window.STATE') == -1: continue state = json.loads(i.text[15:-1]) if state != "": self._state = state self._log.debug("State value set: %s" % self._state) return self._state
Process the application state configuration. Google Alerts manages the account information and alert data through some custom state configuration. Not all values have been completely enumerated.
entailment
def authenticate(self): """Authenticate the user and setup our state.""" valid = self._session_check() if self._is_authenticated and valid: self._log.debug("[!] User has already authenticated") return init = self._session.get(url=self.LOGIN_URL, headers=self.HEADERS) soup = BeautifulSoup(init.content, "html.parser") soup_login = soup.find('form').find_all('input') post_data = dict() for u in soup_login: if u.has_attr('name') and u.has_attr('value'): post_data[u['name']] = u['value'] post_data['Email'] = self._email post_data['Passwd'] = self._password response = self._session.post(url=self.AUTH_URL, data=post_data, headers=self.HEADERS) if self.CAPTCHA_KEY in str(response.content): raise AccountCaptcha('Google is forcing a CAPTCHA. To get around this issue, run the google-alerts with the seed option to open an interactive authentication session. Once authenticated, this module will cache your session and load that in the future') cookies = [x.name for x in response.cookies] if 'SIDCC' not in cookies: raise InvalidCredentials("Email or password was incorrect.") with open(SESSION_FILE, 'wb') as f: cookies = requests.utils.dict_from_cookiejar(self._session.cookies) pickle.dump(cookies, f, protocol=2) self._log.debug("Saved session to disk for future reference") self._log.debug("User successfully authenticated") self._is_authenticated = True self._process_state() return
Authenticate the user and setup our state.
entailment
def list(self, term=None): """List alerts configured for the account.""" if not self._state: raise InvalidState("State was not properly obtained from the app") self._process_state() if not self._state[1]: self._log.info("No monitors have been created yet.") return list() monitors = list() for monitor in self._state[1][1]: obj = dict() obj['monitor_id'] = monitor[1] obj['user_id'] = monitor[-1] obj['term'] = monitor[2][3][1] if term and obj['term'] != term: continue obj['language'] = monitor[2][3][3][1] obj['region'] = monitor[2][3][3][2] obj['delivery'] = self.DELIVERY[monitor[2][6][0][1]] obj['match_type'] = self.MONITOR_MATCH_TYPE[monitor[2][5]] if obj['delivery'] == 'MAIL': obj['alert_frequency'] = self.ALERT_FREQ[monitor[2][6][0][4]] obj['email_address'] = monitor[2][6][0][2] else: rss_id = monitor[2][6][0][11] url = "https://google.com/alerts/feeds/{uid}/{fid}" obj['rss_link'] = url.format(uid=obj['user_id'], fid=rss_id) monitors.append(obj) return monitors
List alerts configured for the account.
entailment
def create(self, term, options): """Create a monitor using passed configuration.""" if not self._state: raise InvalidState("State was not properly obtained from the app") options['action'] = 'CREATE' payload = self._build_payload(term, options) url = self.ALERTS_CREATE_URL.format(requestX=self._state[3]) self._log.debug("Creating alert using: %s" % url) params = json.dumps(payload, separators=(',', ':')) data = {'params': params} response = self._session.post(url, data=data, headers=self.HEADERS) if response.status_code != 200: raise ActionError("Failed to create monitor: %s" % response.content) if options.get('exact', False): term = "\"%s\"" % term return self.list(term)
Create a monitor using passed configuration.
entailment
def modify(self, monitor_id, options): """Create a monitor using passed configuration.""" if not self._state: raise InvalidState("State was not properly obtained from the app") monitors = self.list() # Get the latest set of monitors obj = None for monitor in monitors: if monitor_id != monitor['monitor_id']: continue obj = monitor if not monitor_id: raise MonitorNotFound("No monitor was found with that term.") options['action'] = 'MODIFY' options.update(obj) payload = self._build_payload(obj['term'], options) url = self.ALERTS_MODIFY_URL.format(requestX=self._state[3]) self._log.debug("Modifying alert using: %s" % url) params = json.dumps(payload, separators=(',', ':')) data = {'params': params} response = self._session.post(url, data=data, headers=self.HEADERS) if response.status_code != 200: raise ActionError("Failed to create monitor: %s" % response.content) return self.list()
Create a monitor using passed configuration.
entailment
def delete(self, monitor_id): """Delete a monitor by ID.""" if not self._state: raise InvalidState("State was not properly obtained from the app") monitors = self.list() # Get the latest set of monitors bit = None for monitor in monitors: if monitor_id != monitor['monitor_id']: continue bit = monitor['monitor_id'] if not bit: raise MonitorNotFound("No monitor was found with that term.") url = self.ALERTS_DELETE_URL.format(requestX=self._state[3]) self._log.debug("Deleting alert using: %s" % url) payload = [None, monitor_id] params = json.dumps(payload, separators=(',', ':')) data = {'params': params} response = self._session.post(url, data=data, headers=self.HEADERS) if response.status_code != 200: raise ActionError("Failed to delete by ID: %s" % response.content) return True
Delete a monitor by ID.
entailment
def main(): """Run the core.""" parser = ArgumentParser() subs = parser.add_subparsers(dest='cmd') setup_parser = subs.add_parser('setup') setup_parser.add_argument('-e', '--email', dest='email', required=True, help='Email of the Google user.', type=str) setup_parser.add_argument('-p', '--password', dest='pwd', required=True, help='Password of the Google user.', type=str) setup_parser = subs.add_parser('seed') setup_parser.add_argument('-d', '--driver', dest='driver', required=True, type=str, help='Location of the Chrome driver. This can be downloaded by visiting http://chromedriver.chromium.org/downloads',) setup_parser = subs.add_parser('list') setup_parser = subs.add_parser('create') setup_parser.add_argument('-t', '--term', dest='term', required=True, help='Term to store.', type=str) setup_parser.add_argument('--exact', dest='exact', action='store_true', help='Exact matches only for term.') setup_parser.add_argument('-d', '--delivery', dest='delivery', required=True, choices=['rss', 'mail'], help='Delivery method of results.') setup_parser.add_argument('-f', '--frequency', dest='frequency', default="realtime", choices=['realtime', 'daily', 'weekly'], help='Frequency to send results. RSS only allows for realtime alerting.') setup_parser = subs.add_parser('delete') setup_parser.add_argument('--id', dest='term_id', required=True, help='ID of the term to find for deletion.', type=str) args = parser.parse_args() if args.cmd == 'setup': if not os.path.exists(CONFIG_PATH): os.makedirs(CONFIG_PATH) if not os.path.exists(CONFIG_FILE): json.dump(CONFIG_DEFAULTS, open(CONFIG_FILE, 'w'), indent=4, separators=(',', ': ')) config = CONFIG_DEFAULTS config['email'] = args.email config['password'] = str(obfuscate(args.pwd, 'store')) json.dump(config, open(CONFIG_FILE, 'w'), indent=4, separators=(',', ': ')) config = json.load(open(CONFIG_FILE)) if config.get('py2', PY2) != PY2: raise Exception("Python versions have changed. Please run `setup` again to reconfigure the client.") if config['password'] == '': raise Exception("Run setup before any other actions!") if args.cmd == 'seed': config['password'] = obfuscate(str(config['password']), 'fetch') ga = GoogleAlerts(config['email'], config['password']) with contextlib.closing(webdriver.Chrome(args.driver)) as driver: driver.get(ga.LOGIN_URL) wait = ui.WebDriverWait(driver, 10) # timeout after 10 seconds inputElement = driver.find_element_by_name('Email') inputElement.send_keys(config['email']) inputElement.submit() time.sleep(3) inputElement = driver.find_element_by_id('Passwd') inputElement.send_keys(config['password']) inputElement.submit() print("[!] Waiting 15 seconds for authentication to complete") time.sleep(15) cookies = driver.get_cookies() collected = dict() for cookie in cookies: collected[str(cookie['name'])] = str(cookie['value']) with open(SESSION_FILE, 'wb') as f: pickle.dump(collected, f, protocol=2) print("Session has been seeded.") if args.cmd == 'list': config['password'] = obfuscate(str(config['password']), 'fetch') ga = GoogleAlerts(config['email'], config['password']) ga.authenticate() print(json.dumps(ga.list(), indent=4)) if args.cmd == 'create': config['password'] = obfuscate(str(config['password']), 'fetch') ga = GoogleAlerts(config['email'], config['password']) ga.authenticate() alert_frequency = 'as_it_happens' if args.frequency == 'realtime': alert_frequency = 'as_it_happens' elif args.frequency == 'daily': alert_frequency = 'at_most_once_a_day' else: alert_frequency = 'at_most_once_a_week' monitor = ga.create(args.term, {'delivery': args.delivery.upper(), 'alert_frequency': alert_frequency.upper(), 'exact': args.exact}) print(json.dumps(monitor, indent=4)) if args.cmd == 'delete': config['password'] = obfuscate(str(config['password']), 'fetch') ga = GoogleAlerts(config['email'], config['password']) ga.authenticate() result = ga.delete(args.term_id) if result: print("%s was deleted" % args.term_id)
Run the core.
entailment
def search_packages_info(query): """ Gather details from installed distributions. Print distribution name, version, location, and installed files. Installed files requires a pip generated 'installed-files.txt' in the distributions '.egg-info' directory. """ installed = {} for p in pkg_resources.working_set: installed[canonicalize_name(p.project_name)] = p query_names = [canonicalize_name(name) for name in query] for dist in [installed[pkg] for pkg in query_names if pkg in installed]: package = { 'name': dist.project_name, 'version': dist.version, 'location': dist.location, 'requires': [dep.project_name for dep in dist.requires()], } file_list = None if isinstance(dist, pkg_resources.DistInfoDistribution): # RECORDs should be part of .dist-info metadatas if dist.has_metadata('RECORD'): lines = dist.get_metadata_lines('RECORD') paths = [l.split(',')[0] for l in lines] paths = [os.path.join(dist.location, p) for p in paths] file_list = [os.path.relpath(p, dist.location) for p in paths] else: # Otherwise use pip's log for .egg-info's if dist.has_metadata('installed-files.txt'): paths = dist.get_metadata_lines('installed-files.txt') paths = [os.path.join(dist.egg_info, p) for p in paths] file_list = [os.path.relpath(p, dist.location) for p in paths] if file_list: package['files'] = sorted(file_list) yield package
Gather details from installed distributions. Print distribution name, version, location, and installed files. Installed files requires a pip generated 'installed-files.txt' in the distributions '.egg-info' directory.
entailment
def process_view(self, request, view_func, view_args, view_kwargs): """ Collect data on Class-Based Views """ # Purge data in view method cache # Python 3's keys() method returns an iterator, so force evaluation before iterating. view_keys = list(VIEW_METHOD_DATA.keys()) for key in view_keys: del VIEW_METHOD_DATA[key] self.view_data = {} try: cbv = view_func.view_class except AttributeError: cbv = False if cbv: self.view_data['cbv'] = True klass = view_func.view_class self.view_data['bases'] = [base.__name__ for base in inspect.getmro(klass)] # Inject with drugz for member in inspect.getmembers(view_func.view_class): # Check that we are interested in capturing data for this method # and ensure that a decorated method is not decorated multiple times. if member[0] in VIEW_METHOD_WHITEIST and member[0] not in PATCHED_METHODS[klass]: decorate_method(klass, member[0]) PATCHED_METHODS[klass].append(member[0])
Collect data on Class-Based Views
entailment
def process_response(self, request, response): """Let's handle old-style response processing here, as usual.""" # For debug only. if not settings.DEBUG: return response # Check for responses where the data can't be inserted. content_encoding = response.get('Content-Encoding', '') content_type = response.get('Content-Type', '').split(';')[0] if any((getattr(response, 'streaming', False), 'gzip' in content_encoding, content_type not in _HTML_TYPES)): return response content = force_text(response.content, encoding=settings.DEFAULT_CHARSET) pattern = re.escape('</body>') bits = re.split(pattern, content, flags=re.IGNORECASE) if len(bits) > 1: bits[-2] += debug_payload(request, response, self.view_data) response.content = "</body>".join(bits) if response.get('Content-Length', None): response['Content-Length'] = len(response.content) return response
Let's handle old-style response processing here, as usual.
entailment
def get_job_class(klass_str): """ Return the job class """ mod_name, klass_name = klass_str.rsplit('.', 1) try: mod = importlib.import_module(mod_name) except ImportError as e: logger.error("Error importing job module %s: '%s'", mod_name, e) return try: klass = getattr(mod, klass_name) except AttributeError: logger.error("Module '%s' does not define a '%s' class", mod_name, klass_name) return return klass
Return the job class
entailment
def get(self, *raw_args, **raw_kwargs): """ Return the data for this function (using the cache if possible). This method is not intended to be overidden """ # We pass args and kwargs through a filter to allow them to be # converted into values that can be pickled. args = self.prepare_args(*raw_args) kwargs = self.prepare_kwargs(**raw_kwargs) # Build the cache key and attempt to fetch the cached item key = self.key(*args, **kwargs) item = self.cache.get(key) call = Call(args=raw_args, kwargs=raw_kwargs) if item is None: # Cache MISS - we can either: # a) fetch the data immediately, blocking execution until # the fetch has finished, or # b) trigger an async refresh and return an empty result if self.should_missing_item_be_fetched_synchronously(*args, **kwargs): logger.debug(("Job %s with key '%s' - cache MISS - running " "synchronous refresh"), self.class_path, key) result = self.refresh(*args, **kwargs) return self.process_result( result, call=call, cache_status=self.MISS, sync_fetch=True) else: logger.debug(("Job %s with key '%s' - cache MISS - triggering " "async refresh and returning empty result"), self.class_path, key) # To avoid cache hammering (ie lots of identical tasks # to refresh the same cache item), we reset the cache with an # empty result which will be returned until the cache is # refreshed. result = self.empty() self.store(key, self.timeout(*args, **kwargs), result) self.async_refresh(*args, **kwargs) return self.process_result( result, call=call, cache_status=self.MISS, sync_fetch=False) expiry, data = item delta = time.time() - expiry if delta > 0: # Cache HIT but STALE expiry - we can either: # a) fetch the data immediately, blocking execution until # the fetch has finished, or # b) trigger a refresh but allow the stale result to be # returned this time. This is normally acceptable. if self.should_stale_item_be_fetched_synchronously( delta, *args, **kwargs): logger.debug( ("Job %s with key '%s' - STALE cache hit - running " "synchronous refresh"), self.class_path, key) result = self.refresh(*args, **kwargs) return self.process_result( result, call=call, cache_status=self.STALE, sync_fetch=True) else: logger.debug( ("Job %s with key '%s' - STALE cache hit - triggering " "async refresh and returning stale result"), self.class_path, key) # We replace the item in the cache with a 'timeout' expiry - this # prevents cache hammering but guards against a 'limbo' situation # where the refresh task fails for some reason. timeout = self.timeout(*args, **kwargs) self.store(key, timeout, data) self.async_refresh(*args, **kwargs) return self.process_result( data, call=call, cache_status=self.STALE, sync_fetch=False) else: logger.debug("Job %s with key '%s' - cache HIT", self.class_path, key) return self.process_result(data, call=call, cache_status=self.HIT)
Return the data for this function (using the cache if possible). This method is not intended to be overidden
entailment
def invalidate(self, *raw_args, **raw_kwargs): """ Mark a cached item invalid and trigger an asynchronous job to refresh the cache """ args = self.prepare_args(*raw_args) kwargs = self.prepare_kwargs(**raw_kwargs) key = self.key(*args, **kwargs) item = self.cache.get(key) if item is not None: expiry, data = item self.store(key, self.timeout(*args, **kwargs), data) self.async_refresh(*args, **kwargs)
Mark a cached item invalid and trigger an asynchronous job to refresh the cache
entailment
def delete(self, *raw_args, **raw_kwargs): """ Remove an item from the cache """ args = self.prepare_args(*raw_args) kwargs = self.prepare_kwargs(**raw_kwargs) key = self.key(*args, **kwargs) item = self.cache.get(key) if item is not None: self.cache.delete(key)
Remove an item from the cache
entailment
def raw_get(self, *raw_args, **raw_kwargs): """ Retrieve the item (tuple of value and expiry) that is actually in the cache, without causing a refresh. """ args = self.prepare_args(*raw_args) kwargs = self.prepare_kwargs(**raw_kwargs) key = self.key(*args, **kwargs) return self.cache.get(key)
Retrieve the item (tuple of value and expiry) that is actually in the cache, without causing a refresh.
entailment
def set(self, *raw_args, **raw_kwargs): """ Manually set the cache value with its appropriate expiry. """ if self.set_data_kwarg in raw_kwargs: data = raw_kwargs.pop(self.set_data_kwarg) else: raw_args = list(raw_args) data = raw_args.pop() args = self.prepare_args(*raw_args) kwargs = self.prepare_kwargs(**raw_kwargs) key = self.key(*args, **kwargs) expiry = self.expiry(*args, **kwargs) logger.debug("Setting %s cache with key '%s', args '%r', kwargs '%r', expiry '%r'", self.class_path, key, args, kwargs, expiry) self.store(key, expiry, data)
Manually set the cache value with its appropriate expiry.
entailment
def store(self, key, expiry, data): """ Add a result to the cache :key: Cache key to use :expiry: The expiry timestamp after which the result is stale :data: The data to cache """ self.cache.set(key, (expiry, data), self.cache_ttl) if getattr(settings, 'CACHEBACK_VERIFY_CACHE_WRITE', True): # We verify that the item was cached correctly. This is to avoid a # Memcache problem where some values aren't cached correctly # without warning. __, cached_data = self.cache.get(key, (None, None)) if data is not None and cached_data is None: raise RuntimeError( "Unable to save data of type %s to cache" % ( type(data)))
Add a result to the cache :key: Cache key to use :expiry: The expiry timestamp after which the result is stale :data: The data to cache
entailment
def refresh(self, *args, **kwargs): """ Fetch the result SYNCHRONOUSLY and populate the cache """ result = self.fetch(*args, **kwargs) self.store(self.key(*args, **kwargs), self.expiry(*args, **kwargs), result) return result
Fetch the result SYNCHRONOUSLY and populate the cache
entailment