pipeline_tag
stringclasses
48 values
library_name
stringclasses
198 values
text
stringlengths
1
900k
metadata
stringlengths
2
438k
id
stringlengths
5
122
last_modified
null
tags
sequencelengths
1
1.84k
sha
null
created_at
stringlengths
25
25
arxiv
sequencelengths
0
201
languages
sequencelengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
sequencelengths
0
722
processed_texts
sequencelengths
1
723
tokens_length
sequencelengths
1
723
input_texts
sequencelengths
1
1
fill-mask
transformers
# CamemBERT pretrained on french trade directories from the XIXth century This mdoel is part of the material of the paper > Abadie, N., Carlinet, E., Chazalon, J., Dumรฉnieu, B. (2022). A > Benchmark of Named Entity Recognition Approaches in Historical > Documents Application to 19๐‘กโ„Ž Century French Directories. In: Uchida, > S., Barney, E., Eglin, V. (eds) Document Analysis Systems. DAS 2022. > Lecture Notes in Computer Science, vol 13237. Springer, Cham. > https://doi.org/10.1007/978-3-031-06555-2_30 The source code to train this model is available on the [GitHub repository](https://github.com/soduco/paper-ner-bench-das22) of the paper as a Jupyter notebook in `src/ner/10-camembert_pretraining.ipynb`. ## Model description This model pre-train the model [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) on a set of ~845k entries from Paris trade directories from the XIXth century extracted with OCR. Trade directory entries are short and strongly structured texts that giving the name, activity and location of a person or business, e.g: ``` Peynaud, R. de la Vieille Bouclerie, 18. Richard, Joullain et comp., (commission- โ€”Phรฉรขtre Franรงais. naire, (entrepรดt), au port de la Rapรฉe- ``` ## Intended uses & limitations This model is intended for reproducibility of the NER evaluation published in the DAS2022 paper. Several derived models trained for NER on trade directories are available on HuggingFace, each trained on a different dataset : - [das22-10-camembert_pretrained_finetuned_ref](): trained for NER on ~6000 directory entries manually corrected. - [das22-10-camembert_pretrained_finetuned_pero](): trained for NER on ~6000 directory entries extracted with PERO-OCR. - [das22-10-camembert_pretrained_finetuned_tess](): trained for NER on ~6000 directory entries extracted with Tesseract. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 1.9603 | 1.0 | 100346 | 1.8005 | | 1.7032 | 2.0 | 200692 | 1.6460 | | 1.5879 | 3.0 | 301038 | 1.5570 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "CamemBERT pretrained on french trade directories from the XIXth century", "results": []}]}
HueyNemud/das22-10-camembert_pretrained
null
[ "transformers", "pytorch", "camembert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #camembert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
CamemBERT pretrained on french trade directories from the XIXth century ======================================================================= This mdoel is part of the material of the paper > > Abadie, N., Carlinet, E., Chazalon, J., Dumรฉnieu, B. (2022). A > Benchmark of Named Entity Recognition Approaches in Historical > Documents Application to 19๐‘กโ„Ž Century French Directories. In: Uchida, > S., Barney, E., Eglin, V. (eds) Document Analysis Systems. DAS 2022. > Lecture Notes in Computer Science, vol 13237. Springer, Cham. > URL > > > The source code to train this model is available on the GitHub repository of the paper as a Jupyter notebook in 'src/ner/10-camembert\_pretraining.ipynb'. Model description ----------------- This model pre-train the model Jean-Baptiste/camembert-ner on a set of ~845k entries from Paris trade directories from the XIXth century extracted with OCR. Trade directory entries are short and strongly structured texts that giving the name, activity and location of a person or business, e.g: Intended uses & limitations --------------------------- This model is intended for reproducibility of the NER evaluation published in the DAS2022 paper. Several derived models trained for NER on trade directories are available on HuggingFace, each trained on a different dataset : * das22-10-camembert\_pretrained\_finetuned\_ref: trained for NER on ~6000 directory entries manually corrected. * das22-10-camembert\_pretrained\_finetuned\_pero: trained for NER on ~6000 directory entries extracted with PERO-OCR. * das22-10-camembert\_pretrained\_finetuned\_tess: trained for NER on ~6000 directory entries extracted with Tesseract. ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.16.0.dev0 * Pytorch 1.10.1+cu102 * Datasets 1.17.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #camembert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ 36, 103, 5, 47 ]
[ "TAGS\n#transformers #pytorch #camembert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
null
sentence-transformers
# KLUE RoBERTa base model for Sentence Embeddings This is the `sentence-klue-roberta-base` model. The sentence-transformers repository allows to train and use Transformer models for generating sentence and text embeddings. The model is described in the paper [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084) ## Usage (Sentence-Transformers) Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python import torch from sentence_transformers import SentenceTransformer, util model = SentenceTransformer("Huffon/sentence-klue-roberta-base") docs = [ "1992๋…„ 7์›” 8์ผ ์†ํฅ๋ฏผ์€ ๊ฐ•์›๋„ ์ถ˜์ฒœ์‹œ ํ›„ํ‰๋™์—์„œ ์•„๋ฒ„์ง€ ์†์›…์ •๊ณผ ์–ด๋จธ๋‹ˆ ๊ธธ์€์ž์˜ ์ฐจ๋‚จ์œผ๋กœ ํƒœ์–ด๋‚˜ ๊ทธ๊ณณ์—์„œ ์ž๋ž๋‹ค.", "ํ˜•์€ ์†ํฅ์œค์ด๋‹ค.", "์ถ˜์ฒœ ๋ถ€์•ˆ์ดˆ๋“ฑํ•™๊ต๋ฅผ ์กธ์—…ํ–ˆ๊ณ , ์ถ˜์ฒœ ํ›„ํ‰์ค‘ํ•™๊ต์— ์ž…ํ•™ํ•œ ํ›„ 2ํ•™๋…„๋•Œ ์›์ฃผ ์œก๋ฏผ๊ด€์ค‘ํ•™๊ต ์ถ•๊ตฌ๋ถ€์— ๋“ค์–ด๊ฐ€๊ธฐ ์œ„ํ•ด ์ „ํ•™ํ•˜์—ฌ ์กธ์—…ํ•˜์˜€์œผ๋ฉฐ, 2008๋…„ ๋‹น์‹œ FC ์„œ์šธ์˜ U-18ํŒ€์ด์—ˆ๋˜ ๋™๋ถ๊ณ ๋“ฑํ•™๊ต ์ถ•๊ตฌ๋ถ€์—์„œ ์„ ์ˆ˜ ํ™œ๋™ ์ค‘ ๋Œ€ํ•œ์ถ•๊ตฌํ˜‘ํšŒ ์šฐ์ˆ˜์„ ์ˆ˜ ํ•ด์™ธ์œ ํ•™ ํ”„๋กœ์ ํŠธ์— ์„ ๋ฐœ๋˜์–ด 2008๋…„ 8์›” ๋…์ผ ๋ถ„๋ฐ์Šค๋ฆฌ๊ฐ€์˜ ํ•จ๋ถ€๋ฅดํฌ ์œ ์†Œ๋…„ํŒ€์— ์ž…๋‹จํ•˜์˜€๋‹ค.", "ํ•จ๋ถ€๋ฅดํฌ ์œ ์ŠคํŒ€ ์ฃผ์ „ ๊ณต๊ฒฉ์ˆ˜๋กœ 2008๋…„ 6์›” ๋„ค๋œ๋ž€๋“œ์—์„œ ์—ด๋ฆฐ 4๊ฐœ๊ตญ ๊ฒฝ๊ธฐ์—์„œ 4๊ฒŒ์ž„์— ์ถœ์ „, 3๊ณจ์„ ํ„ฐ๋œจ๋ ธ๋‹ค.", "1๋…„๊ฐ„์˜ ์œ ํ•™ ํ›„ 2009๋…„ 8์›” ํ•œ๊ตญ์œผ๋กœ ๋Œ์•„์˜จ ํ›„ 10์›”์— ๊ฐœ๋ง‰ํ•œ FIFA U-17 ์›”๋“œ์ปต์— ์ถœ์ „ํ•˜์—ฌ 3๊ณจ์„ ํ„ฐํŠธ๋ฆฌ๋ฉฐ ํ•œ๊ตญ์„ 8๊ฐ•์œผ๋กœ ์ด๋Œ์—ˆ๋‹ค.", "๊ทธํ•ด 11์›” ํ•จ๋ถ€๋ฅดํฌ์˜ ์ •์‹ ์œ ์†Œ๋…„ํŒ€ ์„ ์ˆ˜ ๊ณ„์•ฝ์„ ์ฒด๊ฒฐํ•˜์˜€์œผ๋ฉฐ ๋…์ผ U-19 ๋ฆฌ๊ทธ 4๊ฒฝ๊ธฐ 2๊ณจ์„ ๋„ฃ๊ณ  2๊ตฐ ๋ฆฌ๊ทธ์— ์ถœ์ „์„ ์‹œ์ž‘ํ–ˆ๋‹ค.", "๋…์ผ U-19 ๋ฆฌ๊ทธ์—์„œ ์†ํฅ๋ฏผ์€ 11๊ฒฝ๊ธฐ 6๊ณจ, 2๋ถ€ ๋ฆฌ๊ทธ์—์„œ๋Š” 6๊ฒฝ๊ธฐ 1๊ณจ์„ ๋„ฃ์œผ๋ฉฐ ์žฌ๋Šฅ์„ ์ธ์ •๋ฐ›์•„ 2010๋…„ 6์›” 17์„ธ์˜ ๋‚˜์ด๋กœ ํ•จ๋ถ€๋ฅดํฌ์˜ 1๊ตฐ ํŒ€ ํ›ˆ๋ จ์— ์ฐธ๊ฐ€, ํ”„๋ฆฌ์‹œ์ฆŒ ํ™œ์•ฝ์œผ๋กœ ํ•จ๋ถ€๋ฅดํฌ์™€ ์ •์‹ ๊ณ„์•ฝ์„ ํ•œ ํ›„ 10์›” 18์„ธ์— ํ•จ๋ถ€๋ฅดํฌ 1๊ตฐ ์†Œ์†์œผ๋กœ ๋…์ผ ๋ถ„๋ฐ์Šค๋ฆฌ๊ฐ€์— ๋ฐ๋ท”ํ•˜์˜€๋‹ค.", ] document_embeddings = model.encode(docs) query = "์†ํฅ๋ฏผ์€ ์–ด๋ฆฐ ๋‚˜์ด์— ์œ ๋Ÿฝ์— ์ง„์ถœํ•˜์˜€๋‹ค." query_embedding = model.encode(query) top_k = min(5, len(docs)) cos_scores = util.pytorch_cos_sim(query_embedding, document_embeddings)[0] top_results = torch.topk(cos_scores, k=top_k) print(f"์ž…๋ ฅ ๋ฌธ์žฅ: {query}") print(f"<์ž…๋ ฅ ๋ฌธ์žฅ๊ณผ ์œ ์‚ฌํ•œ {top_k} ๊ฐœ์˜ ๋ฌธ์žฅ>") for i, (score, idx) in enumerate(zip(top_results[0], top_results[1])): print(f"{i+1}: {docs[idx]} {'(์œ ์‚ฌ๋„: {:.4f})'.format(score)}") ```
{"language": "ko", "tags": ["roberta", "sentence-transformers"], "datasets": ["klue"]}
Huffon/sentence-klue-roberta-base
null
[ "sentence-transformers", "pytorch", "roberta", "ko", "dataset:klue", "arxiv:1908.10084", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[ "1908.10084" ]
[ "ko" ]
TAGS #sentence-transformers #pytorch #roberta #ko #dataset-klue #arxiv-1908.10084 #has_space #region-us
# KLUE RoBERTa base model for Sentence Embeddings This is the 'sentence-klue-roberta-base' model. The sentence-transformers repository allows to train and use Transformer models for generating sentence and text embeddings. The model is described in the paper Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks ## Usage (Sentence-Transformers) Using this model becomes more convenient when you have sentence-transformers installed: Then you can use the model like this:
[ "# KLUE RoBERTa base model for Sentence Embeddings\n\nThis is the 'sentence-klue-roberta-base' model. The sentence-transformers repository allows to train and use Transformer models for generating sentence and text embeddings.\n\nThe model is described in the paper Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", "## Usage (Sentence-Transformers)\n\nUsing this model becomes more convenient when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:" ]
[ "TAGS\n#sentence-transformers #pytorch #roberta #ko #dataset-klue #arxiv-1908.10084 #has_space #region-us \n", "# KLUE RoBERTa base model for Sentence Embeddings\n\nThis is the 'sentence-klue-roberta-base' model. The sentence-transformers repository allows to train and use Transformer models for generating sentence and text embeddings.\n\nThe model is described in the paper Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", "## Usage (Sentence-Transformers)\n\nUsing this model becomes more convenient when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:" ]
[ 39, 74, 31 ]
[ "TAGS\n#sentence-transformers #pytorch #roberta #ko #dataset-klue #arxiv-1908.10084 #has_space #region-us \n# KLUE RoBERTa base model for Sentence Embeddings\n\nThis is the 'sentence-klue-roberta-base' model. The sentence-transformers repository allows to train and use Transformer models for generating sentence and text embeddings.\n\nThe model is described in the paper Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks## Usage (Sentence-Transformers)\n\nUsing this model becomes more convenient when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:" ]
sentence-similarity
sentence-transformers
# Humair/all-mpnet-base-v2-finetuned-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Humair/all-mpnet-base-v2-finetuned-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Humair/all-mpnet-base-v2-finetuned-v2') model = AutoModel.from_pretrained('Humair/all-mpnet-base-v2-finetuned-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Humair/all-mpnet-base-v2-finetuned-v2) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1 with parameters: ``` {'batch_size': 128, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 32, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
{"tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "transformers"], "pipeline_tag": "sentence-similarity"}
Humair/all-mpnet-base-v2-finetuned-v2
null
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #sentence-transformers #pytorch #mpnet #feature-extraction #sentence-similarity #transformers #endpoints_compatible #region-us
# Humair/all-mpnet-base-v2-finetuned-v2 This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have sentence-transformers installed: Then you can use the model like this: ## Usage (HuggingFace Transformers) Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL ## Training The model was trained with the parameters: DataLoader: 'URL.dataloader.DataLoader' of length 1 with parameters: Loss: 'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters: Parameters of the fit()-Method: ## Full Model Architecture ## Citing & Authors
[ "# Humair/all-mpnet-base-v2-finetuned-v2\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.", "## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:", "## Usage (HuggingFace Transformers)\nWithout sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.", "## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL", "## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 1 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:", "## Full Model Architecture", "## Citing & Authors" ]
[ "TAGS\n#sentence-transformers #pytorch #mpnet #feature-extraction #sentence-similarity #transformers #endpoints_compatible #region-us \n", "# Humair/all-mpnet-base-v2-finetuned-v2\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.", "## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:", "## Usage (HuggingFace Transformers)\nWithout sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.", "## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL", "## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 1 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:", "## Full Model Architecture", "## Citing & Authors" ]
[ 32, 55, 30, 58, 26, 72, 5, 5 ]
[ "TAGS\n#sentence-transformers #pytorch #mpnet #feature-extraction #sentence-similarity #transformers #endpoints_compatible #region-us \n# Humair/all-mpnet-base-v2-finetuned-v2\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:## Usage (HuggingFace Transformers)\nWithout sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 1 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:## Full Model Architecture## Citing & Authors" ]
null
null
Model saved for Paraphrased Detection in English-Vietnamese cross-lingual based on XLM-R in MT-DNN MT-DNN: github.com/namisan/mt-dnn
{}
HungVo/mt-dnn-ev-mrpc
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #region-us
Model saved for Paraphrased Detection in English-Vietnamese cross-lingual based on XLM-R in MT-DNN MT-DNN: URL
[]
[ "TAGS\n#region-us \n" ]
[ 5 ]
[ "TAGS\n#region-us \n" ]
text-generation
transformers
#DwightSchrute DialoGPT-Model #TheOffice
{"tags": ["conversational"]}
HypNyx/DialoGPT-small-DwightBot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#DwightSchrute DialoGPT-Model #TheOffice
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 39 ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
#Thanos DialoGPT Model
{"tags": ["conversational"]}
HypNyx/DialoGPT-small-Thanos
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#Thanos DialoGPT Model
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 39 ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
# Peter from Your Boyfriend Game.
{"tags": ["conversational"]}
HypedKid/PeterBot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
# Peter from Your Boyfriend Game.
[ "# Peter from Your Boyfriend Game." ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "# Peter from Your Boyfriend Game." ]
[ 43, 7 ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n# Peter from Your Boyfriend Game." ]
null
transformers
# Erlangshen-MegatronBert-1.3B - Main Page:[Fengshenbang](https://fengshenbang-lm.com/) - Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM) ## ็ฎ€ไป‹ Brief Introduction 2021็™ป้กถFewCLUEๅ’ŒZeroCLUE๏ผŒๅค„็†NLUไปปๅŠก๏ผŒๅผ€ๆบๆ—ถๆœ€ๅคง็š„ไธญๆ–‡BERTๆจกๅž‹ It topped FewCLUE and ZeroCLUE benchmarks in 2021, solving NLU tasks, was the largest BERT when publicly released. ## ๆจกๅž‹ๅˆ†็ฑป Model Taxonomy | ้œ€ๆฑ‚ Demand | ไปปๅŠก Task | ็ณปๅˆ— Series | ๆจกๅž‹ Model | ๅ‚ๆ•ฐ Parameter | ้ขๅค– Extra | | :----: | :----: | :----: | :----: | :----: | :----: | | ้€š็”จ General | ่‡ช็„ถ่ฏญ่จ€็†่งฃ NLU | ไบŒ้ƒŽ็ฅž Erlangshen | MegatronBERT | 1.3B | ไธญๆ–‡ Chinese | ## ๆจกๅž‹ไฟกๆฏ Model Information Encoder็ป“ๆž„ไธบไธป็š„ๅŒๅ‘่ฏญ่จ€ๆจกๅž‹๏ผŒไธ“ๆณจไบŽ่งฃๅ†ณๅ„็ง่‡ช็„ถ่ฏญ่จ€็†่งฃไปปๅŠกใ€‚ ๆˆ‘ไปฌ่ทŸ่ฟ›ไบ†[Megatron-LM](https://github.com/NVIDIA/Megatron-LM)็š„ๅทฅไฝœ๏ผŒไฝฟ็”จไบ†32ๅผ A100๏ผŒๆ€ปๅ…ฑ่€—ๆ—ถ14ๅคฉๅœจๆ‚Ÿ้“่ฏญๆ–™ๅบ“๏ผˆ180 GB็‰ˆๆœฌ๏ผ‰ไธŠ่ฎญ็ปƒไบ†ๅไบฟ็บงๅˆซๅ‚ๆ•ฐ้‡็š„BERTใ€‚ๅŒๆ—ถ๏ผŒ้‰ดไบŽไธญๆ–‡่ฏญๆณ•ๅ’Œๅคง่ง„ๆจก่ฎญ็ปƒ็š„้šพๅบฆ๏ผŒๆˆ‘ไปฌไฝฟ็”จๅ››็ง้ข„่ฎญ็ปƒ็ญ–็•ฅๆฅๆ”น่ฟ›BERT๏ผš1) ๆ•ด่ฏๆŽฉ็ , 2) ็Ÿฅ่ฏ†ๅŠจๆ€้ฎๆŽฉ, 3) ๅฅๅญ้กบๅบ้ข„ๆต‹, 4) ๅฑ‚ๅ‰ๅฝ’ไธ€ๅŒ–. A bidirectional language model based on the Encoder structure, focusing on solving various NLU tasks. We follow [Megatron-LM](https://github.com/NVIDIA/Megatron-LM), using 32 A100s and spending 14 days training a billion-level BERT on WuDao Corpora (180 GB version). Given Chinese grammar and the difficulty of large-scale training, we use four pre-training procedures to improve BERT: 1) Whole Word Masking (WWM), 2) Knowledge-based Dynamic Masking (KDM), 3) Sentence Order Prediction (SOP), 4) Pre-layer Normalization (Pre-LN). ### ๆˆๅฐฑ Achievements 1.2021ๅนด11ๆœˆ10ๆ—ฅ๏ผŒErlangshen-MegatronBert-1.3BๅœจFewCLUEไธŠๅ–ๅพ—็ฌฌไธ€ใ€‚ๅ…ถไธญ๏ผŒๅฎƒๅœจCHIDF(ๆˆ่ฏญๅกซ็ฉบ)ๅ’ŒTNEWS(ๆ–ฐ้—ปๅˆ†็ฑป)ๅญไปปๅŠกไธญ็š„่กจ็Žฐไผ˜ไบŽไบบ็ฑป่กจ็Žฐใ€‚ๆญคๅค–๏ผŒๅฎƒๅœจCHIDF(ๆˆ่ฏญๅกซ็ฉบ), CSLDCP(ๅญฆ็ง‘ๆ–‡็Œฎๅˆ†็ฑป), OCNLI(่‡ช็„ถ่ฏญ่จ€ๆŽจ็†)ไปปๅŠกไธญๅ‡ๅๅˆ—ๅ‰่Œ…ใ€‚ 2.2022ๅนด1ๆœˆ24ๆ—ฅ๏ผŒErlangshen-MegatronBert-1.3BๅœจCLUEๅŸบๅ‡†ๆต‹่ฏ•ไธญ็š„ZeroCLUEไธญๅ–ๅพ—็ฌฌไธ€ใ€‚ๅ…ทไฝ“ๅˆฐๅญไปปๅŠก๏ผŒๆˆ‘ไปฌๅœจCSLDCP(ไธป้ข˜ๆ–‡็Œฎๅˆ†็ฑป), TNEWS(ๆ–ฐ้—ปๅˆ†็ฑป), IFLYTEK(ๅบ”็”จๆ่ฟฐๅˆ†็ฑป), CSL(ๆŠฝ่ฑกๅ…ณ้”ฎๅญ—่ฏ†ๅˆซ)ๅ’ŒCLUEWSC(ๅ‚่€ƒๆถˆๆญง)ไปปๅŠกไธญๅ–ๅพ—็ฌฌไธ€ใ€‚ 3.ๅœจ2022ๅนด7ๆœˆ10ๆ—ฅ๏ผŒErlangshen-MegatronBert-1.3BๅœจCLUEๅŸบๅ‡†็š„่ฏญไน‰ๅŒน้…ไปปๅŠกไธญๅ–ๅพ—็ฌฌไธ€ใ€‚ 1.On November 10, 2021, Erlangshen-MegatronBert-1.3B topped the FewCLUE benchmark. Among them, our Erlangshen outperformed human performance in CHIDF (idiom fill-in-the-blank) and TNEWS (news classification) subtasks. In addition, our Erlangshen ranked the top in CHIDF (idiom fill-in-the-blank), CSLDCP (subject literature classification), and OCNLI (natural language inference) tasks. 2.On January 24, 2022, Erlangshen-MegatronBert-1.3B topped the ZeroCLUE benchmark. For each of these tasks, we rank the top ones in CSLDCP (Subject Literature Classification), TNEWS (News Classification), IFLYTEK (Application Description Classification), CSL (Abstract Keyword Recognition), and CLUEWSC (Referential Disambiguation) tasks. 3.Erlangshen-MegatronBert-1.3B topped the CLUE benchmark semantic matching task on July 10, 2022. ### ไธ‹ๆธธๆ•ˆๆžœ Performance | ๆจกๅž‹ | afqmc | tnews | iflytek | ocnli | cmnli | wsc | csl | | :--------: | :-----: | :----: | :-----: | :----: | :----: | :----: | :----: | | roberta-wwm-ext-large | 0.7514 | 0.5872 | 0.6152 | 0.777 | 0.814 | 0.8914 | 0.86 | | Erlangshen-MegatronBert-1.3B | 0.7608 | 0.5996 | 0.6234 | 0.7917 | 0.81 | 0.9243 | 0.872 | ## ไฝฟ็”จ Usage ``` python from transformers import MegatronBertConfig, MegatronBertModel from transformers import BertTokenizer tokenizer = BertTokenizer.from_pretrained("IDEA-CCNL/Erlangshen-MegatronBert-1.3B") config = MegatronBertConfig.from_pretrained("IDEA-CCNL/Erlangshen-MegatronBert-1.3B") model = MegatronBertModel.from_pretrained("IDEA-CCNL/Erlangshen-MegatronBert-1.3B") ``` ## ๅผ•็”จ Citation ๅฆ‚ๆžœๆ‚จๅœจๆ‚จ็š„ๅทฅไฝœไธญไฝฟ็”จไบ†ๆˆ‘ไปฌ็š„ๆจกๅž‹๏ผŒๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„[่ฎบๆ–‡](https://arxiv.org/abs/2209.02970)๏ผš If you are using the resource for your work, please cite the our [paper](https://arxiv.org/abs/2209.02970): ```text @article{fengshenbang, author = {Jiaxing Zhang and Ruyi Gan and Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen}, title = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence}, journal = {CoRR}, volume = {abs/2209.02970}, year = {2022} } ``` ไนŸๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„[็ฝ‘็ซ™](https://github.com/IDEA-CCNL/Fengshenbang-LM/): You can also cite our [website](https://github.com/IDEA-CCNL/Fengshenbang-LM/): ```text @misc{Fengshenbang-LM, title={Fengshenbang-LM}, author={IDEA-CCNL}, year={2021}, howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, } ```
{"language": ["zh"], "license": "apache-2.0", "tags": ["bert", "NLU", "FewCLUE", "ZeroCLUE"], "inference": true}
IDEA-CCNL/Erlangshen-MegatronBert-1.3B
null
[ "transformers", "pytorch", "megatron-bert", "bert", "NLU", "FewCLUE", "ZeroCLUE", "zh", "arxiv:2209.02970", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[ "2209.02970" ]
[ "zh" ]
TAGS #transformers #pytorch #megatron-bert #bert #NLU #FewCLUE #ZeroCLUE #zh #arxiv-2209.02970 #license-apache-2.0 #endpoints_compatible #region-us
Erlangshen-MegatronBert-1.3B ============================ * Main Page:Fengshenbang * Github: Fengshenbang-LM ็ฎ€ไป‹ Brief Introduction --------------------- 2021็™ป้กถFewCLUEๅ’ŒZeroCLUE๏ผŒๅค„็†NLUไปปๅŠก๏ผŒๅผ€ๆบๆ—ถๆœ€ๅคง็š„ไธญๆ–‡BERTๆจกๅž‹ It topped FewCLUE and ZeroCLUE benchmarks in 2021, solving NLU tasks, was the largest BERT when publicly released. ๆจกๅž‹ๅˆ†็ฑป Model Taxonomy ------------------- ๆจกๅž‹ไฟกๆฏ Model Information ---------------------- Encoder็ป“ๆž„ไธบไธป็š„ๅŒๅ‘่ฏญ่จ€ๆจกๅž‹๏ผŒไธ“ๆณจไบŽ่งฃๅ†ณๅ„็ง่‡ช็„ถ่ฏญ่จ€็†่งฃไปปๅŠกใ€‚ ๆˆ‘ไปฌ่ทŸ่ฟ›ไบ†Megatron-LM็š„ๅทฅไฝœ๏ผŒไฝฟ็”จไบ†32ๅผ A100๏ผŒๆ€ปๅ…ฑ่€—ๆ—ถ14ๅคฉๅœจๆ‚Ÿ้“่ฏญๆ–™ๅบ“๏ผˆ180 GB็‰ˆๆœฌ๏ผ‰ไธŠ่ฎญ็ปƒไบ†ๅไบฟ็บงๅˆซๅ‚ๆ•ฐ้‡็š„BERTใ€‚ๅŒๆ—ถ๏ผŒ้‰ดไบŽไธญๆ–‡่ฏญๆณ•ๅ’Œๅคง่ง„ๆจก่ฎญ็ปƒ็š„้šพๅบฆ๏ผŒๆˆ‘ไปฌไฝฟ็”จๅ››็ง้ข„่ฎญ็ปƒ็ญ–็•ฅๆฅๆ”น่ฟ›BERT๏ผš1) ๆ•ด่ฏๆŽฉ็ , 2) ็Ÿฅ่ฏ†ๅŠจๆ€้ฎๆŽฉ, 3) ๅฅๅญ้กบๅบ้ข„ๆต‹, 4) ๅฑ‚ๅ‰ๅฝ’ไธ€ๅŒ–. A bidirectional language model based on the Encoder structure, focusing on solving various NLU tasks. We follow Megatron-LM, using 32 A100s and spending 14 days training a billion-level BERT on WuDao Corpora (180 GB version). Given Chinese grammar and the difficulty of large-scale training, we use four pre-training procedures to improve BERT: 1) Whole Word Masking (WWM), 2) Knowledge-based Dynamic Masking (KDM), 3) Sentence Order Prediction (SOP), 4) Pre-layer Normalization (Pre-LN). ### ๆˆๅฐฑ Achievements 1.2021ๅนด11ๆœˆ10ๆ—ฅ๏ผŒErlangshen-MegatronBert-1.3BๅœจFewCLUEไธŠๅ–ๅพ—็ฌฌไธ€ใ€‚ๅ…ถไธญ๏ผŒๅฎƒๅœจCHIDF(ๆˆ่ฏญๅกซ็ฉบ)ๅ’ŒTNEWS(ๆ–ฐ้—ปๅˆ†็ฑป)ๅญไปปๅŠกไธญ็š„่กจ็Žฐไผ˜ไบŽไบบ็ฑป่กจ็Žฐใ€‚ๆญคๅค–๏ผŒๅฎƒๅœจCHIDF(ๆˆ่ฏญๅกซ็ฉบ), CSLDCP(ๅญฆ็ง‘ๆ–‡็Œฎๅˆ†็ฑป), OCNLI(่‡ช็„ถ่ฏญ่จ€ๆŽจ็†)ไปปๅŠกไธญๅ‡ๅๅˆ—ๅ‰่Œ…ใ€‚ 2.2022ๅนด1ๆœˆ24ๆ—ฅ๏ผŒErlangshen-MegatronBert-1.3BๅœจCLUEๅŸบๅ‡†ๆต‹่ฏ•ไธญ็š„ZeroCLUEไธญๅ–ๅพ—็ฌฌไธ€ใ€‚ๅ…ทไฝ“ๅˆฐๅญไปปๅŠก๏ผŒๆˆ‘ไปฌๅœจCSLDCP(ไธป้ข˜ๆ–‡็Œฎๅˆ†็ฑป), TNEWS(ๆ–ฐ้—ปๅˆ†็ฑป), IFLYTEK(ๅบ”็”จๆ่ฟฐๅˆ†็ฑป), CSL(ๆŠฝ่ฑกๅ…ณ้”ฎๅญ—่ฏ†ๅˆซ)ๅ’ŒCLUEWSC(ๅ‚่€ƒๆถˆๆญง)ไปปๅŠกไธญๅ–ๅพ—็ฌฌไธ€ใ€‚ 3.ๅœจ2022ๅนด7ๆœˆ10ๆ—ฅ๏ผŒErlangshen-MegatronBert-1.3BๅœจCLUEๅŸบๅ‡†็š„่ฏญไน‰ๅŒน้…ไปปๅŠกไธญๅ–ๅพ—็ฌฌไธ€ใ€‚ 1.On November 10, 2021, Erlangshen-MegatronBert-1.3B topped the FewCLUE benchmark. Among them, our Erlangshen outperformed human performance in CHIDF (idiom fill-in-the-blank) and TNEWS (news classification) subtasks. In addition, our Erlangshen ranked the top in CHIDF (idiom fill-in-the-blank), CSLDCP (subject literature classification), and OCNLI (natural language inference) tasks. 2.On January 24, 2022, Erlangshen-MegatronBert-1.3B topped the ZeroCLUE benchmark. For each of these tasks, we rank the top ones in CSLDCP (Subject Literature Classification), TNEWS (News Classification), IFLYTEK (Application Description Classification), CSL (Abstract Keyword Recognition), and CLUEWSC (Referential Disambiguation) tasks. 3.Erlangshen-MegatronBert-1.3B topped the CLUE benchmark semantic matching task on July 10, 2022. ### ไธ‹ๆธธๆ•ˆๆžœ Performance ไฝฟ็”จ Usage -------- ๅผ•็”จ Citation ----------- ๅฆ‚ๆžœๆ‚จๅœจๆ‚จ็š„ๅทฅไฝœไธญไฝฟ็”จไบ†ๆˆ‘ไปฌ็š„ๆจกๅž‹๏ผŒๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„่ฎบๆ–‡๏ผš If you are using the resource for your work, please cite the our paper: ไนŸๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„็ฝ‘็ซ™: You can also cite our website:
[ "### ๆˆๅฐฑ Achievements\n\n\n1.2021ๅนด11ๆœˆ10ๆ—ฅ๏ผŒErlangshen-MegatronBert-1.3BๅœจFewCLUEไธŠๅ–ๅพ—็ฌฌไธ€ใ€‚ๅ…ถไธญ๏ผŒๅฎƒๅœจCHIDF(ๆˆ่ฏญๅกซ็ฉบ)ๅ’ŒTNEWS(ๆ–ฐ้—ปๅˆ†็ฑป)ๅญไปปๅŠกไธญ็š„่กจ็Žฐไผ˜ไบŽไบบ็ฑป่กจ็Žฐใ€‚ๆญคๅค–๏ผŒๅฎƒๅœจCHIDF(ๆˆ่ฏญๅกซ็ฉบ), CSLDCP(ๅญฆ็ง‘ๆ–‡็Œฎๅˆ†็ฑป), OCNLI(่‡ช็„ถ่ฏญ่จ€ๆŽจ็†)ไปปๅŠกไธญๅ‡ๅๅˆ—ๅ‰่Œ…ใ€‚ \n\n2.2022ๅนด1ๆœˆ24ๆ—ฅ๏ผŒErlangshen-MegatronBert-1.3BๅœจCLUEๅŸบๅ‡†ๆต‹่ฏ•ไธญ็š„ZeroCLUEไธญๅ–ๅพ—็ฌฌไธ€ใ€‚ๅ…ทไฝ“ๅˆฐๅญไปปๅŠก๏ผŒๆˆ‘ไปฌๅœจCSLDCP(ไธป้ข˜ๆ–‡็Œฎๅˆ†็ฑป), TNEWS(ๆ–ฐ้—ปๅˆ†็ฑป), IFLYTEK(ๅบ”็”จๆ่ฟฐๅˆ†็ฑป), CSL(ๆŠฝ่ฑกๅ…ณ้”ฎๅญ—่ฏ†ๅˆซ)ๅ’ŒCLUEWSC(ๅ‚่€ƒๆถˆๆญง)ไปปๅŠกไธญๅ–ๅพ—็ฌฌไธ€ใ€‚ \n\n3.ๅœจ2022ๅนด7ๆœˆ10ๆ—ฅ๏ผŒErlangshen-MegatronBert-1.3BๅœจCLUEๅŸบๅ‡†็š„่ฏญไน‰ๅŒน้…ไปปๅŠกไธญๅ–ๅพ—็ฌฌไธ€ใ€‚\n\n\n1.On November 10, 2021, Erlangshen-MegatronBert-1.3B topped the FewCLUE benchmark. Among them, our Erlangshen outperformed human performance in CHIDF (idiom fill-in-the-blank) and TNEWS (news classification) subtasks. In addition, our Erlangshen ranked the top in CHIDF (idiom fill-in-the-blank), CSLDCP (subject literature classification), and OCNLI (natural language inference) tasks. \n\n2.On January 24, 2022, Erlangshen-MegatronBert-1.3B topped the ZeroCLUE benchmark. For each of these tasks, we rank the top ones in CSLDCP (Subject Literature Classification), TNEWS (News Classification), IFLYTEK (Application Description Classification), CSL (Abstract Keyword Recognition), and CLUEWSC (Referential Disambiguation) tasks. \n\n3.Erlangshen-MegatronBert-1.3B topped the CLUE benchmark semantic matching task on July 10, 2022.", "### ไธ‹ๆธธๆ•ˆๆžœ Performance\n\n\n\nไฝฟ็”จ Usage\n--------\n\n\nๅผ•็”จ Citation\n-----------\n\n\nๅฆ‚ๆžœๆ‚จๅœจๆ‚จ็š„ๅทฅไฝœไธญไฝฟ็”จไบ†ๆˆ‘ไปฌ็š„ๆจกๅž‹๏ผŒๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„่ฎบๆ–‡๏ผš\n\n\nIf you are using the resource for your work, please cite the our paper:\n\n\nไนŸๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„็ฝ‘็ซ™:\n\n\nYou can also cite our website:" ]
[ "TAGS\n#transformers #pytorch #megatron-bert #bert #NLU #FewCLUE #ZeroCLUE #zh #arxiv-2209.02970 #license-apache-2.0 #endpoints_compatible #region-us \n", "### ๆˆๅฐฑ Achievements\n\n\n1.2021ๅนด11ๆœˆ10ๆ—ฅ๏ผŒErlangshen-MegatronBert-1.3BๅœจFewCLUEไธŠๅ–ๅพ—็ฌฌไธ€ใ€‚ๅ…ถไธญ๏ผŒๅฎƒๅœจCHIDF(ๆˆ่ฏญๅกซ็ฉบ)ๅ’ŒTNEWS(ๆ–ฐ้—ปๅˆ†็ฑป)ๅญไปปๅŠกไธญ็š„่กจ็Žฐไผ˜ไบŽไบบ็ฑป่กจ็Žฐใ€‚ๆญคๅค–๏ผŒๅฎƒๅœจCHIDF(ๆˆ่ฏญๅกซ็ฉบ), CSLDCP(ๅญฆ็ง‘ๆ–‡็Œฎๅˆ†็ฑป), OCNLI(่‡ช็„ถ่ฏญ่จ€ๆŽจ็†)ไปปๅŠกไธญๅ‡ๅๅˆ—ๅ‰่Œ…ใ€‚ \n\n2.2022ๅนด1ๆœˆ24ๆ—ฅ๏ผŒErlangshen-MegatronBert-1.3BๅœจCLUEๅŸบๅ‡†ๆต‹่ฏ•ไธญ็š„ZeroCLUEไธญๅ–ๅพ—็ฌฌไธ€ใ€‚ๅ…ทไฝ“ๅˆฐๅญไปปๅŠก๏ผŒๆˆ‘ไปฌๅœจCSLDCP(ไธป้ข˜ๆ–‡็Œฎๅˆ†็ฑป), TNEWS(ๆ–ฐ้—ปๅˆ†็ฑป), IFLYTEK(ๅบ”็”จๆ่ฟฐๅˆ†็ฑป), CSL(ๆŠฝ่ฑกๅ…ณ้”ฎๅญ—่ฏ†ๅˆซ)ๅ’ŒCLUEWSC(ๅ‚่€ƒๆถˆๆญง)ไปปๅŠกไธญๅ–ๅพ—็ฌฌไธ€ใ€‚ \n\n3.ๅœจ2022ๅนด7ๆœˆ10ๆ—ฅ๏ผŒErlangshen-MegatronBert-1.3BๅœจCLUEๅŸบๅ‡†็š„่ฏญไน‰ๅŒน้…ไปปๅŠกไธญๅ–ๅพ—็ฌฌไธ€ใ€‚\n\n\n1.On November 10, 2021, Erlangshen-MegatronBert-1.3B topped the FewCLUE benchmark. Among them, our Erlangshen outperformed human performance in CHIDF (idiom fill-in-the-blank) and TNEWS (news classification) subtasks. In addition, our Erlangshen ranked the top in CHIDF (idiom fill-in-the-blank), CSLDCP (subject literature classification), and OCNLI (natural language inference) tasks. \n\n2.On January 24, 2022, Erlangshen-MegatronBert-1.3B topped the ZeroCLUE benchmark. For each of these tasks, we rank the top ones in CSLDCP (Subject Literature Classification), TNEWS (News Classification), IFLYTEK (Application Description Classification), CSL (Abstract Keyword Recognition), and CLUEWSC (Referential Disambiguation) tasks. \n\n3.Erlangshen-MegatronBert-1.3B topped the CLUE benchmark semantic matching task on July 10, 2022.", "### ไธ‹ๆธธๆ•ˆๆžœ Performance\n\n\n\nไฝฟ็”จ Usage\n--------\n\n\nๅผ•็”จ Citation\n-----------\n\n\nๅฆ‚ๆžœๆ‚จๅœจๆ‚จ็š„ๅทฅไฝœไธญไฝฟ็”จไบ†ๆˆ‘ไปฌ็š„ๆจกๅž‹๏ผŒๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„่ฎบๆ–‡๏ผš\n\n\nIf you are using the resource for your work, please cite the our paper:\n\n\nไนŸๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„็ฝ‘็ซ™:\n\n\nYou can also cite our website:" ]
[ 57, 513, 95 ]
[ "TAGS\n#transformers #pytorch #megatron-bert #bert #NLU #FewCLUE #ZeroCLUE #zh #arxiv-2209.02970 #license-apache-2.0 #endpoints_compatible #region-us \n### ๆˆๅฐฑ Achievements\n\n\n1.2021ๅนด11ๆœˆ10ๆ—ฅ๏ผŒErlangshen-MegatronBert-1.3BๅœจFewCLUEไธŠๅ–ๅพ—็ฌฌไธ€ใ€‚ๅ…ถไธญ๏ผŒๅฎƒๅœจCHIDF(ๆˆ่ฏญๅกซ็ฉบ)ๅ’ŒTNEWS(ๆ–ฐ้—ปๅˆ†็ฑป)ๅญไปปๅŠกไธญ็š„่กจ็Žฐไผ˜ไบŽไบบ็ฑป่กจ็Žฐใ€‚ๆญคๅค–๏ผŒๅฎƒๅœจCHIDF(ๆˆ่ฏญๅกซ็ฉบ), CSLDCP(ๅญฆ็ง‘ๆ–‡็Œฎๅˆ†็ฑป), OCNLI(่‡ช็„ถ่ฏญ่จ€ๆŽจ็†)ไปปๅŠกไธญๅ‡ๅๅˆ—ๅ‰่Œ…ใ€‚ \n\n2.2022ๅนด1ๆœˆ24ๆ—ฅ๏ผŒErlangshen-MegatronBert-1.3BๅœจCLUEๅŸบๅ‡†ๆต‹่ฏ•ไธญ็š„ZeroCLUEไธญๅ–ๅพ—็ฌฌไธ€ใ€‚ๅ…ทไฝ“ๅˆฐๅญไปปๅŠก๏ผŒๆˆ‘ไปฌๅœจCSLDCP(ไธป้ข˜ๆ–‡็Œฎๅˆ†็ฑป), TNEWS(ๆ–ฐ้—ปๅˆ†็ฑป), IFLYTEK(ๅบ”็”จๆ่ฟฐๅˆ†็ฑป), CSL(ๆŠฝ่ฑกๅ…ณ้”ฎๅญ—่ฏ†ๅˆซ)ๅ’ŒCLUEWSC(ๅ‚่€ƒๆถˆๆญง)ไปปๅŠกไธญๅ–ๅพ—็ฌฌไธ€ใ€‚ \n\n3.ๅœจ2022ๅนด7ๆœˆ10ๆ—ฅ๏ผŒErlangshen-MegatronBert-1.3BๅœจCLUEๅŸบๅ‡†็š„่ฏญไน‰ๅŒน้…ไปปๅŠกไธญๅ–ๅพ—็ฌฌไธ€ใ€‚\n\n\n1.On November 10, 2021, Erlangshen-MegatronBert-1.3B topped the FewCLUE benchmark. Among them, our Erlangshen outperformed human performance in CHIDF (idiom fill-in-the-blank) and TNEWS (news classification) subtasks. In addition, our Erlangshen ranked the top in CHIDF (idiom fill-in-the-blank), CSLDCP (subject literature classification), and OCNLI (natural language inference) tasks. \n\n2.On January 24, 2022, Erlangshen-MegatronBert-1.3B topped the ZeroCLUE benchmark. For each of these tasks, we rank the top ones in CSLDCP (Subject Literature Classification), TNEWS (News Classification), IFLYTEK (Application Description Classification), CSL (Abstract Keyword Recognition), and CLUEWSC (Referential Disambiguation) tasks. \n\n3.Erlangshen-MegatronBert-1.3B topped the CLUE benchmark semantic matching task on July 10, 2022.### ไธ‹ๆธธๆ•ˆๆžœ Performance\n\n\n\nไฝฟ็”จ Usage\n--------\n\n\nๅผ•็”จ Citation\n-----------\n\n\nๅฆ‚ๆžœๆ‚จๅœจๆ‚จ็š„ๅทฅไฝœไธญไฝฟ็”จไบ†ๆˆ‘ไปฌ็š„ๆจกๅž‹๏ผŒๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„่ฎบๆ–‡๏ผš\n\n\nIf you are using the resource for your work, please cite the our paper:\n\n\nไนŸๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„็ฝ‘็ซ™:\n\n\nYou can also cite our website:" ]
text2text-generation
transformers
# Randeng-MegatronT5-770M - Main Page:[Fengshenbang](https://fengshenbang-lm.com/) - Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM) ## ็ฎ€ไป‹ Brief Introduction ๅ–„ไบŽๅค„็†NLTไปปๅŠก๏ผŒไธญๆ–‡็‰ˆ็š„T5-largeใ€‚ Good at solving NLT tasks, Chinese T5-large. ## ๆจกๅž‹ๅˆ†็ฑป Model Taxonomy | ้œ€ๆฑ‚ Demand | ไปปๅŠก Task | ็ณปๅˆ— Series | ๆจกๅž‹ Model | ๅ‚ๆ•ฐ Parameter | ้ขๅค– Extra | | :----: | :----: | :----: | :----: | :----: | :----: | | ้€š็”จ General | ่‡ช็„ถ่ฏญ่จ€่ฝฌๆข NLT | ็‡ƒ็ฏ Randeng | MegatronT5 | 770M | ไธญๆ–‡-Chinese | ## ๆจกๅž‹ไฟกๆฏ Model Information ไธบไบ†ๅพ—ๅˆฐไธ€ไธชๅคง่ง„ๆจก็š„ไธญๆ–‡็‰ˆ็š„T5๏ผŒๆˆ‘ไปฌไฝฟ็”จไบ†Megatron-LM็š„ๆ–นๆณ•ๅ’Œๆ‚Ÿ้“่ฏญๆ–™ๅบ“(180G็‰ˆๆœฌ)็”จไบŽ้ข„่ฎญ็ปƒใ€‚ๅ…ทไฝ“ๅœฐ๏ผŒๆˆ‘ไปฌๅœจ้ข„่ฎญ็ปƒ้˜ถๆฎตไธญไฝฟ็”จไบ†[Megatron-LM](https://github.com/NVIDIA/Megatron-LM) ๅคงๆฆ‚่Šฑ่ดนไบ†16ๅผ A100็บฆ14ๅคฉใ€‚ To get a large-scale Chinese T5, we use of [Megatron-LM](https://github.com/NVIDIA/Megatron-LM) and WuDao Corpora (180 GB version) for pre-training. Specifically, in the pre-training phase which cost about 14 days with 16 A100 GPUs. ## ไฝฟ็”จ Usage ๅ› ไธบ[transformers](https://github.com/huggingface/transformers)ๅบ“ไธญๆ˜ฏๆฒกๆœ‰Randeng-MegatronT5-770M็›ธๅ…ณ็š„ๆจกๅž‹็ป“ๆž„็š„๏ผŒๆ‰€ไปฅไฝ ๅฏไปฅๅœจๆˆ‘ไปฌ็š„[Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM)ไธญๆ‰พๅˆฐๅนถไธ”่ฟ่กŒไปฃ็ ใ€‚ Since there is no structure of Randeng-MegatronT5-770M in [transformers library](https://github.com/huggingface/transformers), you can find the structure of Randeng-MegatronT5-770M and run the codes in [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM). ```shell git clone https://github.com/IDEA-CCNL/Fengshenbang-LM.git ``` ### ๅŠ ่ฝฝๆจกๅž‹ Loading Models ```python from fengshen import T5ForConditionalGeneration from fengshen import T5Config from fengshen import T5Tokenizer tokenizer = T5Tokenizer.from_pretrained('IDEA-CCNL/Randeng-MegatronT5-770M') config = T5Config.from_pretrained('IDEA-CCNL/Randeng-MegatronT5-770M') model = T5ForConditionalGeneration.from_pretrained('IDEA-CCNL/Randeng-MegatronT5-770M') ``` ## ๅผ•็”จ Citation ๅฆ‚ๆžœๆ‚จๅœจๆ‚จ็š„ๅทฅไฝœไธญไฝฟ็”จไบ†ๆˆ‘ไปฌ็š„ๆจกๅž‹๏ผŒๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„[่ฎบๆ–‡](https://arxiv.org/abs/2209.02970)๏ผš If you are using the resource for your work, please cite the our [paper](https://arxiv.org/abs/2209.02970): ```text @article{fengshenbang, author = {Jiaxing Zhang and Ruyi Gan and Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen}, title = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence}, journal = {CoRR}, volume = {abs/2209.02970}, year = {2022} } ``` ไนŸๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„[็ฝ‘็ซ™](https://github.com/IDEA-CCNL/Fengshenbang-LM/): You can also cite our [website](https://github.com/IDEA-CCNL/Fengshenbang-LM/): ```text @misc{Fengshenbang-LM, title={Fengshenbang-LM}, author={IDEA-CCNL}, year={2021}, howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, } ```
{"language": ["zh"], "license": "apache-2.0", "inference": false}
IDEA-CCNL/Randeng-MegatronT5-770M
null
[ "transformers", "pytorch", "t5", "text2text-generation", "zh", "arxiv:2209.02970", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[ "2209.02970" ]
[ "zh" ]
TAGS #transformers #pytorch #t5 #text2text-generation #zh #arxiv-2209.02970 #license-apache-2.0 #autotrain_compatible #text-generation-inference #region-us
Randeng-MegatronT5-770M ======================= * Main Page:Fengshenbang * Github: Fengshenbang-LM ็ฎ€ไป‹ Brief Introduction --------------------- ๅ–„ไบŽๅค„็†NLTไปปๅŠก๏ผŒไธญๆ–‡็‰ˆ็š„T5-largeใ€‚ Good at solving NLT tasks, Chinese T5-large. ๆจกๅž‹ๅˆ†็ฑป Model Taxonomy ------------------- ๆจกๅž‹ไฟกๆฏ Model Information ---------------------- ไธบไบ†ๅพ—ๅˆฐไธ€ไธชๅคง่ง„ๆจก็š„ไธญๆ–‡็‰ˆ็š„T5๏ผŒๆˆ‘ไปฌไฝฟ็”จไบ†Megatron-LM็š„ๆ–นๆณ•ๅ’Œๆ‚Ÿ้“่ฏญๆ–™ๅบ“(180G็‰ˆๆœฌ)็”จไบŽ้ข„่ฎญ็ปƒใ€‚ๅ…ทไฝ“ๅœฐ๏ผŒๆˆ‘ไปฌๅœจ้ข„่ฎญ็ปƒ้˜ถๆฎตไธญไฝฟ็”จไบ†Megatron-LM ๅคงๆฆ‚่Šฑ่ดนไบ†16ๅผ A100็บฆ14ๅคฉใ€‚ To get a large-scale Chinese T5, we use of Megatron-LM and WuDao Corpora (180 GB version) for pre-training. Specifically, in the pre-training phase which cost about 14 days with 16 A100 GPUs. ไฝฟ็”จ Usage -------- ๅ› ไธบtransformersๅบ“ไธญๆ˜ฏๆฒกๆœ‰Randeng-MegatronT5-770M็›ธๅ…ณ็š„ๆจกๅž‹็ป“ๆž„็š„๏ผŒๆ‰€ไปฅไฝ ๅฏไปฅๅœจๆˆ‘ไปฌ็š„Fengshenbang-LMไธญๆ‰พๅˆฐๅนถไธ”่ฟ่กŒไปฃ็ ใ€‚ Since there is no structure of Randeng-MegatronT5-770M in transformers library, you can find the structure of Randeng-MegatronT5-770M and run the codes in Fengshenbang-LM. ### ๅŠ ่ฝฝๆจกๅž‹ Loading Models ๅผ•็”จ Citation ----------- ๅฆ‚ๆžœๆ‚จๅœจๆ‚จ็š„ๅทฅไฝœไธญไฝฟ็”จไบ†ๆˆ‘ไปฌ็š„ๆจกๅž‹๏ผŒๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„่ฎบๆ–‡๏ผš If you are using the resource for your work, please cite the our paper: ไนŸๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„็ฝ‘็ซ™: You can also cite our website:
[ "### ๅŠ ่ฝฝๆจกๅž‹ Loading Models\n\n\nๅผ•็”จ Citation\n-----------\n\n\nๅฆ‚ๆžœๆ‚จๅœจๆ‚จ็š„ๅทฅไฝœไธญไฝฟ็”จไบ†ๆˆ‘ไปฌ็š„ๆจกๅž‹๏ผŒๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„่ฎบๆ–‡๏ผš\n\n\nIf you are using the resource for your work, please cite the our paper:\n\n\nไนŸๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„็ฝ‘็ซ™:\n\n\nYou can also cite our website:" ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #zh #arxiv-2209.02970 #license-apache-2.0 #autotrain_compatible #text-generation-inference #region-us \n", "### ๅŠ ่ฝฝๆจกๅž‹ Loading Models\n\n\nๅผ•็”จ Citation\n-----------\n\n\nๅฆ‚ๆžœๆ‚จๅœจๆ‚จ็š„ๅทฅไฝœไธญไฝฟ็”จไบ†ๆˆ‘ไปฌ็š„ๆจกๅž‹๏ผŒๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„่ฎบๆ–‡๏ผš\n\n\nIf you are using the resource for your work, please cite the our paper:\n\n\nไนŸๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„็ฝ‘็ซ™:\n\n\nYou can also cite our website:" ]
[ 54, 85 ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #zh #arxiv-2209.02970 #license-apache-2.0 #autotrain_compatible #text-generation-inference #region-us \n### ๅŠ ่ฝฝๆจกๅž‹ Loading Models\n\n\nๅผ•็”จ Citation\n-----------\n\n\nๅฆ‚ๆžœๆ‚จๅœจๆ‚จ็š„ๅทฅไฝœไธญไฝฟ็”จไบ†ๆˆ‘ไปฌ็š„ๆจกๅž‹๏ผŒๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„่ฎบๆ–‡๏ผš\n\n\nIf you are using the resource for your work, please cite the our paper:\n\n\nไนŸๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„็ฝ‘็ซ™:\n\n\nYou can also cite our website:" ]
text-generation
transformers
# Wenzhong-GPT2-3.5B - Main Page:[Fengshenbang](https://fengshenbang-lm.com/) - Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM) ## ็ฎ€ไป‹ Brief Introduction ๅ–„ไบŽๅค„็†NLGไปปๅŠก๏ผŒ็›ฎๅ‰ๆœ€ๅคง็š„๏ผŒไธญๆ–‡็‰ˆ็š„GPT2 Focused on handling NLG tasks, the current largest, Chinese GPT2. ## ๆจกๅž‹ๅˆ†็ฑป Model Taxonomy | ้œ€ๆฑ‚ Demand | ไปปๅŠก Task | ็ณปๅˆ— Series | ๆจกๅž‹ Model | ๅ‚ๆ•ฐ Parameter | ้ขๅค– Extra | | :----: | :----: | :----: | :----: | :----: | :----: | | ้€š็”จ General | ่‡ช็„ถ่ฏญ่จ€็”Ÿๆˆ NLG| ้—ปไปฒ Wenzhong | GPT2 | 3.5B | ไธญๆ–‡ Chinese | ## ๆจกๅž‹ไฟกๆฏ Model Information ไธบไบ†ๅฏไปฅ่Žทๅพ—ไธ€ไธชๅผบๅคง็š„ๅ•ๅ‘่ฏญ่จ€ๆจกๅž‹๏ผŒๆˆ‘ไปฌ้‡‡็”จGPTๆจกๅž‹็ป“ๆž„๏ผŒๅนถไธ”ๅบ”็”จไบŽไธญๆ–‡่ฏญๆ–™ไธŠใ€‚ๅ…ทไฝ“ๅœฐ๏ผŒ่ฟ™ไธชๆจกๅž‹ๆ‹ฅๆœ‰30ๅฑ‚่งฃ็ ๅ™จๅ’Œ35ไบฟๅ‚ๆ•ฐ๏ผŒ่ฟ™ๆฏ”ๅŽŸๆœฌ็š„GPT2-XL่ฟ˜่ฆๅคงใ€‚ๆˆ‘ไปฌๅœจ100G็š„ไธญๆ–‡่ฏญๆ–™ไธŠ้ข„่ฎญ็ปƒ๏ผŒ่ฟ™ๆถˆ่€—ไบ†32ไธชNVIDIA A100ๆ˜พๅกๅคง็บฆ28ๅฐๆ—ถใ€‚ๆฎๆˆ‘ไปฌๆ‰€็Ÿฅ๏ผŒๅฎƒๆ˜ฏ็›ฎๅ‰ๆœ€ๅคง็š„ไธญๆ–‡็š„GPTๆจกๅž‹ใ€‚ To obtain a robust unidirectional language model, we adopt the GPT model structure and apply it to the Chinese corpus. Specifically, this model has 30 decoder layers and 3.5 billion parameters, which is larger than the original GPT2-XL. We pre-train it on 100G of Chinese corpus, which consumes 32 NVIDIA A100 GPUs for about 28 hours. To the best of our knowledge, it is the largest Chinese GPT model currently available. ## ไฝฟ็”จ Usage ### ๅŠ ่ฝฝๆจกๅž‹ Loading Models ```python from transformers import GPT2Tokenizer, GPT2Model tokenizer = GPT2Tokenizer.from_pretrained('IDEA-CCNL/Wenzhong-GPT2-3.5B') model = GPT2Model.from_pretrained('IDEA-CCNL/Wenzhong-GPT2-3.5B') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### ไฝฟ็”จ็คบไพ‹ Usage Examples ```python from transformers import pipeline, set_seed set_seed(55) generator = pipeline('text-generation', model='IDEA-CCNL/Wenzhong-GPT2-3.5B') generator("ๅŒ—ไบฌไฝไบŽ", max_length=30, num_return_sequences=1) ``` ## ๅผ•็”จ Citation ๅฆ‚ๆžœๆ‚จๅœจๆ‚จ็š„ๅทฅไฝœไธญไฝฟ็”จไบ†ๆˆ‘ไปฌ็š„ๆจกๅž‹๏ผŒๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„[่ฎบๆ–‡](https://arxiv.org/abs/2209.02970)๏ผš If you are using the resource for your work, please cite the our [paper](https://arxiv.org/abs/2209.02970): ```text @article{fengshenbang, author = {Jiaxing Zhang and Ruyi Gan and Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen}, title = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence}, journal = {CoRR}, volume = {abs/2209.02970}, year = {2022} } ``` ไนŸๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„[็ฝ‘็ซ™](https://github.com/IDEA-CCNL/Fengshenbang-LM/): You can also cite our [website](https://github.com/IDEA-CCNL/Fengshenbang-LM/): ```text @misc{Fengshenbang-LM, title={Fengshenbang-LM}, author={IDEA-CCNL}, year={2021}, howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, } ```
{"language": ["zh"], "license": "apache-2.0", "inference": {"parameters": {"max_new_tokens": 128, "do_sample": true}}}
IDEA-CCNL/Wenzhong-GPT2-3.5B
null
[ "transformers", "pytorch", "gpt2", "text-generation", "zh", "arxiv:2209.02970", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[ "2209.02970" ]
[ "zh" ]
TAGS #transformers #pytorch #gpt2 #text-generation #zh #arxiv-2209.02970 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Wenzhong-GPT2-3.5B ================== * Main Page:Fengshenbang * Github: Fengshenbang-LM ็ฎ€ไป‹ Brief Introduction --------------------- ๅ–„ไบŽๅค„็†NLGไปปๅŠก๏ผŒ็›ฎๅ‰ๆœ€ๅคง็š„๏ผŒไธญๆ–‡็‰ˆ็š„GPT2 Focused on handling NLG tasks, the current largest, Chinese GPT2. ๆจกๅž‹ๅˆ†็ฑป Model Taxonomy ------------------- ๆจกๅž‹ไฟกๆฏ Model Information ---------------------- ไธบไบ†ๅฏไปฅ่Žทๅพ—ไธ€ไธชๅผบๅคง็š„ๅ•ๅ‘่ฏญ่จ€ๆจกๅž‹๏ผŒๆˆ‘ไปฌ้‡‡็”จGPTๆจกๅž‹็ป“ๆž„๏ผŒๅนถไธ”ๅบ”็”จไบŽไธญๆ–‡่ฏญๆ–™ไธŠใ€‚ๅ…ทไฝ“ๅœฐ๏ผŒ่ฟ™ไธชๆจกๅž‹ๆ‹ฅๆœ‰30ๅฑ‚่งฃ็ ๅ™จๅ’Œ35ไบฟๅ‚ๆ•ฐ๏ผŒ่ฟ™ๆฏ”ๅŽŸๆœฌ็š„GPT2-XL่ฟ˜่ฆๅคงใ€‚ๆˆ‘ไปฌๅœจ100G็š„ไธญๆ–‡่ฏญๆ–™ไธŠ้ข„่ฎญ็ปƒ๏ผŒ่ฟ™ๆถˆ่€—ไบ†32ไธชNVIDIA A100ๆ˜พๅกๅคง็บฆ28ๅฐๆ—ถใ€‚ๆฎๆˆ‘ไปฌๆ‰€็Ÿฅ๏ผŒๅฎƒๆ˜ฏ็›ฎๅ‰ๆœ€ๅคง็š„ไธญๆ–‡็š„GPTๆจกๅž‹ใ€‚ To obtain a robust unidirectional language model, we adopt the GPT model structure and apply it to the Chinese corpus. Specifically, this model has 30 decoder layers and 3.5 billion parameters, which is larger than the original GPT2-XL. We pre-train it on 100G of Chinese corpus, which consumes 32 NVIDIA A100 GPUs for about 28 hours. To the best of our knowledge, it is the largest Chinese GPT model currently available. ไฝฟ็”จ Usage -------- ### ๅŠ ่ฝฝๆจกๅž‹ Loading Models ### ไฝฟ็”จ็คบไพ‹ Usage Examples ๅผ•็”จ Citation ----------- ๅฆ‚ๆžœๆ‚จๅœจๆ‚จ็š„ๅทฅไฝœไธญไฝฟ็”จไบ†ๆˆ‘ไปฌ็š„ๆจกๅž‹๏ผŒๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„่ฎบๆ–‡๏ผš If you are using the resource for your work, please cite the our paper: ไนŸๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„็ฝ‘็ซ™: You can also cite our website:
[ "### ๅŠ ่ฝฝๆจกๅž‹ Loading Models", "### ไฝฟ็”จ็คบไพ‹ Usage Examples\n\n\nๅผ•็”จ Citation\n-----------\n\n\nๅฆ‚ๆžœๆ‚จๅœจๆ‚จ็š„ๅทฅไฝœไธญไฝฟ็”จไบ†ๆˆ‘ไปฌ็š„ๆจกๅž‹๏ผŒๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„่ฎบๆ–‡๏ผš\n\n\nIf you are using the resource for your work, please cite the our paper:\n\n\nไนŸๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„็ฝ‘็ซ™:\n\n\nYou can also cite our website:" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #zh #arxiv-2209.02970 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### ๅŠ ่ฝฝๆจกๅž‹ Loading Models", "### ไฝฟ็”จ็คบไพ‹ Usage Examples\n\n\nๅผ•็”จ Citation\n-----------\n\n\nๅฆ‚ๆžœๆ‚จๅœจๆ‚จ็š„ๅทฅไฝœไธญไฝฟ็”จไบ†ๆˆ‘ไปฌ็š„ๆจกๅž‹๏ผŒๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„่ฎบๆ–‡๏ผš\n\n\nIf you are using the resource for your work, please cite the our paper:\n\n\nไนŸๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„็ฝ‘็ซ™:\n\n\nYou can also cite our website:" ]
[ 58, 9, 85 ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #zh #arxiv-2209.02970 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### ๅŠ ่ฝฝๆจกๅž‹ Loading Models### ไฝฟ็”จ็คบไพ‹ Usage Examples\n\n\nๅผ•็”จ Citation\n-----------\n\n\nๅฆ‚ๆžœๆ‚จๅœจๆ‚จ็š„ๅทฅไฝœไธญไฝฟ็”จไบ†ๆˆ‘ไปฌ็š„ๆจกๅž‹๏ผŒๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„่ฎบๆ–‡๏ผš\n\n\nIf you are using the resource for your work, please cite the our paper:\n\n\nไนŸๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„็ฝ‘็ซ™:\n\n\nYou can also cite our website:" ]
text-generation
transformers
# Yuyuan-GPT2-3.5B - Main Page:[Fengshenbang](https://fengshenbang-lm.com/) - Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM) ## ็ฎ€ไป‹ Brief Introduction ็›ฎๅ‰ๆœ€ๅคง็š„๏ผŒๅŒป็–—้ข†ๅŸŸ็š„็”Ÿๆˆ่ฏญ่จ€ๆจกๅž‹GPT2ใ€‚ The currently largest, generative language model GPT2 in the medical domain. ## ๆจกๅž‹ๅˆ†็ฑป Model Taxonomy | ้œ€ๆฑ‚ Demand | ไปปๅŠก Task | ็ณปๅˆ— Series | ๆจกๅž‹ Model | ๅ‚ๆ•ฐ Parameter | ้ขๅค– Extra | | :----: | :----: | :----: | :----: | :----: | :----: | | ็‰นๆฎŠ Special | ้ข†ๅŸŸ Domain | ไฝ™ๅ…ƒ Yuyuan | GPT2 | 3.5B | - | ## ๆจกๅž‹ไฟกๆฏ Model Information ๆˆ‘ไปฌ้‡‡็”จไธŽWenzhong-GPT2-3.5B็›ธๅŒ็š„ๆžถๆž„๏ผŒๅœจ50GB็š„ๅŒปๅญฆ(PubMed)่ฏญๆ–™ๅบ“ไธŠ่ฟ›่กŒ้ข„่ฎญ็ปƒใ€‚ๆˆ‘ไปฌไฝฟ็”จไบ†32ไธชNVIDIA A100ๆ˜พๅกๅคง็บฆ7ๅคฉใ€‚ๆˆ‘ไปฌ็š„Yuyuan-GPT2-3.5Bๆ˜ฏๅŒป็–—้ข†ๅŸŸๆœ€ๅคง็š„ๅผ€ๆบ็š„GPT2ๆจกๅž‹ใ€‚่ฟ›ไธ€ๆญฅๅœฐ๏ผŒๆจกๅž‹ๅฏไปฅ้€š่ฟ‡่ฎก็ฎ—ๅ›ฐๆƒ‘ๅบฆ๏ผˆPPL๏ผ‰ๆฅๅˆคๆ–ญไบ‹ๅฎžใ€‚ไธบไบ†ๅฎŒๆˆ้—ฎ็ญ”ๅŠŸ่ƒฝ๏ผŒๆˆ‘ไปฌๅฐ†็Ÿญ่ฏญๆจกๅผไปŽ็–‘้—ฎ็š„ๅฝขๅผ่ฝฌๆขไธบไบ†้™ˆ่ฟฐๅฅใ€‚ We adopt the same architecture as Wenzhong-GPT2-3.5B to be pre-trained on 50 GB medical (PubMed) corpus. We use 32 NVIDIA A100 GPUs for about 7 days. Our Yuyuan-GPT2-3.5B is the largest open-source GPT2 model in the medical domain. We further allow the model to judge facts by computing perplexity (PPL). To accomplish question-and-answer functionality, we transform the phrase pattern from interrogative to declarative. ## ไฝฟ็”จ Usage ### ๅŠ ่ฝฝๆจกๅž‹ Loading Models ```python from transformers import GPT2Tokenizer, GPT2Model tokenizer = GPT2Tokenizer.from_pretrained('IDEA-CCNL/Yuyuan-GPT2-3.5B') model = GPT2Model.from_pretrained('IDEA-CCNL/Yuyuan-GPT2-3.5B') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### ไฝฟ็”จ็คบไพ‹ Usage Examples ```python from transformers import pipeline, set_seed set_seed(55) generator = pipeline('text-generation', model='IDEA-CCNL/Yuyuan-GPT2-3.5B') generator("Diabetics should not eat", max_length=30, num_return_sequences=1) ``` ## ๅผ•็”จ Citation ๅฆ‚ๆžœๆ‚จๅœจๆ‚จ็š„ๅทฅไฝœไธญไฝฟ็”จไบ†ๆˆ‘ไปฌ็š„ๆจกๅž‹๏ผŒๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„[่ฎบๆ–‡](https://arxiv.org/abs/2209.02970)๏ผš If you are using the resource for your work, please cite the our [paper](https://arxiv.org/abs/2209.02970): ```text @article{fengshenbang, author = {Jiaxing Zhang and Ruyi Gan and Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen}, title = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence}, journal = {CoRR}, volume = {abs/2209.02970}, year = {2022} } ``` ไนŸๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„[็ฝ‘็ซ™](https://github.com/IDEA-CCNL/Fengshenbang-LM/): You can also cite our [website](https://github.com/IDEA-CCNL/Fengshenbang-LM/): ```text @misc{Fengshenbang-LM, title={Fengshenbang-LM}, author={IDEA-CCNL}, year={2021}, howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, } ```
{"language": ["en"], "license": "apache-2.0", "inference": false}
IDEA-CCNL/Yuyuan-GPT2-3.5B
null
[ "transformers", "pytorch", "gpt2", "text-generation", "en", "arxiv:2209.02970", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[ "2209.02970" ]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #en #arxiv-2209.02970 #license-apache-2.0 #autotrain_compatible #text-generation-inference #region-us
Yuyuan-GPT2-3.5B ================ * Main Page:Fengshenbang * Github: Fengshenbang-LM ็ฎ€ไป‹ Brief Introduction --------------------- ็›ฎๅ‰ๆœ€ๅคง็š„๏ผŒๅŒป็–—้ข†ๅŸŸ็š„็”Ÿๆˆ่ฏญ่จ€ๆจกๅž‹GPT2ใ€‚ The currently largest, generative language model GPT2 in the medical domain. ๆจกๅž‹ๅˆ†็ฑป Model Taxonomy ------------------- ๆจกๅž‹ไฟกๆฏ Model Information ---------------------- ๆˆ‘ไปฌ้‡‡็”จไธŽWenzhong-GPT2-3.5B็›ธๅŒ็š„ๆžถๆž„๏ผŒๅœจ50GB็š„ๅŒปๅญฆ(PubMed)่ฏญๆ–™ๅบ“ไธŠ่ฟ›่กŒ้ข„่ฎญ็ปƒใ€‚ๆˆ‘ไปฌไฝฟ็”จไบ†32ไธชNVIDIA A100ๆ˜พๅกๅคง็บฆ7ๅคฉใ€‚ๆˆ‘ไปฌ็š„Yuyuan-GPT2-3.5Bๆ˜ฏๅŒป็–—้ข†ๅŸŸๆœ€ๅคง็š„ๅผ€ๆบ็š„GPT2ๆจกๅž‹ใ€‚่ฟ›ไธ€ๆญฅๅœฐ๏ผŒๆจกๅž‹ๅฏไปฅ้€š่ฟ‡่ฎก็ฎ—ๅ›ฐๆƒ‘ๅบฆ๏ผˆPPL๏ผ‰ๆฅๅˆคๆ–ญไบ‹ๅฎžใ€‚ไธบไบ†ๅฎŒๆˆ้—ฎ็ญ”ๅŠŸ่ƒฝ๏ผŒๆˆ‘ไปฌๅฐ†็Ÿญ่ฏญๆจกๅผไปŽ็–‘้—ฎ็š„ๅฝขๅผ่ฝฌๆขไธบไบ†้™ˆ่ฟฐๅฅใ€‚ We adopt the same architecture as Wenzhong-GPT2-3.5B to be pre-trained on 50 GB medical (PubMed) corpus. We use 32 NVIDIA A100 GPUs for about 7 days. Our Yuyuan-GPT2-3.5B is the largest open-source GPT2 model in the medical domain. We further allow the model to judge facts by computing perplexity (PPL). To accomplish question-and-answer functionality, we transform the phrase pattern from interrogative to declarative. ไฝฟ็”จ Usage -------- ### ๅŠ ่ฝฝๆจกๅž‹ Loading Models ### ไฝฟ็”จ็คบไพ‹ Usage Examples ๅผ•็”จ Citation ----------- ๅฆ‚ๆžœๆ‚จๅœจๆ‚จ็š„ๅทฅไฝœไธญไฝฟ็”จไบ†ๆˆ‘ไปฌ็š„ๆจกๅž‹๏ผŒๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„่ฎบๆ–‡๏ผš If you are using the resource for your work, please cite the our paper: ไนŸๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„็ฝ‘็ซ™: You can also cite our website:
[ "### ๅŠ ่ฝฝๆจกๅž‹ Loading Models", "### ไฝฟ็”จ็คบไพ‹ Usage Examples\n\n\nๅผ•็”จ Citation\n-----------\n\n\nๅฆ‚ๆžœๆ‚จๅœจๆ‚จ็š„ๅทฅไฝœไธญไฝฟ็”จไบ†ๆˆ‘ไปฌ็š„ๆจกๅž‹๏ผŒๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„่ฎบๆ–‡๏ผš\n\n\nIf you are using the resource for your work, please cite the our paper:\n\n\nไนŸๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„็ฝ‘็ซ™:\n\n\nYou can also cite our website:" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #en #arxiv-2209.02970 #license-apache-2.0 #autotrain_compatible #text-generation-inference #region-us \n", "### ๅŠ ่ฝฝๆจกๅž‹ Loading Models", "### ไฝฟ็”จ็คบไพ‹ Usage Examples\n\n\nๅผ•็”จ Citation\n-----------\n\n\nๅฆ‚ๆžœๆ‚จๅœจๆ‚จ็š„ๅทฅไฝœไธญไฝฟ็”จไบ†ๆˆ‘ไปฌ็š„ๆจกๅž‹๏ผŒๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„่ฎบๆ–‡๏ผš\n\n\nIf you are using the resource for your work, please cite the our paper:\n\n\nไนŸๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„็ฝ‘็ซ™:\n\n\nYou can also cite our website:" ]
[ 52, 9, 85 ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #en #arxiv-2209.02970 #license-apache-2.0 #autotrain_compatible #text-generation-inference #region-us \n### ๅŠ ่ฝฝๆจกๅž‹ Loading Models### ไฝฟ็”จ็คบไพ‹ Usage Examples\n\n\nๅผ•็”จ Citation\n-----------\n\n\nๅฆ‚ๆžœๆ‚จๅœจๆ‚จ็š„ๅทฅไฝœไธญไฝฟ็”จไบ†ๆˆ‘ไปฌ็š„ๆจกๅž‹๏ผŒๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„่ฎบๆ–‡๏ผš\n\n\nIf you are using the resource for your work, please cite the our paper:\n\n\nไนŸๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„็ฝ‘็ซ™:\n\n\nYou can also cite our website:" ]
null
transformers
# Zhouwenwang-Unified-1.3B - Main Page:[Fengshenbang](https://fengshenbang-lm.com/) - Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM) ## ็ฎ€ไป‹ Brief Introduction ไธŽ่ฟฝไธ€็ง‘ๆŠ€ๅˆไฝœๆŽข็ดข็š„ไธญๆ–‡็ปŸไธ€ๆจกๅž‹๏ผŒ13ไบฟๅ‚ๆ•ฐ็š„็ผ–็ ๅ™จ็ป“ๆž„ๆจกๅž‹ใ€‚ The Chinese unified model explored in cooperation with Zhuiyi Technology, the encoder structure model with 1.3B parameters. ## ๆจกๅž‹ๅˆ†็ฑป Model Taxonomy | ้œ€ๆฑ‚ Demand | ไปปๅŠก Task | ็ณปๅˆ— Series | ๆจกๅž‹ Model | ๅ‚ๆ•ฐ Parameter | ้ขๅค– Extra | | :----: | :----: | :----: | :----: | :----: | :----: | | ็‰นๆฎŠ Special | ๆŽข็ดข Exploration | ๅ‘จๆ–‡็Ž‹ Zhouwenwang | ๅพ…ๅฎš TBD | 1.3B | ไธญๆ–‡ Chinese | ## ๆจกๅž‹ไฟกๆฏ Model Information IDEA็ ”็ฉถ้™ข่ฎค็Ÿฅ่ฎก็ฎ—ไธญๅฟƒ่”ๅˆ่ฟฝไธ€็ง‘ๆŠ€ๆœ‰้™ๅ…ฌๅธๆๅ‡บ็š„ๅ…ทๆœ‰ๆ–ฐ็ป“ๆž„็š„ๅคงๆจกๅž‹ใ€‚่ฏฅๆจกๅž‹ๅœจ้ข„่ฎญ็ปƒ้˜ถๆฎตๆ—ถ่€ƒ่™‘็ปŸไธ€LMๅ’ŒMLM็š„ไปปๅŠก๏ผŒ่ฟ™่ฎฉๅ…ถๅŒๆ—ถๅ…ทๅค‡็”Ÿๆˆๅ’Œ็†่งฃ็š„่ƒฝๅŠ›๏ผŒๅนถไธ”ๅขžๅŠ ไบ†ๆ—‹่ฝฌไฝ็ฝฎ็ผ–็ ๆŠ€ๆœฏใ€‚็›ฎๅ‰ๅทฒๆœ‰13ไบฟๅ‚ๆ•ฐ็š„Zhouwenwang-Unified-1.3Bๅคงๆจกๅž‹๏ผŒๆ˜ฏไธญๆ–‡้ข†ๅŸŸไธญๅฏไปฅๅŒๆ—ถๅšLMๅ’ŒMLMไปปๅŠก็š„ๆœ€ๅคง็š„ๆจกๅž‹ใ€‚ๆˆ‘ไปฌๅŽ็ปญไผšๆŒ็ปญๅœจๆจกๅž‹่ง„ๆจกใ€็Ÿฅ่ฏ†่žๅ…ฅใ€็›‘็ฃ่พ…ๅŠฉไปปๅŠก็ญ‰ๆ–นๅ‘ไธๆ–ญไผ˜ๅŒ–ใ€‚ A large-scale model (Zhouwenwang-Unified-1.3B) with a new structure proposed by IDEA CCNL and Zhuiyi Technology. The model considers the task of unifying LM (Language Modeling) and MLM (Masked Language Modeling) during the pre-training phase, which gives it both generative and comprehension capabilities, and applys rotational position encoding. At present, Zhouwenwang-Unified-1.3B with 13B parameters is the largest Chinese model that can do both LM and MLM tasks. In the future, we will continue to optimize it in the direction of model size, knowledge incorporation, and supervisory assistance tasks. ### ไธ‹ๆธธไปปๅŠก Performance ไธ‹ๆธธไธญๆ–‡ไปปๅŠก็š„ๅพ—ๅˆ†๏ผˆๆฒกๆœ‰ๅšไปปไฝ•ๆ•ฐๆฎๅขžๅผบ๏ผ‰ใ€‚ Scores on downstream chinese tasks (without any data augmentation) | ๆจกๅž‹ Model | afqmc | tnews | iflytek | ocnli | cmnli | wsc | csl | | :--------: | :-----: | :----: | :-----: | :----: | :----: | :----: | :----: | | roberta-wwm-ext-large | 0.7514 | 0.5872 | 0.6152 | 0.7770 | 0.8140 | 0.8914 | 0.8600 | | Zhouwenwang-Unified-1.3B | 0.7463 | 0.6036 | 0.6288 | 0.7654 | 0.7741 | 0.8849 | 0. 8777 | ## ไฝฟ็”จ Usage ๅ› ไธบ[transformers](https://github.com/huggingface/transformers)ๅบ“ไธญๆ˜ฏๆฒกๆœ‰ Zhouwenwang-Unified-1.3B็›ธๅ…ณ็š„ๆจกๅž‹็ป“ๆž„็š„๏ผŒๆ‰€ไปฅไฝ ๅฏไปฅๅœจๆˆ‘ไปฌ็š„[Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM)ไธญๆ‰พๅˆฐๅนถไธ”่ฟ่กŒไปฃ็ ใ€‚ Since there is no structure of Zhouwenwang-Unified-1.3B in [transformers library](https://github.com/huggingface/transformers), you can find the structure of Zhouwenwang-Unified-1.3B and run the codes in [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM). ```shell git clone https://github.com/IDEA-CCNL/Fengshenbang-LM.git ``` ### ๅŠ ่ฝฝๆจกๅž‹ Loading Models ```python from fengshen import RoFormerModel from fengshen import RoFormerConfig from transformers import BertTokenizer tokenizer = BertTokenizer.from_pretrained("IDEA-CCNL/Zhouwenwang-Unified-1.3B") config = RoFormerConfig.from_pretrained("IDEA-CCNL/Zhouwenwang-Unified-1.3B") model = RoFormerModel.from_pretrained("IDEA-CCNL/Zhouwenwang-Unified-1.3B") ``` ### ไฝฟ็”จ็คบไพ‹ Usage Examples ไฝ ๅฏไปฅไฝฟ็”จ่ฏฅๆจกๅž‹่ฟ›่กŒ็ปญๅ†™ไปปๅŠกใ€‚ You can use the model for continuation writing tasks. ```python from fengshen import RoFormerModel from transformers import AutoTokenizer import torch import numpy as np sentence = 'ๆธ…ๅŽๅคงๅญฆไฝไบŽ' max_length = 32 tokenizer = AutoTokenizer.from_pretrained("IDEA-CCNL/Zhouwenwang-Unified-1.3B") model = RoFormerModel.from_pretrained("IDEA-CCNL/Zhouwenwang-Unified-1.3B") for i in range(max_length): encode = torch.tensor( [[tokenizer.cls_token_id]+tokenizer.encode(sentence, add_special_tokens=False)]).long() logits = model(encode)[0] logits = torch.nn.functional.linear( logits, model.embeddings.word_embeddings.weight) logits = torch.nn.functional.softmax( logits, dim=-1).cpu().detach().numpy()[0] sentence = sentence + \ tokenizer.decode(int(np.random.choice(logits.shape[1], p=logits[-1]))) if sentence[-1] == 'ใ€‚': break print(sentence) ``` ## ๅผ•็”จ Citation ๅฆ‚ๆžœๆ‚จๅœจๆ‚จ็š„ๅทฅไฝœไธญไฝฟ็”จไบ†ๆˆ‘ไปฌ็š„ๆจกๅž‹๏ผŒๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„[่ฎบๆ–‡](https://arxiv.org/abs/2209.02970)๏ผš If you are using the resource for your work, please cite the our [paper](https://arxiv.org/abs/2209.02970): ```text @article{fengshenbang, author = {Jiaxing Zhang and Ruyi Gan and Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen}, title = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence}, journal = {CoRR}, volume = {abs/2209.02970}, year = {2022} } ``` ไนŸๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„[็ฝ‘็ซ™](https://github.com/IDEA-CCNL/Fengshenbang-LM/): You can also cite our [website](https://github.com/IDEA-CCNL/Fengshenbang-LM/): ```text @misc{Fengshenbang-LM, title={Fengshenbang-LM}, author={IDEA-CCNL}, year={2021}, howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, } ```
{"language": ["zh"], "license": "apache-2.0", "widget": [{"text": "\u751f\u6d3b\u7684\u771f\u8c1b\u662f[MASK]\u3002"}]}
IDEA-CCNL/Zhouwenwang-Unified-1.3B
null
[ "transformers", "pytorch", "megatron-bert", "zh", "arxiv:2209.02970", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[ "2209.02970" ]
[ "zh" ]
TAGS #transformers #pytorch #megatron-bert #zh #arxiv-2209.02970 #license-apache-2.0 #endpoints_compatible #region-us
Zhouwenwang-Unified-1.3B ======================== * Main Page:Fengshenbang * Github: Fengshenbang-LM ็ฎ€ไป‹ Brief Introduction --------------------- ไธŽ่ฟฝไธ€็ง‘ๆŠ€ๅˆไฝœๆŽข็ดข็š„ไธญๆ–‡็ปŸไธ€ๆจกๅž‹๏ผŒ13ไบฟๅ‚ๆ•ฐ็š„็ผ–็ ๅ™จ็ป“ๆž„ๆจกๅž‹ใ€‚ The Chinese unified model explored in cooperation with Zhuiyi Technology, the encoder structure model with 1.3B parameters. ๆจกๅž‹ๅˆ†็ฑป Model Taxonomy ------------------- ๆจกๅž‹ไฟกๆฏ Model Information ---------------------- IDEA็ ”็ฉถ้™ข่ฎค็Ÿฅ่ฎก็ฎ—ไธญๅฟƒ่”ๅˆ่ฟฝไธ€็ง‘ๆŠ€ๆœ‰้™ๅ…ฌๅธๆๅ‡บ็š„ๅ…ทๆœ‰ๆ–ฐ็ป“ๆž„็š„ๅคงๆจกๅž‹ใ€‚่ฏฅๆจกๅž‹ๅœจ้ข„่ฎญ็ปƒ้˜ถๆฎตๆ—ถ่€ƒ่™‘็ปŸไธ€LMๅ’ŒMLM็š„ไปปๅŠก๏ผŒ่ฟ™่ฎฉๅ…ถๅŒๆ—ถๅ…ทๅค‡็”Ÿๆˆๅ’Œ็†่งฃ็š„่ƒฝๅŠ›๏ผŒๅนถไธ”ๅขžๅŠ ไบ†ๆ—‹่ฝฌไฝ็ฝฎ็ผ–็ ๆŠ€ๆœฏใ€‚็›ฎๅ‰ๅทฒๆœ‰13ไบฟๅ‚ๆ•ฐ็š„Zhouwenwang-Unified-1.3Bๅคงๆจกๅž‹๏ผŒๆ˜ฏไธญๆ–‡้ข†ๅŸŸไธญๅฏไปฅๅŒๆ—ถๅšLMๅ’ŒMLMไปปๅŠก็š„ๆœ€ๅคง็š„ๆจกๅž‹ใ€‚ๆˆ‘ไปฌๅŽ็ปญไผšๆŒ็ปญๅœจๆจกๅž‹่ง„ๆจกใ€็Ÿฅ่ฏ†่žๅ…ฅใ€็›‘็ฃ่พ…ๅŠฉไปปๅŠก็ญ‰ๆ–นๅ‘ไธๆ–ญไผ˜ๅŒ–ใ€‚ A large-scale model (Zhouwenwang-Unified-1.3B) with a new structure proposed by IDEA CCNL and Zhuiyi Technology. The model considers the task of unifying LM (Language Modeling) and MLM (Masked Language Modeling) during the pre-training phase, which gives it both generative and comprehension capabilities, and applys rotational position encoding. At present, Zhouwenwang-Unified-1.3B with 13B parameters is the largest Chinese model that can do both LM and MLM tasks. In the future, we will continue to optimize it in the direction of model size, knowledge incorporation, and supervisory assistance tasks. ### ไธ‹ๆธธไปปๅŠก Performance ไธ‹ๆธธไธญๆ–‡ไปปๅŠก็š„ๅพ—ๅˆ†๏ผˆๆฒกๆœ‰ๅšไปปไฝ•ๆ•ฐๆฎๅขžๅผบ๏ผ‰ใ€‚ Scores on downstream chinese tasks (without any data augmentation) ไฝฟ็”จ Usage -------- ๅ› ไธบtransformersๅบ“ไธญๆ˜ฏๆฒกๆœ‰ Zhouwenwang-Unified-1.3B็›ธๅ…ณ็š„ๆจกๅž‹็ป“ๆž„็š„๏ผŒๆ‰€ไปฅไฝ ๅฏไปฅๅœจๆˆ‘ไปฌ็š„Fengshenbang-LMไธญๆ‰พๅˆฐๅนถไธ”่ฟ่กŒไปฃ็ ใ€‚ Since there is no structure of Zhouwenwang-Unified-1.3B in transformers library, you can find the structure of Zhouwenwang-Unified-1.3B and run the codes in Fengshenbang-LM. ### ๅŠ ่ฝฝๆจกๅž‹ Loading Models ### ไฝฟ็”จ็คบไพ‹ Usage Examples ไฝ ๅฏไปฅไฝฟ็”จ่ฏฅๆจกๅž‹่ฟ›่กŒ็ปญๅ†™ไปปๅŠกใ€‚ You can use the model for continuation writing tasks. ๅผ•็”จ Citation ----------- ๅฆ‚ๆžœๆ‚จๅœจๆ‚จ็š„ๅทฅไฝœไธญไฝฟ็”จไบ†ๆˆ‘ไปฌ็š„ๆจกๅž‹๏ผŒๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„่ฎบๆ–‡๏ผš If you are using the resource for your work, please cite the our paper: ไนŸๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„็ฝ‘็ซ™: You can also cite our website:
[ "### ไธ‹ๆธธไปปๅŠก Performance\n\n\nไธ‹ๆธธไธญๆ–‡ไปปๅŠก็š„ๅพ—ๅˆ†๏ผˆๆฒกๆœ‰ๅšไปปไฝ•ๆ•ฐๆฎๅขžๅผบ๏ผ‰ใ€‚\n\n\nScores on downstream chinese tasks (without any data augmentation)\n\n\n\nไฝฟ็”จ Usage\n--------\n\n\nๅ› ไธบtransformersๅบ“ไธญๆ˜ฏๆฒกๆœ‰ Zhouwenwang-Unified-1.3B็›ธๅ…ณ็š„ๆจกๅž‹็ป“ๆž„็š„๏ผŒๆ‰€ไปฅไฝ ๅฏไปฅๅœจๆˆ‘ไปฌ็š„Fengshenbang-LMไธญๆ‰พๅˆฐๅนถไธ”่ฟ่กŒไปฃ็ ใ€‚\n\n\nSince there is no structure of Zhouwenwang-Unified-1.3B in transformers library, you can find the structure of Zhouwenwang-Unified-1.3B and run the codes in Fengshenbang-LM.", "### ๅŠ ่ฝฝๆจกๅž‹ Loading Models", "### ไฝฟ็”จ็คบไพ‹ Usage Examples\n\n\nไฝ ๅฏไปฅไฝฟ็”จ่ฏฅๆจกๅž‹่ฟ›่กŒ็ปญๅ†™ไปปๅŠกใ€‚\n\n\nYou can use the model for continuation writing tasks.\n\n\nๅผ•็”จ Citation\n-----------\n\n\nๅฆ‚ๆžœๆ‚จๅœจๆ‚จ็š„ๅทฅไฝœไธญไฝฟ็”จไบ†ๆˆ‘ไปฌ็š„ๆจกๅž‹๏ผŒๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„่ฎบๆ–‡๏ผš\n\n\nIf you are using the resource for your work, please cite the our paper:\n\n\nไนŸๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„็ฝ‘็ซ™:\n\n\nYou can also cite our website:" ]
[ "TAGS\n#transformers #pytorch #megatron-bert #zh #arxiv-2209.02970 #license-apache-2.0 #endpoints_compatible #region-us \n", "### ไธ‹ๆธธไปปๅŠก Performance\n\n\nไธ‹ๆธธไธญๆ–‡ไปปๅŠก็š„ๅพ—ๅˆ†๏ผˆๆฒกๆœ‰ๅšไปปไฝ•ๆ•ฐๆฎๅขžๅผบ๏ผ‰ใ€‚\n\n\nScores on downstream chinese tasks (without any data augmentation)\n\n\n\nไฝฟ็”จ Usage\n--------\n\n\nๅ› ไธบtransformersๅบ“ไธญๆ˜ฏๆฒกๆœ‰ Zhouwenwang-Unified-1.3B็›ธๅ…ณ็š„ๆจกๅž‹็ป“ๆž„็š„๏ผŒๆ‰€ไปฅไฝ ๅฏไปฅๅœจๆˆ‘ไปฌ็š„Fengshenbang-LMไธญๆ‰พๅˆฐๅนถไธ”่ฟ่กŒไปฃ็ ใ€‚\n\n\nSince there is no structure of Zhouwenwang-Unified-1.3B in transformers library, you can find the structure of Zhouwenwang-Unified-1.3B and run the codes in Fengshenbang-LM.", "### ๅŠ ่ฝฝๆจกๅž‹ Loading Models", "### ไฝฟ็”จ็คบไพ‹ Usage Examples\n\n\nไฝ ๅฏไปฅไฝฟ็”จ่ฏฅๆจกๅž‹่ฟ›่กŒ็ปญๅ†™ไปปๅŠกใ€‚\n\n\nYou can use the model for continuation writing tasks.\n\n\nๅผ•็”จ Citation\n-----------\n\n\nๅฆ‚ๆžœๆ‚จๅœจๆ‚จ็š„ๅทฅไฝœไธญไฝฟ็”จไบ†ๆˆ‘ไปฌ็š„ๆจกๅž‹๏ผŒๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„่ฎบๆ–‡๏ผš\n\n\nIf you are using the resource for your work, please cite the our paper:\n\n\nไนŸๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„็ฝ‘็ซ™:\n\n\nYou can also cite our website:" ]
[ 44, 155, 9, 110 ]
[ "TAGS\n#transformers #pytorch #megatron-bert #zh #arxiv-2209.02970 #license-apache-2.0 #endpoints_compatible #region-us \n### ไธ‹ๆธธไปปๅŠก Performance\n\n\nไธ‹ๆธธไธญๆ–‡ไปปๅŠก็š„ๅพ—ๅˆ†๏ผˆๆฒกๆœ‰ๅšไปปไฝ•ๆ•ฐๆฎๅขžๅผบ๏ผ‰ใ€‚\n\n\nScores on downstream chinese tasks (without any data augmentation)\n\n\n\nไฝฟ็”จ Usage\n--------\n\n\nๅ› ไธบtransformersๅบ“ไธญๆ˜ฏๆฒกๆœ‰ Zhouwenwang-Unified-1.3B็›ธๅ…ณ็š„ๆจกๅž‹็ป“ๆž„็š„๏ผŒๆ‰€ไปฅไฝ ๅฏไปฅๅœจๆˆ‘ไปฌ็š„Fengshenbang-LMไธญๆ‰พๅˆฐๅนถไธ”่ฟ่กŒไปฃ็ ใ€‚\n\n\nSince there is no structure of Zhouwenwang-Unified-1.3B in transformers library, you can find the structure of Zhouwenwang-Unified-1.3B and run the codes in Fengshenbang-LM.### ๅŠ ่ฝฝๆจกๅž‹ Loading Models### ไฝฟ็”จ็คบไพ‹ Usage Examples\n\n\nไฝ ๅฏไปฅไฝฟ็”จ่ฏฅๆจกๅž‹่ฟ›่กŒ็ปญๅ†™ไปปๅŠกใ€‚\n\n\nYou can use the model for continuation writing tasks.\n\n\nๅผ•็”จ Citation\n-----------\n\n\nๅฆ‚ๆžœๆ‚จๅœจๆ‚จ็š„ๅทฅไฝœไธญไฝฟ็”จไบ†ๆˆ‘ไปฌ็š„ๆจกๅž‹๏ผŒๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„่ฎบๆ–‡๏ผš\n\n\nIf you are using the resource for your work, please cite the our paper:\n\n\nไนŸๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„็ฝ‘็ซ™:\n\n\nYou can also cite our website:" ]
null
transformers
# Zhouwenwang-Unified-110M - Main Page:[Fengshenbang](https://fengshenbang-lm.com/) - Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM) ## ็ฎ€ไป‹ Brief Introduction ไธŽ่ฟฝไธ€็ง‘ๆŠ€ๅˆไฝœๆŽข็ดข็š„ไธญๆ–‡็ปŸไธ€ๆจกๅž‹๏ผŒ1.1ไบฟๅ‚ๆ•ฐ็š„็ผ–็ ๅ™จ็ป“ๆž„ๆจกๅž‹ใ€‚ The Chinese unified model explored in cooperation with Zhuiyi Technology, the encoder structure model with 110M parameters. ## ๆจกๅž‹ๅˆ†็ฑป Model Taxonomy | ้œ€ๆฑ‚ Demand | ไปปๅŠก Task | ็ณปๅˆ— Series | ๆจกๅž‹ Model | ๅ‚ๆ•ฐ Parameter | ้ขๅค– Extra | | :----: | :----: | :----: | :----: | :----: | :----: | | ็‰นๆฎŠ Special | ๆŽข็ดข Exploration | ๅ‘จๆ–‡็Ž‹ Zhouwenwang | ๅพ…ๅฎš TBD | 110M | ไธญๆ–‡ Chinese | ## ๆจกๅž‹ไฟกๆฏ Model Information IDEA็ ”็ฉถ้™ข่ฎค็Ÿฅ่ฎก็ฎ—ไธญๅฟƒ่”ๅˆ่ฟฝไธ€็ง‘ๆŠ€ๆœ‰้™ๅ…ฌๅธๆๅ‡บ็š„ๅ…ทๆœ‰ๆ–ฐ็ป“ๆž„็š„ๅคงๆจกๅž‹ใ€‚่ฏฅๆจกๅž‹ๅœจ้ข„่ฎญ็ปƒ้˜ถๆฎตๆ—ถ่€ƒ่™‘็ปŸไธ€LMๅ’ŒMLM็š„ไปปๅŠก๏ผŒ่ฟ™่ฎฉๅ…ถๅŒๆ—ถๅ…ทๅค‡็”Ÿๆˆๅ’Œ็†่งฃ็š„่ƒฝๅŠ›๏ผŒๅนถไธ”ๅขžๅŠ ไบ†ๆ—‹่ฝฌไฝ็ฝฎ็ผ–็ ๆŠ€ๆœฏใ€‚ๆˆ‘ไปฌๅŽ็ปญไผšๆŒ็ปญๅœจๆจกๅž‹่ง„ๆจกใ€็Ÿฅ่ฏ†่žๅ…ฅใ€็›‘็ฃ่พ…ๅŠฉไปปๅŠก็ญ‰ๆ–นๅ‘ไธๆ–ญไผ˜ๅŒ–ใ€‚ A large-scale model (Zhouwenwang-Unified-1.3B) with a new structure proposed by IDEA CCNL and Zhuiyi Technology. The model considers the task of unifying LM (Language Modeling) and MLM (Masked Language Modeling) during the pre-training phase, which gives it both generative and comprehension capabilities, and applys rotational position encoding. In the future, we will continue to optimize it in the direction of model size, knowledge incorporation, and supervisory assistance tasks. ## ไฝฟ็”จ Usage ๅ› ไธบ[transformers](https://github.com/huggingface/transformers)ๅบ“ไธญๆ˜ฏๆฒกๆœ‰ Zhouwenwang-Unified-110M็›ธๅ…ณ็š„ๆจกๅž‹็ป“ๆž„็š„๏ผŒๆ‰€ไปฅไฝ ๅฏไปฅๅœจๆˆ‘ไปฌ็š„[Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM)ไธญๆ‰พๅˆฐๅนถไธ”่ฟ่กŒไปฃ็ ใ€‚ Since there is no structure of Zhouwenwang-Unified-110M in [transformers library](https://github.com/huggingface/transformers), you can find the structure of Zhouwenwang-Unified-110M and run the codes in [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM). ```shell git clone https://github.com/IDEA-CCNL/Fengshenbang-LM.git ``` ### ๅŠ ่ฝฝๆจกๅž‹ Loading Models ```python from fengshen import RoFormerModel from fengshen import RoFormerConfig from transformers import BertTokenizer tokenizer = BertTokenizer.from_pretrained("IDEA-CCNL/Zhouwenwang-Unified-110M") config = RoFormerConfig.from_pretrained("IDEA-CCNL/Zhouwenwang-Unified-110M") model = RoFormerModel.from_pretrained("IDEA-CCNL/Zhouwenwang-Unified-110M") ``` ### ไฝฟ็”จ็คบไพ‹ Usage Examples ไฝ ๅฏไปฅไฝฟ็”จ่ฏฅๆจกๅž‹่ฟ›่กŒ็ปญๅ†™ไปปๅŠกใ€‚ You can use the model for continuation writing tasks. ```python from fengshen import RoFormerModel from transformers import AutoTokenizer import torch import numpy as np sentence = 'ๆธ…ๅŽๅคงๅญฆไฝไบŽ' max_length = 32 tokenizer = AutoTokenizer.from_pretrained("IDEA-CCNL/Zhouwenwang-Unified-110M") model = RoFormerModel.from_pretrained("IDEA-CCNL/Zhouwenwang-Unified-110M") for i in range(max_length): encode = torch.tensor( [[tokenizer.cls_token_id]+tokenizer.encode(sentence, add_special_tokens=False)]).long() logits = model(encode)[0] logits = torch.nn.functional.linear( logits, model.embeddings.word_embeddings.weight) logits = torch.nn.functional.softmax( logits, dim=-1).cpu().detach().numpy()[0] sentence = sentence + \ tokenizer.decode(int(np.random.choice(logits.shape[1], p=logits[-1]))) if sentence[-1] == 'ใ€‚': break print(sentence) ``` ## ๅผ•็”จ Citation ๅฆ‚ๆžœๆ‚จๅœจๆ‚จ็š„ๅทฅไฝœไธญไฝฟ็”จไบ†ๆˆ‘ไปฌ็š„ๆจกๅž‹๏ผŒๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„[่ฎบๆ–‡](https://arxiv.org/abs/2209.02970)๏ผš If you are using the resource for your work, please cite the our [paper](https://arxiv.org/abs/2209.02970): ```text @article{fengshenbang, author = {Jiaxing Zhang and Ruyi Gan and Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen}, title = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence}, journal = {CoRR}, volume = {abs/2209.02970}, year = {2022} } ``` ไนŸๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„[็ฝ‘็ซ™](https://github.com/IDEA-CCNL/Fengshenbang-LM/): You can also cite our [website](https://github.com/IDEA-CCNL/Fengshenbang-LM/): ```text @misc{Fengshenbang-LM, title={Fengshenbang-LM}, author={IDEA-CCNL}, year={2021}, howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, } ```
{"language": ["zh"], "license": "apache-2.0", "widget": [{"text": "\u751f\u6d3b\u7684\u771f\u8c1b\u662f[MASK]\u3002"}]}
IDEA-CCNL/Zhouwenwang-Unified-110M
null
[ "transformers", "pytorch", "megatron-bert", "zh", "arxiv:2209.02970", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[ "2209.02970" ]
[ "zh" ]
TAGS #transformers #pytorch #megatron-bert #zh #arxiv-2209.02970 #license-apache-2.0 #endpoints_compatible #region-us
Zhouwenwang-Unified-110M ======================== * Main Page:Fengshenbang * Github: Fengshenbang-LM ็ฎ€ไป‹ Brief Introduction --------------------- ไธŽ่ฟฝไธ€็ง‘ๆŠ€ๅˆไฝœๆŽข็ดข็š„ไธญๆ–‡็ปŸไธ€ๆจกๅž‹๏ผŒ1.1ไบฟๅ‚ๆ•ฐ็š„็ผ–็ ๅ™จ็ป“ๆž„ๆจกๅž‹ใ€‚ The Chinese unified model explored in cooperation with Zhuiyi Technology, the encoder structure model with 110M parameters. ๆจกๅž‹ๅˆ†็ฑป Model Taxonomy ------------------- ๆจกๅž‹ไฟกๆฏ Model Information ---------------------- IDEA็ ”็ฉถ้™ข่ฎค็Ÿฅ่ฎก็ฎ—ไธญๅฟƒ่”ๅˆ่ฟฝไธ€็ง‘ๆŠ€ๆœ‰้™ๅ…ฌๅธๆๅ‡บ็š„ๅ…ทๆœ‰ๆ–ฐ็ป“ๆž„็š„ๅคงๆจกๅž‹ใ€‚่ฏฅๆจกๅž‹ๅœจ้ข„่ฎญ็ปƒ้˜ถๆฎตๆ—ถ่€ƒ่™‘็ปŸไธ€LMๅ’ŒMLM็š„ไปปๅŠก๏ผŒ่ฟ™่ฎฉๅ…ถๅŒๆ—ถๅ…ทๅค‡็”Ÿๆˆๅ’Œ็†่งฃ็š„่ƒฝๅŠ›๏ผŒๅนถไธ”ๅขžๅŠ ไบ†ๆ—‹่ฝฌไฝ็ฝฎ็ผ–็ ๆŠ€ๆœฏใ€‚ๆˆ‘ไปฌๅŽ็ปญไผšๆŒ็ปญๅœจๆจกๅž‹่ง„ๆจกใ€็Ÿฅ่ฏ†่žๅ…ฅใ€็›‘็ฃ่พ…ๅŠฉไปปๅŠก็ญ‰ๆ–นๅ‘ไธๆ–ญไผ˜ๅŒ–ใ€‚ A large-scale model (Zhouwenwang-Unified-1.3B) with a new structure proposed by IDEA CCNL and Zhuiyi Technology. The model considers the task of unifying LM (Language Modeling) and MLM (Masked Language Modeling) during the pre-training phase, which gives it both generative and comprehension capabilities, and applys rotational position encoding. In the future, we will continue to optimize it in the direction of model size, knowledge incorporation, and supervisory assistance tasks. ไฝฟ็”จ Usage -------- ๅ› ไธบtransformersๅบ“ไธญๆ˜ฏๆฒกๆœ‰ Zhouwenwang-Unified-110M็›ธๅ…ณ็š„ๆจกๅž‹็ป“ๆž„็š„๏ผŒๆ‰€ไปฅไฝ ๅฏไปฅๅœจๆˆ‘ไปฌ็š„Fengshenbang-LMไธญๆ‰พๅˆฐๅนถไธ”่ฟ่กŒไปฃ็ ใ€‚ Since there is no structure of Zhouwenwang-Unified-110M in transformers library, you can find the structure of Zhouwenwang-Unified-110M and run the codes in Fengshenbang-LM. ### ๅŠ ่ฝฝๆจกๅž‹ Loading Models ### ไฝฟ็”จ็คบไพ‹ Usage Examples ไฝ ๅฏไปฅไฝฟ็”จ่ฏฅๆจกๅž‹่ฟ›่กŒ็ปญๅ†™ไปปๅŠกใ€‚ You can use the model for continuation writing tasks. ๅผ•็”จ Citation ----------- ๅฆ‚ๆžœๆ‚จๅœจๆ‚จ็š„ๅทฅไฝœไธญไฝฟ็”จไบ†ๆˆ‘ไปฌ็š„ๆจกๅž‹๏ผŒๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„่ฎบๆ–‡๏ผš If you are using the resource for your work, please cite the our paper: ไนŸๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„็ฝ‘็ซ™: You can also cite our website:
[ "### ๅŠ ่ฝฝๆจกๅž‹ Loading Models", "### ไฝฟ็”จ็คบไพ‹ Usage Examples\n\n\nไฝ ๅฏไปฅไฝฟ็”จ่ฏฅๆจกๅž‹่ฟ›่กŒ็ปญๅ†™ไปปๅŠกใ€‚\n\n\nYou can use the model for continuation writing tasks.\n\n\nๅผ•็”จ Citation\n-----------\n\n\nๅฆ‚ๆžœๆ‚จๅœจๆ‚จ็š„ๅทฅไฝœไธญไฝฟ็”จไบ†ๆˆ‘ไปฌ็š„ๆจกๅž‹๏ผŒๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„่ฎบๆ–‡๏ผš\n\n\nIf you are using the resource for your work, please cite the our paper:\n\n\nไนŸๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„็ฝ‘็ซ™:\n\n\nYou can also cite our website:" ]
[ "TAGS\n#transformers #pytorch #megatron-bert #zh #arxiv-2209.02970 #license-apache-2.0 #endpoints_compatible #region-us \n", "### ๅŠ ่ฝฝๆจกๅž‹ Loading Models", "### ไฝฟ็”จ็คบไพ‹ Usage Examples\n\n\nไฝ ๅฏไปฅไฝฟ็”จ่ฏฅๆจกๅž‹่ฟ›่กŒ็ปญๅ†™ไปปๅŠกใ€‚\n\n\nYou can use the model for continuation writing tasks.\n\n\nๅผ•็”จ Citation\n-----------\n\n\nๅฆ‚ๆžœๆ‚จๅœจๆ‚จ็š„ๅทฅไฝœไธญไฝฟ็”จไบ†ๆˆ‘ไปฌ็š„ๆจกๅž‹๏ผŒๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„่ฎบๆ–‡๏ผš\n\n\nIf you are using the resource for your work, please cite the our paper:\n\n\nไนŸๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„็ฝ‘็ซ™:\n\n\nYou can also cite our website:" ]
[ 44, 9, 110 ]
[ "TAGS\n#transformers #pytorch #megatron-bert #zh #arxiv-2209.02970 #license-apache-2.0 #endpoints_compatible #region-us \n### ๅŠ ่ฝฝๆจกๅž‹ Loading Models### ไฝฟ็”จ็คบไพ‹ Usage Examples\n\n\nไฝ ๅฏไปฅไฝฟ็”จ่ฏฅๆจกๅž‹่ฟ›่กŒ็ปญๅ†™ไปปๅŠกใ€‚\n\n\nYou can use the model for continuation writing tasks.\n\n\nๅผ•็”จ Citation\n-----------\n\n\nๅฆ‚ๆžœๆ‚จๅœจๆ‚จ็š„ๅทฅไฝœไธญไฝฟ็”จไบ†ๆˆ‘ไปฌ็š„ๆจกๅž‹๏ผŒๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„่ฎบๆ–‡๏ผš\n\n\nIf you are using the resource for your work, please cite the our paper:\n\n\nไนŸๅฏไปฅๅผ•็”จๆˆ‘ไปฌ็š„็ฝ‘็ซ™:\n\n\nYou can also cite our website:" ]
text-generation
transformers
# Rick And Morty DialoGPT Model
{"tags": ["conversational"]}
ILoveThatLady/DialoGPT-small-rickandmorty
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Rick And Morty DialoGPT Model
[ "# Rick And Morty DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Rick And Morty DialoGPT Model" ]
[ 39, 9 ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Rick And Morty DialoGPT Model" ]
fill-mask
transformers
#Slovak RoBERTA Masked Language Model ###83Mil Parameters in small model Medium and Large models coming soon! RoBERTA pretrained tokenizer vocab and merges included. --- ##Training params: - **Dataset**: 8GB Slovak Monolingual dataset including ParaCrawl (monolingual), OSCAR, and several gigs of my own findings and cleaning. - **Preprocessing**: Tokenized with a pretrained ByteLevelBPETokenizer trained on the same dataset. Uncased, with s, pad, /s, unk, and mask special tokens. - **Evaluation results**: - Mnoho ฤพudรญ tu MASK - ลพije. - ลพijรบ. - je. - trpรญ. - Ako sa MASK - mรกte - mรกลก - mรก - hovorรญ - Plรกลพovรก sezรณna pod Zoborom patrรญ medzi MASK obdobia. - roฤnรฉ - najkrajลกie - najobฤพรบbenejลกie - najnรกroฤnejลกie - **Limitations**: The current model is fairly small, although it works very well. This model is meant to be finetuned on downstream tasks e.g. Part-of-Speech tagging, Question Answering, anything in GLUE or SUPERGLUE. - **Credit**: If you use this or any of my models in research or professional work, please credit me - Christopher Brousseau in said work.
{}
IMJONEZZ/SlovenBERTcina
null
[ "transformers", "pytorch", "safetensors", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #safetensors #roberta #fill-mask #autotrain_compatible #endpoints_compatible #region-us
#Slovak RoBERTA Masked Language Model ###83Mil Parameters in small model Medium and Large models coming soon! RoBERTA pretrained tokenizer vocab and merges included. --- ##Training params: - Dataset: 8GB Slovak Monolingual dataset including ParaCrawl (monolingual), OSCAR, and several gigs of my own findings and cleaning. - Preprocessing: Tokenized with a pretrained ByteLevelBPETokenizer trained on the same dataset. Uncased, with s, pad, /s, unk, and mask special tokens. - Evaluation results: - Mnoho ฤพudรญ tu MASK - ลพije. - ลพijรบ. - je. - trpรญ. - Ako sa MASK - mรกte - mรกลก - mรก - hovorรญ - Plรกลพovรก sezรณna pod Zoborom patrรญ medzi MASK obdobia. - roฤnรฉ - najkrajลกie - najobฤพรบbenejลกie - najnรกroฤnejลกie - Limitations: The current model is fairly small, although it works very well. This model is meant to be finetuned on downstream tasks e.g. Part-of-Speech tagging, Question Answering, anything in GLUE or SUPERGLUE. - Credit: If you use this or any of my models in research or professional work, please credit me - Christopher Brousseau in said work.
[]
[ "TAGS\n#transformers #pytorch #safetensors #roberta #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 32 ]
[ "TAGS\n#transformers #pytorch #safetensors #roberta #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n" ]
text-classification
transformers
# Hate Speech Classifier for Social Media Content in English Language A monolingual model for hate speech classification of social media content in English language. The model was trained on 103190 YouTube comments and tested on an independent test set of 20554 YouTube comments. It is based on English BERT base pre-trained language model. ## Please cite: Kralj Novak, P., Scantamburlo, T., Pelicon, A., Cinelli, M., Mozetiฤ, I., & Zollo, F. (2022, July). __Handling disagreement in hate speech modelling__. In International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (pp. 681-695). Cham: Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-031-08974-9_54 ## Tokenizer During training the text was preprocessed using the original English BERT base tokenizer. We suggest the same tokenizer is used for inference. ## Model output The model classifies each input into one of four distinct classes: * 0 - acceptable * 1 - inappropriate * 2 - offensive * 3 - violent Details on data acquisition and labeling including the Annotation guidelines: http://imsypp.ijs.si/wp-content/uploads/2021/12/IMSyPP_D2.2_multilingual-dataset.pdf
{"language": ["en"], "license": "mit", "widget": [{"text": "My name is Mark and I live in London. I am a postgraduate student at Queen Mary University."}]}
IMSyPP/hate_speech_en
null
[ "transformers", "pytorch", "bert", "text-classification", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #text-classification #en #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
# Hate Speech Classifier for Social Media Content in English Language A monolingual model for hate speech classification of social media content in English language. The model was trained on 103190 YouTube comments and tested on an independent test set of 20554 YouTube comments. It is based on English BERT base pre-trained language model. ## Please cite: Kralj Novak, P., Scantamburlo, T., Pelicon, A., Cinelli, M., Mozetiฤ, I., & Zollo, F. (2022, July). __Handling disagreement in hate speech modelling__. In International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (pp. 681-695). Cham: Springer International Publishing. URL ## Tokenizer During training the text was preprocessed using the original English BERT base tokenizer. We suggest the same tokenizer is used for inference. ## Model output The model classifies each input into one of four distinct classes: * 0 - acceptable * 1 - inappropriate * 2 - offensive * 3 - violent Details on data acquisition and labeling including the Annotation guidelines: URL
[ "# Hate Speech Classifier for Social Media Content in English Language\n\nA monolingual model for hate speech classification of social media content in English language. The model was trained on 103190 YouTube comments and tested on an independent test set of 20554 YouTube comments. It is based on English BERT base pre-trained language model.", "## Please cite:\nKralj Novak, P., Scantamburlo, T., Pelicon, A., Cinelli, M., Mozetiฤ, I., & Zollo, F. (2022, July). __Handling disagreement in hate speech modelling__. In International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (pp. 681-695). Cham: Springer International Publishing.\nURL", "## Tokenizer\n\nDuring training the text was preprocessed using the original English BERT base tokenizer. We suggest the same tokenizer is used for inference.", "## Model output\n\nThe model classifies each input into one of four distinct classes:\n* 0 - acceptable\n* 1 - inappropriate\n* 2 - offensive\n* 3 - violent\n\n\nDetails on data acquisition and labeling including the Annotation guidelines: \nURL" ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #en #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Hate Speech Classifier for Social Media Content in English Language\n\nA monolingual model for hate speech classification of social media content in English language. The model was trained on 103190 YouTube comments and tested on an independent test set of 20554 YouTube comments. It is based on English BERT base pre-trained language model.", "## Please cite:\nKralj Novak, P., Scantamburlo, T., Pelicon, A., Cinelli, M., Mozetiฤ, I., & Zollo, F. (2022, July). __Handling disagreement in hate speech modelling__. In International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (pp. 681-695). Cham: Springer International Publishing.\nURL", "## Tokenizer\n\nDuring training the text was preprocessed using the original English BERT base tokenizer. We suggest the same tokenizer is used for inference.", "## Model output\n\nThe model classifies each input into one of four distinct classes:\n* 0 - acceptable\n* 1 - inappropriate\n* 2 - offensive\n* 3 - violent\n\n\nDetails on data acquisition and labeling including the Annotation guidelines: \nURL" ]
[ 38, 65, 102, 33, 48 ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #en #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Hate Speech Classifier for Social Media Content in English Language\n\nA monolingual model for hate speech classification of social media content in English language. The model was trained on 103190 YouTube comments and tested on an independent test set of 20554 YouTube comments. It is based on English BERT base pre-trained language model.## Please cite:\nKralj Novak, P., Scantamburlo, T., Pelicon, A., Cinelli, M., Mozetiฤ, I., & Zollo, F. (2022, July). __Handling disagreement in hate speech modelling__. In International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (pp. 681-695). Cham: Springer International Publishing.\nURL## Tokenizer\n\nDuring training the text was preprocessed using the original English BERT base tokenizer. We suggest the same tokenizer is used for inference.## Model output\n\nThe model classifies each input into one of four distinct classes:\n* 0 - acceptable\n* 1 - inappropriate\n* 2 - offensive\n* 3 - violent\n\n\nDetails on data acquisition and labeling including the Annotation guidelines: \nURL" ]
text-classification
transformers
# Hate Speech Classifier for Social Media Content in Italian Language A monolingual model for hate speech classification of social media content in Italian language. The model was trained on 119,670 YouTube comments and tested on an independent test set of 21,072 YouTube comments. It is based on Italian ALBERTO pre-trained language model. ## Please cite: Kralj Novak, P., Scantamburlo, T., Pelicon, A., Cinelli, M., Mozetiฤ, I., & Zollo, F. (2022, July). __Handling disagreement in hate speech modelling__. In International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (pp. 681-695). Cham: Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-031-08974-9_54 ## Tokenizer During training the text was preprocessed using the original Italian ALBERTO tokenizer. We suggest the same tokenizer is used for inference. ## Model output The model classifies each input into one of four distinct classes: * 0 - acceptable * 1 - inappropriate * 2 - offensive * 3 - violent
{"language": ["it"], "license": "mit", "widget": [{"text": "Ciao, mi chiamo Marcantonio, sono di Roma. Studio informatica all'Universit\u00e0 di Roma."}]}
IMSyPP/hate_speech_it
null
[ "transformers", "pytorch", "bert", "text-classification", "it", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "it" ]
TAGS #transformers #pytorch #bert #text-classification #it #license-mit #autotrain_compatible #endpoints_compatible #region-us
# Hate Speech Classifier for Social Media Content in Italian Language A monolingual model for hate speech classification of social media content in Italian language. The model was trained on 119,670 YouTube comments and tested on an independent test set of 21,072 YouTube comments. It is based on Italian ALBERTO pre-trained language model. ## Please cite: Kralj Novak, P., Scantamburlo, T., Pelicon, A., Cinelli, M., Mozetiฤ, I., & Zollo, F. (2022, July). __Handling disagreement in hate speech modelling__. In International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (pp. 681-695). Cham: Springer International Publishing. URL ## Tokenizer During training the text was preprocessed using the original Italian ALBERTO tokenizer. We suggest the same tokenizer is used for inference. ## Model output The model classifies each input into one of four distinct classes: * 0 - acceptable * 1 - inappropriate * 2 - offensive * 3 - violent
[ "# Hate Speech Classifier for Social Media Content in Italian Language\n\nA monolingual model for hate speech classification of social media content in Italian language. The model was trained on 119,670 YouTube comments and tested on an independent test set of 21,072 YouTube comments. It is based on Italian ALBERTO pre-trained language model.", "## Please cite:\nKralj Novak, P., Scantamburlo, T., Pelicon, A., Cinelli, M., Mozetiฤ, I., & Zollo, F. (2022, July). __Handling disagreement in hate speech modelling__. In International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (pp. 681-695). Cham: Springer International Publishing.\nURL", "## Tokenizer\n\nDuring training the text was preprocessed using the original Italian ALBERTO tokenizer. We suggest the same tokenizer is used for inference.", "## Model output\n\nThe model classifies each input into one of four distinct classes:\n\n* 0 - acceptable\n\n* 1 - inappropriate\n\n* 2 - offensive\n\n* 3 - violent" ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #it #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "# Hate Speech Classifier for Social Media Content in Italian Language\n\nA monolingual model for hate speech classification of social media content in Italian language. The model was trained on 119,670 YouTube comments and tested on an independent test set of 21,072 YouTube comments. It is based on Italian ALBERTO pre-trained language model.", "## Please cite:\nKralj Novak, P., Scantamburlo, T., Pelicon, A., Cinelli, M., Mozetiฤ, I., & Zollo, F. (2022, July). __Handling disagreement in hate speech modelling__. In International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (pp. 681-695). Cham: Springer International Publishing.\nURL", "## Tokenizer\n\nDuring training the text was preprocessed using the original Italian ALBERTO tokenizer. We suggest the same tokenizer is used for inference.", "## Model output\n\nThe model classifies each input into one of four distinct classes:\n\n* 0 - acceptable\n\n* 1 - inappropriate\n\n* 2 - offensive\n\n* 3 - violent" ]
[ 34, 66, 102, 32, 33 ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #it #license-mit #autotrain_compatible #endpoints_compatible #region-us \n# Hate Speech Classifier for Social Media Content in Italian Language\n\nA monolingual model for hate speech classification of social media content in Italian language. The model was trained on 119,670 YouTube comments and tested on an independent test set of 21,072 YouTube comments. It is based on Italian ALBERTO pre-trained language model.## Please cite:\nKralj Novak, P., Scantamburlo, T., Pelicon, A., Cinelli, M., Mozetiฤ, I., & Zollo, F. (2022, July). __Handling disagreement in hate speech modelling__. In International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (pp. 681-695). Cham: Springer International Publishing.\nURL## Tokenizer\n\nDuring training the text was preprocessed using the original Italian ALBERTO tokenizer. We suggest the same tokenizer is used for inference.## Model output\n\nThe model classifies each input into one of four distinct classes:\n\n* 0 - acceptable\n\n* 1 - inappropriate\n\n* 2 - offensive\n\n* 3 - violent" ]
text-classification
transformers
# Hate Speech Classifier for Social Media Content in Dutch A monolingual model for hate speech classification of social media content in Dutch. The model was trained on 20000 social media posts (youtube, twitter, facebook) and tested on an independent test set of 2000 posts. It is based on thepre-trained language model [BERTje](https://huggingface.co/wietsedv/bert-base-dutch-cased). ## Tokenizer During training the text was preprocessed using the BERTje tokenizer. We suggest the same tokenizer is used for inference. ## Model output The model classifies each input into one of four distinct classes: * 0 - acceptable * 1 - inappropriate * 2 - offensive * 3 - violent
{"language": ["nl"], "license": "mit"}
IMSyPP/hate_speech_nl
null
[ "transformers", "pytorch", "bert", "text-classification", "nl", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "nl" ]
TAGS #transformers #pytorch #bert #text-classification #nl #license-mit #autotrain_compatible #endpoints_compatible #region-us
# Hate Speech Classifier for Social Media Content in Dutch A monolingual model for hate speech classification of social media content in Dutch. The model was trained on 20000 social media posts (youtube, twitter, facebook) and tested on an independent test set of 2000 posts. It is based on thepre-trained language model BERTje. ## Tokenizer During training the text was preprocessed using the BERTje tokenizer. We suggest the same tokenizer is used for inference. ## Model output The model classifies each input into one of four distinct classes: * 0 - acceptable * 1 - inappropriate * 2 - offensive * 3 - violent
[ "# Hate Speech Classifier for Social Media Content in Dutch\n\nA monolingual model for hate speech classification of social media content in Dutch. The model was trained on 20000 social media posts (youtube, twitter, facebook) and tested on an independent test set of 2000 posts. It is based on thepre-trained language model BERTje.", "## Tokenizer\n\nDuring training the text was preprocessed using the BERTje tokenizer. We suggest the same tokenizer is used for inference.", "## Model output\n\nThe model classifies each input into one of four distinct classes:\n* 0 - acceptable\n* 1 - inappropriate\n* 2 - offensive\n* 3 - violent" ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #nl #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "# Hate Speech Classifier for Social Media Content in Dutch\n\nA monolingual model for hate speech classification of social media content in Dutch. The model was trained on 20000 social media posts (youtube, twitter, facebook) and tested on an independent test set of 2000 posts. It is based on thepre-trained language model BERTje.", "## Tokenizer\n\nDuring training the text was preprocessed using the BERTje tokenizer. We suggest the same tokenizer is used for inference.", "## Model output\n\nThe model classifies each input into one of four distinct classes:\n* 0 - acceptable\n* 1 - inappropriate\n* 2 - offensive\n* 3 - violent" ]
[ 34, 68, 31, 33 ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #nl #license-mit #autotrain_compatible #endpoints_compatible #region-us \n# Hate Speech Classifier for Social Media Content in Dutch\n\nA monolingual model for hate speech classification of social media content in Dutch. The model was trained on 20000 social media posts (youtube, twitter, facebook) and tested on an independent test set of 2000 posts. It is based on thepre-trained language model BERTje.## Tokenizer\n\nDuring training the text was preprocessed using the BERTje tokenizer. We suggest the same tokenizer is used for inference.## Model output\n\nThe model classifies each input into one of four distinct classes:\n* 0 - acceptable\n* 1 - inappropriate\n* 2 - offensive\n* 3 - violent" ]
text-classification
transformers
# Hate Speech Classifier for Social Media Content in Slovenian Language A monolingual model for hate speech classification of social media content in Slovenian language. The model was trained on 50,000 Twitter comments and tested on an independent test set of 10,000 Twitter comments. It is based on multilingual CroSloEngual BERT pre-trained language model. ## Please cite: Kralj Novak, P., Scantamburlo, T., Pelicon, A., Cinelli, M., Mozetiฤ, I., & Zollo, F. (2022, July). __Handling disagreement in hate speech modelling__. In International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (pp. 681-695). Cham: Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-031-08974-9_54 ## Tokenizer During training the text was preprocessed using the original CroSloEngual BERT tokenizer. We suggest the same tokenizer is used for inference. ## Model output The model classifies each input into one of four distinct classes: * 0 - acceptable * 1 - inappropriate * 2 - offensive * 3 - violent
{"language": ["sl"], "license": "mit", "pipeline_tag": "text-classification", "inference": true, "widget": [{"text": "Sem Mark in \u017eivim v Ljubljani. Sem doktorski \u0161tudent na Mednarodni podiplomski \u0161oli Jo\u017eefa Stefana."}]}
IMSyPP/hate_speech_slo
null
[ "transformers", "pytorch", "bert", "text-classification", "sl", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "sl" ]
TAGS #transformers #pytorch #bert #text-classification #sl #license-mit #autotrain_compatible #endpoints_compatible #region-us
# Hate Speech Classifier for Social Media Content in Slovenian Language A monolingual model for hate speech classification of social media content in Slovenian language. The model was trained on 50,000 Twitter comments and tested on an independent test set of 10,000 Twitter comments. It is based on multilingual CroSloEngual BERT pre-trained language model. ## Please cite: Kralj Novak, P., Scantamburlo, T., Pelicon, A., Cinelli, M., Mozetiฤ, I., & Zollo, F. (2022, July). __Handling disagreement in hate speech modelling__. In International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (pp. 681-695). Cham: Springer International Publishing. URL ## Tokenizer During training the text was preprocessed using the original CroSloEngual BERT tokenizer. We suggest the same tokenizer is used for inference. ## Model output The model classifies each input into one of four distinct classes: * 0 - acceptable * 1 - inappropriate * 2 - offensive * 3 - violent
[ "# Hate Speech Classifier for Social Media Content in Slovenian Language\n\nA monolingual model for hate speech classification of social media content in Slovenian language. The model was trained on 50,000 Twitter comments and tested on an independent test set of 10,000 Twitter comments. It is based on multilingual CroSloEngual BERT pre-trained language model.", "## Please cite:\nKralj Novak, P., Scantamburlo, T., Pelicon, A., Cinelli, M., Mozetiฤ, I., & Zollo, F. (2022, July). __Handling disagreement in hate speech modelling__. In International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (pp. 681-695). Cham: Springer International Publishing.\nURL", "## Tokenizer\n\nDuring training the text was preprocessed using the original CroSloEngual BERT tokenizer. We suggest the same tokenizer is used for inference.", "## Model output\n\nThe model classifies each input into one of four distinct classes:\n* 0 - acceptable\n* 1 - inappropriate\n* 2 - offensive\n* 3 - violent" ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #sl #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "# Hate Speech Classifier for Social Media Content in Slovenian Language\n\nA monolingual model for hate speech classification of social media content in Slovenian language. The model was trained on 50,000 Twitter comments and tested on an independent test set of 10,000 Twitter comments. It is based on multilingual CroSloEngual BERT pre-trained language model.", "## Please cite:\nKralj Novak, P., Scantamburlo, T., Pelicon, A., Cinelli, M., Mozetiฤ, I., & Zollo, F. (2022, July). __Handling disagreement in hate speech modelling__. In International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (pp. 681-695). Cham: Springer International Publishing.\nURL", "## Tokenizer\n\nDuring training the text was preprocessed using the original CroSloEngual BERT tokenizer. We suggest the same tokenizer is used for inference.", "## Model output\n\nThe model classifies each input into one of four distinct classes:\n* 0 - acceptable\n* 1 - inappropriate\n* 2 - offensive\n* 3 - violent" ]
[ 34, 72, 102, 36, 33 ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #sl #license-mit #autotrain_compatible #endpoints_compatible #region-us \n# Hate Speech Classifier for Social Media Content in Slovenian Language\n\nA monolingual model for hate speech classification of social media content in Slovenian language. The model was trained on 50,000 Twitter comments and tested on an independent test set of 10,000 Twitter comments. It is based on multilingual CroSloEngual BERT pre-trained language model.## Please cite:\nKralj Novak, P., Scantamburlo, T., Pelicon, A., Cinelli, M., Mozetiฤ, I., & Zollo, F. (2022, July). __Handling disagreement in hate speech modelling__. In International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (pp. 681-695). Cham: Springer International Publishing.\nURL## Tokenizer\n\nDuring training the text was preprocessed using the original CroSloEngual BERT tokenizer. We suggest the same tokenizer is used for inference.## Model output\n\nThe model classifies each input into one of four distinct classes:\n* 0 - acceptable\n* 1 - inappropriate\n* 2 - offensive\n* 3 - violent" ]
text-generation
transformers
# Cyber Bones DialoGPT Model
{"tags": ["conversational"]}
ITNODove/DialoGPT-medium-cyberbones
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Cyber Bones DialoGPT Model
[ "# Cyber Bones DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Cyber Bones DialoGPT Model" ]
[ 39, 7 ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Cyber Bones DialoGPT Model" ]
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on a dataset of Shakespeare's plays. ## Model description The model is the original gpt-2 model fine-tuned on a custom dataset. ## Intended uses & limitations The model can be used to generate Shakespearean-like text. Consider that because it comes from plays, such a typographical structure might be reproduced. ## Training and evaluation data Trained with Shakespeare's plays corpus. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.11.0
{"license": "mit", "tags": ["generated_from_trainer"], "model-index": [{"name": "output", "results": []}]}
Iacopo/Shakespear-GPT2
null
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# output This model is a fine-tuned version of gpt2 on a dataset of Shakespeare's plays. ## Model description The model is the original gpt-2 model fine-tuned on a custom dataset. ## Intended uses & limitations The model can be used to generate Shakespearean-like text. Consider that because it comes from plays, such a typographical structure might be reproduced. ## Training and evaluation data Trained with Shakespeare's plays corpus. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.11.0
[ "# output\n\nThis model is a fine-tuned version of gpt2 on a dataset of Shakespeare's plays.", "## Model description\n\nThe model is the original gpt-2 model fine-tuned on a custom dataset.", "## Intended uses & limitations\n\nThe model can be used to generate Shakespearean-like text. Consider that because it comes from plays, such a typographical structure might be reproduced.", "## Training and evaluation data\n\nTrained with Shakespeare's plays corpus.", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.0\n- Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# output\n\nThis model is a fine-tuned version of gpt2 on a dataset of Shakespeare's plays.", "## Model description\n\nThe model is the original gpt-2 model fine-tuned on a custom dataset.", "## Intended uses & limitations\n\nThe model can be used to generate Shakespearean-like text. Consider that because it comes from plays, such a typographical structure might be reproduced.", "## Training and evaluation data\n\nTrained with Shakespeare's plays corpus.", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.0\n- Tokenizers 0.11.0" ]
[ 46, 24, 23, 38, 14, 4, 95, 5, 47 ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# output\n\nThis model is a fine-tuned version of gpt2 on a dataset of Shakespeare's plays.## Model description\n\nThe model is the original gpt-2 model fine-tuned on a custom dataset.## Intended uses & limitations\n\nThe model can be used to generate Shakespearean-like text. Consider that because it comes from plays, such a typographical structure might be reproduced.## Training and evaluation data\n\nTrained with Shakespeare's plays corpus.## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2.0### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.0\n- Tokenizers 0.11.0" ]
text-generation
transformers
# Hank Hill DialoGPT Model
{"tags": ["conversational"]}
Icemiser/chat-test
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Hank Hill DialoGPT Model
[ "# Hank Hill DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Hank Hill DialoGPT Model" ]
[ 39, 7 ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Hank Hill DialoGPT Model" ]
text2text-generation
transformers
@inproceedings{adebara-abdul-mageed-2021-improving, title = "Improving Similar Language Translation With Transfer Learning", author = "Adebara, Ife and Abdul-Mageed, Muhammad", booktitle = "Proceedings of the Sixth Conference on Machine Translation", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.wmt-1.27", pages = "273--278", abstract = "We investigate transfer learning based on pre-trained neural machine translation models to translate between (low-resource) similar languages. This work is part of our contribution to the WMT 2021 Similar Languages Translation Shared Task where we submitted models for different language pairs, including French-Bambara, Spanish-Catalan, and Spanish-Portuguese in both directions. Our models for Catalan-Spanish (82.79 BLEU)and Portuguese-Spanish (87.11 BLEU) rank top 1 in the official shared task evaluation, and we are the only team to submit models for the French-Bambara pairs.", }
{"language": ["bm", "fr"]}
Ife/BM-FR
null
[ "transformers", "pytorch", "marian", "text2text-generation", "bm", "fr", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "bm", "fr" ]
TAGS #transformers #pytorch #marian #text2text-generation #bm #fr #autotrain_compatible #endpoints_compatible #region-us
@inproceedings{adebara-abdul-mageed-2021-improving, title = "Improving Similar Language Translation With Transfer Learning", author = "Adebara, Ife and Abdul-Mageed, Muhammad", booktitle = "Proceedings of the Sixth Conference on Machine Translation", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "URL pages = "273--278", abstract = "We investigate transfer learning based on pre-trained neural machine translation models to translate between (low-resource) similar languages. This work is part of our contribution to the WMT 2021 Similar Languages Translation Shared Task where we submitted models for different language pairs, including French-Bambara, Spanish-Catalan, and Spanish-Portuguese in both directions. Our models for Catalan-Spanish (82.79 BLEU)and Portuguese-Spanish (87.11 BLEU) rank top 1 in the official shared task evaluation, and we are the only team to submit models for the French-Bambara pairs.", }
[]
[ "TAGS\n#transformers #pytorch #marian #text2text-generation #bm #fr #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 35 ]
[ "TAGS\n#transformers #pytorch #marian #text2text-generation #bm #fr #autotrain_compatible #endpoints_compatible #region-us \n" ]
text2text-generation
transformers
# Similar-Languages-MT
{}
Ife/CA-ES
null
[ "transformers", "pytorch", "marian", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #marian #text2text-generation #autotrain_compatible #endpoints_compatible #region-us
# Similar-Languages-MT
[ "# Similar-Languages-MT" ]
[ "TAGS\n#transformers #pytorch #marian #text2text-generation #autotrain_compatible #endpoints_compatible #region-us \n", "# Similar-Languages-MT" ]
[ 30, 6 ]
[ "TAGS\n#transformers #pytorch #marian #text2text-generation #autotrain_compatible #endpoints_compatible #region-us \n# Similar-Languages-MT" ]
question-answering
transformers
A distilbert model fine-tuned for question answering.
{"language": ["en"], "datasets": ["squad_v2", "wiki_qa"], "metrics": ["accuracy"], "pipeline_tag": "question-answering"}
Ifenna/dbert-3epoch
null
[ "transformers", "pytorch", "safetensors", "distilbert", "question-answering", "en", "dataset:squad_v2", "dataset:wiki_qa", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #safetensors #distilbert #question-answering #en #dataset-squad_v2 #dataset-wiki_qa #endpoints_compatible #region-us
A distilbert model fine-tuned for question answering.
[]
[ "TAGS\n#transformers #pytorch #safetensors #distilbert #question-answering #en #dataset-squad_v2 #dataset-wiki_qa #endpoints_compatible #region-us \n" ]
[ 48 ]
[ "TAGS\n#transformers #pytorch #safetensors #distilbert #question-answering #en #dataset-squad_v2 #dataset-wiki_qa #endpoints_compatible #region-us \n" ]
text-generation
transformers
ะ—ะฐะฑะฐะฒะฝะพะต ะดะปั ะดะธัะบะพั€ะดะธะบะฐ))00)) https://discord.gg/HpeadKH Offers [email protected]
{"tags": ["ru", "4ulan"]}
Ifromspace/GRIEFSOFT-walr
null
[ "transformers", "pytorch", "gpt2", "text-generation", "ru", "4ulan", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #ru #4ulan #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
ะ—ะฐะฑะฐะฒะฝะพะต ะดะปั ะดะธัะบะพั€ะดะธะบะฐ))00)) URL Offers work@URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #ru #4ulan #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 42 ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #ru #4ulan #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
**Fork of https://huggingface.co/sberbank-ai/rugpt3large_based_on_gpt2** ะ—ะฐะฑะฐะฒะฝะพะต ะดะปั ะดะธัะบะพั€ะดะธะบะฐ))00)) ROADMAP: - ะกะพะฑะธั€ะฐัŽ ะดะฐั‚ะฐัะตั‚ะธะบ ะธะท ะบะฝะธะถะตะบ ะฟั€ะพ ะฟะพะฟะฐะดะฐะฝั†ะตะฒ. <------------------------- ะกะตะนั‡ะฐั ั‚ัƒั‚. - ะ”ะพะพะฑัƒั‡ะฐัŽ. - ะ’ั‹ะฑั€ะฐัั‹ะฒะฐัŽ ะฒ ะดะธัะบะพั€ะดะธะบ. https://discord.gg/HpeadKH
{"language": ["ru"], "tags": ["PyTorch", "Transformers", "4ulan"]}
Ifromspace/GRIEFSOFT
null
[ "transformers", "pytorch", "gpt2", "text-generation", "PyTorch", "Transformers", "4ulan", "ru", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "ru" ]
TAGS #transformers #pytorch #gpt2 #text-generation #PyTorch #Transformers #4ulan #ru #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Fork of URL ะ—ะฐะฑะฐะฒะฝะพะต ะดะปั ะดะธัะบะพั€ะดะธะบะฐ))00)) ROADMAP: - ะกะพะฑะธั€ะฐัŽ ะดะฐั‚ะฐัะตั‚ะธะบ ะธะท ะบะฝะธะถะตะบ ะฟั€ะพ ะฟะพะฟะฐะดะฐะฝั†ะตะฒ. <------------------------- ะกะตะนั‡ะฐั ั‚ัƒั‚. - ะ”ะพะพะฑัƒั‡ะฐัŽ. - ะ’ั‹ะฑั€ะฐัั‹ะฒะฐัŽ ะฒ ะดะธัะบะพั€ะดะธะบ. URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #PyTorch #Transformers #4ulan #ru #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 49 ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #PyTorch #Transformers #4ulan #ru #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
summarization
transformers
# MBARTRuSumGazeta ## Model description This is a ported version of [fairseq model](https://www.dropbox.com/s/fijtntnifbt9h0k/gazeta_mbart_v2_fairseq.tar.gz). For more details, please see [Dataset for Automatic Summarization of Russian News](https://arxiv.org/abs/2006.11063). ## Intended uses & limitations #### How to use Colab: [link](https://colab.research.google.com/drive/1wdo_nPZPk6dWAn1J8nGx4Z5Ef82jCCob) ```python from transformers import MBartTokenizer, MBartForConditionalGeneration model_name = "IlyaGusev/mbart_ru_sum_gazeta" tokenizer = MBartTokenizer.from_pretrained(model_name) model = MBartForConditionalGeneration.from_pretrained(model_name) article_text = "..." input_ids = tokenizer( [article_text], max_length=600, padding="max_length", truncation=True, return_tensors="pt", )["input_ids"] output_ids = model.generate( input_ids=input_ids, no_repeat_ngram_size=4 )[0] summary = tokenizer.decode(output_ids, skip_special_tokens=True) print(summary) ``` #### Limitations and bias - The model should work well with Gazeta.ru articles, but for any other agencies it can suffer from domain shift ## Training data - Dataset: [Gazeta](https://huggingface.co/datasets/IlyaGusev/gazeta) ## Training procedure - Fairseq training script: [train.sh](https://github.com/IlyaGusev/summarus/blob/master/external/bart_scripts/train.sh) - Porting: [Colab link](https://colab.research.google.com/drive/13jXOlCpArV-lm4jZQ0VgOpj6nFBYrLAr) ## Eval results * Train dataset: **Gazeta v1 train** * Test dataset: **Gazeta v1 test** * Source max_length: **600** * Target max_length: **200** * no_repeat_ngram_size: **4** * num_beams: **5** | Model | R-1-f | R-2-f | R-L-f | chrF | METEOR | BLEU | Avg char length | |:--------------------------|:------|:------|:------|:-------|:-------|:-----|:-----| | [mbart_ru_sum_gazeta](https://huggingface.co/IlyaGusev/mbart_ru_sum_gazeta) | **32.4** | 14.3 | 28.0 | 39.7 | **26.4** | 12.1 | 371 | | [rut5_base_sum_gazeta](https://huggingface.co/IlyaGusev/rut5_base_sum_gazeta) | 32.2 | **14.4** | **28.1** | **39.8** | 25.7 | **12.3** | 330 | | [rugpt3medium_sum_gazeta](https://huggingface.co/IlyaGusev/rugpt3medium_sum_gazeta) | 26.2 | 7.7 | 21.7 | 33.8 | 18.2 | 4.3 | 244 | * Train dataset: **Gazeta v1 train** * Test dataset: **Gazeta v2 test** * Source max_length: **600** * Target max_length: **200** * no_repeat_ngram_size: **4** * num_beams: **5** | Model | R-1-f | R-2-f | R-L-f | chrF | METEOR | BLEU | Avg char length | |:--------------------------|:------|:------|:------|:-------|:-------|:-----|:-----| | [mbart_ru_sum_gazeta](https://huggingface.co/IlyaGusev/mbart_ru_sum_gazeta) | **28.7** | **11.1** | 24.4 | **37.3** | **22.7** | **9.4** | 373 | | [rut5_base_sum_gazeta](https://huggingface.co/IlyaGusev/rut5_base_sum_gazeta) | 28.6 | **11.1** | **24.5** | 37.2 | 22.0 | **9.4** | 331 | | [rugpt3medium_sum_gazeta](https://huggingface.co/IlyaGusev/rugpt3medium_sum_gazeta) | 24.1 | 6.5 | 19.8 | 32.1 | 16.3 | 3.6 | 242 | Predicting all summaries: ```python import json import torch from transformers import MBartTokenizer, MBartForConditionalGeneration from datasets import load_dataset def gen_batch(inputs, batch_size): batch_start = 0 while batch_start < len(inputs): yield inputs[batch_start: batch_start + batch_size] batch_start += batch_size def predict( model_name, input_records, output_file, max_source_tokens_count=600, batch_size=4 ): device = "cuda" if torch.cuda.is_available() else "cpu" tokenizer = MBartTokenizer.from_pretrained(model_name) model = MBartForConditionalGeneration.from_pretrained(model_name).to(device) predictions = [] for batch in gen_batch(inputs, batch_size): texts = [r["text"] for r in batch] input_ids = tokenizer( batch, return_tensors="pt", padding="max_length", truncation=True, max_length=max_source_tokens_count )["input_ids"].to(device) output_ids = model.generate( input_ids=input_ids, no_repeat_ngram_size=4 ) summaries = tokenizer.batch_decode(output_ids, skip_special_tokens=True) for s in summaries: print(s) predictions.extend(summaries) with open(output_file, "w") as w: for p in predictions: w.write(p.strip().replace("\n", " ") + "\n") gazeta_test = load_dataset('IlyaGusev/gazeta', script_version="v1.0")["test"] predict("IlyaGusev/mbart_ru_sum_gazeta", list(gazeta_test), "mbart_predictions.txt") ``` Evaluation: https://github.com/IlyaGusev/summarus/blob/master/evaluate.py Flags: --language ru --tokenize-after --lower ### BibTeX entry and citation info ```bibtex @InProceedings{10.1007/978-3-030-59082-6_9, author="Gusev, Ilya", editor="Filchenkov, Andrey and Kauttonen, Janne and Pivovarova, Lidia", title="Dataset for Automatic Summarization of Russian News", booktitle="Artificial Intelligence and Natural Language", year="2020", publisher="Springer International Publishing", address="Cham", pages="122--134", isbn="978-3-030-59082-6" } ```
{"language": ["ru"], "license": "apache-2.0", "tags": ["summarization", "mbart"], "datasets": ["IlyaGusev/gazeta"], "inference": {"parameters": {"no_repeat_ngram_size": 4}}, "widget": [{"text": "\u0412\u044b\u0441\u043e\u0442\u0430 \u0431\u0430\u0448\u043d\u0438 \u0441\u043e\u0441\u0442\u0430\u0432\u043b\u044f\u0435\u0442 324 \u043c\u0435\u0442\u0440\u0430 (1063 \u0444\u0443\u0442\u0430), \u043f\u0440\u0438\u043c\u0435\u0440\u043d\u043e \u0442\u0430\u043a\u0430\u044f \u0436\u0435 \u0432\u044b\u0441\u043e\u0442\u0430, \u043a\u0430\u043a \u0443 81-\u044d\u0442\u0430\u0436\u043d\u043e\u0433\u043e \u0437\u0434\u0430\u043d\u0438\u044f, \u0438 \u0441\u0430\u043c\u043e\u0435 \u0432\u044b\u0441\u043e\u043a\u043e\u0435 \u0441\u043e\u043e\u0440\u0443\u0436\u0435\u043d\u0438\u0435 \u0432 \u041f\u0430\u0440\u0438\u0436\u0435. \u0415\u0433\u043e \u043e\u0441\u043d\u043e\u0432\u0430\u043d\u0438\u0435 \u043a\u0432\u0430\u0434\u0440\u0430\u0442\u043d\u043e, \u0440\u0430\u0437\u043c\u0435\u0440\u043e\u043c 125 \u043c\u0435\u0442\u0440\u043e\u0432 (410 \u0444\u0443\u0442\u043e\u0432) \u0441 \u043b\u044e\u0431\u043e\u0439 \u0441\u0442\u043e\u0440\u043e\u043d\u044b. \u0412\u043e \u0432\u0440\u0435\u043c\u044f \u0441\u0442\u0440\u043e\u0438\u0442\u0435\u043b\u044c\u0441\u0442\u0432\u0430 \u042d\u0439\u0444\u0435\u043b\u0435\u0432\u0430 \u0431\u0430\u0448\u043d\u044f \u043f\u0440\u0435\u0432\u0437\u043e\u0448\u043b\u0430 \u043c\u043e\u043d\u0443\u043c\u0435\u043d\u0442 \u0412\u0430\u0448\u0438\u043d\u0433\u0442\u043e\u043d\u0430, \u0441\u0442\u0430\u0432 \u0441\u0430\u043c\u044b\u043c \u0432\u044b\u0441\u043e\u043a\u0438\u043c \u0438\u0441\u043a\u0443\u0441\u0441\u0442\u0432\u0435\u043d\u043d\u044b\u043c \u0441\u043e\u043e\u0440\u0443\u0436\u0435\u043d\u0438\u0435\u043c \u0432 \u043c\u0438\u0440\u0435, \u0438 \u044d\u0442\u043e\u0442 \u0442\u0438\u0442\u0443\u043b \u043e\u043d\u0430 \u0443\u0434\u0435\u0440\u0436\u0438\u0432\u0430\u043b\u0430 \u0432 \u0442\u0435\u0447\u0435\u043d\u0438\u0435 41 \u0433\u043e\u0434\u0430 \u0434\u043e \u0437\u0430\u0432\u0435\u0440\u0448\u0435\u043d\u0438\u044f \u0441\u0442\u0440\u043e\u0438\u0442\u0435\u043b\u044c\u0441\u0442\u0432\u043e \u0437\u0434\u0430\u043d\u0438\u044f \u041a\u0440\u0430\u0439\u0441\u043b\u0435\u0440 \u0432 \u041d\u044c\u044e-\u0419\u043e\u0440\u043a\u0435 \u0432 1930 \u0433\u043e\u0434\u0443. \u042d\u0442\u043e \u043f\u0435\u0440\u0432\u043e\u0435 \u0441\u043e\u043e\u0440\u0443\u0436\u0435\u043d\u0438\u0435 \u043a\u043e\u0442\u043e\u0440\u043e\u0435 \u0434\u043e\u0441\u0442\u0438\u0433\u043b\u043e \u0432\u044b\u0441\u043e\u0442\u044b 300 \u043c\u0435\u0442\u0440\u043e\u0432. \u0418\u0437-\u0437\u0430 \u0434\u043e\u0431\u0430\u0432\u043b\u0435\u043d\u0438\u044f \u0432\u0435\u0449\u0430\u0442\u0435\u043b\u044c\u043d\u043e\u0439 \u0430\u043d\u0442\u0435\u043d\u043d\u044b \u043d\u0430 \u0432\u0435\u0440\u0448\u0438\u043d\u0435 \u0431\u0430\u0448\u043d\u0438 \u0432 1957 \u0433\u043e\u0434\u0443 \u043e\u043d\u0430 \u0441\u0435\u0439\u0447\u0430\u0441 \u0432\u044b\u0448\u0435 \u0437\u0434\u0430\u043d\u0438\u044f \u041a\u0440\u0430\u0439\u0441\u043b\u0435\u0440 \u043d\u0430 5,2 \u043c\u0435\u0442\u0440\u0430 (17 \u0444\u0443\u0442\u043e\u0432). \u0417\u0430 \u0438\u0441\u043a\u043b\u044e\u0447\u0435\u043d\u0438\u0435\u043c \u043f\u0435\u0440\u0435\u0434\u0430\u0442\u0447\u0438\u043a\u043e\u0432, \u042d\u0439\u0444\u0435\u043b\u0435\u0432\u0430 \u0431\u0430\u0448\u043d\u044f \u044f\u0432\u043b\u044f\u0435\u0442\u0441\u044f \u0432\u0442\u043e\u0440\u043e\u0439 \u0441\u0430\u043c\u043e\u0439 \u0432\u044b\u0441\u043e\u043a\u043e\u0439 \u043e\u0442\u0434\u0435\u043b\u044c\u043d\u043e \u0441\u0442\u043e\u044f\u0449\u0435\u0439 \u0441\u0442\u0440\u0443\u043a\u0442\u0443\u0440\u043e\u0439 \u0432\u043e \u0424\u0440\u0430\u043d\u0446\u0438\u0438 \u043f\u043e\u0441\u043b\u0435 \u0432\u0438\u0430\u0434\u0443\u043a\u0430 \u041c\u0438\u0439\u043e.", "example_title": "\u0412\u0438\u043a\u0438\u043f\u0435\u0434\u0438\u044f"}, {"text": "\u0421 1 \u0441\u0435\u043d\u0442\u044f\u0431\u0440\u044f \u0432 \u0420\u043e\u0441\u0441\u0438\u0438 \u0432\u0441\u0442\u0443\u043f\u0430\u044e\u0442 \u0432 \u0441\u0438\u043b\u0443 \u043f\u043e\u043f\u0440\u0430\u0432\u043a\u0438 \u0432 \u0437\u0430\u043a\u043e\u043d \u00ab\u041e \u0431\u0430\u043d\u043a\u0440\u043e\u0442\u0441\u0442\u0432\u0435\u00bb \u2014 \u0442\u0435\u043f\u0435\u0440\u044c \u0434\u043e\u043b\u0436\u043d\u0438\u043a\u0438 \u0441\u043c\u043e\u0433\u0443\u0442 \u043e\u0441\u0432\u043e\u0431\u043e\u0436\u0434\u0430\u0442\u044c\u0441\u044f \u043e\u0442 \u043d\u0435\u043f\u043e\u0441\u0438\u043b\u044c\u043d\u044b\u0445 \u043e\u0431\u044f\u0437\u0430\u0442\u0435\u043b\u044c\u0441\u0442\u0432 \u0432\u043e \u0432\u043d\u0435\u0441\u0443\u0434\u0435\u0431\u043d\u043e\u043c \u043f\u043e\u0440\u044f\u0434\u043a\u0435, \u0435\u0441\u043b\u0438 \u0441\u0443\u043c\u043c\u0430 \u0437\u0430\u0434\u043e\u043b\u0436\u0435\u043d\u043d\u043e\u0441\u0442\u0438 \u0441\u043e\u0441\u0442\u0430\u0432\u043b\u044f\u0435\u0442 \u043d\u0435 \u043c\u0435\u043d\u0435\u0435 50 \u0442\u044b\u0441. \u0440\u0443\u0431\u043b\u0435\u0439 \u0438 \u043d\u0435 \u043f\u0440\u0435\u0432\u044b\u0448\u0430\u0435\u0442 500 \u0442\u044b\u0441. \u0440\u0443\u0431\u043b\u0435\u0439 \u0431\u0435\u0437 \u0443\u0447\u0435\u0442\u0430 \u0448\u0442\u0440\u0430\u0444\u043e\u0432, \u043f\u0435\u043d\u0438, \u043f\u0440\u043e\u0446\u0435\u043d\u0442\u043e\u0432 \u0437\u0430 \u043f\u0440\u043e\u0441\u0440\u043e\u0447\u043a\u0443 \u043f\u043b\u0430\u0442\u0435\u0436\u0430 \u0438 \u043f\u0440\u043e\u0447\u0438\u0445 \u0438\u043c\u0443\u0449\u0435\u0441\u0442\u0432\u0435\u043d\u043d\u044b\u0445 \u0438\u043b\u0438 \u0444\u0438\u043d\u0430\u043d\u0441\u043e\u0432\u044b\u0445 \u0441\u0430\u043d\u043a\u0446\u0438\u0439. \u0423 \u0444\u0438\u0437\u043b\u0438\u0446 \u0438 \u0438\u043d\u0434\u0438\u0432\u0438\u0434\u0443\u0430\u043b\u044c\u043d\u044b\u0445 \u043f\u0440\u0435\u0434\u043f\u0440\u0438\u043d\u0438\u043c\u0430\u0442\u0435\u043b\u0435\u0439 \u043f\u043e\u044f\u0432\u0438\u043b\u0430\u0441\u044c \u0432\u043e\u0437\u043c\u043e\u0436\u043d\u043e\u0441\u0442\u044c \u043f\u0440\u043e\u0439\u0442\u0438 \u043f\u0440\u043e\u0446\u0435\u0434\u0443\u0440\u0443 \u0431\u0430\u043d\u043a\u0440\u043e\u0442\u0441\u0442\u0432\u0430 \u0431\u0435\u0437 \u0443\u0447\u0430\u0441\u0442\u0438\u044f \u0441\u0443\u0434\u0430 \u0438 \u0444\u0438\u043d\u0430\u043d\u0441\u043e\u0432\u043e\u0433\u043e \u0443\u043f\u0440\u0430\u0432\u043b\u044f\u044e\u0449\u0435\u0433\u043e \u2014 \u0434\u043e\u0441\u0442\u0430\u0442\u043e\u0447\u043d\u043e \u043f\u043e\u0434\u0430\u0442\u044c \u0441\u043e\u043e\u0442\u0432\u0435\u0442\u0441\u0442\u0432\u0443\u044e\u0449\u0435\u0435 \u0437\u0430\u044f\u0432\u043b\u0435\u043d\u0438\u0435 \u0447\u0435\u0440\u0435\u0437 \u041c\u0424\u0426. \u0421\u0443\u043c\u043c\u0443 \u0437\u0430\u0434\u043e\u043b\u0436\u0435\u043d\u043d\u043e\u0441\u0442\u0438 \u0438 \u0441\u043f\u0438\u0441\u043e\u043a \u0432\u0441\u0435\u0445 \u0438\u0437\u0432\u0435\u0441\u0442\u043d\u044b\u0445 \u0437\u0430\u044f\u0432\u0438\u0442\u0435\u043b\u044e \u043a\u0440\u0435\u0434\u0438\u0442\u043e\u0440\u043e\u0432 \u043d\u0443\u0436\u043d\u043e \u043f\u0440\u0435\u0434\u043e\u0441\u0442\u0430\u0432\u0438\u0442\u044c \u0441\u0430\u043c\u043e\u0441\u0442\u043e\u044f\u0442\u0435\u043b\u044c\u043d\u043e. \u0415\u0441\u043b\u0438 \u0432\u0441\u0435 \u0443\u0441\u043b\u043e\u0432\u0438\u044f \u0441\u043e\u0431\u043b\u044e\u0434\u0435\u043d\u044b, \u0441\u0432\u0435\u0434\u0435\u043d\u0438\u044f \u0432\u043d\u0435\u0441\u0443\u0442 \u0432 \u0415\u0434\u0438\u043d\u044b\u0439 \u0444\u0435\u0434\u0435\u0440\u0430\u043b\u044c\u043d\u044b\u0439 \u0440\u0435\u0435\u0441\u0442\u0440 \u0432 \u0442\u0435\u0447\u0435\u043d\u0438\u0435 \u0442\u0440\u0435\u0445 \u0440\u0430\u0431\u043e\u0447\u0438\u0445 \u0434\u043d\u0435\u0439. \u041f\u0440\u0438 \u044d\u0442\u043e\u043c \u043d\u0430 \u043c\u043e\u043c\u0435\u043d\u0442 \u043f\u043e\u0434\u0430\u0447\u0438 \u0437\u0430\u044f\u0432\u043b\u0435\u043d\u0438\u044f \u0432 \u043e\u0442\u043d\u043e\u0448\u0435\u043d\u0438\u0438 \u0437\u0430\u044f\u0432\u0438\u0442\u0435\u043b\u044f \u0434\u043e\u043b\u0436\u043d\u043e \u0431\u044b\u0442\u044c \u043e\u043a\u043e\u043d\u0447\u0435\u043d\u043e \u0438\u0441\u043f\u043e\u043b\u043d\u0438\u0442\u0435\u043b\u044c\u043d\u043e\u0435 \u043f\u0440\u043e\u0438\u0437\u0432\u043e\u0434\u0441\u0442\u0432\u043e \u0441 \u0432\u043e\u0437\u0432\u0440\u0430\u0449\u0435\u043d\u0438\u0435\u043c \u0438\u0441\u043f\u043e\u043b\u043d\u0438\u0442\u0435\u043b\u044c\u043d\u043e\u0433\u043e \u0434\u043e\u043a\u0443\u043c\u0435\u043d\u0442\u0430 \u0432\u0437\u044b\u0441\u043a\u0430\u0442\u0435\u043b\u044e. \u042d\u0442\u043e \u0437\u043d\u0430\u0447\u0438\u0442, \u0447\u0442\u043e \u0443 \u043f\u043e\u0442\u0435\u043d\u0446\u0438\u0430\u043b\u044c\u043d\u043e\u0433\u043e \u0431\u0430\u043d\u043a\u0440\u043e\u0442\u0430 \u043d\u0435 \u0434\u043e\u043b\u0436\u043d\u043e \u0431\u044b\u0442\u044c \u0438\u043c\u0443\u0449\u0435\u0441\u0442\u0432\u0430, \u043a\u043e\u0442\u043e\u0440\u043e\u0435 \u043c\u043e\u0436\u043d\u043e \u0432\u0437\u044b\u0441\u043a\u0430\u0442\u044c. \u041a\u0440\u043e\u043c\u0435 \u0442\u043e\u0433\u043e, \u0432 \u043e\u0442\u043d\u043e\u0448\u0435\u043d\u0438\u0438 \u0433\u0440\u0430\u0436\u0434\u0430\u043d\u0438\u043d\u0430 \u043d\u0435 \u0434\u043e\u043b\u0436\u043d\u043e \u0431\u044b\u0442\u044c \u0432\u043e\u0437\u0431\u0443\u0436\u0434\u0435\u043d\u043e \u0434\u0440\u0443\u0433\u043e\u0435 \u0438\u0441\u043f\u043e\u043b\u043d\u0438\u0442\u0435\u043b\u044c\u043d\u043e\u0435 \u043f\u0440\u043e\u0438\u0437\u0432\u043e\u0434\u0441\u0442\u0432\u043e. \u0412 \u043f\u0435\u0440\u0438\u043e\u0434 \u0432\u0441\u0435\u0439 \u043f\u0440\u043e\u0446\u0435\u0434\u0443\u0440\u044b \u0437\u0430\u044f\u0432\u0438\u0442\u0435\u043b\u044c \u043d\u0435 \u0441\u043c\u043e\u0436\u0435\u0442 \u0431\u0440\u0430\u0442\u044c \u0437\u0430\u0439\u043c\u044b, \u043a\u0440\u0435\u0434\u0438\u0442\u044b, \u0432\u044b\u0434\u0430\u0432\u0430\u0442\u044c \u043f\u043e\u0440\u0443\u0447\u0438\u0442\u0435\u043b\u044c\u0441\u0442\u0432\u0430, \u0441\u043e\u0432\u0435\u0440\u0448\u0430\u0442\u044c \u0438\u043d\u044b\u0435 \u043e\u0431\u0435\u0441\u043f\u0435\u0447\u0438\u0442\u0435\u043b\u044c\u043d\u044b\u0435 \u0441\u0434\u0435\u043b\u043a\u0438. \u0412\u043d\u0435\u0441\u0443\u0434\u0435\u0431\u043d\u043e\u0435 \u0431\u0430\u043d\u043a\u0440\u043e\u0442\u0441\u0442\u0432\u043e \u0431\u0443\u0434\u0435\u0442 \u0434\u043b\u0438\u0442\u044c\u0441\u044f \u0448\u0435\u0441\u0442\u044c \u043c\u0435\u0441\u044f\u0446\u0435\u0432, \u0432 \u0442\u0435\u0447\u0435\u043d\u0438\u0435 \u043a\u043e\u0442\u043e\u0440\u044b\u0445 \u0442\u0430\u043a\u0436\u0435 \u0431\u0443\u0434\u0435\u0442 \u0434\u0435\u0439\u0441\u0442\u0432\u043e\u0432\u0430\u0442\u044c \u043c\u043e\u0440\u0430\u0442\u043e\u0440\u0438\u0439 \u043d\u0430 \u0443\u0434\u043e\u0432\u043b\u0435\u0442\u0432\u043e\u0440\u0435\u043d\u0438\u0435 \u0442\u0440\u0435\u0431\u043e\u0432\u0430\u043d\u0438\u0439 \u043a\u0440\u0435\u0434\u0438\u0442\u043e\u0440\u043e\u0432, \u043e\u0442\u043c\u0435\u0447\u0435\u043d\u043d\u044b\u0445 \u0432 \u0437\u0430\u044f\u0432\u043b\u0435\u043d\u0438\u0438 \u0434\u043e\u043b\u0436\u043d\u0438\u043a\u0430, \u0438 \u043c\u043e\u0440\u0430\u0442\u043e\u0440\u0438\u0439 \u043e\u0431 \u0443\u043f\u043b\u0430\u0442\u0435 \u043e\u0431\u044f\u0437\u0430\u0442\u0435\u043b\u044c\u043d\u044b\u0445 \u043f\u043b\u0430\u0442\u0435\u0436\u0435\u0439. \u041a\u0440\u043e\u043c\u0435 \u0442\u043e\u0433\u043e, \u043f\u0440\u0435\u043a\u0440\u0430\u0449\u0430\u0435\u0442\u0441\u044f \u043d\u0430\u0447\u0438\u0441\u043b\u0435\u043d\u0438\u0435 \u043d\u0435\u0443\u0441\u0442\u043e\u0435\u043a \u0438 \u0438\u043d\u044b\u0445 \u0444\u0438\u043d\u0430\u043d\u0441\u043e\u0432\u044b\u0445 \u0441\u0430\u043d\u043a\u0446\u0438\u0439; \u0438\u043c\u0443\u0449\u0435\u0441\u0442\u0432\u0435\u043d\u043d\u044b\u0435 \u0432\u0437\u044b\u0441\u043a\u0430\u043d\u0438\u044f (\u043a\u0440\u043e\u043c\u0435 \u0430\u043b\u0438\u043c\u0435\u043d\u0442\u043e\u0432) \u0442\u0430\u043a\u0436\u0435 \u0431\u0443\u0434\u0443\u0442 \u043f\u0440\u0438\u043e\u0441\u0442\u0430\u043d\u043e\u0432\u043b\u0435\u043d\u044b. \u041f\u043e \u0437\u0430\u0432\u0435\u0440\u0448\u0435\u043d\u0438\u044e \u043f\u0440\u043e\u0446\u0435\u0434\u0443\u0440\u044b \u0437\u0430\u044f\u0432\u0438\u0442\u0435\u043b\u044f \u043e\u0441\u0432\u043e\u0431\u043e\u0434\u044f\u0442 \u043e\u0442 \u0434\u0430\u043b\u044c\u043d\u0435\u0439\u0448\u0435\u0433\u043e \u0432\u044b\u043f\u043e\u043b\u043d\u0435\u043d\u0438\u044f \u0442\u0440\u0435\u0431\u043e\u0432\u0430\u043d\u0438\u0439 \u043a\u0440\u0435\u0434\u0438\u0442\u043e\u0440\u043e\u0432, \u0443\u043a\u0430\u0437\u0430\u043d\u043d\u044b\u0445 \u0432 \u0437\u0430\u044f\u0432\u043b\u0435\u043d\u0438\u0438 \u043e \u043f\u0440\u0438\u0437\u043d\u0430\u043d\u0438\u0438 \u0435\u0433\u043e \u0431\u0430\u043d\u043a\u0440\u043e\u0442\u043e\u043c, \u0430 \u044d\u0442\u0430 \u0437\u0430\u0434\u043e\u043b\u0436\u0435\u043d\u043d\u043e\u0441\u0442\u044c \u043f\u0440\u0438\u0437\u043d\u0430\u0435\u0442\u0441\u044f \u0431\u0435\u0437\u043d\u0430\u0434\u0435\u0436\u043d\u043e\u0439. \u0412 \u043f\u0440\u043e\u0448\u043b\u043e\u043c \u043c\u0435\u0441\u044f\u0446\u0435 \u0441\u0442\u0430\u043b\u043e \u0438\u0437\u0432\u0435\u0441\u0442\u043d\u043e, \u0447\u0442\u043e \u0437\u0430 \u043f\u0435\u0440\u0432\u043e\u0435 \u043f\u043e\u043b\u0443\u0433\u043e\u0434\u0438\u0435 2020 \u0433\u043e\u0434\u0430 \u0440\u043e\u0441\u0441\u0438\u0439\u0441\u043a\u0438\u0435 \u0441\u0443\u0434\u044b \u043f\u0440\u0438\u0437\u043d\u0430\u043b\u0438 \u0431\u0430\u043d\u043a\u0440\u043e\u0442\u0430\u043c\u0438 42,7 \u0442\u044b\u0441. \u0433\u0440\u0430\u0436\u0434\u0430\u043d (\u0432 \u0442\u043e\u043c \u0447\u0438\u0441\u043b\u0435 \u0438\u043d\u0434\u0438\u0432\u0438\u0434\u0443\u0430\u043b\u044c\u043d\u044b\u0445 \u043f\u0440\u0435\u0434\u043f\u0440\u0438\u043d\u0438\u043c\u0430\u0442\u0435\u043b\u0435\u0439) \u2014 \u043f\u043e \u0434\u0430\u043d\u043d\u044b\u043c \u0435\u0434\u0438\u043d\u043e\u0433\u043e \u0440\u0435\u0435\u0441\u0442\u0440\u0430 \u00ab\u0424\u0435\u0434\u0440\u0435\u0441\u0443\u0440\u0441\u00bb, \u044d\u0442\u043e \u043d\u0430 47,2% \u0431\u043e\u043b\u044c\u0448\u0435 \u043f\u043e\u043a\u0430\u0437\u0430\u0442\u0435\u043b\u044f \u0430\u043d\u0430\u043b\u043e\u0433\u0438\u0447\u043d\u043e\u0433\u043e \u043f\u0435\u0440\u0438\u043e\u0434\u0430 2019 \u0433\u043e\u0434\u0430. \u0420\u043e\u0441\u0442 \u0447\u0438\u0441\u043b\u0430 \u043e\u0431\u0430\u043d\u043a\u0440\u043e\u0442\u0438\u0432\u0448\u0438\u0445\u0441\u044f \u0433\u0440\u0430\u0436\u0434\u0430\u043d \u0432\u043e \u0432\u0442\u043e\u0440\u043e\u043c \u043a\u0432\u0430\u0440\u0442\u0430\u043b\u0435 \u043f\u043e \u0441\u0440\u0430\u0432\u043d\u0435\u043d\u0438\u044e \u0441 \u043f\u0435\u0440\u0432\u044b\u043c \u0437\u0430\u043c\u0435\u0434\u043b\u0438\u043b\u0441\u044f \u2014 \u0442\u0430\u043a\u0430\u044f \u0434\u0438\u043d\u0430\u043c\u0438\u043a\u0430 \u043e\u0431\u0443\u0441\u043b\u043e\u0432\u043b\u0435\u043d\u0430 \u0442\u0435\u043c, \u0447\u0442\u043e \u0432 \u043f\u0435\u0440\u0438\u043e\u0434 \u043e\u0433\u0440\u0430\u043d\u0438\u0447\u0435\u043d\u0438\u0439 \u0441 19 \u043c\u0430\u0440\u0442\u0430 \u043f\u043e 11 \u043c\u0430\u044f \u0441\u0443\u0434\u044b \u0440\u0435\u0434\u043a\u043e \u0440\u0430\u0441\u0441\u043c\u0430\u0442\u0440\u0438\u0432\u0430\u043b\u0438 \u0431\u0430\u043d\u043a\u0440\u043e\u0442\u043d\u044b\u0435 \u0434\u0435\u043b\u0430 \u043a\u043e\u043c\u043f\u0430\u043d\u0438\u0439 \u0438 \u043c\u0435\u043d\u044c\u0448\u0435, \u0447\u0435\u043c \u043e\u0431\u044b\u0447\u043d\u043e, \u0432 \u043e\u0442\u043d\u043e\u0448\u0435\u043d\u0438\u0438 \u0433\u0440\u0430\u0436\u0434\u0430\u043d, \u043e\u0431\u044a\u044f\u0441\u043d\u044f\u043b \u0440\u0443\u043a\u043e\u0432\u043e\u0434\u0438\u0442\u0435\u043b\u044c \u043f\u0440\u043e\u0435\u043a\u0442\u0430 \u00ab\u0424\u0435\u0434\u0440\u0435\u0441\u0443\u0440\u0441\u00bb \u0410\u043b\u0435\u043a\u0441\u0435\u0439 \u042e\u0445\u043d\u0438\u043d. \u041e\u043d \u043f\u0440\u043e\u0433\u043d\u043e\u0437\u0438\u0440\u0443\u0435\u0442, \u0447\u0442\u043e \u0432\u043e \u0432\u0442\u043e\u0440\u043e\u043c \u043f\u043e\u043b\u0443\u0433\u043e\u0434\u0438\u0438 \u043c\u044b \u0443\u0432\u0438\u0434\u0438\u043c \u0440\u043e\u0441\u0442 \u043f\u043e\u043a\u0430\u0437\u0430\u0442\u0435\u043b\u044f, \u043a\u043e\u0433\u0434\u0430 \u0441\u0443\u0434\u044b \u0440\u0430\u0441\u0441\u043c\u043e\u0442\u0440\u044f\u0442 \u0432\u0441\u0435 \u0434\u0435\u043b\u0430, \u0447\u0442\u043e \u043d\u0435 \u0441\u043c\u043e\u0433\u043b\u0438 \u0440\u0430\u043d\u0435\u0435 \u0432 \u0440\u0435\u0436\u0438\u043c\u0435 \u043e\u0433\u0440\u0430\u043d\u0438\u0447\u0435\u043d\u0438\u0439. \u041f\u043e \u0435\u0433\u043e \u0434\u0430\u043d\u043d\u044b\u043c, \u0443\u0436\u0435 \u0432 \u0438\u044e\u043d\u0435 \u0447\u0438\u0441\u043b\u043e \u043b\u0438\u0447\u043d\u044b\u0445 \u0431\u0430\u043d\u043a\u0440\u043e\u0442\u0441\u0442\u0432 \u0432\u044b\u0440\u043e\u0441\u043b\u043e \u0434\u043e 11,5 \u0442\u044b\u0441., \u0447\u0442\u043e \u0432 \u0434\u0432\u0430 \u0440\u0430\u0437\u0430 \u043f\u0440\u0435\u0432\u044b\u0448\u0430\u0435\u0442 \u043f\u043e\u043a\u0430\u0437\u0430\u0442\u0435\u043b\u044c \u0430\u043d\u0430\u043b\u043e\u0433\u0438\u0447\u043d\u043e\u0433\u043e \u043f\u0435\u0440\u0438\u043e\u0434\u0430 2019 \u0433\u043e\u0434\u0430.", "example_title": "\u041d\u043e\u0432\u043e\u0441\u0442\u0438"}, {"text": "\u0410\u043a\u0442\u0443\u0430\u043b\u044c\u043d\u043e\u0441\u0442\u044c \u043f\u0440\u043e\u0431\u043b\u0435\u043c\u044b. \u042d\u043b\u0435\u043a\u0442\u0440\u043e\u043d\u043d\u0430\u044f \u0438\u043d\u0444\u043e\u0440\u043c\u0430\u0446\u0438\u044f \u0438\u0433\u0440\u0430\u0435\u0442 \u0432\u0441\u0435 \u0431\u043e\u043b\u044c\u0448\u0443\u044e \u0440\u043e\u043b\u044c \u0432\u043e \u0432\u0441\u0435\u0445 \u0441\u0444\u0435\u0440\u0430\u0445 \u0436\u0438\u0437\u043d\u0438 \u0441\u043e\u0432\u0440\u0435\u043c\u0435\u043d\u043d\u043e\u0433\u043e \u043e\u0431\u0449\u0435\u0441\u0442\u0432\u0430. \u0412 \u043f\u043e\u0441\u043b\u0435\u0434\u043d\u0438\u0435 \u0433\u043e\u0434\u044b \u043e\u0431\u044a\u0435\u043c \u043d\u0430\u0443\u0447\u043d\u043e-\u0442\u0435\u0445\u043d\u0438\u0447\u0435\u0441\u043a\u043e\u0439 \u0442\u0435\u043a\u0441\u0442\u043e\u0432\u043e\u0439 \u0438\u043d\u0444\u043e\u0440\u043c\u0430\u0446\u0438\u0438 \u0432 \u044d\u043b\u0435\u043a\u0442\u0440\u043e\u043d\u043d\u043e\u043c \u0432\u0438\u0434\u0435 \u0432\u043e\u0437\u0440\u043e\u0441 \u043d\u0430\u0441\u0442\u043e\u043b\u044c\u043a\u043e, \u0447\u0442\u043e \u0432\u043e\u0437\u043d\u0438\u043a\u0430\u0435\u0442 \u0443\u0433\u0440\u043e\u0437\u0430 \u043e\u0431\u0435\u0441\u0446\u0435\u043d\u0438\u0432\u0430\u043d\u0438\u044f \u044d\u0442\u043e\u0439 \u0438\u043d\u0444\u043e\u0440\u043c\u0430\u0446\u0438\u0438 \u0432 \u0441\u0432\u044f\u0437\u0438 \u0441 \u0442\u0440\u0443\u0434\u043d\u043e\u0441\u0442\u044f\u043c\u0438 \u043f\u043e\u0438\u0441\u043a\u0430 \u043d\u0435\u043e\u0431\u0445\u043e\u0434\u0438\u043c\u044b\u0445 \u0441\u0432\u0435\u0434\u0435\u043d\u0438\u0439 \u0441\u0440\u0435\u0434\u0438 \u043c\u043d\u043e\u0436\u0435\u0441\u0442\u0432\u0430 \u0434\u043e\u0441\u0442\u0443\u043f\u043d\u044b\u0445 \u0442\u0435\u043a\u0441\u0442\u043e\u0432. \u0420\u0430\u0437\u0432\u0438\u0442\u0438\u0435 \u0438\u043d\u0444\u043e\u0440\u043c\u0430\u0446\u0438\u043e\u043d\u043d\u044b\u0445 \u0440\u0435\u0441\u0443\u0440\u0441\u043e\u0432 \u0418\u043d\u0442\u0435\u0440\u043d\u0435\u0442 \u043c\u043d\u043e\u0433\u043e\u043a\u0440\u0430\u0442\u043d\u043e \u0443\u0441\u0443\u0433\u0443\u0431\u0438\u043b\u043e \u043f\u0440\u043e\u0431\u043b\u0435\u043c\u0443 \u0438\u043d\u0444\u043e\u0440\u043c\u0430\u0446\u0438\u043e\u043d\u043d\u043e\u0439 \u043f\u0435\u0440\u0435\u0433\u0440\u0443\u0437\u043a\u0438. \u0412 \u044d\u0442\u043e\u0439 \u0441\u0438\u0442\u0443\u0430\u0446\u0438\u0438 \u043e\u0441\u043e\u0431\u0435\u043d\u043d\u043e \u0430\u043a\u0442\u0443\u0430\u043b\u044c\u043d\u044b\u043c\u0438 \u0441\u0442\u0430\u043d\u043e\u0432\u044f\u0442\u0441\u044f \u043c\u0435\u0442\u043e\u0434\u044b \u0430\u0432\u0442\u043e\u043c\u0430\u0442\u0438\u0437\u0430\u0446\u0438\u0438 \u0440\u0435\u0444\u0435\u0440\u0438\u0440\u043e\u0432\u0430\u043d\u0438\u044f \u0442\u0435\u043a\u0441\u0442\u043e\u0432\u043e\u0439 \u0438\u043d\u0444\u043e\u0440\u043c\u0430\u0446\u0438\u0438, \u0442\u043e \u0435\u0441\u0442\u044c \u043c\u0435\u0442\u043e\u0434\u044b \u043f\u043e\u043b\u0443\u0447\u0435\u043d\u0438\u044f \u0441\u0436\u0430\u0442\u043e\u0433\u043e \u043f\u0440\u0435\u0434\u0441\u0442\u0430\u0432\u043b\u0435\u043d\u0438\u044f \u0442\u0435\u043a\u0441\u0442\u043e\u0432\u044b\u0445 \u0434\u043e\u043a\u0443\u043c\u0435\u043d\u0442\u043e\u0432\u2013\u0440\u0435\u0444\u0435\u0440\u0430\u0442\u043e\u0432 (\u0430\u043d\u043d\u043e\u0442\u0430\u0446\u0438\u0439). \u041f\u043e\u0441\u0442\u0430\u043d\u043e\u0432\u043a\u0430 \u043f\u0440\u043e\u0431\u043b\u0435\u043c\u044b \u0430\u0432\u0442\u043e\u043c\u0430\u0442\u0438\u0447\u0435\u0441\u043a\u043e\u0433\u043e \u0440\u0435\u0444\u0435\u0440\u0438\u0440\u043e\u0432\u0430\u043d\u0438\u044f \u0442\u0435\u043a\u0441\u0442\u0430 \u0438 \u0441\u043e\u043e\u0442\u0432\u0435\u0442\u0441\u0442\u0432\u0435\u043d\u043d\u043e \u043f\u043e\u043f\u044b\u0442\u043a\u0438 \u0435\u0435 \u0440\u0435\u0448\u0435\u043d\u0438\u044f \u0441 \u0438\u0441\u043f\u043e\u043b\u044c\u0437\u043e\u0432\u0430\u043d\u0438\u0435\u043c \u0440\u0430\u0437\u043b\u0438\u0447\u043d\u044b\u0445 \u043f\u043e\u0434\u0445\u043e\u0434\u043e\u0432 \u043f\u0440\u0435\u0434\u043f\u0440\u0438\u043d\u0438\u043c\u0430\u043b\u0438\u0441\u044c \u043c\u043d\u043e\u0433\u0438\u043c\u0438 \u0438\u0441\u0441\u043b\u0435\u0434\u043e\u0432\u0430\u0442\u0435\u043b\u044f\u043c\u0438. \u0418\u0441\u0442\u043e\u0440\u0438\u044f \u043f\u0440\u0438\u043c\u0435\u043d\u0435\u043d\u0438\u044f \u0432\u044b\u0447\u0438\u0441\u043b\u0438\u0442\u0435\u043b\u044c\u043d\u043e\u0439 \u0442\u0435\u0445\u043d\u0438\u043a\u0438 \u0434\u043b\u044f \u0440\u0435\u0444\u0435\u0440\u0438\u0440\u043e\u0432\u0430\u043d\u0438\u044f \u043d\u0430\u0441\u0447\u0438\u0442\u044b\u0432\u0430\u0435\u0442 \u0443\u0436\u0435 \u0431\u043e\u043b\u0435\u0435 50 \u043b\u0435\u0442 \u0438 \u0441\u0432\u044f\u0437\u0430\u043d\u0430 \u0441 \u0438\u043c\u0435\u043d\u0430\u043c\u0438 \u0442\u0430\u043a\u0438\u0445 \u0438\u0441\u0441\u043b\u0435\u0434\u043e\u0432\u0430\u0442\u0435\u043b\u0435\u0439, \u043a\u0430\u043a \u0413.\u041f. \u041b\u0443\u043d, \u0412.\u0415. \u0411\u0435\u0440\u0437\u043e\u043d, \u0418.\u041f. C\u0435\u0432\u0431\u043e, \u042d.\u0424. \u0421\u043a\u043e\u0440\u043e\u0445\u043e\u0434\u044c\u043a\u043e, \u0414.\u0413. \u041b\u0430\u0445\u0443\u0442\u0438, \u0420.\u0413. \u041f\u0438\u043e\u0442\u0440\u043e\u0432\u0441\u043a\u0438\u0439 \u0438 \u0434\u0440. \u0417\u0430 \u044d\u0442\u0438 \u0433\u043e\u0434\u044b \u0432\u044b\u0440\u0430\u0431\u043e\u0442\u0430\u043d\u044b \u043c\u043d\u043e\u0433\u043e\u0447\u0438\u0441\u043b\u0435\u043d\u043d\u044b\u0435 \u043f\u043e\u0434\u0445\u043e\u0434\u044b \u043a \u0440\u0435\u0448\u0435\u043d\u0438\u044e \u0434\u0430\u043d\u043d\u043e\u0439 \u043f\u0440\u043e\u0431\u043b\u0435\u043c\u044b, \u043a\u043e\u0442\u043e\u0440\u044b\u0435 \u0434\u043e\u0441\u0442\u0430\u0442\u043e\u0447\u043d\u043e \u0447\u0435\u0442\u043a\u043e \u043f\u043e\u0434\u0440\u0430\u0437\u0434\u0435\u043b\u044f\u044e\u0442\u0441\u044f \u043d\u0430 \u0434\u0432\u0430 \u043d\u0430\u043f\u0440\u0430\u0432\u043b\u0435\u043d\u0438\u044f: \u0430\u0432\u0442\u043e\u043c\u0430\u0442\u0438\u0447\u0435\u0441\u043a\u043e\u0435 \u0440\u0435\u0444\u0435\u0440\u0438\u0440\u043e\u0432\u0430\u043d\u0438\u0435, \u043e\u0441\u043d\u043e\u0432\u0430\u043d\u043d\u043e\u0435 \u043d\u0430 \u044d\u043a\u0441\u0442\u0440\u0430\u0433\u0438\u0440\u043e\u0432\u0430\u043d\u0438\u0438 \u0438\u0437 \u043f\u0435\u0440\u0432\u0438\u0447\u043d\u044b\u0445 \u0434\u043e\u043a\u0443\u043c\u0435\u043d\u0442\u043e\u0432 \u0441 \u043f\u043e\u043c\u043e\u0449\u044c\u044e \u043e\u043f\u0440\u0435\u0434\u0435\u043b\u0435\u043d\u043d\u044b\u0445 \u0444\u043e\u0440\u043c\u0430\u043b\u044c\u043d\u044b\u0445 \u043f\u0440\u0438\u0437\u043d\u0430\u043a\u043e\u0432 \u00ab\u043d\u0430\u0438\u0431\u043e\u043b\u0435\u0435 \u0438\u043d\u0444\u043e\u0440\u043c\u0430\u0442\u0438\u0432\u043d\u044b\u0445\u00bb \u0444\u0440\u0430\u0437 (\u0444\u0440\u0430\u0433\u043c\u0435\u043d\u0442\u043e\u0432), \u0441\u043e\u0432\u043e\u043a\u0443\u043f\u043d\u043e\u0441\u0442\u044c \u043a\u043e\u0442\u043e\u0440\u044b\u0445 \u043e\u0431\u0440\u0430\u0437\u0443\u0435\u0442 \u043d\u0435\u043a\u043e\u0442\u043e\u0440\u044b\u0439 \u044d\u043a\u0441\u0442\u0440\u0430\u043a\u0442; \u0430\u0432\u0442\u043e\u043c\u0430\u0442\u0438\u0447\u0435\u0441\u043a\u043e\u0435 \u0440\u0435\u0444\u0435\u0440\u0438\u0440\u043e\u0432\u0430\u043d\u0438\u0435, \u043e\u0441\u043d\u043e\u0432\u0430\u043d\u043d\u043e\u0435 \u043d\u0430 \u0432\u044b\u0434\u0435\u043b\u0435\u043d\u0438\u0438 \u0438\u0437 \u0442\u0435\u043a\u0441\u0442\u043e\u0432 \u0441 \u043f\u043e\u043c\u043e\u0449\u044c\u044e \u0441\u043f\u0435\u0446\u0438\u0430\u043b\u044c\u043d\u044b\u0445 \u0438\u043d\u0444\u043e\u0440\u043c\u0430\u0446\u0438\u043e\u043d\u043d\u044b\u0445 \u044f\u0437\u044b\u043a\u043e\u0432 \u043d\u0430\u0438\u0431\u043e\u043b\u0435\u0435 \u0441\u0443\u0449\u0435\u0441\u0442\u0432\u0435\u043d\u043d\u043e\u0439 \u0438\u043d\u0444\u043e\u0440\u043c\u0430\u0446\u0438\u0438 \u0438 \u043f\u043e\u0440\u043e\u0436\u0434\u0435\u043d\u0438\u0438 \u043d\u043e\u0432\u044b\u0445 \u0442\u0435\u043a\u0441\u0442\u043e\u0432 (\u0440\u0435\u0444\u0435\u0440\u0430\u0442\u043e\u0432), \u0441\u043e\u0434\u0435\u0440\u0436\u0430\u0442\u0435\u043b\u044c\u043d\u043e \u043e\u0431\u043e\u0431\u0449\u0430\u044e\u0449\u0438\u0445 \u043f\u0435\u0440\u0432\u0438\u0447\u043d\u044b\u0435 \u0434\u043e\u043a\u0443\u043c\u0435\u043d\u0442\u044b.", "example_title": "\u041d\u0430\u0443\u0447\u043d\u0430\u044f \u0441\u0442\u0430\u0442\u044c\u044f"}]}
IlyaGusev/mbart_ru_sum_gazeta
null
[ "transformers", "pytorch", "safetensors", "mbart", "text2text-generation", "summarization", "ru", "dataset:IlyaGusev/gazeta", "arxiv:2006.11063", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[ "2006.11063" ]
[ "ru" ]
TAGS #transformers #pytorch #safetensors #mbart #text2text-generation #summarization #ru #dataset-IlyaGusev/gazeta #arxiv-2006.11063 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
MBARTRuSumGazeta ================ Model description ----------------- This is a ported version of fairseq model. For more details, please see Dataset for Automatic Summarization of Russian News. Intended uses & limitations --------------------------- #### How to use Colab: link #### Limitations and bias * The model should work well with URL articles, but for any other agencies it can suffer from domain shift Training data ------------- * Dataset: Gazeta Training procedure ------------------ * Fairseq training script: URL * Porting: Colab link Eval results ------------ * Train dataset: Gazeta v1 train * Test dataset: Gazeta v1 test * Source max\_length: 600 * Target max\_length: 200 * no\_repeat\_ngram\_size: 4 * num\_beams: 5 * Train dataset: Gazeta v1 train * Test dataset: Gazeta v2 test * Source max\_length: 600 * Target max\_length: 200 * no\_repeat\_ngram\_size: 4 * num\_beams: 5 Predicting all summaries: Evaluation: URL Flags: --language ru --tokenize-after --lower ### BibTeX entry and citation info
[ "#### How to use\n\n\nColab: link", "#### Limitations and bias\n\n\n* The model should work well with URL articles, but for any other agencies it can suffer from domain shift\n\n\nTraining data\n-------------\n\n\n* Dataset: Gazeta\n\n\nTraining procedure\n------------------\n\n\n* Fairseq training script: URL\n* Porting: Colab link\n\n\nEval results\n------------\n\n\n* Train dataset: Gazeta v1 train\n* Test dataset: Gazeta v1 test\n* Source max\\_length: 600\n* Target max\\_length: 200\n* no\\_repeat\\_ngram\\_size: 4\n* num\\_beams: 5\n\n\n\n* Train dataset: Gazeta v1 train\n* Test dataset: Gazeta v2 test\n* Source max\\_length: 600\n* Target max\\_length: 200\n* no\\_repeat\\_ngram\\_size: 4\n* num\\_beams: 5\n\n\n\nPredicting all summaries:\n\n\nEvaluation: URL\n\n\nFlags: --language ru --tokenize-after --lower", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #safetensors #mbart #text2text-generation #summarization #ru #dataset-IlyaGusev/gazeta #arxiv-2006.11063 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "#### How to use\n\n\nColab: link", "#### Limitations and bias\n\n\n* The model should work well with URL articles, but for any other agencies it can suffer from domain shift\n\n\nTraining data\n-------------\n\n\n* Dataset: Gazeta\n\n\nTraining procedure\n------------------\n\n\n* Fairseq training script: URL\n* Porting: Colab link\n\n\nEval results\n------------\n\n\n* Train dataset: Gazeta v1 train\n* Test dataset: Gazeta v1 test\n* Source max\\_length: 600\n* Target max\\_length: 200\n* no\\_repeat\\_ngram\\_size: 4\n* num\\_beams: 5\n\n\n\n* Train dataset: Gazeta v1 train\n* Test dataset: Gazeta v2 test\n* Source max\\_length: 600\n* Target max\\_length: 200\n* no\\_repeat\\_ngram\\_size: 4\n* num\\_beams: 5\n\n\n\nPredicting all summaries:\n\n\nEvaluation: URL\n\n\nFlags: --language ru --tokenize-after --lower", "### BibTeX entry and citation info" ]
[ 74, 11, 242, 10 ]
[ "TAGS\n#transformers #pytorch #safetensors #mbart #text2text-generation #summarization #ru #dataset-IlyaGusev/gazeta #arxiv-2006.11063 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n#### How to use\n\n\nColab: link#### Limitations and bias\n\n\n* The model should work well with URL articles, but for any other agencies it can suffer from domain shift\n\n\nTraining data\n-------------\n\n\n* Dataset: Gazeta\n\n\nTraining procedure\n------------------\n\n\n* Fairseq training script: URL\n* Porting: Colab link\n\n\nEval results\n------------\n\n\n* Train dataset: Gazeta v1 train\n* Test dataset: Gazeta v1 test\n* Source max\\_length: 600\n* Target max\\_length: 200\n* no\\_repeat\\_ngram\\_size: 4\n* num\\_beams: 5\n\n\n\n* Train dataset: Gazeta v1 train\n* Test dataset: Gazeta v2 test\n* Source max\\_length: 600\n* Target max\\_length: 200\n* no\\_repeat\\_ngram\\_size: 4\n* num\\_beams: 5\n\n\n\nPredicting all summaries:\n\n\nEvaluation: URL\n\n\nFlags: --language ru --tokenize-after --lower### BibTeX entry and citation info" ]
null
transformers
# NewsTgRuBERT Training script: https://github.com/dialogue-evaluation/Russian-News-Clustering-and-Headline-Generation/blob/main/train_mlm.py
{"language": ["ru"], "license": "apache-2.0"}
IlyaGusev/news_tg_rubert
null
[ "transformers", "pytorch", "ru", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "ru" ]
TAGS #transformers #pytorch #ru #license-apache-2.0 #endpoints_compatible #region-us
# NewsTgRuBERT Training script: URL
[ "# NewsTgRuBERT\n\nTraining script: URL" ]
[ "TAGS\n#transformers #pytorch #ru #license-apache-2.0 #endpoints_compatible #region-us \n", "# NewsTgRuBERT\n\nTraining script: URL" ]
[ 27, 11 ]
[ "TAGS\n#transformers #pytorch #ru #license-apache-2.0 #endpoints_compatible #region-us \n# NewsTgRuBERT\n\nTraining script: URL" ]
token-classification
transformers
# RuBERTExtSumGazeta ## Model description Model for extractive summarization based on [rubert-base-cased](DeepPavlov/rubert-base-cased) ## Intended uses & limitations #### How to use Colab: [link](https://colab.research.google.com/drive/1Q8_v3H-kxdJhZIiyLYat7Kj02qDq7M1L) ```python import razdel from transformers import AutoTokenizer, BertForTokenClassification model_name = "IlyaGusev/rubert_ext_sum_gazeta" tokenizer = AutoTokenizer.from_pretrained(model_name) sep_token = tokenizer.sep_token sep_token_id = tokenizer.sep_token_id model = BertForTokenClassification.from_pretrained(model_name) article_text = "..." sentences = [s.text for s in razdel.sentenize(article_text)] article_text = sep_token.join(sentences) inputs = tokenizer( [article_text], max_length=500, padding="max_length", truncation=True, return_tensors="pt", ) sep_mask = inputs["input_ids"][0] == sep_token_id # Fix token_type_ids current_token_type_id = 0 for pos, input_id in enumerate(inputs["input_ids"][0]): inputs["token_type_ids"][0][pos] = current_token_type_id if input_id == sep_token_id: current_token_type_id = 1 - current_token_type_id # Infer model with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits[0, :, 1] # Choose sentences logits = logits[sep_mask] logits, indices = logits.sort(descending=True) logits, indices = logits.cpu().tolist(), indices.cpu().tolist() pairs = list(zip(logits, indices)) pairs = pairs[:3] indices = list(sorted([idx for _, idx in pairs])) summary = " ".join([sentences[idx] for idx in indices]) print(summary) ``` #### Limitations and bias - The model should work well with Gazeta.ru articles, but for any other agencies it can suffer from domain shift ## Training data - Dataset: [Gazeta](https://huggingface.co/datasets/IlyaGusev/gazeta) ## Training procedure TBD ## Eval results TBD Evaluation: https://github.com/IlyaGusev/summarus/blob/master/evaluate.py Flags: --language ru --tokenize-after --lower
{"language": ["ru"], "license": "apache-2.0", "tags": ["summarization", "token-classification", "t5"], "datasets": ["IlyaGusev/gazeta"], "inference": false, "widget": [{"text": "\u0421 1 \u0441\u0435\u043d\u0442\u044f\u0431\u0440\u044f \u0432 \u0420\u043e\u0441\u0441\u0438\u0438 \u0432\u0441\u0442\u0443\u043f\u0430\u044e\u0442 \u0432 \u0441\u0438\u043b\u0443 \u043f\u043e\u043f\u0440\u0430\u0432\u043a\u0438 \u0432 \u0437\u0430\u043a\u043e\u043d \u00ab\u041e \u0431\u0430\u043d\u043a\u0440\u043e\u0442\u0441\u0442\u0432\u0435\u00bb \u2014 \u0442\u0435\u043f\u0435\u0440\u044c \u0434\u043e\u043b\u0436\u043d\u0438\u043a\u0438 \u0441\u043c\u043e\u0433\u0443\u0442 \u043e\u0441\u0432\u043e\u0431\u043e\u0436\u0434\u0430\u0442\u044c\u0441\u044f \u043e\u0442 \u043d\u0435\u043f\u043e\u0441\u0438\u043b\u044c\u043d\u044b\u0445 \u043e\u0431\u044f\u0437\u0430\u0442\u0435\u043b\u044c\u0441\u0442\u0432 \u0432\u043e \u0432\u043d\u0435\u0441\u0443\u0434\u0435\u0431\u043d\u043e\u043c \u043f\u043e\u0440\u044f\u0434\u043a\u0435, \u0435\u0441\u043b\u0438 \u0441\u0443\u043c\u043c\u0430 \u0437\u0430\u0434\u043e\u043b\u0436\u0435\u043d\u043d\u043e\u0441\u0442\u0438 \u0441\u043e\u0441\u0442\u0430\u0432\u043b\u044f\u0435\u0442 \u043d\u0435 \u043c\u0435\u043d\u0435\u0435 50 \u0442\u044b\u0441. \u0440\u0443\u0431\u043b\u0435\u0439 \u0438 \u043d\u0435 \u043f\u0440\u0435\u0432\u044b\u0448\u0430\u0435\u0442 500 \u0442\u044b\u0441. \u0440\u0443\u0431\u043b\u0435\u0439 \u0431\u0435\u0437 \u0443\u0447\u0435\u0442\u0430 \u0448\u0442\u0440\u0430\u0444\u043e\u0432, \u043f\u0435\u043d\u0438, \u043f\u0440\u043e\u0446\u0435\u043d\u0442\u043e\u0432 \u0437\u0430 \u043f\u0440\u043e\u0441\u0440\u043e\u0447\u043a\u0443 \u043f\u043b\u0430\u0442\u0435\u0436\u0430 \u0438 \u043f\u0440\u043e\u0447\u0438\u0445 \u0438\u043c\u0443\u0449\u0435\u0441\u0442\u0432\u0435\u043d\u043d\u044b\u0445 \u0438\u043b\u0438 \u0444\u0438\u043d\u0430\u043d\u0441\u043e\u0432\u044b\u0445 \u0441\u0430\u043d\u043a\u0446\u0438\u0439.[SEP]\u0423 \u0444\u0438\u0437\u043b\u0438\u0446 \u0438 \u0438\u043d\u0434\u0438\u0432\u0438\u0434\u0443\u0430\u043b\u044c\u043d\u044b\u0445 \u043f\u0440\u0435\u0434\u043f\u0440\u0438\u043d\u0438\u043c\u0430\u0442\u0435\u043b\u0435\u0439 \u043f\u043e\u044f\u0432\u0438\u043b\u0430\u0441\u044c \u0432\u043e\u0437\u043c\u043e\u0436\u043d\u043e\u0441\u0442\u044c \u043f\u0440\u043e\u0439\u0442\u0438 \u043f\u0440\u043e\u0446\u0435\u0434\u0443\u0440\u0443 \u0431\u0430\u043d\u043a\u0440\u043e\u0442\u0441\u0442\u0432\u0430 \u0431\u0435\u0437 \u0443\u0447\u0430\u0441\u0442\u0438\u044f \u0441\u0443\u0434\u0430 \u0438 \u0444\u0438\u043d\u0430\u043d\u0441\u043e\u0432\u043e\u0433\u043e \u0443\u043f\u0440\u0430\u0432\u043b\u044f\u044e\u0449\u0435\u0433\u043e \u2014 \u0434\u043e\u0441\u0442\u0430\u0442\u043e\u0447\u043d\u043e \u043f\u043e\u0434\u0430\u0442\u044c \u0441\u043e\u043e\u0442\u0432\u0435\u0442\u0441\u0442\u0432\u0443\u044e\u0449\u0435\u0435 \u0437\u0430\u044f\u0432\u043b\u0435\u043d\u0438\u0435 \u0447\u0435\u0440\u0435\u0437 \u041c\u0424\u0426.[SEP]\u0421\u0443\u043c\u043c\u0443 \u0437\u0430\u0434\u043e\u043b\u0436\u0435\u043d\u043d\u043e\u0441\u0442\u0438 \u0438 \u0441\u043f\u0438\u0441\u043e\u043a \u0432\u0441\u0435\u0445 \u0438\u0437\u0432\u0435\u0441\u0442\u043d\u044b\u0445 \u0437\u0430\u044f\u0432\u0438\u0442\u0435\u043b\u044e \u043a\u0440\u0435\u0434\u0438\u0442\u043e\u0440\u043e\u0432 \u043d\u0443\u0436\u043d\u043e \u043f\u0440\u0435\u0434\u043e\u0441\u0442\u0430\u0432\u0438\u0442\u044c \u0441\u0430\u043c\u043e\u0441\u0442\u043e\u044f\u0442\u0435\u043b\u044c\u043d\u043e.[SEP]\u0415\u0441\u043b\u0438 \u0432\u0441\u0435 \u0443\u0441\u043b\u043e\u0432\u0438\u044f \u0441\u043e\u0431\u043b\u044e\u0434\u0435\u043d\u044b, \u0441\u0432\u0435\u0434\u0435\u043d\u0438\u044f \u0432\u043d\u0435\u0441\u0443\u0442 \u0432 \u0415\u0434\u0438\u043d\u044b\u0439 \u0444\u0435\u0434\u0435\u0440\u0430\u043b\u044c\u043d\u044b\u0439 \u0440\u0435\u0435\u0441\u0442\u0440 \u0432 \u0442\u0435\u0447\u0435\u043d\u0438\u0435 \u0442\u0440\u0435\u0445 \u0440\u0430\u0431\u043e\u0447\u0438\u0445 \u0434\u043d\u0435\u0439.[SEP]\u041f\u0440\u0438 \u044d\u0442\u043e\u043c \u043d\u0430 \u043c\u043e\u043c\u0435\u043d\u0442 \u043f\u043e\u0434\u0430\u0447\u0438 \u0437\u0430\u044f\u0432\u043b\u0435\u043d\u0438\u044f \u0432 \u043e\u0442\u043d\u043e\u0448\u0435\u043d\u0438\u0438 \u0437\u0430\u044f\u0432\u0438\u0442\u0435\u043b\u044f \u0434\u043e\u043b\u0436\u043d\u043e \u0431\u044b\u0442\u044c \u043e\u043a\u043e\u043d\u0447\u0435\u043d\u043e \u0438\u0441\u043f\u043e\u043b\u043d\u0438\u0442\u0435\u043b\u044c\u043d\u043e\u0435 \u043f\u0440\u043e\u0438\u0437\u0432\u043e\u0434\u0441\u0442\u0432\u043e \u0441 \u0432\u043e\u0437\u0432\u0440\u0430\u0449\u0435\u043d\u0438\u0435\u043c \u0438\u0441\u043f\u043e\u043b\u043d\u0438\u0442\u0435\u043b\u044c\u043d\u043e\u0433\u043e \u0434\u043e\u043a\u0443\u043c\u0435\u043d\u0442\u0430 \u0432\u0437\u044b\u0441\u043a\u0430\u0442\u0435\u043b\u044e.[SEP]\u042d\u0442\u043e \u0437\u043d\u0430\u0447\u0438\u0442, \u0447\u0442\u043e \u0443 \u043f\u043e\u0442\u0435\u043d\u0446\u0438\u0430\u043b\u044c\u043d\u043e\u0433\u043e \u0431\u0430\u043d\u043a\u0440\u043e\u0442\u0430 \u043d\u0435 \u0434\u043e\u043b\u0436\u043d\u043e \u0431\u044b\u0442\u044c \u0438\u043c\u0443\u0449\u0435\u0441\u0442\u0432\u0430, \u043a\u043e\u0442\u043e\u0440\u043e\u0435 \u043c\u043e\u0436\u043d\u043e \u0432\u0437\u044b\u0441\u043a\u0430\u0442\u044c.[SEP]\u041a\u0440\u043e\u043c\u0435 \u0442\u043e\u0433\u043e, \u0432 \u043e\u0442\u043d\u043e\u0448\u0435\u043d\u0438\u0438 \u0433\u0440\u0430\u0436\u0434\u0430\u043d\u0438\u043d\u0430 \u043d\u0435 \u0434\u043e\u043b\u0436\u043d\u043e \u0431\u044b\u0442\u044c \u0432\u043e\u0437\u0431\u0443\u0436\u0434\u0435\u043d\u043e \u0434\u0440\u0443\u0433\u043e\u0435 \u0438\u0441\u043f\u043e\u043b\u043d\u0438\u0442\u0435\u043b\u044c\u043d\u043e\u0435 \u043f\u0440\u043e\u0438\u0437\u0432\u043e\u0434\u0441\u0442\u0432\u043e.[SEP]\u0412 \u043f\u0435\u0440\u0438\u043e\u0434 \u0432\u0441\u0435\u0439 \u043f\u0440\u043e\u0446\u0435\u0434\u0443\u0440\u044b \u0437\u0430\u044f\u0432\u0438\u0442\u0435\u043b\u044c \u043d\u0435 \u0441\u043c\u043e\u0436\u0435\u0442 \u0431\u0440\u0430\u0442\u044c \u0437\u0430\u0439\u043c\u044b, \u043a\u0440\u0435\u0434\u0438\u0442\u044b, \u0432\u044b\u0434\u0430\u0432\u0430\u0442\u044c \u043f\u043e\u0440\u0443\u0447\u0438\u0442\u0435\u043b\u044c\u0441\u0442\u0432\u0430, \u0441\u043e\u0432\u0435\u0440\u0448\u0430\u0442\u044c \u0438\u043d\u044b\u0435 \u043e\u0431\u0435\u0441\u043f\u0435\u0447\u0438\u0442\u0435\u043b\u044c\u043d\u044b\u0435 \u0441\u0434\u0435\u043b\u043a\u0438.[SEP]\u0412\u043d\u0435\u0441\u0443\u0434\u0435\u0431\u043d\u043e\u0435 \u0431\u0430\u043d\u043a\u0440\u043e\u0442\u0441\u0442\u0432\u043e \u0431\u0443\u0434\u0435\u0442 \u0434\u043b\u0438\u0442\u044c\u0441\u044f \u0448\u0435\u0441\u0442\u044c \u043c\u0435\u0441\u044f\u0446\u0435\u0432, \u0432 \u0442\u0435\u0447\u0435\u043d\u0438\u0435 \u043a\u043e\u0442\u043e\u0440\u044b\u0445 \u0442\u0430\u043a\u0436\u0435 \u0431\u0443\u0434\u0435\u0442 \u0434\u0435\u0439\u0441\u0442\u0432\u043e\u0432\u0430\u0442\u044c \u043c\u043e\u0440\u0430\u0442\u043e\u0440\u0438\u0439 \u043d\u0430 \u0443\u0434\u043e\u0432\u043b\u0435\u0442\u0432\u043e\u0440\u0435\u043d\u0438\u0435 \u0442\u0440\u0435\u0431\u043e\u0432\u0430\u043d\u0438\u0439 \u043a\u0440\u0435\u0434\u0438\u0442\u043e\u0440\u043e\u0432, \u043e\u0442\u043c\u0435\u0447\u0435\u043d\u043d\u044b\u0445 \u0432 \u0437\u0430\u044f\u0432\u043b\u0435\u043d\u0438\u0438 \u0434\u043e\u043b\u0436\u043d\u0438\u043a\u0430, \u0438 \u043c\u043e\u0440\u0430\u0442\u043e\u0440\u0438\u0439 \u043e\u0431 \u0443\u043f\u043b\u0430\u0442\u0435 \u043e\u0431\u044f\u0437\u0430\u0442\u0435\u043b\u044c\u043d\u044b\u0445 \u043f\u043b\u0430\u0442\u0435\u0436\u0435\u0439.[SEP]\u041a\u0440\u043e\u043c\u0435 \u0442\u043e\u0433\u043e, \u043f\u0440\u0435\u043a\u0440\u0430\u0449\u0430\u0435\u0442\u0441\u044f \u043d\u0430\u0447\u0438\u0441\u043b\u0435\u043d\u0438\u0435 \u043d\u0435\u0443\u0441\u0442\u043e\u0435\u043a \u0438 \u0438\u043d\u044b\u0445 \u0444\u0438\u043d\u0430\u043d\u0441\u043e\u0432\u044b\u0445 \u0441\u0430\u043d\u043a\u0446\u0438\u0439; \u0438\u043c\u0443\u0449\u0435\u0441\u0442\u0432\u0435\u043d\u043d\u044b\u0435 \u0432\u0437\u044b\u0441\u043a\u0430\u043d\u0438\u044f (\u043a\u0440\u043e\u043c\u0435 \u0430\u043b\u0438\u043c\u0435\u043d\u0442\u043e\u0432) \u0442\u0430\u043a\u0436\u0435 \u0431\u0443\u0434\u0443\u0442 \u043f\u0440\u0438\u043e\u0441\u0442\u0430\u043d\u043e\u0432\u043b\u0435\u043d\u044b.[SEP]\u041f\u043e \u0437\u0430\u0432\u0435\u0440\u0448\u0435\u043d\u0438\u044e \u043f\u0440\u043e\u0446\u0435\u0434\u0443\u0440\u044b \u0437\u0430\u044f\u0432\u0438\u0442\u0435\u043b\u044f \u043e\u0441\u0432\u043e\u0431\u043e\u0434\u044f\u0442 \u043e\u0442 \u0434\u0430\u043b\u044c\u043d\u0435\u0439\u0448\u0435\u0433\u043e \u0432\u044b\u043f\u043e\u043b\u043d\u0435\u043d\u0438\u044f \u0442\u0440\u0435\u0431\u043e\u0432\u0430\u043d\u0438\u0439 \u043a\u0440\u0435\u0434\u0438\u0442\u043e\u0440\u043e\u0432, \u0443\u043a\u0430\u0437\u0430\u043d\u043d\u044b\u0445 \u0432 \u0437\u0430\u044f\u0432\u043b\u0435\u043d\u0438\u0438 \u043e \u043f\u0440\u0438\u0437\u043d\u0430\u043d\u0438\u0438 \u0435\u0433\u043e \u0431\u0430\u043d\u043a\u0440\u043e\u0442\u043e\u043c, \u0430 \u044d\u0442\u0430 \u0437\u0430\u0434\u043e\u043b\u0436\u0435\u043d\u043d\u043e\u0441\u0442\u044c \u043f\u0440\u0438\u0437\u043d\u0430\u0435\u0442\u0441\u044f \u0431\u0435\u0437\u043d\u0430\u0434\u0435\u0436\u043d\u043e\u0439.[SEP]\u0412 \u043f\u0440\u043e\u0448\u043b\u043e\u043c \u043c\u0435\u0441\u044f\u0446\u0435 \u0441\u0442\u0430\u043b\u043e \u0438\u0437\u0432\u0435\u0441\u0442\u043d\u043e, \u0447\u0442\u043e \u0437\u0430 \u043f\u0435\u0440\u0432\u043e\u0435 \u043f\u043e\u043b\u0443\u0433\u043e\u0434\u0438\u0435 2020 \u0433\u043e\u0434\u0430 \u0440\u043e\u0441\u0441\u0438\u0439\u0441\u043a\u0438\u0435 \u0441\u0443\u0434\u044b \u043f\u0440\u0438\u0437\u043d\u0430\u043b\u0438 \u0431\u0430\u043d\u043a\u0440\u043e\u0442\u0430\u043c\u0438 42,7 \u0442\u044b\u0441. \u0433\u0440\u0430\u0436\u0434\u0430\u043d (\u0432 \u0442\u043e\u043c \u0447\u0438\u0441\u043b\u0435 \u0438\u043d\u0434\u0438\u0432\u0438\u0434\u0443\u0430\u043b\u044c\u043d\u044b\u0445 \u043f\u0440\u0435\u0434\u043f\u0440\u0438\u043d\u0438\u043c\u0430\u0442\u0435\u043b\u0435\u0439) \u2014 \u043f\u043e \u0434\u0430\u043d\u043d\u044b\u043c \u0435\u0434\u0438\u043d\u043e\u0433\u043e \u0440\u0435\u0435\u0441\u0442\u0440\u0430 \u00ab\u0424\u0435\u0434\u0440\u0435\u0441\u0443\u0440\u0441\u00bb, \u044d\u0442\u043e \u043d\u0430 47,2% \u0431\u043e\u043b\u044c\u0448\u0435 \u043f\u043e\u043a\u0430\u0437\u0430\u0442\u0435\u043b\u044f \u0430\u043d\u0430\u043b\u043e\u0433\u0438\u0447\u043d\u043e\u0433\u043e \u043f\u0435\u0440\u0438\u043e\u0434\u0430 2019 \u0433\u043e\u0434\u0430.[SEP]\u0420\u043e\u0441\u0442 \u0447\u0438\u0441\u043b\u0430 \u043e\u0431\u0430\u043d\u043a\u0440\u043e\u0442\u0438\u0432\u0448\u0438\u0445\u0441\u044f \u0433\u0440\u0430\u0436\u0434\u0430\u043d \u0432\u043e \u0432\u0442\u043e\u0440\u043e\u043c \u043a\u0432\u0430\u0440\u0442\u0430\u043b\u0435 \u043f\u043e \u0441\u0440\u0430\u0432\u043d\u0435\u043d\u0438\u044e \u0441 \u043f\u0435\u0440\u0432\u044b\u043c \u0437\u0430\u043c\u0435\u0434\u043b\u0438\u043b\u0441\u044f \u2014 \u0442\u0430\u043a\u0430\u044f \u0434\u0438\u043d\u0430\u043c\u0438\u043a\u0430 \u043e\u0431\u0443\u0441\u043b\u043e\u0432\u043b\u0435\u043d\u0430 \u0442\u0435\u043c, \u0447\u0442\u043e \u0432 \u043f\u0435\u0440\u0438\u043e\u0434 \u043e\u0433\u0440\u0430\u043d\u0438\u0447\u0435\u043d\u0438\u0439 \u0441 19 \u043c\u0430\u0440\u0442\u0430 \u043f\u043e 11 \u043c\u0430\u044f \u0441\u0443\u0434\u044b \u0440\u0435\u0434\u043a\u043e \u0440\u0430\u0441\u0441\u043c\u0430\u0442\u0440\u0438\u0432\u0430\u043b\u0438 \u0431\u0430\u043d\u043a\u0440\u043e\u0442\u043d\u044b\u0435 \u0434\u0435\u043b\u0430 \u043a\u043e\u043c\u043f\u0430\u043d\u0438\u0439 \u0438 \u043c\u0435\u043d\u044c\u0448\u0435, \u0447\u0435\u043c \u043e\u0431\u044b\u0447\u043d\u043e, \u0432 \u043e\u0442\u043d\u043e\u0448\u0435\u043d\u0438\u0438 \u0433\u0440\u0430\u0436\u0434\u0430\u043d, \u043e\u0431\u044a\u044f\u0441\u043d\u044f\u043b \u0440\u0443\u043a\u043e\u0432\u043e\u0434\u0438\u0442\u0435\u043b\u044c \u043f\u0440\u043e\u0435\u043a\u0442\u0430 \u00ab\u0424\u0435\u0434\u0440\u0435\u0441\u0443\u0440\u0441\u00bb \u0410\u043b\u0435\u043a\u0441\u0435\u0439 \u042e\u0445\u043d\u0438\u043d.[SEP]", "example_title": "\u041d\u043e\u0432\u043e\u0441\u0442\u0438"}]}
IlyaGusev/rubert_ext_sum_gazeta
null
[ "transformers", "pytorch", "bert", "token-classification", "summarization", "t5", "ru", "dataset:IlyaGusev/gazeta", "license:apache-2.0", "autotrain_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "ru" ]
TAGS #transformers #pytorch #bert #token-classification #summarization #t5 #ru #dataset-IlyaGusev/gazeta #license-apache-2.0 #autotrain_compatible #region-us
# RuBERTExtSumGazeta ## Model description Model for extractive summarization based on rubert-base-cased ## Intended uses & limitations #### How to use Colab: link #### Limitations and bias - The model should work well with URL articles, but for any other agencies it can suffer from domain shift ## Training data - Dataset: Gazeta ## Training procedure TBD ## Eval results TBD Evaluation: URL Flags: --language ru --tokenize-after --lower
[ "# RuBERTExtSumGazeta", "## Model description\n\nModel for extractive summarization based on rubert-base-cased", "## Intended uses & limitations", "#### How to use\n\nColab: link", "#### Limitations and bias\n\n- The model should work well with URL articles, but for any other agencies it can suffer from domain shift", "## Training data\n\n- Dataset: Gazeta", "## Training procedure\n\nTBD", "## Eval results\n\nTBD\n\nEvaluation: URL\n\nFlags: --language ru --tokenize-after --lower" ]
[ "TAGS\n#transformers #pytorch #bert #token-classification #summarization #t5 #ru #dataset-IlyaGusev/gazeta #license-apache-2.0 #autotrain_compatible #region-us \n", "# RuBERTExtSumGazeta", "## Model description\n\nModel for extractive summarization based on rubert-base-cased", "## Intended uses & limitations", "#### How to use\n\nColab: link", "#### Limitations and bias\n\n- The model should work well with URL articles, but for any other agencies it can suffer from domain shift", "## Training data\n\n- Dataset: Gazeta", "## Training procedure\n\nTBD", "## Eval results\n\nTBD\n\nEvaluation: URL\n\nFlags: --language ru --tokenize-after --lower" ]
[ 51, 8, 20, 6, 11, 29, 10, 6, 26 ]
[ "TAGS\n#transformers #pytorch #bert #token-classification #summarization #t5 #ru #dataset-IlyaGusev/gazeta #license-apache-2.0 #autotrain_compatible #region-us \n# RuBERTExtSumGazeta## Model description\n\nModel for extractive summarization based on rubert-base-cased## Intended uses & limitations#### How to use\n\nColab: link#### Limitations and bias\n\n- The model should work well with URL articles, but for any other agencies it can suffer from domain shift## Training data\n\n- Dataset: Gazeta## Training procedure\n\nTBD## Eval results\n\nTBD\n\nEvaluation: URL\n\nFlags: --language ru --tokenize-after --lower" ]
summarization
transformers
# RuBertTelegramHeadlines ## Model description Example model for [Headline generation competition](https://competitions.codalab.org/competitions/29905) Based on [RuBERT](http://docs.deeppavlov.ai/en/master/features/models/bert.html) model ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, EncoderDecoderModel model_name = "IlyaGusev/rubert_telegram_headlines" tokenizer = AutoTokenizer.from_pretrained(model_name, do_lower_case=False, do_basic_tokenize=False, strip_accents=False) model = EncoderDecoderModel.from_pretrained(model_name) article_text = "..." input_ids = tokenizer( [article_text], add_special_tokens=True, max_length=256, padding="max_length", truncation=True, return_tensors="pt", )["input_ids"] output_ids = model.generate( input_ids=input_ids, max_length=64, no_repeat_ngram_size=3, num_beams=10, top_p=0.95 )[0] headline = tokenizer.decode(output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True) print(headline) ``` ## Training data - Dataset: [ru_all_split.tar.gz](https://www.dropbox.com/s/ykqk49a8avlmnaf/ru_all_split.tar.gz) ## Training procedure ```python import random import torch from torch.utils.data import Dataset from tqdm.notebook import tqdm from transformers import BertTokenizer, EncoderDecoderModel, Trainer, TrainingArguments, logging def convert_to_tensors( tokenizer, text, max_text_tokens_count, max_title_tokens_count = None, title = None ): inputs = tokenizer( text, add_special_tokens=True, max_length=max_text_tokens_count, padding="max_length", truncation=True ) result = { "input_ids": torch.tensor(inputs["input_ids"]), "attention_mask": torch.tensor(inputs["attention_mask"]), } if title is not None: outputs = tokenizer( title, add_special_tokens=True, max_length=max_title_tokens_count, padding="max_length", truncation=True ) decoder_input_ids = torch.tensor(outputs["input_ids"]) decoder_attention_mask = torch.tensor(outputs["attention_mask"]) labels = decoder_input_ids.clone() labels[decoder_attention_mask == 0] = -100 result.update({ "labels": labels, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask }) return result class GetTitleDataset(Dataset): def __init__( self, original_records, sample_rate, tokenizer, max_text_tokens_count, max_title_tokens_count ): self.original_records = original_records self.sample_rate = sample_rate self.tokenizer = tokenizer self.max_text_tokens_count = max_text_tokens_count self.max_title_tokens_count = max_title_tokens_count self.records = [] for record in tqdm(original_records): if random.random() > self.sample_rate: continue tensors = convert_to_tensors( tokenizer=tokenizer, title=record["title"], text=record["text"], max_title_tokens_count=self.max_title_tokens_count, max_text_tokens_count=self.max_text_tokens_count ) self.records.append(tensors) def __len__(self): return len(self.records) def __getitem__(self, index): return self.records[index] def train( train_records, val_records, pretrained_model_path, train_sample_rate=1.0, val_sample_rate=1.0, output_model_path="models", checkpoint=None, max_text_tokens_count=256, max_title_tokens_count=64, batch_size=8, logging_steps=1000, eval_steps=10000, save_steps=10000, learning_rate=0.00003, warmup_steps=2000, num_train_epochs=3 ): logging.set_verbosity_info() tokenizer = BertTokenizer.from_pretrained( pretrained_model_path, do_lower_case=False, do_basic_tokenize=False, strip_accents=False ) train_dataset = GetTitleDataset( train_records, train_sample_rate, tokenizer, max_text_tokens_count=max_text_tokens_count, max_title_tokens_count=max_title_tokens_count ) val_dataset = GetTitleDataset( val_records, val_sample_rate, tokenizer, max_text_tokens_count=max_text_tokens_count, max_title_tokens_count=max_title_tokens_count ) model = EncoderDecoderModel.from_encoder_decoder_pretrained(pretrained_model_path, pretrained_model_path) training_args = TrainingArguments( output_dir=output_model_path, per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, do_train=True, do_eval=True, overwrite_output_dir=False, logging_steps=logging_steps, eval_steps=eval_steps, evaluation_strategy="steps", save_steps=save_steps, learning_rate=learning_rate, warmup_steps=warmup_steps, num_train_epochs=num_train_epochs, max_steps=-1, save_total_limit=1, ) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=val_dataset ) trainer.train(checkpoint) model.save_pretrained(output_model_path) ```
{"language": ["ru"], "license": "apache-2.0", "tags": ["summarization"], "inference": {"parameters": {"no_repeat_ngram_size": 4}}}
IlyaGusev/rubert_telegram_headlines
null
[ "transformers", "pytorch", "encoder-decoder", "text2text-generation", "summarization", "ru", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "ru" ]
TAGS #transformers #pytorch #encoder-decoder #text2text-generation #summarization #ru #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
# RuBertTelegramHeadlines ## Model description Example model for Headline generation competition Based on RuBERT model ## Intended uses & limitations #### How to use ## Training data - Dataset: ru_all_split.URL ## Training procedure
[ "# RuBertTelegramHeadlines", "## Model description\n\nExample model for Headline generation competition\n\nBased on RuBERT model", "## Intended uses & limitations", "#### How to use", "## Training data\n\n- Dataset: ru_all_split.URL", "## Training procedure" ]
[ "TAGS\n#transformers #pytorch #encoder-decoder #text2text-generation #summarization #ru #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# RuBertTelegramHeadlines", "## Model description\n\nExample model for Headline generation competition\n\nBased on RuBERT model", "## Intended uses & limitations", "#### How to use", "## Training data\n\n- Dataset: ru_all_split.URL", "## Training procedure" ]
[ 53, 8, 15, 6, 7, 16, 4 ]
[ "TAGS\n#transformers #pytorch #encoder-decoder #text2text-generation #summarization #ru #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n# RuBertTelegramHeadlines## Model description\n\nExample model for Headline generation competition\n\nBased on RuBERT model## Intended uses & limitations#### How to use## Training data\n\n- Dataset: ru_all_split.URL## Training procedure" ]
text-classification
transformers
# RuBERTConv Toxic Classifier ## Model description Based on [rubert-base-cased-conversational](https://huggingface.co/DeepPavlov/rubert-base-cased-conversational) model ## Intended uses & limitations #### How to use Colab: [link](https://colab.research.google.com/drive/1veKO9hke7myxKigZtZho_F-UM2fD9kp8) ```python from transformers import pipeline model_name = "IlyaGusev/rubertconv_toxic_clf" pipe = pipeline("text-classification", model=model_name, tokenizer=model_name, framework="pt") text = "ะขั‹ ะฟั€ะธะดัƒั€ะพะบ ะธะท ะธะฝั‚ะตั€ะฝะตั‚ะฐ" pipe([text]) ``` ## Training data Datasets: - [2ch]( https://www.kaggle.com/blackmoon/russian-language-toxic-comments) - [Odnoklassniki](https://www.kaggle.com/alexandersemiletov/toxic-russian-comments) - [Toloka Persona Chat Rus](https://toloka.ai/ru/datasets) - [Koziev's Conversations](https://github.com/Koziev/NLP_Datasets/blob/master/Conversations/Data) with [toxic words vocabulary](https://www.dropbox.com/s/ou6lx03b10yhrfl/bad_vocab.txt.tar.gz) Augmentations: - ั‘ -> ะต - Remove or add "?" or "!" - Fix CAPS - Concatenate toxic and non-toxic texts - Concatenate two non-toxic texts - Add toxic words from vocabulary - Add typos - Mask toxic words with "*", "@", "$" ## Training procedure TBA
{"language": ["ru"], "license": "apache-2.0", "tags": ["text-classification"]}
IlyaGusev/rubertconv_toxic_clf
null
[ "transformers", "pytorch", "bert", "text-classification", "ru", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "ru" ]
TAGS #transformers #pytorch #bert #text-classification #ru #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# RuBERTConv Toxic Classifier ## Model description Based on rubert-base-cased-conversational model ## Intended uses & limitations #### How to use Colab: link ## Training data Datasets: - 2ch - Odnoklassniki - Toloka Persona Chat Rus - Koziev's Conversations with toxic words vocabulary Augmentations: - ั‘ -> ะต - Remove or add "?" or "!" - Fix CAPS - Concatenate toxic and non-toxic texts - Concatenate two non-toxic texts - Add toxic words from vocabulary - Add typos - Mask toxic words with "*", "@", "$" ## Training procedure TBA
[ "# RuBERTConv Toxic Classifier", "## Model description\n\nBased on rubert-base-cased-conversational model", "## Intended uses & limitations", "#### How to use\n\nColab: link", "## Training data\n\nDatasets:\n- 2ch\n- Odnoklassniki\n- Toloka Persona Chat Rus\n- Koziev's Conversations with toxic words vocabulary\n\nAugmentations:\n- ั‘ -> ะต\n- Remove or add \"?\" or \"!\"\n- Fix CAPS\n- Concatenate toxic and non-toxic texts\n- Concatenate two non-toxic texts\n- Add toxic words from vocabulary\n- Add typos\n- Mask toxic words with \"*\", \"@\", \"$\"", "## Training procedure\n\nTBA" ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #ru #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# RuBERTConv Toxic Classifier", "## Model description\n\nBased on rubert-base-cased-conversational model", "## Intended uses & limitations", "#### How to use\n\nColab: link", "## Training data\n\nDatasets:\n- 2ch\n- Odnoklassniki\n- Toloka Persona Chat Rus\n- Koziev's Conversations with toxic words vocabulary\n\nAugmentations:\n- ั‘ -> ะต\n- Remove or add \"?\" or \"!\"\n- Fix CAPS\n- Concatenate toxic and non-toxic texts\n- Concatenate two non-toxic texts\n- Add toxic words from vocabulary\n- Add typos\n- Mask toxic words with \"*\", \"@\", \"$\"", "## Training procedure\n\nTBA" ]
[ 38, 8, 17, 6, 11, 106, 6 ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #ru #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# RuBERTConv Toxic Classifier## Model description\n\nBased on rubert-base-cased-conversational model## Intended uses & limitations#### How to use\n\nColab: link## Training data\n\nDatasets:\n- 2ch\n- Odnoklassniki\n- Toloka Persona Chat Rus\n- Koziev's Conversations with toxic words vocabulary\n\nAugmentations:\n- ั‘ -> ะต\n- Remove or add \"?\" or \"!\"\n- Fix CAPS\n- Concatenate toxic and non-toxic texts\n- Concatenate two non-toxic texts\n- Add toxic words from vocabulary\n- Add typos\n- Mask toxic words with \"*\", \"@\", \"$\"## Training procedure\n\nTBA" ]
token-classification
transformers
# RuBERTConv Toxic Editor ## Model description Tagging model for detoxification based on [rubert-base-cased-conversational](https://huggingface.co/DeepPavlov/rubert-base-cased-conversational). 4 possible classes: - Equal = save tokens - Replace = replace tokens with mask - Delete = remove tokens - Insert = insert mask before tokens Use in pair with [mask filler](https://huggingface.co/IlyaGusev/sber_rut5_filler). ## Intended uses & limitations #### How to use Colab: [link](https://colab.research.google.com/drive/1NUSO1QGlDgD-IWXa2SpeND089eVxrCJW) ```python import torch from transformers import AutoTokenizer, pipeline tagger_model_name = "IlyaGusev/rubertconv_toxic_editor" device = "cuda" if torch.cuda.is_available() else "cpu" device_num = 0 if device == "cuda" else -1 tagger_pipe = pipeline( "token-classification", model=tagger_model_name, tokenizer=tagger_model_name, framework="pt", device=device_num, aggregation_strategy="max" ) text = "..." tagger_predictions = tagger_pipe([text], batch_size=1) sample_predictions = tagger_predictions[0] print(sample_predictions) ``` ## Training data - Dataset: [russe_detox_2022](https://github.com/skoltech-nlp/russe_detox_2022/tree/main/data) ## Training procedure - Parallel corpus convertion: [compute_tags.py](https://github.com/IlyaGusev/rudetox/blob/main/rudetox/marker/compute_tags.py) - Training script: [train.py](https://github.com/IlyaGusev/rudetox/blob/main/rudetox/marker/train.py) - Pipeline step: [dvc.yaml, train_marker](https://github.com/IlyaGusev/rudetox/blob/main/dvc.yaml#L367) ## Eval results TBA
{"language": ["ru"], "license": "apache-2.0", "tags": ["token-classification"], "widget": [{"text": "\u0401\u043f\u0442\u0430, \u043c\u0435\u043d\u044f \u0437\u043e\u0432\u0443\u0442 \u043f\u0440\u0438\u0434\u0443\u0440\u043e\u043a \u0438 \u044f \u0436\u0438\u0432\u0443 \u0432 \u0436\u043e\u043f\u0435"}]}
IlyaGusev/rubertconv_toxic_editor
null
[ "transformers", "pytorch", "bert", "token-classification", "ru", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "ru" ]
TAGS #transformers #pytorch #bert #token-classification #ru #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# RuBERTConv Toxic Editor ## Model description Tagging model for detoxification based on rubert-base-cased-conversational. 4 possible classes: - Equal = save tokens - Replace = replace tokens with mask - Delete = remove tokens - Insert = insert mask before tokens Use in pair with mask filler. ## Intended uses & limitations #### How to use Colab: link ## Training data - Dataset: russe_detox_2022 ## Training procedure - Parallel corpus convertion: compute_tags.py - Training script: URL - Pipeline step: URL, train_marker ## Eval results TBA
[ "# RuBERTConv Toxic Editor", "## Model description\n\nTagging model for detoxification based on rubert-base-cased-conversational.\n\n4 possible classes:\n- Equal = save tokens\n- Replace = replace tokens with mask\n- Delete = remove tokens\n- Insert = insert mask before tokens\n\nUse in pair with mask filler.", "## Intended uses & limitations", "#### How to use\n\nColab: link", "## Training data\n\n- Dataset: russe_detox_2022", "## Training procedure\n\n- Parallel corpus convertion: compute_tags.py\n- Training script: URL\n- Pipeline step: URL, train_marker", "## Eval results\n\nTBA" ]
[ "TAGS\n#transformers #pytorch #bert #token-classification #ru #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# RuBERTConv Toxic Editor", "## Model description\n\nTagging model for detoxification based on rubert-base-cased-conversational.\n\n4 possible classes:\n- Equal = save tokens\n- Replace = replace tokens with mask\n- Delete = remove tokens\n- Insert = insert mask before tokens\n\nUse in pair with mask filler.", "## Intended uses & limitations", "#### How to use\n\nColab: link", "## Training data\n\n- Dataset: russe_detox_2022", "## Training procedure\n\n- Parallel corpus convertion: compute_tags.py\n- Training script: URL\n- Pipeline step: URL, train_marker", "## Eval results\n\nTBA" ]
[ 38, 7, 65, 6, 11, 16, 32, 7 ]
[ "TAGS\n#transformers #pytorch #bert #token-classification #ru #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# RuBERTConv Toxic Editor## Model description\n\nTagging model for detoxification based on rubert-base-cased-conversational.\n\n4 possible classes:\n- Equal = save tokens\n- Replace = replace tokens with mask\n- Delete = remove tokens\n- Insert = insert mask before tokens\n\nUse in pair with mask filler.## Intended uses & limitations#### How to use\n\nColab: link## Training data\n\n- Dataset: russe_detox_2022## Training procedure\n\n- Parallel corpus convertion: compute_tags.py\n- Training script: URL\n- Pipeline step: URL, train_marker## Eval results\n\nTBA" ]
summarization
transformers
# RuGPT3MediumSumGazeta ## Model description This is the model for abstractive summarization for Russian based on [rugpt3medium_based_on_gpt2](https://huggingface.co/sberbank-ai/rugpt3medium_based_on_gpt2). ## Intended uses & limitations #### How to use Colab: [link](https://colab.research.google.com/drive/1eR-ev0Y5ISWIwGnzYYoHyGMaSIUz8GTN) ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM model_name = "IlyaGusev/rugpt3medium_sum_gazeta" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) article_text = "..." text_tokens = tokenizer( article_text, max_length=600, add_special_tokens=False, padding=False, truncation=True )["input_ids"] input_ids = text_tokens + [tokenizer.sep_token_id] input_ids = torch.LongTensor([input_ids]) output_ids = model.generate( input_ids=input_ids, no_repeat_ngram_size=4 ) summary = tokenizer.decode(output_ids[0], skip_special_tokens=False) summary = summary.split(tokenizer.sep_token)[1] summary = summary.split(tokenizer.eos_token)[0] print(summary) ``` ## Training data - Dataset: [Gazeta](https://huggingface.co/datasets/IlyaGusev/gazeta) ## Training procedure - Training script: [train.py](https://github.com/IlyaGusev/summarus/blob/master/external/hf_scripts/train.py) - Config: [gpt_training_config.json](https://github.com/IlyaGusev/summarus/blob/master/external/hf_scripts/configs/gpt_training_config.json) ## Eval results * Train dataset: **Gazeta v1 train** * Test dataset: **Gazeta v1 test** * Source max_length: **600** * Target max_length: **200** * no_repeat_ngram_size: **4** * num_beams: **5** | Model | R-1-f | R-2-f | R-L-f | chrF | METEOR | BLEU | Avg char length | |:--------------------------|:------|:------|:------|:-------|:-------|:-----|:-----| | [mbart_ru_sum_gazeta](https://huggingface.co/IlyaGusev/mbart_ru_sum_gazeta) | **32.4** | 14.3 | 28.0 | 39.7 | **26.4** | 12.1 | 371 | | [rut5_base_sum_gazeta](https://huggingface.co/IlyaGusev/rut5_base_sum_gazeta) | 32.2 | **14.4** | **28.1** | **39.8** | 25.7 | **12.3** | 330 | | [rugpt3medium_sum_gazeta](https://huggingface.co/IlyaGusev/rugpt3medium_sum_gazeta) | 26.2 | 7.7 | 21.7 | 33.8 | 18.2 | 4.3 | 244 | * Train dataset: **Gazeta v1 train** * Test dataset: **Gazeta v2 test** * Source max_length: **600** * Target max_length: **200** * no_repeat_ngram_size: **4** * num_beams: **5** | Model | R-1-f | R-2-f | R-L-f | chrF | METEOR | BLEU | Avg char length | |:--------------------------|:------|:------|:------|:-------|:-------|:-----|:-----| | [mbart_ru_sum_gazeta](https://huggingface.co/IlyaGusev/mbart_ru_sum_gazeta) | **28.7** | **11.1** | 24.4 | **37.3** | **22.7** | **9.4** | 373 | | [rut5_base_sum_gazeta](https://huggingface.co/IlyaGusev/rut5_base_sum_gazeta) | 28.6 | **11.1** | **24.5** | 37.2 | 22.0 | **9.4** | 331 | | [rugpt3medium_sum_gazeta](https://huggingface.co/IlyaGusev/rugpt3medium_sum_gazeta) | 24.1 | 6.5 | 19.8 | 32.1 | 16.3 | 3.6 | 242 | Evaluation script: [evaluate.py](https://github.com/IlyaGusev/summarus/blob/master/evaluate.py) Flags: --language ru --tokenize-after --lower
{"language": ["ru"], "license": ["apache-2.0"], "tags": ["causal-lm", "summarization"], "datasets": ["IlyaGusev/gazeta"], "inference": false, "widget": [{"text": "\u0412\u044b\u0441\u043e\u0442\u0430 \u0431\u0430\u0448\u043d\u0438 \u0441\u043e\u0441\u0442\u0430\u0432\u043b\u044f\u0435\u0442 324 \u043c\u0435\u0442\u0440\u0430 (1063 \u0444\u0443\u0442\u0430), \u043f\u0440\u0438\u043c\u0435\u0440\u043d\u043e \u0442\u0430\u043a\u0430\u044f \u0436\u0435 \u0432\u044b\u0441\u043e\u0442\u0430, \u043a\u0430\u043a \u0443 81-\u044d\u0442\u0430\u0436\u043d\u043e\u0433\u043e \u0437\u0434\u0430\u043d\u0438\u044f, \u0438 \u0441\u0430\u043c\u043e\u0435 \u0432\u044b\u0441\u043e\u043a\u043e\u0435 \u0441\u043e\u043e\u0440\u0443\u0436\u0435\u043d\u0438\u0435 \u0432 \u041f\u0430\u0440\u0438\u0436\u0435. \u0415\u0433\u043e \u043e\u0441\u043d\u043e\u0432\u0430\u043d\u0438\u0435 \u043a\u0432\u0430\u0434\u0440\u0430\u0442\u043d\u043e, \u0440\u0430\u0437\u043c\u0435\u0440\u043e\u043c 125 \u043c\u0435\u0442\u0440\u043e\u0432 (410 \u0444\u0443\u0442\u043e\u0432) \u0441 \u043b\u044e\u0431\u043e\u0439 \u0441\u0442\u043e\u0440\u043e\u043d\u044b. \u0412\u043e \u0432\u0440\u0435\u043c\u044f \u0441\u0442\u0440\u043e\u0438\u0442\u0435\u043b\u044c\u0441\u0442\u0432\u0430 \u042d\u0439\u0444\u0435\u043b\u0435\u0432\u0430 \u0431\u0430\u0448\u043d\u044f \u043f\u0440\u0435\u0432\u0437\u043e\u0448\u043b\u0430 \u043c\u043e\u043d\u0443\u043c\u0435\u043d\u0442 \u0412\u0430\u0448\u0438\u043d\u0433\u0442\u043e\u043d\u0430, \u0441\u0442\u0430\u0432 \u0441\u0430\u043c\u044b\u043c \u0432\u044b\u0441\u043e\u043a\u0438\u043c \u0438\u0441\u043a\u0443\u0441\u0441\u0442\u0432\u0435\u043d\u043d\u044b\u043c \u0441\u043e\u043e\u0440\u0443\u0436\u0435\u043d\u0438\u0435\u043c \u0432 \u043c\u0438\u0440\u0435, \u0438 \u044d\u0442\u043e\u0442 \u0442\u0438\u0442\u0443\u043b \u043e\u043d\u0430 \u0443\u0434\u0435\u0440\u0436\u0438\u0432\u0430\u043b\u0430 \u0432 \u0442\u0435\u0447\u0435\u043d\u0438\u0435 41 \u0433\u043e\u0434\u0430 \u0434\u043e \u0437\u0430\u0432\u0435\u0440\u0448\u0435\u043d\u0438\u044f \u0441\u0442\u0440\u043e\u0438\u0442\u0435\u043b\u044c\u0441\u0442\u0432\u043e \u0437\u0434\u0430\u043d\u0438\u044f \u041a\u0440\u0430\u0439\u0441\u043b\u0435\u0440 \u0432 \u041d\u044c\u044e-\u0419\u043e\u0440\u043a\u0435 \u0432 1930 \u0433\u043e\u0434\u0443. \u042d\u0442\u043e \u043f\u0435\u0440\u0432\u043e\u0435 \u0441\u043e\u043e\u0440\u0443\u0436\u0435\u043d\u0438\u0435 \u043a\u043e\u0442\u043e\u0440\u043e\u0435 \u0434\u043e\u0441\u0442\u0438\u0433\u043b\u043e \u0432\u044b\u0441\u043e\u0442\u044b 300 \u043c\u0435\u0442\u0440\u043e\u0432. \u0418\u0437-\u0437\u0430 \u0434\u043e\u0431\u0430\u0432\u043b\u0435\u043d\u0438\u044f \u0432\u0435\u0449\u0430\u0442\u0435\u043b\u044c\u043d\u043e\u0439 \u0430\u043d\u0442\u0435\u043d\u043d\u044b \u043d\u0430 \u0432\u0435\u0440\u0448\u0438\u043d\u0435 \u0431\u0430\u0448\u043d\u0438 \u0432 1957 \u0433\u043e\u0434\u0443 \u043e\u043d\u0430 \u0441\u0435\u0439\u0447\u0430\u0441 \u0432\u044b\u0448\u0435 \u0437\u0434\u0430\u043d\u0438\u044f \u041a\u0440\u0430\u0439\u0441\u043b\u0435\u0440 \u043d\u0430 5,2 \u043c\u0435\u0442\u0440\u0430 (17 \u0444\u0443\u0442\u043e\u0432). \u0417\u0430 \u0438\u0441\u043a\u043b\u044e\u0447\u0435\u043d\u0438\u0435\u043c \u043f\u0435\u0440\u0435\u0434\u0430\u0442\u0447\u0438\u043a\u043e\u0432, \u042d\u0439\u0444\u0435\u043b\u0435\u0432\u0430 \u0431\u0430\u0448\u043d\u044f \u044f\u0432\u043b\u044f\u0435\u0442\u0441\u044f \u0432\u0442\u043e\u0440\u043e\u0439 \u0441\u0430\u043c\u043e\u0439 \u0432\u044b\u0441\u043e\u043a\u043e\u0439 \u043e\u0442\u0434\u0435\u043b\u044c\u043d\u043e \u0441\u0442\u043e\u044f\u0449\u0435\u0439 \u0441\u0442\u0440\u0443\u043a\u0442\u0443\u0440\u043e\u0439 \u0432\u043e \u0424\u0440\u0430\u043d\u0446\u0438\u0438 \u043f\u043e\u0441\u043b\u0435 \u0432\u0438\u0430\u0434\u0443\u043a\u0430 \u041c\u0438\u0439\u043e.<s>", "example_title": "\u0412\u0438\u043a\u0438\u043f\u0435\u0434\u0438\u044f"}]}
IlyaGusev/rugpt3medium_sum_gazeta
null
[ "transformers", "pytorch", "gpt2", "text-generation", "causal-lm", "summarization", "ru", "dataset:IlyaGusev/gazeta", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "ru" ]
TAGS #transformers #pytorch #gpt2 #text-generation #causal-lm #summarization #ru #dataset-IlyaGusev/gazeta #license-apache-2.0 #autotrain_compatible #text-generation-inference #region-us
RuGPT3MediumSumGazeta ===================== Model description ----------------- This is the model for abstractive summarization for Russian based on rugpt3medium\_based\_on\_gpt2. Intended uses & limitations --------------------------- #### How to use Colab: link Training data ------------- * Dataset: Gazeta Training procedure ------------------ * Training script: URL * Config: gpt\_training\_config.json Eval results ------------ * Train dataset: Gazeta v1 train * Test dataset: Gazeta v1 test * Source max\_length: 600 * Target max\_length: 200 * no\_repeat\_ngram\_size: 4 * num\_beams: 5 * Train dataset: Gazeta v1 train * Test dataset: Gazeta v2 test * Source max\_length: 600 * Target max\_length: 200 * no\_repeat\_ngram\_size: 4 * num\_beams: 5 Evaluation script: URL Flags: --language ru --tokenize-after --lower
[ "#### How to use\n\n\nColab: link\n\n\nTraining data\n-------------\n\n\n* Dataset: Gazeta\n\n\nTraining procedure\n------------------\n\n\n* Training script: URL\n* Config: gpt\\_training\\_config.json\n\n\nEval results\n------------\n\n\n* Train dataset: Gazeta v1 train\n* Test dataset: Gazeta v1 test\n* Source max\\_length: 600\n* Target max\\_length: 200\n* no\\_repeat\\_ngram\\_size: 4\n* num\\_beams: 5\n\n\n\n* Train dataset: Gazeta v1 train\n* Test dataset: Gazeta v2 test\n* Source max\\_length: 600\n* Target max\\_length: 200\n* no\\_repeat\\_ngram\\_size: 4\n* num\\_beams: 5\n\n\n\nEvaluation script: URL\n\n\nFlags: --language ru --tokenize-after --lower" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #causal-lm #summarization #ru #dataset-IlyaGusev/gazeta #license-apache-2.0 #autotrain_compatible #text-generation-inference #region-us \n", "#### How to use\n\n\nColab: link\n\n\nTraining data\n-------------\n\n\n* Dataset: Gazeta\n\n\nTraining procedure\n------------------\n\n\n* Training script: URL\n* Config: gpt\\_training\\_config.json\n\n\nEval results\n------------\n\n\n* Train dataset: Gazeta v1 train\n* Test dataset: Gazeta v1 test\n* Source max\\_length: 600\n* Target max\\_length: 200\n* no\\_repeat\\_ngram\\_size: 4\n* num\\_beams: 5\n\n\n\n* Train dataset: Gazeta v1 train\n* Test dataset: Gazeta v2 test\n* Source max\\_length: 600\n* Target max\\_length: 200\n* no\\_repeat\\_ngram\\_size: 4\n* num\\_beams: 5\n\n\n\nEvaluation script: URL\n\n\nFlags: --language ru --tokenize-after --lower" ]
[ 61, 227 ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #causal-lm #summarization #ru #dataset-IlyaGusev/gazeta #license-apache-2.0 #autotrain_compatible #text-generation-inference #region-us \n#### How to use\n\n\nColab: link\n\n\nTraining data\n-------------\n\n\n* Dataset: Gazeta\n\n\nTraining procedure\n------------------\n\n\n* Training script: URL\n* Config: gpt\\_training\\_config.json\n\n\nEval results\n------------\n\n\n* Train dataset: Gazeta v1 train\n* Test dataset: Gazeta v1 test\n* Source max\\_length: 600\n* Target max\\_length: 200\n* no\\_repeat\\_ngram\\_size: 4\n* num\\_beams: 5\n\n\n\n* Train dataset: Gazeta v1 train\n* Test dataset: Gazeta v2 test\n* Source max\\_length: 600\n* Target max\\_length: 200\n* no\\_repeat\\_ngram\\_size: 4\n* num\\_beams: 5\n\n\n\nEvaluation script: URL\n\n\nFlags: --language ru --tokenize-after --lower" ]
summarization
transformers
# RuT5TelegramHeadlines ## Model description Based on [rut5-base](https://huggingface.co/cointegrated/rut5-base) model ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, T5ForConditionalGeneration model_name = "IlyaGusev/rut5_base_headline_gen_telegram" tokenizer = AutoTokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) article_text = "..." input_ids = tokenizer( [article_text], max_length=600, add_special_tokens=True, padding="max_length", truncation=True, return_tensors="pt" )["input_ids"] output_ids = model.generate( input_ids=input_ids )[0] headline = tokenizer.decode(output_ids, skip_special_tokens=True) print(headline) ``` ## Training data - Dataset: [ru_all_split.tar.gz](https://www.dropbox.com/s/ykqk49a8avlmnaf/ru_all_split.tar.gz) ## Training procedure - Training script: [train.py](https://github.com/IlyaGusev/summarus/blob/master/external/hf_scripts/train.py)
{"language": ["ru"], "license": "apache-2.0", "tags": ["summarization"], "widget": [{"text": "\u041a\u043e\u043c\u0438\u0441\u0441\u0438\u044f \u0421\u043e\u0432\u0435\u0442\u0430 \u0424\u0435\u0434\u0435\u0440\u0430\u0446\u0438\u0438 \u043f\u043e \u0438\u043d\u0444\u043e\u0440\u043c\u0430\u0446\u0438\u043e\u043d\u043d\u043e\u0439 \u043f\u043e\u043b\u0438\u0442\u0438\u043a\u0435 \u0438 \u0432\u0437\u0430\u0438\u043c\u043e\u0434\u0435\u0439\u0441\u0442\u0432\u0438\u044e \u0441\u043e \u0421\u041c\u0418 \u0441\u043e\u0432\u043c\u0435\u0441\u0442\u043d\u043e \u0441 \u0437\u0430\u0438\u043d\u0442\u0435\u0440\u0435\u0441\u043e\u0432\u0430\u043d\u043d\u044b\u043c\u0438 \u0432\u0435\u0434\u043e\u043c\u0441\u0442\u0432\u0430\u043c\u0438 \u0434\u0443\u043c\u0430\u0435\u0442 \u043d\u0430\u0434 \u0440\u0430\u0437\u0440\u0430\u0431\u043e\u0442\u043a\u043e\u0439 \u043d\u0430\u0446\u0438\u043e\u043d\u0430\u043b\u044c\u043d\u043e\u0433\u043e \u0437\u0430\u043a\u043e\u043d\u043e\u0434\u0430\u0442\u0435\u043b\u044c\u0441\u0442\u0432\u0430 \u0432 \u043e\u0431\u043b\u0430\u0441\u0442\u0438 \u043d\u0430\u043b\u043e\u0433\u043e\u043e\u0431\u043b\u043e\u0436\u0435\u043d\u0438\u044f \u0433\u043b\u043e\u0431\u0430\u043b\u044c\u043d\u044b\u0445 \u0438\u043d\u0442\u0435\u0440\u043d\u0435\u0442-\u043a\u043e\u043c\u043f\u0430\u043d\u0438\u0439, \u0442\u0430\u043a\u0438\u0445 \u043a\u0430\u043a Google \u0438 Facebook. \u041e\u0431 \u044d\u0442\u043e\u043c \u0441\u043e\u043e\u0431\u0449\u0438\u043b \u0422\u0410\u0421\u0421 \u043f\u0440\u0435\u0434\u0441\u0435\u0434\u0430\u0442\u0435\u043b\u044c \u043a\u043e\u043c\u0438\u0441\u0441\u0438\u0438 \u0410\u043b\u0435\u043a\u0441\u0435\u0439 \u041f\u0443\u0448\u043a\u043e\u0432. \u00ab\u0412 \u043d\u0430\u0441\u0442\u043e\u044f\u0449\u0435\u0435 \u0432\u0440\u0435\u043c\u044f \u043f\u043e \u043b\u0438\u043d\u0438\u0438 \u041e\u042d\u0421\u0420 [\u041e\u0440\u0433\u0430\u043d\u0438\u0437\u0430\u0446\u0438\u044f \u044d\u043a\u043e\u043d\u043e\u043c\u0438\u0447\u0435\u0441\u043a\u043e\u0433\u043e \u0441\u043e\u0442\u0440\u0443\u0434\u043d\u0438\u0447\u0435\u0441\u0442\u0432\u0430 \u0438 \u0440\u0430\u0437\u0432\u0438\u0442\u0438\u044f] \u0432\u0435\u0434\u0435\u0442\u0441\u044f \u0440\u0430\u0437\u0440\u0430\u0431\u043e\u0442\u043a\u0430 \u043c\u0435\u0436\u0434\u0443\u043d\u0430\u0440\u043e\u0434\u043d\u043e\u0439 \u043a\u043e\u043d\u0432\u0435\u043d\u0446\u0438\u0438, \u043e\u0434\u043d\u0430\u043a\u043e \u0440\u0430\u0431\u043e\u0442\u0430 \u043d\u0430\u0434 \u043d\u0435\u0439 \u0435\u0449\u0435 \u043d\u0435 \u0437\u0430\u0432\u0435\u0440\u0448\u0435\u043d\u0430. \u0412 \u044d\u0442\u0438\u0445 \u0443\u0441\u043b\u043e\u0432\u0438\u044f\u0445 \u043c\u044b \u0438\u0441\u0445\u043e\u0434\u0438\u043c \u0438\u0437 \u0442\u043e\u0433\u043e, \u0447\u0442\u043e \u0441\u0430\u043c\u0430\u044f \u0440\u0430\u0437\u0443\u043c\u043d\u0430\u044f \u043f\u043e\u0437\u0438\u0446\u0438\u044f - \u043d\u0430\u0447\u0430\u0442\u044c \u0440\u0430\u0437\u0440\u0430\u0431\u043e\u0442\u043a\u0443 \u043d\u0430\u0446\u0438\u043e\u043d\u0430\u043b\u044c\u043d\u043e\u0433\u043e \u0437\u0430\u043a\u043e\u043d\u043e\u0434\u0430\u0442\u0435\u043b\u044c\u0441\u0442\u0432\u0430, \u043d\u0435 \u0434\u043e\u0436\u0438\u0434\u0430\u044f\u0441\u044c \u043a\u043e\u043d\u0432\u0435\u043d\u0446\u0438\u0438\u00bb, \u2014 \u043f\u043e\u044f\u0441\u043d\u0438\u043b \u0441\u0435\u043d\u0430\u0442\u043e\u0440. \u041f\u0443\u0448\u043a\u043e\u0432 \u043e\u0442\u043c\u0435\u0442\u0438\u043b, \u0447\u0442\u043e \u043f\u043e \u0442\u0430\u043a\u043e\u043c\u0443 \u043f\u0443\u0442\u0438 \u043f\u043e\u0448\u043b\u0438 \u0435\u0449\u0435 \u043d\u0435\u0441\u043a\u043e\u043b\u044c\u043a\u043e \u0441\u0442\u0440\u0430\u043d, \u0432 \u0447\u0438\u0441\u043b\u0435 \u043a\u043e\u0442\u043e\u0440\u044b\u0445 \u0424\u0440\u0430\u043d\u0446\u0438\u044f, \u0410\u0432\u0441\u0442\u0440\u0430\u043b\u0438\u044f \u0438 \u0422\u0443\u0440\u0446\u0438\u044f. \u041f\u043e \u0435\u0433\u043e \u0441\u043b\u043e\u0432\u0430\u043c, \u0432 \u0420\u043e\u0441\u0441\u0438\u0438 \u0432\u0430\u0436\u043d\u043e \u0437\u0430\u0434\u0435\u0439\u0441\u0442\u0432\u043e\u0432\u0430\u0442\u044c \u0432 \u044d\u0442\u043e\u0439 \u0440\u0430\u0431\u043e\u0442\u0435 \u041c\u0438\u043d\u0444\u0438\u043d, \u0424\u041d\u0421, \u041c\u0418\u0414 \u0420\u0424 \u0438 \u0420\u043e\u0441\u043a\u043e\u043c\u043d\u0430\u0434\u0437\u043e\u0440. \u00ab\u0418\u043d\u0442\u0435\u0440\u043d\u0435\u0442-\u043f\u043b\u0430\u0442\u0444\u043e\u0440\u043c\u044b \u043d\u0435 \u0444\u0438\u0433\u0443\u0440\u0438\u0440\u0443\u044e\u0442 \u0443 \u043d\u0430\u0441 \u0441\u0435\u0439\u0447\u0430\u0441 \u043a\u0430\u043a \u043e\u0442\u0434\u0435\u043b\u044c\u043d\u044b\u0439 \u043e\u0431\u044a\u0435\u043a\u0442 \u043d\u0430\u043b\u043e\u0433\u043e\u043e\u0431\u043b\u043e\u0436\u0435\u043d\u0438\u044f. \u041a\u043e\u0433\u0434\u0430 \u043e\u043d\u0438 \u043e\u0442\u043a\u0440\u043e\u044e\u0442 \u0432 \u0420\u043e\u0441\u0441\u0438\u0438 \u0441\u0432\u043e\u0438 \u043f\u0440\u0435\u0434\u0441\u0442\u0430\u0432\u0438\u0442\u0435\u043b\u044c\u0441\u0442\u0432\u0430 \u0432 \u0440\u0430\u043c\u043a\u0430\u0445 \u0437\u0430\u043a\u043e\u043d\u0430 \u043e \u00ab\u043f\u0440\u0438\u0437\u0435\u043c\u043b\u0435\u043d\u0438\u0438\u00bb, \u0432\u043e\u0437\u043d\u0438\u043a\u043d\u0435\u0442 \u0432\u043e\u043f\u0440\u043e\u0441: \u043a\u0430\u043a \u0438\u0445 \u043e\u0444\u0438\u0446\u0438\u0430\u043b\u044c\u043d\u043e\u0435 \u043f\u0440\u0438\u0441\u0443\u0442\u0441\u0442\u0432\u0438\u0435 \u043d\u0430 \u0442\u0435\u0440\u0440\u0438\u0442\u043e\u0440\u0438\u0438 \u0420\u043e\u0441\u0441\u0438\u0438, \u043a\u043e\u0442\u043e\u0440\u043e\u0433\u043e \u0441\u0435\u0439\u0447\u0430\u0441 \u043d\u0435\u0442, \u0431\u0443\u0434\u0435\u0442 \u0441\u043e\u043e\u0442\u043d\u043e\u0441\u0438\u0442\u044c\u0441\u044f \u0441 \u043d\u0430\u0448\u0438\u043c \u043d\u0430\u043b\u043e\u0433\u043e\u0432\u044b\u043c \u0440\u0435\u0436\u0438\u043c\u043e\u043c. \u041c\u044b \u0441\u0435\u0439\u0447\u0430\u0441 \u043f\u0440\u043e\u0434\u0443\u043c\u044b\u0432\u0430\u0435\u043c, \u043a\u0430\u043a \u0443\u0441\u0442\u0430\u043d\u043e\u0432\u0438\u0442\u044c \u044d\u0442\u0443 \u0432\u0437\u0430\u0438\u043c\u043e\u0441\u0432\u044f\u0437\u044c\u00bb, \u2014 \u0441\u043a\u0430\u0437\u0430\u043b \u041f\u0443\u0448\u043a\u043e\u0432, \u0434\u043e\u0431\u0430\u0432\u043b\u044f\u044f, \u0447\u0442\u043e \u0432\u043e\u043f\u0440\u043e\u0441 \u0432\u043d\u0435\u0441\u0435\u043d\u0438\u044f \u0438\u0437\u043c\u0435\u043d\u0435\u043d\u0438\u0439 \u0432 \u0440\u043e\u0441\u0441\u0438\u0439\u0441\u043a\u043e\u0435 \u0437\u0430\u043a\u043e\u043d\u043e\u0434\u0430\u0442\u0435\u043b\u044c\u0441\u0442\u0432\u043e \u0432 \u0447\u0430\u0441\u0442\u0438 \u043d\u0430\u043b\u043e\u0433\u043e\u043e\u0431\u043b\u043e\u0436\u0435\u043d\u0438\u044f \u043a\u0440\u0443\u043f\u043d\u044b\u0445 IT-\u043a\u043e\u043c\u043f\u0430\u043d\u0438\u0439 \u043d\u0430\u0445\u043e\u0434\u0438\u0442\u0441\u044f \u00ab\u043d\u0430 \u043f\u0435\u0440\u0432\u043e\u0439 \u0441\u0442\u0430\u0434\u0438\u0438 \u0438\u0437\u0443\u0447\u0435\u043d\u0438\u044f\u00bb. \u0421\u0430\u043c \u0441\u0435\u043d\u0430\u0442\u043e\u0440 \u0432\u044b\u0441\u0442\u0443\u043f\u0430\u0435\u0442 \u0437\u0430 \u0432\u0432\u0435\u0434\u0435\u043d\u0438\u0435 \u043f\u0440\u043e\u0433\u0440\u0435\u0441\u0441\u0438\u0432\u043d\u043e\u0439 \u0441\u0442\u0430\u0432\u043a\u0438 \u043d\u0430\u043b\u043e\u0433\u0430 \u0432 \u0437\u0430\u0432\u0438\u0441\u0438\u043c\u043e\u0441\u0442\u0438 \u043e\u0442 \u043f\u0440\u0438\u0431\u044b\u043b\u0438 IT-\u043a\u043e\u043c\u043f\u0430\u043d\u0438\u0439 \u043d\u0430 \u0442\u0435\u0440\u0440\u0438\u0442\u043e\u0440\u0438\u0438 \u0441\u0442\u0440\u0430\u043d\u044b. \u041f\u0440\u0438 \u044d\u0442\u043e\u043c, \u043f\u043e\u0434\u0447\u0435\u0440\u043a\u043d\u0443\u043b \u043e\u043d, \u043e\u0434\u043d\u0430 \u0438\u0437 \u0437\u0430\u0434\u0430\u0447 \u043d\u0430\u0446\u0438\u043e\u043d\u0430\u043b\u044c\u043d\u043e\u0439 \u0441\u0438\u0441\u0442\u0435\u043c\u044b \u043d\u0430\u043b\u043e\u0433\u043e\u043e\u0431\u043b\u043e\u0436\u0435\u043d\u0438\u044f \u0431\u0443\u0434\u0435\u0442 \u0437\u0430\u043a\u043b\u044e\u0447\u0430\u0442\u044c\u0441\u044f \u0432 \u043f\u043e\u0434\u0441\u0447\u0435\u0442\u0435 \u043d\u0430\u043b\u043e\u0433\u043e\u043e\u0431\u043b\u0430\u0433\u0430\u0435\u043c\u043e\u0439 \u0431\u0430\u0437\u044b. \u0421\u0435\u0439\u0447\u0430\u0441 \u043a\u0440\u0443\u043f\u043d\u044b\u0435 \u0418\u0422-\u043a\u043e\u043c\u043f\u0430\u043d\u0438\u0438 \u0441\u0430\u043c\u043e\u0441\u0442\u043e\u044f\u0442\u0435\u043b\u044c\u043d\u043e \u043e\u0442\u0447\u0438\u0442\u044b\u0432\u0430\u044e\u0442\u0441\u044f \u043e \u0441\u0432\u043e\u0435\u0439 \u043f\u0440\u0438\u0431\u044b\u043b\u0438. \u041e\u0434\u043d\u0430\u043a\u043e \u0420\u043e\u0441\u0441\u0438\u0438 \u043d\u0443\u0436\u043d\u0430 \u0441\u043e\u0431\u0441\u0442\u0432\u0435\u043d\u043d\u0430\u044f \u0441\u0438\u0441\u0442\u0435\u043c\u0430 \u043f\u043e\u0434\u0441\u0447\u0435\u0442\u0430 \u0438\u0445 \u0434\u043e\u0445\u043e\u0434\u043e\u0432, \u043a\u043e\u0442\u043e\u0440\u0430\u044f \u043f\u043e\u0437\u0432\u043e\u043b\u0438\u0442 \u043e\u043f\u0440\u0435\u0434\u0435\u043b\u0438\u0442\u044c \u0438\u0445 \u00ab\u0440\u0435\u0430\u043b\u044c\u043d\u0443\u044e \u043d\u0430\u043b\u043e\u0433\u043e\u043e\u0431\u043b\u0430\u0433\u0430\u0435\u043c\u0443\u044e \u0431\u0430\u0437\u0443\u00bb, \u0441\u0447\u0438\u0442\u0430\u0435\u0442 \u041f\u0443\u0448\u043a\u043e\u0432. (https://www.gazeta.ru/tech/news/2021/12/17/n_17024239.shtml)", "example_title": "\u041d\u043e\u0432\u043e\u0441\u0442\u044c \u043f\u0440\u043e \u043d\u0430\u043b\u043e\u0433\u0438 \u0432 IT"}, {"text": "\u041f\u0435\u0440\u0432\u0443\u044e \u043c\u043d\u043e\u0433\u043e\u043d\u043e\u0436\u043a\u0443, \u0443 \u043a\u043e\u0442\u043e\u0440\u043e\u0439 \u0431\u043e\u043b\u0435\u0435 \u0442\u044b\u0441\u044f\u0447\u0438 \u043d\u043e\u0433, \u043e\u0431\u043d\u0430\u0440\u0443\u0436\u0438\u043b\u0438 \u0432 \u0430\u0432\u0441\u0442\u0440\u0430\u043b\u0438\u0439\u0441\u043a\u0438\u0445 \u043f\u0435\u0449\u0435\u0440\u0430\u0445 \u0431\u0438\u043e\u043b\u043e\u0433\u0438, \u0438\u0437\u0443\u0447\u0430\u0432\u0448\u0438\u0435 \u0442\u0430\u043c \u043f\u043e\u0434\u0437\u0435\u043c\u043d\u044b\u0435 \u0432\u043e\u0434\u044b. \u041f\u0440\u0435\u0434\u044b\u0434\u0443\u0449\u0435\u0439 \u0440\u0435\u043a\u043e\u0440\u0434\u0441\u043c\u0435\u043d\u043a\u043e\u0439 \u043f\u043e \u043a\u043e\u043b\u0438\u0447\u0435\u0441\u0442\u0432\u0443 \u043d\u043e\u0433 \u0431\u044b\u043b\u0430 700-\u043d\u043e\u0433\u0430\u044f \u043c\u043d\u043e\u0433\u043e\u043d\u043e\u0436\u043a\u0430. \u041d\u043e\u0432\u044b\u0439 \u0432\u0438\u0434 \u0438\u043c\u0435\u0435\u0442 \u0434\u043b\u0438\u043d\u043d\u043e\u0435 \u0442\u043e\u043d\u043a\u043e\u0435 \u0442\u0435\u043b\u043e, \u043f\u043e\u0445\u043e\u0436\u0435\u0435 \u043d\u0430 \u043d\u0438\u0442\u044c, \u0438 \u0431\u043e\u043b\u044c\u0448\u043e\u0435 \u043a\u043e\u043b\u0438\u0447\u0435\u0441\u0442\u0432\u043e \u043a\u043e\u043d\u0435\u0447\u043d\u043e\u0441\u0442\u0435\u0439, \u043f\u043e-\u0432\u0438\u0434\u0438\u043c\u043e\u043c\u0443, \u0434\u0430\u0435\u0442 \u043f\u0440\u0435\u0438\u043c\u0443\u0449\u0435\u0441\u0442\u0432\u0430 \u0434\u043b\u044f \u0431\u044b\u0441\u0442\u0440\u043e\u0433\u043e \u043f\u0435\u0440\u0435\u043c\u0435\u0449\u0435\u043d\u0438\u044f \u0438 \u043f\u0440\u043e\u043d\u0438\u043a\u043d\u043e\u0432\u0435\u043d\u0438\u044f \u0432 \u0442\u0440\u0443\u0434\u043d\u043e\u0434\u043e\u0441\u0442\u0443\u043f\u043d\u044b\u0435 \u043c\u0435\u0441\u0442\u0430 \u2014 \u0443\u0447\u0435\u043d\u044b\u0435 \u043f\u043e\u043b\u0430\u0433\u0430\u044e\u0442, \u0442\u0430\u043a\u0430\u044f \u043c\u043d\u043e\u0433\u043e\u043d\u043e\u0436\u043a\u0430 \u043c\u043e\u0436\u0435\u0442 \u0441\u043f\u043e\u043a\u043e\u0439\u043d\u043e \u043f\u0435\u0440\u0435\u043c\u0435\u0449\u0430\u0442\u044c\u0441\u044f \u043f\u043e \u0442\u0440\u0435\u0449\u0438\u043d\u0430\u043c \u0432 \u043a\u0430\u043c\u043d\u044f\u0445. \u0410\u0432\u0441\u0442\u0440\u0430\u043b\u0438\u044f \u0438\u0437\u0432\u0435\u0441\u0442\u043d\u0430 \u0441\u0432\u043e\u0438\u043c\u0438 \u043e\u0433\u0440\u043e\u043c\u043d\u044b\u043c\u0438 \u0438 \u0436\u0443\u0442\u043a\u043e\u0432\u0430\u0442\u044b\u043c\u0438 \u0436\u0438\u0432\u043e\u0442\u043d\u044b\u043c\u0438 \u0432\u0440\u043e\u0434\u0435 25-\u0441\u0430\u043d\u0442\u0438\u043c\u0435\u0442\u0440\u043e\u0432\u044b\u0445 \u043f\u0430\u0443\u043a\u043e\u0432. \u0422\u0435\u043f\u0435\u0440\u044c \u0441\u043f\u0438\u0441\u043e\u043a \u043f\u0443\u0433\u0430\u044e\u0449\u0438\u0445 \u0447\u043b\u0435\u043d\u0438\u0441\u0442\u043e\u043d\u043e\u0433\u0438\u0445 \u043f\u043e\u043f\u043e\u043b\u043d\u0438\u043b\u0441\u044f \u0441\u0430\u043c\u043e\u0439 \u00ab\u043c\u043d\u043e\u0433\u043e\u043d\u043e\u0433\u043e\u0439\u00bb \u0432 \u043c\u0438\u0440\u0435 \u043c\u043d\u043e\u0433\u043e\u043d\u043e\u0436\u043a\u043e\u0439, \u0443 \u043a\u043e\u0442\u043e\u0440\u043e\u0439 \u0431\u043e\u043b\u0435\u0435 \u0442\u044b\u0441\u044f\u0447\u0438 \u043d\u043e\u0433. \u041d\u0435\u043e\u0431\u044b\u0447\u043d\u043e\u0435 \u0436\u0438\u0432\u043e\u0442\u043d\u043e\u0435 \u043e\u0431\u043d\u0430\u0440\u0443\u0436\u0438\u043b\u0430 \u0433\u0440\u0443\u043f\u043f\u0430 \u0438\u0441\u0441\u043b\u0435\u0434\u043e\u0432\u0430\u0442\u0435\u043b\u0435\u0439 \u0438\u0437 \u0410\u0432\u0441\u0442\u0440\u0430\u043b\u0438\u0438 \u0438 \u0421\u0428\u0410 \u0432 \u043f\u0435\u0449\u0435\u0440\u0430\u0445 \u043d\u0430 \u0437\u0430\u043f\u0430\u0434\u0435 \u0441\u0442\u0440\u0430\u043d\u044b. \u041f\u043e\u0434\u0440\u043e\u0431\u043d\u0435\u0435 \u043c\u043d\u043e\u0433\u043e\u043d\u043e\u0436\u043a\u0443 \u0443\u0447\u0435\u043d\u044b\u0435 \u043e\u043f\u0438\u0441\u0430\u043b\u0438 \u0432 \u0441\u0442\u0430\u0442\u044c\u0435 \u0432 \u0436\u0443\u0440\u043d\u0430\u043b\u0435 Scientific Reports. \u0418\u0441\u0441\u043b\u0435\u0434\u043e\u0432\u0430\u0442\u0435\u043b\u0438 \u0437\u0430\u043d\u0438\u043c\u0430\u043b\u0438\u0441\u044c \u043e\u0446\u0435\u043d\u043a\u043e\u0439 \u0432\u043e\u0437\u0434\u0435\u0439\u0441\u0442\u0432\u0438\u044f \u043f\u043e\u0434\u0437\u0435\u043c\u043d\u044b\u0445 \u0432\u043e\u0434 \u043d\u0430 \u043e\u043a\u0440\u0443\u0436\u0430\u044e\u0449\u0443\u044e \u0441\u0440\u0435\u0434\u0443 \u0432 \u0437\u043e\u043d\u0435 \u0434\u043e\u0431\u044b\u0447\u0438 \u043f\u043e\u043b\u0435\u0437\u043d\u044b\u0445 \u0438\u0441\u043a\u043e\u043f\u0430\u0435\u043c\u044b\u0445 \u043d\u0430 \u0437\u0430\u043f\u0430\u0434\u0435 \u0441\u0442\u0440\u0430\u043d\u044b, \u043a\u043e\u0433\u0434\u0430 \u043d\u0430\u0442\u043a\u043d\u0443\u043b\u0438\u0441\u044c \u043d\u0430 \u043d\u043e\u0432\u044b\u0439 \u0432\u0438\u0434 \u043c\u043d\u043e\u0433\u043e\u043d\u043e\u0436\u0435\u043a. \u0412 \u043e\u0442\u043b\u0438\u0447\u0438\u0435 \u043e\u0442 \u0431\u043e\u043b\u044c\u0448\u0438\u043d\u0441\u0442\u0432\u0430 \u0441\u043e\u0440\u043e\u0434\u0438\u0447\u0435\u0439, \u0436\u0438\u0432\u0443\u0449\u0438\u0445 \u043d\u0430 \u043f\u043e\u0432\u0435\u0440\u0445\u043d\u043e\u0441\u0442\u0438, \u044d\u0442\u0438 \u043c\u043d\u043e\u0433\u043e\u043d\u043e\u0436\u043a\u0438 \u043e\u0431\u0438\u0442\u0430\u043b\u0438 \u0432 \u043f\u0435\u0449\u0435\u0440\u0430\u0445 \u043d\u0430 \u0433\u043b\u0443\u0431\u0438\u043d\u0435 \u0434\u043e 60 \u043c\u0435\u0442\u0440\u043e\u0432. \u041d\u043e\u0432\u044b\u0439 \u0432\u0438\u0434 \u0438\u0441\u0441\u043b\u0435\u0434\u043e\u0432\u0430\u0442\u0435\u043b\u0438 \u043d\u0430\u0437\u0432\u0430\u043b\u0438 Eumillipes persephone, \u0432 \u0447\u0435\u0441\u0442\u044c \u041f\u0435\u0440\u0441\u0435\u0444\u043e\u043d\u044b \u2014 \u0434\u0440\u0435\u0432\u043d\u0435\u0433\u0440\u0435\u0447\u0435\u0441\u043a\u043e\u0439 \u0431\u043e\u0433\u0438\u043d\u0438 \u043f\u043e\u0434\u0437\u0435\u043c\u043d\u043e\u0433\u043e \u043c\u0438\u0440\u0430. \u0423 \u043c\u043d\u043e\u0433\u043e\u043d\u043e\u0436\u043a\u0438 \u043e\u043a\u0430\u0437\u0430\u043b\u043e\u0441\u044c 1306 \u043d\u043e\u0433 \u2014 \u0431\u043e\u043b\u044c\u0448\u0435, \u0447\u0435\u043c \u0443 \u043b\u044e\u0431\u043e\u0433\u043e \u0434\u0440\u0443\u0433\u043e\u0433\u043e \u0438\u0437\u0432\u0435\u0441\u0442\u043d\u043e\u0433\u043e \u0432\u0438\u0434\u0430. \u041f\u0440\u0435\u0434\u044b\u0434\u0443\u0449\u0435\u0439 \u0440\u0435\u043a\u043e\u0440\u0434\u0441\u043c\u0435\u043d\u043a\u043e\u0439 \u0431\u044b\u043b\u0430 \u043a\u0430\u043b\u0438\u0444\u043e\u0440\u043d\u0438\u0439\u0441\u043a\u0430\u044f Illacme plenipes, \u0443 \u043a\u043e\u0442\u043e\u0440\u043e\u0439 \u043d\u0430\u0441\u0447\u0438\u0442\u044b\u0432\u0430\u043b\u043e\u0441\u044c \u0434\u043e 750 \u043d\u043e\u0433. \u00ab\u042d\u0442\u0438 \u0436\u0438\u0432\u043e\u0442\u043d\u044b\u0435 \u0431\u044b\u043b\u0438 \u043d\u0430\u0441\u0442\u043e\u043b\u044c\u043a\u043e \u0443\u043d\u0438\u043a\u0430\u043b\u044c\u043d\u044b, \u2014 \u0433\u043e\u0432\u043e\u0440\u0438\u0442 \u0431\u0438\u043e\u043b\u043e\u0433 \u0411\u0440\u0443\u043d\u043e \u0411\u0443\u0437\u0430\u0442\u0442\u043e. \u2014 \u041a\u0430\u043a \u0442\u043e\u043b\u044c\u043a\u043e \u044f \u043f\u043e\u043d\u044f\u043b, \u043a\u0430\u043a\u043e\u0439 \u0434\u043b\u0438\u043d\u044b \u043e\u043d\u0438 \u0431\u044b\u043b\u0438... \u0421\u0442\u0430\u043b\u043e \u044f\u0441\u043d\u043e, \u0447\u0442\u043e \u044d\u0442\u043e \u0447\u0442\u043e-\u0442\u043e \u0441\u043e\u0432\u0435\u0440\u0448\u0435\u043d\u043d\u043e \u043d\u043e\u0432\u043e\u0435\u00bb. \u0423 \u0415. persephone \u043d\u0438\u0442\u0435\u0432\u0438\u0434\u043d\u043e\u0435 \u0442\u0435\u043b\u043e \u0434\u043b\u0438\u043d\u043e\u0439 \u043e\u043a\u043e\u043b\u043e 9,5 \u0441\u043c \u0438 \u0448\u0438\u0440\u0438\u043d\u043e\u0439 \u0432\u0441\u0435\u0433\u043e \u043c\u0438\u043b\u043b\u0438\u043c\u0435\u0442\u0440, \u0441\u043e\u0441\u0442\u043e\u044f\u0449\u0435\u0435 \u0438\u0437 330 \u0441\u0435\u0433\u043c\u0435\u043d\u0442\u043e\u0432, \u043a\u043e\u0440\u043e\u0442\u043a\u0438\u0435 \u043d\u043e\u0433\u0438 \u0438 \u043a\u043e\u043d\u0443\u0441\u043e\u043e\u0431\u0440\u0430\u0437\u043d\u0430\u044f \u0433\u043e\u043b\u043e\u0432\u0430. \u041a\u0430\u043a \u0438 \u0434\u0440\u0443\u0433\u0438\u0435 \u0436\u0438\u0432\u043e\u0442\u043d\u044b\u0435, \u0436\u0438\u0432\u0443\u0449\u0438\u0435 \u0432 \u043f\u043e\u0441\u0442\u043e\u044f\u043d\u043d\u043e\u0439 \u0442\u0435\u043c\u043d\u043e\u0442\u0435, \u044d\u0442\u0438 \u043c\u043d\u043e\u0433\u043e\u043d\u043e\u0436\u043a\u0438 \u0431\u043b\u0435\u0434\u043d\u044b \u0438 \u0441\u043b\u0435\u043f\u044b. \u042d\u043d\u0442\u043e\u043c\u043e\u043b\u043e\u0433 \u041f\u043e\u043b \u041c\u0430\u0440\u0435\u043a \u0441\u0440\u0430\u0432\u043d\u0438\u0432\u0430\u0435\u0442 \u0435\u0435 \u0441 \u0431\u0435\u043b\u043e\u0439 \u043d\u0438\u0442\u044c\u044e, \u0432\u044b\u0434\u0435\u0440\u043d\u0443\u0442\u043e\u0439 \u0438\u0437 \u0440\u0443\u0431\u0430\u0448\u043a\u0438. \u0427\u0442\u043e\u0431\u044b \u043f\u043e\u0441\u0447\u0438\u0442\u0430\u0442\u044c \u043a\u043e\u043b\u0438\u0447\u0435\u0441\u0442\u0432\u043e \u043d\u043e\u0433, \u0443\u0447\u0435\u043d\u044b\u043c \u043f\u0440\u0438\u0448\u043b\u043e\u0441\u044c \u0441\u043d\u0430\u0447\u0430\u043b\u0430 \u0441\u043d\u044f\u0442\u044c \u043c\u043d\u043e\u0433\u043e\u043d\u043e\u0436\u043a\u0443 \u0432 \u0432\u044b\u0441\u043e\u043a\u043e\u043c \u0440\u0430\u0437\u0440\u0435\u0448\u0435\u043d\u0438\u0438, \u0430 \u0437\u0430\u0442\u0435\u043c \u0437\u0430\u043a\u0440\u0430\u0448\u0438\u0432\u0430\u0442\u044c \u043d\u0430 \u0444\u043e\u0442\u043e \u043a\u0430\u0436\u0434\u044b\u0439 \u0434\u0435\u0441\u044f\u0442\u043e\u043a \u043d\u043e\u0433 \u0434\u0440\u0443\u0433\u0438\u043c \u0446\u0432\u0435\u0442\u043e\u043c. (https://www.gazeta.ru/science/2021/12/17_a_14325355.shtml)", "example_title": "\u041d\u043e\u0432\u043e\u0441\u0442\u044c \u043f\u0440\u043e \u043c\u043d\u043e\u0433\u043e\u043d\u043e\u0436\u043a\u0443"}, {"text": "\u0412\u044b\u0441\u043e\u0442\u0430 \u0431\u0430\u0448\u043d\u0438 \u0441\u043e\u0441\u0442\u0430\u0432\u043b\u044f\u0435\u0442 324 \u043c\u0435\u0442\u0440\u0430 (1063 \u0444\u0443\u0442\u0430), \u043f\u0440\u0438\u043c\u0435\u0440\u043d\u043e \u0442\u0430\u043a\u0430\u044f \u0436\u0435 \u0432\u044b\u0441\u043e\u0442\u0430, \u043a\u0430\u043a \u0443 81-\u044d\u0442\u0430\u0436\u043d\u043e\u0433\u043e \u0437\u0434\u0430\u043d\u0438\u044f, \u0438 \u0441\u0430\u043c\u043e\u0435 \u0432\u044b\u0441\u043e\u043a\u043e\u0435 \u0441\u043e\u043e\u0440\u0443\u0436\u0435\u043d\u0438\u0435 \u0432 \u041f\u0430\u0440\u0438\u0436\u0435. \u0415\u0433\u043e \u043e\u0441\u043d\u043e\u0432\u0430\u043d\u0438\u0435 \u043a\u0432\u0430\u0434\u0440\u0430\u0442\u043d\u043e, \u0440\u0430\u0437\u043c\u0435\u0440\u043e\u043c 125 \u043c\u0435\u0442\u0440\u043e\u0432 (410 \u0444\u0443\u0442\u043e\u0432) \u0441 \u043b\u044e\u0431\u043e\u0439 \u0441\u0442\u043e\u0440\u043e\u043d\u044b. \u0412\u043e \u0432\u0440\u0435\u043c\u044f \u0441\u0442\u0440\u043e\u0438\u0442\u0435\u043b\u044c\u0441\u0442\u0432\u0430 \u042d\u0439\u0444\u0435\u043b\u0435\u0432\u0430 \u0431\u0430\u0448\u043d\u044f \u043f\u0440\u0435\u0432\u0437\u043e\u0448\u043b\u0430 \u043c\u043e\u043d\u0443\u043c\u0435\u043d\u0442 \u0412\u0430\u0448\u0438\u043d\u0433\u0442\u043e\u043d\u0430, \u0441\u0442\u0430\u0432 \u0441\u0430\u043c\u044b\u043c \u0432\u044b\u0441\u043e\u043a\u0438\u043c \u0438\u0441\u043a\u0443\u0441\u0441\u0442\u0432\u0435\u043d\u043d\u044b\u043c \u0441\u043e\u043e\u0440\u0443\u0436\u0435\u043d\u0438\u0435\u043c \u0432 \u043c\u0438\u0440\u0435, \u0438 \u044d\u0442\u043e\u0442 \u0442\u0438\u0442\u0443\u043b \u043e\u043d\u0430 \u0443\u0434\u0435\u0440\u0436\u0438\u0432\u0430\u043b\u0430 \u0432 \u0442\u0435\u0447\u0435\u043d\u0438\u0435 41 \u0433\u043e\u0434\u0430 \u0434\u043e \u0437\u0430\u0432\u0435\u0440\u0448\u0435\u043d\u0438\u044f \u0441\u0442\u0440\u043e\u0438\u0442\u0435\u043b\u044c\u0441\u0442\u0432\u043e \u0437\u0434\u0430\u043d\u0438\u044f \u041a\u0440\u0430\u0439\u0441\u043b\u0435\u0440 \u0432 \u041d\u044c\u044e-\u0419\u043e\u0440\u043a\u0435 \u0432 1930 \u0433\u043e\u0434\u0443. \u042d\u0442\u043e \u043f\u0435\u0440\u0432\u043e\u0435 \u0441\u043e\u043e\u0440\u0443\u0436\u0435\u043d\u0438\u0435 \u043a\u043e\u0442\u043e\u0440\u043e\u0435 \u0434\u043e\u0441\u0442\u0438\u0433\u043b\u043e \u0432\u044b\u0441\u043e\u0442\u044b 300 \u043c\u0435\u0442\u0440\u043e\u0432. \u0418\u0437-\u0437\u0430 \u0434\u043e\u0431\u0430\u0432\u043b\u0435\u043d\u0438\u044f \u0432\u0435\u0449\u0430\u0442\u0435\u043b\u044c\u043d\u043e\u0439 \u0430\u043d\u0442\u0435\u043d\u043d\u044b \u043d\u0430 \u0432\u0435\u0440\u0448\u0438\u043d\u0435 \u0431\u0430\u0448\u043d\u0438 \u0432 1957 \u0433\u043e\u0434\u0443 \u043e\u043d\u0430 \u0441\u0435\u0439\u0447\u0430\u0441 \u0432\u044b\u0448\u0435 \u0437\u0434\u0430\u043d\u0438\u044f \u041a\u0440\u0430\u0439\u0441\u043b\u0435\u0440 \u043d\u0430 5,2 \u043c\u0435\u0442\u0440\u0430 (17 \u0444\u0443\u0442\u043e\u0432). \u0417\u0430 \u0438\u0441\u043a\u043b\u044e\u0447\u0435\u043d\u0438\u0435\u043c \u043f\u0435\u0440\u0435\u0434\u0430\u0442\u0447\u0438\u043a\u043e\u0432, \u042d\u0439\u0444\u0435\u043b\u0435\u0432\u0430 \u0431\u0430\u0448\u043d\u044f \u044f\u0432\u043b\u044f\u0435\u0442\u0441\u044f \u0432\u0442\u043e\u0440\u043e\u0439 \u0441\u0430\u043c\u043e\u0439 \u0432\u044b\u0441\u043e\u043a\u043e\u0439 \u043e\u0442\u0434\u0435\u043b\u044c\u043d\u043e \u0441\u0442\u043e\u044f\u0449\u0435\u0439 \u0441\u0442\u0440\u0443\u043a\u0442\u0443\u0440\u043e\u0439 \u0432\u043e \u0424\u0440\u0430\u043d\u0446\u0438\u0438 \u043f\u043e\u0441\u043b\u0435 \u0432\u0438\u0430\u0434\u0443\u043a\u0430 \u041c\u0438\u0439\u043e.", "example_title": "\u0412\u0438\u043a\u0438\u043f\u0435\u0434\u0438\u044f"}]}
IlyaGusev/rut5_base_headline_gen_telegram
null
[ "transformers", "pytorch", "t5", "text2text-generation", "summarization", "ru", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "ru" ]
TAGS #transformers #pytorch #t5 #text2text-generation #summarization #ru #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# RuT5TelegramHeadlines ## Model description Based on rut5-base model ## Intended uses & limitations #### How to use ## Training data - Dataset: ru_all_split.URL ## Training procedure - Training script: URL
[ "# RuT5TelegramHeadlines", "## Model description\n\nBased on rut5-base model", "## Intended uses & limitations", "#### How to use", "## Training data\n\n- Dataset: ru_all_split.URL", "## Training procedure\n\n- Training script: URL" ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #summarization #ru #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# RuT5TelegramHeadlines", "## Model description\n\nBased on rut5-base model", "## Intended uses & limitations", "#### How to use", "## Training data\n\n- Dataset: ru_all_split.URL", "## Training procedure\n\n- Training script: URL" ]
[ 51, 9, 12, 6, 7, 16, 10 ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #summarization #ru #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# RuT5TelegramHeadlines## Model description\n\nBased on rut5-base model## Intended uses & limitations#### How to use## Training data\n\n- Dataset: ru_all_split.URL## Training procedure\n\n- Training script: URL" ]
summarization
transformers
# RuT5SumGazeta ## Model description This is the model for abstractive summarization for Russian based on [rut5-base](https://huggingface.co/cointegrated/rut5-base). ## Intended uses & limitations #### How to use Colab: [link](https://colab.research.google.com/drive/1re5E26ZIDUpAx1gOCZkbF3hcwjozmgG0) ```python from transformers import AutoTokenizer, T5ForConditionalGeneration model_name = "IlyaGusev/rut5_base_sum_gazeta" tokenizer = AutoTokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) article_text = "..." input_ids = tokenizer( [article_text], max_length=600, add_special_tokens=True, padding="max_length", truncation=True, return_tensors="pt" )["input_ids"] output_ids = model.generate( input_ids=input_ids, no_repeat_ngram_size=4 )[0] summary = tokenizer.decode(output_ids, skip_special_tokens=True) print(summary) ``` ## Training data - Dataset: [Gazeta](https://huggingface.co/datasets/IlyaGusev/gazeta) ## Training procedure - Training script: [train.py](https://github.com/IlyaGusev/summarus/blob/master/external/hf_scripts/train.py) - Config: [t5_training_config.json](https://github.com/IlyaGusev/summarus/blob/master/external/hf_scripts/configs/t5_training_config.json) ## Eval results * Train dataset: **Gazeta v1 train** * Test dataset: **Gazeta v1 test** * Source max_length: **600** * Target max_length: **200** * no_repeat_ngram_size: **4** * num_beams: **5** | Model | R-1-f | R-2-f | R-L-f | chrF | METEOR | BLEU | Avg char length | |:--------------------------|:------|:------|:------|:-------|:-------|:-----|:-----| | [mbart_ru_sum_gazeta](https://huggingface.co/IlyaGusev/mbart_ru_sum_gazeta) | **32.4** | 14.3 | 28.0 | 39.7 | **26.4** | 12.1 | 371 | | [rut5_base_sum_gazeta](https://huggingface.co/IlyaGusev/rut5_base_sum_gazeta) | 32.2 | **14.4** | **28.1** | **39.8** | 25.7 | **12.3** | 330 | | [rugpt3medium_sum_gazeta](https://huggingface.co/IlyaGusev/rugpt3medium_sum_gazeta) | 26.2 | 7.7 | 21.7 | 33.8 | 18.2 | 4.3 | 244 | * Train dataset: **Gazeta v1 train** * Test dataset: **Gazeta v2 test** * Source max_length: **600** * Target max_length: **200** * no_repeat_ngram_size: **4** * num_beams: **5** | Model | R-1-f | R-2-f | R-L-f | chrF | METEOR | BLEU | Avg char length | |:--------------------------|:------|:------|:------|:-------|:-------|:-----|:-----| | [mbart_ru_sum_gazeta](https://huggingface.co/IlyaGusev/mbart_ru_sum_gazeta) | **28.7** | **11.1** | 24.4 | **37.3** | **22.7** | **9.4** | 373 | | [rut5_base_sum_gazeta](https://huggingface.co/IlyaGusev/rut5_base_sum_gazeta) | 28.6 | **11.1** | **24.5** | 37.2 | 22.0 | **9.4** | 331 | | [rugpt3medium_sum_gazeta](https://huggingface.co/IlyaGusev/rugpt3medium_sum_gazeta) | 24.1 | 6.5 | 19.8 | 32.1 | 16.3 | 3.6 | 242 | Predicting all summaries: ```python import json import torch from transformers import AutoTokenizer, T5ForConditionalGeneration from datasets import load_dataset def gen_batch(inputs, batch_size): batch_start = 0 while batch_start < len(inputs): yield inputs[batch_start: batch_start + batch_size] batch_start += batch_size def predict( model_name, input_records, output_file, max_source_tokens_count=600, batch_size=8 ): device = "cuda" if torch.cuda.is_available() else "cpu" tokenizer = AutoTokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name).to(device) predictions = [] for batch in gen_batch(input_records, batch_size): texts = [r["text"] for r in batch] input_ids = tokenizer( texts, add_special_tokens=True, max_length=max_source_tokens_count, padding="max_length", truncation=True, return_tensors="pt" )["input_ids"].to(device) output_ids = model.generate( input_ids=input_ids, no_repeat_ngram_size=4 ) summaries = tokenizer.batch_decode(output_ids, skip_special_tokens=True) for s in summaries: print(s) predictions.extend(summaries) with open(output_file, "w") as w: for p in predictions: w.write(p.strip().replace("\n", " ") + "\n") gazeta_test = load_dataset('IlyaGusev/gazeta', script_version="v1.0")["test"] predict("IlyaGusev/rut5_base_sum_gazeta", list(gazeta_test), "t5_predictions.txt") ``` Evaluation script: [evaluate.py](https://github.com/IlyaGusev/summarus/blob/master/evaluate.py) Flags: --language ru --tokenize-after --lower
{"language": ["ru"], "license": ["apache-2.0"], "tags": ["summarization", "t5"], "datasets": ["IlyaGusev/gazeta"], "inference": {"parameters": {"no_repeat_ngram_size": 4}}, "widget": [{"text": "\u0412\u044b\u0441\u043e\u0442\u0430 \u0431\u0430\u0448\u043d\u0438 \u0441\u043e\u0441\u0442\u0430\u0432\u043b\u044f\u0435\u0442 324 \u043c\u0435\u0442\u0440\u0430 (1063 \u0444\u0443\u0442\u0430), \u043f\u0440\u0438\u043c\u0435\u0440\u043d\u043e \u0442\u0430\u043a\u0430\u044f \u0436\u0435 \u0432\u044b\u0441\u043e\u0442\u0430, \u043a\u0430\u043a \u0443 81-\u044d\u0442\u0430\u0436\u043d\u043e\u0433\u043e \u0437\u0434\u0430\u043d\u0438\u044f, \u0438 \u0441\u0430\u043c\u043e\u0435 \u0432\u044b\u0441\u043e\u043a\u043e\u0435 \u0441\u043e\u043e\u0440\u0443\u0436\u0435\u043d\u0438\u0435 \u0432 \u041f\u0430\u0440\u0438\u0436\u0435. \u0415\u0433\u043e \u043e\u0441\u043d\u043e\u0432\u0430\u043d\u0438\u0435 \u043a\u0432\u0430\u0434\u0440\u0430\u0442\u043d\u043e, \u0440\u0430\u0437\u043c\u0435\u0440\u043e\u043c 125 \u043c\u0435\u0442\u0440\u043e\u0432 (410 \u0444\u0443\u0442\u043e\u0432) \u0441 \u043b\u044e\u0431\u043e\u0439 \u0441\u0442\u043e\u0440\u043e\u043d\u044b. \u0412\u043e \u0432\u0440\u0435\u043c\u044f \u0441\u0442\u0440\u043e\u0438\u0442\u0435\u043b\u044c\u0441\u0442\u0432\u0430 \u042d\u0439\u0444\u0435\u043b\u0435\u0432\u0430 \u0431\u0430\u0448\u043d\u044f \u043f\u0440\u0435\u0432\u0437\u043e\u0448\u043b\u0430 \u043c\u043e\u043d\u0443\u043c\u0435\u043d\u0442 \u0412\u0430\u0448\u0438\u043d\u0433\u0442\u043e\u043d\u0430, \u0441\u0442\u0430\u0432 \u0441\u0430\u043c\u044b\u043c \u0432\u044b\u0441\u043e\u043a\u0438\u043c \u0438\u0441\u043a\u0443\u0441\u0441\u0442\u0432\u0435\u043d\u043d\u044b\u043c \u0441\u043e\u043e\u0440\u0443\u0436\u0435\u043d\u0438\u0435\u043c \u0432 \u043c\u0438\u0440\u0435, \u0438 \u044d\u0442\u043e\u0442 \u0442\u0438\u0442\u0443\u043b \u043e\u043d\u0430 \u0443\u0434\u0435\u0440\u0436\u0438\u0432\u0430\u043b\u0430 \u0432 \u0442\u0435\u0447\u0435\u043d\u0438\u0435 41 \u0433\u043e\u0434\u0430 \u0434\u043e \u0437\u0430\u0432\u0435\u0440\u0448\u0435\u043d\u0438\u044f \u0441\u0442\u0440\u043e\u0438\u0442\u0435\u043b\u044c\u0441\u0442\u0432\u043e \u0437\u0434\u0430\u043d\u0438\u044f \u041a\u0440\u0430\u0439\u0441\u043b\u0435\u0440 \u0432 \u041d\u044c\u044e-\u0419\u043e\u0440\u043a\u0435 \u0432 1930 \u0433\u043e\u0434\u0443. \u042d\u0442\u043e \u043f\u0435\u0440\u0432\u043e\u0435 \u0441\u043e\u043e\u0440\u0443\u0436\u0435\u043d\u0438\u0435 \u043a\u043e\u0442\u043e\u0440\u043e\u0435 \u0434\u043e\u0441\u0442\u0438\u0433\u043b\u043e \u0432\u044b\u0441\u043e\u0442\u044b 300 \u043c\u0435\u0442\u0440\u043e\u0432. \u0418\u0437-\u0437\u0430 \u0434\u043e\u0431\u0430\u0432\u043b\u0435\u043d\u0438\u044f \u0432\u0435\u0449\u0430\u0442\u0435\u043b\u044c\u043d\u043e\u0439 \u0430\u043d\u0442\u0435\u043d\u043d\u044b \u043d\u0430 \u0432\u0435\u0440\u0448\u0438\u043d\u0435 \u0431\u0430\u0448\u043d\u0438 \u0432 1957 \u0433\u043e\u0434\u0443 \u043e\u043d\u0430 \u0441\u0435\u0439\u0447\u0430\u0441 \u0432\u044b\u0448\u0435 \u0437\u0434\u0430\u043d\u0438\u044f \u041a\u0440\u0430\u0439\u0441\u043b\u0435\u0440 \u043d\u0430 5,2 \u043c\u0435\u0442\u0440\u0430 (17 \u0444\u0443\u0442\u043e\u0432). \u0417\u0430 \u0438\u0441\u043a\u043b\u044e\u0447\u0435\u043d\u0438\u0435\u043c \u043f\u0435\u0440\u0435\u0434\u0430\u0442\u0447\u0438\u043a\u043e\u0432, \u042d\u0439\u0444\u0435\u043b\u0435\u0432\u0430 \u0431\u0430\u0448\u043d\u044f \u044f\u0432\u043b\u044f\u0435\u0442\u0441\u044f \u0432\u0442\u043e\u0440\u043e\u0439 \u0441\u0430\u043c\u043e\u0439 \u0432\u044b\u0441\u043e\u043a\u043e\u0439 \u043e\u0442\u0434\u0435\u043b\u044c\u043d\u043e \u0441\u0442\u043e\u044f\u0449\u0435\u0439 \u0441\u0442\u0440\u0443\u043a\u0442\u0443\u0440\u043e\u0439 \u0432\u043e \u0424\u0440\u0430\u043d\u0446\u0438\u0438 \u043f\u043e\u0441\u043b\u0435 \u0432\u0438\u0430\u0434\u0443\u043a\u0430 \u041c\u0438\u0439\u043e.", "example_title": "\u0412\u0438\u043a\u0438\u043f\u0435\u0434\u0438\u044f"}, {"text": "\u0421 1 \u0441\u0435\u043d\u0442\u044f\u0431\u0440\u044f \u0432 \u0420\u043e\u0441\u0441\u0438\u0438 \u0432\u0441\u0442\u0443\u043f\u0430\u044e\u0442 \u0432 \u0441\u0438\u043b\u0443 \u043f\u043e\u043f\u0440\u0430\u0432\u043a\u0438 \u0432 \u0437\u0430\u043a\u043e\u043d \u00ab\u041e \u0431\u0430\u043d\u043a\u0440\u043e\u0442\u0441\u0442\u0432\u0435\u00bb \u2014 \u0442\u0435\u043f\u0435\u0440\u044c \u0434\u043e\u043b\u0436\u043d\u0438\u043a\u0438 \u0441\u043c\u043e\u0433\u0443\u0442 \u043e\u0441\u0432\u043e\u0431\u043e\u0436\u0434\u0430\u0442\u044c\u0441\u044f \u043e\u0442 \u043d\u0435\u043f\u043e\u0441\u0438\u043b\u044c\u043d\u044b\u0445 \u043e\u0431\u044f\u0437\u0430\u0442\u0435\u043b\u044c\u0441\u0442\u0432 \u0432\u043e \u0432\u043d\u0435\u0441\u0443\u0434\u0435\u0431\u043d\u043e\u043c \u043f\u043e\u0440\u044f\u0434\u043a\u0435, \u0435\u0441\u043b\u0438 \u0441\u0443\u043c\u043c\u0430 \u0437\u0430\u0434\u043e\u043b\u0436\u0435\u043d\u043d\u043e\u0441\u0442\u0438 \u0441\u043e\u0441\u0442\u0430\u0432\u043b\u044f\u0435\u0442 \u043d\u0435 \u043c\u0435\u043d\u0435\u0435 50 \u0442\u044b\u0441. \u0440\u0443\u0431\u043b\u0435\u0439 \u0438 \u043d\u0435 \u043f\u0440\u0435\u0432\u044b\u0448\u0430\u0435\u0442 500 \u0442\u044b\u0441. \u0440\u0443\u0431\u043b\u0435\u0439 \u0431\u0435\u0437 \u0443\u0447\u0435\u0442\u0430 \u0448\u0442\u0440\u0430\u0444\u043e\u0432, \u043f\u0435\u043d\u0438, \u043f\u0440\u043e\u0446\u0435\u043d\u0442\u043e\u0432 \u0437\u0430 \u043f\u0440\u043e\u0441\u0440\u043e\u0447\u043a\u0443 \u043f\u043b\u0430\u0442\u0435\u0436\u0430 \u0438 \u043f\u0440\u043e\u0447\u0438\u0445 \u0438\u043c\u0443\u0449\u0435\u0441\u0442\u0432\u0435\u043d\u043d\u044b\u0445 \u0438\u043b\u0438 \u0444\u0438\u043d\u0430\u043d\u0441\u043e\u0432\u044b\u0445 \u0441\u0430\u043d\u043a\u0446\u0438\u0439. \u0423 \u0444\u0438\u0437\u043b\u0438\u0446 \u0438 \u0438\u043d\u0434\u0438\u0432\u0438\u0434\u0443\u0430\u043b\u044c\u043d\u044b\u0445 \u043f\u0440\u0435\u0434\u043f\u0440\u0438\u043d\u0438\u043c\u0430\u0442\u0435\u043b\u0435\u0439 \u043f\u043e\u044f\u0432\u0438\u043b\u0430\u0441\u044c \u0432\u043e\u0437\u043c\u043e\u0436\u043d\u043e\u0441\u0442\u044c \u043f\u0440\u043e\u0439\u0442\u0438 \u043f\u0440\u043e\u0446\u0435\u0434\u0443\u0440\u0443 \u0431\u0430\u043d\u043a\u0440\u043e\u0442\u0441\u0442\u0432\u0430 \u0431\u0435\u0437 \u0443\u0447\u0430\u0441\u0442\u0438\u044f \u0441\u0443\u0434\u0430 \u0438 \u0444\u0438\u043d\u0430\u043d\u0441\u043e\u0432\u043e\u0433\u043e \u0443\u043f\u0440\u0430\u0432\u043b\u044f\u044e\u0449\u0435\u0433\u043e \u2014 \u0434\u043e\u0441\u0442\u0430\u0442\u043e\u0447\u043d\u043e \u043f\u043e\u0434\u0430\u0442\u044c \u0441\u043e\u043e\u0442\u0432\u0435\u0442\u0441\u0442\u0432\u0443\u044e\u0449\u0435\u0435 \u0437\u0430\u044f\u0432\u043b\u0435\u043d\u0438\u0435 \u0447\u0435\u0440\u0435\u0437 \u041c\u0424\u0426. \u0421\u0443\u043c\u043c\u0443 \u0437\u0430\u0434\u043e\u043b\u0436\u0435\u043d\u043d\u043e\u0441\u0442\u0438 \u0438 \u0441\u043f\u0438\u0441\u043e\u043a \u0432\u0441\u0435\u0445 \u0438\u0437\u0432\u0435\u0441\u0442\u043d\u044b\u0445 \u0437\u0430\u044f\u0432\u0438\u0442\u0435\u043b\u044e \u043a\u0440\u0435\u0434\u0438\u0442\u043e\u0440\u043e\u0432 \u043d\u0443\u0436\u043d\u043e \u043f\u0440\u0435\u0434\u043e\u0441\u0442\u0430\u0432\u0438\u0442\u044c \u0441\u0430\u043c\u043e\u0441\u0442\u043e\u044f\u0442\u0435\u043b\u044c\u043d\u043e. \u0415\u0441\u043b\u0438 \u0432\u0441\u0435 \u0443\u0441\u043b\u043e\u0432\u0438\u044f \u0441\u043e\u0431\u043b\u044e\u0434\u0435\u043d\u044b, \u0441\u0432\u0435\u0434\u0435\u043d\u0438\u044f \u0432\u043d\u0435\u0441\u0443\u0442 \u0432 \u0415\u0434\u0438\u043d\u044b\u0439 \u0444\u0435\u0434\u0435\u0440\u0430\u043b\u044c\u043d\u044b\u0439 \u0440\u0435\u0435\u0441\u0442\u0440 \u0432 \u0442\u0435\u0447\u0435\u043d\u0438\u0435 \u0442\u0440\u0435\u0445 \u0440\u0430\u0431\u043e\u0447\u0438\u0445 \u0434\u043d\u0435\u0439. \u041f\u0440\u0438 \u044d\u0442\u043e\u043c \u043d\u0430 \u043c\u043e\u043c\u0435\u043d\u0442 \u043f\u043e\u0434\u0430\u0447\u0438 \u0437\u0430\u044f\u0432\u043b\u0435\u043d\u0438\u044f \u0432 \u043e\u0442\u043d\u043e\u0448\u0435\u043d\u0438\u0438 \u0437\u0430\u044f\u0432\u0438\u0442\u0435\u043b\u044f \u0434\u043e\u043b\u0436\u043d\u043e \u0431\u044b\u0442\u044c \u043e\u043a\u043e\u043d\u0447\u0435\u043d\u043e \u0438\u0441\u043f\u043e\u043b\u043d\u0438\u0442\u0435\u043b\u044c\u043d\u043e\u0435 \u043f\u0440\u043e\u0438\u0437\u0432\u043e\u0434\u0441\u0442\u0432\u043e \u0441 \u0432\u043e\u0437\u0432\u0440\u0430\u0449\u0435\u043d\u0438\u0435\u043c \u0438\u0441\u043f\u043e\u043b\u043d\u0438\u0442\u0435\u043b\u044c\u043d\u043e\u0433\u043e \u0434\u043e\u043a\u0443\u043c\u0435\u043d\u0442\u0430 \u0432\u0437\u044b\u0441\u043a\u0430\u0442\u0435\u043b\u044e. \u042d\u0442\u043e \u0437\u043d\u0430\u0447\u0438\u0442, \u0447\u0442\u043e \u0443 \u043f\u043e\u0442\u0435\u043d\u0446\u0438\u0430\u043b\u044c\u043d\u043e\u0433\u043e \u0431\u0430\u043d\u043a\u0440\u043e\u0442\u0430 \u043d\u0435 \u0434\u043e\u043b\u0436\u043d\u043e \u0431\u044b\u0442\u044c \u0438\u043c\u0443\u0449\u0435\u0441\u0442\u0432\u0430, \u043a\u043e\u0442\u043e\u0440\u043e\u0435 \u043c\u043e\u0436\u043d\u043e \u0432\u0437\u044b\u0441\u043a\u0430\u0442\u044c. \u041a\u0440\u043e\u043c\u0435 \u0442\u043e\u0433\u043e, \u0432 \u043e\u0442\u043d\u043e\u0448\u0435\u043d\u0438\u0438 \u0433\u0440\u0430\u0436\u0434\u0430\u043d\u0438\u043d\u0430 \u043d\u0435 \u0434\u043e\u043b\u0436\u043d\u043e \u0431\u044b\u0442\u044c \u0432\u043e\u0437\u0431\u0443\u0436\u0434\u0435\u043d\u043e \u0434\u0440\u0443\u0433\u043e\u0435 \u0438\u0441\u043f\u043e\u043b\u043d\u0438\u0442\u0435\u043b\u044c\u043d\u043e\u0435 \u043f\u0440\u043e\u0438\u0437\u0432\u043e\u0434\u0441\u0442\u0432\u043e. \u0412 \u043f\u0435\u0440\u0438\u043e\u0434 \u0432\u0441\u0435\u0439 \u043f\u0440\u043e\u0446\u0435\u0434\u0443\u0440\u044b \u0437\u0430\u044f\u0432\u0438\u0442\u0435\u043b\u044c \u043d\u0435 \u0441\u043c\u043e\u0436\u0435\u0442 \u0431\u0440\u0430\u0442\u044c \u0437\u0430\u0439\u043c\u044b, \u043a\u0440\u0435\u0434\u0438\u0442\u044b, \u0432\u044b\u0434\u0430\u0432\u0430\u0442\u044c \u043f\u043e\u0440\u0443\u0447\u0438\u0442\u0435\u043b\u044c\u0441\u0442\u0432\u0430, \u0441\u043e\u0432\u0435\u0440\u0448\u0430\u0442\u044c \u0438\u043d\u044b\u0435 \u043e\u0431\u0435\u0441\u043f\u0435\u0447\u0438\u0442\u0435\u043b\u044c\u043d\u044b\u0435 \u0441\u0434\u0435\u043b\u043a\u0438. \u0412\u043d\u0435\u0441\u0443\u0434\u0435\u0431\u043d\u043e\u0435 \u0431\u0430\u043d\u043a\u0440\u043e\u0442\u0441\u0442\u0432\u043e \u0431\u0443\u0434\u0435\u0442 \u0434\u043b\u0438\u0442\u044c\u0441\u044f \u0448\u0435\u0441\u0442\u044c \u043c\u0435\u0441\u044f\u0446\u0435\u0432, \u0432 \u0442\u0435\u0447\u0435\u043d\u0438\u0435 \u043a\u043e\u0442\u043e\u0440\u044b\u0445 \u0442\u0430\u043a\u0436\u0435 \u0431\u0443\u0434\u0435\u0442 \u0434\u0435\u0439\u0441\u0442\u0432\u043e\u0432\u0430\u0442\u044c \u043c\u043e\u0440\u0430\u0442\u043e\u0440\u0438\u0439 \u043d\u0430 \u0443\u0434\u043e\u0432\u043b\u0435\u0442\u0432\u043e\u0440\u0435\u043d\u0438\u0435 \u0442\u0440\u0435\u0431\u043e\u0432\u0430\u043d\u0438\u0439 \u043a\u0440\u0435\u0434\u0438\u0442\u043e\u0440\u043e\u0432, \u043e\u0442\u043c\u0435\u0447\u0435\u043d\u043d\u044b\u0445 \u0432 \u0437\u0430\u044f\u0432\u043b\u0435\u043d\u0438\u0438 \u0434\u043e\u043b\u0436\u043d\u0438\u043a\u0430, \u0438 \u043c\u043e\u0440\u0430\u0442\u043e\u0440\u0438\u0439 \u043e\u0431 \u0443\u043f\u043b\u0430\u0442\u0435 \u043e\u0431\u044f\u0437\u0430\u0442\u0435\u043b\u044c\u043d\u044b\u0445 \u043f\u043b\u0430\u0442\u0435\u0436\u0435\u0439. \u041a\u0440\u043e\u043c\u0435 \u0442\u043e\u0433\u043e, \u043f\u0440\u0435\u043a\u0440\u0430\u0449\u0430\u0435\u0442\u0441\u044f \u043d\u0430\u0447\u0438\u0441\u043b\u0435\u043d\u0438\u0435 \u043d\u0435\u0443\u0441\u0442\u043e\u0435\u043a \u0438 \u0438\u043d\u044b\u0445 \u0444\u0438\u043d\u0430\u043d\u0441\u043e\u0432\u044b\u0445 \u0441\u0430\u043d\u043a\u0446\u0438\u0439; \u0438\u043c\u0443\u0449\u0435\u0441\u0442\u0432\u0435\u043d\u043d\u044b\u0435 \u0432\u0437\u044b\u0441\u043a\u0430\u043d\u0438\u044f (\u043a\u0440\u043e\u043c\u0435 \u0430\u043b\u0438\u043c\u0435\u043d\u0442\u043e\u0432) \u0442\u0430\u043a\u0436\u0435 \u0431\u0443\u0434\u0443\u0442 \u043f\u0440\u0438\u043e\u0441\u0442\u0430\u043d\u043e\u0432\u043b\u0435\u043d\u044b. \u041f\u043e \u0437\u0430\u0432\u0435\u0440\u0448\u0435\u043d\u0438\u044e \u043f\u0440\u043e\u0446\u0435\u0434\u0443\u0440\u044b \u0437\u0430\u044f\u0432\u0438\u0442\u0435\u043b\u044f \u043e\u0441\u0432\u043e\u0431\u043e\u0434\u044f\u0442 \u043e\u0442 \u0434\u0430\u043b\u044c\u043d\u0435\u0439\u0448\u0435\u0433\u043e \u0432\u044b\u043f\u043e\u043b\u043d\u0435\u043d\u0438\u044f \u0442\u0440\u0435\u0431\u043e\u0432\u0430\u043d\u0438\u0439 \u043a\u0440\u0435\u0434\u0438\u0442\u043e\u0440\u043e\u0432, \u0443\u043a\u0430\u0437\u0430\u043d\u043d\u044b\u0445 \u0432 \u0437\u0430\u044f\u0432\u043b\u0435\u043d\u0438\u0438 \u043e \u043f\u0440\u0438\u0437\u043d\u0430\u043d\u0438\u0438 \u0435\u0433\u043e \u0431\u0430\u043d\u043a\u0440\u043e\u0442\u043e\u043c, \u0430 \u044d\u0442\u0430 \u0437\u0430\u0434\u043e\u043b\u0436\u0435\u043d\u043d\u043e\u0441\u0442\u044c \u043f\u0440\u0438\u0437\u043d\u0430\u0435\u0442\u0441\u044f \u0431\u0435\u0437\u043d\u0430\u0434\u0435\u0436\u043d\u043e\u0439. \u0412 \u043f\u0440\u043e\u0448\u043b\u043e\u043c \u043c\u0435\u0441\u044f\u0446\u0435 \u0441\u0442\u0430\u043b\u043e \u0438\u0437\u0432\u0435\u0441\u0442\u043d\u043e, \u0447\u0442\u043e \u0437\u0430 \u043f\u0435\u0440\u0432\u043e\u0435 \u043f\u043e\u043b\u0443\u0433\u043e\u0434\u0438\u0435 2020 \u0433\u043e\u0434\u0430 \u0440\u043e\u0441\u0441\u0438\u0439\u0441\u043a\u0438\u0435 \u0441\u0443\u0434\u044b \u043f\u0440\u0438\u0437\u043d\u0430\u043b\u0438 \u0431\u0430\u043d\u043a\u0440\u043e\u0442\u0430\u043c\u0438 42,7 \u0442\u044b\u0441. \u0433\u0440\u0430\u0436\u0434\u0430\u043d (\u0432 \u0442\u043e\u043c \u0447\u0438\u0441\u043b\u0435 \u0438\u043d\u0434\u0438\u0432\u0438\u0434\u0443\u0430\u043b\u044c\u043d\u044b\u0445 \u043f\u0440\u0435\u0434\u043f\u0440\u0438\u043d\u0438\u043c\u0430\u0442\u0435\u043b\u0435\u0439) \u2014 \u043f\u043e \u0434\u0430\u043d\u043d\u044b\u043c \u0435\u0434\u0438\u043d\u043e\u0433\u043e \u0440\u0435\u0435\u0441\u0442\u0440\u0430 \u00ab\u0424\u0435\u0434\u0440\u0435\u0441\u0443\u0440\u0441\u00bb, \u044d\u0442\u043e \u043d\u0430 47,2% \u0431\u043e\u043b\u044c\u0448\u0435 \u043f\u043e\u043a\u0430\u0437\u0430\u0442\u0435\u043b\u044f \u0430\u043d\u0430\u043b\u043e\u0433\u0438\u0447\u043d\u043e\u0433\u043e \u043f\u0435\u0440\u0438\u043e\u0434\u0430 2019 \u0433\u043e\u0434\u0430. \u0420\u043e\u0441\u0442 \u0447\u0438\u0441\u043b\u0430 \u043e\u0431\u0430\u043d\u043a\u0440\u043e\u0442\u0438\u0432\u0448\u0438\u0445\u0441\u044f \u0433\u0440\u0430\u0436\u0434\u0430\u043d \u0432\u043e \u0432\u0442\u043e\u0440\u043e\u043c \u043a\u0432\u0430\u0440\u0442\u0430\u043b\u0435 \u043f\u043e \u0441\u0440\u0430\u0432\u043d\u0435\u043d\u0438\u044e \u0441 \u043f\u0435\u0440\u0432\u044b\u043c \u0437\u0430\u043c\u0435\u0434\u043b\u0438\u043b\u0441\u044f \u2014 \u0442\u0430\u043a\u0430\u044f \u0434\u0438\u043d\u0430\u043c\u0438\u043a\u0430 \u043e\u0431\u0443\u0441\u043b\u043e\u0432\u043b\u0435\u043d\u0430 \u0442\u0435\u043c, \u0447\u0442\u043e \u0432 \u043f\u0435\u0440\u0438\u043e\u0434 \u043e\u0433\u0440\u0430\u043d\u0438\u0447\u0435\u043d\u0438\u0439 \u0441 19 \u043c\u0430\u0440\u0442\u0430 \u043f\u043e 11 \u043c\u0430\u044f \u0441\u0443\u0434\u044b \u0440\u0435\u0434\u043a\u043e \u0440\u0430\u0441\u0441\u043c\u0430\u0442\u0440\u0438\u0432\u0430\u043b\u0438 \u0431\u0430\u043d\u043a\u0440\u043e\u0442\u043d\u044b\u0435 \u0434\u0435\u043b\u0430 \u043a\u043e\u043c\u043f\u0430\u043d\u0438\u0439 \u0438 \u043c\u0435\u043d\u044c\u0448\u0435, \u0447\u0435\u043c \u043e\u0431\u044b\u0447\u043d\u043e, \u0432 \u043e\u0442\u043d\u043e\u0448\u0435\u043d\u0438\u0438 \u0433\u0440\u0430\u0436\u0434\u0430\u043d, \u043e\u0431\u044a\u044f\u0441\u043d\u044f\u043b \u0440\u0443\u043a\u043e\u0432\u043e\u0434\u0438\u0442\u0435\u043b\u044c \u043f\u0440\u043e\u0435\u043a\u0442\u0430 \u00ab\u0424\u0435\u0434\u0440\u0435\u0441\u0443\u0440\u0441\u00bb \u0410\u043b\u0435\u043a\u0441\u0435\u0439 \u042e\u0445\u043d\u0438\u043d. \u041e\u043d \u043f\u0440\u043e\u0433\u043d\u043e\u0437\u0438\u0440\u0443\u0435\u0442, \u0447\u0442\u043e \u0432\u043e \u0432\u0442\u043e\u0440\u043e\u043c \u043f\u043e\u043b\u0443\u0433\u043e\u0434\u0438\u0438 \u043c\u044b \u0443\u0432\u0438\u0434\u0438\u043c \u0440\u043e\u0441\u0442 \u043f\u043e\u043a\u0430\u0437\u0430\u0442\u0435\u043b\u044f, \u043a\u043e\u0433\u0434\u0430 \u0441\u0443\u0434\u044b \u0440\u0430\u0441\u0441\u043c\u043e\u0442\u0440\u044f\u0442 \u0432\u0441\u0435 \u0434\u0435\u043b\u0430, \u0447\u0442\u043e \u043d\u0435 \u0441\u043c\u043e\u0433\u043b\u0438 \u0440\u0430\u043d\u0435\u0435 \u0432 \u0440\u0435\u0436\u0438\u043c\u0435 \u043e\u0433\u0440\u0430\u043d\u0438\u0447\u0435\u043d\u0438\u0439. \u041f\u043e \u0435\u0433\u043e \u0434\u0430\u043d\u043d\u044b\u043c, \u0443\u0436\u0435 \u0432 \u0438\u044e\u043d\u0435 \u0447\u0438\u0441\u043b\u043e \u043b\u0438\u0447\u043d\u044b\u0445 \u0431\u0430\u043d\u043a\u0440\u043e\u0442\u0441\u0442\u0432 \u0432\u044b\u0440\u043e\u0441\u043b\u043e \u0434\u043e 11,5 \u0442\u044b\u0441., \u0447\u0442\u043e \u0432 \u0434\u0432\u0430 \u0440\u0430\u0437\u0430 \u043f\u0440\u0435\u0432\u044b\u0448\u0430\u0435\u0442 \u043f\u043e\u043a\u0430\u0437\u0430\u0442\u0435\u043b\u044c \u0430\u043d\u0430\u043b\u043e\u0433\u0438\u0447\u043d\u043e\u0433\u043e \u043f\u0435\u0440\u0438\u043e\u0434\u0430 2019 \u0433\u043e\u0434\u0430.", "example_title": "\u041d\u043e\u0432\u043e\u0441\u0442\u0438"}, {"text": "\u0410\u043a\u0442\u0443\u0430\u043b\u044c\u043d\u043e\u0441\u0442\u044c \u043f\u0440\u043e\u0431\u043b\u0435\u043c\u044b. \u042d\u043b\u0435\u043a\u0442\u0440\u043e\u043d\u043d\u0430\u044f \u0438\u043d\u0444\u043e\u0440\u043c\u0430\u0446\u0438\u044f \u0438\u0433\u0440\u0430\u0435\u0442 \u0432\u0441\u0435 \u0431\u043e\u043b\u044c\u0448\u0443\u044e \u0440\u043e\u043b\u044c \u0432\u043e \u0432\u0441\u0435\u0445 \u0441\u0444\u0435\u0440\u0430\u0445 \u0436\u0438\u0437\u043d\u0438 \u0441\u043e\u0432\u0440\u0435\u043c\u0435\u043d\u043d\u043e\u0433\u043e \u043e\u0431\u0449\u0435\u0441\u0442\u0432\u0430. \u0412 \u043f\u043e\u0441\u043b\u0435\u0434\u043d\u0438\u0435 \u0433\u043e\u0434\u044b \u043e\u0431\u044a\u0435\u043c \u043d\u0430\u0443\u0447\u043d\u043e-\u0442\u0435\u0445\u043d\u0438\u0447\u0435\u0441\u043a\u043e\u0439 \u0442\u0435\u043a\u0441\u0442\u043e\u0432\u043e\u0439 \u0438\u043d\u0444\u043e\u0440\u043c\u0430\u0446\u0438\u0438 \u0432 \u044d\u043b\u0435\u043a\u0442\u0440\u043e\u043d\u043d\u043e\u043c \u0432\u0438\u0434\u0435 \u0432\u043e\u0437\u0440\u043e\u0441 \u043d\u0430\u0441\u0442\u043e\u043b\u044c\u043a\u043e, \u0447\u0442\u043e \u0432\u043e\u0437\u043d\u0438\u043a\u0430\u0435\u0442 \u0443\u0433\u0440\u043e\u0437\u0430 \u043e\u0431\u0435\u0441\u0446\u0435\u043d\u0438\u0432\u0430\u043d\u0438\u044f \u044d\u0442\u043e\u0439 \u0438\u043d\u0444\u043e\u0440\u043c\u0430\u0446\u0438\u0438 \u0432 \u0441\u0432\u044f\u0437\u0438 \u0441 \u0442\u0440\u0443\u0434\u043d\u043e\u0441\u0442\u044f\u043c\u0438 \u043f\u043e\u0438\u0441\u043a\u0430 \u043d\u0435\u043e\u0431\u0445\u043e\u0434\u0438\u043c\u044b\u0445 \u0441\u0432\u0435\u0434\u0435\u043d\u0438\u0439 \u0441\u0440\u0435\u0434\u0438 \u043c\u043d\u043e\u0436\u0435\u0441\u0442\u0432\u0430 \u0434\u043e\u0441\u0442\u0443\u043f\u043d\u044b\u0445 \u0442\u0435\u043a\u0441\u0442\u043e\u0432. \u0420\u0430\u0437\u0432\u0438\u0442\u0438\u0435 \u0438\u043d\u0444\u043e\u0440\u043c\u0430\u0446\u0438\u043e\u043d\u043d\u044b\u0445 \u0440\u0435\u0441\u0443\u0440\u0441\u043e\u0432 \u0418\u043d\u0442\u0435\u0440\u043d\u0435\u0442 \u043c\u043d\u043e\u0433\u043e\u043a\u0440\u0430\u0442\u043d\u043e \u0443\u0441\u0443\u0433\u0443\u0431\u0438\u043b\u043e \u043f\u0440\u043e\u0431\u043b\u0435\u043c\u0443 \u0438\u043d\u0444\u043e\u0440\u043c\u0430\u0446\u0438\u043e\u043d\u043d\u043e\u0439 \u043f\u0435\u0440\u0435\u0433\u0440\u0443\u0437\u043a\u0438. \u0412 \u044d\u0442\u043e\u0439 \u0441\u0438\u0442\u0443\u0430\u0446\u0438\u0438 \u043e\u0441\u043e\u0431\u0435\u043d\u043d\u043e \u0430\u043a\u0442\u0443\u0430\u043b\u044c\u043d\u044b\u043c\u0438 \u0441\u0442\u0430\u043d\u043e\u0432\u044f\u0442\u0441\u044f \u043c\u0435\u0442\u043e\u0434\u044b \u0430\u0432\u0442\u043e\u043c\u0430\u0442\u0438\u0437\u0430\u0446\u0438\u0438 \u0440\u0435\u0444\u0435\u0440\u0438\u0440\u043e\u0432\u0430\u043d\u0438\u044f \u0442\u0435\u043a\u0441\u0442\u043e\u0432\u043e\u0439 \u0438\u043d\u0444\u043e\u0440\u043c\u0430\u0446\u0438\u0438, \u0442\u043e \u0435\u0441\u0442\u044c \u043c\u0435\u0442\u043e\u0434\u044b \u043f\u043e\u043b\u0443\u0447\u0435\u043d\u0438\u044f \u0441\u0436\u0430\u0442\u043e\u0433\u043e \u043f\u0440\u0435\u0434\u0441\u0442\u0430\u0432\u043b\u0435\u043d\u0438\u044f \u0442\u0435\u043a\u0441\u0442\u043e\u0432\u044b\u0445 \u0434\u043e\u043a\u0443\u043c\u0435\u043d\u0442\u043e\u0432\u2013\u0440\u0435\u0444\u0435\u0440\u0430\u0442\u043e\u0432 (\u0430\u043d\u043d\u043e\u0442\u0430\u0446\u0438\u0439). \u041f\u043e\u0441\u0442\u0430\u043d\u043e\u0432\u043a\u0430 \u043f\u0440\u043e\u0431\u043b\u0435\u043c\u044b \u0430\u0432\u0442\u043e\u043c\u0430\u0442\u0438\u0447\u0435\u0441\u043a\u043e\u0433\u043e \u0440\u0435\u0444\u0435\u0440\u0438\u0440\u043e\u0432\u0430\u043d\u0438\u044f \u0442\u0435\u043a\u0441\u0442\u0430 \u0438 \u0441\u043e\u043e\u0442\u0432\u0435\u0442\u0441\u0442\u0432\u0435\u043d\u043d\u043e \u043f\u043e\u043f\u044b\u0442\u043a\u0438 \u0435\u0435 \u0440\u0435\u0448\u0435\u043d\u0438\u044f \u0441 \u0438\u0441\u043f\u043e\u043b\u044c\u0437\u043e\u0432\u0430\u043d\u0438\u0435\u043c \u0440\u0430\u0437\u043b\u0438\u0447\u043d\u044b\u0445 \u043f\u043e\u0434\u0445\u043e\u0434\u043e\u0432 \u043f\u0440\u0435\u0434\u043f\u0440\u0438\u043d\u0438\u043c\u0430\u043b\u0438\u0441\u044c \u043c\u043d\u043e\u0433\u0438\u043c\u0438 \u0438\u0441\u0441\u043b\u0435\u0434\u043e\u0432\u0430\u0442\u0435\u043b\u044f\u043c\u0438. \u0418\u0441\u0442\u043e\u0440\u0438\u044f \u043f\u0440\u0438\u043c\u0435\u043d\u0435\u043d\u0438\u044f \u0432\u044b\u0447\u0438\u0441\u043b\u0438\u0442\u0435\u043b\u044c\u043d\u043e\u0439 \u0442\u0435\u0445\u043d\u0438\u043a\u0438 \u0434\u043b\u044f \u0440\u0435\u0444\u0435\u0440\u0438\u0440\u043e\u0432\u0430\u043d\u0438\u044f \u043d\u0430\u0441\u0447\u0438\u0442\u044b\u0432\u0430\u0435\u0442 \u0443\u0436\u0435 \u0431\u043e\u043b\u0435\u0435 50 \u043b\u0435\u0442 \u0438 \u0441\u0432\u044f\u0437\u0430\u043d\u0430 \u0441 \u0438\u043c\u0435\u043d\u0430\u043c\u0438 \u0442\u0430\u043a\u0438\u0445 \u0438\u0441\u0441\u043b\u0435\u0434\u043e\u0432\u0430\u0442\u0435\u043b\u0435\u0439, \u043a\u0430\u043a \u0413.\u041f. \u041b\u0443\u043d, \u0412.\u0415. \u0411\u0435\u0440\u0437\u043e\u043d, \u0418.\u041f. C\u0435\u0432\u0431\u043e, \u042d.\u0424. \u0421\u043a\u043e\u0440\u043e\u0445\u043e\u0434\u044c\u043a\u043e, \u0414.\u0413. \u041b\u0430\u0445\u0443\u0442\u0438, \u0420.\u0413. \u041f\u0438\u043e\u0442\u0440\u043e\u0432\u0441\u043a\u0438\u0439 \u0438 \u0434\u0440. \u0417\u0430 \u044d\u0442\u0438 \u0433\u043e\u0434\u044b \u0432\u044b\u0440\u0430\u0431\u043e\u0442\u0430\u043d\u044b \u043c\u043d\u043e\u0433\u043e\u0447\u0438\u0441\u043b\u0435\u043d\u043d\u044b\u0435 \u043f\u043e\u0434\u0445\u043e\u0434\u044b \u043a \u0440\u0435\u0448\u0435\u043d\u0438\u044e \u0434\u0430\u043d\u043d\u043e\u0439 \u043f\u0440\u043e\u0431\u043b\u0435\u043c\u044b, \u043a\u043e\u0442\u043e\u0440\u044b\u0435 \u0434\u043e\u0441\u0442\u0430\u0442\u043e\u0447\u043d\u043e \u0447\u0435\u0442\u043a\u043e \u043f\u043e\u0434\u0440\u0430\u0437\u0434\u0435\u043b\u044f\u044e\u0442\u0441\u044f \u043d\u0430 \u0434\u0432\u0430 \u043d\u0430\u043f\u0440\u0430\u0432\u043b\u0435\u043d\u0438\u044f: \u0430\u0432\u0442\u043e\u043c\u0430\u0442\u0438\u0447\u0435\u0441\u043a\u043e\u0435 \u0440\u0435\u0444\u0435\u0440\u0438\u0440\u043e\u0432\u0430\u043d\u0438\u0435, \u043e\u0441\u043d\u043e\u0432\u0430\u043d\u043d\u043e\u0435 \u043d\u0430 \u044d\u043a\u0441\u0442\u0440\u0430\u0433\u0438\u0440\u043e\u0432\u0430\u043d\u0438\u0438 \u0438\u0437 \u043f\u0435\u0440\u0432\u0438\u0447\u043d\u044b\u0445 \u0434\u043e\u043a\u0443\u043c\u0435\u043d\u0442\u043e\u0432 \u0441 \u043f\u043e\u043c\u043e\u0449\u044c\u044e \u043e\u043f\u0440\u0435\u0434\u0435\u043b\u0435\u043d\u043d\u044b\u0445 \u0444\u043e\u0440\u043c\u0430\u043b\u044c\u043d\u044b\u0445 \u043f\u0440\u0438\u0437\u043d\u0430\u043a\u043e\u0432 \u00ab\u043d\u0430\u0438\u0431\u043e\u043b\u0435\u0435 \u0438\u043d\u0444\u043e\u0440\u043c\u0430\u0442\u0438\u0432\u043d\u044b\u0445\u00bb \u0444\u0440\u0430\u0437 (\u0444\u0440\u0430\u0433\u043c\u0435\u043d\u0442\u043e\u0432), \u0441\u043e\u0432\u043e\u043a\u0443\u043f\u043d\u043e\u0441\u0442\u044c \u043a\u043e\u0442\u043e\u0440\u044b\u0445 \u043e\u0431\u0440\u0430\u0437\u0443\u0435\u0442 \u043d\u0435\u043a\u043e\u0442\u043e\u0440\u044b\u0439 \u044d\u043a\u0441\u0442\u0440\u0430\u043a\u0442; \u0430\u0432\u0442\u043e\u043c\u0430\u0442\u0438\u0447\u0435\u0441\u043a\u043e\u0435 \u0440\u0435\u0444\u0435\u0440\u0438\u0440\u043e\u0432\u0430\u043d\u0438\u0435, \u043e\u0441\u043d\u043e\u0432\u0430\u043d\u043d\u043e\u0435 \u043d\u0430 \u0432\u044b\u0434\u0435\u043b\u0435\u043d\u0438\u0438 \u0438\u0437 \u0442\u0435\u043a\u0441\u0442\u043e\u0432 \u0441 \u043f\u043e\u043c\u043e\u0449\u044c\u044e \u0441\u043f\u0435\u0446\u0438\u0430\u043b\u044c\u043d\u044b\u0445 \u0438\u043d\u0444\u043e\u0440\u043c\u0430\u0446\u0438\u043e\u043d\u043d\u044b\u0445 \u044f\u0437\u044b\u043a\u043e\u0432 \u043d\u0430\u0438\u0431\u043e\u043b\u0435\u0435 \u0441\u0443\u0449\u0435\u0441\u0442\u0432\u0435\u043d\u043d\u043e\u0439 \u0438\u043d\u0444\u043e\u0440\u043c\u0430\u0446\u0438\u0438 \u0438 \u043f\u043e\u0440\u043e\u0436\u0434\u0435\u043d\u0438\u0438 \u043d\u043e\u0432\u044b\u0445 \u0442\u0435\u043a\u0441\u0442\u043e\u0432 (\u0440\u0435\u0444\u0435\u0440\u0430\u0442\u043e\u0432), \u0441\u043e\u0434\u0435\u0440\u0436\u0430\u0442\u0435\u043b\u044c\u043d\u043e \u043e\u0431\u043e\u0431\u0449\u0430\u044e\u0449\u0438\u0445 \u043f\u0435\u0440\u0432\u0438\u0447\u043d\u044b\u0435 \u0434\u043e\u043a\u0443\u043c\u0435\u043d\u0442\u044b.", "example_title": "\u041d\u0430\u0443\u0447\u043d\u0430\u044f \u0441\u0442\u0430\u0442\u044c\u044f"}]}
IlyaGusev/rut5_base_sum_gazeta
null
[ "transformers", "pytorch", "t5", "text2text-generation", "summarization", "ru", "dataset:IlyaGusev/gazeta", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "ru" ]
TAGS #transformers #pytorch #t5 #text2text-generation #summarization #ru #dataset-IlyaGusev/gazeta #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
RuT5SumGazeta ============= Model description ----------------- This is the model for abstractive summarization for Russian based on rut5-base. Intended uses & limitations --------------------------- #### How to use Colab: link Training data ------------- * Dataset: Gazeta Training procedure ------------------ * Training script: URL * Config: t5\_training\_config.json Eval results ------------ * Train dataset: Gazeta v1 train * Test dataset: Gazeta v1 test * Source max\_length: 600 * Target max\_length: 200 * no\_repeat\_ngram\_size: 4 * num\_beams: 5 * Train dataset: Gazeta v1 train * Test dataset: Gazeta v2 test * Source max\_length: 600 * Target max\_length: 200 * no\_repeat\_ngram\_size: 4 * num\_beams: 5 Predicting all summaries: Evaluation script: URL Flags: --language ru --tokenize-after --lower
[ "#### How to use\n\n\nColab: link\n\n\nTraining data\n-------------\n\n\n* Dataset: Gazeta\n\n\nTraining procedure\n------------------\n\n\n* Training script: URL\n* Config: t5\\_training\\_config.json\n\n\nEval results\n------------\n\n\n* Train dataset: Gazeta v1 train\n* Test dataset: Gazeta v1 test\n* Source max\\_length: 600\n* Target max\\_length: 200\n* no\\_repeat\\_ngram\\_size: 4\n* num\\_beams: 5\n\n\n\n* Train dataset: Gazeta v1 train\n* Test dataset: Gazeta v2 test\n* Source max\\_length: 600\n* Target max\\_length: 200\n* no\\_repeat\\_ngram\\_size: 4\n* num\\_beams: 5\n\n\n\nPredicting all summaries:\n\n\nEvaluation script: URL\n\n\nFlags: --language ru --tokenize-after --lower" ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #summarization #ru #dataset-IlyaGusev/gazeta #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "#### How to use\n\n\nColab: link\n\n\nTraining data\n-------------\n\n\n* Dataset: Gazeta\n\n\nTraining procedure\n------------------\n\n\n* Training script: URL\n* Config: t5\\_training\\_config.json\n\n\nEval results\n------------\n\n\n* Train dataset: Gazeta v1 train\n* Test dataset: Gazeta v1 test\n* Source max\\_length: 600\n* Target max\\_length: 200\n* no\\_repeat\\_ngram\\_size: 4\n* num\\_beams: 5\n\n\n\n* Train dataset: Gazeta v1 train\n* Test dataset: Gazeta v2 test\n* Source max\\_length: 600\n* Target max\\_length: 200\n* no\\_repeat\\_ngram\\_size: 4\n* num\\_beams: 5\n\n\n\nPredicting all summaries:\n\n\nEvaluation script: URL\n\n\nFlags: --language ru --tokenize-after --lower" ]
[ 66, 233 ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #summarization #ru #dataset-IlyaGusev/gazeta #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n#### How to use\n\n\nColab: link\n\n\nTraining data\n-------------\n\n\n* Dataset: Gazeta\n\n\nTraining procedure\n------------------\n\n\n* Training script: URL\n* Config: t5\\_training\\_config.json\n\n\nEval results\n------------\n\n\n* Train dataset: Gazeta v1 train\n* Test dataset: Gazeta v1 test\n* Source max\\_length: 600\n* Target max\\_length: 200\n* no\\_repeat\\_ngram\\_size: 4\n* num\\_beams: 5\n\n\n\n* Train dataset: Gazeta v1 train\n* Test dataset: Gazeta v2 test\n* Source max\\_length: 600\n* Target max\\_length: 200\n* no\\_repeat\\_ngram\\_size: 4\n* num\\_beams: 5\n\n\n\nPredicting all summaries:\n\n\nEvaluation script: URL\n\n\nFlags: --language ru --tokenize-after --lower" ]
text-classification
transformers
# XLM-RoBERTa HeadlineCause Full ## Model description This model was trained to predict the presence of causal relations between two headlines. This model is for the Full task with 7 possible labels: titles are almost the same, A causes B, B causes A, A refutes B, B refutes A, A linked with B in another way, A is not linked to B. English and Russian languages are supported. You can use hosted inference API to infer a label for a headline pair. To do this, you shoud seperate headlines with ```</s>``` token. For example: ``` ะŸะตัะบะพะฒ ะพะฟั€ะพะฒะตั€ะณ ัะฒะพะน ะฟะตั€ะตะฒะพะด ะฝะฐ ัƒะดะฐะปะตะฝะบัƒ</s>ะ”ะผะธั‚ั€ะธะน ะŸะตัะบะพะฒ ะฟะตั€ะตัˆะตะป ะฝะฐ ัƒะดะฐะปะตะฝะบัƒ ``` ## Intended uses & limitations #### How to use ```python from tqdm.notebook import tqdm from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline def get_batch(data, batch_size): start_index = 0 while start_index < len(data): end_index = start_index + batch_size batch = data[start_index:end_index] yield batch start_index = end_index def pipe_predict(data, pipe, batch_size=64): raw_preds = [] for batch in tqdm(get_batch(data, batch_size)): raw_preds += pipe(batch) return raw_preds MODEL_NAME = TOKENIZER_NAME = "IlyaGusev/xlm_roberta_large_headline_cause_full" tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_NAME, do_lower_case=False) model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME) model.eval() pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, framework="pt", return_all_scores=True) texts = [ ( "Judge issues order to allow indoor worship in NC churches", "Some local churches resume indoor services after judge lifted NC governorโ€™s restriction" ), ( "Gov. Kevin Stitt defends $2 million purchase of malaria drug touted by Trump", "Oklahoma spent $2 million on malaria drug touted by Trump" ), ( "ะŸะตัะบะพะฒ ะพะฟั€ะพะฒะตั€ะณ ัะฒะพะน ะฟะตั€ะตะฒะพะด ะฝะฐ ัƒะดะฐะปะตะฝะบัƒ", "ะ”ะผะธั‚ั€ะธะน ะŸะตัะบะพะฒ ะฟะตั€ะตัˆะตะป ะฝะฐ ัƒะดะฐะปะตะฝะบัƒ" ) ] pipe_predict(texts, pipe) ``` #### Limitations and bias The models are intended to be used on news headlines. No other limitations are known. ## Training data * HuggingFace dataset: [IlyaGusev/headline_cause](https://huggingface.co/datasets/IlyaGusev/headline_cause) * GitHub: [IlyaGusev/HeadlineCause](https://github.com/IlyaGusev/HeadlineCause) ## Training procedure * Notebook: [HeadlineCause](https://colab.research.google.com/drive/1NAnD0OJ0TnYCJRsHpYUyYkjr_yi8ObcA) * Stand-alone script: [train.py](https://github.com/IlyaGusev/HeadlineCause/blob/main/headline_cause/train.py) ## Eval results Evaluation results can be found in the [arxiv paper](https://arxiv.org/pdf/2108.12626.pdf). ### BibTeX entry and citation info ```bibtex @misc{gusev2021headlinecause, title={HeadlineCause: A Dataset of News Headlines for Detecting Causalities}, author={Ilya Gusev and Alexey Tikhonov}, year={2021}, eprint={2108.12626}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": ["ru", "en"], "license": "apache-2.0", "tags": ["xlm-roberta-large"], "datasets": ["IlyaGusev/headline_cause"], "widget": [{"text": "\u041f\u0435\u0441\u043a\u043e\u0432 \u043e\u043f\u0440\u043e\u0432\u0435\u0440\u0433 \u0441\u0432\u043e\u0439 \u043f\u0435\u0440\u0435\u0432\u043e\u0434 \u043d\u0430 \u0443\u0434\u0430\u043b\u0435\u043d\u043a\u0443</s>\u0414\u043c\u0438\u0442\u0440\u0438\u0439 \u041f\u0435\u0441\u043a\u043e\u0432 \u043f\u0435\u0440\u0435\u0448\u0435\u043b \u043d\u0430 \u0443\u0434\u0430\u043b\u0435\u043d\u043a\u0443"}]}
IlyaGusev/xlm_roberta_large_headline_cause_full
null
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "xlm-roberta-large", "ru", "en", "dataset:IlyaGusev/headline_cause", "arxiv:2108.12626", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[ "2108.12626" ]
[ "ru", "en" ]
TAGS #transformers #pytorch #xlm-roberta #text-classification #xlm-roberta-large #ru #en #dataset-IlyaGusev/headline_cause #arxiv-2108.12626 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# XLM-RoBERTa HeadlineCause Full ## Model description This model was trained to predict the presence of causal relations between two headlines. This model is for the Full task with 7 possible labels: titles are almost the same, A causes B, B causes A, A refutes B, B refutes A, A linked with B in another way, A is not linked to B. English and Russian languages are supported. You can use hosted inference API to infer a label for a headline pair. To do this, you shoud seperate headlines with token. For example: ## Intended uses & limitations #### How to use #### Limitations and bias The models are intended to be used on news headlines. No other limitations are known. ## Training data * HuggingFace dataset: IlyaGusev/headline_cause * GitHub: IlyaGusev/HeadlineCause ## Training procedure * Notebook: HeadlineCause * Stand-alone script: URL ## Eval results Evaluation results can be found in the arxiv paper. ### BibTeX entry and citation info
[ "# XLM-RoBERTa HeadlineCause Full", "## Model description\n\nThis model was trained to predict the presence of causal relations between two headlines. This model is for the Full task with 7 possible labels: titles are almost the same, A causes B, B causes A, A refutes B, B refutes A, A linked with B in another way, A is not linked to B. English and Russian languages are supported.\n\nYou can use hosted inference API to infer a label for a headline pair. To do this, you shoud seperate headlines with token.\nFor example:", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\nThe models are intended to be used on news headlines. No other limitations are known.", "## Training data\n\n* HuggingFace dataset: IlyaGusev/headline_cause\n* GitHub: IlyaGusev/HeadlineCause", "## Training procedure\n\n* Notebook: HeadlineCause\n* Stand-alone script: URL", "## Eval results\n\nEvaluation results can be found in the arxiv paper.", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #text-classification #xlm-roberta-large #ru #en #dataset-IlyaGusev/headline_cause #arxiv-2108.12626 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# XLM-RoBERTa HeadlineCause Full", "## Model description\n\nThis model was trained to predict the presence of causal relations between two headlines. This model is for the Full task with 7 possible labels: titles are almost the same, A causes B, B causes A, A refutes B, B refutes A, A linked with B in another way, A is not linked to B. English and Russian languages are supported.\n\nYou can use hosted inference API to infer a label for a headline pair. To do this, you shoud seperate headlines with token.\nFor example:", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\nThe models are intended to be used on news headlines. No other limitations are known.", "## Training data\n\n* HuggingFace dataset: IlyaGusev/headline_cause\n* GitHub: IlyaGusev/HeadlineCause", "## Training procedure\n\n* Notebook: HeadlineCause\n* Stand-alone script: URL", "## Eval results\n\nEvaluation results can be found in the arxiv paper.", "### BibTeX entry and citation info" ]
[ 72, 9, 111, 6, 7, 24, 31, 18, 17, 10 ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #text-classification #xlm-roberta-large #ru #en #dataset-IlyaGusev/headline_cause #arxiv-2108.12626 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# XLM-RoBERTa HeadlineCause Full## Model description\n\nThis model was trained to predict the presence of causal relations between two headlines. This model is for the Full task with 7 possible labels: titles are almost the same, A causes B, B causes A, A refutes B, B refutes A, A linked with B in another way, A is not linked to B. English and Russian languages are supported.\n\nYou can use hosted inference API to infer a label for a headline pair. To do this, you shoud seperate headlines with token.\nFor example:## Intended uses & limitations#### How to use#### Limitations and bias\n\nThe models are intended to be used on news headlines. No other limitations are known.## Training data\n\n* HuggingFace dataset: IlyaGusev/headline_cause\n* GitHub: IlyaGusev/HeadlineCause## Training procedure\n\n* Notebook: HeadlineCause\n* Stand-alone script: URL## Eval results\n\nEvaluation results can be found in the arxiv paper.### BibTeX entry and citation info" ]
text-classification
transformers
# XLM-RoBERTa HeadlineCause Simple ## Model description This model was trained to predict the presence of causal relations between two headlines. This model is for the Simple task with 3 possible labels: A causes B, B causes A, no causal relation. English and Russian languages are supported. You can use hosted inference API to infer a label for a headline pair. To do this, you shoud seperate headlines with ```</s>``` token. For example: ``` ะŸะตัะบะพะฒ ะพะฟั€ะพะฒะตั€ะณ ัะฒะพะน ะฟะตั€ะตะฒะพะด ะฝะฐ ัƒะดะฐะปะตะฝะบัƒ</s>ะ”ะผะธั‚ั€ะธะน ะŸะตัะบะพะฒ ะฟะตั€ะตัˆะตะป ะฝะฐ ัƒะดะฐะปะตะฝะบัƒ ``` ## Intended uses & limitations #### How to use ```python from tqdm.notebook import tqdm from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline def get_batch(data, batch_size): start_index = 0 while start_index < len(data): end_index = start_index + batch_size batch = data[start_index:end_index] yield batch start_index = end_index def pipe_predict(data, pipe, batch_size=64): raw_preds = [] for batch in tqdm(get_batch(data, batch_size)): raw_preds += pipe(batch) return raw_preds MODEL_NAME = TOKENIZER_NAME = "IlyaGusev/xlm_roberta_large_headline_cause_simple" tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_NAME, do_lower_case=False) model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME) model.eval() pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, framework="pt", return_all_scores=True) texts = [ ( "Judge issues order to allow indoor worship in NC churches", "Some local churches resume indoor services after judge lifted NC governorโ€™s restriction" ), ( "Gov. Kevin Stitt defends $2 million purchase of malaria drug touted by Trump", "Oklahoma spent $2 million on malaria drug touted by Trump" ), ( "ะŸะตัะบะพะฒ ะพะฟั€ะพะฒะตั€ะณ ัะฒะพะน ะฟะตั€ะตะฒะพะด ะฝะฐ ัƒะดะฐะปะตะฝะบัƒ", "ะ”ะผะธั‚ั€ะธะน ะŸะตัะบะพะฒ ะฟะตั€ะตัˆะตะป ะฝะฐ ัƒะดะฐะปะตะฝะบัƒ" ) ] pipe_predict(texts, pipe) ``` #### Limitations and bias The models are intended to be used on news headlines. No other limitations are known. ## Training data * HuggingFace dataset: [IlyaGusev/headline_cause](https://huggingface.co/datasets/IlyaGusev/headline_cause) * GitHub: [IlyaGusev/HeadlineCause](https://github.com/IlyaGusev/HeadlineCause) ## Training procedure * Notebook: [HeadlineCause](https://colab.research.google.com/drive/1NAnD0OJ0TnYCJRsHpYUyYkjr_yi8ObcA) * Stand-alone script: [train.py](https://github.com/IlyaGusev/HeadlineCause/blob/main/headline_cause/train.py) ## Eval results Evaluation results can be found in the [arxiv paper](https://arxiv.org/pdf/2108.12626.pdf). ### BibTeX entry and citation info ```bibtex @misc{gusev2021headlinecause, title={HeadlineCause: A Dataset of News Headlines for Detecting Causalities}, author={Ilya Gusev and Alexey Tikhonov}, year={2021}, eprint={2108.12626}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": ["ru", "en"], "license": "apache-2.0", "tags": ["xlm-roberta-large"], "datasets": ["IlyaGusev/headline_cause"], "widget": [{"text": "\u041f\u0435\u0441\u043a\u043e\u0432 \u043e\u043f\u0440\u043e\u0432\u0435\u0440\u0433 \u0441\u0432\u043e\u0439 \u043f\u0435\u0440\u0435\u0432\u043e\u0434 \u043d\u0430 \u0443\u0434\u0430\u043b\u0435\u043d\u043a\u0443</s>\u0414\u043c\u0438\u0442\u0440\u0438\u0439 \u041f\u0435\u0441\u043a\u043e\u0432 \u043f\u0435\u0440\u0435\u0448\u0435\u043b \u043d\u0430 \u0443\u0434\u0430\u043b\u0435\u043d\u043a\u0443"}]}
IlyaGusev/xlm_roberta_large_headline_cause_simple
null
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "xlm-roberta-large", "ru", "en", "dataset:IlyaGusev/headline_cause", "arxiv:2108.12626", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[ "2108.12626" ]
[ "ru", "en" ]
TAGS #transformers #pytorch #xlm-roberta #text-classification #xlm-roberta-large #ru #en #dataset-IlyaGusev/headline_cause #arxiv-2108.12626 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# XLM-RoBERTa HeadlineCause Simple ## Model description This model was trained to predict the presence of causal relations between two headlines. This model is for the Simple task with 3 possible labels: A causes B, B causes A, no causal relation. English and Russian languages are supported. You can use hosted inference API to infer a label for a headline pair. To do this, you shoud seperate headlines with token. For example: ## Intended uses & limitations #### How to use #### Limitations and bias The models are intended to be used on news headlines. No other limitations are known. ## Training data * HuggingFace dataset: IlyaGusev/headline_cause * GitHub: IlyaGusev/HeadlineCause ## Training procedure * Notebook: HeadlineCause * Stand-alone script: URL ## Eval results Evaluation results can be found in the arxiv paper. ### BibTeX entry and citation info
[ "# XLM-RoBERTa HeadlineCause Simple", "## Model description\n\nThis model was trained to predict the presence of causal relations between two headlines. This model is for the Simple task with 3 possible labels: A causes B, B causes A, no causal relation. English and Russian languages are supported.\n\nYou can use hosted inference API to infer a label for a headline pair. To do this, you shoud seperate headlines with token.\nFor example:", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\nThe models are intended to be used on news headlines. No other limitations are known.", "## Training data\n\n* HuggingFace dataset: IlyaGusev/headline_cause\n* GitHub: IlyaGusev/HeadlineCause", "## Training procedure\n\n* Notebook: HeadlineCause\n* Stand-alone script: URL", "## Eval results\n\nEvaluation results can be found in the arxiv paper.", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #text-classification #xlm-roberta-large #ru #en #dataset-IlyaGusev/headline_cause #arxiv-2108.12626 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# XLM-RoBERTa HeadlineCause Simple", "## Model description\n\nThis model was trained to predict the presence of causal relations between two headlines. This model is for the Simple task with 3 possible labels: A causes B, B causes A, no causal relation. English and Russian languages are supported.\n\nYou can use hosted inference API to infer a label for a headline pair. To do this, you shoud seperate headlines with token.\nFor example:", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\nThe models are intended to be used on news headlines. No other limitations are known.", "## Training data\n\n* HuggingFace dataset: IlyaGusev/headline_cause\n* GitHub: IlyaGusev/HeadlineCause", "## Training procedure\n\n* Notebook: HeadlineCause\n* Stand-alone script: URL", "## Eval results\n\nEvaluation results can be found in the arxiv paper.", "### BibTeX entry and citation info" ]
[ 72, 9, 82, 6, 7, 24, 31, 18, 17, 10 ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #text-classification #xlm-roberta-large #ru #en #dataset-IlyaGusev/headline_cause #arxiv-2108.12626 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# XLM-RoBERTa HeadlineCause Simple## Model description\n\nThis model was trained to predict the presence of causal relations between two headlines. This model is for the Simple task with 3 possible labels: A causes B, B causes A, no causal relation. English and Russian languages are supported.\n\nYou can use hosted inference API to infer a label for a headline pair. To do this, you shoud seperate headlines with token.\nFor example:## Intended uses & limitations#### How to use#### Limitations and bias\n\nThe models are intended to be used on news headlines. No other limitations are known.## Training data\n\n* HuggingFace dataset: IlyaGusev/headline_cause\n* GitHub: IlyaGusev/HeadlineCause## Training procedure\n\n* Notebook: HeadlineCause\n* Stand-alone script: URL## Eval results\n\nEvaluation results can be found in the arxiv paper.### BibTeX entry and citation info" ]
text-generation
transformers
# Harry Botter Model
{"tags": ["conversational"]}
Ilyabarigou/Genesis-harrybotter
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Harry Botter Model
[ "# Harry Botter Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Harry Botter Model" ]
[ 39, 5 ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Harry Botter Model" ]
automatic-speech-recognition
transformers
## Evaluation on Common Voice FR Test The script used for training and evaluation can be found here: https://github.com/irebai/wav2vec2 ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) import re model_name = "Ilyes/wav2vec2-large-xlsr-53-french" device = "cpu" # "cuda" model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) processor = Wav2Vec2Processor.from_pretrained(model_name) ds = load_dataset("common_voice", "fr", split="test", cache_dir="./data/fr") chars_to_ignore_regex = '[\,\?\.\!\;\:\"\โ€œ\%\โ€˜\โ€\๏ฟฝ\โ€˜\โ€™\โ€™\โ€™\โ€˜\โ€ฆ\ยท\!\วƒ\?\ยซ\โ€น\ยป\โ€บโ€œ\โ€\\สฟ\สพ\โ€ž\โˆž\\|\.\,\;\:\*\โ€”\โ€“\โ”€\โ€•\_\/\:\ห\;\,\=\ยซ\ยป\โ†’]' def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("โ€™", "'") return batch resampler = torchaudio.transforms.Resample(48_000, 16_000) ds = ds.map(map_to_array) def map_to_pred(batch): features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = processor.batch_decode(pred_ids) batch["target"] = batch["sentence"] return batch result = ds.map(map_to_pred, batched=True, batch_size=16, remove_columns=list(ds.features.keys())) wer = load_metric("wer") print(wer.compute(predictions=result["predicted"], references=result["target"])) ``` ## Results WER=12.82% CER=4.40%
{"language": "fr", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xlsr-53-French by Ilyes Rebai", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice fr", "type": "common_voice", "args": "fr"}, "metrics": [{"type": "wer", "value": 12.82, "name": "Test WER"}]}]}]}
Ilyes/wav2vec2-large-xlsr-53-french
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "fr", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "fr" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #fr #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
## Evaluation on Common Voice FR Test The script used for training and evaluation can be found here: URL ## Results WER=12.82% CER=4.40%
[ "## Evaluation on Common Voice FR Test\nThe script used for training and evaluation can be found here: URL", "## Results\n\nWER=12.82%\n\nCER=4.40%" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #fr #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n", "## Evaluation on Common Voice FR Test\nThe script used for training and evaluation can be found here: URL", "## Results\n\nWER=12.82%\n\nCER=4.40%" ]
[ 68, 22, 17 ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #fr #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n## Evaluation on Common Voice FR Test\nThe script used for training and evaluation can be found here: URL## Results\n\nWER=12.82%\n\nCER=4.40%" ]
automatic-speech-recognition
transformers
## Evaluation on Common Voice FR Test ```python import re import torch import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) model_name = "Ilyes/wav2vec2-large-xlsr-53-french_punctuation" model = Wav2Vec2ForCTC.from_pretrained(model_name).to('cuda') processor = Wav2Vec2Processor.from_pretrained(model_name) ds = load_dataset("common_voice", "fr", split="test") chars_to_ignore_regex = '[\;\:\"\โ€œ\%\โ€˜\โ€\๏ฟฝ\โ€˜\โ€™\โ€™\โ€™\โ€˜\โ€ฆ\ยท\วƒ\ยซ\โ€น\ยป\โ€บโ€œ\โ€\\สฟ\สพ\โ€ž\โˆž\\|\;\:\*\โ€”\โ€“\โ”€\โ€•\_\/\:\ห\;\=\ยซ\ยป\โ†’]' def normalize_text(text): text = text.lower().strip() text = re.sub('ล“', 'oe', text) text = re.sub('รฆ', 'ae', text) text = re.sub("โ€™|ยด|โ€ฒ|สผ|โ€˜|สป|`", "'", text) text = re.sub("'+ ", " ", text) text = re.sub(" '+", " ", text) text = re.sub("'$", " ", text) text = re.sub("' ", " ", text) text = re.sub("โˆ’|โ€", "-", text) text = re.sub(" -", "", text) text = re.sub("- ", "", text) text = re.sub(chars_to_ignore_regex, '', text) return text def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = normalize_text(batch["sentence"]) return batch ds = ds.map(map_to_array) resampler = torchaudio.transforms.Resample(48_000, 16_000) def map_to_pred(batch): features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = processor.batch_decode(pred_ids) batch["target"] = batch["sentence"] # remove duplicates batch["target"] = re.sub('\.+', '.', batch["target"]) batch["target"] = re.sub('\?+', '?', batch["target"]) batch["target"] = re.sub('!+', '!', batch["target"]) batch["target"] = re.sub(',+', ',', batch["target"]) return batch result = ds.map(map_to_pred, batched=True, batch_size=16, remove_columns=list(ds.features.keys())) wer = load_metric("wer") print(wer.compute(predictions=result["predicted"], references=result["target"])) ``` ## Some results | Reference | Prediction | | ------------- | ------------- | | il vรฉcut ร  new york et y enseigna une grande partie de sa vie. | il a vรฉcu ร  new york et y enseigna une grande partie de sa vie. | | au classement par nations, l'allemagne est la tenante du titre. | au classement der nation l'allemagne est la tenante du titre. | | voici un petit calcul pour fixer les idรฉes. | voici un petit calcul pour fixer les idรฉes. | | oh! tu dois รชtre beau avec | oh! tu dois รชtre beau avec. | | babochet vous le voulez? | baboche, vous le voulez? | | la commission est, par consรฉquent, dรฉfavorable ร  cet amendement. | la commission est, par consรฉquent, dรฉfavorable ร  cet amendement. | All the references and predictions of the test corpus are already available in this repository. ## Results text + punctuation WER=21.47% CER=7.21% text (without punctuation) WER=19.71% CER=6.91%
{"language": "fr", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning"], "datasets": ["common_voice"]}
Ilyes/wav2vec2-large-xlsr-53-french_punctuation
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning", "fr", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "fr" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning #fr #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
Evaluation on Common Voice FR Test ---------------------------------- Some results ------------ All the references and predictions of the test corpus are already available in this repository. Results ------- text + punctuation WER=21.47% CER=7.21% text (without punctuation) WER=19.71% CER=6.91%
[]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning #fr #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n" ]
[ 60 ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning #fr #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n" ]
text-generation
transformers
# Albert DialoGPT Model
{"tags": ["conversational"]}
ImAPizza/DialoGPT-medium-albert
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Albert DialoGPT Model
[ "# Albert DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Albert DialoGPT Model" ]
[ 39, 6 ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Albert DialoGPT Model" ]
text-generation
transformers
# Alberttwo DialoGPT Model
{"tags": ["conversational"]}
ImAPizza/DialoGPT-medium-alberttwo
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Alberttwo DialoGPT Model
[ "# Alberttwo DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Alberttwo DialoGPT Model" ]
[ 39, 8 ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Alberttwo DialoGPT Model" ]
fill-mask
transformers
## Usage: ``` from sentence_transformers import models from sentence_transformers import SentenceTransformer word_embedding_model = models.Transformer('Cro-CoV-cseBERT') pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), pooling_mode_mean_tokens=True, pooling_mode_cls_token=False, pooling_mode_max_tokens=False) model = SentenceTransformer(modules=[word_embedding_model, pooling_model], device='') ## device = 'gpu' or 'cpu' texts_emb = model.encode(texts) ``` ## Datasets: https://github.com/InfoCoV/InfoCoV ## Paper: Please cite https://www.mdpi.com/2076-3417/11/21/10442
{}
InfoCoV/Cro-CoV-cseBERT
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us
## Usage: ## Datasets: URL ## Paper: Please cite URL
[ "## Usage:", "## Datasets:\nURL", "## Paper:\nPlease cite URL" ]
[ "TAGS\n#transformers #pytorch #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n", "## Usage:", "## Datasets:\nURL", "## Paper:\nPlease cite URL" ]
[ 28, 4, 8, 8 ]
[ "TAGS\n#transformers #pytorch #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n## Usage:## Datasets:\nURL## Paper:\nPlease cite URL" ]
text-generation
transformers
# Inkdrop/gpt2-property-classifier
{"language": ["de"], "license": "mit", "tags": ["text-generation"], "widget": [{"text": "\"Ideal als kleine Aufmerksamkeit mit emotionalem Wert Neue Tuchmasken-Referenz \"Verw\u00f6hnmoment\u00bb exklusiv im Set Langanhaltende Feuchtigkeit und Erholung Mit strahlendem Teint Sofort-Effekt Naturnahe Kosmetik Inhalt: Badekristalle Kleiner Gruss von Herzen 60 g, Tuchmaske Verw\u00f6hnmoment 1x\" is a", "example_title": "Bullet point classification"}]}
Inkdrop/gpt2-property-classifier
null
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "de", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "de" ]
TAGS #transformers #pytorch #tensorboard #gpt2 #text-generation #de #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Inkdrop/gpt2-property-classifier
[ "# Inkdrop/gpt2-property-classifier" ]
[ "TAGS\n#transformers #pytorch #tensorboard #gpt2 #text-generation #de #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Inkdrop/gpt2-property-classifier" ]
[ 45, 12 ]
[ "TAGS\n#transformers #pytorch #tensorboard #gpt2 #text-generation #de #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Inkdrop/gpt2-property-classifier" ]
null
null
# Welcome to my model
{"tags": ["chemistry", "climate"]}
Intae/mymodel
null
[ "chemistry", "climate", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #chemistry #climate #region-us
# Welcome to my model
[ "# Welcome to my model" ]
[ "TAGS\n#chemistry #climate #region-us \n", "# Welcome to my model" ]
[ 9, 5 ]
[ "TAGS\n#chemistry #climate #region-us \n# Welcome to my model" ]
fill-mask
transformers
# Sparse BERT base model fine tuned to MNLI without classifier layer (uncased) Fine tuned sparse BERT base to MNLI (GLUE Benchmark) task from [bert-base-uncased-sparse-70-unstructured](https://huggingface.co/Intel/bert-base-uncased-sparse-70-unstructured). <br> This model doesn't have a classifier layer to enable easier loading of the model for training to other downstream tasks. In all the other layers this model is similar to [bert-base-uncased-mnli-sparse-70-unstructured](https://huggingface.co/Intel/bert-base-uncased-mnli-sparse-70-unstructured). <br><br> Note: This model requires `transformers==2.10.0` ## Evaluation Results Matched: 82.5% Mismatched: 83.3% This model can be further fine-tuned to other tasks and achieve the following evaluation results: | Task | QQP (Acc/F1) | QNLI (Acc) | SST-2 (Acc) | STS-B (Pears/Spear) | SQuADv1.1 (Acc/F1) | |------|--------------|------------|-------------|---------------------|--------------------| | | 90.2/86.7 | 90.3 | 91.5 | 88.9/88.6 | 80.5/88.2 |
{"language": "en"}
Intel/bert-base-uncased-mnli-sparse-70-unstructured-no-classifier
null
[ "transformers", "pytorch", "bert", "fill-mask", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #fill-mask #en #autotrain_compatible #endpoints_compatible #region-us
Sparse BERT base model fine tuned to MNLI without classifier layer (uncased) ============================================================================ Fine tuned sparse BERT base to MNLI (GLUE Benchmark) task from bert-base-uncased-sparse-70-unstructured. This model doesn't have a classifier layer to enable easier loading of the model for training to other downstream tasks. In all the other layers this model is similar to bert-base-uncased-mnli-sparse-70-unstructured. Note: This model requires 'transformers==2.10.0' Evaluation Results ------------------ ``` Matched: 82.5% Mismatched: 83.3% ``` This model can be further fine-tuned to other tasks and achieve the following evaluation results:
[]
[ "TAGS\n#transformers #pytorch #bert #fill-mask #en #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 30 ]
[ "TAGS\n#transformers #pytorch #bert #fill-mask #en #autotrain_compatible #endpoints_compatible #region-us \n" ]
text-classification
transformers
# Sparse BERT base model fine tuned to MNLI (uncased) Fine tuned sparse BERT base to MNLI (GLUE Benchmark) task from [bert-base-uncased-sparse-70-unstructured](https://huggingface.co/Intel/bert-base-uncased-sparse-70-unstructured). <br><br> Note: This model requires `transformers==2.10.0` ## Evaluation Results Matched: 82.5% Mismatched: 83.3% This model can be further fine-tuned to other tasks and achieve the following evaluation results: | Task | QQP (Acc/F1) | QNLI (Acc) | SST-2 (Acc) | STS-B (Pears/Spear) | SQuADv1.1 (Acc/F1) | |------|--------------|------------|-------------|---------------------|--------------------| | | 90.2/86.7 | 90.3 | 91.5 | 88.9/88.6 | 80.5/88.2 |
{"language": "en"}
Intel/bert-base-uncased-mnli-sparse-70-unstructured
null
[ "transformers", "pytorch", "bert", "text-classification", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #text-classification #en #autotrain_compatible #endpoints_compatible #region-us
Sparse BERT base model fine tuned to MNLI (uncased) =================================================== Fine tuned sparse BERT base to MNLI (GLUE Benchmark) task from bert-base-uncased-sparse-70-unstructured. Note: This model requires 'transformers==2.10.0' Evaluation Results ------------------ ``` Matched: 82.5% Mismatched: 83.3% ``` This model can be further fine-tuned to other tasks and achieve the following evaluation results:
[]
[ "TAGS\n#transformers #pytorch #bert #text-classification #en #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 30 ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #en #autotrain_compatible #endpoints_compatible #region-us \n" ]
null
transformers
# Sparse BERT base model (uncased) Pretrained model pruned to 1:2 structured sparsity. The model is a pruned version of the [BERT base model](https://huggingface.co/bert-base-uncased). ## Intended Use The model can be used for fine-tuning to downstream tasks with sparsity already embeded to the model. To keep the sparsity a mask should be added to each sparse weight blocking the optimizer from updating the zeros. ## Evaluation Results We get the following results on the tasks development set, all results are mean of 5 different seeded models: | Task | MNLI-m (Acc) | MNLI-mm (Acc) | QQP (Acc/F1) | QNLI (Acc) | SST-2 (Acc) | STS-B (Pears/Spear) | SQuADv1.1 (Acc/F1) | |------|--------------|---------------|--------------|------------|-------------|---------------------|--------------------| | | 83.3 | 83.9 | 90.8/87.6 | 90.4 | 91.3 | 88.8/88.3 | 80.5/88.2 |
{"language": "en"}
Intel/bert-base-uncased-sparse-1_2
null
[ "transformers", "pytorch", "bert", "pretraining", "en", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #pretraining #en #endpoints_compatible #region-us
Sparse BERT base model (uncased) ================================ Pretrained model pruned to 1:2 structured sparsity. The model is a pruned version of the BERT base model. Intended Use ------------ The model can be used for fine-tuning to downstream tasks with sparsity already embeded to the model. To keep the sparsity a mask should be added to each sparse weight blocking the optimizer from updating the zeros. Evaluation Results ------------------ We get the following results on the tasks development set, all results are mean of 5 different seeded models:
[]
[ "TAGS\n#transformers #pytorch #bert #pretraining #en #endpoints_compatible #region-us \n" ]
[ 25 ]
[ "TAGS\n#transformers #pytorch #bert #pretraining #en #endpoints_compatible #region-us \n" ]
fill-mask
transformers
# Sparse BERT base model (uncased) Pretrained model pruned to 70% sparsity. The model is a pruned version of the [BERT base model](https://huggingface.co/bert-base-uncased). ## Intended Use The model can be used for fine-tuning to downstream tasks with sparsity already embeded to the model. To keep the sparsity a mask should be added to each sparse weight blocking the optimizer from updating the zeros.
{"language": "en"}
Intel/bert-base-uncased-sparse-70-unstructured
null
[ "transformers", "pytorch", "bert", "fill-mask", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #fill-mask #en #autotrain_compatible #endpoints_compatible #region-us
# Sparse BERT base model (uncased) Pretrained model pruned to 70% sparsity. The model is a pruned version of the BERT base model. ## Intended Use The model can be used for fine-tuning to downstream tasks with sparsity already embeded to the model. To keep the sparsity a mask should be added to each sparse weight blocking the optimizer from updating the zeros.
[ "# Sparse BERT base model (uncased)\n\nPretrained model pruned to 70% sparsity.\nThe model is a pruned version of the BERT base model.", "## Intended Use\n\nThe model can be used for fine-tuning to downstream tasks with sparsity already embeded to the model.\nTo keep the sparsity a mask should be added to each sparse weight blocking the optimizer from updating the zeros." ]
[ "TAGS\n#transformers #pytorch #bert #fill-mask #en #autotrain_compatible #endpoints_compatible #region-us \n", "# Sparse BERT base model (uncased)\n\nPretrained model pruned to 70% sparsity.\nThe model is a pruned version of the BERT base model.", "## Intended Use\n\nThe model can be used for fine-tuning to downstream tasks with sparsity already embeded to the model.\nTo keep the sparsity a mask should be added to each sparse weight blocking the optimizer from updating the zeros." ]
[ 30, 37, 55 ]
[ "TAGS\n#transformers #pytorch #bert #fill-mask #en #autotrain_compatible #endpoints_compatible #region-us \n# Sparse BERT base model (uncased)\n\nPretrained model pruned to 70% sparsity.\nThe model is a pruned version of the BERT base model.## Intended Use\n\nThe model can be used for fine-tuning to downstream tasks with sparsity already embeded to the model.\nTo keep the sparsity a mask should be added to each sparse weight blocking the optimizer from updating the zeros." ]
fill-mask
transformers
## Model Details: 85% Sparse BERT-Base (uncased) Prune Once for All This model is a sparse pre-trained model that can be fine-tuned for a wide range of language tasks. The process of weight pruning is forcing some of the weights of the neural network to zero. Setting some of the weights to zero results in sparser matrices. Updating neural network weights does involve matrix multiplication, and if we can keep the matrices sparse while retaining enough important information, we can reduce the overall computational overhead. The term "sparse" in the title of the model indicates a ratio of sparsity in the weights; for more details, you can read [Zafrir et al. (2021)](https://arxiv.org/abs/2111.05754). Visualization of Prunce Once for All method from [Zafrir et al. (2021)](https://arxiv.org/abs/2111.05754): ![Zafrir2021_Fig1.png](https://s3.amazonaws.com/moonup/production/uploads/6297f0e30bd2f58c647abb1d/nSDP62H9NHC1FA0C429Xo.png) | Model Detail | Description | | ----------- | ----------- | | Model Authors - Company | Intel | | Date | September 30, 2021 | | Version | 1 | | Type | NLP - General sparse language model | | Architecture | "The method consists of two steps, teacher preparation and student pruning. The sparse pre-trained model we trained is the model we use for transfer learning while maintaining its sparsity pattern. We call the method Prune Once for All since we show how to fine-tune the sparse pre-trained models for several language tasks while we prune the pre-trained model only once." [(Zafrir et al., 2021)](https://arxiv.org/abs/2111.05754) | | Paper or Other Resources | [Zafrir et al. (2021)](https://arxiv.org/abs/2111.05754); [GitHub Repo](https://github.com/IntelLabs/Model-Compression-Research-Package/tree/main/research/prune-once-for-all) | | License | Apache 2.0 | | Questions or Comments | [Community Tab](https://huggingface.co/Intel/bert-base-uncased-sparse-85-unstructured-pruneofa/discussions) and [Intel Developers Discord](https://discord.gg/rv2Gp55UJQ)| | Intended Use | Description | | ----------- | ----------- | | Primary intended uses | This is a general sparse language model; in its current form, it is not ready for downstream prediction tasks, but it can be fine-tuned for several language tasks including (but not limited to) question-answering, genre natural language inference, and sentiment classification. | | Primary intended users | Anyone who needs an efficient general language model for other downstream tasks. | | Out-of-scope uses | The model should not be used to intentionally create hostile or alienating environments for people.| ### How to use Here is an example of how to import this model in Python: ```python import transformers model = transformers.AutoModelForQuestionAnswering.from_pretrained('Intel/bert-base-uncased-sparse-85-unstructured-pruneofa') ``` For more code examples, refer to the [GitHub Repo](https://github.com/IntelLabs/Model-Compression-Research-Package/tree/main/research/prune-once-for-all). ### Metrics (Model Performance): | Model | Model Size | SQuADv1.1 (EM/F1) | MNLI-m (Acc) | MNLI-mm (Acc) | QQP (Acc/F1) | QNLI (Acc) | SST-2 (Acc) | |-------------------------------|:----------:|:-----------------:|:------------:|:-------------:|:------------:|:----------:|:-----------:| | [80% Sparse BERT-Base uncased fine-tuned on SQuAD1.1](https://huggingface.co/Intel/bert-base-uncased-squadv1.1-sparse-80-1x4-block-pruneofa) | - | 81.29/88.47 | - | - | - | - | - | | [**85% Sparse BERT-Base uncased**](https://huggingface.co/Intel/bert-base-uncased-sparse-85-unstructured-pruneofa) | Medium | 81.10/88.42 | 82.71 | 83.67 | 91.15/88.00 | 90.34 | 91.46 | | [90% Sparse BERT-Base uncased](https://huggingface.co/Intel/bert-base-uncased-sparse-90-unstructured-pruneofa) | Medium | 79.83/87.25 | 81.45 | 82.43 | 90.93/87.72 | 89.07 | 90.88 | | [90% Sparse BERT-Large uncased](https://huggingface.co/Intel/bert-large-uncased-sparse-90-unstructured-pruneofa) | Large | 83.35/90.20 | 83.74 | 84.20 | 91.48/88.43 | 91.39 | 92.95 | | [85% Sparse DistilBERT uncased](https://huggingface.co/Intel/distilbert-base-uncased-sparse-85-unstructured-pruneofa) | Small | 78.10/85.82 | 81.35 | 82.03 | 90.29/86.97 | 88.31 | 90.60 | | [90% Sparse DistilBERT uncased](https://huggingface.co/Intel/distilbert-base-uncased-sparse-90-unstructured-pruneofa) | Small | 76.91/84.82 | 80.68 | 81.47 | 90.05/86.67 | 87.66 | 90.02 | All the results are the mean of two seperate experiments with the same hyper-parameters and different seeds. | Training and Evaluation Data | Description | | ----------- | ----------- | | Datasets | [English Wikipedia Dataset](https://huggingface.co/datasets/wikipedia) (2500M words). | | Motivation | To build an efficient and accurate base model for several downstream language tasks. | | Preprocessing | "We use the English Wikipedia dataset (2500M words) for training the models on the pre-training task. We split the data into train (95%) and validation (5%) sets. Both sets are preprocessed as described in the modelsโ€™ original papers ([Devlin et al., 2019](https://arxiv.org/abs/1810.04805), [Sanh et al., 2019](https://arxiv.org/abs/1910.01108)). We process the data to use the maximum sequence length allowed by the models, however, we allow shorter sequences at a probability of 0:1." | | Ethical Considerations | Description | | ----------- | ----------- | | Data | The training data come from Wikipedia articles | | Human life | The model is not intended to inform decisions central to human life or flourishing. It is an aggregated set of labelled Wikipedia articles. | | Mitigations | No additional risk mitigation strategies were considered during model development. | | Risks and harms | Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al., 2021](https://aclanthology.org/2021.acl-long.330.pdf), and [Bender et al., 2021](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. Beyond this, the extent of the risks involved by using the model remain unknown.| | Use cases | - | | Caveats and Recommendations | | ----------- | | Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. There are no additional caveats or recommendations for this model. | ### BibTeX entry and citation info ```bibtex @article{zafrir2021prune, title={Prune Once for All: Sparse Pre-Trained Language Models}, author={Zafrir, Ofir and Larey, Ariel and Boudoukh, Guy and Shen, Haihao and Wasserblat, Moshe}, journal={arXiv preprint arXiv:2111.05754}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["fill-mask"], "datasets": ["wikipedia", "bookcorpus"]}
Intel/bert-base-uncased-sparse-85-unstructured-pruneofa
null
[ "transformers", "pytorch", "tf", "bert", "pretraining", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:2111.05754", "arxiv:1810.04805", "arxiv:1910.01108", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[ "2111.05754", "1810.04805", "1910.01108" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #fill-mask #en #dataset-wikipedia #dataset-bookcorpus #arxiv-2111.05754 #arxiv-1810.04805 #arxiv-1910.01108 #license-apache-2.0 #endpoints_compatible #region-us
Model Details: 85% Sparse BERT-Base (uncased) Prune Once for All ---------------------------------------------------------------- This model is a sparse pre-trained model that can be fine-tuned for a wide range of language tasks. The process of weight pruning is forcing some of the weights of the neural network to zero. Setting some of the weights to zero results in sparser matrices. Updating neural network weights does involve matrix multiplication, and if we can keep the matrices sparse while retaining enough important information, we can reduce the overall computational overhead. The term "sparse" in the title of the model indicates a ratio of sparsity in the weights; for more details, you can read Zafrir et al. (2021). Visualization of Prunce Once for All method from Zafrir et al. (2021): !Zafrir2021\_Fig1.png ### How to use Here is an example of how to import this model in Python: For more code examples, refer to the GitHub Repo. ### Metrics (Model Performance): All the results are the mean of two seperate experiments with the same hyper-parameters and different seeds. ### BibTeX entry and citation info
[ "### How to use\n\n\nHere is an example of how to import this model in Python:\n\n\nFor more code examples, refer to the GitHub Repo.", "### Metrics (Model Performance):\n\n\n\nAll the results are the mean of two seperate experiments with the same hyper-parameters and different seeds.", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #fill-mask #en #dataset-wikipedia #dataset-bookcorpus #arxiv-2111.05754 #arxiv-1810.04805 #arxiv-1910.01108 #license-apache-2.0 #endpoints_compatible #region-us \n", "### How to use\n\n\nHere is an example of how to import this model in Python:\n\n\nFor more code examples, refer to the GitHub Repo.", "### Metrics (Model Performance):\n\n\n\nAll the results are the mean of two seperate experiments with the same hyper-parameters and different seeds.", "### BibTeX entry and citation info" ]
[ 83, 33, 31, 10 ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #fill-mask #en #dataset-wikipedia #dataset-bookcorpus #arxiv-2111.05754 #arxiv-1810.04805 #arxiv-1910.01108 #license-apache-2.0 #endpoints_compatible #region-us \n### How to use\n\n\nHere is an example of how to import this model in Python:\n\n\nFor more code examples, refer to the GitHub Repo.### Metrics (Model Performance):\n\n\n\nAll the results are the mean of two seperate experiments with the same hyper-parameters and different seeds.### BibTeX entry and citation info" ]
fill-mask
transformers
## Model Details: 90% Sparse BERT-Base (uncased) Prune Once for All This model is a sparse pre-trained model that can be fine-tuned for a wide range of language tasks. The process of weight pruning is forcing some of the weights of the neural network to zero. Setting some of the weights to zero results in sparser matrices. Updating neural network weights does involve matrix multiplication, and if we can keep the matrices sparse while retaining enough important information, we can reduce the overall computational overhead. The term "sparse" in the title of the model indicates a ratio of sparsity in the weights; for more details, you can read [Zafrir et al. (2021)](https://arxiv.org/abs/2111.05754). Visualization of Prunce Once for All method from [Zafrir et al. (2021)](https://arxiv.org/abs/2111.05754): ![Zafrir2021_Fig1.png](https://s3.amazonaws.com/moonup/production/uploads/6297f0e30bd2f58c647abb1d/nSDP62H9NHC1FA0C429Xo.png) | Model Detail | Description | | ----------- | ----------- | | Model Authors - Company | Intel | | Date | September 30, 2021 | | Version | 1 | | Type | NLP - General sparse language model | | Architecture | "The method consists of two steps, teacher preparation and student pruning. The sparse pre-trained model we trained is the model we use for transfer learning while maintaining its sparsity pattern. We call the method Prune Once for All since we show how to fine-tune the sparse pre-trained models for several language tasks while we prune the pre-trained model only once." [(Zafrir et al., 2021)](https://arxiv.org/abs/2111.05754) | | Paper or Other Resources | [Zafrir et al. (2021)](https://arxiv.org/abs/2111.05754); [GitHub Repo](https://github.com/IntelLabs/Model-Compression-Research-Package/tree/main/research/prune-once-for-all) | | License | Apache 2.0 | | Questions or Comments | [Community Tab](https://huggingface.co/Intel/bert-base-uncased-sparse-90-unstructured-pruneofa/discussions) and [Intel Developers Discord](https://discord.gg/rv2Gp55UJQ)| | Intended Use | Description | | ----------- | ----------- | | Primary intended uses | This is a general sparse language model; in its current form, it is not ready for downstream prediction tasks, but it can be fine-tuned for several language tasks including (but not limited to) question-answering, genre natural language inference, and sentiment classification. | | Primary intended users | Anyone who needs an efficient general language model for other downstream tasks. | | Out-of-scope uses | The model should not be used to intentionally create hostile or alienating environments for people.| ### How to use Here is an example of how to import this model in Python: ```python import transformers model = transformers.AutoModelForQuestionAnswering.from_pretrained('Intel/bert-base-uncased-sparse-90-unstructured-pruneofa') ``` For more code examples, refer to the [GitHub Repo](https://github.com/IntelLabs/Model-Compression-Research-Package/tree/main/research/prune-once-for-all). ### Metrics (Model Performance): | Model | Model Size | SQuADv1.1 (EM/F1) | MNLI-m (Acc) | MNLI-mm (Acc) | QQP (Acc/F1) | QNLI (Acc) | SST-2 (Acc) | |-------------------------------|:----------:|:-----------------:|:------------:|:-------------:|:------------:|:----------:|:-----------:| | [80% Sparse BERT-Base uncased fine-tuned on SQuAD1.1](https://huggingface.co/Intel/bert-base-uncased-squadv1.1-sparse-80-1x4-block-pruneofa) | - | 81.29/88.47 | - | - | - | - | - | | [85% Sparse BERT-Base uncased](https://huggingface.co/Intel/bert-base-uncased-sparse-85-unstructured-pruneofa) | Medium | 81.10/88.42 | 82.71 | 83.67 | 91.15/88.00 | 90.34 | 91.46 | | [**90% Sparse BERT-Base uncased**](https://huggingface.co/Intel/bert-base-uncased-sparse-90-unstructured-pruneofa) | Medium | 79.83/87.25 | 81.45 | 82.43 | 90.93/87.72 | 89.07 | 90.88 | | [90% Sparse BERT-Large uncased](https://huggingface.co/Intel/bert-large-uncased-sparse-90-unstructured-pruneofa) | Large | 83.35/90.20 | 83.74 | 84.20 | 91.48/88.43 | 91.39 | 92.95 | | [85% Sparse DistilBERT uncased](https://huggingface.co/Intel/distilbert-base-uncased-sparse-85-unstructured-pruneofa) | Small | 78.10/85.82 | 81.35 | 82.03 | 90.29/86.97 | 88.31 | 90.60 | | [90% Sparse DistilBERT uncased](https://huggingface.co/Intel/distilbert-base-uncased-sparse-90-unstructured-pruneofa) | Small | 76.91/84.82 | 80.68 | 81.47 | 90.05/86.67 | 87.66 | 90.02 | All the results are the mean of two seperate experiments with the same hyper-parameters and different seeds. | Training and Evaluation Data | Description | | ----------- | ----------- | | Datasets | [English Wikipedia Dataset](https://huggingface.co/datasets/wikipedia) (2500M words). | | Motivation | To build an efficient and accurate base model for several downstream language tasks. | | Preprocessing | "We use the English Wikipedia dataset (2500M words) for training the models on the pre-training task. We split the data into train (95%) and validation (5%) sets. Both sets are preprocessed as described in the modelsโ€™ original papers ([Devlin et al., 2019](https://arxiv.org/abs/1810.04805), [Sanh et al., 2019](https://arxiv.org/abs/1910.01108)). We process the data to use the maximum sequence length allowed by the models, however, we allow shorter sequences at a probability of 0:1." | | Ethical Considerations | Description | | ----------- | ----------- | | Data | The training data come from Wikipedia articles | | Human life | The model is not intended to inform decisions central to human life or flourishing. It is an aggregated set of labelled Wikipedia articles. | | Mitigations | No additional risk mitigation strategies were considered during model development. | | Risks and harms | Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al., 2021](https://aclanthology.org/2021.acl-long.330.pdf), and [Bender et al., 2021](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. Beyond this, the extent of the risks involved by using the model remain unknown.| | Use cases | - | | Caveats and Recommendations | | ----------- | | Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. There are no additional caveats or recommendations for this model. | ### BibTeX entry and citation info ```bibtex @article{zafrir2021prune, title={Prune Once for All: Sparse Pre-Trained Language Models}, author={Zafrir, Ofir and Larey, Ariel and Boudoukh, Guy and Shen, Haihao and Wasserblat, Moshe}, journal={arXiv preprint arXiv:2111.05754}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["fill-mask", "bert"], "datasets": ["wikipedia", "bookcorpus"]}
Intel/bert-base-uncased-sparse-90-unstructured-pruneofa
null
[ "transformers", "pytorch", "tf", "bert", "pretraining", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:2111.05754", "arxiv:1810.04805", "arxiv:1910.01108", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[ "2111.05754", "1810.04805", "1910.01108" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #fill-mask #en #dataset-wikipedia #dataset-bookcorpus #arxiv-2111.05754 #arxiv-1810.04805 #arxiv-1910.01108 #license-apache-2.0 #endpoints_compatible #region-us
Model Details: 90% Sparse BERT-Base (uncased) Prune Once for All ---------------------------------------------------------------- This model is a sparse pre-trained model that can be fine-tuned for a wide range of language tasks. The process of weight pruning is forcing some of the weights of the neural network to zero. Setting some of the weights to zero results in sparser matrices. Updating neural network weights does involve matrix multiplication, and if we can keep the matrices sparse while retaining enough important information, we can reduce the overall computational overhead. The term "sparse" in the title of the model indicates a ratio of sparsity in the weights; for more details, you can read Zafrir et al. (2021). Visualization of Prunce Once for All method from Zafrir et al. (2021): !Zafrir2021\_Fig1.png ### How to use Here is an example of how to import this model in Python: For more code examples, refer to the GitHub Repo. ### Metrics (Model Performance): All the results are the mean of two seperate experiments with the same hyper-parameters and different seeds. ### BibTeX entry and citation info
[ "### How to use\n\n\nHere is an example of how to import this model in Python:\n\n\nFor more code examples, refer to the GitHub Repo.", "### Metrics (Model Performance):\n\n\n\nAll the results are the mean of two seperate experiments with the same hyper-parameters and different seeds.", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #fill-mask #en #dataset-wikipedia #dataset-bookcorpus #arxiv-2111.05754 #arxiv-1810.04805 #arxiv-1910.01108 #license-apache-2.0 #endpoints_compatible #region-us \n", "### How to use\n\n\nHere is an example of how to import this model in Python:\n\n\nFor more code examples, refer to the GitHub Repo.", "### Metrics (Model Performance):\n\n\n\nAll the results are the mean of two seperate experiments with the same hyper-parameters and different seeds.", "### BibTeX entry and citation info" ]
[ 83, 33, 31, 10 ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #fill-mask #en #dataset-wikipedia #dataset-bookcorpus #arxiv-2111.05754 #arxiv-1810.04805 #arxiv-1910.01108 #license-apache-2.0 #endpoints_compatible #region-us \n### How to use\n\n\nHere is an example of how to import this model in Python:\n\n\nFor more code examples, refer to the GitHub Repo.### Metrics (Model Performance):\n\n\n\nAll the results are the mean of two seperate experiments with the same hyper-parameters and different seeds.### BibTeX entry and citation info" ]
question-answering
transformers
## Model Details: 80% 1x4 Block Sparse BERT-Base (uncased) Fine Tuned on SQuADv1.1 This model has been fine-tuned for the NLP task of question answering, trained on the SQuAD 1.1 dataset. It is a result of fine-tuning a Prune Once For All 80% 1x4 block sparse pre-trained BERT-Base model, combined with knowledge distillation. > We present a new method for training sparse pre-trained Transformer language models by integrating weight pruning and model distillation. These sparse pre-trained models can be used to transfer learning for a wide range of tasks while maintaining their sparsity pattern. We show how the compressed sparse pre-trained models we trained transfer their knowledge to five different downstream natural language tasks with minimal accuracy loss. | Model Detail | Description | | ----------- | ----------- | | Model Authors - Company | Intel | | Model Card Authors | Intel | | Date | February 27, 2022 | | Version | 1 | | Type | NLP - Question Answering | | Architecture | "The method consists of two steps, teacher preparation and student pruning. The sparse pre-trained model we trained is the model we use for transfer learning while maintaining its sparsity pattern. We call the method Prune Once for All since we show how to fine-tune the sparse pre-trained models for several language tasks while we prune the pre-trained model only once." [(Zafrir et al., 2021)](https://arxiv.org/abs/2111.05754) | | Paper or Other Resources | [Paper: Zafrir et al. (2021)](https://arxiv.org/abs/2111.05754); [GitHub Repo](https://github.com/IntelLabs/Model-Compression-Research-Package/tree/main/research/prune-once-for-all) | | License | Apache 2.0 | | Questions or Comments | [Community Tab](https://huggingface.co/Intel/bert-base-uncased-squadv1.1-sparse-80-1x4-block-pruneofa/discussions) and [Intel Developers Discord](https://discord.gg/rv2Gp55UJQ)| Visualization of Prunce Once for All method from [Zafrir et al. (2021)](https://arxiv.org/abs/2111.05754). More details can be found in their paper. ![Zafrir2021_Fig1.png](https://s3.amazonaws.com/moonup/production/uploads/6297f0e30bd2f58c647abb1d/nSDP62H9NHC1FA0C429Xo.png) | Intended Use | Description | | ----------- | ----------- | | Primary intended uses | You can use the model for the NLP task of question answering: given a corpus of text, you can ask it a question about that text, and it will find the answer in the text. | | Primary intended users | Anyone doing question answering | | Out-of-scope uses | The model should not be used to intentionally create hostile or alienating environments for people.| ### How to use Here is how to import this model in Python: ```python import transformers import model_compression_research as model_comp model = transformers.AutoModelForQuestionAnswering.from_pretrained('Intel/bert-base-uncased-squadv1.1-sparse-80-1x4-block-pruneofa') scheduler = mcr.pruning_scheduler_factory(model, '../../examples/transformers/question-answering/config/lock_config.json') # Train your model... scheduler.remove_pruning() ``` For more code examples, refer to the [GitHub Repo](https://github.com/IntelLabs/Model-Compression-Research-Package/tree/main/research/prune-once-for-all). ### Metrics (Model Performance): | Model | Model Size | SQuADv1.1 (EM/F1) | MNLI-m (Acc) | MNLI-mm (Acc) | QQP (Acc/F1) | QNLI (Acc) | SST-2 (Acc) | |-------------------------------|:----------:|:-----------------:|:------------:|:-------------:|:------------:|:----------:|:-----------:| | [**80% 1x4 Block Sparse BERT-Base uncased**](https://huggingface.co/Intel/bert-base-uncased-squadv1.1-sparse-80-1x4-block-pruneofa) | - | 81.29/88.47 | - | - | - | - | - | | [85% Sparse BERT-Base uncased](https://huggingface.co/Intel/bert-base-uncased-sparse-85-unstructured-pruneofa) | Medium | 81.10/88.42 | 82.71 | 83.67 | 91.15/88.00 | 90.34 | 91.46 | | [90% Sparse BERT-Base uncased](https://huggingface.co/Intel/bert-base-uncased-sparse-90-unstructured-pruneofa) | Medium | 79.83/87.25 | 81.45 | 82.43 | 90.93/87.72 | 89.07 | 90.88 | | [90% Sparse BERT-Large uncased](https://huggingface.co/Intel/bert-large-uncased-sparse-90-unstructured-pruneofa) | Large | 83.35/90.20 | 83.74 | 84.20 | 91.48/88.43 | 91.39 | 92.95 | | [85% Sparse DistilBERT uncased](https://huggingface.co/Intel/distilbert-base-uncased-sparse-85-unstructured-pruneofa) | Small | 78.10/85.82 | 81.35 | 82.03 | 90.29/86.97 | 88.31 | 90.60 | | [90% Sparse DistilBERT uncased](https://huggingface.co/Intel/distilbert-base-uncased-sparse-90-unstructured-pruneofa) | Small | 76.91/84.82 | 80.68 | 81.47 | 90.05/86.67 | 87.66 | 90.02 | All the results are the mean of two seperate experiments with the same hyper-parameters and different seeds. | Training and Evaluation Data | Description | | ----------- | ----------- | | Datasets | SQuAD1.1: "Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable." (https://huggingface.co/datasets/squad)| | Motivation | To build an efficient and accurate model for the question answering task. | | Preprocessing | "We use the English Wikipedia dataset (2500M words) for training the models on the pre-training task. We split the data into train (95%) and validation (5%) sets. Both sets are preprocessed as described in the modelsโ€™ original papers ([Devlin et al., 2019](https://arxiv.org/abs/1810.04805), [Sanh et al., 2019](https://arxiv.org/abs/1910.01108)). We process the data to use the maximum sequence length allowed by the models, however, we allow shorter sequences at a probability of 0:1." Following the pre-training on Wikipedia, fine-tuning is completed on the SQuAD1.1 dataset. | | Ethical Considerations | Description | | ----------- | ----------- | | Data | The training data come from Wikipedia articles | | Human life | The model is not intended to inform decisions central to human life or flourishing. It is an aggregated set of labelled Wikipedia articles. | | Mitigations | No additional risk mitigation strategies were considered during model development. | | Risks and harms | Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al., 2021](https://aclanthology.org/2021.acl-long.330.pdf), and [Bender et al., 2021](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. Beyond this, the extent of the risks involved by using the model remain unknown.| | Use cases | - | | Caveats and Recommendations | | ----------- | | Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. There are no additional caveats or recommendations for this model. | ### BibTeX entry and citation info ```bibtex @article{zafrir2021prune, title={Prune Once for All: Sparse Pre-Trained Language Models}, author={Zafrir, Ofir and Larey, Ariel and Boudoukh, Guy and Shen, Haihao and Wasserblat, Moshe}, journal={arXiv preprint arXiv:2111.05754}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["question-answering", "bert"], "datasets": ["squad"]}
Intel/bert-base-uncased-squadv1.1-sparse-80-1x4-block-pruneofa
null
[ "transformers", "pytorch", "bert", "question-answering", "en", "dataset:squad", "arxiv:2111.05754", "arxiv:1810.04805", "arxiv:1910.01108", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[ "2111.05754", "1810.04805", "1910.01108" ]
[ "en" ]
TAGS #transformers #pytorch #bert #question-answering #en #dataset-squad #arxiv-2111.05754 #arxiv-1810.04805 #arxiv-1910.01108 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
Model Details: 80% 1x4 Block Sparse BERT-Base (uncased) Fine Tuned on SQuADv1.1 ------------------------------------------------------------------------------- This model has been fine-tuned for the NLP task of question answering, trained on the SQuAD 1.1 dataset. It is a result of fine-tuning a Prune Once For All 80% 1x4 block sparse pre-trained BERT-Base model, combined with knowledge distillation. > > We present a new method for training sparse pre-trained Transformer language models by integrating weight pruning and model distillation. These sparse pre-trained models can be used to transfer learning for a wide range of tasks while maintaining their sparsity pattern. We show how the compressed sparse pre-trained models we trained transfer their knowledge to five different downstream natural language tasks with minimal accuracy loss. > > > Visualization of Prunce Once for All method from Zafrir et al. (2021). More details can be found in their paper. !Zafrir2021\_Fig1.png ### How to use Here is how to import this model in Python: For more code examples, refer to the GitHub Repo. ### Metrics (Model Performance): All the results are the mean of two seperate experiments with the same hyper-parameters and different seeds. ### BibTeX entry and citation info
[ "### How to use\n\n\nHere is how to import this model in Python:\n\n\nFor more code examples, refer to the GitHub Repo.", "### Metrics (Model Performance):\n\n\n\nAll the results are the mean of two seperate experiments with the same hyper-parameters and different seeds.", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #en #dataset-squad #arxiv-2111.05754 #arxiv-1810.04805 #arxiv-1910.01108 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n", "### How to use\n\n\nHere is how to import this model in Python:\n\n\nFor more code examples, refer to the GitHub Repo.", "### Metrics (Model Performance):\n\n\n\nAll the results are the mean of two seperate experiments with the same hyper-parameters and different seeds.", "### BibTeX entry and citation info" ]
[ 77, 30, 31, 10 ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #en #dataset-squad #arxiv-2111.05754 #arxiv-1810.04805 #arxiv-1910.01108 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n### How to use\n\n\nHere is how to import this model in Python:\n\n\nFor more code examples, refer to the GitHub Repo.### Metrics (Model Performance):\n\n\n\nAll the results are the mean of two seperate experiments with the same hyper-parameters and different seeds.### BibTeX entry and citation info" ]
fill-mask
transformers
## Model Details: 90% Sparse BERT-Large (uncased) Prune Once for All This model is a sparse pre-trained model that can be fine-tuned for a wide range of language tasks. The process of weight pruning is forcing some of the weights of the neural network to zero. Setting some of the weights to zero results in sparser matrices. Updating neural network weights does involve matrix multiplication, and if we can keep the matrices sparse while retaining enough important information, we can reduce the overall computational overhead. The term "sparse" in the title of the model indicates a ratio of sparsity in the weights; for more details, you can read [Zafrir et al. (2021)](https://arxiv.org/abs/2111.05754). Visualization of Prunce Once for All method from [Zafrir et al. (2021)](https://arxiv.org/abs/2111.05754): ![Zafrir2021_Fig1.png](https://s3.amazonaws.com/moonup/production/uploads/6297f0e30bd2f58c647abb1d/nSDP62H9NHC1FA0C429Xo.png) | Model Detail | Description | | ----------- | ----------- | | Model Authors - Company | Intel | | Date | September 30, 2021 | | Version | 1 | | Type | NLP - General sparse language model | | Architecture | "The method consists of two steps, teacher preparation and student pruning. The sparse pre-trained model we trained is the model we use for transfer learning while maintaining its sparsity pattern. We call the method Prune Once for All since we show how to fine-tune the sparse pre-trained models for several language tasks while we prune the pre-trained model only once." [(Zafrir et al., 2021)](https://arxiv.org/abs/2111.05754) | | Paper or Other Resources | [Zafrir et al. (2021)](https://arxiv.org/abs/2111.05754); [GitHub Repo](https://github.com/IntelLabs/Model-Compression-Research-Package/tree/main/research/prune-once-for-all) | | License | Apache 2.0 | | Questions or Comments | [Community Tab](https://huggingface.co/Intel/bert-large-uncased-sparse-90-unstructured-pruneofa/discussions) and [Intel Developers Discord](https://discord.gg/rv2Gp55UJQ)| | Intended Use | Description | | ----------- | ----------- | | Primary intended uses | This is a general sparse language model; in its current form, it is not ready for downstream prediction tasks, but it can be fine-tuned for several language tasks including (but not limited to) question-answering, genre natural language inference, and sentiment classification. | | Primary intended users | Anyone who needs an efficient general language model for other downstream tasks. | | Out-of-scope uses | The model should not be used to intentionally create hostile or alienating environments for people.| ### How to use Here is an example of how to import this model in Python: ```python import transformers model = transformers.AutoModelForQuestionAnswering.from_pretrained('Intel/bert-large-uncased-sparse-90-unstructured-pruneofa') ``` For more code examples, refer to the [GitHub Repo](https://github.com/IntelLabs/Model-Compression-Research-Package/tree/main/research/prune-once-for-all). ### Metrics (Model Performance): | Model | Model Size | SQuADv1.1 (EM/F1) | MNLI-m (Acc) | MNLI-mm (Acc) | QQP (Acc/F1) | QNLI (Acc) | SST-2 (Acc) | |-------------------------------|:----------:|:-----------------:|:------------:|:-------------:|:------------:|:----------:|:-----------:| | [80% Sparse BERT-Base uncased fine-tuned on SQuAD1.1](https://huggingface.co/Intel/bert-base-uncased-squadv1.1-sparse-80-1x4-block-pruneofa) | - | 81.29/88.47 | - | - | - | - | - | | [85% Sparse BERT-Base uncased](https://huggingface.co/Intel/bert-base-uncased-sparse-85-unstructured-pruneofa) | Medium | 81.10/88.42 | 82.71 | 83.67 | 91.15/88.00 | 90.34 | 91.46 | | [90% Sparse BERT-Base uncased](https://huggingface.co/Intel/bert-base-uncased-sparse-90-unstructured-pruneofa) | Medium | 79.83/87.25 | 81.45 | 82.43 | 90.93/87.72 | 89.07 | 90.88 | | [**90% Sparse BERT-Large uncased**](https://huggingface.co/Intel/bert-large-uncased-sparse-90-unstructured-pruneofa) | Large | 83.35/90.20 | 83.74 | 84.20 | 91.48/88.43 | 91.39 | 92.95 | | [85% Sparse DistilBERT uncased](https://huggingface.co/Intel/distilbert-base-uncased-sparse-85-unstructured-pruneofa) | Small | 78.10/85.82 | 81.35 | 82.03 | 90.29/86.97 | 88.31 | 90.60 | | [90% Sparse DistilBERT uncased](https://huggingface.co/Intel/distilbert-base-uncased-sparse-90-unstructured-pruneofa) | Small | 76.91/84.82 | 80.68 | 81.47 | 90.05/86.67 | 87.66 | 90.02 | All the results are the mean of two seperate experiments with the same hyper-parameters and different seeds. | Training and Evaluation Data | Description | | ----------- | ----------- | | Datasets | [English Wikipedia Dataset](https://huggingface.co/datasets/wikipedia) (2500M words). | | Motivation | To build an efficient and accurate base model for several downstream language tasks. | | Preprocessing | "We use the English Wikipedia dataset (2500M words) for training the models on the pre-training task. We split the data into train (95%) and validation (5%) sets. Both sets are preprocessed as described in the modelsโ€™ original papers ([Devlin et al., 2019](https://arxiv.org/abs/1810.04805), [Sanh et al., 2019](https://arxiv.org/abs/1910.01108)). We process the data to use the maximum sequence length allowed by the models, however, we allow shorter sequences at a probability of 0:1." | | Ethical Considerations | Description | | ----------- | ----------- | | Data | The training data come from Wikipedia articles | | Human life | The model is not intended to inform decisions central to human life or flourishing. It is an aggregated set of labelled Wikipedia articles. | | Mitigations | No additional risk mitigation strategies were considered during model development. | | Risks and harms | Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al., 2021](https://aclanthology.org/2021.acl-long.330.pdf), and [Bender et al., 2021](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. Beyond this, the extent of the risks involved by using the model remain unknown.| | Use cases | - | | Caveats and Recommendations | | ----------- | | Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. There are no additional caveats or recommendations for this model. | ### BibTeX entry and citation info ```bibtex @article{zafrir2021prune, title={Prune Once for All: Sparse Pre-Trained Language Models}, author={Zafrir, Ofir and Larey, Ariel and Boudoukh, Guy and Shen, Haihao and Wasserblat, Moshe}, journal={arXiv preprint arXiv:2111.05754}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "tags": ["fill-mask"], "datasets": ["wikipedia", "bookcorpus"]}
Intel/bert-large-uncased-sparse-90-unstructured-pruneofa
null
[ "transformers", "pytorch", "tf", "bert", "pretraining", "fill-mask", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:2111.05754", "arxiv:1810.04805", "arxiv:1910.01108", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[ "2111.05754", "1810.04805", "1910.01108" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #pretraining #fill-mask #en #dataset-wikipedia #dataset-bookcorpus #arxiv-2111.05754 #arxiv-1810.04805 #arxiv-1910.01108 #license-apache-2.0 #endpoints_compatible #region-us
Model Details: 90% Sparse BERT-Large (uncased) Prune Once for All ----------------------------------------------------------------- This model is a sparse pre-trained model that can be fine-tuned for a wide range of language tasks. The process of weight pruning is forcing some of the weights of the neural network to zero. Setting some of the weights to zero results in sparser matrices. Updating neural network weights does involve matrix multiplication, and if we can keep the matrices sparse while retaining enough important information, we can reduce the overall computational overhead. The term "sparse" in the title of the model indicates a ratio of sparsity in the weights; for more details, you can read Zafrir et al. (2021). Visualization of Prunce Once for All method from Zafrir et al. (2021): !Zafrir2021\_Fig1.png ### How to use Here is an example of how to import this model in Python: For more code examples, refer to the GitHub Repo. ### Metrics (Model Performance): All the results are the mean of two seperate experiments with the same hyper-parameters and different seeds. ### BibTeX entry and citation info
[ "### How to use\n\n\nHere is an example of how to import this model in Python:\n\n\nFor more code examples, refer to the GitHub Repo.", "### Metrics (Model Performance):\n\n\n\nAll the results are the mean of two seperate experiments with the same hyper-parameters and different seeds.", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #fill-mask #en #dataset-wikipedia #dataset-bookcorpus #arxiv-2111.05754 #arxiv-1810.04805 #arxiv-1910.01108 #license-apache-2.0 #endpoints_compatible #region-us \n", "### How to use\n\n\nHere is an example of how to import this model in Python:\n\n\nFor more code examples, refer to the GitHub Repo.", "### Metrics (Model Performance):\n\n\n\nAll the results are the mean of two seperate experiments with the same hyper-parameters and different seeds.", "### BibTeX entry and citation info" ]
[ 83, 33, 31, 10 ]
[ "TAGS\n#transformers #pytorch #tf #bert #pretraining #fill-mask #en #dataset-wikipedia #dataset-bookcorpus #arxiv-2111.05754 #arxiv-1810.04805 #arxiv-1910.01108 #license-apache-2.0 #endpoints_compatible #region-us \n### How to use\n\n\nHere is an example of how to import this model in Python:\n\n\nFor more code examples, refer to the GitHub Repo.### Metrics (Model Performance):\n\n\n\nAll the results are the mean of two seperate experiments with the same hyper-parameters and different seeds.### BibTeX entry and citation info" ]
question-answering
transformers
# 90% Sparse BERT-Large (uncased) Fine Tuned on SQuADv1.1 This model is a result of fine-tuning a Prune OFA 90% sparse pre-trained BERT-Large combined with knowledge distillation. This model yields the following results on SQuADv1.1 development set:<br> `{"exact_match": 83.56669820245979, "f1": 90.20829352733487}` For further details see our paper, [Prune Once for All: Sparse Pre-Trained Language Models](https://arxiv.org/abs/2111.05754), and our open source implementation available [here](https://github.com/IntelLabs/Model-Compression-Research-Package/tree/main/research/prune-once-for-all).
{"language": "en"}
Intel/bert-large-uncased-squadv1.1-sparse-90-unstructured
null
[ "transformers", "pytorch", "tf", "bert", "question-answering", "en", "arxiv:2111.05754", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[ "2111.05754" ]
[ "en" ]
TAGS #transformers #pytorch #tf #bert #question-answering #en #arxiv-2111.05754 #endpoints_compatible #region-us
# 90% Sparse BERT-Large (uncased) Fine Tuned on SQuADv1.1 This model is a result of fine-tuning a Prune OFA 90% sparse pre-trained BERT-Large combined with knowledge distillation. This model yields the following results on SQuADv1.1 development set:<br> '{"exact_match": 83.56669820245979, "f1": 90.20829352733487}' For further details see our paper, Prune Once for All: Sparse Pre-Trained Language Models, and our open source implementation available here.
[ "# 90% Sparse BERT-Large (uncased) Fine Tuned on SQuADv1.1\nThis model is a result of fine-tuning a Prune OFA 90% sparse pre-trained BERT-Large combined with knowledge distillation.\nThis model yields the following results on SQuADv1.1 development set:<br>\n'{\"exact_match\": 83.56669820245979, \"f1\": 90.20829352733487}'\n\nFor further details see our paper, Prune Once for All: Sparse Pre-Trained Language Models, and our open source implementation available here." ]
[ "TAGS\n#transformers #pytorch #tf #bert #question-answering #en #arxiv-2111.05754 #endpoints_compatible #region-us \n", "# 90% Sparse BERT-Large (uncased) Fine Tuned on SQuADv1.1\nThis model is a result of fine-tuning a Prune OFA 90% sparse pre-trained BERT-Large combined with knowledge distillation.\nThis model yields the following results on SQuADv1.1 development set:<br>\n'{\"exact_match\": 83.56669820245979, \"f1\": 90.20829352733487}'\n\nFor further details see our paper, Prune Once for All: Sparse Pre-Trained Language Models, and our open source implementation available here." ]
[ 39, 130 ]
[ "TAGS\n#transformers #pytorch #tf #bert #question-answering #en #arxiv-2111.05754 #endpoints_compatible #region-us \n# 90% Sparse BERT-Large (uncased) Fine Tuned on SQuADv1.1\nThis model is a result of fine-tuning a Prune OFA 90% sparse pre-trained BERT-Large combined with knowledge distillation.\nThis model yields the following results on SQuADv1.1 development set:<br>\n'{\"exact_match\": 83.56669820245979, \"f1\": 90.20829352733487}'\n\nFor further details see our paper, Prune Once for All: Sparse Pre-Trained Language Models, and our open source implementation available here." ]
fill-mask
transformers
## Model Details: 85% Sparse DistilBERT-Base (uncased) Prune Once for All This model is a sparse pre-trained model that can be fine-tuned for a wide range of language tasks. The process of weight pruning is forcing some of the weights of the neural network to zero. Setting some of the weights to zero results in sparser matrices. Updating neural network weights does involve matrix multiplication, and if we can keep the matrices sparse while retaining enough important information, we can reduce the overall computational overhead. The term "sparse" in the title of the model indicates a ratio of sparsity in the weights; for more details, you can read [Zafrir et al. (2021)](https://arxiv.org/abs/2111.05754). Visualization of Prunce Once for All method from [Zafrir et al. (2021)](https://arxiv.org/abs/2111.05754): ![Zafrir2021_Fig1.png](https://s3.amazonaws.com/moonup/production/uploads/6297f0e30bd2f58c647abb1d/nSDP62H9NHC1FA0C429Xo.png) | Model Detail | Description | | ----------- | ----------- | | Model Authors - Company | Intel | | Date | September 30, 2021 | | Version | 1 | | Type | NLP - General sparse language model | | Architecture | "The method consists of two steps, teacher preparation and student pruning. The sparse pre-trained model we trained is the model we use for transfer learning while maintaining its sparsity pattern. We call the method Prune Once for All since we show how to fine-tune the sparse pre-trained models for several language tasks while we prune the pre-trained model only once." [(Zafrir et al., 2021)](https://arxiv.org/abs/2111.05754) | | Paper or Other Resources | [Zafrir et al. (2021)](https://arxiv.org/abs/2111.05754); [GitHub Repo](https://github.com/IntelLabs/Model-Compression-Research-Package/tree/main/research/prune-once-for-all) | | License | Apache 2.0 | | Questions or Comments | [Community Tab](https://huggingface.co/Intel/distilbert-base-uncased-sparse-85-unstructured-pruneofa/discussions) and [Intel Developers Discord](https://discord.gg/rv2Gp55UJQ)| | Intended Use | Description | | ----------- | ----------- | | Primary intended uses | This is a general sparse language model; in its current form, it is not ready for downstream prediction tasks, but it can be fine-tuned for several language tasks including (but not limited to) question-answering, genre natural language inference, and sentiment classification. | | Primary intended users | Anyone who needs an efficient general language model for other downstream tasks. | | Out-of-scope uses | The model should not be used to intentionally create hostile or alienating environments for people.| ### How to use Here is an example of how to import this model in Python: ```python import transformers model = transformers.AutoModelForQuestionAnswering.from_pretrained('Intel/distilbert-base-uncased-sparse-85-unstructured-pruneofa') ``` For more code examples, refer to the [GitHub Repo](https://github.com/IntelLabs/Model-Compression-Research-Package/tree/main/research/prune-once-for-all). ### Metrics (Model Performance): | Model | Model Size | SQuADv1.1 (EM/F1) | MNLI-m (Acc) | MNLI-mm (Acc) | QQP (Acc/F1) | QNLI (Acc) | SST-2 (Acc) | |-------------------------------|:----------:|:-----------------:|:------------:|:-------------:|:------------:|:----------:|:-----------:| | [80% Sparse BERT-Base uncased fine-tuned on SQuAD1.1](https://huggingface.co/Intel/bert-base-uncased-squadv1.1-sparse-80-1x4-block-pruneofa) | - | 81.29/88.47 | - | - | - | - | - | | [85% Sparse BERT-Base uncased](https://huggingface.co/Intel/bert-base-uncased-sparse-85-unstructured-pruneofa) | Medium | 81.10/88.42 | 82.71 | 83.67 | 91.15/88.00 | 90.34 | 91.46 | | [90% Sparse BERT-Base uncased](https://huggingface.co/Intel/bert-base-uncased-sparse-90-unstructured-pruneofa) | Medium | 79.83/87.25 | 81.45 | 82.43 | 90.93/87.72 | 89.07 | 90.88 | | [90% Sparse BERT-Large uncased](https://huggingface.co/Intel/bert-large-uncased-sparse-90-unstructured-pruneofa) | Large | 83.35/90.20 | 83.74 | 84.20 | 91.48/88.43 | 91.39 | 92.95 | | [**85% Sparse DistilBERT uncased**](https://huggingface.co/Intel/distilbert-base-uncased-sparse-85-unstructured-pruneofa) | Small | 78.10/85.82 | 81.35 | 82.03 | 90.29/86.97 | 88.31 | 90.60 | | [90% Sparse DistilBERT uncased](https://huggingface.co/Intel/distilbert-base-uncased-sparse-90-unstructured-pruneofa) | Small | 76.91/84.82 | 80.68 | 81.47 | 90.05/86.67 | 87.66 | 90.02 | All the results are the mean of two seperate experiments with the same hyper-parameters and different seeds. | Training and Evaluation Data | Description | | ----------- | ----------- | | Datasets | [English Wikipedia Dataset](https://huggingface.co/datasets/wikipedia) (2500M words). | | Motivation | To build an efficient and accurate base model for several downstream language tasks. | | Preprocessing | "We use the English Wikipedia dataset (2500M words) for training the models on the pre-training task. We split the data into train (95%) and validation (5%) sets. Both sets are preprocessed as described in the modelsโ€™ original papers ([Devlin et al., 2019](https://arxiv.org/abs/1810.04805), [Sanh et al., 2019](https://arxiv.org/abs/1910.01108)). We process the data to use the maximum sequence length allowed by the models, however, we allow shorter sequences at a probability of 0:1." | | Ethical Considerations | Description | | ----------- | ----------- | | Data | The training data come from Wikipedia articles | | Human life | The model is not intended to inform decisions central to human life or flourishing. It is an aggregated set of labelled Wikipedia articles. | | Mitigations | No additional risk mitigation strategies were considered during model development. | | Risks and harms | Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al., 2021](https://aclanthology.org/2021.acl-long.330.pdf), and [Bender et al., 2021](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. Beyond this, the extent of the risks involved by using the model remain unknown.| | Use cases | - | | Caveats and Recommendations | | ----------- | | Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. There are no additional caveats or recommendations for this model. | ### BibTeX entry and citation info ```bibtex @article{zafrir2021prune, title={Prune Once for All: Sparse Pre-Trained Language Models}, author={Zafrir, Ofir and Larey, Ariel and Boudoukh, Guy and Shen, Haihao and Wasserblat, Moshe}, journal={arXiv preprint arXiv:2111.05754}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "datasets": ["wikipedia"]}
Intel/distilbert-base-uncased-sparse-85-unstructured-pruneofa
null
[ "transformers", "pytorch", "tf", "distilbert", "fill-mask", "en", "dataset:wikipedia", "arxiv:2111.05754", "arxiv:1810.04805", "arxiv:1910.01108", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[ "2111.05754", "1810.04805", "1910.01108" ]
[ "en" ]
TAGS #transformers #pytorch #tf #distilbert #fill-mask #en #dataset-wikipedia #arxiv-2111.05754 #arxiv-1810.04805 #arxiv-1910.01108 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
Model Details: 85% Sparse DistilBERT-Base (uncased) Prune Once for All ---------------------------------------------------------------------- This model is a sparse pre-trained model that can be fine-tuned for a wide range of language tasks. The process of weight pruning is forcing some of the weights of the neural network to zero. Setting some of the weights to zero results in sparser matrices. Updating neural network weights does involve matrix multiplication, and if we can keep the matrices sparse while retaining enough important information, we can reduce the overall computational overhead. The term "sparse" in the title of the model indicates a ratio of sparsity in the weights; for more details, you can read Zafrir et al. (2021). Visualization of Prunce Once for All method from Zafrir et al. (2021): !Zafrir2021\_Fig1.png ### How to use Here is an example of how to import this model in Python: For more code examples, refer to the GitHub Repo. ### Metrics (Model Performance): All the results are the mean of two seperate experiments with the same hyper-parameters and different seeds. ### BibTeX entry and citation info
[ "### How to use\n\n\nHere is an example of how to import this model in Python:\n\n\nFor more code examples, refer to the GitHub Repo.", "### Metrics (Model Performance):\n\n\n\nAll the results are the mean of two seperate experiments with the same hyper-parameters and different seeds.", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #tf #distilbert #fill-mask #en #dataset-wikipedia #arxiv-2111.05754 #arxiv-1810.04805 #arxiv-1910.01108 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### How to use\n\n\nHere is an example of how to import this model in Python:\n\n\nFor more code examples, refer to the GitHub Repo.", "### Metrics (Model Performance):\n\n\n\nAll the results are the mean of two seperate experiments with the same hyper-parameters and different seeds.", "### BibTeX entry and citation info" ]
[ 79, 33, 31, 10 ]
[ "TAGS\n#transformers #pytorch #tf #distilbert #fill-mask #en #dataset-wikipedia #arxiv-2111.05754 #arxiv-1810.04805 #arxiv-1910.01108 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### How to use\n\n\nHere is an example of how to import this model in Python:\n\n\nFor more code examples, refer to the GitHub Repo.### Metrics (Model Performance):\n\n\n\nAll the results are the mean of two seperate experiments with the same hyper-parameters and different seeds.### BibTeX entry and citation info" ]
fill-mask
transformers
### Model Details: 90% Sparse DistilBERT-Base (uncased) Prune Once for All This model is a sparse pre-trained model that can be fine-tuned for a wide range of language tasks. The process of weight pruning is forcing some of the weights of the neural network to zero. Setting some of the weights to zero results in sparser matrices. Updating neural network weights does involve matrix multiplication, and if we can keep the matrices sparse while retaining enough important information, we can reduce the overall computational overhead. The term "sparse" in the title of the model indicates a ratio of sparsity in the weights; for more details, you can read [Zafrir et al. (2021)](https://arxiv.org/abs/2111.05754). Visualization of Prunce Once for All method from [Zafrir et al. (2021)](https://arxiv.org/abs/2111.05754): ![Zafrir2021_Fig1.png](https://s3.amazonaws.com/moonup/production/uploads/6297f0e30bd2f58c647abb1d/nSDP62H9NHC1FA0C429Xo.png) | Model Detail | Description | | ----------- | ----------- | | Model Authors - Company | Intel | | Date | September 30, 2021 | | Version | 1 | | Type | NLP - General sparse language model | | Architecture | "The method consists of two steps, teacher preparation and student pruning. The sparse pre-trained model we trained is the model we use for transfer learning while maintaining its sparsity pattern. We call the method Prune Once for All since we show how to fine-tune the sparse pre-trained models for several language tasks while we prune the pre-trained model only once." [(Zafrir et al., 2021)](https://arxiv.org/abs/2111.05754) | | Paper or Other Resources | [Zafrir et al. (2021)](https://arxiv.org/abs/2111.05754); [GitHub Repo](https://github.com/IntelLabs/Model-Compression-Research-Package/tree/main/research/prune-once-for-all) | | License | Apache 2.0 | | Questions or Comments | [Community Tab](https://huggingface.co/Intel/distilbert-base-uncased-sparse-90-unstructured-pruneofa/discussions) and [Intel Developers Discord](https://discord.gg/rv2Gp55UJQ)| | Intended Use | Description | | ----------- | ----------- | | Primary intended uses | This is a general sparse language model; in its current form, it is not ready for downstream prediction tasks, but it can be fine-tuned for several language tasks including (but not limited to) question-answering, genre natural language inference, and sentiment classification. | | Primary intended users | Anyone who needs an efficient general language model for other downstream tasks. | | Out-of-scope uses | The model should not be used to intentionally create hostile or alienating environments for people.| ### How to use Here is an example of how to import this model in Python: ```python import transformers model = transformers.AutoModelForQuestionAnswering.from_pretrained('Intel/distilbert-base-uncased-sparse-90-unstructured-pruneofa') ``` For more code examples, refer to the [GitHub Repo](https://github.com/IntelLabs/Model-Compression-Research-Package/tree/main/research/prune-once-for-all). ### Metrics (Model Performance): | Model | Model Size | SQuADv1.1 (EM/F1) | MNLI-m (Acc) | MNLI-mm (Acc) | QQP (Acc/F1) | QNLI (Acc) | SST-2 (Acc) | |-------------------------------|:----------:|:-----------------:|:------------:|:-------------:|:------------:|:----------:|:-----------:| | [80% Sparse BERT-Base uncased fine-tuned on SQuAD1.1](https://huggingface.co/Intel/bert-base-uncased-squadv1.1-sparse-80-1x4-block-pruneofa) | - | 81.29/88.47 | - | - | - | - | - | | [85% Sparse BERT-Base uncased](https://huggingface.co/Intel/bert-base-uncased-sparse-85-unstructured-pruneofa) | Medium | 81.10/88.42 | 82.71 | 83.67 | 91.15/88.00 | 90.34 | 91.46 | | [90% Sparse BERT-Base uncased](https://huggingface.co/Intel/bert-base-uncased-sparse-90-unstructured-pruneofa) | Medium | 79.83/87.25 | 81.45 | 82.43 | 90.93/87.72 | 89.07 | 90.88 | | [90% Sparse BERT-Large uncased](https://huggingface.co/Intel/bert-large-uncased-sparse-90-unstructured-pruneofa) | Large | 83.35/90.20 | 83.74 | 84.20 | 91.48/88.43 | 91.39 | 92.95 | | [85% Sparse DistilBERT uncased](https://huggingface.co/Intel/distilbert-base-uncased-sparse-85-unstructured-pruneofa) | Small | 78.10/85.82 | 81.35 | 82.03 | 90.29/86.97 | 88.31 | 90.60 | | [**90% Sparse DistilBERT uncased**](https://huggingface.co/Intel/distilbert-base-uncased-sparse-90-unstructured-pruneofa) | Small | 76.91/84.82 | 80.68 | 81.47 | 90.05/86.67 | 87.66 | 90.02 | All the results are the mean of two seperate experiments with the same hyper-parameters and different seeds. | Training and Evaluation Data | Description | | ----------- | ----------- | | Datasets | [English Wikipedia Dataset](https://huggingface.co/datasets/wikipedia) (2500M words). | | Motivation | To build an efficient and accurate base model for several downstream language tasks. | | Preprocessing | "We use the English Wikipedia dataset (2500M words) for training the models on the pre-training task. We split the data into train (95%) and validation (5%) sets. Both sets are preprocessed as described in the modelsโ€™ original papers ([Devlin et al., 2019](https://arxiv.org/abs/1810.04805), [Sanh et al., 2019](https://arxiv.org/abs/1910.01108)). We process the data to use the maximum sequence length allowed by the models, however, we allow shorter sequences at a probability of 0:1." | | Ethical Considerations | Description | | ----------- | ----------- | | Data | The training data come from Wikipedia articles | | Human life | The model is not intended to inform decisions central to human life or flourishing. It is an aggregated set of labelled Wikipedia articles. | | Mitigations | No additional risk mitigation strategies were considered during model development. | | Risks and harms | Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al., 2021](https://aclanthology.org/2021.acl-long.330.pdf), and [Bender et al., 2021](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. Beyond this, the extent of the risks involved by using the model remain unknown.| | Use cases | - | | Caveats and Recommendations | | ----------- | | Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. There are no additional caveats or recommendations for this model. | ### BibTeX entry and citation info ```bibtex @article{zafrir2021prune, title={Prune Once for All: Sparse Pre-Trained Language Models}, author={Zafrir, Ofir and Larey, Ariel and Boudoukh, Guy and Shen, Haihao and Wasserblat, Moshe}, journal={arXiv preprint arXiv:2111.05754}, year={2021} } ```
{"language": "en", "license": "apache-2.0", "datasets": ["wikipedia"]}
Intel/distilbert-base-uncased-sparse-90-unstructured-pruneofa
null
[ "transformers", "pytorch", "tf", "distilbert", "fill-mask", "en", "dataset:wikipedia", "arxiv:2111.05754", "arxiv:1810.04805", "arxiv:1910.01108", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[ "2111.05754", "1810.04805", "1910.01108" ]
[ "en" ]
TAGS #transformers #pytorch #tf #distilbert #fill-mask #en #dataset-wikipedia #arxiv-2111.05754 #arxiv-1810.04805 #arxiv-1910.01108 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
### Model Details: 90% Sparse DistilBERT-Base (uncased) Prune Once for All This model is a sparse pre-trained model that can be fine-tuned for a wide range of language tasks. The process of weight pruning is forcing some of the weights of the neural network to zero. Setting some of the weights to zero results in sparser matrices. Updating neural network weights does involve matrix multiplication, and if we can keep the matrices sparse while retaining enough important information, we can reduce the overall computational overhead. The term "sparse" in the title of the model indicates a ratio of sparsity in the weights; for more details, you can read Zafrir et al. (2021). Visualization of Prunce Once for All method from Zafrir et al. (2021): !Zafrir2021\_Fig1.png ### How to use Here is an example of how to import this model in Python: For more code examples, refer to the GitHub Repo. ### Metrics (Model Performance): All the results are the mean of two seperate experiments with the same hyper-parameters and different seeds. ### BibTeX entry and citation info
[ "### Model Details: 90% Sparse DistilBERT-Base (uncased) Prune Once for All\n\n\nThis model is a sparse pre-trained model that can be fine-tuned for a wide range of language tasks. The process of weight pruning is forcing some of the weights of the neural network to zero. Setting some of the weights to zero results in sparser matrices. Updating neural network weights does involve matrix multiplication, and if we can keep the matrices sparse while retaining enough important information, we can reduce the overall computational overhead. The term \"sparse\" in the title of the model indicates a ratio of sparsity in the weights; for more details, you can read Zafrir et al. (2021).\n\n\nVisualization of Prunce Once for All method from Zafrir et al. (2021):\n!Zafrir2021\\_Fig1.png", "### How to use\n\n\nHere is an example of how to import this model in Python:\n\n\nFor more code examples, refer to the GitHub Repo.", "### Metrics (Model Performance):\n\n\n\nAll the results are the mean of two seperate experiments with the same hyper-parameters and different seeds.", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #tf #distilbert #fill-mask #en #dataset-wikipedia #arxiv-2111.05754 #arxiv-1810.04805 #arxiv-1910.01108 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Model Details: 90% Sparse DistilBERT-Base (uncased) Prune Once for All\n\n\nThis model is a sparse pre-trained model that can be fine-tuned for a wide range of language tasks. The process of weight pruning is forcing some of the weights of the neural network to zero. Setting some of the weights to zero results in sparser matrices. Updating neural network weights does involve matrix multiplication, and if we can keep the matrices sparse while retaining enough important information, we can reduce the overall computational overhead. The term \"sparse\" in the title of the model indicates a ratio of sparsity in the weights; for more details, you can read Zafrir et al. (2021).\n\n\nVisualization of Prunce Once for All method from Zafrir et al. (2021):\n!Zafrir2021\\_Fig1.png", "### How to use\n\n\nHere is an example of how to import this model in Python:\n\n\nFor more code examples, refer to the GitHub Repo.", "### Metrics (Model Performance):\n\n\n\nAll the results are the mean of two seperate experiments with the same hyper-parameters and different seeds.", "### BibTeX entry and citation info" ]
[ 79, 183, 33, 31, 10 ]
[ "TAGS\n#transformers #pytorch #tf #distilbert #fill-mask #en #dataset-wikipedia #arxiv-2111.05754 #arxiv-1810.04805 #arxiv-1910.01108 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Model Details: 90% Sparse DistilBERT-Base (uncased) Prune Once for All\n\n\nThis model is a sparse pre-trained model that can be fine-tuned for a wide range of language tasks. The process of weight pruning is forcing some of the weights of the neural network to zero. Setting some of the weights to zero results in sparser matrices. Updating neural network weights does involve matrix multiplication, and if we can keep the matrices sparse while retaining enough important information, we can reduce the overall computational overhead. The term \"sparse\" in the title of the model indicates a ratio of sparsity in the weights; for more details, you can read Zafrir et al. (2021).\n\n\nVisualization of Prunce Once for All method from Zafrir et al. (2021):\n!Zafrir2021\\_Fig1.png### How to use\n\n\nHere is an example of how to import this model in Python:\n\n\nFor more code examples, refer to the GitHub Repo.### Metrics (Model Performance):\n\n\n\nAll the results are the mean of two seperate experiments with the same hyper-parameters and different seeds.### BibTeX entry and citation info" ]
question-answering
transformers
## Model Details: Dynamic-TinyBERT: Boost TinyBERT's Inference Efficiency by Dynamic Sequence Length Dynamic-TinyBERT has been fine-tuned for the NLP task of question answering, trained on the SQuAD 1.1 dataset. [Guskin et al. (2021)](https://neurips2021-nlp.github.io/papers/16/CameraReady/Dynamic_TinyBERT_NLSP2021_camera_ready.pdf) note: > Dynamic-TinyBERT is a TinyBERT model that utilizes sequence-length reduction and Hyperparameter Optimization for enhanced inference efficiency per any computational budget. Dynamic-TinyBERT is trained only once, performing on-par with BERT and achieving an accuracy-speedup trade-off superior to any other efficient approaches (up to 3.3x with <1% loss-drop). | Model Detail | Description | | ----------- | ----------- | | Model Authors - Company | Intel | | Model Card Authors | Intel in collaboration with Hugging Face | | Date | November 22, 2021 | | Version | 1 | | Type | NLP - Question Answering | | Architecture | "For our Dynamic-TinyBERT model we use the architecture of TinyBERT6L: a small BERT model with 6 layers, a hidden size of 768, a feed forward size of 3072 and 12 heads." [Guskin et al. (2021)](https://gyuwankim.github.io/publication/dynamic-tinybert/poster.pdf) | | Paper or Other Resources | [Paper](https://neurips2021-nlp.github.io/papers/16/CameraReady/Dynamic_TinyBERT_NLSP2021_camera_ready.pdf); [Poster](https://gyuwankim.github.io/publication/dynamic-tinybert/poster.pdf); [GitHub Repo](https://github.com/IntelLabs/Model-Compression-Research-Package) | | License | Apache 2.0 | | Questions or Comments | [Community Tab](https://huggingface.co/Intel/dynamic_tinybert/discussions) and [Intel Developers Discord](https://discord.gg/rv2Gp55UJQ)| | Intended Use | Description | | ----------- | ----------- | | Primary intended uses | You can use the model for the NLP task of question answering: given a corpus of text, you can ask it a question about that text, and it will find the answer in the text. | | Primary intended users | Anyone doing question answering | | Out-of-scope uses | The model should not be used to intentionally create hostile or alienating environments for people.| ### How to use Here is how to import this model in Python: <details> <summary> Click to expand </summary> ```python from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("Intel/dynamic_tinybert") model = AutoModelForQuestionAnswering.from_pretrained("Intel/dynamic_tinybert") ``` </details> | Factors | Description | | ----------- | ----------- | | Groups | Many Wikipedia articles with question and answer labels are contained in the training data | | Instrumentation | - | | Environment | Training was completed on a Titan GPU. | | Card Prompts | Model deployment on alternate hardware and software will change model performance | | Metrics | Description | | ----------- | ----------- | | Model performance measures | F1 | | Decision thresholds | - | | Approaches to uncertainty and variability | - | | Training and Evaluation Data | Description | | ----------- | ----------- | | Datasets | SQuAD1.1: "Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable." (https://huggingface.co/datasets/squad)| | Motivation | To build an efficient and accurate model for the question answering task. | | Preprocessing | "We start with a pre-trained general-TinyBERT student, which was trained to learn the general knowledge of BERT using the general-distillation method presented by TinyBERT. We perform transformer distillation from a fine- tuned BERT teacher to the student, following the same training steps used in the original TinyBERT: (1) intermediate-layer distillation (ID) โ€” learning the knowledge residing in the hidden states and attentions matrices, and (2) prediction-layer distillation (PD) โ€” fitting the predictions of the teacher." ([Guskin et al., 2021](https://neurips2021-nlp.github.io/papers/16/CameraReady/Dynamic_TinyBERT_NLSP2021_camera_ready.pdf))| Model Performance Analysis: | Model | Max F1 (full model) | Best Speedup within BERT-1% | |------------------|---------------------|-----------------------------| | Dynamic-TinyBERT | 88.71 | 3.3x | | Ethical Considerations | Description | | ----------- | ----------- | | Data | The training data come from Wikipedia articles | | Human life | The model is not intended to inform decisions central to human life or flourishing. It is an aggregated set of labelled Wikipedia articles. | | Mitigations | No additional risk mitigation strategies were considered during model development. | | Risks and harms | Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al., 2021](https://aclanthology.org/2021.acl-long.330.pdf), and [Bender et al., 2021](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. Beyond this, the extent of the risks involved by using the model remain unknown.| | Use cases | - | | Caveats and Recommendations | | ----------- | | Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. There are no additional caveats or recommendations for this model. | ### BibTeX entry and citation info ```bibtex @misc{https://doi.org/10.48550/arxiv.2111.09645, doi = {10.48550/ARXIV.2111.09645}, url = {https://arxiv.org/abs/2111.09645}, author = {Guskin, Shira and Wasserblat, Moshe and Ding, Ke and Kim, Gyuwan}, keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Dynamic-TinyBERT: Boost TinyBERT's Inference Efficiency by Dynamic Sequence Length}, publisher = {arXiv}, year = {2021}, ```
{"language": ["en"], "license": "apache-2.0", "tags": ["question-answering", "bert"], "datasets": ["squad"]}
Intel/dynamic_tinybert
null
[ "transformers", "pytorch", "bert", "question-answering", "en", "dataset:squad", "arxiv:2111.09645", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[ "2111.09645" ]
[ "en" ]
TAGS #transformers #pytorch #bert #question-answering #en #dataset-squad #arxiv-2111.09645 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
Model Details: Dynamic-TinyBERT: Boost TinyBERT's Inference Efficiency by Dynamic Sequence Length ------------------------------------------------------------------------------------------------- Dynamic-TinyBERT has been fine-tuned for the NLP task of question answering, trained on the SQuAD 1.1 dataset. Guskin et al. (2021) note: > > Dynamic-TinyBERT is a TinyBERT model that utilizes sequence-length reduction and Hyperparameter Optimization for enhanced inference efficiency per any computational budget. Dynamic-TinyBERT is trained only once, performing on-par with BERT and achieving an accuracy-speedup trade-off superior to any other efficient approaches (up to 3.3x with <1% loss-drop). > > > ### How to use Here is how to import this model in Python: Click to expand Model Performance Analysis: Model: Dynamic-TinyBERT, Max F1 (full model): 88.71, Best Speedup within BERT-1%: 3.3x ### BibTeX entry and citation info
[ "### How to use\n\n\nHere is how to import this model in Python:\n\n\n\n Click to expand \n\n\n\n\nModel Performance Analysis:\n\n\nModel: Dynamic-TinyBERT, Max F1 (full model): 88.71, Best Speedup within BERT-1%: 3.3x", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #en #dataset-squad #arxiv-2111.09645 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n", "### How to use\n\n\nHere is how to import this model in Python:\n\n\n\n Click to expand \n\n\n\n\nModel Performance Analysis:\n\n\nModel: Dynamic-TinyBERT, Max F1 (full model): 88.71, Best Speedup within BERT-1%: 3.3x", "### BibTeX entry and citation info" ]
[ 57, 54, 10 ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #en #dataset-squad #arxiv-2111.09645 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n### How to use\n\n\nHere is how to import this model in Python:\n\n\n\n Click to expand \n\n\n\n\nModel Performance Analysis:\n\n\nModel: Dynamic-TinyBERT, Max F1 (full model): 88.71, Best Speedup within BERT-1%: 3.3x### BibTeX entry and citation info" ]
text-generation
transformers
#harry potter
{"tags": ["conversational"]}
Invincible/Chat_bot-Harrypotter-medium
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#harry potter
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 39 ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
#harry potter Model
{"tags": ["conversational"]}
Invincible/Chat_bot-Harrypotter-small
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
#harry potter Model
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n" ]
[ 43 ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n" ]
text-generation
null
#Harry Potter DialoDPT Model
{"tags": ["conversational"]}
Invincible/DialoGPT-medium-harryPotter
null
[ "conversational", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #conversational #region-us
#Harry Potter DialoDPT Model
[]
[ "TAGS\n#conversational #region-us \n" ]
[ 8 ]
[ "TAGS\n#conversational #region-us \n" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"license": "cc-by-4.0", "tags": ["generated_from_trainer"], "datasets": ["amazon_reviews_multi"], "model_index": [{"name": "roberta-base-bne-finetuned-amazon_reviews_multi", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}, "dataset": {"name": "amazon_reviews_multi", "type": "amazon_reviews_multi", "args": "es"}}]}]}
IsabellaKarabasz/roberta-base-bne-finetuned-amazon_reviews_multi
null
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #region-us
# roberta-base-bne-finetuned-amazon_reviews_multi This model is a fine-tuned version of BSC-TeMU/roberta-base-bne on the amazon_reviews_multi dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
[ "# roberta-base-bne-finetuned-amazon_reviews_multi\n\nThis model is a fine-tuned version of BSC-TeMU/roberta-base-bne on the amazon_reviews_multi dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Framework versions\n\n- Transformers 4.9.2\n- Pytorch 1.9.0+cu102\n- Datasets 1.11.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# roberta-base-bne-finetuned-amazon_reviews_multi\n\nThis model is a fine-tuned version of BSC-TeMU/roberta-base-bne on the amazon_reviews_multi dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2", "### Framework versions\n\n- Transformers 4.9.2\n- Pytorch 1.9.0+cu102\n- Datasets 1.11.0\n- Tokenizers 0.10.3" ]
[ 53, 47, 7, 9, 9, 4, 93, 44 ]
[ "TAGS\n#transformers #pytorch #roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #region-us \n# roberta-base-bne-finetuned-amazon_reviews_multi\n\nThis model is a fine-tuned version of BSC-TeMU/roberta-base-bne on the amazon_reviews_multi dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2### Framework versions\n\n- Transformers 4.9.2\n- Pytorch 1.9.0+cu102\n- Datasets 1.11.0\n- Tokenizers 0.10.3" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [hf-test/xls-r-dummy](https://huggingface.co/hf-test/xls-r-dummy) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 156.8789 - Wer: 1.3456 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.1.dev0 - Tokenizers 0.11.0
{"language": ["ab"], "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "", "results": []}]}
Iskaj/hf-challenge-test
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "ab", "dataset:common_voice", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "ab" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_7_0 #generated_from_trainer #ab #dataset-common_voice #endpoints_compatible #region-us
# This model is a fine-tuned version of hf-test/xls-r-dummy on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 156.8789 - Wer: 1.3456 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.1.dev0 - Tokenizers 0.11.0
[ "# \n\nThis model is a fine-tuned version of hf-test/xls-r-dummy on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 156.8789\n- Wer: 1.3456", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0003\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- training_steps: 10\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.1+cu102\n- Datasets 1.18.1.dev0\n- Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_7_0 #generated_from_trainer #ab #dataset-common_voice #endpoints_compatible #region-us \n", "# \n\nThis model is a fine-tuned version of hf-test/xls-r-dummy on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 156.8789\n- Wer: 1.3456", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0003\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- training_steps: 10\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.1+cu102\n- Datasets 1.18.1.dev0\n- Tokenizers 0.11.0" ]
[ 62, 68, 7, 9, 9, 4, 100, 5, 50 ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_7_0 #generated_from_trainer #ab #dataset-common_voice #endpoints_compatible #region-us \n# \n\nThis model is a fine-tuned version of hf-test/xls-r-dummy on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 156.8789\n- Wer: 1.3456## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0003\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- training_steps: 10\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.1+cu102\n- Datasets 1.18.1.dev0\n- Tokenizers 0.11.0" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # newnew This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - NL dataset. It achieves the following results on the evaluation set: - Loss: 11.4375 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 4000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3.dev0 - Tokenizers 0.11.0
{"language": ["nl"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "newnew", "results": []}]}
Iskaj/newnew
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "nl", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "nl" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #nl #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
# newnew This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - NL dataset. It achieves the following results on the evaluation set: - Loss: 11.4375 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 4000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3.dev0 - Tokenizers 0.11.0
[ "# newnew\n\nThis model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - NL dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 11.4375\n- Wer: 1.0", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 32\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 4000\n- num_epochs: 50.0\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.17.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.18.3.dev0\n- Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #nl #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "# newnew\n\nThis model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - NL dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 11.4375\n- Wer: 1.0", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 32\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 4000\n- num_epochs: 50.0\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.17.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.18.3.dev0\n- Tokenizers 0.11.0" ]
[ 67, 74, 7, 9, 9, 4, 135, 5, 50 ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #nl #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n# newnew\n\nThis model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - NL dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 11.4375\n- Wer: 1.0## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 32\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 4000\n- num_epochs: 50.0\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- Transformers 4.17.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.18.3.dev0\n- Tokenizers 0.11.0" ]
automatic-speech-recognition
transformers
Copy of "facebook/wav2vec2-large-xlsr-53-dutch"
{}
Iskaj/w2v-xlsr-dutch-lm-added
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #endpoints_compatible #region-us
Copy of "facebook/wav2vec2-large-xlsr-53-dutch"
[]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #endpoints_compatible #region-us \n" ]
[ 32 ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #endpoints_compatible #region-us \n" ]
automatic-speech-recognition
transformers
Model cloned from https://huggingface.co/facebook/wav2vec2-large-xlsr-53-dutch Currently bugged: Logits size 48, vocab size 50
{}
Iskaj/w2v-xlsr-dutch-lm
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #endpoints_compatible #region-us
Model cloned from URL Currently bugged: Logits size 48, vocab size 50
[]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #endpoints_compatible #region-us \n" ]
[ 30 ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #endpoints_compatible #region-us \n" ]
automatic-speech-recognition
transformers
# xlsr300m_cv_7.0_nl_lm
{"language": ["nl"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "nl", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "XLS-R-300M - Dutch", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8 NL", "type": "mozilla-foundation/common_voice_8_0", "args": "nl"}, "metrics": [{"type": "wer", "value": 32, "name": "Test WER"}, {"type": "cer", "value": 17, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "nl"}, "metrics": [{"type": "wer", "value": 37.44, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "nl"}, "metrics": [{"type": "wer", "value": 38.74, "name": "Test WER"}]}]}]}
Iskaj/xlsr300m_cv_7.0_nl_lm
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "nl", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "nl" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #nl #robust-speech-event #model_for_talk #hf-asr-leaderboard #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
# xlsr300m_cv_7.0_nl_lm
[ "# xlsr300m_cv_7.0_nl_lm" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #nl #robust-speech-event #model_for_talk #hf-asr-leaderboard #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# xlsr300m_cv_7.0_nl_lm" ]
[ 96, 17 ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #nl #robust-speech-event #model_for_talk #hf-asr-leaderboard #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# xlsr300m_cv_7.0_nl_lm" ]
automatic-speech-recognition
transformers
# xlsr300m_cv_8.0_nl #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id Iskaj/xlsr300m_cv_8.0_nl --dataset mozilla-foundation/common_voice_8_0 --config nl --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id Iskaj/xlsr300m_cv_8.0_nl --dataset speech-recognition-community-v2/dev_data --config nl --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Inference ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "Iskaj/xlsr300m_cv_8.0_nl" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "nl", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) inputs = processor(resampled_audio, sampling_rate=16_000, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) transcription[0].lower() #'het kontine schip lag aangemeert in de aven' ```
{"language": ["nl"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "mozilla-foundation/common_voice_7_0", "nl", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "XLS-R-300M - Dutch", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8 NL", "type": "mozilla-foundation/common_voice_8_0", "args": "nl"}, "metrics": [{"type": "wer", "value": 46.94, "name": "Test WER"}, {"type": "cer", "value": 21.65, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "nl"}, "metrics": [{"type": "wer", "value": "???", "name": "Test WER"}, {"type": "cer", "value": "???", "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "nl"}, "metrics": [{"type": "wer", "value": 42.56, "name": "Test WER"}]}]}]}
Iskaj/xlsr300m_cv_8.0_nl
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "mozilla-foundation/common_voice_7_0", "nl", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "nl" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #mozilla-foundation/common_voice_7_0 #nl #robust-speech-event #model_for_talk #hf-asr-leaderboard #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
# xlsr300m_cv_8.0_nl #### Evaluation Commands 1. To evaluate on 'mozilla-foundation/common_voice_8_0' with split 'test' 2. To evaluate on 'speech-recognition-community-v2/dev_data' ### Inference
[ "# xlsr300m_cv_8.0_nl", "#### Evaluation Commands\n1. To evaluate on 'mozilla-foundation/common_voice_8_0' with split 'test'\n\n\n\n2. To evaluate on 'speech-recognition-community-v2/dev_data'", "### Inference" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #mozilla-foundation/common_voice_7_0 #nl #robust-speech-event #model_for_talk #hf-asr-leaderboard #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# xlsr300m_cv_8.0_nl", "#### Evaluation Commands\n1. To evaluate on 'mozilla-foundation/common_voice_8_0' with split 'test'\n\n\n\n2. To evaluate on 'speech-recognition-community-v2/dev_data'", "### Inference" ]
[ 110, 14, 50, 4 ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #mozilla-foundation/common_voice_7_0 #nl #robust-speech-event #model_for_talk #hf-asr-leaderboard #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# xlsr300m_cv_8.0_nl#### Evaluation Commands\n1. To evaluate on 'mozilla-foundation/common_voice_8_0' with split 'test'\n\n\n\n2. To evaluate on 'speech-recognition-community-v2/dev_data'### Inference" ]
automatic-speech-recognition
transformers
# xlsr_300m_CV_8.0_50_EP_new_params_nl
{"language": ["nl"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "nl", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "XLS-R-300M - Dutch", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8 NL", "type": "mozilla-foundation/common_voice_8_0", "args": "nl"}, "metrics": [{"type": "wer", "value": 35.44, "name": "Test WER"}, {"type": "cer", "value": 19.57, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "nl"}, "metrics": [{"type": "wer", "value": 37.17, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "nl"}, "metrics": [{"type": "wer", "value": 38.73, "name": "Test WER"}]}]}]}
Iskaj/xlsr_300m_CV_8.0_50_EP_new_params_nl
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "nl", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "nl" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #hf-asr-leaderboard #model_for_talk #mozilla-foundation/common_voice_8_0 #nl #robust-speech-event #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
# xlsr_300m_CV_8.0_50_EP_new_params_nl
[ "# xlsr_300m_CV_8.0_50_EP_new_params_nl" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #hf-asr-leaderboard #model_for_talk #mozilla-foundation/common_voice_8_0 #nl #robust-speech-event #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# xlsr_300m_CV_8.0_50_EP_new_params_nl" ]
[ 96, 23 ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #hf-asr-leaderboard #model_for_talk #mozilla-foundation/common_voice_8_0 #nl #robust-speech-event #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n# xlsr_300m_CV_8.0_50_EP_new_params_nl" ]
text-generation
null
#sherlock
{"tags": ["conversational"]}
Istiaque190515/Sherlock
null
[ "conversational", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #conversational #region-us
#sherlock
[]
[ "TAGS\n#conversational #region-us \n" ]
[ 8 ]
[ "TAGS\n#conversational #region-us \n" ]
text-generation
transformers
#harry_bot
{"tags": ["conversational"]}
Istiaque190515/harry_bot_discord
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#harry_bot
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 39 ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
#harry_potter
{"tags": ["conversational"]}
Istiaque190515/harry_potter
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#harry_potter
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 39 ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
# Tohru DialoGPT model
{"tags": ["conversational"]}
ItoYagura/DialoGPT-medium-tohru
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Tohru DialoGPT model
[ "# Tohru DialoGPT model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Tohru DialoGPT model" ]
[ 39, 8 ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Tohru DialoGPT model" ]
text-generation
transformers
# Pickle Rick DialoGPT Model
{"tags": ["conversational"]}
ItzJorinoPlays/DialoGPT-small-PickleRick
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Pickle Rick DialoGPT Model
[ "# Pickle Rick DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Pickle Rick DialoGPT Model" ]
[ 39, 8 ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Pickle Rick DialoGPT Model" ]
text-generation
transformers
# Thor DialogGPT Model
{"tags": ["conversational"]}
J-Chiang/DialoGPT-small-thor
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Thor DialogGPT Model
[ "# Thor DialogGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Thor DialogGPT Model" ]
[ 39, 7 ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Thor DialogGPT Model" ]
question-answering
transformers
## Model description This model was obtained by fine-tuning deepset/bert-base-cased-squad2 on Cord19 Dataset. ## How to use ```python from transformers.pipelines import pipeline model_name = "JAlexis/PruebaBert" nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) inputs = { 'question': 'How can I protect myself against covid-19?', 'context': 'Preventative measures consist of recommendations to wear a mask in public, maintain social distancing of at least six feet, wash hands regularly, and use hand sanitizer. To facilitate this aim, we adapt the conceptual model and measures of Liao et al. [6] to the current context of the COVID-19 pandemic and the culture of the USA. Applying this model in a different time and context provides an opportunity to make comparisons of reactions to information sources across a decade of evolving attitudes toward media and government, between two cultures (Hong Kong vs. the USA), and between two considerably different global pandemics (H1N1 vs. COVID-19). ', 'question': 'How can I protect myself against covid-19?', 'context': ' ', } nlp(inputs) ``` ## Overview ``` Language model: deepset/bert-base-cased-squad2 Language: English Downstream-task: Q&A Datasets: CORD-19 from 31rd January 2022 Code: Haystack and FARM Infrastructure: Tesla T4 ``` ## Hyperparameters ``` batch_size = 8 n_epochs = 7 max_seq_len = max_length learning_rate = AdamW: 2e-5 ```
{"language": "en", "tags": ["pytorch", "question-answering"], "datasets": ["squad2", "cord19"], "metrics": ["f1"], "widget": [{"text": "How can I protect myself against covid-19?", "context": "Preventative measures consist of recommendations to wear a mask in public, maintain social distancing of at least six feet, wash hands regularly, and use hand sanitizer. To facilitate this aim, we adapt the conceptual model and measures of Liao et al. [6] to the current context of the COVID-19 pandemic and the culture of the USA. Applying this model in a different time and context provides an opportunity to make comparisons of reactions to information sources across a decade of evolving attitudes toward media and government, between two cultures (Hong Kong vs. the USA), and between two considerably different global pandemics (H1N1 vs. COVID-19)."}, {"text": "How can I protect myself against covid-19?", "context": " "}]}
JAlexis/Bertv1_fine
null
[ "transformers", "pytorch", "bert", "question-answering", "en", "dataset:squad2", "dataset:cord19", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #question-answering #en #dataset-squad2 #dataset-cord19 #endpoints_compatible #has_space #region-us
## Model description This model was obtained by fine-tuning deepset/bert-base-cased-squad2 on Cord19 Dataset. ## How to use ## Overview ## Hyperparameters
[ "## Model description \nThis model was obtained by fine-tuning deepset/bert-base-cased-squad2 on Cord19 Dataset.", "## How to use", "## Overview", "## Hyperparameters" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #en #dataset-squad2 #dataset-cord19 #endpoints_compatible #has_space #region-us \n", "## Model description \nThis model was obtained by fine-tuning deepset/bert-base-cased-squad2 on Cord19 Dataset.", "## How to use", "## Overview", "## Hyperparameters" ]
[ 41, 30, 5, 3, 6 ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #en #dataset-squad2 #dataset-cord19 #endpoints_compatible #has_space #region-us \n## Model description \nThis model was obtained by fine-tuning deepset/bert-base-cased-squad2 on Cord19 Dataset.## How to use## Overview## Hyperparameters" ]
question-answering
transformers
## Model description This model was obtained by fine-tuning deepset/bert-base-cased-squad2 on Cord19 Dataset. ## How to use ```python from transformers.pipelines import pipeline model_name = "JAlexis/PruebaBert" nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) inputs = { 'question': 'How can I protect myself against covid-19?', 'context': 'Preventative measures consist of recommendations to wear a mask in public, maintain social distancing of at least six feet, wash hands regularly, and use hand sanitizer. To facilitate this aim, we adapt the conceptual model and measures of Liao et al. [6] to the current context of the COVID-19 pandemic and the culture of the USA. Applying this model in a different time and context provides an opportunity to make comparisons of reactions to information sources across a decade of evolving attitudes toward media and government, between two cultures (Hong Kong vs. the USA), and between two considerably different global pandemics (H1N1 vs. COVID-19). ', 'question': 'How can I protect myself against covid-19?', 'context': ' ', } nlp(inputs) ``` ## Overview ``` Language model: deepset/bert-base-cased-squad2 Language: English Downstream-task: Q&A Datasets: CORD-19 from 31rd January 2022 Code: Haystack and FARM Infrastructure: Tesla T4 ``` ## Hyperparameters ``` batch_size = 8 n_epochs = 9 max_seq_len = max_length learning_rate = AdamW: 1e-5 ```
{"language": "en", "tags": ["pytorch", "question-answering"], "datasets": ["squad2", "cord19"], "metrics": ["EM (exact match)"], "widget": [{"text": "How can I protect myself against covid-19?", "context": "Preventative measures consist of recommendations to wear a mask in public, maintain social distancing of at least six feet, wash hands regularly, and use hand sanitizer. To facilitate this aim, we adapt the conceptual model and measures of Liao et al. [6] to the current context of the COVID-19 pandemic and the culture of the USA. Applying this model in a different time and context provides an opportunity to make comparisons of reactions to information sources across a decade of evolving attitudes toward media and government, between two cultures (Hong Kong vs. the USA), and between two considerably different global pandemics (H1N1 vs. COVID-19)."}, {"text": "How can I protect myself against covid-19?", "context": " "}]}
JAlexis/PruebaBert
null
[ "transformers", "pytorch", "bert", "question-answering", "en", "dataset:squad2", "dataset:cord19", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #question-answering #en #dataset-squad2 #dataset-cord19 #endpoints_compatible #region-us
## Model description This model was obtained by fine-tuning deepset/bert-base-cased-squad2 on Cord19 Dataset. ## How to use ## Overview ## Hyperparameters
[ "## Model description \nThis model was obtained by fine-tuning deepset/bert-base-cased-squad2 on Cord19 Dataset.", "## How to use", "## Overview", "## Hyperparameters" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #en #dataset-squad2 #dataset-cord19 #endpoints_compatible #region-us \n", "## Model description \nThis model was obtained by fine-tuning deepset/bert-base-cased-squad2 on Cord19 Dataset.", "## How to use", "## Overview", "## Hyperparameters" ]
[ 37, 30, 5, 3, 6 ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #en #dataset-squad2 #dataset-cord19 #endpoints_compatible #region-us \n## Model description \nThis model was obtained by fine-tuning deepset/bert-base-cased-squad2 on Cord19 Dataset.## How to use## Overview## Hyperparameters" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8366 - Matthews Correlation: 0.5472 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5224 | 1.0 | 535 | 0.5432 | 0.4243 | | 0.3447 | 2.0 | 1070 | 0.4968 | 0.5187 | | 0.2347 | 3.0 | 1605 | 0.6540 | 0.5280 | | 0.1747 | 4.0 | 2140 | 0.7547 | 0.5367 | | 0.1255 | 5.0 | 2675 | 0.8366 | 0.5472 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.5471613867597194, "name": "Matthews Correlation"}]}]}]}
JBNLRY/distilbert-base-uncased-finetuned-cola
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-cola ====================================== This model is a fine-tuned version of distilbert-base-uncased on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.8366 * Matthews Correlation: 0.5472 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.0+cu111 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 56, 101, 5, 44 ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
text2text-generation
transformers
# T5 Question Generation and Question Answering ## Model description This model is a T5 Transformers model (airklizz/t5-base-multi-fr-wiki-news) that was fine-tuned in french on 3 different tasks * question generation * question answering * answer extraction It obtains quite good results on FQuAD validation dataset. ## Intended uses & limitations This model functions for the 3 tasks mentionned earlier and was not tested on other tasks. ```python from transformers import T5ForConditionalGeneration, T5Tokenizer model = T5ForConditionalGeneration.from_pretrained("JDBN/t5-base-fr-qg-fquad") tokenizer = T5Tokenizer.from_pretrained("JDBN/t5-base-fr-qg-fquad") ``` ## Training data The initial model used was https://huggingface.co/airKlizz/t5-base-multi-fr-wiki-news. This model was finetuned on a dataset composed of FQuAD and PIAF on the 3 tasks mentioned previously. The data were preprocessed like this * question generation: "generate question: Barack Hussein Obama, nรฉ le 4 aout 1961, est un homme politique amรฉricain et avocat. Il a รฉtรฉ รฉlu <hl> en 2009 <hl> pour devenir le 44รจme prรฉsident des Etats-Unis d'Amรฉrique." * question answering: "question: Quand Barack Hussein Obamaa-t-il รฉtรฉ รฉlu prรฉsident des Etats-Unis dโ€™Amรฉrique? context: Barack Hussein Obama, nรฉ le 4 aout 1961, est un homme politique amรฉricain et avocat. Il a รฉtรฉ รฉlu en 2009 pour devenir le 44รจme prรฉsident des Etats-Unis dโ€™Amรฉrique." * answer extraction: "extract_answers: Barack Hussein Obama, nรฉ le 4 aout 1961, est un homme politique amรฉricain et avocat. <hl> Il a รฉtรฉ รฉlu en 2009 pour devenir le 44รจme prรฉsident des Etats-Unis dโ€™Amรฉrique <hl>." The preprocessing we used was implemented in https://github.com/patil-suraj/question_generation ## Eval results #### On FQuAD validation set | BLEU_1 | BLEU_2 | BLEU_3 | BLEU_4 | METEOR | ROUGE_L | CIDEr | |--------|--------|--------|--------|--------|---------|-------| | 0.290 | 0.203 | 0.149 | 0.111 | 0.197 | 0.284 | 1.038 | #### Question Answering metrics For these metrics, the performance of this question answering model (https://huggingface.co/illuin/camembert-base-fquad) on FQuAD original question and on T5 generated questions are compared. | Questions | Exact Match | F1 Score | |------------------|--------|--------| |Original FQuAD | 54.015 | 77.466 | |Generated | 45.765 | 67.306 | ### BibTeX entry and citation info ```bibtex @misc{githubPatil, author = {Patil Suraj}, title = {question generation GitHub repository}, year = {2020}, howpublished={\url{https://github.com/patil-suraj/question_generation}} } @article{T5, title={Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer}, author={Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu}, year={2019}, eprint={1910.10683}, archivePrefix={arXiv}, primaryClass={cs.LG} } @misc{dhoffschmidt2020fquad, title={FQuAD: French Question Answering Dataset}, author={Martin d'Hoffschmidt and Wacim Belblidia and Tom Brendlรฉ and Quentin Heinrich and Maxime Vidal}, year={2020}, eprint={2002.06071}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "fr", "tags": ["pytorch", "t5", "question-generation", "seq2seq"], "datasets": ["fquad", "piaf"], "widget": [{"text": "generate question: Barack Hussein Obama, n\u00e9 le 4 aout 1961, est un homme politique am\u00e9ricain et avocat. Il a \u00e9t\u00e9 \u00e9lu <hl> en 2009 <hl> pour devenir le 44\u00e8me pr\u00e9sident des Etats-Unis d'Am\u00e9rique. </s>"}, {"text": "question: Quand Barack Obama a t'il \u00e9t\u00e9 \u00e9lu pr\u00e9sident? context: Barack Hussein Obama, n\u00e9 le 4 aout 1961, est un homme politique am\u00e9ricain et avocat. Il a \u00e9t\u00e9 \u00e9lu en 2009 pour devenir le 44\u00e8me pr\u00e9sident des Etats-Unis d'Am\u00e9rique. </s>"}]}
JDBN/t5-base-fr-qg-fquad
null
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "question-generation", "seq2seq", "fr", "dataset:fquad", "dataset:piaf", "arxiv:1910.10683", "arxiv:2002.06071", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[ "1910.10683", "2002.06071" ]
[ "fr" ]
TAGS #transformers #pytorch #jax #t5 #text2text-generation #question-generation #seq2seq #fr #dataset-fquad #dataset-piaf #arxiv-1910.10683 #arxiv-2002.06071 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
T5 Question Generation and Question Answering ============================================= Model description ----------------- This model is a T5 Transformers model (airklizz/t5-base-multi-fr-wiki-news) that was fine-tuned in french on 3 different tasks * question generation * question answering * answer extraction It obtains quite good results on FQuAD validation dataset. Intended uses & limitations --------------------------- This model functions for the 3 tasks mentionned earlier and was not tested on other tasks. Training data ------------- The initial model used was URL This model was finetuned on a dataset composed of FQuAD and PIAF on the 3 tasks mentioned previously. The data were preprocessed like this * question generation: "generate question: Barack Hussein Obama, nรฉ le 4 aout 1961, est un homme politique amรฉricain et avocat. Il a รฉtรฉ รฉlu en 2009 pour devenir le 44รจme prรฉsident des Etats-Unis d'Amรฉrique." * question answering: "question: Quand Barack Hussein Obamaa-t-il รฉtรฉ รฉlu prรฉsident des Etats-Unis dโ€™Amรฉrique? context: Barack Hussein Obama, nรฉ le 4 aout 1961, est un homme politique amรฉricain et avocat. Il a รฉtรฉ รฉlu en 2009 pour devenir le 44รจme prรฉsident des Etats-Unis dโ€™Amรฉrique." * answer extraction: "extract\_answers: Barack Hussein Obama, nรฉ le 4 aout 1961, est un homme politique amรฉricain et avocat. Il a รฉtรฉ รฉlu en 2009 pour devenir le 44รจme prรฉsident des Etats-Unis dโ€™Amรฉrique ." The preprocessing we used was implemented in URL Eval results ------------ #### On FQuAD validation set #### Question Answering metrics For these metrics, the performance of this question answering model (URL on FQuAD original question and on T5 generated questions are compared. Questions: Original FQuAD, Exact Match: 54.015, F1 Score: 77.466 Questions: Generated, Exact Match: 45.765, F1 Score: 67.306 ### BibTeX entry and citation info
[ "#### On FQuAD validation set", "#### Question Answering metrics\n\n\nFor these metrics, the performance of this question answering model (URL on FQuAD original question and on T5 generated questions are compared.\n\n\nQuestions: Original FQuAD, Exact Match: 54.015, F1 Score: 77.466\nQuestions: Generated, Exact Match: 45.765, F1 Score: 67.306", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #jax #t5 #text2text-generation #question-generation #seq2seq #fr #dataset-fquad #dataset-piaf #arxiv-1910.10683 #arxiv-2002.06071 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "#### On FQuAD validation set", "#### Question Answering metrics\n\n\nFor these metrics, the performance of this question answering model (URL on FQuAD original question and on T5 generated questions are compared.\n\n\nQuestions: Original FQuAD, Exact Match: 54.015, F1 Score: 77.466\nQuestions: Generated, Exact Match: 45.765, F1 Score: 67.306", "### BibTeX entry and citation info" ]
[ 85, 10, 78, 10 ]
[ "TAGS\n#transformers #pytorch #jax #t5 #text2text-generation #question-generation #seq2seq #fr #dataset-fquad #dataset-piaf #arxiv-1910.10683 #arxiv-2002.06071 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n#### On FQuAD validation set#### Question Answering metrics\n\n\nFor these metrics, the performance of this question answering model (URL on FQuAD original question and on T5 generated questions are compared.\n\n\nQuestions: Original FQuAD, Exact Match: 54.015, F1 Score: 77.466\nQuestions: Generated, Exact Match: 45.765, F1 Score: 67.306### BibTeX entry and citation info" ]
text-generation
transformers
@ Harry Potter DialoGPT Model
{"tags": ["conversational"]}
JDS22/DialoGPT-medium-HarryPotterBot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
@ Harry Potter DialoGPT Model
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 39 ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-finetuned-nli This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.6210 - Accuracy: 0.085 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 196 | 0.6210 | 0.085 | | No log | 2.0 | 392 | 0.5421 | 0.0643 | | 0.5048 | 3.0 | 588 | 0.5523 | 0.062 | | 0.5048 | 4.0 | 784 | 0.5769 | 0.0533 | | 0.5048 | 5.0 | 980 | 0.5959 | 0.052 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"tags": ["generated_from_trainer"], "datasets": ["klue"], "metrics": ["accuracy"], "model-index": [{"name": "bert-base-finetuned-nli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "klue", "type": "klue", "args": "nli"}, "metrics": [{"type": "accuracy", "value": 0.085, "name": "Accuracy"}]}]}]}
JIWON/bert-base-finetuned-nli
null
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:klue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #bert #text-classification #generated_from_trainer #dataset-klue #model-index #autotrain_compatible #endpoints_compatible #region-us
bert-base-finetuned-nli ======================= This model is a fine-tuned version of klue/bert-base on the klue dataset. It achieves the following results on the evaluation set: * Loss: 0.6210 * Accuracy: 0.085 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 128 * eval\_batch\_size: 128 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.0+cu111 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 128\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #generated_from_trainer #dataset-klue #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 128\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ 45, 101, 5, 44 ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #generated_from_trainer #dataset-klue #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 128\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
fill-mask
transformers
# aristoBERTo aristoBERTo is a transformer model for ancient Greek, a low resource language. We initialized the pre-training with weights from [GreekBERT](https://huggingface.co/nlpaueb/bert-base-greek-uncased-v1), a Greek version of BERT which was trained on a large corpus of modern Greek (~ 30 GB of texts). We continued the pre-training with an ancient Greek corpus of about 900 MB, which was scrapped from the web and post-processed. Duplicate texts and editorial punctuation were removed. Applied to the processing of ancient Greek, aristoBERTo outperforms xlm-roberta-base and mdeberta in most downstream tasks like the labeling of POS, MORPH, DEP and LEMMA. aristoBERTo is provided by the [Diogenet project](https://diogenet.ucsd.edu) of the University of California, San Diego. ## Intended uses This model was created for fine-tuning with spaCy and the ancient Greek Universal Dependency datasets as well as a NER corpus produced by the [Diogenet project](https://diogenet.ucsd.edu). As a fill-mask model, AristoBERTo can also be used in the restoration of damaged Greek papyri, inscriptions, and manuscripts. It achieves the following results on the evaluation set: - Loss: 1.6323 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 1.377 | 20.0 | 3414220 | 1.6314 | ### Framework versions - Transformers 4.14.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
{"language": ["grc"], "widget": [{"text": "\u03a0\u03bb\u03ac\u03c4\u03c9\u03bd \u1f41 \u03a0\u03b5\u03c1\u03b9\u03ba\u03c4\u03b9\u03cc\u03bd\u03b7\u03c2 [MASK] \u03b3\u03ad\u03bd\u03bf\u03c2 \u1f00\u03bd\u03ad\u03c6\u03b5\u03c1\u03b5\u03bd \u03b5\u1f30\u03c2 \u03a3\u03cc\u03bb\u03c9\u03bd\u03b1."}, {"text": "\u1f41 \u039a\u03c1\u03b9\u03c4\u03af\u03b1\u03c2 \u1f00\u03c0\u03ad\u03b2\u03bb\u03b5\u03c8\u03b5 [MASK] \u03c4\u1f74\u03bd \u03b8\u03cd\u03c1\u03b1\u03bd."}, {"text": "\u03c0\u03c1\u1ff6\u03c4\u03bf\u03b9 \u03b4\u1f72 \u03ba\u03b1\u1f76 \u03bf\u1f50\u03bd\u03cc\u03bc\u03b1\u03c4\u03b1 \u1f31\u03c1\u1f70 \u1f14\u03b3\u03bd\u03c9\u03c3\u03b1\u03bd \u03ba\u03b1\u1f76 [MASK] \u1f31\u03c1\u03bf\u1f7a\u03c2 \u1f14\u03bb\u03b5\u03be\u03b1\u03bd."}], "model-index": [{"name": "aristoBERTo", "results": []}]}
Jacobo/aristoBERTo
null
[ "transformers", "pytorch", "bert", "fill-mask", "grc", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "grc" ]
TAGS #transformers #pytorch #bert #fill-mask #grc #autotrain_compatible #endpoints_compatible #region-us
aristoBERTo =========== aristoBERTo is a transformer model for ancient Greek, a low resource language. We initialized the pre-training with weights from GreekBERT, a Greek version of BERT which was trained on a large corpus of modern Greek (~ 30 GB of texts). We continued the pre-training with an ancient Greek corpus of about 900 MB, which was scrapped from the web and post-processed. Duplicate texts and editorial punctuation were removed. Applied to the processing of ancient Greek, aristoBERTo outperforms xlm-roberta-base and mdeberta in most downstream tasks like the labeling of POS, MORPH, DEP and LEMMA. aristoBERTo is provided by the Diogenet project of the University of California, San Diego. Intended uses ------------- This model was created for fine-tuning with spaCy and the ancient Greek Universal Dependency datasets as well as a NER corpus produced by the Diogenet project. As a fill-mask model, AristoBERTo can also be used in the restoration of damaged Greek papyri, inscriptions, and manuscripts. It achieves the following results on the evaluation set: * Loss: 1.6323 Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 20.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.14.0.dev0 * Pytorch 1.10.0+cu102 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 20.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.14.0.dev0\n* Pytorch 1.10.0+cu102\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #fill-mask #grc #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 20.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.14.0.dev0\n* Pytorch 1.10.0+cu102\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 31, 114, 5, 47 ]
[ "TAGS\n#transformers #pytorch #bert #fill-mask #grc #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 20.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.14.0.dev0\n* Pytorch 1.10.0+cu102\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # axiothea This is an experimental roberta model trained with an ancient Greek corpus of about 900 MB, which was scrapped from the web and post-processed. Duplicate texts and editorial punctuation were removed. The training dataset will be soon available in the Huggingface datasets hub. Training a model of ancient Greek is challenging given that it is a low resource language from which 50% of the register has only survived in fragmentary texts. The model is provided by the Diogenet project at the University of California, San Diego. It achieves the following results on the evaluation set: - Loss: 3.3351 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 4.7013 | 1.0 | 341422 | 4.8813 | | 4.2866 | 2.0 | 682844 | 4.4422 | | 4.0496 | 3.0 | 1024266 | 4.2132 | | 3.8503 | 4.0 | 1365688 | 4.0246 | | 3.6917 | 5.0 | 1707110 | 3.8756 | | 3.4917 | 6.0 | 2048532 | 3.7381 | | 3.3907 | 7.0 | 2389954 | 3.6107 | | 3.2876 | 8.0 | 2731376 | 3.5044 | | 3.1994 | 9.0 | 3072798 | 3.3980 | | 3.0806 | 10.0 | 3414220 | 3.3095 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.14.0 - Tokenizers 0.10.3
{"language": ["grc"], "tags": ["generated_from_trainer"], "widget": [{"text": "\u03a0\u03bb\u03ac\u03c4\u03c9\u03bd \u1f41 \u03a0\u03b5\u03c1\u03b9\u03ba\u03c4\u03b9\u03cc\u03bd\u03b7\u03c2 <mask> \u03b3\u03ad\u03bd\u03bf\u03c2 \u1f00\u03bd\u03ad\u03c6\u03b5\u03c1\u03b5\u03bd \u03b5\u1f30\u03c2 \u03a3\u03cc\u03bb\u03c9\u03bd\u03b1."}, {"text": "\u1f41 \u039a\u03c1\u03b9\u03c4\u03af\u03b1\u03c2 \u1f00\u03c0\u03ad\u03b2\u03bb\u03b5\u03c8\u03b5 <mask> \u03c4\u1f74\u03bd \u03b8\u03cd\u03c1\u03b1\u03bd."}, {"text": "\u1f6e \u03c6\u03af\u03bb\u03b5 \u039a\u03bb\u03b5\u03b9\u03bd\u03af\u03b1, \u03ba\u03b1\u03bb\u1ff6\u03c2 \u03bc\u1f72\u03bd <mask>."}], "model-index": [{"name": "dioBERTo", "results": []}]}
Jacobo/axiothea
null
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "grc", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "grc" ]
TAGS #transformers #pytorch #roberta #fill-mask #generated_from_trainer #grc #autotrain_compatible #endpoints_compatible #region-us
axiothea ======== This is an experimental roberta model trained with an ancient Greek corpus of about 900 MB, which was scrapped from the web and post-processed. Duplicate texts and editorial punctuation were removed. The training dataset will be soon available in the Huggingface datasets hub. Training a model of ancient Greek is challenging given that it is a low resource language from which 50% of the register has only survived in fragmentary texts. The model is provided by the Diogenet project at the University of California, San Diego. It achieves the following results on the evaluation set: * Loss: 3.3351 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 10.0 ### Training results ### Framework versions * Transformers 4.13.0.dev0 * Pytorch 1.10.0+cu102 * Datasets 1.14.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0+cu102\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #fill-mask #generated_from_trainer #grc #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0+cu102\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ 37, 103, 5, 47 ]
[ "TAGS\n#transformers #pytorch #roberta #fill-mask #generated_from_trainer #grc #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10.0### Training results### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0+cu102\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-csa-10-rev3 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.5869 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 18.7934 | 25.0 | 200 | 3.5869 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-base-csa-10-rev3", "results": []}]}
Jainil30/wav2vec2-base-csa-10-rev3
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-base-csa-10-rev3 ========================= This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set: * Loss: 3.5869 * Wer: 1.0 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1000 * num\_epochs: 30 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.13.3 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
[ 47, 128, 5, 44 ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.13.3\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sagemaker-distilbert-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2469 - Accuracy: 0.9165 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9351 | 1.0 | 500 | 0.2469 | 0.9165 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["emotion"], "metrics": ["accuracy"], "model-index": [{"name": "sagemaker-distilbert-emotion", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "emotion", "type": "emotion", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.9165, "name": "Accuracy"}]}]}]}
JaviBJ/sagemaker-distilbert-emotion
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-emotion #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
sagemaker-distilbert-emotion ============================ This model is a fine-tuned version of distilbert-base-uncased on the emotion dataset. It achieves the following results on the evaluation set: * Loss: 0.2469 * Accuracy: 0.9165 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 32 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.3 * Pytorch 1.9.1 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.1\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-emotion #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.1\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ 53, 128, 5, 40 ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #dataset-emotion #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.1\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
multiple-choice
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-semeval2020-task4a-append-e2-b32-l5e5 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5466 - Accuracy: 0.8890 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 344 | 0.3057 | 0.8630 | | 0.4091 | 2.0 | 688 | 0.2964 | 0.8880 | | 0.1322 | 3.0 | 1032 | 0.4465 | 0.8820 | | 0.1322 | 4.0 | 1376 | 0.5466 | 0.8890 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"]}
JazibEijaz/bert-base-uncased-finetuned-semeval2020-task4a-append-e2-b32-l5e5
null
[ "transformers", "pytorch", "tensorboard", "bert", "multiple-choice", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #multiple-choice #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
bert-base-uncased-finetuned-semeval2020-task4a-append-e2-b32-l5e5 ================================================================= This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.5466 * Accuracy: 0.8890 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 4e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.3 * Pytorch 1.9.1 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 4e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.1\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #multiple-choice #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 4e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.1\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ 40, 101, 5, 40 ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #multiple-choice #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 4e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4### Training results### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.1\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
multiple-choice
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-semeval2020-task4a This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the ComVE dataset which was part of SemEval 2020 Task 4. It achieves the following results on the test set: - Loss: 0.2782 - Accuracy: 0.9040 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 344 | 0.2700 | 0.8940 | | 0.349 | 2.0 | 688 | 0.2782 | 0.9040 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"]}
JazibEijaz/bert-base-uncased-finetuned-semeval2020-task4a
null
[ "transformers", "pytorch", "tensorboard", "bert", "multiple-choice", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #multiple-choice #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
bert-base-uncased-finetuned-semeval2020-task4a ============================================== This model is a fine-tuned version of bert-base-uncased on the ComVE dataset which was part of SemEval 2020 Task 4. It achieves the following results on the test set: * Loss: 0.2782 * Accuracy: 0.9040 ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 2 ### Training results ### Framework versions * Transformers 4.12.3 * Pytorch 1.9.1 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.1\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #multiple-choice #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.1\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ 40, 101, 5, 40 ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #multiple-choice #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.1\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
multiple-choice
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-semeval2020-task4b-append-e3-b32-l4e5 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5121 - Accuracy: 0.8700 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 344 | 0.3603 | 0.8550 | | 0.3894 | 2.0 | 688 | 0.4011 | 0.8630 | | 0.1088 | 3.0 | 1032 | 0.5121 | 0.8700 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"]}
JazibEijaz/bert-base-uncased-finetuned-semeval2020-task4b-append-e3-b32-l4e5
null
[ "transformers", "pytorch", "tensorboard", "bert", "multiple-choice", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #multiple-choice #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
bert-base-uncased-finetuned-semeval2020-task4b-append-e3-b32-l4e5 ================================================================= This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.5121 * Accuracy: 0.8700 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 4e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.12.3 * Pytorch 1.9.1 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 4e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.1\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #multiple-choice #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 4e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.1\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ 40, 101, 5, 40 ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #multiple-choice #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 4e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.1\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
multiple-choice
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-semeval2020-task4b-base-e2-b32-l3e5 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4114 - Accuracy: 0.8700 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 344 | 0.3773 | 0.8490 | | 0.3812 | 2.0 | 688 | 0.4114 | 0.8700 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"]}
JazibEijaz/bert-base-uncased-finetuned-semeval2020-task4b-base-e2-b32-l3e5
null
[ "transformers", "pytorch", "tensorboard", "bert", "multiple-choice", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #multiple-choice #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
bert-base-uncased-finetuned-semeval2020-task4b-base-e2-b32-l3e5 =============================================================== This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.4114 * Accuracy: 0.8700 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 2 ### Training results ### Framework versions * Transformers 4.12.3 * Pytorch 1.9.1 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.1\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #multiple-choice #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.1\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ 40, 101, 5, 40 ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #multiple-choice #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.1\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
multiple-choice
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-semeval2020-task4b This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the ComVE dataset which was part of SemEval 2020 Task 4. It achieves the following results on the test set: - Loss: 0.6760 - Accuracy: 0.8760 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5016 | 1.0 | 688 | 0.3502 | 0.8600 | | 0.2528 | 2.0 | 1376 | 0.5769 | 0.8620 | | 0.0598 | 3.0 | 2064 | 0.6720 | 0.8700 | | 0.0197 | 4.0 | 2752 | 0.6760 | 0.8760 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"]}
JazibEijaz/bert-base-uncased-finetuned-semeval2020-task4b
null
[ "transformers", "pytorch", "tensorboard", "bert", "multiple-choice", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #multiple-choice #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
bert-base-uncased-finetuned-semeval2020-task4b ============================================== This model is a fine-tuned version of bert-base-uncased on the ComVE dataset which was part of SemEval 2020 Task 4. It achieves the following results on the test set: * Loss: 0.6760 * Accuracy: 0.8760 ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.12.3 * Pytorch 1.9.1 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.1\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #multiple-choice #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.1\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ 40, 101, 5, 40 ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #multiple-choice #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4### Training results### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.1\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
multiple-choice
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-swag-e1-b16-l5e5 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the swag dataset. It achieves the following results on the evaluation set: - Loss: 0.5202 - Accuracy: 0.7997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.701 | 1.0 | 4597 | 0.5202 | 0.7997 | ### Framework versions - Transformers 4.12.2 - Pytorch 1.9.1 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["swag"], "metrics": ["accuracy"], "model-index": [{"name": "bert-base-uncased-finetuned-swag-e1-b16-l5e5", "results": []}]}
JazibEijaz/bert-base-uncased-finetuned-swag-e1-b16-l5e5
null
[ "transformers", "pytorch", "tensorboard", "bert", "multiple-choice", "generated_from_trainer", "dataset:swag", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #multiple-choice #generated_from_trainer #dataset-swag #license-apache-2.0 #endpoints_compatible #region-us
bert-base-uncased-finetuned-swag-e1-b16-l5e5 ============================================ This model is a fine-tuned version of bert-base-uncased on the swag dataset. It achieves the following results on the evaluation set: * Loss: 0.5202 * Accuracy: 0.7997 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 ### Training results ### Framework versions * Transformers 4.12.2 * Pytorch 1.9.1 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.2\n* Pytorch 1.9.1\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #multiple-choice #generated_from_trainer #dataset-swag #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.2\n* Pytorch 1.9.1\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ 46, 101, 5, 40 ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #multiple-choice #generated_from_trainer #dataset-swag #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1### Training results### Framework versions\n\n\n* Transformers 4.12.2\n* Pytorch 1.9.1\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
token-classification
transformers
# camembert-ner: model fine-tuned from camemBERT for NER task (including DATE tag). ## Introduction [camembert-ner-with-dates] is an extension of french camembert-ner model with an additionnal tag for dates. Model was trained on enriched version of wikiner-fr dataset (~170 634 sentences). On my test data (mix of chat and email), this model got an f1 score of ~83% (in comparison dateparser was ~70%). Dateparser library can still be be used on the output of this model in order to convert text to python datetime object (https://dateparser.readthedocs.io/en/latest/). ## How to use camembert-ner-with-dates with HuggingFace ##### Load camembert-ner-with-dates and its sub-word tokenizer : ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Jean-Baptiste/camembert-ner-with-dates") model = AutoModelForTokenClassification.from_pretrained("Jean-Baptiste/camembert-ner-with-dates") ##### Process text sample (from wikipedia) from transformers import pipeline nlp = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple") nlp("Apple est crรฉรฉe le 1er avril 1976 dans le garage de la maison d'enfance de Steve Jobs ร  Los Altos en Californie par Steve Jobs, Steve Wozniak et Ronald Wayne14, puis constituรฉe sous forme de sociรฉtรฉ le 3 janvier 1977 ร  l'origine sous le nom d'Apple Computer, mais pour ses 30 ans et pour reflรฉter la diversification de ses produits, le mot ยซ computer ยป est retirรฉ le 9 janvier 2015.") [{'entity_group': 'ORG', 'score': 0.9776379466056824, 'word': 'Apple', 'start': 0, 'end': 5}, {'entity_group': 'DATE', 'score': 0.9793774570737567, 'word': 'le 1er avril 1976 dans le', 'start': 15, 'end': 41}, {'entity_group': 'PER', 'score': 0.9958226680755615, 'word': 'Steve Jobs', 'start': 74, 'end': 85}, {'entity_group': 'LOC', 'score': 0.995087186495463, 'word': 'Los Altos', 'start': 87, 'end': 97}, {'entity_group': 'LOC', 'score': 0.9953305125236511, 'word': 'Californie', 'start': 100, 'end': 111}, {'entity_group': 'PER', 'score': 0.9961076378822327, 'word': 'Steve Jobs', 'start': 115, 'end': 126}, {'entity_group': 'PER', 'score': 0.9960325956344604, 'word': 'Steve Wozniak', 'start': 127, 'end': 141}, {'entity_group': 'PER', 'score': 0.9957776467005411, 'word': 'Ronald Wayne', 'start': 144, 'end': 157}, {'entity_group': 'DATE', 'score': 0.994030773639679, 'word': 'le 3 janvier 1977 ร ', 'start': 198, 'end': 218}, {'entity_group': 'ORG', 'score': 0.9720810294151306, 'word': "d'Apple Computer", 'start': 240, 'end': 257}, {'entity_group': 'DATE', 'score': 0.9924157659212748, 'word': '30 ans et', 'start': 272, 'end': 282}, {'entity_group': 'DATE', 'score': 0.9934852868318558, 'word': 'le 9 janvier 2015.', 'start': 363, 'end': 382}] ``` ## Model performances (metric: seqeval) Global ``` 'precision': 0.928 'recall': 0.928 'f1': 0.928 ``` By entity ``` Label LOC: (precision:0.929, recall:0.932, f1:0.931, support:9510) Label PER: (precision:0.952, recall:0.965, f1:0.959, support:9399) Label MISC: (precision:0.878, recall:0.844, f1:0.860, support:5364) Label ORG: (precision:0.848, recall:0.883, f1:0.865, support:2299) Label DATE: Not relevant because of method used to add date tag on wikiner dataset (estimated f1 ~90%) ```
{"language": "fr", "license": "mit", "datasets": ["Jean-Baptiste/wikiner_fr"], "widget": [{"text": "Je m'appelle jean-baptiste et j'habite \u00e0 montr\u00e9al depuis fevr 2012"}]}
Jean-Baptiste/camembert-ner-with-dates
null
[ "transformers", "pytorch", "onnx", "safetensors", "camembert", "token-classification", "fr", "dataset:Jean-Baptiste/wikiner_fr", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "fr" ]
TAGS #transformers #pytorch #onnx #safetensors #camembert #token-classification #fr #dataset-Jean-Baptiste/wikiner_fr #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
# camembert-ner: model fine-tuned from camemBERT for NER task (including DATE tag). ## Introduction [camembert-ner-with-dates] is an extension of french camembert-ner model with an additionnal tag for dates. Model was trained on enriched version of wikiner-fr dataset (~170 634 sentences). On my test data (mix of chat and email), this model got an f1 score of ~83% (in comparison dateparser was ~70%). Dateparser library can still be be used on the output of this model in order to convert text to python datetime object (URL ## How to use camembert-ner-with-dates with HuggingFace ##### Load camembert-ner-with-dates and its sub-word tokenizer : ## Model performances (metric: seqeval) Global By entity
[ "# camembert-ner: model fine-tuned from camemBERT for NER task (including DATE tag).", "## Introduction\n\n[camembert-ner-with-dates] is an extension of french camembert-ner model with an additionnal tag for dates.\nModel was trained on enriched version of wikiner-fr dataset (~170 634 sentences).\n\nOn my test data (mix of chat and email), this model got an f1 score of ~83% (in comparison dateparser was ~70%).\nDateparser library can still be be used on the output of this model in order to convert text to python datetime object \n(URL", "## How to use camembert-ner-with-dates with HuggingFace", "##### Load camembert-ner-with-dates and its sub-word tokenizer :", "## Model performances (metric: seqeval)\n\nGlobal\n\n\nBy entity" ]
[ "TAGS\n#transformers #pytorch #onnx #safetensors #camembert #token-classification #fr #dataset-Jean-Baptiste/wikiner_fr #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# camembert-ner: model fine-tuned from camemBERT for NER task (including DATE tag).", "## Introduction\n\n[camembert-ner-with-dates] is an extension of french camembert-ner model with an additionnal tag for dates.\nModel was trained on enriched version of wikiner-fr dataset (~170 634 sentences).\n\nOn my test data (mix of chat and email), this model got an f1 score of ~83% (in comparison dateparser was ~70%).\nDateparser library can still be be used on the output of this model in order to convert text to python datetime object \n(URL", "## How to use camembert-ner-with-dates with HuggingFace", "##### Load camembert-ner-with-dates and its sub-word tokenizer :", "## Model performances (metric: seqeval)\n\nGlobal\n\n\nBy entity" ]
[ 60, 26, 119, 18, 24, 15 ]
[ "TAGS\n#transformers #pytorch #onnx #safetensors #camembert #token-classification #fr #dataset-Jean-Baptiste/wikiner_fr #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n# camembert-ner: model fine-tuned from camemBERT for NER task (including DATE tag).## Introduction\n\n[camembert-ner-with-dates] is an extension of french camembert-ner model with an additionnal tag for dates.\nModel was trained on enriched version of wikiner-fr dataset (~170 634 sentences).\n\nOn my test data (mix of chat and email), this model got an f1 score of ~83% (in comparison dateparser was ~70%).\nDateparser library can still be be used on the output of this model in order to convert text to python datetime object \n(URL## How to use camembert-ner-with-dates with HuggingFace##### Load camembert-ner-with-dates and its sub-word tokenizer :## Model performances (metric: seqeval)\n\nGlobal\n\n\nBy entity" ]
token-classification
transformers
# camembert-ner: model fine-tuned from camemBERT for NER task. ## Introduction [camembert-ner] is a NER model that was fine-tuned from camemBERT on wikiner-fr dataset. Model was trained on wikiner-fr dataset (~170 634 sentences). Model was validated on emails/chat data and overperformed other models on this type of data specifically. In particular the model seems to work better on entity that don't start with an upper case. ## Training data Training data was classified as follow: Abbreviation|Description -|- O |Outside of a named entity MISC |Miscellaneous entity PER |Personโ€™s name ORG |Organization LOC |Location ## How to use camembert-ner with HuggingFace ##### Load camembert-ner and its sub-word tokenizer : ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Jean-Baptiste/camembert-ner") model = AutoModelForTokenClassification.from_pretrained("Jean-Baptiste/camembert-ner") ##### Process text sample (from wikipedia) from transformers import pipeline nlp = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple") nlp("Apple est crรฉรฉe le 1er avril 1976 dans le garage de la maison d'enfance de Steve Jobs ร  Los Altos en Californie par Steve Jobs, Steve Wozniak et Ronald Wayne14, puis constituรฉe sous forme de sociรฉtรฉ le 3 janvier 1977 ร  l'origine sous le nom d'Apple Computer, mais pour ses 30 ans et pour reflรฉter la diversification de ses produits, le mot ยซ computer ยป est retirรฉ le 9 janvier 2015.") [{'entity_group': 'ORG', 'score': 0.9472818374633789, 'word': 'Apple', 'start': 0, 'end': 5}, {'entity_group': 'PER', 'score': 0.9838564991950989, 'word': 'Steve Jobs', 'start': 74, 'end': 85}, {'entity_group': 'LOC', 'score': 0.9831605950991312, 'word': 'Los Altos', 'start': 87, 'end': 97}, {'entity_group': 'LOC', 'score': 0.9834540486335754, 'word': 'Californie', 'start': 100, 'end': 111}, {'entity_group': 'PER', 'score': 0.9841555754343668, 'word': 'Steve Jobs', 'start': 115, 'end': 126}, {'entity_group': 'PER', 'score': 0.9843501806259155, 'word': 'Steve Wozniak', 'start': 127, 'end': 141}, {'entity_group': 'PER', 'score': 0.9841533899307251, 'word': 'Ronald Wayne', 'start': 144, 'end': 157}, {'entity_group': 'ORG', 'score': 0.9468960364659628, 'word': 'Apple Computer', 'start': 243, 'end': 257}] ``` ## Model performances (metric: seqeval) Overall precision|recall|f1 -|-|- 0.8859|0.8971|0.8914 By entity entity|precision|recall|f1 -|-|-|- PER|0.9372|0.9598|0.9483 ORG|0.8099|0.8265|0.8181 LOC|0.8905|0.9005|0.8955 MISC|0.8175|0.8117|0.8146 For those who could be interested, here is a short article on how I used the results of this model to train a LSTM model for signature detection in emails: https://medium.com/@jean-baptiste.polle/lstm-model-for-email-signature-detection-8e990384fefa
{"language": "fr", "license": "mit", "datasets": ["Jean-Baptiste/wikiner_fr"], "widget": [{"text": "Je m'appelle jean-baptiste et je vis \u00e0 montr\u00e9al"}, {"text": "george washington est all\u00e9 \u00e0 washington"}]}
Jean-Baptiste/camembert-ner
null
[ "transformers", "pytorch", "onnx", "safetensors", "camembert", "token-classification", "fr", "dataset:Jean-Baptiste/wikiner_fr", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "fr" ]
TAGS #transformers #pytorch #onnx #safetensors #camembert #token-classification #fr #dataset-Jean-Baptiste/wikiner_fr #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
camembert-ner: model fine-tuned from camemBERT for NER task. ============================================================ Introduction ------------ [camembert-ner] is a NER model that was fine-tuned from camemBERT on wikiner-fr dataset. Model was trained on wikiner-fr dataset (~170 634 sentences). Model was validated on emails/chat data and overperformed other models on this type of data specifically. In particular the model seems to work better on entity that don't start with an upper case. Training data ------------- Training data was classified as follow: How to use camembert-ner with HuggingFace ----------------------------------------- ##### Load camembert-ner and its sub-word tokenizer : Model performances (metric: seqeval) ------------------------------------ Overall precision: 0.8859, recall: 0.8971, f1: 0.8914 By entity For those who could be interested, here is a short article on how I used the results of this model to train a LSTM model for signature detection in emails: URL
[ "##### Load camembert-ner and its sub-word tokenizer :\n\n\nModel performances (metric: seqeval)\n------------------------------------\n\n\nOverall\n\n\nprecision: 0.8859, recall: 0.8971, f1: 0.8914\n\n\nBy entity\n\n\n\nFor those who could be interested, here is a short article on how I used the results of this model to train a LSTM model for signature detection in emails:\nURL" ]
[ "TAGS\n#transformers #pytorch #onnx #safetensors #camembert #token-classification #fr #dataset-Jean-Baptiste/wikiner_fr #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "##### Load camembert-ner and its sub-word tokenizer :\n\n\nModel performances (metric: seqeval)\n------------------------------------\n\n\nOverall\n\n\nprecision: 0.8859, recall: 0.8971, f1: 0.8914\n\n\nBy entity\n\n\n\nFor those who could be interested, here is a short article on how I used the results of this model to train a LSTM model for signature detection in emails:\nURL" ]
[ 60, 126 ]
[ "TAGS\n#transformers #pytorch #onnx #safetensors #camembert #token-classification #fr #dataset-Jean-Baptiste/wikiner_fr #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n##### Load camembert-ner and its sub-word tokenizer :\n\n\nModel performances (metric: seqeval)\n------------------------------------\n\n\nOverall\n\n\nprecision: 0.8859, recall: 0.8971, f1: 0.8914\n\n\nBy entity\n\n\n\nFor those who could be interested, here is a short article on how I used the results of this model to train a LSTM model for signature detection in emails:\nURL" ]
token-classification
transformers
# roberta-large-ner-english: model fine-tuned from roberta-large for NER task ## Introduction [roberta-large-ner-english] is an english NER model that was fine-tuned from roberta-large on conll2003 dataset. Model was validated on emails/chat data and outperformed other models on this type of data specifically. In particular the model seems to work better on entity that don't start with an upper case. ## Training data Training data was classified as follow: Abbreviation|Description -|- O |Outside of a named entity MISC |Miscellaneous entity PER |Personโ€™s name ORG |Organization LOC |Location In order to simplify, the prefix B- or I- from original conll2003 was removed. I used the train and test dataset from original conll2003 for training and the "validation" dataset for validation. This resulted in a dataset of size: Train | Validation -|- 17494 | 3250 ## How to use roberta-large-ner-english with HuggingFace ##### Load roberta-large-ner-english and its sub-word tokenizer : ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Jean-Baptiste/roberta-large-ner-english") model = AutoModelForTokenClassification.from_pretrained("Jean-Baptiste/roberta-large-ner-english") ##### Process text sample (from wikipedia) from transformers import pipeline nlp = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple") nlp("Apple was founded in 1976 by Steve Jobs, Steve Wozniak and Ronald Wayne to develop and sell Wozniak's Apple I personal computer") [{'entity_group': 'ORG', 'score': 0.99381506, 'word': ' Apple', 'start': 0, 'end': 5}, {'entity_group': 'PER', 'score': 0.99970853, 'word': ' Steve Jobs', 'start': 29, 'end': 39}, {'entity_group': 'PER', 'score': 0.99981767, 'word': ' Steve Wozniak', 'start': 41, 'end': 54}, {'entity_group': 'PER', 'score': 0.99956465, 'word': ' Ronald Wayne', 'start': 59, 'end': 71}, {'entity_group': 'PER', 'score': 0.9997918, 'word': ' Wozniak', 'start': 92, 'end': 99}, {'entity_group': 'MISC', 'score': 0.99956393, 'word': ' Apple I', 'start': 102, 'end': 109}] ``` ## Model performances Model performances computed on conll2003 validation dataset (computed on the tokens predictions) entity|precision|recall|f1 -|-|-|- PER|0.9914|0.9927|0.9920 ORG|0.9627|0.9661|0.9644 LOC|0.9795|0.9862|0.9828 MISC|0.9292|0.9262|0.9277 Overall|0.9740|0.9766|0.9753 On private dataset (email, chat, informal discussion), computed on word predictions: entity|precision|recall|f1 -|-|-|- PER|0.8823|0.9116|0.8967 ORG|0.7694|0.7292|0.7487 LOC|0.8619|0.7768|0.8171 By comparison on the same private dataset, Spacy (en_core_web_trf-3.2.0) was giving: entity|precision|recall|f1 -|-|-|- PER|0.9146|0.8287|0.8695 ORG|0.7655|0.6437|0.6993 LOC|0.8727|0.6180|0.7236 For those who could be interested, here is a short article on how I used the results of this model to train a LSTM model for signature detection in emails: https://medium.com/@jean-baptiste.polle/lstm-model-for-email-signature-detection-8e990384fefa
{"language": "en", "license": "mit", "datasets": ["conll2003"], "widget": [{"text": "My name is jean-baptiste and I live in montreal"}, {"text": "My name is clara and I live in berkeley, california."}, {"text": "My name is wolfgang and I live in berlin"}], "train-eval-index": [{"config": "conll2003", "task": "token-classification", "task_id": "entity_extraction", "splits": {"eval_split": "validation"}, "col_mapping": {"tokens": "tokens", "ner_tags": "tags"}}]}
Jean-Baptiste/roberta-large-ner-english
null
[ "transformers", "pytorch", "tf", "onnx", "safetensors", "roberta", "token-classification", "en", "dataset:conll2003", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #tf #onnx #safetensors #roberta #token-classification #en #dataset-conll2003 #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
roberta-large-ner-english: model fine-tuned from roberta-large for NER task =========================================================================== Introduction ------------ [roberta-large-ner-english] is an english NER model that was fine-tuned from roberta-large on conll2003 dataset. Model was validated on emails/chat data and outperformed other models on this type of data specifically. In particular the model seems to work better on entity that don't start with an upper case. Training data ------------- Training data was classified as follow: In order to simplify, the prefix B- or I- from original conll2003 was removed. I used the train and test dataset from original conll2003 for training and the "validation" dataset for validation. This resulted in a dataset of size: How to use roberta-large-ner-english with HuggingFace ----------------------------------------------------- ##### Load roberta-large-ner-english and its sub-word tokenizer : Model performances ------------------ Model performances computed on conll2003 validation dataset (computed on the tokens predictions) On private dataset (email, chat, informal discussion), computed on word predictions: By comparison on the same private dataset, Spacy (en\_core\_web\_trf-3.2.0) was giving: For those who could be interested, here is a short article on how I used the results of this model to train a LSTM model for signature detection in emails: URL
[ "##### Load roberta-large-ner-english and its sub-word tokenizer :\n\n\nModel performances\n------------------\n\n\nModel performances computed on conll2003 validation dataset (computed on the tokens predictions)\n\n\n\nOn private dataset (email, chat, informal discussion), computed on word predictions:\n\n\n\nBy comparison on the same private dataset, Spacy (en\\_core\\_web\\_trf-3.2.0) was giving:\n\n\n\nFor those who could be interested, here is a short article on how I used the results of this model to train a LSTM model for signature detection in emails:\nURL" ]
[ "TAGS\n#transformers #pytorch #tf #onnx #safetensors #roberta #token-classification #en #dataset-conll2003 #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "##### Load roberta-large-ner-english and its sub-word tokenizer :\n\n\nModel performances\n------------------\n\n\nModel performances computed on conll2003 validation dataset (computed on the tokens predictions)\n\n\n\nOn private dataset (email, chat, informal discussion), computed on word predictions:\n\n\n\nBy comparison on the same private dataset, Spacy (en\\_core\\_web\\_trf-3.2.0) was giving:\n\n\n\nFor those who could be interested, here is a short article on how I used the results of this model to train a LSTM model for signature detection in emails:\nURL" ]
[ 56, 148 ]
[ "TAGS\n#transformers #pytorch #tf #onnx #safetensors #roberta #token-classification #en #dataset-conll2003 #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n##### Load roberta-large-ner-english and its sub-word tokenizer :\n\n\nModel performances\n------------------\n\n\nModel performances computed on conll2003 validation dataset (computed on the tokens predictions)\n\n\n\nOn private dataset (email, chat, informal discussion), computed on word predictions:\n\n\n\nBy comparison on the same private dataset, Spacy (en\\_core\\_web\\_trf-3.2.0) was giving:\n\n\n\nFor those who could be interested, here is a short article on how I used the results of this model to train a LSTM model for signature detection in emails:\nURL" ]
token-classification
transformers
# roberta-ticker: model was fine-tuned from Roberta to detect financial tickers ## Introduction This is a model specifically designed to identify tickers in text. Model was trained on transformed dataset from following Kaggle dataset: https://www.kaggle.com/omermetinn/tweets-about-the-top-companies-from-2015-to-2020 ## How to use roberta-ticker with HuggingFace ##### Load roberta-ticker and its sub-word tokenizer : ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Jean-Baptiste/roberta-ticker") model = AutoModelForTokenClassification.from_pretrained("Jean-Baptiste/roberta-ticker") ##### Process text sample from transformers import pipeline nlp = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple") nlp("I am going to buy 100 shares of cake tomorrow") [{'entity_group': 'TICKER', 'score': 0.9612462520599365, 'word': ' cake', 'start': 32, 'end': 36}] nlp("I am going to eat a cake tomorrow") [] ``` ## Model performances ``` precision: 0.914157 recall: 0.788824 f1: 0.846878 ```
{"language": "en", "widget": [{"text": "I am going to buy 100 shares of cake tomorrow"}]}
Jean-Baptiste/roberta-ticker
null
[ "transformers", "pytorch", "safetensors", "roberta", "token-classification", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #safetensors #roberta #token-classification #en #autotrain_compatible #endpoints_compatible #region-us
# roberta-ticker: model was fine-tuned from Roberta to detect financial tickers ## Introduction This is a model specifically designed to identify tickers in text. Model was trained on transformed dataset from following Kaggle dataset: URL ## How to use roberta-ticker with HuggingFace ##### Load roberta-ticker and its sub-word tokenizer : ## Model performances
[ "# roberta-ticker: model was fine-tuned from Roberta to detect financial tickers", "## Introduction\n\nThis is a model specifically designed to identify tickers in text.\nModel was trained on transformed dataset from following Kaggle dataset:\nURL", "## How to use roberta-ticker with HuggingFace", "##### Load roberta-ticker and its sub-word tokenizer :", "## Model performances" ]
[ "TAGS\n#transformers #pytorch #safetensors #roberta #token-classification #en #autotrain_compatible #endpoints_compatible #region-us \n", "# roberta-ticker: model was fine-tuned from Roberta to detect financial tickers", "## Introduction\n\nThis is a model specifically designed to identify tickers in text.\nModel was trained on transformed dataset from following Kaggle dataset:\nURL", "## How to use roberta-ticker with HuggingFace", "##### Load roberta-ticker and its sub-word tokenizer :", "## Model performances" ]
[ 34, 18, 32, 12, 18, 4 ]
[ "TAGS\n#transformers #pytorch #safetensors #roberta #token-classification #en #autotrain_compatible #endpoints_compatible #region-us \n# roberta-ticker: model was fine-tuned from Roberta to detect financial tickers## Introduction\n\nThis is a model specifically designed to identify tickers in text.\nModel was trained on transformed dataset from following Kaggle dataset:\nURL## How to use roberta-ticker with HuggingFace##### Load roberta-ticker and its sub-word tokenizer :## Model performances" ]
text-generation
transformers
# Tony Stark
{"tags": ["conversational"]}
Jedi33/tonystarkAI
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Tony Stark
[ "# Tony Stark" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Tony Stark" ]
[ 39, 3 ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Tony Stark" ]
null
null
First 50 [Feather BERT-s](https://arxiv.org/abs/1911.02969) compressed in groups of 10. Clone this repository, decompress the compressed folders, and provide the paths to the Feather BERT you want to use in ``.from_pretrained()``. For downloading next 50 Feather BERT-s, see [here](https://huggingface.co/Jeevesh8/feather_berts1/).
{}
Jeevesh8/feather_berts
null
[ "arxiv:1911.02969", "region:us" ]
null
2022-03-02T23:29:04+00:00
[ "1911.02969" ]
[]
TAGS #arxiv-1911.02969 #region-us
First 50 Feather BERT-s compressed in groups of 10. Clone this repository, decompress the compressed folders, and provide the paths to the Feather BERT you want to use in ''.from_pretrained()''. For downloading next 50 Feather BERT-s, see here.
[]
[ "TAGS\n#arxiv-1911.02969 #region-us \n" ]
[ 16 ]
[ "TAGS\n#arxiv-1911.02969 #region-us \n" ]
null
null
Second 50 [Feather BERT-s](https://arxiv.org/abs/1911.02969) compressed in groups of 10. Clone this repository, decompress the compressed folders, and provide the paths to the Feather BERT you want to use in ``.from_pretrained()``. For downloading first 50 Feather BERT-s, see [here](https://huggingface.co/Jeevesh8/feather_berts/).
{}
Jeevesh8/feather_berts1
null
[ "arxiv:1911.02969", "region:us" ]
null
2022-03-02T23:29:04+00:00
[ "1911.02969" ]
[]
TAGS #arxiv-1911.02969 #region-us
Second 50 Feather BERT-s compressed in groups of 10. Clone this repository, decompress the compressed folders, and provide the paths to the Feather BERT you want to use in ''.from_pretrained()''. For downloading first 50 Feather BERT-s, see here.
[]
[ "TAGS\n#arxiv-1911.02969 #region-us \n" ]
[ 16 ]
[ "TAGS\n#arxiv-1911.02969 #region-us \n" ]
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialData This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2608 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 297 | 2.2419 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "BertjeWDialData", "results": []}]}
Jeska/BertjeWDialData
null
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
BertjeWDialData =============== This model is a fine-tuned version of GroNLP/bert-base-dutch-cased on the None dataset. It achieves the following results on the evaluation set: * Loss: 2.2608 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 64 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1.0 ### Training results ### Framework versions * Transformers 4.13.0.dev0 * Pytorch 1.10.0+cu111 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ 37, 126, 5, 47 ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1.0### Training results### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataALL This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9469 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.1739 | 1.0 | 1542 | 2.0150 | | 2.0759 | 2.0 | 3084 | 1.9918 | | 2.0453 | 3.0 | 4626 | 2.0132 | | 1.9936 | 4.0 | 6168 | 1.9341 | | 1.9659 | 5.0 | 7710 | 1.9140 | | 1.9545 | 6.0 | 9252 | 1.9418 | | 1.9104 | 7.0 | 10794 | 1.9179 | | 1.8991 | 8.0 | 12336 | 1.9157 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "BertjeWDialDataALL", "results": []}]}
Jeska/BertjeWDialDataALL
null
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
BertjeWDialDataALL ================== This model is a fine-tuned version of GroNLP/bert-base-dutch-cased on the None dataset. It achieves the following results on the evaluation set: * Loss: 1.9469 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 64 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 8.0 ### Training results ### Framework versions * Transformers 4.13.0.dev0 * Pytorch 1.10.0 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 8.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 8.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ 37, 126, 5, 43 ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 8.0### Training results### Framework versions\n\n\n* Transformers 4.13.0.dev0\n* Pytorch 1.10.0\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]