pipeline_tag
stringclasses
48 values
library_name
stringclasses
198 values
text
stringlengths
1
900k
metadata
stringlengths
2
438k
id
stringlengths
5
122
last_modified
null
tags
sequencelengths
1
1.84k
sha
null
created_at
stringlengths
25
25
arxiv
sequencelengths
0
201
languages
sequencelengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
sequencelengths
0
722
processed_texts
sequencelengths
1
723
tokens_length
sequencelengths
1
723
input_texts
sequencelengths
1
1
translation
transformers
### opus-mt-gil-en * source languages: gil * target languages: en * OPUS readme: [gil-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/gil-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/gil-en/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/gil-en/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/gil-en/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.gil.en | 36.0 | 0.522 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-gil-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "gil", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #gil #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-gil-en * source languages: gil * target languages: en * OPUS readme: gil-en * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 36.0, chr-F: 0.522
[ "### opus-mt-gil-en\n\n\n* source languages: gil\n* target languages: en\n* OPUS readme: gil-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 36.0, chr-F: 0.522" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #gil #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-gil-en\n\n\n* source languages: gil\n* target languages: en\n* OPUS readme: gil-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 36.0, chr-F: 0.522" ]
[ 51, 106 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #gil #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-gil-en\n\n\n* source languages: gil\n* target languages: en\n* OPUS readme: gil-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 36.0, chr-F: 0.522" ]
translation
transformers
### opus-mt-gil-es * source languages: gil * target languages: es * OPUS readme: [gil-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/gil-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/gil-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/gil-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/gil-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.gil.es | 21.8 | 0.398 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-gil-es
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "gil", "es", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #gil #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-gil-es * source languages: gil * target languages: es * OPUS readme: gil-es * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 21.8, chr-F: 0.398
[ "### opus-mt-gil-es\n\n\n* source languages: gil\n* target languages: es\n* OPUS readme: gil-es\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 21.8, chr-F: 0.398" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #gil #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-gil-es\n\n\n* source languages: gil\n* target languages: es\n* OPUS readme: gil-es\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 21.8, chr-F: 0.398" ]
[ 51, 106 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #gil #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-gil-es\n\n\n* source languages: gil\n* target languages: es\n* OPUS readme: gil-es\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 21.8, chr-F: 0.398" ]
translation
transformers
### opus-mt-gil-fi * source languages: gil * target languages: fi * OPUS readme: [gil-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/gil-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/gil-fi/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/gil-fi/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/gil-fi/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.gil.fi | 23.1 | 0.447 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-gil-fi
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "gil", "fi", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #gil #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-gil-fi * source languages: gil * target languages: fi * OPUS readme: gil-fi * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 23.1, chr-F: 0.447
[ "### opus-mt-gil-fi\n\n\n* source languages: gil\n* target languages: fi\n* OPUS readme: gil-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 23.1, chr-F: 0.447" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #gil #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-gil-fi\n\n\n* source languages: gil\n* target languages: fi\n* OPUS readme: gil-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 23.1, chr-F: 0.447" ]
[ 51, 106 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #gil #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-gil-fi\n\n\n* source languages: gil\n* target languages: fi\n* OPUS readme: gil-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 23.1, chr-F: 0.447" ]
translation
transformers
### opus-mt-gil-fr * source languages: gil * target languages: fr * OPUS readme: [gil-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/gil-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/gil-fr/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/gil-fr/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/gil-fr/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.gil.fr | 24.9 | 0.424 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-gil-fr
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "gil", "fr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #gil #fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-gil-fr * source languages: gil * target languages: fr * OPUS readme: gil-fr * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 24.9, chr-F: 0.424
[ "### opus-mt-gil-fr\n\n\n* source languages: gil\n* target languages: fr\n* OPUS readme: gil-fr\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 24.9, chr-F: 0.424" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #gil #fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-gil-fr\n\n\n* source languages: gil\n* target languages: fr\n* OPUS readme: gil-fr\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 24.9, chr-F: 0.424" ]
[ 51, 106 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #gil #fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-gil-fr\n\n\n* source languages: gil\n* target languages: fr\n* OPUS readme: gil-fr\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 24.9, chr-F: 0.424" ]
translation
transformers
### opus-mt-gil-sv * source languages: gil * target languages: sv * OPUS readme: [gil-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/gil-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/gil-sv/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/gil-sv/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/gil-sv/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.gil.sv | 25.8 | 0.441 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-gil-sv
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "gil", "sv", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #gil #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-gil-sv * source languages: gil * target languages: sv * OPUS readme: gil-sv * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 25.8, chr-F: 0.441
[ "### opus-mt-gil-sv\n\n\n* source languages: gil\n* target languages: sv\n* OPUS readme: gil-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 25.8, chr-F: 0.441" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #gil #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-gil-sv\n\n\n* source languages: gil\n* target languages: sv\n* OPUS readme: gil-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 25.8, chr-F: 0.441" ]
[ 51, 105 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #gil #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-gil-sv\n\n\n* source languages: gil\n* target languages: sv\n* OPUS readme: gil-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 25.8, chr-F: 0.441" ]
translation
transformers
### glg-eng * source group: Galician * target group: English * OPUS readme: [glg-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/glg-eng/README.md) * model: transformer-align * source language(s): glg * target language(s): eng * model: transformer-align * pre-processing: normalization + SentencePiece (spm12k,spm12k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/glg-eng/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/glg-eng/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/glg-eng/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.glg.eng | 44.4 | 0.628 | ### System Info: - hf_name: glg-eng - source_languages: glg - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/glg-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['gl', 'en'] - src_constituents: {'glg'} - tgt_constituents: {'eng'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm12k,spm12k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/glg-eng/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/glg-eng/opus-2020-06-16.test.txt - src_alpha3: glg - tgt_alpha3: eng - short_pair: gl-en - chrF2_score: 0.628 - bleu: 44.4 - brevity_penalty: 0.975 - ref_len: 8365.0 - src_name: Galician - tgt_name: English - train_date: 2020-06-16 - src_alpha2: gl - tgt_alpha2: en - prefer_old: False - long_pair: glg-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["gl", "en"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-gl-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "gl", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "gl", "en" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #gl #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### glg-eng * source group: Galician * target group: English * OPUS readme: glg-eng * model: transformer-align * source language(s): glg * target language(s): eng * model: transformer-align * pre-processing: normalization + SentencePiece (spm12k,spm12k) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 44.4, chr-F: 0.628 ### System Info: * hf\_name: glg-eng * source\_languages: glg * target\_languages: eng * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['gl', 'en'] * src\_constituents: {'glg'} * tgt\_constituents: {'eng'} * src\_multilingual: False * tgt\_multilingual: False * prepro: normalization + SentencePiece (spm12k,spm12k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: glg * tgt\_alpha3: eng * short\_pair: gl-en * chrF2\_score: 0.628 * bleu: 44.4 * brevity\_penalty: 0.975 * ref\_len: 8365.0 * src\_name: Galician * tgt\_name: English * train\_date: 2020-06-16 * src\_alpha2: gl * tgt\_alpha2: en * prefer\_old: False * long\_pair: glg-eng * helsinki\_git\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 * transformers\_git\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b * port\_machine: brutasse * port\_time: 2020-08-21-14:41
[ "### glg-eng\n\n\n* source group: Galician\n* target group: English\n* OPUS readme: glg-eng\n* model: transformer-align\n* source language(s): glg\n* target language(s): eng\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm12k,spm12k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 44.4, chr-F: 0.628", "### System Info:\n\n\n* hf\\_name: glg-eng\n* source\\_languages: glg\n* target\\_languages: eng\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['gl', 'en']\n* src\\_constituents: {'glg'}\n* tgt\\_constituents: {'eng'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm12k,spm12k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: glg\n* tgt\\_alpha3: eng\n* short\\_pair: gl-en\n* chrF2\\_score: 0.628\n* bleu: 44.4\n* brevity\\_penalty: 0.975\n* ref\\_len: 8365.0\n* src\\_name: Galician\n* tgt\\_name: English\n* train\\_date: 2020-06-16\n* src\\_alpha2: gl\n* tgt\\_alpha2: en\n* prefer\\_old: False\n* long\\_pair: glg-eng\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #gl #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### glg-eng\n\n\n* source group: Galician\n* target group: English\n* OPUS readme: glg-eng\n* model: transformer-align\n* source language(s): glg\n* target language(s): eng\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm12k,spm12k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 44.4, chr-F: 0.628", "### System Info:\n\n\n* hf\\_name: glg-eng\n* source\\_languages: glg\n* target\\_languages: eng\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['gl', 'en']\n* src\\_constituents: {'glg'}\n* tgt\\_constituents: {'eng'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm12k,spm12k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: glg\n* tgt\\_alpha3: eng\n* short\\_pair: gl-en\n* chrF2\\_score: 0.628\n* bleu: 44.4\n* brevity\\_penalty: 0.975\n* ref\\_len: 8365.0\n* src\\_name: Galician\n* tgt\\_name: English\n* train\\_date: 2020-06-16\n* src\\_alpha2: gl\n* tgt\\_alpha2: en\n* prefer\\_old: False\n* long\\_pair: glg-eng\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ 52, 137, 404 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #gl #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### glg-eng\n\n\n* source group: Galician\n* target group: English\n* OPUS readme: glg-eng\n* model: transformer-align\n* source language(s): glg\n* target language(s): eng\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm12k,spm12k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 44.4, chr-F: 0.628### System Info:\n\n\n* hf\\_name: glg-eng\n* source\\_languages: glg\n* target\\_languages: eng\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['gl', 'en']\n* src\\_constituents: {'glg'}\n* tgt\\_constituents: {'eng'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm12k,spm12k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: glg\n* tgt\\_alpha3: eng\n* short\\_pair: gl-en\n* chrF2\\_score: 0.628\n* bleu: 44.4\n* brevity\\_penalty: 0.975\n* ref\\_len: 8365.0\n* src\\_name: Galician\n* tgt\\_name: English\n* train\\_date: 2020-06-16\n* src\\_alpha2: gl\n* tgt\\_alpha2: en\n* prefer\\_old: False\n* long\\_pair: glg-eng\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
translation
transformers
### glg-spa * source group: Galician * target group: Spanish * OPUS readme: [glg-spa](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/glg-spa/README.md) * model: transformer-align * source language(s): glg * target language(s): spa * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/glg-spa/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/glg-spa/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/glg-spa/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.glg.spa | 72.2 | 0.836 | ### System Info: - hf_name: glg-spa - source_languages: glg - target_languages: spa - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/glg-spa/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['gl', 'es'] - src_constituents: {'glg'} - tgt_constituents: {'spa'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/glg-spa/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/glg-spa/opus-2020-06-16.test.txt - src_alpha3: glg - tgt_alpha3: spa - short_pair: gl-es - chrF2_score: 0.836 - bleu: 72.2 - brevity_penalty: 0.982 - ref_len: 17443.0 - src_name: Galician - tgt_name: Spanish - train_date: 2020-06-16 - src_alpha2: gl - tgt_alpha2: es - prefer_old: False - long_pair: glg-spa - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["gl", "es"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-gl-es
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "gl", "es", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "gl", "es" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #gl #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### glg-spa * source group: Galician * target group: Spanish * OPUS readme: glg-spa * model: transformer-align * source language(s): glg * target language(s): spa * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 72.2, chr-F: 0.836 ### System Info: * hf\_name: glg-spa * source\_languages: glg * target\_languages: spa * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['gl', 'es'] * src\_constituents: {'glg'} * tgt\_constituents: {'spa'} * src\_multilingual: False * tgt\_multilingual: False * prepro: normalization + SentencePiece (spm4k,spm4k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: glg * tgt\_alpha3: spa * short\_pair: gl-es * chrF2\_score: 0.836 * bleu: 72.2 * brevity\_penalty: 0.982 * ref\_len: 17443.0 * src\_name: Galician * tgt\_name: Spanish * train\_date: 2020-06-16 * src\_alpha2: gl * tgt\_alpha2: es * prefer\_old: False * long\_pair: glg-spa * helsinki\_git\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 * transformers\_git\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b * port\_machine: brutasse * port\_time: 2020-08-21-14:41
[ "### glg-spa\n\n\n* source group: Galician\n* target group: Spanish\n* OPUS readme: glg-spa\n* model: transformer-align\n* source language(s): glg\n* target language(s): spa\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm4k,spm4k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 72.2, chr-F: 0.836", "### System Info:\n\n\n* hf\\_name: glg-spa\n* source\\_languages: glg\n* target\\_languages: spa\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['gl', 'es']\n* src\\_constituents: {'glg'}\n* tgt\\_constituents: {'spa'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm4k,spm4k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: glg\n* tgt\\_alpha3: spa\n* short\\_pair: gl-es\n* chrF2\\_score: 0.836\n* bleu: 72.2\n* brevity\\_penalty: 0.982\n* ref\\_len: 17443.0\n* src\\_name: Galician\n* tgt\\_name: Spanish\n* train\\_date: 2020-06-16\n* src\\_alpha2: gl\n* tgt\\_alpha2: es\n* prefer\\_old: False\n* long\\_pair: glg-spa\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #gl #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### glg-spa\n\n\n* source group: Galician\n* target group: Spanish\n* OPUS readme: glg-spa\n* model: transformer-align\n* source language(s): glg\n* target language(s): spa\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm4k,spm4k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 72.2, chr-F: 0.836", "### System Info:\n\n\n* hf\\_name: glg-spa\n* source\\_languages: glg\n* target\\_languages: spa\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['gl', 'es']\n* src\\_constituents: {'glg'}\n* tgt\\_constituents: {'spa'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm4k,spm4k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: glg\n* tgt\\_alpha3: spa\n* short\\_pair: gl-es\n* chrF2\\_score: 0.836\n* bleu: 72.2\n* brevity\\_penalty: 0.982\n* ref\\_len: 17443.0\n* src\\_name: Galician\n* tgt\\_name: Spanish\n* train\\_date: 2020-06-16\n* src\\_alpha2: gl\n* tgt\\_alpha2: es\n* prefer\\_old: False\n* long\\_pair: glg-spa\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ 52, 137, 404 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #gl #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### glg-spa\n\n\n* source group: Galician\n* target group: Spanish\n* OPUS readme: glg-spa\n* model: transformer-align\n* source language(s): glg\n* target language(s): spa\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm4k,spm4k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 72.2, chr-F: 0.836### System Info:\n\n\n* hf\\_name: glg-spa\n* source\\_languages: glg\n* target\\_languages: spa\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['gl', 'es']\n* src\\_constituents: {'glg'}\n* tgt\\_constituents: {'spa'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm4k,spm4k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: glg\n* tgt\\_alpha3: spa\n* short\\_pair: gl-es\n* chrF2\\_score: 0.836\n* bleu: 72.2\n* brevity\\_penalty: 0.982\n* ref\\_len: 17443.0\n* src\\_name: Galician\n* tgt\\_name: Spanish\n* train\\_date: 2020-06-16\n* src\\_alpha2: gl\n* tgt\\_alpha2: es\n* prefer\\_old: False\n* long\\_pair: glg-spa\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
translation
transformers
### glg-por * source group: Galician * target group: Portuguese * OPUS readme: [glg-por](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/glg-por/README.md) * model: transformer-align * source language(s): glg * target language(s): por * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/glg-por/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/glg-por/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/glg-por/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.glg.por | 57.9 | 0.758 | ### System Info: - hf_name: glg-por - source_languages: glg - target_languages: por - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/glg-por/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['gl', 'pt'] - src_constituents: {'glg'} - tgt_constituents: {'por'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/glg-por/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/glg-por/opus-2020-06-16.test.txt - src_alpha3: glg - tgt_alpha3: por - short_pair: gl-pt - chrF2_score: 0.758 - bleu: 57.9 - brevity_penalty: 0.977 - ref_len: 3078.0 - src_name: Galician - tgt_name: Portuguese - train_date: 2020-06-16 - src_alpha2: gl - tgt_alpha2: pt - prefer_old: False - long_pair: glg-por - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["gl", "pt"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-gl-pt
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "gl", "pt", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "gl", "pt" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #gl #pt #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### glg-por * source group: Galician * target group: Portuguese * OPUS readme: glg-por * model: transformer-align * source language(s): glg * target language(s): por * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 57.9, chr-F: 0.758 ### System Info: * hf\_name: glg-por * source\_languages: glg * target\_languages: por * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['gl', 'pt'] * src\_constituents: {'glg'} * tgt\_constituents: {'por'} * src\_multilingual: False * tgt\_multilingual: False * prepro: normalization + SentencePiece (spm4k,spm4k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: glg * tgt\_alpha3: por * short\_pair: gl-pt * chrF2\_score: 0.758 * bleu: 57.9 * brevity\_penalty: 0.977 * ref\_len: 3078.0 * src\_name: Galician * tgt\_name: Portuguese * train\_date: 2020-06-16 * src\_alpha2: gl * tgt\_alpha2: pt * prefer\_old: False * long\_pair: glg-por * helsinki\_git\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 * transformers\_git\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b * port\_machine: brutasse * port\_time: 2020-08-21-14:41
[ "### glg-por\n\n\n* source group: Galician\n* target group: Portuguese\n* OPUS readme: glg-por\n* model: transformer-align\n* source language(s): glg\n* target language(s): por\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm4k,spm4k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 57.9, chr-F: 0.758", "### System Info:\n\n\n* hf\\_name: glg-por\n* source\\_languages: glg\n* target\\_languages: por\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['gl', 'pt']\n* src\\_constituents: {'glg'}\n* tgt\\_constituents: {'por'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm4k,spm4k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: glg\n* tgt\\_alpha3: por\n* short\\_pair: gl-pt\n* chrF2\\_score: 0.758\n* bleu: 57.9\n* brevity\\_penalty: 0.977\n* ref\\_len: 3078.0\n* src\\_name: Galician\n* tgt\\_name: Portuguese\n* train\\_date: 2020-06-16\n* src\\_alpha2: gl\n* tgt\\_alpha2: pt\n* prefer\\_old: False\n* long\\_pair: glg-por\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #gl #pt #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### glg-por\n\n\n* source group: Galician\n* target group: Portuguese\n* OPUS readme: glg-por\n* model: transformer-align\n* source language(s): glg\n* target language(s): por\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm4k,spm4k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 57.9, chr-F: 0.758", "### System Info:\n\n\n* hf\\_name: glg-por\n* source\\_languages: glg\n* target\\_languages: por\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['gl', 'pt']\n* src\\_constituents: {'glg'}\n* tgt\\_constituents: {'por'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm4k,spm4k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: glg\n* tgt\\_alpha3: por\n* short\\_pair: gl-pt\n* chrF2\\_score: 0.758\n* bleu: 57.9\n* brevity\\_penalty: 0.977\n* ref\\_len: 3078.0\n* src\\_name: Galician\n* tgt\\_name: Portuguese\n* train\\_date: 2020-06-16\n* src\\_alpha2: gl\n* tgt\\_alpha2: pt\n* prefer\\_old: False\n* long\\_pair: glg-por\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ 52, 137, 404 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #gl #pt #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### glg-por\n\n\n* source group: Galician\n* target group: Portuguese\n* OPUS readme: glg-por\n* model: transformer-align\n* source language(s): glg\n* target language(s): por\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm4k,spm4k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 57.9, chr-F: 0.758### System Info:\n\n\n* hf\\_name: glg-por\n* source\\_languages: glg\n* target\\_languages: por\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['gl', 'pt']\n* src\\_constituents: {'glg'}\n* tgt\\_constituents: {'por'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm4k,spm4k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: glg\n* tgt\\_alpha3: por\n* short\\_pair: gl-pt\n* chrF2\\_score: 0.758\n* bleu: 57.9\n* brevity\\_penalty: 0.977\n* ref\\_len: 3078.0\n* src\\_name: Galician\n* tgt\\_name: Portuguese\n* train\\_date: 2020-06-16\n* src\\_alpha2: gl\n* tgt\\_alpha2: pt\n* prefer\\_old: False\n* long\\_pair: glg-por\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
translation
transformers
### gmq-eng * source group: North Germanic languages * target group: English * OPUS readme: [gmq-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/gmq-eng/README.md) * model: transformer * source language(s): dan fao isl nno nob nob_Hebr non_Latn swe * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus2m-2020-07-26.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-eng/opus2m-2020-07-26.zip) * test set translations: [opus2m-2020-07-26.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-eng/opus2m-2020-07-26.test.txt) * test set scores: [opus2m-2020-07-26.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-eng/opus2m-2020-07-26.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.multi.eng | 58.1 | 0.720 | ### System Info: - hf_name: gmq-eng - source_languages: gmq - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/gmq-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['da', 'nb', 'sv', 'is', 'nn', 'fo', 'gmq', 'en'] - src_constituents: {'dan', 'nob', 'nob_Hebr', 'swe', 'isl', 'nno', 'non_Latn', 'fao'} - tgt_constituents: {'eng'} - src_multilingual: True - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-eng/opus2m-2020-07-26.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-eng/opus2m-2020-07-26.test.txt - src_alpha3: gmq - tgt_alpha3: eng - short_pair: gmq-en - chrF2_score: 0.72 - bleu: 58.1 - brevity_penalty: 0.982 - ref_len: 72641.0 - src_name: North Germanic languages - tgt_name: English - train_date: 2020-07-26 - src_alpha2: gmq - tgt_alpha2: en - prefer_old: False - long_pair: gmq-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["da", "nb", "sv", "is", "nn", "fo", "gmq", "en"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-gmq-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "da", "nb", "sv", "is", "nn", "fo", "gmq", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "da", "nb", "sv", "is", "nn", "fo", "gmq", "en" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #da #nb #sv #is #nn #fo #gmq #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### gmq-eng * source group: North Germanic languages * target group: English * OPUS readme: gmq-eng * model: transformer * source language(s): dan fao isl nno nob nob\_Hebr non\_Latn swe * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 58.1, chr-F: 0.720 ### System Info: * hf\_name: gmq-eng * source\_languages: gmq * target\_languages: eng * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['da', 'nb', 'sv', 'is', 'nn', 'fo', 'gmq', 'en'] * src\_constituents: {'dan', 'nob', 'nob\_Hebr', 'swe', 'isl', 'nno', 'non\_Latn', 'fao'} * tgt\_constituents: {'eng'} * src\_multilingual: True * tgt\_multilingual: False * prepro: normalization + SentencePiece (spm32k,spm32k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: gmq * tgt\_alpha3: eng * short\_pair: gmq-en * chrF2\_score: 0.72 * bleu: 58.1 * brevity\_penalty: 0.982 * ref\_len: 72641.0 * src\_name: North Germanic languages * tgt\_name: English * train\_date: 2020-07-26 * src\_alpha2: gmq * tgt\_alpha2: en * prefer\_old: False * long\_pair: gmq-eng * helsinki\_git\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 * transformers\_git\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b * port\_machine: brutasse * port\_time: 2020-08-21-14:41
[ "### gmq-eng\n\n\n* source group: North Germanic languages\n* target group: English\n* OPUS readme: gmq-eng\n* model: transformer\n* source language(s): dan fao isl nno nob nob\\_Hebr non\\_Latn swe\n* target language(s): eng\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 58.1, chr-F: 0.720", "### System Info:\n\n\n* hf\\_name: gmq-eng\n* source\\_languages: gmq\n* target\\_languages: eng\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['da', 'nb', 'sv', 'is', 'nn', 'fo', 'gmq', 'en']\n* src\\_constituents: {'dan', 'nob', 'nob\\_Hebr', 'swe', 'isl', 'nno', 'non\\_Latn', 'fao'}\n* tgt\\_constituents: {'eng'}\n* src\\_multilingual: True\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: gmq\n* tgt\\_alpha3: eng\n* short\\_pair: gmq-en\n* chrF2\\_score: 0.72\n* bleu: 58.1\n* brevity\\_penalty: 0.982\n* ref\\_len: 72641.0\n* src\\_name: North Germanic languages\n* tgt\\_name: English\n* train\\_date: 2020-07-26\n* src\\_alpha2: gmq\n* tgt\\_alpha2: en\n* prefer\\_old: False\n* long\\_pair: gmq-eng\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #da #nb #sv #is #nn #fo #gmq #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### gmq-eng\n\n\n* source group: North Germanic languages\n* target group: English\n* OPUS readme: gmq-eng\n* model: transformer\n* source language(s): dan fao isl nno nob nob\\_Hebr non\\_Latn swe\n* target language(s): eng\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 58.1, chr-F: 0.720", "### System Info:\n\n\n* hf\\_name: gmq-eng\n* source\\_languages: gmq\n* target\\_languages: eng\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['da', 'nb', 'sv', 'is', 'nn', 'fo', 'gmq', 'en']\n* src\\_constituents: {'dan', 'nob', 'nob\\_Hebr', 'swe', 'isl', 'nno', 'non\\_Latn', 'fao'}\n* tgt\\_constituents: {'eng'}\n* src\\_multilingual: True\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: gmq\n* tgt\\_alpha3: eng\n* short\\_pair: gmq-en\n* chrF2\\_score: 0.72\n* bleu: 58.1\n* brevity\\_penalty: 0.982\n* ref\\_len: 72641.0\n* src\\_name: North Germanic languages\n* tgt\\_name: English\n* train\\_date: 2020-07-26\n* src\\_alpha2: gmq\n* tgt\\_alpha2: en\n* prefer\\_old: False\n* long\\_pair: gmq-eng\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ 67, 152, 470 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #da #nb #sv #is #nn #fo #gmq #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### gmq-eng\n\n\n* source group: North Germanic languages\n* target group: English\n* OPUS readme: gmq-eng\n* model: transformer\n* source language(s): dan fao isl nno nob nob\\_Hebr non\\_Latn swe\n* target language(s): eng\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 58.1, chr-F: 0.720### System Info:\n\n\n* hf\\_name: gmq-eng\n* source\\_languages: gmq\n* target\\_languages: eng\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['da', 'nb', 'sv', 'is', 'nn', 'fo', 'gmq', 'en']\n* src\\_constituents: {'dan', 'nob', 'nob\\_Hebr', 'swe', 'isl', 'nno', 'non\\_Latn', 'fao'}\n* tgt\\_constituents: {'eng'}\n* src\\_multilingual: True\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: gmq\n* tgt\\_alpha3: eng\n* short\\_pair: gmq-en\n* chrF2\\_score: 0.72\n* bleu: 58.1\n* brevity\\_penalty: 0.982\n* ref\\_len: 72641.0\n* src\\_name: North Germanic languages\n* tgt\\_name: English\n* train\\_date: 2020-07-26\n* src\\_alpha2: gmq\n* tgt\\_alpha2: en\n* prefer\\_old: False\n* long\\_pair: gmq-eng\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
translation
transformers
### gmq-gmq * source group: North Germanic languages * target group: North Germanic languages * OPUS readme: [gmq-gmq](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/gmq-gmq/README.md) * model: transformer * source language(s): dan fao isl nno nob swe * target language(s): dan fao isl nno nob swe * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-07-27.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-gmq/opus-2020-07-27.zip) * test set translations: [opus-2020-07-27.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-gmq/opus-2020-07-27.test.txt) * test set scores: [opus-2020-07-27.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-gmq/opus-2020-07-27.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.dan-fao.dan.fao | 8.1 | 0.173 | | Tatoeba-test.dan-isl.dan.isl | 52.5 | 0.827 | | Tatoeba-test.dan-nor.dan.nor | 62.8 | 0.772 | | Tatoeba-test.dan-swe.dan.swe | 67.6 | 0.802 | | Tatoeba-test.fao-dan.fao.dan | 11.3 | 0.306 | | Tatoeba-test.fao-isl.fao.isl | 26.3 | 0.359 | | Tatoeba-test.fao-nor.fao.nor | 36.8 | 0.531 | | Tatoeba-test.fao-swe.fao.swe | 0.0 | 0.632 | | Tatoeba-test.isl-dan.isl.dan | 67.0 | 0.739 | | Tatoeba-test.isl-fao.isl.fao | 14.5 | 0.243 | | Tatoeba-test.isl-nor.isl.nor | 51.8 | 0.674 | | Tatoeba-test.isl-swe.isl.swe | 100.0 | 1.000 | | Tatoeba-test.multi.multi | 64.7 | 0.782 | | Tatoeba-test.nor-dan.nor.dan | 65.6 | 0.797 | | Tatoeba-test.nor-fao.nor.fao | 9.4 | 0.362 | | Tatoeba-test.nor-isl.nor.isl | 38.8 | 0.587 | | Tatoeba-test.nor-nor.nor.nor | 51.9 | 0.721 | | Tatoeba-test.nor-swe.nor.swe | 66.5 | 0.789 | | Tatoeba-test.swe-dan.swe.dan | 67.6 | 0.802 | | Tatoeba-test.swe-fao.swe.fao | 0.0 | 0.268 | | Tatoeba-test.swe-isl.swe.isl | 65.8 | 0.914 | | Tatoeba-test.swe-nor.swe.nor | 60.6 | 0.755 | ### System Info: - hf_name: gmq-gmq - source_languages: gmq - target_languages: gmq - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/gmq-gmq/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['da', 'nb', 'sv', 'is', 'nn', 'fo', 'gmq'] - src_constituents: {'dan', 'nob', 'nob_Hebr', 'swe', 'isl', 'nno', 'non_Latn', 'fao'} - tgt_constituents: {'dan', 'nob', 'nob_Hebr', 'swe', 'isl', 'nno', 'non_Latn', 'fao'} - src_multilingual: True - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-gmq/opus-2020-07-27.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-gmq/opus-2020-07-27.test.txt - src_alpha3: gmq - tgt_alpha3: gmq - short_pair: gmq-gmq - chrF2_score: 0.782 - bleu: 64.7 - brevity_penalty: 0.9940000000000001 - ref_len: 49385.0 - src_name: North Germanic languages - tgt_name: North Germanic languages - train_date: 2020-07-27 - src_alpha2: gmq - tgt_alpha2: gmq - prefer_old: False - long_pair: gmq-gmq - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["da", "nb", "sv", "is", "nn", "fo", "gmq"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-gmq-gmq
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "da", "nb", "sv", "is", "nn", "fo", "gmq", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "da", "nb", "sv", "is", "nn", "fo", "gmq" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #da #nb #sv #is #nn #fo #gmq #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### gmq-gmq * source group: North Germanic languages * target group: North Germanic languages * OPUS readme: gmq-gmq * model: transformer * source language(s): dan fao isl nno nob swe * target language(s): dan fao isl nno nob swe * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of '>>id<<' (id = valid target language ID) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 8.1, chr-F: 0.173 testset: URL, BLEU: 52.5, chr-F: 0.827 testset: URL, BLEU: 62.8, chr-F: 0.772 testset: URL, BLEU: 67.6, chr-F: 0.802 testset: URL, BLEU: 11.3, chr-F: 0.306 testset: URL, BLEU: 26.3, chr-F: 0.359 testset: URL, BLEU: 36.8, chr-F: 0.531 testset: URL, BLEU: 0.0, chr-F: 0.632 testset: URL, BLEU: 67.0, chr-F: 0.739 testset: URL, BLEU: 14.5, chr-F: 0.243 testset: URL, BLEU: 51.8, chr-F: 0.674 testset: URL, BLEU: 100.0, chr-F: 1.000 testset: URL, BLEU: 64.7, chr-F: 0.782 testset: URL, BLEU: 65.6, chr-F: 0.797 testset: URL, BLEU: 9.4, chr-F: 0.362 testset: URL, BLEU: 38.8, chr-F: 0.587 testset: URL, BLEU: 51.9, chr-F: 0.721 testset: URL, BLEU: 66.5, chr-F: 0.789 testset: URL, BLEU: 67.6, chr-F: 0.802 testset: URL, BLEU: 0.0, chr-F: 0.268 testset: URL, BLEU: 65.8, chr-F: 0.914 testset: URL, BLEU: 60.6, chr-F: 0.755 ### System Info: * hf\_name: gmq-gmq * source\_languages: gmq * target\_languages: gmq * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['da', 'nb', 'sv', 'is', 'nn', 'fo', 'gmq'] * src\_constituents: {'dan', 'nob', 'nob\_Hebr', 'swe', 'isl', 'nno', 'non\_Latn', 'fao'} * tgt\_constituents: {'dan', 'nob', 'nob\_Hebr', 'swe', 'isl', 'nno', 'non\_Latn', 'fao'} * src\_multilingual: True * tgt\_multilingual: True * prepro: normalization + SentencePiece (spm32k,spm32k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: gmq * tgt\_alpha3: gmq * short\_pair: gmq-gmq * chrF2\_score: 0.782 * bleu: 64.7 * brevity\_penalty: 0.9940000000000001 * ref\_len: 49385.0 * src\_name: North Germanic languages * tgt\_name: North Germanic languages * train\_date: 2020-07-27 * src\_alpha2: gmq * tgt\_alpha2: gmq * prefer\_old: False * long\_pair: gmq-gmq * helsinki\_git\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 * transformers\_git\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b * port\_machine: brutasse * port\_time: 2020-08-21-14:41
[ "### gmq-gmq\n\n\n* source group: North Germanic languages\n* target group: North Germanic languages\n* OPUS readme: gmq-gmq\n* model: transformer\n* source language(s): dan fao isl nno nob swe\n* target language(s): dan fao isl nno nob swe\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* a sentence initial language token is required in the form of '>>id<<' (id = valid target language ID)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 8.1, chr-F: 0.173\ntestset: URL, BLEU: 52.5, chr-F: 0.827\ntestset: URL, BLEU: 62.8, chr-F: 0.772\ntestset: URL, BLEU: 67.6, chr-F: 0.802\ntestset: URL, BLEU: 11.3, chr-F: 0.306\ntestset: URL, BLEU: 26.3, chr-F: 0.359\ntestset: URL, BLEU: 36.8, chr-F: 0.531\ntestset: URL, BLEU: 0.0, chr-F: 0.632\ntestset: URL, BLEU: 67.0, chr-F: 0.739\ntestset: URL, BLEU: 14.5, chr-F: 0.243\ntestset: URL, BLEU: 51.8, chr-F: 0.674\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 64.7, chr-F: 0.782\ntestset: URL, BLEU: 65.6, chr-F: 0.797\ntestset: URL, BLEU: 9.4, chr-F: 0.362\ntestset: URL, BLEU: 38.8, chr-F: 0.587\ntestset: URL, BLEU: 51.9, chr-F: 0.721\ntestset: URL, BLEU: 66.5, chr-F: 0.789\ntestset: URL, BLEU: 67.6, chr-F: 0.802\ntestset: URL, BLEU: 0.0, chr-F: 0.268\ntestset: URL, BLEU: 65.8, chr-F: 0.914\ntestset: URL, BLEU: 60.6, chr-F: 0.755", "### System Info:\n\n\n* hf\\_name: gmq-gmq\n* source\\_languages: gmq\n* target\\_languages: gmq\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['da', 'nb', 'sv', 'is', 'nn', 'fo', 'gmq']\n* src\\_constituents: {'dan', 'nob', 'nob\\_Hebr', 'swe', 'isl', 'nno', 'non\\_Latn', 'fao'}\n* tgt\\_constituents: {'dan', 'nob', 'nob\\_Hebr', 'swe', 'isl', 'nno', 'non\\_Latn', 'fao'}\n* src\\_multilingual: True\n* tgt\\_multilingual: True\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: gmq\n* tgt\\_alpha3: gmq\n* short\\_pair: gmq-gmq\n* chrF2\\_score: 0.782\n* bleu: 64.7\n* brevity\\_penalty: 0.9940000000000001\n* ref\\_len: 49385.0\n* src\\_name: North Germanic languages\n* tgt\\_name: North Germanic languages\n* train\\_date: 2020-07-27\n* src\\_alpha2: gmq\n* tgt\\_alpha2: gmq\n* prefer\\_old: False\n* long\\_pair: gmq-gmq\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #da #nb #sv #is #nn #fo #gmq #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### gmq-gmq\n\n\n* source group: North Germanic languages\n* target group: North Germanic languages\n* OPUS readme: gmq-gmq\n* model: transformer\n* source language(s): dan fao isl nno nob swe\n* target language(s): dan fao isl nno nob swe\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* a sentence initial language token is required in the form of '>>id<<' (id = valid target language ID)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 8.1, chr-F: 0.173\ntestset: URL, BLEU: 52.5, chr-F: 0.827\ntestset: URL, BLEU: 62.8, chr-F: 0.772\ntestset: URL, BLEU: 67.6, chr-F: 0.802\ntestset: URL, BLEU: 11.3, chr-F: 0.306\ntestset: URL, BLEU: 26.3, chr-F: 0.359\ntestset: URL, BLEU: 36.8, chr-F: 0.531\ntestset: URL, BLEU: 0.0, chr-F: 0.632\ntestset: URL, BLEU: 67.0, chr-F: 0.739\ntestset: URL, BLEU: 14.5, chr-F: 0.243\ntestset: URL, BLEU: 51.8, chr-F: 0.674\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 64.7, chr-F: 0.782\ntestset: URL, BLEU: 65.6, chr-F: 0.797\ntestset: URL, BLEU: 9.4, chr-F: 0.362\ntestset: URL, BLEU: 38.8, chr-F: 0.587\ntestset: URL, BLEU: 51.9, chr-F: 0.721\ntestset: URL, BLEU: 66.5, chr-F: 0.789\ntestset: URL, BLEU: 67.6, chr-F: 0.802\ntestset: URL, BLEU: 0.0, chr-F: 0.268\ntestset: URL, BLEU: 65.8, chr-F: 0.914\ntestset: URL, BLEU: 60.6, chr-F: 0.755", "### System Info:\n\n\n* hf\\_name: gmq-gmq\n* source\\_languages: gmq\n* target\\_languages: gmq\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['da', 'nb', 'sv', 'is', 'nn', 'fo', 'gmq']\n* src\\_constituents: {'dan', 'nob', 'nob\\_Hebr', 'swe', 'isl', 'nno', 'non\\_Latn', 'fao'}\n* tgt\\_constituents: {'dan', 'nob', 'nob\\_Hebr', 'swe', 'isl', 'nno', 'non\\_Latn', 'fao'}\n* src\\_multilingual: True\n* tgt\\_multilingual: True\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: gmq\n* tgt\\_alpha3: gmq\n* short\\_pair: gmq-gmq\n* chrF2\\_score: 0.782\n* bleu: 64.7\n* brevity\\_penalty: 0.9940000000000001\n* ref\\_len: 49385.0\n* src\\_name: North Germanic languages\n* tgt\\_name: North Germanic languages\n* train\\_date: 2020-07-27\n* src\\_alpha2: gmq\n* tgt\\_alpha2: gmq\n* prefer\\_old: False\n* long\\_pair: gmq-gmq\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ 65, 658, 524 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #da #nb #sv #is #nn #fo #gmq #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### gmq-gmq\n\n\n* source group: North Germanic languages\n* target group: North Germanic languages\n* OPUS readme: gmq-gmq\n* model: transformer\n* source language(s): dan fao isl nno nob swe\n* target language(s): dan fao isl nno nob swe\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* a sentence initial language token is required in the form of '>>id<<' (id = valid target language ID)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 8.1, chr-F: 0.173\ntestset: URL, BLEU: 52.5, chr-F: 0.827\ntestset: URL, BLEU: 62.8, chr-F: 0.772\ntestset: URL, BLEU: 67.6, chr-F: 0.802\ntestset: URL, BLEU: 11.3, chr-F: 0.306\ntestset: URL, BLEU: 26.3, chr-F: 0.359\ntestset: URL, BLEU: 36.8, chr-F: 0.531\ntestset: URL, BLEU: 0.0, chr-F: 0.632\ntestset: URL, BLEU: 67.0, chr-F: 0.739\ntestset: URL, BLEU: 14.5, chr-F: 0.243\ntestset: URL, BLEU: 51.8, chr-F: 0.674\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 64.7, chr-F: 0.782\ntestset: URL, BLEU: 65.6, chr-F: 0.797\ntestset: URL, BLEU: 9.4, chr-F: 0.362\ntestset: URL, BLEU: 38.8, chr-F: 0.587\ntestset: URL, BLEU: 51.9, chr-F: 0.721\ntestset: URL, BLEU: 66.5, chr-F: 0.789\ntestset: URL, BLEU: 67.6, chr-F: 0.802\ntestset: URL, BLEU: 0.0, chr-F: 0.268\ntestset: URL, BLEU: 65.8, chr-F: 0.914\ntestset: URL, BLEU: 60.6, chr-F: 0.755### System Info:\n\n\n* hf\\_name: gmq-gmq\n* source\\_languages: gmq\n* target\\_languages: gmq\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['da', 'nb', 'sv', 'is', 'nn', 'fo', 'gmq']\n* src\\_constituents: {'dan', 'nob', 'nob\\_Hebr', 'swe', 'isl', 'nno', 'non\\_Latn', 'fao'}\n* tgt\\_constituents: {'dan', 'nob', 'nob\\_Hebr', 'swe', 'isl', 'nno', 'non\\_Latn', 'fao'}\n* src\\_multilingual: True\n* tgt\\_multilingual: True\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: gmq\n* tgt\\_alpha3: gmq\n* short\\_pair: gmq-gmq\n* chrF2\\_score: 0.782\n* bleu: 64.7\n* brevity\\_penalty: 0.9940000000000001\n* ref\\_len: 49385.0\n* src\\_name: North Germanic languages\n* tgt\\_name: North Germanic languages\n* train\\_date: 2020-07-27\n* src\\_alpha2: gmq\n* tgt\\_alpha2: gmq\n* prefer\\_old: False\n* long\\_pair: gmq-gmq\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
translation
transformers
### gmw-eng * source group: West Germanic languages * target group: English * OPUS readme: [gmw-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/gmw-eng/README.md) * model: transformer * source language(s): afr ang_Latn deu enm_Latn frr fry gos gsw ksh ltz nds nld pdc sco stq swg yid * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus2m-2020-08-01.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/gmw-eng/opus2m-2020-08-01.zip) * test set translations: [opus2m-2020-08-01.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmw-eng/opus2m-2020-08-01.test.txt) * test set scores: [opus2m-2020-08-01.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmw-eng/opus2m-2020-08-01.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newssyscomb2009-deueng.deu.eng | 27.2 | 0.538 | | news-test2008-deueng.deu.eng | 25.7 | 0.534 | | newstest2009-deueng.deu.eng | 25.1 | 0.530 | | newstest2010-deueng.deu.eng | 27.9 | 0.565 | | newstest2011-deueng.deu.eng | 25.3 | 0.539 | | newstest2012-deueng.deu.eng | 26.6 | 0.548 | | newstest2013-deueng.deu.eng | 29.6 | 0.565 | | newstest2014-deen-deueng.deu.eng | 30.2 | 0.571 | | newstest2015-ende-deueng.deu.eng | 31.5 | 0.577 | | newstest2016-ende-deueng.deu.eng | 36.7 | 0.622 | | newstest2017-ende-deueng.deu.eng | 32.3 | 0.585 | | newstest2018-ende-deueng.deu.eng | 39.9 | 0.638 | | newstest2019-deen-deueng.deu.eng | 35.9 | 0.611 | | Tatoeba-test.afr-eng.afr.eng | 61.8 | 0.750 | | Tatoeba-test.ang-eng.ang.eng | 7.3 | 0.220 | | Tatoeba-test.deu-eng.deu.eng | 48.3 | 0.657 | | Tatoeba-test.enm-eng.enm.eng | 16.1 | 0.423 | | Tatoeba-test.frr-eng.frr.eng | 7.0 | 0.168 | | Tatoeba-test.fry-eng.fry.eng | 28.6 | 0.488 | | Tatoeba-test.gos-eng.gos.eng | 15.5 | 0.326 | | Tatoeba-test.gsw-eng.gsw.eng | 12.7 | 0.308 | | Tatoeba-test.ksh-eng.ksh.eng | 8.4 | 0.254 | | Tatoeba-test.ltz-eng.ltz.eng | 28.7 | 0.453 | | Tatoeba-test.multi.eng | 48.5 | 0.646 | | Tatoeba-test.nds-eng.nds.eng | 31.4 | 0.509 | | Tatoeba-test.nld-eng.nld.eng | 58.1 | 0.728 | | Tatoeba-test.pdc-eng.pdc.eng | 25.1 | 0.406 | | Tatoeba-test.sco-eng.sco.eng | 40.8 | 0.570 | | Tatoeba-test.stq-eng.stq.eng | 20.3 | 0.380 | | Tatoeba-test.swg-eng.swg.eng | 20.5 | 0.315 | | Tatoeba-test.yid-eng.yid.eng | 16.0 | 0.366 | ### System Info: - hf_name: gmw-eng - source_languages: gmw - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/gmw-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['nl', 'en', 'lb', 'af', 'de', 'fy', 'yi', 'gmw'] - src_constituents: {'ksh', 'nld', 'eng', 'enm_Latn', 'ltz', 'stq', 'afr', 'pdc', 'deu', 'gos', 'ang_Latn', 'fry', 'gsw', 'frr', 'nds', 'yid', 'swg', 'sco'} - tgt_constituents: {'eng'} - src_multilingual: True - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/gmw-eng/opus2m-2020-08-01.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/gmw-eng/opus2m-2020-08-01.test.txt - src_alpha3: gmw - tgt_alpha3: eng - short_pair: gmw-en - chrF2_score: 0.6459999999999999 - bleu: 48.5 - brevity_penalty: 0.997 - ref_len: 72584.0 - src_name: West Germanic languages - tgt_name: English - train_date: 2020-08-01 - src_alpha2: gmw - tgt_alpha2: en - prefer_old: False - long_pair: gmw-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["nl", "en", "lb", "af", "de", "fy", "yi", "gmw"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-gmw-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "nl", "en", "lb", "af", "de", "fy", "yi", "gmw", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "nl", "en", "lb", "af", "de", "fy", "yi", "gmw" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #nl #en #lb #af #de #fy #yi #gmw #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### gmw-eng * source group: West Germanic languages * target group: English * OPUS readme: gmw-eng * model: transformer * source language(s): afr ang\_Latn deu enm\_Latn frr fry gos gsw ksh ltz nds nld pdc sco stq swg yid * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 27.2, chr-F: 0.538 testset: URL, BLEU: 25.7, chr-F: 0.534 testset: URL, BLEU: 25.1, chr-F: 0.530 testset: URL, BLEU: 27.9, chr-F: 0.565 testset: URL, BLEU: 25.3, chr-F: 0.539 testset: URL, BLEU: 26.6, chr-F: 0.548 testset: URL, BLEU: 29.6, chr-F: 0.565 testset: URL, BLEU: 30.2, chr-F: 0.571 testset: URL, BLEU: 31.5, chr-F: 0.577 testset: URL, BLEU: 36.7, chr-F: 0.622 testset: URL, BLEU: 32.3, chr-F: 0.585 testset: URL, BLEU: 39.9, chr-F: 0.638 testset: URL, BLEU: 35.9, chr-F: 0.611 testset: URL, BLEU: 61.8, chr-F: 0.750 testset: URL, BLEU: 7.3, chr-F: 0.220 testset: URL, BLEU: 48.3, chr-F: 0.657 testset: URL, BLEU: 16.1, chr-F: 0.423 testset: URL, BLEU: 7.0, chr-F: 0.168 testset: URL, BLEU: 28.6, chr-F: 0.488 testset: URL, BLEU: 15.5, chr-F: 0.326 testset: URL, BLEU: 12.7, chr-F: 0.308 testset: URL, BLEU: 8.4, chr-F: 0.254 testset: URL, BLEU: 28.7, chr-F: 0.453 testset: URL, BLEU: 48.5, chr-F: 0.646 testset: URL, BLEU: 31.4, chr-F: 0.509 testset: URL, BLEU: 58.1, chr-F: 0.728 testset: URL, BLEU: 25.1, chr-F: 0.406 testset: URL, BLEU: 40.8, chr-F: 0.570 testset: URL, BLEU: 20.3, chr-F: 0.380 testset: URL, BLEU: 20.5, chr-F: 0.315 testset: URL, BLEU: 16.0, chr-F: 0.366 ### System Info: * hf\_name: gmw-eng * source\_languages: gmw * target\_languages: eng * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['nl', 'en', 'lb', 'af', 'de', 'fy', 'yi', 'gmw'] * src\_constituents: {'ksh', 'nld', 'eng', 'enm\_Latn', 'ltz', 'stq', 'afr', 'pdc', 'deu', 'gos', 'ang\_Latn', 'fry', 'gsw', 'frr', 'nds', 'yid', 'swg', 'sco'} * tgt\_constituents: {'eng'} * src\_multilingual: True * tgt\_multilingual: False * prepro: normalization + SentencePiece (spm32k,spm32k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: gmw * tgt\_alpha3: eng * short\_pair: gmw-en * chrF2\_score: 0.6459999999999999 * bleu: 48.5 * brevity\_penalty: 0.997 * ref\_len: 72584.0 * src\_name: West Germanic languages * tgt\_name: English * train\_date: 2020-08-01 * src\_alpha2: gmw * tgt\_alpha2: en * prefer\_old: False * long\_pair: gmw-eng * helsinki\_git\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 * transformers\_git\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b * port\_machine: brutasse * port\_time: 2020-08-21-14:41
[ "### gmw-eng\n\n\n* source group: West Germanic languages\n* target group: English\n* OPUS readme: gmw-eng\n* model: transformer\n* source language(s): afr ang\\_Latn deu enm\\_Latn frr fry gos gsw ksh ltz nds nld pdc sco stq swg yid\n* target language(s): eng\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 27.2, chr-F: 0.538\ntestset: URL, BLEU: 25.7, chr-F: 0.534\ntestset: URL, BLEU: 25.1, chr-F: 0.530\ntestset: URL, BLEU: 27.9, chr-F: 0.565\ntestset: URL, BLEU: 25.3, chr-F: 0.539\ntestset: URL, BLEU: 26.6, chr-F: 0.548\ntestset: URL, BLEU: 29.6, chr-F: 0.565\ntestset: URL, BLEU: 30.2, chr-F: 0.571\ntestset: URL, BLEU: 31.5, chr-F: 0.577\ntestset: URL, BLEU: 36.7, chr-F: 0.622\ntestset: URL, BLEU: 32.3, chr-F: 0.585\ntestset: URL, BLEU: 39.9, chr-F: 0.638\ntestset: URL, BLEU: 35.9, chr-F: 0.611\ntestset: URL, BLEU: 61.8, chr-F: 0.750\ntestset: URL, BLEU: 7.3, chr-F: 0.220\ntestset: URL, BLEU: 48.3, chr-F: 0.657\ntestset: URL, BLEU: 16.1, chr-F: 0.423\ntestset: URL, BLEU: 7.0, chr-F: 0.168\ntestset: URL, BLEU: 28.6, chr-F: 0.488\ntestset: URL, BLEU: 15.5, chr-F: 0.326\ntestset: URL, BLEU: 12.7, chr-F: 0.308\ntestset: URL, BLEU: 8.4, chr-F: 0.254\ntestset: URL, BLEU: 28.7, chr-F: 0.453\ntestset: URL, BLEU: 48.5, chr-F: 0.646\ntestset: URL, BLEU: 31.4, chr-F: 0.509\ntestset: URL, BLEU: 58.1, chr-F: 0.728\ntestset: URL, BLEU: 25.1, chr-F: 0.406\ntestset: URL, BLEU: 40.8, chr-F: 0.570\ntestset: URL, BLEU: 20.3, chr-F: 0.380\ntestset: URL, BLEU: 20.5, chr-F: 0.315\ntestset: URL, BLEU: 16.0, chr-F: 0.366", "### System Info:\n\n\n* hf\\_name: gmw-eng\n* source\\_languages: gmw\n* target\\_languages: eng\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['nl', 'en', 'lb', 'af', 'de', 'fy', 'yi', 'gmw']\n* src\\_constituents: {'ksh', 'nld', 'eng', 'enm\\_Latn', 'ltz', 'stq', 'afr', 'pdc', 'deu', 'gos', 'ang\\_Latn', 'fry', 'gsw', 'frr', 'nds', 'yid', 'swg', 'sco'}\n* tgt\\_constituents: {'eng'}\n* src\\_multilingual: True\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: gmw\n* tgt\\_alpha3: eng\n* short\\_pair: gmw-en\n* chrF2\\_score: 0.6459999999999999\n* bleu: 48.5\n* brevity\\_penalty: 0.997\n* ref\\_len: 72584.0\n* src\\_name: West Germanic languages\n* tgt\\_name: English\n* train\\_date: 2020-08-01\n* src\\_alpha2: gmw\n* tgt\\_alpha2: en\n* prefer\\_old: False\n* long\\_pair: gmw-eng\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #nl #en #lb #af #de #fy #yi #gmw #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### gmw-eng\n\n\n* source group: West Germanic languages\n* target group: English\n* OPUS readme: gmw-eng\n* model: transformer\n* source language(s): afr ang\\_Latn deu enm\\_Latn frr fry gos gsw ksh ltz nds nld pdc sco stq swg yid\n* target language(s): eng\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 27.2, chr-F: 0.538\ntestset: URL, BLEU: 25.7, chr-F: 0.534\ntestset: URL, BLEU: 25.1, chr-F: 0.530\ntestset: URL, BLEU: 27.9, chr-F: 0.565\ntestset: URL, BLEU: 25.3, chr-F: 0.539\ntestset: URL, BLEU: 26.6, chr-F: 0.548\ntestset: URL, BLEU: 29.6, chr-F: 0.565\ntestset: URL, BLEU: 30.2, chr-F: 0.571\ntestset: URL, BLEU: 31.5, chr-F: 0.577\ntestset: URL, BLEU: 36.7, chr-F: 0.622\ntestset: URL, BLEU: 32.3, chr-F: 0.585\ntestset: URL, BLEU: 39.9, chr-F: 0.638\ntestset: URL, BLEU: 35.9, chr-F: 0.611\ntestset: URL, BLEU: 61.8, chr-F: 0.750\ntestset: URL, BLEU: 7.3, chr-F: 0.220\ntestset: URL, BLEU: 48.3, chr-F: 0.657\ntestset: URL, BLEU: 16.1, chr-F: 0.423\ntestset: URL, BLEU: 7.0, chr-F: 0.168\ntestset: URL, BLEU: 28.6, chr-F: 0.488\ntestset: URL, BLEU: 15.5, chr-F: 0.326\ntestset: URL, BLEU: 12.7, chr-F: 0.308\ntestset: URL, BLEU: 8.4, chr-F: 0.254\ntestset: URL, BLEU: 28.7, chr-F: 0.453\ntestset: URL, BLEU: 48.5, chr-F: 0.646\ntestset: URL, BLEU: 31.4, chr-F: 0.509\ntestset: URL, BLEU: 58.1, chr-F: 0.728\ntestset: URL, BLEU: 25.1, chr-F: 0.406\ntestset: URL, BLEU: 40.8, chr-F: 0.570\ntestset: URL, BLEU: 20.3, chr-F: 0.380\ntestset: URL, BLEU: 20.5, chr-F: 0.315\ntestset: URL, BLEU: 16.0, chr-F: 0.366", "### System Info:\n\n\n* hf\\_name: gmw-eng\n* source\\_languages: gmw\n* target\\_languages: eng\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['nl', 'en', 'lb', 'af', 'de', 'fy', 'yi', 'gmw']\n* src\\_constituents: {'ksh', 'nld', 'eng', 'enm\\_Latn', 'ltz', 'stq', 'afr', 'pdc', 'deu', 'gos', 'ang\\_Latn', 'fry', 'gsw', 'frr', 'nds', 'yid', 'swg', 'sco'}\n* tgt\\_constituents: {'eng'}\n* src\\_multilingual: True\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: gmw\n* tgt\\_alpha3: eng\n* short\\_pair: gmw-en\n* chrF2\\_score: 0.6459999999999999\n* bleu: 48.5\n* brevity\\_penalty: 0.997\n* ref\\_len: 72584.0\n* src\\_name: West Germanic languages\n* tgt\\_name: English\n* train\\_date: 2020-08-01\n* src\\_alpha2: gmw\n* tgt\\_alpha2: en\n* prefer\\_old: False\n* long\\_pair: gmw-eng\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ 65, 851, 531 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #nl #en #lb #af #de #fy #yi #gmw #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### gmw-eng\n\n\n* source group: West Germanic languages\n* target group: English\n* OPUS readme: gmw-eng\n* model: transformer\n* source language(s): afr ang\\_Latn deu enm\\_Latn frr fry gos gsw ksh ltz nds nld pdc sco stq swg yid\n* target language(s): eng\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 27.2, chr-F: 0.538\ntestset: URL, BLEU: 25.7, chr-F: 0.534\ntestset: URL, BLEU: 25.1, chr-F: 0.530\ntestset: URL, BLEU: 27.9, chr-F: 0.565\ntestset: URL, BLEU: 25.3, chr-F: 0.539\ntestset: URL, BLEU: 26.6, chr-F: 0.548\ntestset: URL, BLEU: 29.6, chr-F: 0.565\ntestset: URL, BLEU: 30.2, chr-F: 0.571\ntestset: URL, BLEU: 31.5, chr-F: 0.577\ntestset: URL, BLEU: 36.7, chr-F: 0.622\ntestset: URL, BLEU: 32.3, chr-F: 0.585\ntestset: URL, BLEU: 39.9, chr-F: 0.638\ntestset: URL, BLEU: 35.9, chr-F: 0.611\ntestset: URL, BLEU: 61.8, chr-F: 0.750\ntestset: URL, BLEU: 7.3, chr-F: 0.220\ntestset: URL, BLEU: 48.3, chr-F: 0.657\ntestset: URL, BLEU: 16.1, chr-F: 0.423\ntestset: URL, BLEU: 7.0, chr-F: 0.168\ntestset: URL, BLEU: 28.6, chr-F: 0.488\ntestset: URL, BLEU: 15.5, chr-F: 0.326\ntestset: URL, BLEU: 12.7, chr-F: 0.308\ntestset: URL, BLEU: 8.4, chr-F: 0.254\ntestset: URL, BLEU: 28.7, chr-F: 0.453\ntestset: URL, BLEU: 48.5, chr-F: 0.646\ntestset: URL, BLEU: 31.4, chr-F: 0.509\ntestset: URL, BLEU: 58.1, chr-F: 0.728\ntestset: URL, BLEU: 25.1, chr-F: 0.406\ntestset: URL, BLEU: 40.8, chr-F: 0.570\ntestset: URL, BLEU: 20.3, chr-F: 0.380\ntestset: URL, BLEU: 20.5, chr-F: 0.315\ntestset: URL, BLEU: 16.0, chr-F: 0.366### System Info:\n\n\n* hf\\_name: gmw-eng\n* source\\_languages: gmw\n* target\\_languages: eng\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['nl', 'en', 'lb', 'af', 'de', 'fy', 'yi', 'gmw']\n* src\\_constituents: {'ksh', 'nld', 'eng', 'enm\\_Latn', 'ltz', 'stq', 'afr', 'pdc', 'deu', 'gos', 'ang\\_Latn', 'fry', 'gsw', 'frr', 'nds', 'yid', 'swg', 'sco'}\n* tgt\\_constituents: {'eng'}\n* src\\_multilingual: True\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: gmw\n* tgt\\_alpha3: eng\n* short\\_pair: gmw-en\n* chrF2\\_score: 0.6459999999999999\n* bleu: 48.5\n* brevity\\_penalty: 0.997\n* ref\\_len: 72584.0\n* src\\_name: West Germanic languages\n* tgt\\_name: English\n* train\\_date: 2020-08-01\n* src\\_alpha2: gmw\n* tgt\\_alpha2: en\n* prefer\\_old: False\n* long\\_pair: gmw-eng\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
translation
transformers
### gmw-gmw * source group: West Germanic languages * target group: West Germanic languages * OPUS readme: [gmw-gmw](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/gmw-gmw/README.md) * model: transformer * source language(s): afr ang_Latn deu eng enm_Latn frr fry gos gsw ksh ltz nds nld pdc sco stq swg yid * target language(s): afr ang_Latn deu eng enm_Latn frr fry gos gsw ksh ltz nds nld pdc sco stq swg yid * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-07-27.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/gmw-gmw/opus-2020-07-27.zip) * test set translations: [opus-2020-07-27.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmw-gmw/opus-2020-07-27.test.txt) * test set scores: [opus-2020-07-27.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmw-gmw/opus-2020-07-27.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newssyscomb2009-deueng.deu.eng | 25.3 | 0.527 | | newssyscomb2009-engdeu.eng.deu | 19.0 | 0.502 | | news-test2008-deueng.deu.eng | 23.7 | 0.515 | | news-test2008-engdeu.eng.deu | 19.2 | 0.491 | | newstest2009-deueng.deu.eng | 23.1 | 0.514 | | newstest2009-engdeu.eng.deu | 18.6 | 0.495 | | newstest2010-deueng.deu.eng | 25.8 | 0.545 | | newstest2010-engdeu.eng.deu | 20.3 | 0.505 | | newstest2011-deueng.deu.eng | 23.7 | 0.523 | | newstest2011-engdeu.eng.deu | 18.9 | 0.490 | | newstest2012-deueng.deu.eng | 24.4 | 0.529 | | newstest2012-engdeu.eng.deu | 19.2 | 0.489 | | newstest2013-deueng.deu.eng | 27.2 | 0.545 | | newstest2013-engdeu.eng.deu | 22.4 | 0.514 | | newstest2014-deen-deueng.deu.eng | 27.0 | 0.546 | | newstest2015-ende-deueng.deu.eng | 28.4 | 0.552 | | newstest2015-ende-engdeu.eng.deu | 25.3 | 0.541 | | newstest2016-ende-deueng.deu.eng | 33.2 | 0.595 | | newstest2016-ende-engdeu.eng.deu | 29.8 | 0.578 | | newstest2017-ende-deueng.deu.eng | 29.0 | 0.557 | | newstest2017-ende-engdeu.eng.deu | 23.9 | 0.534 | | newstest2018-ende-deueng.deu.eng | 35.9 | 0.607 | | newstest2018-ende-engdeu.eng.deu | 34.8 | 0.609 | | newstest2019-deen-deueng.deu.eng | 32.1 | 0.579 | | newstest2019-ende-engdeu.eng.deu | 31.0 | 0.579 | | Tatoeba-test.afr-ang.afr.ang | 0.0 | 0.065 | | Tatoeba-test.afr-deu.afr.deu | 46.8 | 0.668 | | Tatoeba-test.afr-eng.afr.eng | 58.5 | 0.728 | | Tatoeba-test.afr-enm.afr.enm | 13.4 | 0.357 | | Tatoeba-test.afr-fry.afr.fry | 5.3 | 0.026 | | Tatoeba-test.afr-gos.afr.gos | 3.5 | 0.228 | | Tatoeba-test.afr-ltz.afr.ltz | 1.6 | 0.131 | | Tatoeba-test.afr-nld.afr.nld | 55.4 | 0.715 | | Tatoeba-test.afr-yid.afr.yid | 3.4 | 0.008 | | Tatoeba-test.ang-afr.ang.afr | 3.1 | 0.096 | | Tatoeba-test.ang-deu.ang.deu | 2.6 | 0.188 | | Tatoeba-test.ang-eng.ang.eng | 5.4 | 0.211 | | Tatoeba-test.ang-enm.ang.enm | 1.7 | 0.197 | | Tatoeba-test.ang-gos.ang.gos | 6.6 | 0.186 | | Tatoeba-test.ang-ltz.ang.ltz | 5.3 | 0.072 | | Tatoeba-test.ang-yid.ang.yid | 0.9 | 0.131 | | Tatoeba-test.deu-afr.deu.afr | 52.7 | 0.699 | | Tatoeba-test.deu-ang.deu.ang | 0.8 | 0.133 | | Tatoeba-test.deu-eng.deu.eng | 43.5 | 0.621 | | Tatoeba-test.deu-enm.deu.enm | 6.9 | 0.245 | | Tatoeba-test.deu-frr.deu.frr | 0.8 | 0.200 | | Tatoeba-test.deu-fry.deu.fry | 15.1 | 0.367 | | Tatoeba-test.deu-gos.deu.gos | 2.2 | 0.279 | | Tatoeba-test.deu-gsw.deu.gsw | 1.0 | 0.176 | | Tatoeba-test.deu-ksh.deu.ksh | 0.6 | 0.208 | | Tatoeba-test.deu-ltz.deu.ltz | 12.1 | 0.274 | | Tatoeba-test.deu-nds.deu.nds | 18.8 | 0.446 | | Tatoeba-test.deu-nld.deu.nld | 48.6 | 0.669 | | Tatoeba-test.deu-pdc.deu.pdc | 4.6 | 0.198 | | Tatoeba-test.deu-sco.deu.sco | 12.0 | 0.340 | | Tatoeba-test.deu-stq.deu.stq | 3.2 | 0.240 | | Tatoeba-test.deu-swg.deu.swg | 0.5 | 0.179 | | Tatoeba-test.deu-yid.deu.yid | 1.7 | 0.160 | | Tatoeba-test.eng-afr.eng.afr | 55.8 | 0.730 | | Tatoeba-test.eng-ang.eng.ang | 5.7 | 0.157 | | Tatoeba-test.eng-deu.eng.deu | 36.7 | 0.584 | | Tatoeba-test.eng-enm.eng.enm | 2.0 | 0.272 | | Tatoeba-test.eng-frr.eng.frr | 6.1 | 0.246 | | Tatoeba-test.eng-fry.eng.fry | 15.3 | 0.378 | | Tatoeba-test.eng-gos.eng.gos | 1.2 | 0.242 | | Tatoeba-test.eng-gsw.eng.gsw | 0.9 | 0.164 | | Tatoeba-test.eng-ksh.eng.ksh | 0.9 | 0.170 | | Tatoeba-test.eng-ltz.eng.ltz | 13.7 | 0.263 | | Tatoeba-test.eng-nds.eng.nds | 17.1 | 0.410 | | Tatoeba-test.eng-nld.eng.nld | 49.6 | 0.673 | | Tatoeba-test.eng-pdc.eng.pdc | 5.1 | 0.218 | | Tatoeba-test.eng-sco.eng.sco | 34.8 | 0.587 | | Tatoeba-test.eng-stq.eng.stq | 2.1 | 0.322 | | Tatoeba-test.eng-swg.eng.swg | 1.7 | 0.192 | | Tatoeba-test.eng-yid.eng.yid | 1.7 | 0.173 | | Tatoeba-test.enm-afr.enm.afr | 13.4 | 0.397 | | Tatoeba-test.enm-ang.enm.ang | 0.7 | 0.063 | | Tatoeba-test.enm-deu.enm.deu | 41.5 | 0.514 | | Tatoeba-test.enm-eng.enm.eng | 21.3 | 0.483 | | Tatoeba-test.enm-fry.enm.fry | 0.0 | 0.058 | | Tatoeba-test.enm-gos.enm.gos | 10.7 | 0.354 | | Tatoeba-test.enm-ksh.enm.ksh | 7.0 | 0.161 | | Tatoeba-test.enm-nds.enm.nds | 18.6 | 0.316 | | Tatoeba-test.enm-nld.enm.nld | 38.3 | 0.524 | | Tatoeba-test.enm-yid.enm.yid | 0.7 | 0.128 | | Tatoeba-test.frr-deu.frr.deu | 4.1 | 0.219 | | Tatoeba-test.frr-eng.frr.eng | 14.1 | 0.186 | | Tatoeba-test.frr-fry.frr.fry | 3.1 | 0.129 | | Tatoeba-test.frr-gos.frr.gos | 3.6 | 0.226 | | Tatoeba-test.frr-nds.frr.nds | 12.4 | 0.145 | | Tatoeba-test.frr-nld.frr.nld | 9.8 | 0.209 | | Tatoeba-test.frr-stq.frr.stq | 2.8 | 0.142 | | Tatoeba-test.fry-afr.fry.afr | 0.0 | 1.000 | | Tatoeba-test.fry-deu.fry.deu | 30.1 | 0.535 | | Tatoeba-test.fry-eng.fry.eng | 28.0 | 0.486 | | Tatoeba-test.fry-enm.fry.enm | 16.0 | 0.262 | | Tatoeba-test.fry-frr.fry.frr | 5.5 | 0.160 | | Tatoeba-test.fry-gos.fry.gos | 1.6 | 0.307 | | Tatoeba-test.fry-ltz.fry.ltz | 30.4 | 0.438 | | Tatoeba-test.fry-nds.fry.nds | 8.1 | 0.083 | | Tatoeba-test.fry-nld.fry.nld | 41.4 | 0.616 | | Tatoeba-test.fry-stq.fry.stq | 1.6 | 0.217 | | Tatoeba-test.fry-yid.fry.yid | 1.6 | 0.159 | | Tatoeba-test.gos-afr.gos.afr | 6.3 | 0.318 | | Tatoeba-test.gos-ang.gos.ang | 6.2 | 0.058 | | Tatoeba-test.gos-deu.gos.deu | 11.7 | 0.363 | | Tatoeba-test.gos-eng.gos.eng | 14.9 | 0.322 | | Tatoeba-test.gos-enm.gos.enm | 9.1 | 0.398 | | Tatoeba-test.gos-frr.gos.frr | 3.3 | 0.117 | | Tatoeba-test.gos-fry.gos.fry | 13.1 | 0.387 | | Tatoeba-test.gos-ltz.gos.ltz | 3.1 | 0.154 | | Tatoeba-test.gos-nds.gos.nds | 2.4 | 0.206 | | Tatoeba-test.gos-nld.gos.nld | 13.9 | 0.395 | | Tatoeba-test.gos-stq.gos.stq | 2.1 | 0.209 | | Tatoeba-test.gos-yid.gos.yid | 1.7 | 0.147 | | Tatoeba-test.gsw-deu.gsw.deu | 10.5 | 0.350 | | Tatoeba-test.gsw-eng.gsw.eng | 10.7 | 0.299 | | Tatoeba-test.ksh-deu.ksh.deu | 12.0 | 0.373 | | Tatoeba-test.ksh-eng.ksh.eng | 3.2 | 0.225 | | Tatoeba-test.ksh-enm.ksh.enm | 13.4 | 0.308 | | Tatoeba-test.ltz-afr.ltz.afr | 37.4 | 0.525 | | Tatoeba-test.ltz-ang.ltz.ang | 2.8 | 0.036 | | Tatoeba-test.ltz-deu.ltz.deu | 40.3 | 0.596 | | Tatoeba-test.ltz-eng.ltz.eng | 31.7 | 0.490 | | Tatoeba-test.ltz-fry.ltz.fry | 36.3 | 0.658 | | Tatoeba-test.ltz-gos.ltz.gos | 2.9 | 0.209 | | Tatoeba-test.ltz-nld.ltz.nld | 38.8 | 0.530 | | Tatoeba-test.ltz-stq.ltz.stq | 5.8 | 0.165 | | Tatoeba-test.ltz-yid.ltz.yid | 1.0 | 0.159 | | Tatoeba-test.multi.multi | 36.4 | 0.568 | | Tatoeba-test.nds-deu.nds.deu | 35.0 | 0.573 | | Tatoeba-test.nds-eng.nds.eng | 29.6 | 0.495 | | Tatoeba-test.nds-enm.nds.enm | 3.7 | 0.194 | | Tatoeba-test.nds-frr.nds.frr | 6.6 | 0.133 | | Tatoeba-test.nds-fry.nds.fry | 4.2 | 0.087 | | Tatoeba-test.nds-gos.nds.gos | 2.0 | 0.243 | | Tatoeba-test.nds-nld.nds.nld | 41.4 | 0.618 | | Tatoeba-test.nds-swg.nds.swg | 0.6 | 0.178 | | Tatoeba-test.nds-yid.nds.yid | 8.3 | 0.238 | | Tatoeba-test.nld-afr.nld.afr | 59.4 | 0.759 | | Tatoeba-test.nld-deu.nld.deu | 49.9 | 0.685 | | Tatoeba-test.nld-eng.nld.eng | 54.1 | 0.699 | | Tatoeba-test.nld-enm.nld.enm | 5.0 | 0.250 | | Tatoeba-test.nld-frr.nld.frr | 2.4 | 0.224 | | Tatoeba-test.nld-fry.nld.fry | 19.4 | 0.446 | | Tatoeba-test.nld-gos.nld.gos | 2.5 | 0.273 | | Tatoeba-test.nld-ltz.nld.ltz | 13.8 | 0.292 | | Tatoeba-test.nld-nds.nld.nds | 21.3 | 0.457 | | Tatoeba-test.nld-sco.nld.sco | 14.7 | 0.423 | | Tatoeba-test.nld-stq.nld.stq | 1.9 | 0.257 | | Tatoeba-test.nld-swg.nld.swg | 4.2 | 0.162 | | Tatoeba-test.nld-yid.nld.yid | 2.6 | 0.186 | | Tatoeba-test.pdc-deu.pdc.deu | 39.7 | 0.529 | | Tatoeba-test.pdc-eng.pdc.eng | 25.0 | 0.427 | | Tatoeba-test.sco-deu.sco.deu | 28.4 | 0.428 | | Tatoeba-test.sco-eng.sco.eng | 41.8 | 0.595 | | Tatoeba-test.sco-nld.sco.nld | 36.4 | 0.565 | | Tatoeba-test.stq-deu.stq.deu | 7.7 | 0.328 | | Tatoeba-test.stq-eng.stq.eng | 21.1 | 0.428 | | Tatoeba-test.stq-frr.stq.frr | 2.0 | 0.118 | | Tatoeba-test.stq-fry.stq.fry | 6.3 | 0.255 | | Tatoeba-test.stq-gos.stq.gos | 1.4 | 0.244 | | Tatoeba-test.stq-ltz.stq.ltz | 4.4 | 0.204 | | Tatoeba-test.stq-nld.stq.nld | 10.7 | 0.371 | | Tatoeba-test.stq-yid.stq.yid | 1.4 | 0.105 | | Tatoeba-test.swg-deu.swg.deu | 9.5 | 0.343 | | Tatoeba-test.swg-eng.swg.eng | 15.1 | 0.306 | | Tatoeba-test.swg-nds.swg.nds | 0.7 | 0.196 | | Tatoeba-test.swg-nld.swg.nld | 11.6 | 0.308 | | Tatoeba-test.swg-yid.swg.yid | 0.9 | 0.186 | | Tatoeba-test.yid-afr.yid.afr | 100.0 | 1.000 | | Tatoeba-test.yid-ang.yid.ang | 0.6 | 0.079 | | Tatoeba-test.yid-deu.yid.deu | 16.7 | 0.372 | | Tatoeba-test.yid-eng.yid.eng | 15.8 | 0.344 | | Tatoeba-test.yid-enm.yid.enm | 1.3 | 0.166 | | Tatoeba-test.yid-fry.yid.fry | 5.6 | 0.157 | | Tatoeba-test.yid-gos.yid.gos | 2.2 | 0.160 | | Tatoeba-test.yid-ltz.yid.ltz | 2.1 | 0.238 | | Tatoeba-test.yid-nds.yid.nds | 14.4 | 0.365 | | Tatoeba-test.yid-nld.yid.nld | 20.9 | 0.397 | | Tatoeba-test.yid-stq.yid.stq | 3.7 | 0.165 | | Tatoeba-test.yid-swg.yid.swg | 1.8 | 0.156 | ### System Info: - hf_name: gmw-gmw - source_languages: gmw - target_languages: gmw - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/gmw-gmw/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['nl', 'en', 'lb', 'af', 'de', 'fy', 'yi', 'gmw'] - src_constituents: {'ksh', 'nld', 'eng', 'enm_Latn', 'ltz', 'stq', 'afr', 'pdc', 'deu', 'gos', 'ang_Latn', 'fry', 'gsw', 'frr', 'nds', 'yid', 'swg', 'sco'} - tgt_constituents: {'ksh', 'nld', 'eng', 'enm_Latn', 'ltz', 'stq', 'afr', 'pdc', 'deu', 'gos', 'ang_Latn', 'fry', 'gsw', 'frr', 'nds', 'yid', 'swg', 'sco'} - src_multilingual: True - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/gmw-gmw/opus-2020-07-27.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/gmw-gmw/opus-2020-07-27.test.txt - src_alpha3: gmw - tgt_alpha3: gmw - short_pair: gmw-gmw - chrF2_score: 0.568 - bleu: 36.4 - brevity_penalty: 1.0 - ref_len: 72534.0 - src_name: West Germanic languages - tgt_name: West Germanic languages - train_date: 2020-07-27 - src_alpha2: gmw - tgt_alpha2: gmw - prefer_old: False - long_pair: gmw-gmw - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["nl", "en", "lb", "af", "de", "fy", "yi", "gmw"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-gmw-gmw
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "nl", "en", "lb", "af", "de", "fy", "yi", "gmw", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "nl", "en", "lb", "af", "de", "fy", "yi", "gmw" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #nl #en #lb #af #de #fy #yi #gmw #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### gmw-gmw * source group: West Germanic languages * target group: West Germanic languages * OPUS readme: gmw-gmw * model: transformer * source language(s): afr ang\_Latn deu eng enm\_Latn frr fry gos gsw ksh ltz nds nld pdc sco stq swg yid * target language(s): afr ang\_Latn deu eng enm\_Latn frr fry gos gsw ksh ltz nds nld pdc sco stq swg yid * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of '>>id<<' (id = valid target language ID) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 25.3, chr-F: 0.527 testset: URL, BLEU: 19.0, chr-F: 0.502 testset: URL, BLEU: 23.7, chr-F: 0.515 testset: URL, BLEU: 19.2, chr-F: 0.491 testset: URL, BLEU: 23.1, chr-F: 0.514 testset: URL, BLEU: 18.6, chr-F: 0.495 testset: URL, BLEU: 25.8, chr-F: 0.545 testset: URL, BLEU: 20.3, chr-F: 0.505 testset: URL, BLEU: 23.7, chr-F: 0.523 testset: URL, BLEU: 18.9, chr-F: 0.490 testset: URL, BLEU: 24.4, chr-F: 0.529 testset: URL, BLEU: 19.2, chr-F: 0.489 testset: URL, BLEU: 27.2, chr-F: 0.545 testset: URL, BLEU: 22.4, chr-F: 0.514 testset: URL, BLEU: 27.0, chr-F: 0.546 testset: URL, BLEU: 28.4, chr-F: 0.552 testset: URL, BLEU: 25.3, chr-F: 0.541 testset: URL, BLEU: 33.2, chr-F: 0.595 testset: URL, BLEU: 29.8, chr-F: 0.578 testset: URL, BLEU: 29.0, chr-F: 0.557 testset: URL, BLEU: 23.9, chr-F: 0.534 testset: URL, BLEU: 35.9, chr-F: 0.607 testset: URL, BLEU: 34.8, chr-F: 0.609 testset: URL, BLEU: 32.1, chr-F: 0.579 testset: URL, BLEU: 31.0, chr-F: 0.579 testset: URL, BLEU: 0.0, chr-F: 0.065 testset: URL, BLEU: 46.8, chr-F: 0.668 testset: URL, BLEU: 58.5, chr-F: 0.728 testset: URL, BLEU: 13.4, chr-F: 0.357 testset: URL, BLEU: 5.3, chr-F: 0.026 testset: URL, BLEU: 3.5, chr-F: 0.228 testset: URL, BLEU: 1.6, chr-F: 0.131 testset: URL, BLEU: 55.4, chr-F: 0.715 testset: URL, BLEU: 3.4, chr-F: 0.008 testset: URL, BLEU: 3.1, chr-F: 0.096 testset: URL, BLEU: 2.6, chr-F: 0.188 testset: URL, BLEU: 5.4, chr-F: 0.211 testset: URL, BLEU: 1.7, chr-F: 0.197 testset: URL, BLEU: 6.6, chr-F: 0.186 testset: URL, BLEU: 5.3, chr-F: 0.072 testset: URL, BLEU: 0.9, chr-F: 0.131 testset: URL, BLEU: 52.7, chr-F: 0.699 testset: URL, BLEU: 0.8, chr-F: 0.133 testset: URL, BLEU: 43.5, chr-F: 0.621 testset: URL, BLEU: 6.9, chr-F: 0.245 testset: URL, BLEU: 0.8, chr-F: 0.200 testset: URL, BLEU: 15.1, chr-F: 0.367 testset: URL, BLEU: 2.2, chr-F: 0.279 testset: URL, BLEU: 1.0, chr-F: 0.176 testset: URL, BLEU: 0.6, chr-F: 0.208 testset: URL, BLEU: 12.1, chr-F: 0.274 testset: URL, BLEU: 18.8, chr-F: 0.446 testset: URL, BLEU: 48.6, chr-F: 0.669 testset: URL, BLEU: 4.6, chr-F: 0.198 testset: URL, BLEU: 12.0, chr-F: 0.340 testset: URL, BLEU: 3.2, chr-F: 0.240 testset: URL, BLEU: 0.5, chr-F: 0.179 testset: URL, BLEU: 1.7, chr-F: 0.160 testset: URL, BLEU: 55.8, chr-F: 0.730 testset: URL, BLEU: 5.7, chr-F: 0.157 testset: URL, BLEU: 36.7, chr-F: 0.584 testset: URL, BLEU: 2.0, chr-F: 0.272 testset: URL, BLEU: 6.1, chr-F: 0.246 testset: URL, BLEU: 15.3, chr-F: 0.378 testset: URL, BLEU: 1.2, chr-F: 0.242 testset: URL, BLEU: 0.9, chr-F: 0.164 testset: URL, BLEU: 0.9, chr-F: 0.170 testset: URL, BLEU: 13.7, chr-F: 0.263 testset: URL, BLEU: 17.1, chr-F: 0.410 testset: URL, BLEU: 49.6, chr-F: 0.673 testset: URL, BLEU: 5.1, chr-F: 0.218 testset: URL, BLEU: 34.8, chr-F: 0.587 testset: URL, BLEU: 2.1, chr-F: 0.322 testset: URL, BLEU: 1.7, chr-F: 0.192 testset: URL, BLEU: 1.7, chr-F: 0.173 testset: URL, BLEU: 13.4, chr-F: 0.397 testset: URL, BLEU: 0.7, chr-F: 0.063 testset: URL, BLEU: 41.5, chr-F: 0.514 testset: URL, BLEU: 21.3, chr-F: 0.483 testset: URL, BLEU: 0.0, chr-F: 0.058 testset: URL, BLEU: 10.7, chr-F: 0.354 testset: URL, BLEU: 7.0, chr-F: 0.161 testset: URL, BLEU: 18.6, chr-F: 0.316 testset: URL, BLEU: 38.3, chr-F: 0.524 testset: URL, BLEU: 0.7, chr-F: 0.128 testset: URL, BLEU: 4.1, chr-F: 0.219 testset: URL, BLEU: 14.1, chr-F: 0.186 testset: URL, BLEU: 3.1, chr-F: 0.129 testset: URL, BLEU: 3.6, chr-F: 0.226 testset: URL, BLEU: 12.4, chr-F: 0.145 testset: URL, BLEU: 9.8, chr-F: 0.209 testset: URL, BLEU: 2.8, chr-F: 0.142 testset: URL, BLEU: 0.0, chr-F: 1.000 testset: URL, BLEU: 30.1, chr-F: 0.535 testset: URL, BLEU: 28.0, chr-F: 0.486 testset: URL, BLEU: 16.0, chr-F: 0.262 testset: URL, BLEU: 5.5, chr-F: 0.160 testset: URL, BLEU: 1.6, chr-F: 0.307 testset: URL, BLEU: 30.4, chr-F: 0.438 testset: URL, BLEU: 8.1, chr-F: 0.083 testset: URL, BLEU: 41.4, chr-F: 0.616 testset: URL, BLEU: 1.6, chr-F: 0.217 testset: URL, BLEU: 1.6, chr-F: 0.159 testset: URL, BLEU: 6.3, chr-F: 0.318 testset: URL, BLEU: 6.2, chr-F: 0.058 testset: URL, BLEU: 11.7, chr-F: 0.363 testset: URL, BLEU: 14.9, chr-F: 0.322 testset: URL, BLEU: 9.1, chr-F: 0.398 testset: URL, BLEU: 3.3, chr-F: 0.117 testset: URL, BLEU: 13.1, chr-F: 0.387 testset: URL, BLEU: 3.1, chr-F: 0.154 testset: URL, BLEU: 2.4, chr-F: 0.206 testset: URL, BLEU: 13.9, chr-F: 0.395 testset: URL, BLEU: 2.1, chr-F: 0.209 testset: URL, BLEU: 1.7, chr-F: 0.147 testset: URL, BLEU: 10.5, chr-F: 0.350 testset: URL, BLEU: 10.7, chr-F: 0.299 testset: URL, BLEU: 12.0, chr-F: 0.373 testset: URL, BLEU: 3.2, chr-F: 0.225 testset: URL, BLEU: 13.4, chr-F: 0.308 testset: URL, BLEU: 37.4, chr-F: 0.525 testset: URL, BLEU: 2.8, chr-F: 0.036 testset: URL, BLEU: 40.3, chr-F: 0.596 testset: URL, BLEU: 31.7, chr-F: 0.490 testset: URL, BLEU: 36.3, chr-F: 0.658 testset: URL, BLEU: 2.9, chr-F: 0.209 testset: URL, BLEU: 38.8, chr-F: 0.530 testset: URL, BLEU: 5.8, chr-F: 0.165 testset: URL, BLEU: 1.0, chr-F: 0.159 testset: URL, BLEU: 36.4, chr-F: 0.568 testset: URL, BLEU: 35.0, chr-F: 0.573 testset: URL, BLEU: 29.6, chr-F: 0.495 testset: URL, BLEU: 3.7, chr-F: 0.194 testset: URL, BLEU: 6.6, chr-F: 0.133 testset: URL, BLEU: 4.2, chr-F: 0.087 testset: URL, BLEU: 2.0, chr-F: 0.243 testset: URL, BLEU: 41.4, chr-F: 0.618 testset: URL, BLEU: 0.6, chr-F: 0.178 testset: URL, BLEU: 8.3, chr-F: 0.238 testset: URL, BLEU: 59.4, chr-F: 0.759 testset: URL, BLEU: 49.9, chr-F: 0.685 testset: URL, BLEU: 54.1, chr-F: 0.699 testset: URL, BLEU: 5.0, chr-F: 0.250 testset: URL, BLEU: 2.4, chr-F: 0.224 testset: URL, BLEU: 19.4, chr-F: 0.446 testset: URL, BLEU: 2.5, chr-F: 0.273 testset: URL, BLEU: 13.8, chr-F: 0.292 testset: URL, BLEU: 21.3, chr-F: 0.457 testset: URL, BLEU: 14.7, chr-F: 0.423 testset: URL, BLEU: 1.9, chr-F: 0.257 testset: URL, BLEU: 4.2, chr-F: 0.162 testset: URL, BLEU: 2.6, chr-F: 0.186 testset: URL, BLEU: 39.7, chr-F: 0.529 testset: URL, BLEU: 25.0, chr-F: 0.427 testset: URL, BLEU: 28.4, chr-F: 0.428 testset: URL, BLEU: 41.8, chr-F: 0.595 testset: URL, BLEU: 36.4, chr-F: 0.565 testset: URL, BLEU: 7.7, chr-F: 0.328 testset: URL, BLEU: 21.1, chr-F: 0.428 testset: URL, BLEU: 2.0, chr-F: 0.118 testset: URL, BLEU: 6.3, chr-F: 0.255 testset: URL, BLEU: 1.4, chr-F: 0.244 testset: URL, BLEU: 4.4, chr-F: 0.204 testset: URL, BLEU: 10.7, chr-F: 0.371 testset: URL, BLEU: 1.4, chr-F: 0.105 testset: URL, BLEU: 9.5, chr-F: 0.343 testset: URL, BLEU: 15.1, chr-F: 0.306 testset: URL, BLEU: 0.7, chr-F: 0.196 testset: URL, BLEU: 11.6, chr-F: 0.308 testset: URL, BLEU: 0.9, chr-F: 0.186 testset: URL, BLEU: 100.0, chr-F: 1.000 testset: URL, BLEU: 0.6, chr-F: 0.079 testset: URL, BLEU: 16.7, chr-F: 0.372 testset: URL, BLEU: 15.8, chr-F: 0.344 testset: URL, BLEU: 1.3, chr-F: 0.166 testset: URL, BLEU: 5.6, chr-F: 0.157 testset: URL, BLEU: 2.2, chr-F: 0.160 testset: URL, BLEU: 2.1, chr-F: 0.238 testset: URL, BLEU: 14.4, chr-F: 0.365 testset: URL, BLEU: 20.9, chr-F: 0.397 testset: URL, BLEU: 3.7, chr-F: 0.165 testset: URL, BLEU: 1.8, chr-F: 0.156 ### System Info: * hf\_name: gmw-gmw * source\_languages: gmw * target\_languages: gmw * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['nl', 'en', 'lb', 'af', 'de', 'fy', 'yi', 'gmw'] * src\_constituents: {'ksh', 'nld', 'eng', 'enm\_Latn', 'ltz', 'stq', 'afr', 'pdc', 'deu', 'gos', 'ang\_Latn', 'fry', 'gsw', 'frr', 'nds', 'yid', 'swg', 'sco'} * tgt\_constituents: {'ksh', 'nld', 'eng', 'enm\_Latn', 'ltz', 'stq', 'afr', 'pdc', 'deu', 'gos', 'ang\_Latn', 'fry', 'gsw', 'frr', 'nds', 'yid', 'swg', 'sco'} * src\_multilingual: True * tgt\_multilingual: True * prepro: normalization + SentencePiece (spm32k,spm32k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: gmw * tgt\_alpha3: gmw * short\_pair: gmw-gmw * chrF2\_score: 0.568 * bleu: 36.4 * brevity\_penalty: 1.0 * ref\_len: 72534.0 * src\_name: West Germanic languages * tgt\_name: West Germanic languages * train\_date: 2020-07-27 * src\_alpha2: gmw * tgt\_alpha2: gmw * prefer\_old: False * long\_pair: gmw-gmw * helsinki\_git\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 * transformers\_git\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b * port\_machine: brutasse * port\_time: 2020-08-21-14:41
[ "### gmw-gmw\n\n\n* source group: West Germanic languages\n* target group: West Germanic languages\n* OPUS readme: gmw-gmw\n* model: transformer\n* source language(s): afr ang\\_Latn deu eng enm\\_Latn frr fry gos gsw ksh ltz nds nld pdc sco stq swg yid\n* target language(s): afr ang\\_Latn deu eng enm\\_Latn frr fry gos gsw ksh ltz nds nld pdc sco stq swg yid\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* a sentence initial language token is required in the form of '>>id<<' (id = valid target language ID)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 25.3, chr-F: 0.527\ntestset: URL, BLEU: 19.0, chr-F: 0.502\ntestset: URL, BLEU: 23.7, chr-F: 0.515\ntestset: URL, BLEU: 19.2, chr-F: 0.491\ntestset: URL, BLEU: 23.1, chr-F: 0.514\ntestset: URL, BLEU: 18.6, chr-F: 0.495\ntestset: URL, BLEU: 25.8, chr-F: 0.545\ntestset: URL, BLEU: 20.3, chr-F: 0.505\ntestset: URL, BLEU: 23.7, chr-F: 0.523\ntestset: URL, BLEU: 18.9, chr-F: 0.490\ntestset: URL, BLEU: 24.4, chr-F: 0.529\ntestset: URL, BLEU: 19.2, chr-F: 0.489\ntestset: URL, BLEU: 27.2, chr-F: 0.545\ntestset: URL, BLEU: 22.4, chr-F: 0.514\ntestset: URL, BLEU: 27.0, chr-F: 0.546\ntestset: URL, BLEU: 28.4, chr-F: 0.552\ntestset: URL, BLEU: 25.3, chr-F: 0.541\ntestset: URL, BLEU: 33.2, chr-F: 0.595\ntestset: URL, BLEU: 29.8, chr-F: 0.578\ntestset: URL, BLEU: 29.0, chr-F: 0.557\ntestset: URL, BLEU: 23.9, chr-F: 0.534\ntestset: URL, BLEU: 35.9, chr-F: 0.607\ntestset: URL, BLEU: 34.8, chr-F: 0.609\ntestset: URL, BLEU: 32.1, chr-F: 0.579\ntestset: URL, BLEU: 31.0, chr-F: 0.579\ntestset: URL, BLEU: 0.0, chr-F: 0.065\ntestset: URL, BLEU: 46.8, chr-F: 0.668\ntestset: URL, BLEU: 58.5, chr-F: 0.728\ntestset: URL, BLEU: 13.4, chr-F: 0.357\ntestset: URL, BLEU: 5.3, chr-F: 0.026\ntestset: URL, BLEU: 3.5, chr-F: 0.228\ntestset: URL, BLEU: 1.6, chr-F: 0.131\ntestset: URL, BLEU: 55.4, chr-F: 0.715\ntestset: URL, BLEU: 3.4, chr-F: 0.008\ntestset: URL, BLEU: 3.1, chr-F: 0.096\ntestset: URL, BLEU: 2.6, chr-F: 0.188\ntestset: URL, BLEU: 5.4, chr-F: 0.211\ntestset: URL, BLEU: 1.7, chr-F: 0.197\ntestset: URL, BLEU: 6.6, chr-F: 0.186\ntestset: URL, BLEU: 5.3, chr-F: 0.072\ntestset: URL, BLEU: 0.9, chr-F: 0.131\ntestset: URL, BLEU: 52.7, chr-F: 0.699\ntestset: URL, BLEU: 0.8, chr-F: 0.133\ntestset: URL, BLEU: 43.5, chr-F: 0.621\ntestset: URL, BLEU: 6.9, chr-F: 0.245\ntestset: URL, BLEU: 0.8, chr-F: 0.200\ntestset: URL, BLEU: 15.1, chr-F: 0.367\ntestset: URL, BLEU: 2.2, chr-F: 0.279\ntestset: URL, BLEU: 1.0, chr-F: 0.176\ntestset: URL, BLEU: 0.6, chr-F: 0.208\ntestset: URL, BLEU: 12.1, chr-F: 0.274\ntestset: URL, BLEU: 18.8, chr-F: 0.446\ntestset: URL, BLEU: 48.6, chr-F: 0.669\ntestset: URL, BLEU: 4.6, chr-F: 0.198\ntestset: URL, BLEU: 12.0, chr-F: 0.340\ntestset: URL, BLEU: 3.2, chr-F: 0.240\ntestset: URL, BLEU: 0.5, chr-F: 0.179\ntestset: URL, BLEU: 1.7, chr-F: 0.160\ntestset: URL, BLEU: 55.8, chr-F: 0.730\ntestset: URL, BLEU: 5.7, chr-F: 0.157\ntestset: URL, BLEU: 36.7, chr-F: 0.584\ntestset: URL, BLEU: 2.0, chr-F: 0.272\ntestset: URL, BLEU: 6.1, chr-F: 0.246\ntestset: URL, BLEU: 15.3, chr-F: 0.378\ntestset: URL, BLEU: 1.2, chr-F: 0.242\ntestset: URL, BLEU: 0.9, chr-F: 0.164\ntestset: URL, BLEU: 0.9, chr-F: 0.170\ntestset: URL, BLEU: 13.7, chr-F: 0.263\ntestset: URL, BLEU: 17.1, chr-F: 0.410\ntestset: URL, BLEU: 49.6, chr-F: 0.673\ntestset: URL, BLEU: 5.1, chr-F: 0.218\ntestset: URL, BLEU: 34.8, chr-F: 0.587\ntestset: URL, BLEU: 2.1, chr-F: 0.322\ntestset: URL, BLEU: 1.7, chr-F: 0.192\ntestset: URL, BLEU: 1.7, chr-F: 0.173\ntestset: URL, BLEU: 13.4, chr-F: 0.397\ntestset: URL, BLEU: 0.7, chr-F: 0.063\ntestset: URL, BLEU: 41.5, chr-F: 0.514\ntestset: URL, BLEU: 21.3, chr-F: 0.483\ntestset: URL, BLEU: 0.0, chr-F: 0.058\ntestset: URL, BLEU: 10.7, chr-F: 0.354\ntestset: URL, BLEU: 7.0, chr-F: 0.161\ntestset: URL, BLEU: 18.6, chr-F: 0.316\ntestset: URL, BLEU: 38.3, chr-F: 0.524\ntestset: URL, BLEU: 0.7, chr-F: 0.128\ntestset: URL, BLEU: 4.1, chr-F: 0.219\ntestset: URL, BLEU: 14.1, chr-F: 0.186\ntestset: URL, BLEU: 3.1, chr-F: 0.129\ntestset: URL, BLEU: 3.6, chr-F: 0.226\ntestset: URL, BLEU: 12.4, chr-F: 0.145\ntestset: URL, BLEU: 9.8, chr-F: 0.209\ntestset: URL, BLEU: 2.8, chr-F: 0.142\ntestset: URL, BLEU: 0.0, chr-F: 1.000\ntestset: URL, BLEU: 30.1, chr-F: 0.535\ntestset: URL, BLEU: 28.0, chr-F: 0.486\ntestset: URL, BLEU: 16.0, chr-F: 0.262\ntestset: URL, BLEU: 5.5, chr-F: 0.160\ntestset: URL, BLEU: 1.6, chr-F: 0.307\ntestset: URL, BLEU: 30.4, chr-F: 0.438\ntestset: URL, BLEU: 8.1, chr-F: 0.083\ntestset: URL, BLEU: 41.4, chr-F: 0.616\ntestset: URL, BLEU: 1.6, chr-F: 0.217\ntestset: URL, BLEU: 1.6, chr-F: 0.159\ntestset: URL, BLEU: 6.3, chr-F: 0.318\ntestset: URL, BLEU: 6.2, chr-F: 0.058\ntestset: URL, BLEU: 11.7, chr-F: 0.363\ntestset: URL, BLEU: 14.9, chr-F: 0.322\ntestset: URL, BLEU: 9.1, chr-F: 0.398\ntestset: URL, BLEU: 3.3, chr-F: 0.117\ntestset: URL, BLEU: 13.1, chr-F: 0.387\ntestset: URL, BLEU: 3.1, chr-F: 0.154\ntestset: URL, BLEU: 2.4, chr-F: 0.206\ntestset: URL, BLEU: 13.9, chr-F: 0.395\ntestset: URL, BLEU: 2.1, chr-F: 0.209\ntestset: URL, BLEU: 1.7, chr-F: 0.147\ntestset: URL, BLEU: 10.5, chr-F: 0.350\ntestset: URL, BLEU: 10.7, chr-F: 0.299\ntestset: URL, BLEU: 12.0, chr-F: 0.373\ntestset: URL, BLEU: 3.2, chr-F: 0.225\ntestset: URL, BLEU: 13.4, chr-F: 0.308\ntestset: URL, BLEU: 37.4, chr-F: 0.525\ntestset: URL, BLEU: 2.8, chr-F: 0.036\ntestset: URL, BLEU: 40.3, chr-F: 0.596\ntestset: URL, BLEU: 31.7, chr-F: 0.490\ntestset: URL, BLEU: 36.3, chr-F: 0.658\ntestset: URL, BLEU: 2.9, chr-F: 0.209\ntestset: URL, BLEU: 38.8, chr-F: 0.530\ntestset: URL, BLEU: 5.8, chr-F: 0.165\ntestset: URL, BLEU: 1.0, chr-F: 0.159\ntestset: URL, BLEU: 36.4, chr-F: 0.568\ntestset: URL, BLEU: 35.0, chr-F: 0.573\ntestset: URL, BLEU: 29.6, chr-F: 0.495\ntestset: URL, BLEU: 3.7, chr-F: 0.194\ntestset: URL, BLEU: 6.6, chr-F: 0.133\ntestset: URL, BLEU: 4.2, chr-F: 0.087\ntestset: URL, BLEU: 2.0, chr-F: 0.243\ntestset: URL, BLEU: 41.4, chr-F: 0.618\ntestset: URL, BLEU: 0.6, chr-F: 0.178\ntestset: URL, BLEU: 8.3, chr-F: 0.238\ntestset: URL, BLEU: 59.4, chr-F: 0.759\ntestset: URL, BLEU: 49.9, chr-F: 0.685\ntestset: URL, BLEU: 54.1, chr-F: 0.699\ntestset: URL, BLEU: 5.0, chr-F: 0.250\ntestset: URL, BLEU: 2.4, chr-F: 0.224\ntestset: URL, BLEU: 19.4, chr-F: 0.446\ntestset: URL, BLEU: 2.5, chr-F: 0.273\ntestset: URL, BLEU: 13.8, chr-F: 0.292\ntestset: URL, BLEU: 21.3, chr-F: 0.457\ntestset: URL, BLEU: 14.7, chr-F: 0.423\ntestset: URL, BLEU: 1.9, chr-F: 0.257\ntestset: URL, BLEU: 4.2, chr-F: 0.162\ntestset: URL, BLEU: 2.6, chr-F: 0.186\ntestset: URL, BLEU: 39.7, chr-F: 0.529\ntestset: URL, BLEU: 25.0, chr-F: 0.427\ntestset: URL, BLEU: 28.4, chr-F: 0.428\ntestset: URL, BLEU: 41.8, chr-F: 0.595\ntestset: URL, BLEU: 36.4, chr-F: 0.565\ntestset: URL, BLEU: 7.7, chr-F: 0.328\ntestset: URL, BLEU: 21.1, chr-F: 0.428\ntestset: URL, BLEU: 2.0, chr-F: 0.118\ntestset: URL, BLEU: 6.3, chr-F: 0.255\ntestset: URL, BLEU: 1.4, chr-F: 0.244\ntestset: URL, BLEU: 4.4, chr-F: 0.204\ntestset: URL, BLEU: 10.7, chr-F: 0.371\ntestset: URL, BLEU: 1.4, chr-F: 0.105\ntestset: URL, BLEU: 9.5, chr-F: 0.343\ntestset: URL, BLEU: 15.1, chr-F: 0.306\ntestset: URL, BLEU: 0.7, chr-F: 0.196\ntestset: URL, BLEU: 11.6, chr-F: 0.308\ntestset: URL, BLEU: 0.9, chr-F: 0.186\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 0.6, chr-F: 0.079\ntestset: URL, BLEU: 16.7, chr-F: 0.372\ntestset: URL, BLEU: 15.8, chr-F: 0.344\ntestset: URL, BLEU: 1.3, chr-F: 0.166\ntestset: URL, BLEU: 5.6, chr-F: 0.157\ntestset: URL, BLEU: 2.2, chr-F: 0.160\ntestset: URL, BLEU: 2.1, chr-F: 0.238\ntestset: URL, BLEU: 14.4, chr-F: 0.365\ntestset: URL, BLEU: 20.9, chr-F: 0.397\ntestset: URL, BLEU: 3.7, chr-F: 0.165\ntestset: URL, BLEU: 1.8, chr-F: 0.156", "### System Info:\n\n\n* hf\\_name: gmw-gmw\n* source\\_languages: gmw\n* target\\_languages: gmw\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['nl', 'en', 'lb', 'af', 'de', 'fy', 'yi', 'gmw']\n* src\\_constituents: {'ksh', 'nld', 'eng', 'enm\\_Latn', 'ltz', 'stq', 'afr', 'pdc', 'deu', 'gos', 'ang\\_Latn', 'fry', 'gsw', 'frr', 'nds', 'yid', 'swg', 'sco'}\n* tgt\\_constituents: {'ksh', 'nld', 'eng', 'enm\\_Latn', 'ltz', 'stq', 'afr', 'pdc', 'deu', 'gos', 'ang\\_Latn', 'fry', 'gsw', 'frr', 'nds', 'yid', 'swg', 'sco'}\n* src\\_multilingual: True\n* tgt\\_multilingual: True\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: gmw\n* tgt\\_alpha3: gmw\n* short\\_pair: gmw-gmw\n* chrF2\\_score: 0.568\n* bleu: 36.4\n* brevity\\_penalty: 1.0\n* ref\\_len: 72534.0\n* src\\_name: West Germanic languages\n* tgt\\_name: West Germanic languages\n* train\\_date: 2020-07-27\n* src\\_alpha2: gmw\n* tgt\\_alpha2: gmw\n* prefer\\_old: False\n* long\\_pair: gmw-gmw\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #nl #en #lb #af #de #fy #yi #gmw #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### gmw-gmw\n\n\n* source group: West Germanic languages\n* target group: West Germanic languages\n* OPUS readme: gmw-gmw\n* model: transformer\n* source language(s): afr ang\\_Latn deu eng enm\\_Latn frr fry gos gsw ksh ltz nds nld pdc sco stq swg yid\n* target language(s): afr ang\\_Latn deu eng enm\\_Latn frr fry gos gsw ksh ltz nds nld pdc sco stq swg yid\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* a sentence initial language token is required in the form of '>>id<<' (id = valid target language ID)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 25.3, chr-F: 0.527\ntestset: URL, BLEU: 19.0, chr-F: 0.502\ntestset: URL, BLEU: 23.7, chr-F: 0.515\ntestset: URL, BLEU: 19.2, chr-F: 0.491\ntestset: URL, BLEU: 23.1, chr-F: 0.514\ntestset: URL, BLEU: 18.6, chr-F: 0.495\ntestset: URL, BLEU: 25.8, chr-F: 0.545\ntestset: URL, BLEU: 20.3, chr-F: 0.505\ntestset: URL, BLEU: 23.7, chr-F: 0.523\ntestset: URL, BLEU: 18.9, chr-F: 0.490\ntestset: URL, BLEU: 24.4, chr-F: 0.529\ntestset: URL, BLEU: 19.2, chr-F: 0.489\ntestset: URL, BLEU: 27.2, chr-F: 0.545\ntestset: URL, BLEU: 22.4, chr-F: 0.514\ntestset: URL, BLEU: 27.0, chr-F: 0.546\ntestset: URL, BLEU: 28.4, chr-F: 0.552\ntestset: URL, BLEU: 25.3, chr-F: 0.541\ntestset: URL, BLEU: 33.2, chr-F: 0.595\ntestset: URL, BLEU: 29.8, chr-F: 0.578\ntestset: URL, BLEU: 29.0, chr-F: 0.557\ntestset: URL, BLEU: 23.9, chr-F: 0.534\ntestset: URL, BLEU: 35.9, chr-F: 0.607\ntestset: URL, BLEU: 34.8, chr-F: 0.609\ntestset: URL, BLEU: 32.1, chr-F: 0.579\ntestset: URL, BLEU: 31.0, chr-F: 0.579\ntestset: URL, BLEU: 0.0, chr-F: 0.065\ntestset: URL, BLEU: 46.8, chr-F: 0.668\ntestset: URL, BLEU: 58.5, chr-F: 0.728\ntestset: URL, BLEU: 13.4, chr-F: 0.357\ntestset: URL, BLEU: 5.3, chr-F: 0.026\ntestset: URL, BLEU: 3.5, chr-F: 0.228\ntestset: URL, BLEU: 1.6, chr-F: 0.131\ntestset: URL, BLEU: 55.4, chr-F: 0.715\ntestset: URL, BLEU: 3.4, chr-F: 0.008\ntestset: URL, BLEU: 3.1, chr-F: 0.096\ntestset: URL, BLEU: 2.6, chr-F: 0.188\ntestset: URL, BLEU: 5.4, chr-F: 0.211\ntestset: URL, BLEU: 1.7, chr-F: 0.197\ntestset: URL, BLEU: 6.6, chr-F: 0.186\ntestset: URL, BLEU: 5.3, chr-F: 0.072\ntestset: URL, BLEU: 0.9, chr-F: 0.131\ntestset: URL, BLEU: 52.7, chr-F: 0.699\ntestset: URL, BLEU: 0.8, chr-F: 0.133\ntestset: URL, BLEU: 43.5, chr-F: 0.621\ntestset: URL, BLEU: 6.9, chr-F: 0.245\ntestset: URL, BLEU: 0.8, chr-F: 0.200\ntestset: URL, BLEU: 15.1, chr-F: 0.367\ntestset: URL, BLEU: 2.2, chr-F: 0.279\ntestset: URL, BLEU: 1.0, chr-F: 0.176\ntestset: URL, BLEU: 0.6, chr-F: 0.208\ntestset: URL, BLEU: 12.1, chr-F: 0.274\ntestset: URL, BLEU: 18.8, chr-F: 0.446\ntestset: URL, BLEU: 48.6, chr-F: 0.669\ntestset: URL, BLEU: 4.6, chr-F: 0.198\ntestset: URL, BLEU: 12.0, chr-F: 0.340\ntestset: URL, BLEU: 3.2, chr-F: 0.240\ntestset: URL, BLEU: 0.5, chr-F: 0.179\ntestset: URL, BLEU: 1.7, chr-F: 0.160\ntestset: URL, BLEU: 55.8, chr-F: 0.730\ntestset: URL, BLEU: 5.7, chr-F: 0.157\ntestset: URL, BLEU: 36.7, chr-F: 0.584\ntestset: URL, BLEU: 2.0, chr-F: 0.272\ntestset: URL, BLEU: 6.1, chr-F: 0.246\ntestset: URL, BLEU: 15.3, chr-F: 0.378\ntestset: URL, BLEU: 1.2, chr-F: 0.242\ntestset: URL, BLEU: 0.9, chr-F: 0.164\ntestset: URL, BLEU: 0.9, chr-F: 0.170\ntestset: URL, BLEU: 13.7, chr-F: 0.263\ntestset: URL, BLEU: 17.1, chr-F: 0.410\ntestset: URL, BLEU: 49.6, chr-F: 0.673\ntestset: URL, BLEU: 5.1, chr-F: 0.218\ntestset: URL, BLEU: 34.8, chr-F: 0.587\ntestset: URL, BLEU: 2.1, chr-F: 0.322\ntestset: URL, BLEU: 1.7, chr-F: 0.192\ntestset: URL, BLEU: 1.7, chr-F: 0.173\ntestset: URL, BLEU: 13.4, chr-F: 0.397\ntestset: URL, BLEU: 0.7, chr-F: 0.063\ntestset: URL, BLEU: 41.5, chr-F: 0.514\ntestset: URL, BLEU: 21.3, chr-F: 0.483\ntestset: URL, BLEU: 0.0, chr-F: 0.058\ntestset: URL, BLEU: 10.7, chr-F: 0.354\ntestset: URL, BLEU: 7.0, chr-F: 0.161\ntestset: URL, BLEU: 18.6, chr-F: 0.316\ntestset: URL, BLEU: 38.3, chr-F: 0.524\ntestset: URL, BLEU: 0.7, chr-F: 0.128\ntestset: URL, BLEU: 4.1, chr-F: 0.219\ntestset: URL, BLEU: 14.1, chr-F: 0.186\ntestset: URL, BLEU: 3.1, chr-F: 0.129\ntestset: URL, BLEU: 3.6, chr-F: 0.226\ntestset: URL, BLEU: 12.4, chr-F: 0.145\ntestset: URL, BLEU: 9.8, chr-F: 0.209\ntestset: URL, BLEU: 2.8, chr-F: 0.142\ntestset: URL, BLEU: 0.0, chr-F: 1.000\ntestset: URL, BLEU: 30.1, chr-F: 0.535\ntestset: URL, BLEU: 28.0, chr-F: 0.486\ntestset: URL, BLEU: 16.0, chr-F: 0.262\ntestset: URL, BLEU: 5.5, chr-F: 0.160\ntestset: URL, BLEU: 1.6, chr-F: 0.307\ntestset: URL, BLEU: 30.4, chr-F: 0.438\ntestset: URL, BLEU: 8.1, chr-F: 0.083\ntestset: URL, BLEU: 41.4, chr-F: 0.616\ntestset: URL, BLEU: 1.6, chr-F: 0.217\ntestset: URL, BLEU: 1.6, chr-F: 0.159\ntestset: URL, BLEU: 6.3, chr-F: 0.318\ntestset: URL, BLEU: 6.2, chr-F: 0.058\ntestset: URL, BLEU: 11.7, chr-F: 0.363\ntestset: URL, BLEU: 14.9, chr-F: 0.322\ntestset: URL, BLEU: 9.1, chr-F: 0.398\ntestset: URL, BLEU: 3.3, chr-F: 0.117\ntestset: URL, BLEU: 13.1, chr-F: 0.387\ntestset: URL, BLEU: 3.1, chr-F: 0.154\ntestset: URL, BLEU: 2.4, chr-F: 0.206\ntestset: URL, BLEU: 13.9, chr-F: 0.395\ntestset: URL, BLEU: 2.1, chr-F: 0.209\ntestset: URL, BLEU: 1.7, chr-F: 0.147\ntestset: URL, BLEU: 10.5, chr-F: 0.350\ntestset: URL, BLEU: 10.7, chr-F: 0.299\ntestset: URL, BLEU: 12.0, chr-F: 0.373\ntestset: URL, BLEU: 3.2, chr-F: 0.225\ntestset: URL, BLEU: 13.4, chr-F: 0.308\ntestset: URL, BLEU: 37.4, chr-F: 0.525\ntestset: URL, BLEU: 2.8, chr-F: 0.036\ntestset: URL, BLEU: 40.3, chr-F: 0.596\ntestset: URL, BLEU: 31.7, chr-F: 0.490\ntestset: URL, BLEU: 36.3, chr-F: 0.658\ntestset: URL, BLEU: 2.9, chr-F: 0.209\ntestset: URL, BLEU: 38.8, chr-F: 0.530\ntestset: URL, BLEU: 5.8, chr-F: 0.165\ntestset: URL, BLEU: 1.0, chr-F: 0.159\ntestset: URL, BLEU: 36.4, chr-F: 0.568\ntestset: URL, BLEU: 35.0, chr-F: 0.573\ntestset: URL, BLEU: 29.6, chr-F: 0.495\ntestset: URL, BLEU: 3.7, chr-F: 0.194\ntestset: URL, BLEU: 6.6, chr-F: 0.133\ntestset: URL, BLEU: 4.2, chr-F: 0.087\ntestset: URL, BLEU: 2.0, chr-F: 0.243\ntestset: URL, BLEU: 41.4, chr-F: 0.618\ntestset: URL, BLEU: 0.6, chr-F: 0.178\ntestset: URL, BLEU: 8.3, chr-F: 0.238\ntestset: URL, BLEU: 59.4, chr-F: 0.759\ntestset: URL, BLEU: 49.9, chr-F: 0.685\ntestset: URL, BLEU: 54.1, chr-F: 0.699\ntestset: URL, BLEU: 5.0, chr-F: 0.250\ntestset: URL, BLEU: 2.4, chr-F: 0.224\ntestset: URL, BLEU: 19.4, chr-F: 0.446\ntestset: URL, BLEU: 2.5, chr-F: 0.273\ntestset: URL, BLEU: 13.8, chr-F: 0.292\ntestset: URL, BLEU: 21.3, chr-F: 0.457\ntestset: URL, BLEU: 14.7, chr-F: 0.423\ntestset: URL, BLEU: 1.9, chr-F: 0.257\ntestset: URL, BLEU: 4.2, chr-F: 0.162\ntestset: URL, BLEU: 2.6, chr-F: 0.186\ntestset: URL, BLEU: 39.7, chr-F: 0.529\ntestset: URL, BLEU: 25.0, chr-F: 0.427\ntestset: URL, BLEU: 28.4, chr-F: 0.428\ntestset: URL, BLEU: 41.8, chr-F: 0.595\ntestset: URL, BLEU: 36.4, chr-F: 0.565\ntestset: URL, BLEU: 7.7, chr-F: 0.328\ntestset: URL, BLEU: 21.1, chr-F: 0.428\ntestset: URL, BLEU: 2.0, chr-F: 0.118\ntestset: URL, BLEU: 6.3, chr-F: 0.255\ntestset: URL, BLEU: 1.4, chr-F: 0.244\ntestset: URL, BLEU: 4.4, chr-F: 0.204\ntestset: URL, BLEU: 10.7, chr-F: 0.371\ntestset: URL, BLEU: 1.4, chr-F: 0.105\ntestset: URL, BLEU: 9.5, chr-F: 0.343\ntestset: URL, BLEU: 15.1, chr-F: 0.306\ntestset: URL, BLEU: 0.7, chr-F: 0.196\ntestset: URL, BLEU: 11.6, chr-F: 0.308\ntestset: URL, BLEU: 0.9, chr-F: 0.186\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 0.6, chr-F: 0.079\ntestset: URL, BLEU: 16.7, chr-F: 0.372\ntestset: URL, BLEU: 15.8, chr-F: 0.344\ntestset: URL, BLEU: 1.3, chr-F: 0.166\ntestset: URL, BLEU: 5.6, chr-F: 0.157\ntestset: URL, BLEU: 2.2, chr-F: 0.160\ntestset: URL, BLEU: 2.1, chr-F: 0.238\ntestset: URL, BLEU: 14.4, chr-F: 0.365\ntestset: URL, BLEU: 20.9, chr-F: 0.397\ntestset: URL, BLEU: 3.7, chr-F: 0.165\ntestset: URL, BLEU: 1.8, chr-F: 0.156", "### System Info:\n\n\n* hf\\_name: gmw-gmw\n* source\\_languages: gmw\n* target\\_languages: gmw\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['nl', 'en', 'lb', 'af', 'de', 'fy', 'yi', 'gmw']\n* src\\_constituents: {'ksh', 'nld', 'eng', 'enm\\_Latn', 'ltz', 'stq', 'afr', 'pdc', 'deu', 'gos', 'ang\\_Latn', 'fry', 'gsw', 'frr', 'nds', 'yid', 'swg', 'sco'}\n* tgt\\_constituents: {'ksh', 'nld', 'eng', 'enm\\_Latn', 'ltz', 'stq', 'afr', 'pdc', 'deu', 'gos', 'ang\\_Latn', 'fry', 'gsw', 'frr', 'nds', 'yid', 'swg', 'sco'}\n* src\\_multilingual: True\n* tgt\\_multilingual: True\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: gmw\n* tgt\\_alpha3: gmw\n* short\\_pair: gmw-gmw\n* chrF2\\_score: 0.568\n* bleu: 36.4\n* brevity\\_penalty: 1.0\n* ref\\_len: 72534.0\n* src\\_name: West Germanic languages\n* tgt\\_name: West Germanic languages\n* train\\_date: 2020-07-27\n* src\\_alpha2: gmw\n* tgt\\_alpha2: gmw\n* prefer\\_old: False\n* long\\_pair: gmw-gmw\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ 65, 4305, 619 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #nl #en #lb #af #de #fy #yi #gmw #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### gmw-gmw\n\n\n* source group: West Germanic languages\n* target group: West Germanic languages\n* OPUS readme: gmw-gmw\n* model: transformer\n* source language(s): afr ang\\_Latn deu eng enm\\_Latn frr fry gos gsw ksh ltz nds nld pdc sco stq swg yid\n* target language(s): afr ang\\_Latn deu eng enm\\_Latn frr fry gos gsw ksh ltz nds nld pdc sco stq swg yid\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* a sentence initial language token is required in the form of '>>id<<' (id = valid target language ID)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 25.3, chr-F: 0.527\ntestset: URL, BLEU: 19.0, chr-F: 0.502\ntestset: URL, BLEU: 23.7, chr-F: 0.515\ntestset: URL, BLEU: 19.2, chr-F: 0.491\ntestset: URL, BLEU: 23.1, chr-F: 0.514\ntestset: URL, BLEU: 18.6, chr-F: 0.495\ntestset: URL, BLEU: 25.8, chr-F: 0.545\ntestset: URL, BLEU: 20.3, chr-F: 0.505\ntestset: URL, BLEU: 23.7, chr-F: 0.523\ntestset: URL, BLEU: 18.9, chr-F: 0.490\ntestset: URL, BLEU: 24.4, chr-F: 0.529\ntestset: URL, BLEU: 19.2, chr-F: 0.489\ntestset: URL, BLEU: 27.2, chr-F: 0.545\ntestset: URL, BLEU: 22.4, chr-F: 0.514\ntestset: URL, BLEU: 27.0, chr-F: 0.546\ntestset: URL, BLEU: 28.4, chr-F: 0.552\ntestset: URL, BLEU: 25.3, chr-F: 0.541\ntestset: URL, BLEU: 33.2, chr-F: 0.595\ntestset: URL, BLEU: 29.8, chr-F: 0.578\ntestset: URL, BLEU: 29.0, chr-F: 0.557\ntestset: URL, BLEU: 23.9, chr-F: 0.534\ntestset: URL, BLEU: 35.9, chr-F: 0.607\ntestset: URL, BLEU: 34.8, chr-F: 0.609\ntestset: URL, BLEU: 32.1, chr-F: 0.579\ntestset: URL, BLEU: 31.0, chr-F: 0.579\ntestset: URL, BLEU: 0.0, chr-F: 0.065\ntestset: URL, BLEU: 46.8, chr-F: 0.668\ntestset: URL, BLEU: 58.5, chr-F: 0.728\ntestset: URL, BLEU: 13.4, chr-F: 0.357\ntestset: URL, BLEU: 5.3, chr-F: 0.026\ntestset: URL, BLEU: 3.5, chr-F: 0.228\ntestset: URL, BLEU: 1.6, chr-F: 0.131\ntestset: URL, BLEU: 55.4, chr-F: 0.715\ntestset: URL, BLEU: 3.4, chr-F: 0.008\ntestset: URL, BLEU: 3.1, chr-F: 0.096\ntestset: URL, BLEU: 2.6, chr-F: 0.188\ntestset: URL, BLEU: 5.4, chr-F: 0.211\ntestset: URL, BLEU: 1.7, chr-F: 0.197\ntestset: URL, BLEU: 6.6, chr-F: 0.186\ntestset: URL, BLEU: 5.3, chr-F: 0.072\ntestset: URL, BLEU: 0.9, chr-F: 0.131\ntestset: URL, BLEU: 52.7, chr-F: 0.699\ntestset: URL, BLEU: 0.8, chr-F: 0.133\ntestset: URL, BLEU: 43.5, chr-F: 0.621\ntestset: URL, BLEU: 6.9, chr-F: 0.245\ntestset: URL, BLEU: 0.8, chr-F: 0.200\ntestset: URL, BLEU: 15.1, chr-F: 0.367\ntestset: URL, BLEU: 2.2, chr-F: 0.279\ntestset: URL, BLEU: 1.0, chr-F: 0.176\ntestset: URL, BLEU: 0.6, chr-F: 0.208\ntestset: URL, BLEU: 12.1, chr-F: 0.274\ntestset: URL, BLEU: 18.8, chr-F: 0.446\ntestset: URL, BLEU: 48.6, chr-F: 0.669\ntestset: URL, BLEU: 4.6, chr-F: 0.198\ntestset: URL, BLEU: 12.0, chr-F: 0.340\ntestset: URL, BLEU: 3.2, chr-F: 0.240\ntestset: URL, BLEU: 0.5, chr-F: 0.179\ntestset: URL, BLEU: 1.7, chr-F: 0.160\ntestset: URL, BLEU: 55.8, chr-F: 0.730\ntestset: URL, BLEU: 5.7, chr-F: 0.157\ntestset: URL, BLEU: 36.7, chr-F: 0.584\ntestset: URL, BLEU: 2.0, chr-F: 0.272\ntestset: URL, BLEU: 6.1, chr-F: 0.246\ntestset: URL, BLEU: 15.3, chr-F: 0.378\ntestset: URL, BLEU: 1.2, chr-F: 0.242\ntestset: URL, BLEU: 0.9, chr-F: 0.164\ntestset: URL, BLEU: 0.9, chr-F: 0.170\ntestset: URL, BLEU: 13.7, chr-F: 0.263\ntestset: URL, BLEU: 17.1, chr-F: 0.410\ntestset: URL, BLEU: 49.6, chr-F: 0.673\ntestset: URL, BLEU: 5.1, chr-F: 0.218\ntestset: URL, BLEU: 34.8, chr-F: 0.587\ntestset: URL, BLEU: 2.1, chr-F: 0.322\ntestset: URL, BLEU: 1.7, chr-F: 0.192\ntestset: URL, BLEU: 1.7, chr-F: 0.173\ntestset: URL, BLEU: 13.4, chr-F: 0.397\ntestset: URL, BLEU: 0.7, chr-F: 0.063\ntestset: URL, BLEU: 41.5, chr-F: 0.514\ntestset: URL, BLEU: 21.3, chr-F: 0.483\ntestset: URL, BLEU: 0.0, chr-F: 0.058\ntestset: URL, BLEU: 10.7, chr-F: 0.354\ntestset: URL, BLEU: 7.0, chr-F: 0.161\ntestset: URL, BLEU: 18.6, chr-F: 0.316\ntestset: URL, BLEU: 38.3, chr-F: 0.524\ntestset: URL, BLEU: 0.7, chr-F: 0.128\ntestset: URL, BLEU: 4.1, chr-F: 0.219\ntestset: URL, BLEU: 14.1, chr-F: 0.186\ntestset: URL, BLEU: 3.1, chr-F: 0.129\ntestset: URL, BLEU: 3.6, chr-F: 0.226\ntestset: URL, BLEU: 12.4, chr-F: 0.145\ntestset: URL, BLEU: 9.8, chr-F: 0.209\ntestset: URL, BLEU: 2.8, chr-F: 0.142\ntestset: URL, BLEU: 0.0, chr-F: 1.000\ntestset: URL, BLEU: 30.1, chr-F: 0.535\ntestset: URL, BLEU: 28.0, chr-F: 0.486\ntestset: URL, BLEU: 16.0, chr-F: 0.262\ntestset: URL, BLEU: 5.5, chr-F: 0.160\ntestset: URL, BLEU: 1.6, chr-F: 0.307\ntestset: URL, BLEU: 30.4, chr-F: 0.438\ntestset: URL, BLEU: 8.1, chr-F: 0.083\ntestset: URL, BLEU: 41.4, chr-F: 0.616\ntestset: URL, BLEU: 1.6, chr-F: 0.217\ntestset: URL, BLEU: 1.6, chr-F: 0.159\ntestset: URL, BLEU: 6.3, chr-F: 0.318\ntestset: URL, BLEU: 6.2, chr-F: 0.058\ntestset: URL, BLEU: 11.7, chr-F: 0.363\ntestset: URL, BLEU: 14.9, chr-F: 0.322\ntestset: URL, BLEU: 9.1, chr-F: 0.398\ntestset: URL, BLEU: 3.3, chr-F: 0.117\ntestset: URL, BLEU: 13.1, chr-F: 0.387\ntestset: URL, BLEU: 3.1, chr-F: 0.154\ntestset: URL, BLEU: 2.4, chr-F: 0.206\ntestset: URL, BLEU: 13.9, chr-F: 0.395\ntestset: URL, BLEU: 2.1, chr-F: 0.209\ntestset: URL, BLEU: 1.7, chr-F: 0.147\ntestset: URL, BLEU: 10.5, chr-F: 0.350\ntestset: URL, BLEU: 10.7, chr-F: 0.299\ntestset: URL, BLEU: 12.0, chr-F: 0.373\ntestset: URL, BLEU: 3.2, chr-F: 0.225\ntestset: URL, BLEU: 13.4, chr-F: 0.308\ntestset: URL, BLEU: 37.4, chr-F: 0.525\ntestset: URL, BLEU: 2.8, chr-F: 0.036\ntestset: URL, BLEU: 40.3, chr-F: 0.596\ntestset: URL, BLEU: 31.7, chr-F: 0.490\ntestset: URL, BLEU: 36.3, chr-F: 0.658\ntestset: URL, BLEU: 2.9, chr-F: 0.209\ntestset: URL, BLEU: 38.8, chr-F: 0.530\ntestset: URL, BLEU: 5.8, chr-F: 0.165\ntestset: URL, BLEU: 1.0, chr-F: 0.159\ntestset: URL, BLEU: 36.4, chr-F: 0.568\ntestset: URL, BLEU: 35.0, chr-F: 0.573\ntestset: URL, BLEU: 29.6, chr-F: 0.495\ntestset: URL, BLEU: 3.7, chr-F: 0.194\ntestset: URL, BLEU: 6.6, chr-F: 0.133\ntestset: URL, BLEU: 4.2, chr-F: 0.087\ntestset: URL, BLEU: 2.0, chr-F: 0.243\ntestset: URL, BLEU: 41.4, chr-F: 0.618\ntestset: URL, BLEU: 0.6, chr-F: 0.178\ntestset: URL, BLEU: 8.3, chr-F: 0.238\ntestset: URL, BLEU: 59.4, chr-F: 0.759\ntestset: URL, BLEU: 49.9, chr-F: 0.685\ntestset: URL, BLEU: 54.1, chr-F: 0.699\ntestset: URL, BLEU: 5.0, chr-F: 0.250\ntestset: URL, BLEU: 2.4, chr-F: 0.224\ntestset: URL, BLEU: 19.4, chr-F: 0.446\ntestset: URL, BLEU: 2.5, chr-F: 0.273\ntestset: URL, BLEU: 13.8, chr-F: 0.292\ntestset: URL, BLEU: 21.3, chr-F: 0.457\ntestset: URL, BLEU: 14.7, chr-F: 0.423\ntestset: URL, BLEU: 1.9, chr-F: 0.257\ntestset: URL, BLEU: 4.2, chr-F: 0.162\ntestset: URL, BLEU: 2.6, chr-F: 0.186\ntestset: URL, BLEU: 39.7, chr-F: 0.529\ntestset: URL, BLEU: 25.0, chr-F: 0.427\ntestset: URL, BLEU: 28.4, chr-F: 0.428\ntestset: URL, BLEU: 41.8, chr-F: 0.595\ntestset: URL, BLEU: 36.4, chr-F: 0.565\ntestset: URL, BLEU: 7.7, chr-F: 0.328\ntestset: URL, BLEU: 21.1, chr-F: 0.428\ntestset: URL, BLEU: 2.0, chr-F: 0.118\ntestset: URL, BLEU: 6.3, chr-F: 0.255\ntestset: URL, BLEU: 1.4, chr-F: 0.244\ntestset: URL, BLEU: 4.4, chr-F: 0.204\ntestset: URL, BLEU: 10.7, chr-F: 0.371\ntestset: URL, BLEU: 1.4, chr-F: 0.105\ntestset: URL, BLEU: 9.5, chr-F: 0.343\ntestset: URL, BLEU: 15.1, chr-F: 0.306\ntestset: URL, BLEU: 0.7, chr-F: 0.196\ntestset: URL, BLEU: 11.6, chr-F: 0.308\ntestset: URL, BLEU: 0.9, chr-F: 0.186\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 0.6, chr-F: 0.079\ntestset: URL, BLEU: 16.7, chr-F: 0.372\ntestset: URL, BLEU: 15.8, chr-F: 0.344\ntestset: URL, BLEU: 1.3, chr-F: 0.166\ntestset: URL, BLEU: 5.6, chr-F: 0.157\ntestset: URL, BLEU: 2.2, chr-F: 0.160\ntestset: URL, BLEU: 2.1, chr-F: 0.238\ntestset: URL, BLEU: 14.4, chr-F: 0.365\ntestset: URL, BLEU: 20.9, chr-F: 0.397\ntestset: URL, BLEU: 3.7, chr-F: 0.165\ntestset: URL, BLEU: 1.8, chr-F: 0.156### System Info:\n\n\n* hf\\_name: gmw-gmw\n* source\\_languages: gmw\n* target\\_languages: gmw\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['nl', 'en', 'lb', 'af', 'de', 'fy', 'yi', 'gmw']\n* src\\_constituents: {'ksh', 'nld', 'eng', 'enm\\_Latn', 'ltz', 'stq', 'afr', 'pdc', 'deu', 'gos', 'ang\\_Latn', 'fry', 'gsw', 'frr', 'nds', 'yid', 'swg', 'sco'}\n* tgt\\_constituents: {'ksh', 'nld', 'eng', 'enm\\_Latn', 'ltz', 'stq', 'afr', 'pdc', 'deu', 'gos', 'ang\\_Latn', 'fry', 'gsw', 'frr', 'nds', 'yid', 'swg', 'sco'}\n* src\\_multilingual: True\n* tgt\\_multilingual: True\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: gmw\n* tgt\\_alpha3: gmw\n* short\\_pair: gmw-gmw\n* chrF2\\_score: 0.568\n* bleu: 36.4\n* brevity\\_penalty: 1.0\n* ref\\_len: 72534.0\n* src\\_name: West Germanic languages\n* tgt\\_name: West Germanic languages\n* train\\_date: 2020-07-27\n* src\\_alpha2: gmw\n* tgt\\_alpha2: gmw\n* prefer\\_old: False\n* long\\_pair: gmw-gmw\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
translation
transformers
### grk-eng * source group: Greek languages * target group: English * OPUS readme: [grk-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/grk-eng/README.md) * model: transformer * source language(s): ell grc_Grek * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm12k,spm12k) * download original weights: [opus2m-2020-08-01.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/grk-eng/opus2m-2020-08-01.zip) * test set translations: [opus2m-2020-08-01.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/grk-eng/opus2m-2020-08-01.test.txt) * test set scores: [opus2m-2020-08-01.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/grk-eng/opus2m-2020-08-01.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.ell-eng.ell.eng | 65.9 | 0.779 | | Tatoeba-test.grc-eng.grc.eng | 4.1 | 0.187 | | Tatoeba-test.multi.eng | 60.9 | 0.733 | ### System Info: - hf_name: grk-eng - source_languages: grk - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/grk-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['el', 'grk', 'en'] - src_constituents: {'grc_Grek', 'ell'} - tgt_constituents: {'eng'} - src_multilingual: True - tgt_multilingual: False - prepro: normalization + SentencePiece (spm12k,spm12k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/grk-eng/opus2m-2020-08-01.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/grk-eng/opus2m-2020-08-01.test.txt - src_alpha3: grk - tgt_alpha3: eng - short_pair: grk-en - chrF2_score: 0.733 - bleu: 60.9 - brevity_penalty: 0.973 - ref_len: 62205.0 - src_name: Greek languages - tgt_name: English - train_date: 2020-08-01 - src_alpha2: grk - tgt_alpha2: en - prefer_old: False - long_pair: grk-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["el", "grk", "en"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-grk-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "el", "grk", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "el", "grk", "en" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #el #grk #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### grk-eng * source group: Greek languages * target group: English * OPUS readme: grk-eng * model: transformer * source language(s): ell grc\_Grek * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm12k,spm12k) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 65.9, chr-F: 0.779 testset: URL, BLEU: 4.1, chr-F: 0.187 testset: URL, BLEU: 60.9, chr-F: 0.733 ### System Info: * hf\_name: grk-eng * source\_languages: grk * target\_languages: eng * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['el', 'grk', 'en'] * src\_constituents: {'grc\_Grek', 'ell'} * tgt\_constituents: {'eng'} * src\_multilingual: True * tgt\_multilingual: False * prepro: normalization + SentencePiece (spm12k,spm12k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: grk * tgt\_alpha3: eng * short\_pair: grk-en * chrF2\_score: 0.733 * bleu: 60.9 * brevity\_penalty: 0.973 * ref\_len: 62205.0 * src\_name: Greek languages * tgt\_name: English * train\_date: 2020-08-01 * src\_alpha2: grk * tgt\_alpha2: en * prefer\_old: False * long\_pair: grk-eng * helsinki\_git\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 * transformers\_git\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b * port\_machine: brutasse * port\_time: 2020-08-21-14:41
[ "### grk-eng\n\n\n* source group: Greek languages\n* target group: English\n* OPUS readme: grk-eng\n* model: transformer\n* source language(s): ell grc\\_Grek\n* target language(s): eng\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm12k,spm12k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 65.9, chr-F: 0.779\ntestset: URL, BLEU: 4.1, chr-F: 0.187\ntestset: URL, BLEU: 60.9, chr-F: 0.733", "### System Info:\n\n\n* hf\\_name: grk-eng\n* source\\_languages: grk\n* target\\_languages: eng\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['el', 'grk', 'en']\n* src\\_constituents: {'grc\\_Grek', 'ell'}\n* tgt\\_constituents: {'eng'}\n* src\\_multilingual: True\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm12k,spm12k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: grk\n* tgt\\_alpha3: eng\n* short\\_pair: grk-en\n* chrF2\\_score: 0.733\n* bleu: 60.9\n* brevity\\_penalty: 0.973\n* ref\\_len: 62205.0\n* src\\_name: Greek languages\n* tgt\\_name: English\n* train\\_date: 2020-08-01\n* src\\_alpha2: grk\n* tgt\\_alpha2: en\n* prefer\\_old: False\n* long\\_pair: grk-eng\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #el #grk #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### grk-eng\n\n\n* source group: Greek languages\n* target group: English\n* OPUS readme: grk-eng\n* model: transformer\n* source language(s): ell grc\\_Grek\n* target language(s): eng\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm12k,spm12k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 65.9, chr-F: 0.779\ntestset: URL, BLEU: 4.1, chr-F: 0.187\ntestset: URL, BLEU: 60.9, chr-F: 0.733", "### System Info:\n\n\n* hf\\_name: grk-eng\n* source\\_languages: grk\n* target\\_languages: eng\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['el', 'grk', 'en']\n* src\\_constituents: {'grc\\_Grek', 'ell'}\n* tgt\\_constituents: {'eng'}\n* src\\_multilingual: True\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm12k,spm12k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: grk\n* tgt\\_alpha3: eng\n* short\\_pair: grk-en\n* chrF2\\_score: 0.733\n* bleu: 60.9\n* brevity\\_penalty: 0.973\n* ref\\_len: 62205.0\n* src\\_name: Greek languages\n* tgt\\_name: English\n* train\\_date: 2020-08-01\n* src\\_alpha2: grk\n* tgt\\_alpha2: en\n* prefer\\_old: False\n* long\\_pair: grk-eng\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ 54, 182, 414 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #el #grk #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### grk-eng\n\n\n* source group: Greek languages\n* target group: English\n* OPUS readme: grk-eng\n* model: transformer\n* source language(s): ell grc\\_Grek\n* target language(s): eng\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm12k,spm12k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 65.9, chr-F: 0.779\ntestset: URL, BLEU: 4.1, chr-F: 0.187\ntestset: URL, BLEU: 60.9, chr-F: 0.733### System Info:\n\n\n* hf\\_name: grk-eng\n* source\\_languages: grk\n* target\\_languages: eng\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['el', 'grk', 'en']\n* src\\_constituents: {'grc\\_Grek', 'ell'}\n* tgt\\_constituents: {'eng'}\n* src\\_multilingual: True\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm12k,spm12k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: grk\n* tgt\\_alpha3: eng\n* short\\_pair: grk-en\n* chrF2\\_score: 0.733\n* bleu: 60.9\n* brevity\\_penalty: 0.973\n* ref\\_len: 62205.0\n* src\\_name: Greek languages\n* tgt\\_name: English\n* train\\_date: 2020-08-01\n* src\\_alpha2: grk\n* tgt\\_alpha2: en\n* prefer\\_old: False\n* long\\_pair: grk-eng\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
translation
transformers
### opus-mt-guw-de * source languages: guw * target languages: de * OPUS readme: [guw-de](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/guw-de/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/guw-de/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/guw-de/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/guw-de/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.guw.de | 22.7 | 0.434 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-guw-de
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "guw", "de", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #guw #de #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-guw-de * source languages: guw * target languages: de * OPUS readme: guw-de * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 22.7, chr-F: 0.434
[ "### opus-mt-guw-de\n\n\n* source languages: guw\n* target languages: de\n* OPUS readme: guw-de\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 22.7, chr-F: 0.434" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #guw #de #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-guw-de\n\n\n* source languages: guw\n* target languages: de\n* OPUS readme: guw-de\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 22.7, chr-F: 0.434" ]
[ 52, 109 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #guw #de #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-guw-de\n\n\n* source languages: guw\n* target languages: de\n* OPUS readme: guw-de\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 22.7, chr-F: 0.434" ]
translation
transformers
### opus-mt-guw-en * source languages: guw * target languages: en * OPUS readme: [guw-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/guw-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/guw-en/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/guw-en/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/guw-en/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.guw.en | 44.8 | 0.601 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-guw-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "guw", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #guw #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-guw-en * source languages: guw * target languages: en * OPUS readme: guw-en * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 44.8, chr-F: 0.601
[ "### opus-mt-guw-en\n\n\n* source languages: guw\n* target languages: en\n* OPUS readme: guw-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 44.8, chr-F: 0.601" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #guw #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-guw-en\n\n\n* source languages: guw\n* target languages: en\n* OPUS readme: guw-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 44.8, chr-F: 0.601" ]
[ 52, 109 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #guw #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-guw-en\n\n\n* source languages: guw\n* target languages: en\n* OPUS readme: guw-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 44.8, chr-F: 0.601" ]
translation
transformers
### opus-mt-guw-es * source languages: guw * target languages: es * OPUS readme: [guw-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/guw-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/guw-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/guw-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/guw-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.guw.es | 27.2 | 0.457 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-guw-es
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "guw", "es", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #guw #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-guw-es * source languages: guw * target languages: es * OPUS readme: guw-es * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 27.2, chr-F: 0.457
[ "### opus-mt-guw-es\n\n\n* source languages: guw\n* target languages: es\n* OPUS readme: guw-es\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 27.2, chr-F: 0.457" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #guw #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-guw-es\n\n\n* source languages: guw\n* target languages: es\n* OPUS readme: guw-es\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 27.2, chr-F: 0.457" ]
[ 52, 109 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #guw #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-guw-es\n\n\n* source languages: guw\n* target languages: es\n* OPUS readme: guw-es\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 27.2, chr-F: 0.457" ]
translation
transformers
### opus-mt-guw-fi * source languages: guw * target languages: fi * OPUS readme: [guw-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/guw-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/guw-fi/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/guw-fi/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/guw-fi/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.guw.fi | 27.7 | 0.512 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-guw-fi
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "guw", "fi", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #guw #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-guw-fi * source languages: guw * target languages: fi * OPUS readme: guw-fi * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 27.7, chr-F: 0.512
[ "### opus-mt-guw-fi\n\n\n* source languages: guw\n* target languages: fi\n* OPUS readme: guw-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 27.7, chr-F: 0.512" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #guw #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-guw-fi\n\n\n* source languages: guw\n* target languages: fi\n* OPUS readme: guw-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 27.7, chr-F: 0.512" ]
[ 52, 108 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #guw #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-guw-fi\n\n\n* source languages: guw\n* target languages: fi\n* OPUS readme: guw-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 27.7, chr-F: 0.512" ]
translation
transformers
### opus-mt-guw-fr * source languages: guw * target languages: fr * OPUS readme: [guw-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/guw-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/guw-fr/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/guw-fr/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/guw-fr/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.guw.fr | 29.7 | 0.479 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-guw-fr
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "guw", "fr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #guw #fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-guw-fr * source languages: guw * target languages: fr * OPUS readme: guw-fr * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 29.7, chr-F: 0.479
[ "### opus-mt-guw-fr\n\n\n* source languages: guw\n* target languages: fr\n* OPUS readme: guw-fr\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 29.7, chr-F: 0.479" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #guw #fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-guw-fr\n\n\n* source languages: guw\n* target languages: fr\n* OPUS readme: guw-fr\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 29.7, chr-F: 0.479" ]
[ 52, 109 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #guw #fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-guw-fr\n\n\n* source languages: guw\n* target languages: fr\n* OPUS readme: guw-fr\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 29.7, chr-F: 0.479" ]
translation
transformers
### opus-mt-guw-sv * source languages: guw * target languages: sv * OPUS readme: [guw-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/guw-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/guw-sv/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/guw-sv/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/guw-sv/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.guw.sv | 31.2 | 0.498 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-guw-sv
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "guw", "sv", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #guw #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-guw-sv * source languages: guw * target languages: sv * OPUS readme: guw-sv * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 31.2, chr-F: 0.498
[ "### opus-mt-guw-sv\n\n\n* source languages: guw\n* target languages: sv\n* OPUS readme: guw-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 31.2, chr-F: 0.498" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #guw #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-guw-sv\n\n\n* source languages: guw\n* target languages: sv\n* OPUS readme: guw-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 31.2, chr-F: 0.498" ]
[ 52, 109 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #guw #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-guw-sv\n\n\n* source languages: guw\n* target languages: sv\n* OPUS readme: guw-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 31.2, chr-F: 0.498" ]
translation
transformers
### opus-mt-gv-en * source languages: gv * target languages: en * OPUS readme: [gv-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/gv-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/gv-en/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/gv-en/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/gv-en/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | bible-uedin.gv.en | 38.9 | 0.668 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-gv-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "gv", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #gv #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-gv-en * source languages: gv * target languages: en * OPUS readme: gv-en * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 38.9, chr-F: 0.668
[ "### opus-mt-gv-en\n\n\n* source languages: gv\n* target languages: en\n* OPUS readme: gv-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 38.9, chr-F: 0.668" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #gv #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-gv-en\n\n\n* source languages: gv\n* target languages: en\n* OPUS readme: gv-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 38.9, chr-F: 0.668" ]
[ 52, 109 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #gv #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-gv-en\n\n\n* source languages: gv\n* target languages: en\n* OPUS readme: gv-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 38.9, chr-F: 0.668" ]
translation
transformers
### opus-mt-ha-en * source languages: ha * target languages: en * OPUS readme: [ha-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ha-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/ha-en/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ha-en/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ha-en/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ha.en | 35.0 | 0.506 | | Tatoeba.ha.en | 39.0 | 0.497 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-ha-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "ha", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #ha #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-ha-en * source languages: ha * target languages: en * OPUS readme: ha-en * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 35.0, chr-F: 0.506 testset: URL, BLEU: 39.0, chr-F: 0.497
[ "### opus-mt-ha-en\n\n\n* source languages: ha\n* target languages: en\n* OPUS readme: ha-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 35.0, chr-F: 0.506\ntestset: URL, BLEU: 39.0, chr-F: 0.497" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ha #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-ha-en\n\n\n* source languages: ha\n* target languages: en\n* OPUS readme: ha-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 35.0, chr-F: 0.506\ntestset: URL, BLEU: 39.0, chr-F: 0.497" ]
[ 51, 129 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ha #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-ha-en\n\n\n* source languages: ha\n* target languages: en\n* OPUS readme: ha-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 35.0, chr-F: 0.506\ntestset: URL, BLEU: 39.0, chr-F: 0.497" ]
translation
transformers
### opus-mt-ha-es * source languages: ha * target languages: es * OPUS readme: [ha-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ha-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/ha-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ha-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ha-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ha.es | 21.8 | 0.394 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-ha-es
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "ha", "es", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #ha #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-ha-es * source languages: ha * target languages: es * OPUS readme: ha-es * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 21.8, chr-F: 0.394
[ "### opus-mt-ha-es\n\n\n* source languages: ha\n* target languages: es\n* OPUS readme: ha-es\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 21.8, chr-F: 0.394" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ha #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-ha-es\n\n\n* source languages: ha\n* target languages: es\n* OPUS readme: ha-es\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 21.8, chr-F: 0.394" ]
[ 51, 106 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ha #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-ha-es\n\n\n* source languages: ha\n* target languages: es\n* OPUS readme: ha-es\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 21.8, chr-F: 0.394" ]
translation
transformers
### opus-mt-ha-fi * source languages: ha * target languages: fi * OPUS readme: [ha-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ha-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-24.zip](https://object.pouta.csc.fi/OPUS-MT-models/ha-fi/opus-2020-01-24.zip) * test set translations: [opus-2020-01-24.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ha-fi/opus-2020-01-24.test.txt) * test set scores: [opus-2020-01-24.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ha-fi/opus-2020-01-24.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ha.fi | 21.9 | 0.435 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-ha-fi
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "ha", "fi", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #ha #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-ha-fi * source languages: ha * target languages: fi * OPUS readme: ha-fi * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 21.9, chr-F: 0.435
[ "### opus-mt-ha-fi\n\n\n* source languages: ha\n* target languages: fi\n* OPUS readme: ha-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 21.9, chr-F: 0.435" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ha #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-ha-fi\n\n\n* source languages: ha\n* target languages: fi\n* OPUS readme: ha-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 21.9, chr-F: 0.435" ]
[ 51, 105 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ha #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-ha-fi\n\n\n* source languages: ha\n* target languages: fi\n* OPUS readme: ha-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 21.9, chr-F: 0.435" ]
translation
transformers
### opus-mt-ha-fr * source languages: ha * target languages: fr * OPUS readme: [ha-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ha-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/ha-fr/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ha-fr/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ha-fr/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ha.fr | 24.3 | 0.415 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-ha-fr
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "ha", "fr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #ha #fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-ha-fr * source languages: ha * target languages: fr * OPUS readme: ha-fr * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 24.3, chr-F: 0.415
[ "### opus-mt-ha-fr\n\n\n* source languages: ha\n* target languages: fr\n* OPUS readme: ha-fr\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 24.3, chr-F: 0.415" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ha #fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-ha-fr\n\n\n* source languages: ha\n* target languages: fr\n* OPUS readme: ha-fr\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 24.3, chr-F: 0.415" ]
[ 51, 105 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ha #fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-ha-fr\n\n\n* source languages: ha\n* target languages: fr\n* OPUS readme: ha-fr\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 24.3, chr-F: 0.415" ]
translation
transformers
### opus-mt-ha-sv * source languages: ha * target languages: sv * OPUS readme: [ha-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ha-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/ha-sv/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ha-sv/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ha-sv/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ha.sv | 25.8 | 0.438 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-ha-sv
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "ha", "sv", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #ha #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-ha-sv * source languages: ha * target languages: sv * OPUS readme: ha-sv * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 25.8, chr-F: 0.438
[ "### opus-mt-ha-sv\n\n\n* source languages: ha\n* target languages: sv\n* OPUS readme: ha-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 25.8, chr-F: 0.438" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ha #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-ha-sv\n\n\n* source languages: ha\n* target languages: sv\n* OPUS readme: ha-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 25.8, chr-F: 0.438" ]
[ 51, 106 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ha #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-ha-sv\n\n\n* source languages: ha\n* target languages: sv\n* OPUS readme: ha-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 25.8, chr-F: 0.438" ]
translation
transformers
### heb-ara * source group: Hebrew * target group: Arabic * OPUS readme: [heb-ara](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/heb-ara/README.md) * model: transformer * source language(s): heb * target language(s): apc apc_Latn ara arq arz * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-07-03.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ara/opus-2020-07-03.zip) * test set translations: [opus-2020-07-03.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ara/opus-2020-07-03.test.txt) * test set scores: [opus-2020-07-03.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ara/opus-2020-07-03.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.heb.ara | 23.6 | 0.532 | ### System Info: - hf_name: heb-ara - source_languages: heb - target_languages: ara - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/heb-ara/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['he', 'ar'] - src_constituents: {'heb'} - tgt_constituents: {'apc', 'ara', 'arq_Latn', 'arq', 'afb', 'ara_Latn', 'apc_Latn', 'arz'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ara/opus-2020-07-03.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ara/opus-2020-07-03.test.txt - src_alpha3: heb - tgt_alpha3: ara - short_pair: he-ar - chrF2_score: 0.532 - bleu: 23.6 - brevity_penalty: 0.9259999999999999 - ref_len: 6372.0 - src_name: Hebrew - tgt_name: Arabic - train_date: 2020-07-03 - src_alpha2: he - tgt_alpha2: ar - prefer_old: False - long_pair: heb-ara - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["he", "ar"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-he-ar
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "he", "ar", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "he", "ar" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #he #ar #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### heb-ara * source group: Hebrew * target group: Arabic * OPUS readme: heb-ara * model: transformer * source language(s): heb * target language(s): apc apc\_Latn ara arq arz * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of '>>id<<' (id = valid target language ID) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 23.6, chr-F: 0.532 ### System Info: * hf\_name: heb-ara * source\_languages: heb * target\_languages: ara * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['he', 'ar'] * src\_constituents: {'heb'} * tgt\_constituents: {'apc', 'ara', 'arq\_Latn', 'arq', 'afb', 'ara\_Latn', 'apc\_Latn', 'arz'} * src\_multilingual: False * tgt\_multilingual: False * prepro: normalization + SentencePiece (spm32k,spm32k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: heb * tgt\_alpha3: ara * short\_pair: he-ar * chrF2\_score: 0.532 * bleu: 23.6 * brevity\_penalty: 0.9259999999999999 * ref\_len: 6372.0 * src\_name: Hebrew * tgt\_name: Arabic * train\_date: 2020-07-03 * src\_alpha2: he * tgt\_alpha2: ar * prefer\_old: False * long\_pair: heb-ara * helsinki\_git\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 * transformers\_git\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b * port\_machine: brutasse * port\_time: 2020-08-21-14:41
[ "### heb-ara\n\n\n* source group: Hebrew\n* target group: Arabic\n* OPUS readme: heb-ara\n* model: transformer\n* source language(s): heb\n* target language(s): apc apc\\_Latn ara arq arz\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* a sentence initial language token is required in the form of '>>id<<' (id = valid target language ID)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 23.6, chr-F: 0.532", "### System Info:\n\n\n* hf\\_name: heb-ara\n* source\\_languages: heb\n* target\\_languages: ara\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['he', 'ar']\n* src\\_constituents: {'heb'}\n* tgt\\_constituents: {'apc', 'ara', 'arq\\_Latn', 'arq', 'afb', 'ara\\_Latn', 'apc\\_Latn', 'arz'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: heb\n* tgt\\_alpha3: ara\n* short\\_pair: he-ar\n* chrF2\\_score: 0.532\n* bleu: 23.6\n* brevity\\_penalty: 0.9259999999999999\n* ref\\_len: 6372.0\n* src\\_name: Hebrew\n* tgt\\_name: Arabic\n* train\\_date: 2020-07-03\n* src\\_alpha2: he\n* tgt\\_alpha2: ar\n* prefer\\_old: False\n* long\\_pair: heb-ara\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #he #ar #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### heb-ara\n\n\n* source group: Hebrew\n* target group: Arabic\n* OPUS readme: heb-ara\n* model: transformer\n* source language(s): heb\n* target language(s): apc apc\\_Latn ara arq arz\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* a sentence initial language token is required in the form of '>>id<<' (id = valid target language ID)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 23.6, chr-F: 0.532", "### System Info:\n\n\n* hf\\_name: heb-ara\n* source\\_languages: heb\n* target\\_languages: ara\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['he', 'ar']\n* src\\_constituents: {'heb'}\n* tgt\\_constituents: {'apc', 'ara', 'arq\\_Latn', 'arq', 'afb', 'ara\\_Latn', 'apc\\_Latn', 'arz'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: heb\n* tgt\\_alpha3: ara\n* short\\_pair: he-ar\n* chrF2\\_score: 0.532\n* bleu: 23.6\n* brevity\\_penalty: 0.9259999999999999\n* ref\\_len: 6372.0\n* src\\_name: Hebrew\n* tgt\\_name: Arabic\n* train\\_date: 2020-07-03\n* src\\_alpha2: he\n* tgt\\_alpha2: ar\n* prefer\\_old: False\n* long\\_pair: heb-ara\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ 51, 170, 457 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #he #ar #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### heb-ara\n\n\n* source group: Hebrew\n* target group: Arabic\n* OPUS readme: heb-ara\n* model: transformer\n* source language(s): heb\n* target language(s): apc apc\\_Latn ara arq arz\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* a sentence initial language token is required in the form of '>>id<<' (id = valid target language ID)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 23.6, chr-F: 0.532### System Info:\n\n\n* hf\\_name: heb-ara\n* source\\_languages: heb\n* target\\_languages: ara\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['he', 'ar']\n* src\\_constituents: {'heb'}\n* tgt\\_constituents: {'apc', 'ara', 'arq\\_Latn', 'arq', 'afb', 'ara\\_Latn', 'apc\\_Latn', 'arz'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: heb\n* tgt\\_alpha3: ara\n* short\\_pair: he-ar\n* chrF2\\_score: 0.532\n* bleu: 23.6\n* brevity\\_penalty: 0.9259999999999999\n* ref\\_len: 6372.0\n* src\\_name: Hebrew\n* tgt\\_name: Arabic\n* train\\_date: 2020-07-03\n* src\\_alpha2: he\n* tgt\\_alpha2: ar\n* prefer\\_old: False\n* long\\_pair: heb-ara\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
translation
transformers
### opus-mt-he-de * source languages: he * target languages: de * OPUS readme: [he-de](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/he-de/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-26.zip](https://object.pouta.csc.fi/OPUS-MT-models/he-de/opus-2020-01-26.zip) * test set translations: [opus-2020-01-26.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/he-de/opus-2020-01-26.test.txt) * test set scores: [opus-2020-01-26.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/he-de/opus-2020-01-26.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.he.de | 45.5 | 0.647 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-he-de
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "he", "de", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #he #de #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-he-de * source languages: he * target languages: de * OPUS readme: he-de * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 45.5, chr-F: 0.647
[ "### opus-mt-he-de\n\n\n* source languages: he\n* target languages: de\n* OPUS readme: he-de\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 45.5, chr-F: 0.647" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #he #de #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-he-de\n\n\n* source languages: he\n* target languages: de\n* OPUS readme: he-de\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 45.5, chr-F: 0.647" ]
[ 51, 106 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #he #de #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-he-de\n\n\n* source languages: he\n* target languages: de\n* OPUS readme: he-de\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 45.5, chr-F: 0.647" ]
translation
transformers
### heb-epo * source group: Hebrew * target group: Esperanto * OPUS readme: [heb-epo](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/heb-epo/README.md) * model: transformer-align * source language(s): heb * target language(s): epo * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-epo/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-epo/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-epo/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.heb.epo | 17.6 | 0.348 | ### System Info: - hf_name: heb-epo - source_languages: heb - target_languages: epo - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/heb-epo/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['he', 'eo'] - src_constituents: {'heb'} - tgt_constituents: {'epo'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/heb-epo/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/heb-epo/opus-2020-06-16.test.txt - src_alpha3: heb - tgt_alpha3: epo - short_pair: he-eo - chrF2_score: 0.348 - bleu: 17.6 - brevity_penalty: 0.899 - ref_len: 78217.0 - src_name: Hebrew - tgt_name: Esperanto - train_date: 2020-06-16 - src_alpha2: he - tgt_alpha2: eo - prefer_old: False - long_pair: heb-epo - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["he", "eo"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-he-eo
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "he", "eo", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "he", "eo" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #he #eo #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### heb-epo * source group: Hebrew * target group: Esperanto * OPUS readme: heb-epo * model: transformer-align * source language(s): heb * target language(s): epo * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 17.6, chr-F: 0.348 ### System Info: * hf\_name: heb-epo * source\_languages: heb * target\_languages: epo * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['he', 'eo'] * src\_constituents: {'heb'} * tgt\_constituents: {'epo'} * src\_multilingual: False * tgt\_multilingual: False * prepro: normalization + SentencePiece (spm4k,spm4k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: heb * tgt\_alpha3: epo * short\_pair: he-eo * chrF2\_score: 0.348 * bleu: 17.6 * brevity\_penalty: 0.899 * ref\_len: 78217.0 * src\_name: Hebrew * tgt\_name: Esperanto * train\_date: 2020-06-16 * src\_alpha2: he * tgt\_alpha2: eo * prefer\_old: False * long\_pair: heb-epo * helsinki\_git\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 * transformers\_git\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b * port\_machine: brutasse * port\_time: 2020-08-21-14:41
[ "### heb-epo\n\n\n* source group: Hebrew\n* target group: Esperanto\n* OPUS readme: heb-epo\n* model: transformer-align\n* source language(s): heb\n* target language(s): epo\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm4k,spm4k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 17.6, chr-F: 0.348", "### System Info:\n\n\n* hf\\_name: heb-epo\n* source\\_languages: heb\n* target\\_languages: epo\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['he', 'eo']\n* src\\_constituents: {'heb'}\n* tgt\\_constituents: {'epo'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm4k,spm4k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: heb\n* tgt\\_alpha3: epo\n* short\\_pair: he-eo\n* chrF2\\_score: 0.348\n* bleu: 17.6\n* brevity\\_penalty: 0.899\n* ref\\_len: 78217.0\n* src\\_name: Hebrew\n* tgt\\_name: Esperanto\n* train\\_date: 2020-06-16\n* src\\_alpha2: he\n* tgt\\_alpha2: eo\n* prefer\\_old: False\n* long\\_pair: heb-epo\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #he #eo #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### heb-epo\n\n\n* source group: Hebrew\n* target group: Esperanto\n* OPUS readme: heb-epo\n* model: transformer-align\n* source language(s): heb\n* target language(s): epo\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm4k,spm4k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 17.6, chr-F: 0.348", "### System Info:\n\n\n* hf\\_name: heb-epo\n* source\\_languages: heb\n* target\\_languages: epo\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['he', 'eo']\n* src\\_constituents: {'heb'}\n* tgt\\_constituents: {'epo'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm4k,spm4k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: heb\n* tgt\\_alpha3: epo\n* short\\_pair: he-eo\n* chrF2\\_score: 0.348\n* bleu: 17.6\n* brevity\\_penalty: 0.899\n* ref\\_len: 78217.0\n* src\\_name: Hebrew\n* tgt\\_name: Esperanto\n* train\\_date: 2020-06-16\n* src\\_alpha2: he\n* tgt\\_alpha2: eo\n* prefer\\_old: False\n* long\\_pair: heb-epo\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ 52, 139, 407 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #he #eo #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### heb-epo\n\n\n* source group: Hebrew\n* target group: Esperanto\n* OPUS readme: heb-epo\n* model: transformer-align\n* source language(s): heb\n* target language(s): epo\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm4k,spm4k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 17.6, chr-F: 0.348### System Info:\n\n\n* hf\\_name: heb-epo\n* source\\_languages: heb\n* target\\_languages: epo\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['he', 'eo']\n* src\\_constituents: {'heb'}\n* tgt\\_constituents: {'epo'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm4k,spm4k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: heb\n* tgt\\_alpha3: epo\n* short\\_pair: he-eo\n* chrF2\\_score: 0.348\n* bleu: 17.6\n* brevity\\_penalty: 0.899\n* ref\\_len: 78217.0\n* src\\_name: Hebrew\n* tgt\\_name: Esperanto\n* train\\_date: 2020-06-16\n* src\\_alpha2: he\n* tgt\\_alpha2: eo\n* prefer\\_old: False\n* long\\_pair: heb-epo\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
translation
transformers
### he-es * source group: Hebrew * target group: Spanish * OPUS readme: [heb-spa](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/heb-spa/README.md) * model: transformer * source language(s): heb * target language(s): spa * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-12-10.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-spa/opus-2020-12-10.zip) * test set translations: [opus-2020-12-10.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-spa/opus-2020-12-10.test.txt) * test set scores: [opus-2020-12-10.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-spa/opus-2020-12-10.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.heb.spa | 51.3 | 0.689 | ### System Info: - hf_name: he-es - source_languages: heb - target_languages: spa - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/heb-spa/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['he', 'es'] - src_constituents: ('Hebrew', {'heb'}) - tgt_constituents: ('Spanish', {'spa'}) - src_multilingual: False - tgt_multilingual: False - long_pair: heb-spa - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/heb-spa/opus-2020-12-10.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/heb-spa/opus-2020-12-10.test.txt - src_alpha3: heb - tgt_alpha3: spa - chrF2_score: 0.6890000000000001 - bleu: 51.3 - brevity_penalty: 0.97 - ref_len: 14213.0 - src_name: Hebrew - tgt_name: Spanish - train_date: 2020-12-10 00:00:00 - src_alpha2: he - tgt_alpha2: es - prefer_old: False - short_pair: he-es - helsinki_git_sha: b317f78a3ec8a556a481b6a53dc70dc11769ca96 - transformers_git_sha: 1310e1a758edc8e89ec363db76863c771fbeb1de - port_machine: LM0-400-22516.local - port_time: 2020-12-11-09:15
{"language": ["he", "es"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-he-es
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "he", "es", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "he", "es" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #he #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### he-es * source group: Hebrew * target group: Spanish * OPUS readme: heb-spa * model: transformer * source language(s): heb * target language(s): spa * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 51.3, chr-F: 0.689 ### System Info: * hf\_name: he-es * source\_languages: heb * target\_languages: spa * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['he', 'es'] * src\_constituents: ('Hebrew', {'heb'}) * tgt\_constituents: ('Spanish', {'spa'}) * src\_multilingual: False * tgt\_multilingual: False * long\_pair: heb-spa * prepro: normalization + SentencePiece (spm32k,spm32k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: heb * tgt\_alpha3: spa * chrF2\_score: 0.6890000000000001 * bleu: 51.3 * brevity\_penalty: 0.97 * ref\_len: 14213.0 * src\_name: Hebrew * tgt\_name: Spanish * train\_date: 2020-12-10 00:00:00 * src\_alpha2: he * tgt\_alpha2: es * prefer\_old: False * short\_pair: he-es * helsinki\_git\_sha: b317f78a3ec8a556a481b6a53dc70dc11769ca96 * transformers\_git\_sha: 1310e1a758edc8e89ec363db76863c771fbeb1de * port\_machine: URL * port\_time: 2020-12-11-09:15
[ "### he-es\n\n\n* source group: Hebrew\n* target group: Spanish\n* OPUS readme: heb-spa\n* model: transformer\n* source language(s): heb\n* target language(s): spa\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 51.3, chr-F: 0.689", "### System Info:\n\n\n* hf\\_name: he-es\n* source\\_languages: heb\n* target\\_languages: spa\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['he', 'es']\n* src\\_constituents: ('Hebrew', {'heb'})\n* tgt\\_constituents: ('Spanish', {'spa'})\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* long\\_pair: heb-spa\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: heb\n* tgt\\_alpha3: spa\n* chrF2\\_score: 0.6890000000000001\n* bleu: 51.3\n* brevity\\_penalty: 0.97\n* ref\\_len: 14213.0\n* src\\_name: Hebrew\n* tgt\\_name: Spanish\n* train\\_date: 2020-12-10 00:00:00\n* src\\_alpha2: he\n* tgt\\_alpha2: es\n* prefer\\_old: False\n* short\\_pair: he-es\n* helsinki\\_git\\_sha: b317f78a3ec8a556a481b6a53dc70dc11769ca96\n* transformers\\_git\\_sha: 1310e1a758edc8e89ec363db76863c771fbeb1de\n* port\\_machine: URL\n* port\\_time: 2020-12-11-09:15" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #he #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### he-es\n\n\n* source group: Hebrew\n* target group: Spanish\n* OPUS readme: heb-spa\n* model: transformer\n* source language(s): heb\n* target language(s): spa\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 51.3, chr-F: 0.689", "### System Info:\n\n\n* hf\\_name: he-es\n* source\\_languages: heb\n* target\\_languages: spa\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['he', 'es']\n* src\\_constituents: ('Hebrew', {'heb'})\n* tgt\\_constituents: ('Spanish', {'spa'})\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* long\\_pair: heb-spa\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: heb\n* tgt\\_alpha3: spa\n* chrF2\\_score: 0.6890000000000001\n* bleu: 51.3\n* brevity\\_penalty: 0.97\n* ref\\_len: 14213.0\n* src\\_name: Hebrew\n* tgt\\_name: Spanish\n* train\\_date: 2020-12-10 00:00:00\n* src\\_alpha2: he\n* tgt\\_alpha2: es\n* prefer\\_old: False\n* short\\_pair: he-es\n* helsinki\\_git\\_sha: b317f78a3ec8a556a481b6a53dc70dc11769ca96\n* transformers\\_git\\_sha: 1310e1a758edc8e89ec363db76863c771fbeb1de\n* port\\_machine: URL\n* port\\_time: 2020-12-11-09:15" ]
[ 51, 129, 419 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #he #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### he-es\n\n\n* source group: Hebrew\n* target group: Spanish\n* OPUS readme: heb-spa\n* model: transformer\n* source language(s): heb\n* target language(s): spa\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 51.3, chr-F: 0.689### System Info:\n\n\n* hf\\_name: he-es\n* source\\_languages: heb\n* target\\_languages: spa\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['he', 'es']\n* src\\_constituents: ('Hebrew', {'heb'})\n* tgt\\_constituents: ('Spanish', {'spa'})\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* long\\_pair: heb-spa\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: heb\n* tgt\\_alpha3: spa\n* chrF2\\_score: 0.6890000000000001\n* bleu: 51.3\n* brevity\\_penalty: 0.97\n* ref\\_len: 14213.0\n* src\\_name: Hebrew\n* tgt\\_name: Spanish\n* train\\_date: 2020-12-10 00:00:00\n* src\\_alpha2: he\n* tgt\\_alpha2: es\n* prefer\\_old: False\n* short\\_pair: he-es\n* helsinki\\_git\\_sha: b317f78a3ec8a556a481b6a53dc70dc11769ca96\n* transformers\\_git\\_sha: 1310e1a758edc8e89ec363db76863c771fbeb1de\n* port\\_machine: URL\n* port\\_time: 2020-12-11-09:15" ]
translation
transformers
### opus-mt-he-fi * source languages: he * target languages: fi * OPUS readme: [he-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/he-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/he-fi/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/he-fi/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/he-fi/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.he.fi | 23.3 | 0.492 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-he-fi
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "he", "fi", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #he #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-he-fi * source languages: he * target languages: fi * OPUS readme: he-fi * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 23.3, chr-F: 0.492
[ "### opus-mt-he-fi\n\n\n* source languages: he\n* target languages: fi\n* OPUS readme: he-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 23.3, chr-F: 0.492" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #he #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-he-fi\n\n\n* source languages: he\n* target languages: fi\n* OPUS readme: he-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 23.3, chr-F: 0.492" ]
[ 51, 106 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #he #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-he-fi\n\n\n* source languages: he\n* target languages: fi\n* OPUS readme: he-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 23.3, chr-F: 0.492" ]
translation
transformers
### he-it * source group: Hebrew * target group: Italian * OPUS readme: [heb-ita](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/heb-ita/README.md) * model: transformer * source language(s): heb * target language(s): ita * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-12-10.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ita/opus-2020-12-10.zip) * test set translations: [opus-2020-12-10.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ita/opus-2020-12-10.test.txt) * test set scores: [opus-2020-12-10.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ita/opus-2020-12-10.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.heb.ita | 41.1 | 0.643 | ### System Info: - hf_name: he-it - source_languages: heb - target_languages: ita - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/heb-ita/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['he', 'it'] - src_constituents: ('Hebrew', {'heb'}) - tgt_constituents: ('Italian', {'ita'}) - src_multilingual: False - tgt_multilingual: False - long_pair: heb-ita - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ita/opus-2020-12-10.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ita/opus-2020-12-10.test.txt - src_alpha3: heb - tgt_alpha3: ita - chrF2_score: 0.643 - bleu: 41.1 - brevity_penalty: 0.997 - ref_len: 11464.0 - src_name: Hebrew - tgt_name: Italian - train_date: 2020-12-10 00:00:00 - src_alpha2: he - tgt_alpha2: it - prefer_old: False - short_pair: he-it - helsinki_git_sha: b317f78a3ec8a556a481b6a53dc70dc11769ca96 - transformers_git_sha: 1310e1a758edc8e89ec363db76863c771fbeb1de - port_machine: LM0-400-22516.local - port_time: 2020-12-11-11:50
{"language": ["he", "it"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-he-it
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "he", "it", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "he", "it" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #he #it #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### he-it * source group: Hebrew * target group: Italian * OPUS readme: heb-ita * model: transformer * source language(s): heb * target language(s): ita * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 41.1, chr-F: 0.643 ### System Info: * hf\_name: he-it * source\_languages: heb * target\_languages: ita * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['he', 'it'] * src\_constituents: ('Hebrew', {'heb'}) * tgt\_constituents: ('Italian', {'ita'}) * src\_multilingual: False * tgt\_multilingual: False * long\_pair: heb-ita * prepro: normalization + SentencePiece (spm32k,spm32k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: heb * tgt\_alpha3: ita * chrF2\_score: 0.643 * bleu: 41.1 * brevity\_penalty: 0.997 * ref\_len: 11464.0 * src\_name: Hebrew * tgt\_name: Italian * train\_date: 2020-12-10 00:00:00 * src\_alpha2: he * tgt\_alpha2: it * prefer\_old: False * short\_pair: he-it * helsinki\_git\_sha: b317f78a3ec8a556a481b6a53dc70dc11769ca96 * transformers\_git\_sha: 1310e1a758edc8e89ec363db76863c771fbeb1de * port\_machine: URL * port\_time: 2020-12-11-11:50
[ "### he-it\n\n\n* source group: Hebrew\n* target group: Italian\n* OPUS readme: heb-ita\n* model: transformer\n* source language(s): heb\n* target language(s): ita\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 41.1, chr-F: 0.643", "### System Info:\n\n\n* hf\\_name: he-it\n* source\\_languages: heb\n* target\\_languages: ita\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['he', 'it']\n* src\\_constituents: ('Hebrew', {'heb'})\n* tgt\\_constituents: ('Italian', {'ita'})\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* long\\_pair: heb-ita\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: heb\n* tgt\\_alpha3: ita\n* chrF2\\_score: 0.643\n* bleu: 41.1\n* brevity\\_penalty: 0.997\n* ref\\_len: 11464.0\n* src\\_name: Hebrew\n* tgt\\_name: Italian\n* train\\_date: 2020-12-10 00:00:00\n* src\\_alpha2: he\n* tgt\\_alpha2: it\n* prefer\\_old: False\n* short\\_pair: he-it\n* helsinki\\_git\\_sha: b317f78a3ec8a556a481b6a53dc70dc11769ca96\n* transformers\\_git\\_sha: 1310e1a758edc8e89ec363db76863c771fbeb1de\n* port\\_machine: URL\n* port\\_time: 2020-12-11-11:50" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #he #it #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### he-it\n\n\n* source group: Hebrew\n* target group: Italian\n* OPUS readme: heb-ita\n* model: transformer\n* source language(s): heb\n* target language(s): ita\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 41.1, chr-F: 0.643", "### System Info:\n\n\n* hf\\_name: he-it\n* source\\_languages: heb\n* target\\_languages: ita\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['he', 'it']\n* src\\_constituents: ('Hebrew', {'heb'})\n* tgt\\_constituents: ('Italian', {'ita'})\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* long\\_pair: heb-ita\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: heb\n* tgt\\_alpha3: ita\n* chrF2\\_score: 0.643\n* bleu: 41.1\n* brevity\\_penalty: 0.997\n* ref\\_len: 11464.0\n* src\\_name: Hebrew\n* tgt\\_name: Italian\n* train\\_date: 2020-12-10 00:00:00\n* src\\_alpha2: he\n* tgt\\_alpha2: it\n* prefer\\_old: False\n* short\\_pair: he-it\n* helsinki\\_git\\_sha: b317f78a3ec8a556a481b6a53dc70dc11769ca96\n* transformers\\_git\\_sha: 1310e1a758edc8e89ec363db76863c771fbeb1de\n* port\\_machine: URL\n* port\\_time: 2020-12-11-11:50" ]
[ 51, 131, 418 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #he #it #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### he-it\n\n\n* source group: Hebrew\n* target group: Italian\n* OPUS readme: heb-ita\n* model: transformer\n* source language(s): heb\n* target language(s): ita\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 41.1, chr-F: 0.643### System Info:\n\n\n* hf\\_name: he-it\n* source\\_languages: heb\n* target\\_languages: ita\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['he', 'it']\n* src\\_constituents: ('Hebrew', {'heb'})\n* tgt\\_constituents: ('Italian', {'ita'})\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* long\\_pair: heb-ita\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: heb\n* tgt\\_alpha3: ita\n* chrF2\\_score: 0.643\n* bleu: 41.1\n* brevity\\_penalty: 0.997\n* ref\\_len: 11464.0\n* src\\_name: Hebrew\n* tgt\\_name: Italian\n* train\\_date: 2020-12-10 00:00:00\n* src\\_alpha2: he\n* tgt\\_alpha2: it\n* prefer\\_old: False\n* short\\_pair: he-it\n* helsinki\\_git\\_sha: b317f78a3ec8a556a481b6a53dc70dc11769ca96\n* transformers\\_git\\_sha: 1310e1a758edc8e89ec363db76863c771fbeb1de\n* port\\_machine: URL\n* port\\_time: 2020-12-11-11:50" ]
translation
transformers
### he-ru * source group: Hebrew * target group: Russian * OPUS readme: [heb-rus](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/heb-rus/README.md) * model: transformer * source language(s): heb * target language(s): rus * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-10-04.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-rus/opus-2020-10-04.zip) * test set translations: [opus-2020-10-04.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-rus/opus-2020-10-04.test.txt) * test set scores: [opus-2020-10-04.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-rus/opus-2020-10-04.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.heb.rus | 40.5 | 0.599 | ### System Info: - hf_name: he-ru - source_languages: heb - target_languages: rus - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/heb-rus/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['he', 'ru'] - src_constituents: ('Hebrew', {'heb'}) - tgt_constituents: ('Russian', {'rus'}) - src_multilingual: False - tgt_multilingual: False - long_pair: heb-rus - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/heb-rus/opus-2020-10-04.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/heb-rus/opus-2020-10-04.test.txt - src_alpha3: heb - tgt_alpha3: rus - chrF2_score: 0.599 - bleu: 40.5 - brevity_penalty: 0.963 - ref_len: 16583.0 - src_name: Hebrew - tgt_name: Russian - train_date: 2020-10-04 00:00:00 - src_alpha2: he - tgt_alpha2: ru - prefer_old: False - short_pair: he-ru - helsinki_git_sha: 61fd6908b37d9a7b21cc3e27c1ae1fccedc97561 - transformers_git_sha: b0a907615aca0d728a9bc90f16caef0848f6a435 - port_machine: LM0-400-22516.local - port_time: 2020-10-26-16:16
{"language": ["he", "ru"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-he-ru
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "he", "ru", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "he", "ru" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #he #ru #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### he-ru * source group: Hebrew * target group: Russian * OPUS readme: heb-rus * model: transformer * source language(s): heb * target language(s): rus * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 40.5, chr-F: 0.599 ### System Info: * hf\_name: he-ru * source\_languages: heb * target\_languages: rus * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['he', 'ru'] * src\_constituents: ('Hebrew', {'heb'}) * tgt\_constituents: ('Russian', {'rus'}) * src\_multilingual: False * tgt\_multilingual: False * long\_pair: heb-rus * prepro: normalization + SentencePiece (spm32k,spm32k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: heb * tgt\_alpha3: rus * chrF2\_score: 0.599 * bleu: 40.5 * brevity\_penalty: 0.963 * ref\_len: 16583.0 * src\_name: Hebrew * tgt\_name: Russian * train\_date: 2020-10-04 00:00:00 * src\_alpha2: he * tgt\_alpha2: ru * prefer\_old: False * short\_pair: he-ru * helsinki\_git\_sha: 61fd6908b37d9a7b21cc3e27c1ae1fccedc97561 * transformers\_git\_sha: b0a907615aca0d728a9bc90f16caef0848f6a435 * port\_machine: URL * port\_time: 2020-10-26-16:16
[ "### he-ru\n\n\n* source group: Hebrew\n* target group: Russian\n* OPUS readme: heb-rus\n* model: transformer\n* source language(s): heb\n* target language(s): rus\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 40.5, chr-F: 0.599", "### System Info:\n\n\n* hf\\_name: he-ru\n* source\\_languages: heb\n* target\\_languages: rus\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['he', 'ru']\n* src\\_constituents: ('Hebrew', {'heb'})\n* tgt\\_constituents: ('Russian', {'rus'})\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* long\\_pair: heb-rus\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: heb\n* tgt\\_alpha3: rus\n* chrF2\\_score: 0.599\n* bleu: 40.5\n* brevity\\_penalty: 0.963\n* ref\\_len: 16583.0\n* src\\_name: Hebrew\n* tgt\\_name: Russian\n* train\\_date: 2020-10-04 00:00:00\n* src\\_alpha2: he\n* tgt\\_alpha2: ru\n* prefer\\_old: False\n* short\\_pair: he-ru\n* helsinki\\_git\\_sha: 61fd6908b37d9a7b21cc3e27c1ae1fccedc97561\n* transformers\\_git\\_sha: b0a907615aca0d728a9bc90f16caef0848f6a435\n* port\\_machine: URL\n* port\\_time: 2020-10-26-16:16" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #he #ru #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### he-ru\n\n\n* source group: Hebrew\n* target group: Russian\n* OPUS readme: heb-rus\n* model: transformer\n* source language(s): heb\n* target language(s): rus\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 40.5, chr-F: 0.599", "### System Info:\n\n\n* hf\\_name: he-ru\n* source\\_languages: heb\n* target\\_languages: rus\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['he', 'ru']\n* src\\_constituents: ('Hebrew', {'heb'})\n* tgt\\_constituents: ('Russian', {'rus'})\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* long\\_pair: heb-rus\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: heb\n* tgt\\_alpha3: rus\n* chrF2\\_score: 0.599\n* bleu: 40.5\n* brevity\\_penalty: 0.963\n* ref\\_len: 16583.0\n* src\\_name: Hebrew\n* tgt\\_name: Russian\n* train\\_date: 2020-10-04 00:00:00\n* src\\_alpha2: he\n* tgt\\_alpha2: ru\n* prefer\\_old: False\n* short\\_pair: he-ru\n* helsinki\\_git\\_sha: 61fd6908b37d9a7b21cc3e27c1ae1fccedc97561\n* transformers\\_git\\_sha: b0a907615aca0d728a9bc90f16caef0848f6a435\n* port\\_machine: URL\n* port\\_time: 2020-10-26-16:16" ]
[ 51, 129, 412 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #he #ru #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### he-ru\n\n\n* source group: Hebrew\n* target group: Russian\n* OPUS readme: heb-rus\n* model: transformer\n* source language(s): heb\n* target language(s): rus\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 40.5, chr-F: 0.599### System Info:\n\n\n* hf\\_name: he-ru\n* source\\_languages: heb\n* target\\_languages: rus\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['he', 'ru']\n* src\\_constituents: ('Hebrew', {'heb'})\n* tgt\\_constituents: ('Russian', {'rus'})\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* long\\_pair: heb-rus\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: heb\n* tgt\\_alpha3: rus\n* chrF2\\_score: 0.599\n* bleu: 40.5\n* brevity\\_penalty: 0.963\n* ref\\_len: 16583.0\n* src\\_name: Hebrew\n* tgt\\_name: Russian\n* train\\_date: 2020-10-04 00:00:00\n* src\\_alpha2: he\n* tgt\\_alpha2: ru\n* prefer\\_old: False\n* short\\_pair: he-ru\n* helsinki\\_git\\_sha: 61fd6908b37d9a7b21cc3e27c1ae1fccedc97561\n* transformers\\_git\\_sha: b0a907615aca0d728a9bc90f16caef0848f6a435\n* port\\_machine: URL\n* port\\_time: 2020-10-26-16:16" ]
translation
transformers
### opus-mt-he-sv * source languages: he * target languages: sv * OPUS readme: [he-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/he-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/he-sv/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/he-sv/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/he-sv/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.he.sv | 28.9 | 0.493 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-he-sv
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "he", "sv", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #he #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-he-sv * source languages: he * target languages: sv * OPUS readme: he-sv * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 28.9, chr-F: 0.493
[ "### opus-mt-he-sv\n\n\n* source languages: he\n* target languages: sv\n* OPUS readme: he-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 28.9, chr-F: 0.493" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #he #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-he-sv\n\n\n* source languages: he\n* target languages: sv\n* OPUS readme: he-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 28.9, chr-F: 0.493" ]
[ 51, 106 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #he #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-he-sv\n\n\n* source languages: he\n* target languages: sv\n* OPUS readme: he-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 28.9, chr-F: 0.493" ]
translation
transformers
### heb-ukr * source group: Hebrew * target group: Ukrainian * OPUS readme: [heb-ukr](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/heb-ukr/README.md) * model: transformer-align * source language(s): heb * target language(s): ukr * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ukr/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ukr/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ukr/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.heb.ukr | 35.4 | 0.552 | ### System Info: - hf_name: heb-ukr - source_languages: heb - target_languages: ukr - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/heb-ukr/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['he', 'uk'] - src_constituents: {'heb'} - tgt_constituents: {'ukr'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ukr/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ukr/opus-2020-06-17.test.txt - src_alpha3: heb - tgt_alpha3: ukr - short_pair: he-uk - chrF2_score: 0.552 - bleu: 35.4 - brevity_penalty: 0.971 - ref_len: 5163.0 - src_name: Hebrew - tgt_name: Ukrainian - train_date: 2020-06-17 - src_alpha2: he - tgt_alpha2: uk - prefer_old: False - long_pair: heb-ukr - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["he", "uk"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-he-uk
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "he", "uk", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "he", "uk" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #he #uk #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### heb-ukr * source group: Hebrew * target group: Ukrainian * OPUS readme: heb-ukr * model: transformer-align * source language(s): heb * target language(s): ukr * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 35.4, chr-F: 0.552 ### System Info: * hf\_name: heb-ukr * source\_languages: heb * target\_languages: ukr * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['he', 'uk'] * src\_constituents: {'heb'} * tgt\_constituents: {'ukr'} * src\_multilingual: False * tgt\_multilingual: False * prepro: normalization + SentencePiece (spm32k,spm32k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: heb * tgt\_alpha3: ukr * short\_pair: he-uk * chrF2\_score: 0.552 * bleu: 35.4 * brevity\_penalty: 0.971 * ref\_len: 5163.0 * src\_name: Hebrew * tgt\_name: Ukrainian * train\_date: 2020-06-17 * src\_alpha2: he * tgt\_alpha2: uk * prefer\_old: False * long\_pair: heb-ukr * helsinki\_git\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 * transformers\_git\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b * port\_machine: brutasse * port\_time: 2020-08-21-14:41
[ "### heb-ukr\n\n\n* source group: Hebrew\n* target group: Ukrainian\n* OPUS readme: heb-ukr\n* model: transformer-align\n* source language(s): heb\n* target language(s): ukr\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 35.4, chr-F: 0.552", "### System Info:\n\n\n* hf\\_name: heb-ukr\n* source\\_languages: heb\n* target\\_languages: ukr\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['he', 'uk']\n* src\\_constituents: {'heb'}\n* tgt\\_constituents: {'ukr'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: heb\n* tgt\\_alpha3: ukr\n* short\\_pair: he-uk\n* chrF2\\_score: 0.552\n* bleu: 35.4\n* brevity\\_penalty: 0.971\n* ref\\_len: 5163.0\n* src\\_name: Hebrew\n* tgt\\_name: Ukrainian\n* train\\_date: 2020-06-17\n* src\\_alpha2: he\n* tgt\\_alpha2: uk\n* prefer\\_old: False\n* long\\_pair: heb-ukr\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #he #uk #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### heb-ukr\n\n\n* source group: Hebrew\n* target group: Ukrainian\n* OPUS readme: heb-ukr\n* model: transformer-align\n* source language(s): heb\n* target language(s): ukr\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 35.4, chr-F: 0.552", "### System Info:\n\n\n* hf\\_name: heb-ukr\n* source\\_languages: heb\n* target\\_languages: ukr\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['he', 'uk']\n* src\\_constituents: {'heb'}\n* tgt\\_constituents: {'ukr'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: heb\n* tgt\\_alpha3: ukr\n* short\\_pair: he-uk\n* chrF2\\_score: 0.552\n* bleu: 35.4\n* brevity\\_penalty: 0.971\n* ref\\_len: 5163.0\n* src\\_name: Hebrew\n* tgt\\_name: Ukrainian\n* train\\_date: 2020-06-17\n* src\\_alpha2: he\n* tgt\\_alpha2: uk\n* prefer\\_old: False\n* long\\_pair: heb-ukr\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ 51, 137, 402 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #he #uk #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### heb-ukr\n\n\n* source group: Hebrew\n* target group: Ukrainian\n* OPUS readme: heb-ukr\n* model: transformer-align\n* source language(s): heb\n* target language(s): ukr\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 35.4, chr-F: 0.552### System Info:\n\n\n* hf\\_name: heb-ukr\n* source\\_languages: heb\n* target\\_languages: ukr\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['he', 'uk']\n* src\\_constituents: {'heb'}\n* tgt\\_constituents: {'ukr'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: heb\n* tgt\\_alpha3: ukr\n* short\\_pair: he-uk\n* chrF2\\_score: 0.552\n* bleu: 35.4\n* brevity\\_penalty: 0.971\n* ref\\_len: 5163.0\n* src\\_name: Hebrew\n* tgt\\_name: Ukrainian\n* train\\_date: 2020-06-17\n* src\\_alpha2: he\n* tgt\\_alpha2: uk\n* prefer\\_old: False\n* long\\_pair: heb-ukr\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
translation
transformers
### opus-mt-hi-en * source languages: hi * target languages: en * OPUS readme: [hi-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/hi-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/hi-en/opus-2019-12-18.zip) * test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/hi-en/opus-2019-12-18.test.txt) * test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/hi-en/opus-2019-12-18.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newsdev2014.hi.en | 9.1 | 0.357 | | newstest2014-hien.hi.en | 13.6 | 0.409 | | Tatoeba.hi.en | 40.4 | 0.580 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-hi-en
null
[ "transformers", "pytorch", "tf", "rust", "marian", "text2text-generation", "translation", "hi", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #rust #marian #text2text-generation #translation #hi #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-hi-en * source languages: hi * target languages: en * OPUS readme: hi-en * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 9.1, chr-F: 0.357 testset: URL, BLEU: 13.6, chr-F: 0.409 testset: URL, BLEU: 40.4, chr-F: 0.580
[ "### opus-mt-hi-en\n\n\n* source languages: hi\n* target languages: en\n* OPUS readme: hi-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 9.1, chr-F: 0.357\ntestset: URL, BLEU: 13.6, chr-F: 0.409\ntestset: URL, BLEU: 40.4, chr-F: 0.580" ]
[ "TAGS\n#transformers #pytorch #tf #rust #marian #text2text-generation #translation #hi #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-hi-en\n\n\n* source languages: hi\n* target languages: en\n* OPUS readme: hi-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 9.1, chr-F: 0.357\ntestset: URL, BLEU: 13.6, chr-F: 0.409\ntestset: URL, BLEU: 40.4, chr-F: 0.580" ]
[ 53, 150 ]
[ "TAGS\n#transformers #pytorch #tf #rust #marian #text2text-generation #translation #hi #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-hi-en\n\n\n* source languages: hi\n* target languages: en\n* OPUS readme: hi-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 9.1, chr-F: 0.357\ntestset: URL, BLEU: 13.6, chr-F: 0.409\ntestset: URL, BLEU: 40.4, chr-F: 0.580" ]
translation
transformers
### hin-urd * source group: Hindi * target group: Urdu * OPUS readme: [hin-urd](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/hin-urd/README.md) * model: transformer-align * source language(s): hin * target language(s): urd * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/hin-urd/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/hin-urd/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/hin-urd/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.hin.urd | 12.4 | 0.393 | ### System Info: - hf_name: hin-urd - source_languages: hin - target_languages: urd - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/hin-urd/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['hi', 'ur'] - src_constituents: {'hin'} - tgt_constituents: {'urd'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/hin-urd/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/hin-urd/opus-2020-06-16.test.txt - src_alpha3: hin - tgt_alpha3: urd - short_pair: hi-ur - chrF2_score: 0.39299999999999996 - bleu: 12.4 - brevity_penalty: 1.0 - ref_len: 1618.0 - src_name: Hindi - tgt_name: Urdu - train_date: 2020-06-16 - src_alpha2: hi - tgt_alpha2: ur - prefer_old: False - long_pair: hin-urd - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["hi", "ur"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-hi-ur
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "hi", "ur", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "hi", "ur" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #hi #ur #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### hin-urd * source group: Hindi * target group: Urdu * OPUS readme: hin-urd * model: transformer-align * source language(s): hin * target language(s): urd * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 12.4, chr-F: 0.393 ### System Info: * hf\_name: hin-urd * source\_languages: hin * target\_languages: urd * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['hi', 'ur'] * src\_constituents: {'hin'} * tgt\_constituents: {'urd'} * src\_multilingual: False * tgt\_multilingual: False * prepro: normalization + SentencePiece (spm4k,spm4k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: hin * tgt\_alpha3: urd * short\_pair: hi-ur * chrF2\_score: 0.39299999999999996 * bleu: 12.4 * brevity\_penalty: 1.0 * ref\_len: 1618.0 * src\_name: Hindi * tgt\_name: Urdu * train\_date: 2020-06-16 * src\_alpha2: hi * tgt\_alpha2: ur * prefer\_old: False * long\_pair: hin-urd * helsinki\_git\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 * transformers\_git\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b * port\_machine: brutasse * port\_time: 2020-08-21-14:41
[ "### hin-urd\n\n\n* source group: Hindi\n* target group: Urdu\n* OPUS readme: hin-urd\n* model: transformer-align\n* source language(s): hin\n* target language(s): urd\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm4k,spm4k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 12.4, chr-F: 0.393", "### System Info:\n\n\n* hf\\_name: hin-urd\n* source\\_languages: hin\n* target\\_languages: urd\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['hi', 'ur']\n* src\\_constituents: {'hin'}\n* tgt\\_constituents: {'urd'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm4k,spm4k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: hin\n* tgt\\_alpha3: urd\n* short\\_pair: hi-ur\n* chrF2\\_score: 0.39299999999999996\n* bleu: 12.4\n* brevity\\_penalty: 1.0\n* ref\\_len: 1618.0\n* src\\_name: Hindi\n* tgt\\_name: Urdu\n* train\\_date: 2020-06-16\n* src\\_alpha2: hi\n* tgt\\_alpha2: ur\n* prefer\\_old: False\n* long\\_pair: hin-urd\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hi #ur #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### hin-urd\n\n\n* source group: Hindi\n* target group: Urdu\n* OPUS readme: hin-urd\n* model: transformer-align\n* source language(s): hin\n* target language(s): urd\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm4k,spm4k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 12.4, chr-F: 0.393", "### System Info:\n\n\n* hf\\_name: hin-urd\n* source\\_languages: hin\n* target\\_languages: urd\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['hi', 'ur']\n* src\\_constituents: {'hin'}\n* tgt\\_constituents: {'urd'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm4k,spm4k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: hin\n* tgt\\_alpha3: urd\n* short\\_pair: hi-ur\n* chrF2\\_score: 0.39299999999999996\n* bleu: 12.4\n* brevity\\_penalty: 1.0\n* ref\\_len: 1618.0\n* src\\_name: Hindi\n* tgt\\_name: Urdu\n* train\\_date: 2020-06-16\n* src\\_alpha2: hi\n* tgt\\_alpha2: ur\n* prefer\\_old: False\n* long\\_pair: hin-urd\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ 51, 137, 412 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hi #ur #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### hin-urd\n\n\n* source group: Hindi\n* target group: Urdu\n* OPUS readme: hin-urd\n* model: transformer-align\n* source language(s): hin\n* target language(s): urd\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm4k,spm4k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 12.4, chr-F: 0.393### System Info:\n\n\n* hf\\_name: hin-urd\n* source\\_languages: hin\n* target\\_languages: urd\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['hi', 'ur']\n* src\\_constituents: {'hin'}\n* tgt\\_constituents: {'urd'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm4k,spm4k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: hin\n* tgt\\_alpha3: urd\n* short\\_pair: hi-ur\n* chrF2\\_score: 0.39299999999999996\n* bleu: 12.4\n* brevity\\_penalty: 1.0\n* ref\\_len: 1618.0\n* src\\_name: Hindi\n* tgt\\_name: Urdu\n* train\\_date: 2020-06-16\n* src\\_alpha2: hi\n* tgt\\_alpha2: ur\n* prefer\\_old: False\n* long\\_pair: hin-urd\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
translation
transformers
### opus-mt-hil-de * source languages: hil * target languages: de * OPUS readme: [hil-de](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/hil-de/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/hil-de/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/hil-de/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/hil-de/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.hil.de | 26.4 | 0.479 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-hil-de
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "hil", "de", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #hil #de #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-hil-de * source languages: hil * target languages: de * OPUS readme: hil-de * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 26.4, chr-F: 0.479
[ "### opus-mt-hil-de\n\n\n* source languages: hil\n* target languages: de\n* OPUS readme: hil-de\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 26.4, chr-F: 0.479" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hil #de #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-hil-de\n\n\n* source languages: hil\n* target languages: de\n* OPUS readme: hil-de\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 26.4, chr-F: 0.479" ]
[ 52, 109 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hil #de #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-hil-de\n\n\n* source languages: hil\n* target languages: de\n* OPUS readme: hil-de\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 26.4, chr-F: 0.479" ]
translation
transformers
### opus-mt-hil-en * source languages: hil * target languages: en * OPUS readme: [hil-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/hil-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/hil-en/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/hil-en/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/hil-en/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.hil.en | 49.2 | 0.638 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-hil-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "hil", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #hil #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-hil-en * source languages: hil * target languages: en * OPUS readme: hil-en * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 49.2, chr-F: 0.638
[ "### opus-mt-hil-en\n\n\n* source languages: hil\n* target languages: en\n* OPUS readme: hil-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 49.2, chr-F: 0.638" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hil #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-hil-en\n\n\n* source languages: hil\n* target languages: en\n* OPUS readme: hil-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 49.2, chr-F: 0.638" ]
[ 52, 109 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hil #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-hil-en\n\n\n* source languages: hil\n* target languages: en\n* OPUS readme: hil-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 49.2, chr-F: 0.638" ]
translation
transformers
### opus-mt-hil-fi * source languages: hil * target languages: fi * OPUS readme: [hil-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/hil-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-24.zip](https://object.pouta.csc.fi/OPUS-MT-models/hil-fi/opus-2020-01-24.zip) * test set translations: [opus-2020-01-24.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/hil-fi/opus-2020-01-24.test.txt) * test set scores: [opus-2020-01-24.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/hil-fi/opus-2020-01-24.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.hil.fi | 29.9 | 0.547 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-hil-fi
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "hil", "fi", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #hil #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-hil-fi * source languages: hil * target languages: fi * OPUS readme: hil-fi * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 29.9, chr-F: 0.547
[ "### opus-mt-hil-fi\n\n\n* source languages: hil\n* target languages: fi\n* OPUS readme: hil-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 29.9, chr-F: 0.547" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hil #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-hil-fi\n\n\n* source languages: hil\n* target languages: fi\n* OPUS readme: hil-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 29.9, chr-F: 0.547" ]
[ 52, 109 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hil #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-hil-fi\n\n\n* source languages: hil\n* target languages: fi\n* OPUS readme: hil-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 29.9, chr-F: 0.547" ]
translation
transformers
### opus-mt-ho-en * source languages: ho * target languages: en * OPUS readme: [ho-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ho-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/ho-en/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ho-en/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ho-en/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ho.en | 26.8 | 0.428 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-ho-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "ho", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #ho #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-ho-en * source languages: ho * target languages: en * OPUS readme: ho-en * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 26.8, chr-F: 0.428
[ "### opus-mt-ho-en\n\n\n* source languages: ho\n* target languages: en\n* OPUS readme: ho-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 26.8, chr-F: 0.428" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ho #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-ho-en\n\n\n* source languages: ho\n* target languages: en\n* OPUS readme: ho-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 26.8, chr-F: 0.428" ]
[ 51, 106 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ho #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-ho-en\n\n\n* source languages: ho\n* target languages: en\n* OPUS readme: ho-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 26.8, chr-F: 0.428" ]
translation
transformers
### opus-mt-hr-es * source languages: hr * target languages: es * OPUS readme: [hr-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/hr-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/hr-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/hr-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/hr-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.hr.es | 27.9 | 0.498 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-hr-es
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "hr", "es", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #hr #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-hr-es * source languages: hr * target languages: es * OPUS readme: hr-es * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 27.9, chr-F: 0.498
[ "### opus-mt-hr-es\n\n\n* source languages: hr\n* target languages: es\n* OPUS readme: hr-es\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 27.9, chr-F: 0.498" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hr #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-hr-es\n\n\n* source languages: hr\n* target languages: es\n* OPUS readme: hr-es\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 27.9, chr-F: 0.498" ]
[ 51, 106 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hr #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-hr-es\n\n\n* source languages: hr\n* target languages: es\n* OPUS readme: hr-es\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 27.9, chr-F: 0.498" ]
translation
transformers
### opus-mt-hr-fi * source languages: hr * target languages: fi * OPUS readme: [hr-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/hr-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/hr-fi/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/hr-fi/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/hr-fi/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.hr.fi | 25.0 | 0.519 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-hr-fi
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "hr", "fi", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #hr #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-hr-fi * source languages: hr * target languages: fi * OPUS readme: hr-fi * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 25.0, chr-F: 0.519
[ "### opus-mt-hr-fi\n\n\n* source languages: hr\n* target languages: fi\n* OPUS readme: hr-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 25.0, chr-F: 0.519" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hr #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-hr-fi\n\n\n* source languages: hr\n* target languages: fi\n* OPUS readme: hr-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 25.0, chr-F: 0.519" ]
[ 51, 106 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hr #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-hr-fi\n\n\n* source languages: hr\n* target languages: fi\n* OPUS readme: hr-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 25.0, chr-F: 0.519" ]
translation
transformers
### opus-mt-hr-fr * source languages: hr * target languages: fr * OPUS readme: [hr-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/hr-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/hr-fr/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/hr-fr/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/hr-fr/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.hr.fr | 26.1 | 0.482 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-hr-fr
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "hr", "fr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #hr #fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-hr-fr * source languages: hr * target languages: fr * OPUS readme: hr-fr * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 26.1, chr-F: 0.482
[ "### opus-mt-hr-fr\n\n\n* source languages: hr\n* target languages: fr\n* OPUS readme: hr-fr\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 26.1, chr-F: 0.482" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hr #fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-hr-fr\n\n\n* source languages: hr\n* target languages: fr\n* OPUS readme: hr-fr\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 26.1, chr-F: 0.482" ]
[ 51, 106 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hr #fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-hr-fr\n\n\n* source languages: hr\n* target languages: fr\n* OPUS readme: hr-fr\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 26.1, chr-F: 0.482" ]
translation
transformers
### opus-mt-hr-sv * source languages: hr * target languages: sv * OPUS readme: [hr-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/hr-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/hr-sv/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/hr-sv/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/hr-sv/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.hr.sv | 30.5 | 0.526 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-hr-sv
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "hr", "sv", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #hr #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-hr-sv * source languages: hr * target languages: sv * OPUS readme: hr-sv * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 30.5, chr-F: 0.526
[ "### opus-mt-hr-sv\n\n\n* source languages: hr\n* target languages: sv\n* OPUS readme: hr-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 30.5, chr-F: 0.526" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hr #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-hr-sv\n\n\n* source languages: hr\n* target languages: sv\n* OPUS readme: hr-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 30.5, chr-F: 0.526" ]
[ 51, 106 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hr #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-hr-sv\n\n\n* source languages: hr\n* target languages: sv\n* OPUS readme: hr-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 30.5, chr-F: 0.526" ]
translation
transformers
### opus-mt-ht-en * source languages: ht * target languages: en * OPUS readme: [ht-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ht-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/ht-en/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ht-en/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ht-en/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ht.en | 37.5 | 0.542 | | Tatoeba.ht.en | 57.0 | 0.689 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-ht-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "ht", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #ht #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-ht-en * source languages: ht * target languages: en * OPUS readme: ht-en * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 37.5, chr-F: 0.542 testset: URL, BLEU: 57.0, chr-F: 0.689
[ "### opus-mt-ht-en\n\n\n* source languages: ht\n* target languages: en\n* OPUS readme: ht-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 37.5, chr-F: 0.542\ntestset: URL, BLEU: 57.0, chr-F: 0.689" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ht #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-ht-en\n\n\n* source languages: ht\n* target languages: en\n* OPUS readme: ht-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 37.5, chr-F: 0.542\ntestset: URL, BLEU: 57.0, chr-F: 0.689" ]
[ 52, 132 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ht #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-ht-en\n\n\n* source languages: ht\n* target languages: en\n* OPUS readme: ht-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 37.5, chr-F: 0.542\ntestset: URL, BLEU: 57.0, chr-F: 0.689" ]
translation
transformers
### opus-mt-ht-es * source languages: ht * target languages: es * OPUS readme: [ht-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ht-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/ht-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ht-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ht-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ht.es | 23.7 | 0.418 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-ht-es
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "ht", "es", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #ht #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-ht-es * source languages: ht * target languages: es * OPUS readme: ht-es * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 23.7, chr-F: 0.418
[ "### opus-mt-ht-es\n\n\n* source languages: ht\n* target languages: es\n* OPUS readme: ht-es\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 23.7, chr-F: 0.418" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ht #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-ht-es\n\n\n* source languages: ht\n* target languages: es\n* OPUS readme: ht-es\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 23.7, chr-F: 0.418" ]
[ 52, 109 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ht #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-ht-es\n\n\n* source languages: ht\n* target languages: es\n* OPUS readme: ht-es\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 23.7, chr-F: 0.418" ]
translation
transformers
### opus-mt-ht-fi * source languages: ht * target languages: fi * OPUS readme: [ht-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ht-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/ht-fi/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ht-fi/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ht-fi/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ht.fi | 23.3 | 0.464 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-ht-fi
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "ht", "fi", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #ht #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-ht-fi * source languages: ht * target languages: fi * OPUS readme: ht-fi * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 23.3, chr-F: 0.464
[ "### opus-mt-ht-fi\n\n\n* source languages: ht\n* target languages: fi\n* OPUS readme: ht-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 23.3, chr-F: 0.464" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ht #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-ht-fi\n\n\n* source languages: ht\n* target languages: fi\n* OPUS readme: ht-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 23.3, chr-F: 0.464" ]
[ 52, 109 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ht #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-ht-fi\n\n\n* source languages: ht\n* target languages: fi\n* OPUS readme: ht-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 23.3, chr-F: 0.464" ]
translation
transformers
### opus-mt-ht-fr * source languages: ht * target languages: fr * OPUS readme: [ht-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ht-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/ht-fr/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ht-fr/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ht-fr/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ht.fr | 28.4 | 0.469 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-ht-fr
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "ht", "fr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #ht #fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-ht-fr * source languages: ht * target languages: fr * OPUS readme: ht-fr * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 28.4, chr-F: 0.469
[ "### opus-mt-ht-fr\n\n\n* source languages: ht\n* target languages: fr\n* OPUS readme: ht-fr\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 28.4, chr-F: 0.469" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ht #fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-ht-fr\n\n\n* source languages: ht\n* target languages: fr\n* OPUS readme: ht-fr\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 28.4, chr-F: 0.469" ]
[ 52, 109 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ht #fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-ht-fr\n\n\n* source languages: ht\n* target languages: fr\n* OPUS readme: ht-fr\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 28.4, chr-F: 0.469" ]
translation
transformers
### opus-mt-ht-sv * source languages: ht * target languages: sv * OPUS readme: [ht-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ht-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/ht-sv/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ht-sv/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ht-sv/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ht.sv | 27.9 | 0.463 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-ht-sv
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "ht", "sv", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #ht #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-ht-sv * source languages: ht * target languages: sv * OPUS readme: ht-sv * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 27.9, chr-F: 0.463
[ "### opus-mt-ht-sv\n\n\n* source languages: ht\n* target languages: sv\n* OPUS readme: ht-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 27.9, chr-F: 0.463" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ht #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-ht-sv\n\n\n* source languages: ht\n* target languages: sv\n* OPUS readme: ht-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 27.9, chr-F: 0.463" ]
[ 52, 109 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ht #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-ht-sv\n\n\n* source languages: ht\n* target languages: sv\n* OPUS readme: ht-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 27.9, chr-F: 0.463" ]
translation
transformers
### opus-mt-hu-de * source languages: hu * target languages: de * OPUS readme: [hu-de](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/hu-de/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/hu-de/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/hu-de/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/hu-de/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.hu.de | 44.1 | 0.637 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-hu-de
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "hu", "de", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #hu #de #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-hu-de * source languages: hu * target languages: de * OPUS readme: hu-de * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 44.1, chr-F: 0.637
[ "### opus-mt-hu-de\n\n\n* source languages: hu\n* target languages: de\n* OPUS readme: hu-de\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 44.1, chr-F: 0.637" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hu #de #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-hu-de\n\n\n* source languages: hu\n* target languages: de\n* OPUS readme: hu-de\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 44.1, chr-F: 0.637" ]
[ 51, 106 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hu #de #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-hu-de\n\n\n* source languages: hu\n* target languages: de\n* OPUS readme: hu-de\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 44.1, chr-F: 0.637" ]
translation
transformers
### opus-mt-hu-en * source languages: hu * target languages: en * OPUS readme: [hu-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/hu-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/hu-en/opus-2019-12-18.zip) * test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/hu-en/opus-2019-12-18.test.txt) * test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/hu-en/opus-2019-12-18.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.hu.en | 52.9 | 0.683 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-hu-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "hu", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #hu #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-hu-en * source languages: hu * target languages: en * OPUS readme: hu-en * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 52.9, chr-F: 0.683
[ "### opus-mt-hu-en\n\n\n* source languages: hu\n* target languages: en\n* OPUS readme: hu-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 52.9, chr-F: 0.683" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hu #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-hu-en\n\n\n* source languages: hu\n* target languages: en\n* OPUS readme: hu-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 52.9, chr-F: 0.683" ]
[ 51, 106 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hu #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-hu-en\n\n\n* source languages: hu\n* target languages: en\n* OPUS readme: hu-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 52.9, chr-F: 0.683" ]
translation
transformers
### hun-epo * source group: Hungarian * target group: Esperanto * OPUS readme: [hun-epo](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/hun-epo/README.md) * model: transformer-align * source language(s): hun * target language(s): epo * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/hun-epo/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/hun-epo/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/hun-epo/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.hun.epo | 17.9 | 0.378 | ### System Info: - hf_name: hun-epo - source_languages: hun - target_languages: epo - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/hun-epo/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['hu', 'eo'] - src_constituents: {'hun'} - tgt_constituents: {'epo'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/hun-epo/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/hun-epo/opus-2020-06-16.test.txt - src_alpha3: hun - tgt_alpha3: epo - short_pair: hu-eo - chrF2_score: 0.37799999999999995 - bleu: 17.9 - brevity_penalty: 0.934 - ref_len: 76005.0 - src_name: Hungarian - tgt_name: Esperanto - train_date: 2020-06-16 - src_alpha2: hu - tgt_alpha2: eo - prefer_old: False - long_pair: hun-epo - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["hu", "eo"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-hu-eo
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "hu", "eo", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "hu", "eo" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #hu #eo #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### hun-epo * source group: Hungarian * target group: Esperanto * OPUS readme: hun-epo * model: transformer-align * source language(s): hun * target language(s): epo * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 17.9, chr-F: 0.378 ### System Info: * hf\_name: hun-epo * source\_languages: hun * target\_languages: epo * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['hu', 'eo'] * src\_constituents: {'hun'} * tgt\_constituents: {'epo'} * src\_multilingual: False * tgt\_multilingual: False * prepro: normalization + SentencePiece (spm4k,spm4k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: hun * tgt\_alpha3: epo * short\_pair: hu-eo * chrF2\_score: 0.37799999999999995 * bleu: 17.9 * brevity\_penalty: 0.934 * ref\_len: 76005.0 * src\_name: Hungarian * tgt\_name: Esperanto * train\_date: 2020-06-16 * src\_alpha2: hu * tgt\_alpha2: eo * prefer\_old: False * long\_pair: hun-epo * helsinki\_git\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 * transformers\_git\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b * port\_machine: brutasse * port\_time: 2020-08-21-14:41
[ "### hun-epo\n\n\n* source group: Hungarian\n* target group: Esperanto\n* OPUS readme: hun-epo\n* model: transformer-align\n* source language(s): hun\n* target language(s): epo\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm4k,spm4k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 17.9, chr-F: 0.378", "### System Info:\n\n\n* hf\\_name: hun-epo\n* source\\_languages: hun\n* target\\_languages: epo\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['hu', 'eo']\n* src\\_constituents: {'hun'}\n* tgt\\_constituents: {'epo'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm4k,spm4k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: hun\n* tgt\\_alpha3: epo\n* short\\_pair: hu-eo\n* chrF2\\_score: 0.37799999999999995\n* bleu: 17.9\n* brevity\\_penalty: 0.934\n* ref\\_len: 76005.0\n* src\\_name: Hungarian\n* tgt\\_name: Esperanto\n* train\\_date: 2020-06-16\n* src\\_alpha2: hu\n* tgt\\_alpha2: eo\n* prefer\\_old: False\n* long\\_pair: hun-epo\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hu #eo #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### hun-epo\n\n\n* source group: Hungarian\n* target group: Esperanto\n* OPUS readme: hun-epo\n* model: transformer-align\n* source language(s): hun\n* target language(s): epo\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm4k,spm4k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 17.9, chr-F: 0.378", "### System Info:\n\n\n* hf\\_name: hun-epo\n* source\\_languages: hun\n* target\\_languages: epo\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['hu', 'eo']\n* src\\_constituents: {'hun'}\n* tgt\\_constituents: {'epo'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm4k,spm4k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: hun\n* tgt\\_alpha3: epo\n* short\\_pair: hu-eo\n* chrF2\\_score: 0.37799999999999995\n* bleu: 17.9\n* brevity\\_penalty: 0.934\n* ref\\_len: 76005.0\n* src\\_name: Hungarian\n* tgt\\_name: Esperanto\n* train\\_date: 2020-06-16\n* src\\_alpha2: hu\n* tgt\\_alpha2: eo\n* prefer\\_old: False\n* long\\_pair: hun-epo\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ 52, 139, 421 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hu #eo #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### hun-epo\n\n\n* source group: Hungarian\n* target group: Esperanto\n* OPUS readme: hun-epo\n* model: transformer-align\n* source language(s): hun\n* target language(s): epo\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm4k,spm4k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 17.9, chr-F: 0.378### System Info:\n\n\n* hf\\_name: hun-epo\n* source\\_languages: hun\n* target\\_languages: epo\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['hu', 'eo']\n* src\\_constituents: {'hun'}\n* tgt\\_constituents: {'epo'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm4k,spm4k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: hun\n* tgt\\_alpha3: epo\n* short\\_pair: hu-eo\n* chrF2\\_score: 0.37799999999999995\n* bleu: 17.9\n* brevity\\_penalty: 0.934\n* ref\\_len: 76005.0\n* src\\_name: Hungarian\n* tgt\\_name: Esperanto\n* train\\_date: 2020-06-16\n* src\\_alpha2: hu\n* tgt\\_alpha2: eo\n* prefer\\_old: False\n* long\\_pair: hun-epo\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
translation
transformers
### opus-mt-hu-fi * source languages: hu * target languages: fi * OPUS readme: [hu-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/hu-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/hu-fi/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/hu-fi/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/hu-fi/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.hu.fi | 48.2 | 0.700 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-hu-fi
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "hu", "fi", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #hu #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-hu-fi * source languages: hu * target languages: fi * OPUS readme: hu-fi * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 48.2, chr-F: 0.700
[ "### opus-mt-hu-fi\n\n\n* source languages: hu\n* target languages: fi\n* OPUS readme: hu-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 48.2, chr-F: 0.700" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hu #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-hu-fi\n\n\n* source languages: hu\n* target languages: fi\n* OPUS readme: hu-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 48.2, chr-F: 0.700" ]
[ 51, 105 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hu #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-hu-fi\n\n\n* source languages: hu\n* target languages: fi\n* OPUS readme: hu-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 48.2, chr-F: 0.700" ]
translation
transformers
### opus-mt-hu-fr * source languages: hu * target languages: fr * OPUS readme: [hu-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/hu-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/hu-fr/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/hu-fr/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/hu-fr/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.hu.fr | 50.3 | 0.660 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-hu-fr
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "hu", "fr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #hu #fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-hu-fr * source languages: hu * target languages: fr * OPUS readme: hu-fr * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 50.3, chr-F: 0.660
[ "### opus-mt-hu-fr\n\n\n* source languages: hu\n* target languages: fr\n* OPUS readme: hu-fr\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 50.3, chr-F: 0.660" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hu #fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-hu-fr\n\n\n* source languages: hu\n* target languages: fr\n* OPUS readme: hu-fr\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 50.3, chr-F: 0.660" ]
[ 51, 105 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hu #fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-hu-fr\n\n\n* source languages: hu\n* target languages: fr\n* OPUS readme: hu-fr\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 50.3, chr-F: 0.660" ]
translation
transformers
### opus-mt-hu-sv * source languages: hu * target languages: sv * OPUS readme: [hu-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/hu-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-26.zip](https://object.pouta.csc.fi/OPUS-MT-models/hu-sv/opus-2020-01-26.zip) * test set translations: [opus-2020-01-26.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/hu-sv/opus-2020-01-26.test.txt) * test set scores: [opus-2020-01-26.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/hu-sv/opus-2020-01-26.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.hu.sv | 52.6 | 0.686 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-hu-sv
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "hu", "sv", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #hu #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-hu-sv * source languages: hu * target languages: sv * OPUS readme: hu-sv * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 52.6, chr-F: 0.686
[ "### opus-mt-hu-sv\n\n\n* source languages: hu\n* target languages: sv\n* OPUS readme: hu-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 52.6, chr-F: 0.686" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hu #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-hu-sv\n\n\n* source languages: hu\n* target languages: sv\n* OPUS readme: hu-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 52.6, chr-F: 0.686" ]
[ 51, 106 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hu #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-hu-sv\n\n\n* source languages: hu\n* target languages: sv\n* OPUS readme: hu-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 52.6, chr-F: 0.686" ]
translation
transformers
### hun-ukr * source group: Hungarian * target group: Ukrainian * OPUS readme: [hun-ukr](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/hun-ukr/README.md) * model: transformer-align * source language(s): hun * target language(s): ukr * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/hun-ukr/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/hun-ukr/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/hun-ukr/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.hun.ukr | 41.2 | 0.611 | ### System Info: - hf_name: hun-ukr - source_languages: hun - target_languages: ukr - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/hun-ukr/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['hu', 'uk'] - src_constituents: {'hun'} - tgt_constituents: {'ukr'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/hun-ukr/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/hun-ukr/opus-2020-06-17.test.txt - src_alpha3: hun - tgt_alpha3: ukr - short_pair: hu-uk - chrF2_score: 0.611 - bleu: 41.2 - brevity_penalty: 0.966 - ref_len: 2568.0 - src_name: Hungarian - tgt_name: Ukrainian - train_date: 2020-06-17 - src_alpha2: hu - tgt_alpha2: uk - prefer_old: False - long_pair: hun-ukr - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["hu", "uk"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-hu-uk
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "hu", "uk", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "hu", "uk" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #hu #uk #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### hun-ukr * source group: Hungarian * target group: Ukrainian * OPUS readme: hun-ukr * model: transformer-align * source language(s): hun * target language(s): ukr * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 41.2, chr-F: 0.611 ### System Info: * hf\_name: hun-ukr * source\_languages: hun * target\_languages: ukr * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['hu', 'uk'] * src\_constituents: {'hun'} * tgt\_constituents: {'ukr'} * src\_multilingual: False * tgt\_multilingual: False * prepro: normalization + SentencePiece (spm32k,spm32k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: hun * tgt\_alpha3: ukr * short\_pair: hu-uk * chrF2\_score: 0.611 * bleu: 41.2 * brevity\_penalty: 0.966 * ref\_len: 2568.0 * src\_name: Hungarian * tgt\_name: Ukrainian * train\_date: 2020-06-17 * src\_alpha2: hu * tgt\_alpha2: uk * prefer\_old: False * long\_pair: hun-ukr * helsinki\_git\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 * transformers\_git\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b * port\_machine: brutasse * port\_time: 2020-08-21-14:41
[ "### hun-ukr\n\n\n* source group: Hungarian\n* target group: Ukrainian\n* OPUS readme: hun-ukr\n* model: transformer-align\n* source language(s): hun\n* target language(s): ukr\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 41.2, chr-F: 0.611", "### System Info:\n\n\n* hf\\_name: hun-ukr\n* source\\_languages: hun\n* target\\_languages: ukr\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['hu', 'uk']\n* src\\_constituents: {'hun'}\n* tgt\\_constituents: {'ukr'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: hun\n* tgt\\_alpha3: ukr\n* short\\_pair: hu-uk\n* chrF2\\_score: 0.611\n* bleu: 41.2\n* brevity\\_penalty: 0.966\n* ref\\_len: 2568.0\n* src\\_name: Hungarian\n* tgt\\_name: Ukrainian\n* train\\_date: 2020-06-17\n* src\\_alpha2: hu\n* tgt\\_alpha2: uk\n* prefer\\_old: False\n* long\\_pair: hun-ukr\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hu #uk #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### hun-ukr\n\n\n* source group: Hungarian\n* target group: Ukrainian\n* OPUS readme: hun-ukr\n* model: transformer-align\n* source language(s): hun\n* target language(s): ukr\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 41.2, chr-F: 0.611", "### System Info:\n\n\n* hf\\_name: hun-ukr\n* source\\_languages: hun\n* target\\_languages: ukr\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['hu', 'uk']\n* src\\_constituents: {'hun'}\n* tgt\\_constituents: {'ukr'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: hun\n* tgt\\_alpha3: ukr\n* short\\_pair: hu-uk\n* chrF2\\_score: 0.611\n* bleu: 41.2\n* brevity\\_penalty: 0.966\n* ref\\_len: 2568.0\n* src\\_name: Hungarian\n* tgt\\_name: Ukrainian\n* train\\_date: 2020-06-17\n* src\\_alpha2: hu\n* tgt\\_alpha2: uk\n* prefer\\_old: False\n* long\\_pair: hun-ukr\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ 51, 137, 401 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hu #uk #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### hun-ukr\n\n\n* source group: Hungarian\n* target group: Ukrainian\n* OPUS readme: hun-ukr\n* model: transformer-align\n* source language(s): hun\n* target language(s): ukr\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 41.2, chr-F: 0.611### System Info:\n\n\n* hf\\_name: hun-ukr\n* source\\_languages: hun\n* target\\_languages: ukr\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['hu', 'uk']\n* src\\_constituents: {'hun'}\n* tgt\\_constituents: {'ukr'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: hun\n* tgt\\_alpha3: ukr\n* short\\_pair: hu-uk\n* chrF2\\_score: 0.611\n* bleu: 41.2\n* brevity\\_penalty: 0.966\n* ref\\_len: 2568.0\n* src\\_name: Hungarian\n* tgt\\_name: Ukrainian\n* train\\_date: 2020-06-17\n* src\\_alpha2: hu\n* tgt\\_alpha2: uk\n* prefer\\_old: False\n* long\\_pair: hun-ukr\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
translation
transformers
### opus-mt-hy-en * source languages: hy * target languages: en * OPUS readme: [hy-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/hy-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/hy-en/opus-2019-12-18.zip) * test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/hy-en/opus-2019-12-18.test.txt) * test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/hy-en/opus-2019-12-18.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.hy.en | 29.5 | 0.466 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-hy-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "hy", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #hy #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-hy-en * source languages: hy * target languages: en * OPUS readme: hy-en * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 29.5, chr-F: 0.466
[ "### opus-mt-hy-en\n\n\n* source languages: hy\n* target languages: en\n* OPUS readme: hy-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 29.5, chr-F: 0.466" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hy #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-hy-en\n\n\n* source languages: hy\n* target languages: en\n* OPUS readme: hy-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 29.5, chr-F: 0.466" ]
[ 52, 109 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hy #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-hy-en\n\n\n* source languages: hy\n* target languages: en\n* OPUS readme: hy-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 29.5, chr-F: 0.466" ]
translation
transformers
### hye-rus * source group: Armenian * target group: Russian * OPUS readme: [hye-rus](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/hye-rus/README.md) * model: transformer-align * source language(s): hye hye_Latn * target language(s): rus * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/hye-rus/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/hye-rus/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/hye-rus/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.hye.rus | 25.6 | 0.476 | ### System Info: - hf_name: hye-rus - source_languages: hye - target_languages: rus - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/hye-rus/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['hy', 'ru'] - src_constituents: {'hye', 'hye_Latn'} - tgt_constituents: {'rus'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/hye-rus/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/hye-rus/opus-2020-06-16.test.txt - src_alpha3: hye - tgt_alpha3: rus - short_pair: hy-ru - chrF2_score: 0.47600000000000003 - bleu: 25.6 - brevity_penalty: 0.929 - ref_len: 1624.0 - src_name: Armenian - tgt_name: Russian - train_date: 2020-06-16 - src_alpha2: hy - tgt_alpha2: ru - prefer_old: False - long_pair: hye-rus - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["hy", "ru"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-hy-ru
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "hy", "ru", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "hy", "ru" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #hy #ru #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### hye-rus * source group: Armenian * target group: Russian * OPUS readme: hye-rus * model: transformer-align * source language(s): hye hye\_Latn * target language(s): rus * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 25.6, chr-F: 0.476 ### System Info: * hf\_name: hye-rus * source\_languages: hye * target\_languages: rus * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['hy', 'ru'] * src\_constituents: {'hye', 'hye\_Latn'} * tgt\_constituents: {'rus'} * src\_multilingual: False * tgt\_multilingual: False * prepro: normalization + SentencePiece (spm4k,spm4k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: hye * tgt\_alpha3: rus * short\_pair: hy-ru * chrF2\_score: 0.47600000000000003 * bleu: 25.6 * brevity\_penalty: 0.929 * ref\_len: 1624.0 * src\_name: Armenian * tgt\_name: Russian * train\_date: 2020-06-16 * src\_alpha2: hy * tgt\_alpha2: ru * prefer\_old: False * long\_pair: hye-rus * helsinki\_git\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 * transformers\_git\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b * port\_machine: brutasse * port\_time: 2020-08-21-14:41
[ "### hye-rus\n\n\n* source group: Armenian\n* target group: Russian\n* OPUS readme: hye-rus\n* model: transformer-align\n* source language(s): hye hye\\_Latn\n* target language(s): rus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm4k,spm4k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 25.6, chr-F: 0.476", "### System Info:\n\n\n* hf\\_name: hye-rus\n* source\\_languages: hye\n* target\\_languages: rus\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['hy', 'ru']\n* src\\_constituents: {'hye', 'hye\\_Latn'}\n* tgt\\_constituents: {'rus'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm4k,spm4k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: hye\n* tgt\\_alpha3: rus\n* short\\_pair: hy-ru\n* chrF2\\_score: 0.47600000000000003\n* bleu: 25.6\n* brevity\\_penalty: 0.929\n* ref\\_len: 1624.0\n* src\\_name: Armenian\n* tgt\\_name: Russian\n* train\\_date: 2020-06-16\n* src\\_alpha2: hy\n* tgt\\_alpha2: ru\n* prefer\\_old: False\n* long\\_pair: hye-rus\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hy #ru #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### hye-rus\n\n\n* source group: Armenian\n* target group: Russian\n* OPUS readme: hye-rus\n* model: transformer-align\n* source language(s): hye hye\\_Latn\n* target language(s): rus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm4k,spm4k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 25.6, chr-F: 0.476", "### System Info:\n\n\n* hf\\_name: hye-rus\n* source\\_languages: hye\n* target\\_languages: rus\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['hy', 'ru']\n* src\\_constituents: {'hye', 'hye\\_Latn'}\n* tgt\\_constituents: {'rus'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm4k,spm4k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: hye\n* tgt\\_alpha3: rus\n* short\\_pair: hy-ru\n* chrF2\\_score: 0.47600000000000003\n* bleu: 25.6\n* brevity\\_penalty: 0.929\n* ref\\_len: 1624.0\n* src\\_name: Armenian\n* tgt\\_name: Russian\n* train\\_date: 2020-06-16\n* src\\_alpha2: hy\n* tgt\\_alpha2: ru\n* prefer\\_old: False\n* long\\_pair: hye-rus\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ 52, 141, 415 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #hy #ru #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### hye-rus\n\n\n* source group: Armenian\n* target group: Russian\n* OPUS readme: hye-rus\n* model: transformer-align\n* source language(s): hye hye\\_Latn\n* target language(s): rus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm4k,spm4k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 25.6, chr-F: 0.476### System Info:\n\n\n* hf\\_name: hye-rus\n* source\\_languages: hye\n* target\\_languages: rus\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['hy', 'ru']\n* src\\_constituents: {'hye', 'hye\\_Latn'}\n* tgt\\_constituents: {'rus'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm4k,spm4k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: hye\n* tgt\\_alpha3: rus\n* short\\_pair: hy-ru\n* chrF2\\_score: 0.47600000000000003\n* bleu: 25.6\n* brevity\\_penalty: 0.929\n* ref\\_len: 1624.0\n* src\\_name: Armenian\n* tgt\\_name: Russian\n* train\\_date: 2020-06-16\n* src\\_alpha2: hy\n* tgt\\_alpha2: ru\n* prefer\\_old: False\n* long\\_pair: hye-rus\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
translation
transformers
### opus-mt-id-en * source languages: id * target languages: en * OPUS readme: [id-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/id-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/id-en/opus-2019-12-18.zip) * test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/id-en/opus-2019-12-18.test.txt) * test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/id-en/opus-2019-12-18.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.id.en | 47.7 | 0.647 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-id-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "id", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #id #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-id-en * source languages: id * target languages: en * OPUS readme: id-en * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 47.7, chr-F: 0.647
[ "### opus-mt-id-en\n\n\n* source languages: id\n* target languages: en\n* OPUS readme: id-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 47.7, chr-F: 0.647" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #id #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-id-en\n\n\n* source languages: id\n* target languages: en\n* OPUS readme: id-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 47.7, chr-F: 0.647" ]
[ 51, 106 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #id #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-id-en\n\n\n* source languages: id\n* target languages: en\n* OPUS readme: id-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 47.7, chr-F: 0.647" ]
translation
transformers
### opus-mt-id-es * source languages: id * target languages: es * OPUS readme: [id-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/id-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/id-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/id-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/id-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | GlobalVoices.id.es | 21.8 | 0.483 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-id-es
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "id", "es", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #id #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-id-es * source languages: id * target languages: es * OPUS readme: id-es * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 21.8, chr-F: 0.483
[ "### opus-mt-id-es\n\n\n* source languages: id\n* target languages: es\n* OPUS readme: id-es\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 21.8, chr-F: 0.483" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #id #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-id-es\n\n\n* source languages: id\n* target languages: es\n* OPUS readme: id-es\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 21.8, chr-F: 0.483" ]
[ 51, 106 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #id #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-id-es\n\n\n* source languages: id\n* target languages: es\n* OPUS readme: id-es\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 21.8, chr-F: 0.483" ]
translation
transformers
### opus-mt-id-fi * source languages: id * target languages: fi * OPUS readme: [id-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/id-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/id-fi/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/id-fi/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/id-fi/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.id.fi | 27.4 | 0.522 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-id-fi
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "id", "fi", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #id #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-id-fi * source languages: id * target languages: fi * OPUS readme: id-fi * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 27.4, chr-F: 0.522
[ "### opus-mt-id-fi\n\n\n* source languages: id\n* target languages: fi\n* OPUS readme: id-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 27.4, chr-F: 0.522" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #id #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-id-fi\n\n\n* source languages: id\n* target languages: fi\n* OPUS readme: id-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 27.4, chr-F: 0.522" ]
[ 51, 106 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #id #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-id-fi\n\n\n* source languages: id\n* target languages: fi\n* OPUS readme: id-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 27.4, chr-F: 0.522" ]
translation
transformers
### opus-mt-id-fr * source languages: id * target languages: fr * OPUS readme: [id-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/id-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/id-fr/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/id-fr/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/id-fr/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.id.fr | 43.8 | 0.616 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-id-fr
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "id", "fr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #id #fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-id-fr * source languages: id * target languages: fr * OPUS readme: id-fr * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 43.8, chr-F: 0.616
[ "### opus-mt-id-fr\n\n\n* source languages: id\n* target languages: fr\n* OPUS readme: id-fr\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 43.8, chr-F: 0.616" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #id #fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-id-fr\n\n\n* source languages: id\n* target languages: fr\n* OPUS readme: id-fr\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 43.8, chr-F: 0.616" ]
[ 51, 106 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #id #fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-id-fr\n\n\n* source languages: id\n* target languages: fr\n* OPUS readme: id-fr\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 43.8, chr-F: 0.616" ]
translation
transformers
### opus-mt-id-sv * source languages: id * target languages: sv * OPUS readme: [id-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/id-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/id-sv/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/id-sv/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/id-sv/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.id.sv | 32.7 | 0.527 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-id-sv
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "id", "sv", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #id #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-id-sv * source languages: id * target languages: sv * OPUS readme: id-sv * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 32.7, chr-F: 0.527
[ "### opus-mt-id-sv\n\n\n* source languages: id\n* target languages: sv\n* OPUS readme: id-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 32.7, chr-F: 0.527" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #id #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-id-sv\n\n\n* source languages: id\n* target languages: sv\n* OPUS readme: id-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 32.7, chr-F: 0.527" ]
[ 51, 106 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #id #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-id-sv\n\n\n* source languages: id\n* target languages: sv\n* OPUS readme: id-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 32.7, chr-F: 0.527" ]
translation
transformers
### opus-mt-ig-de * source languages: ig * target languages: de * OPUS readme: [ig-de](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ig-de/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/ig-de/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ig-de/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ig-de/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ig.de | 20.1 | 0.393 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-ig-de
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "ig", "de", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #ig #de #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-ig-de * source languages: ig * target languages: de * OPUS readme: ig-de * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 20.1, chr-F: 0.393
[ "### opus-mt-ig-de\n\n\n* source languages: ig\n* target languages: de\n* OPUS readme: ig-de\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 20.1, chr-F: 0.393" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ig #de #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-ig-de\n\n\n* source languages: ig\n* target languages: de\n* OPUS readme: ig-de\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 20.1, chr-F: 0.393" ]
[ 52, 109 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ig #de #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-ig-de\n\n\n* source languages: ig\n* target languages: de\n* OPUS readme: ig-de\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 20.1, chr-F: 0.393" ]
translation
transformers
### opus-mt-ig-en * source languages: ig * target languages: en * OPUS readme: [ig-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ig-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/ig-en/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ig-en/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ig-en/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ig.en | 36.7 | 0.520 | | Tatoeba.ig.en | 46.3 | 0.528 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-ig-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "ig", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #ig #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-ig-en * source languages: ig * target languages: en * OPUS readme: ig-en * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 36.7, chr-F: 0.520 testset: URL, BLEU: 46.3, chr-F: 0.528
[ "### opus-mt-ig-en\n\n\n* source languages: ig\n* target languages: en\n* OPUS readme: ig-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 36.7, chr-F: 0.520\ntestset: URL, BLEU: 46.3, chr-F: 0.528" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ig #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-ig-en\n\n\n* source languages: ig\n* target languages: en\n* OPUS readme: ig-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 36.7, chr-F: 0.520\ntestset: URL, BLEU: 46.3, chr-F: 0.528" ]
[ 52, 131 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ig #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-ig-en\n\n\n* source languages: ig\n* target languages: en\n* OPUS readme: ig-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 36.7, chr-F: 0.520\ntestset: URL, BLEU: 46.3, chr-F: 0.528" ]
translation
transformers
### opus-mt-ig-es * source languages: ig * target languages: es * OPUS readme: [ig-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ig-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/ig-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ig-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ig-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ig.es | 24.6 | 0.420 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-ig-es
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "ig", "es", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #ig #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-ig-es * source languages: ig * target languages: es * OPUS readme: ig-es * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 24.6, chr-F: 0.420
[ "### opus-mt-ig-es\n\n\n* source languages: ig\n* target languages: es\n* OPUS readme: ig-es\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 24.6, chr-F: 0.420" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ig #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-ig-es\n\n\n* source languages: ig\n* target languages: es\n* OPUS readme: ig-es\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 24.6, chr-F: 0.420" ]
[ 52, 108 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ig #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-ig-es\n\n\n* source languages: ig\n* target languages: es\n* OPUS readme: ig-es\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 24.6, chr-F: 0.420" ]
translation
transformers
### opus-mt-ig-fi * source languages: ig * target languages: fi * OPUS readme: [ig-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ig-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/ig-fi/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ig-fi/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ig-fi/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ig.fi | 23.5 | 0.451 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-ig-fi
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "ig", "fi", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #ig #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-ig-fi * source languages: ig * target languages: fi * OPUS readme: ig-fi * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 23.5, chr-F: 0.451
[ "### opus-mt-ig-fi\n\n\n* source languages: ig\n* target languages: fi\n* OPUS readme: ig-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 23.5, chr-F: 0.451" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ig #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-ig-fi\n\n\n* source languages: ig\n* target languages: fi\n* OPUS readme: ig-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 23.5, chr-F: 0.451" ]
[ 52, 108 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ig #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-ig-fi\n\n\n* source languages: ig\n* target languages: fi\n* OPUS readme: ig-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 23.5, chr-F: 0.451" ]
translation
transformers
### opus-mt-ig-fr * source languages: ig * target languages: fr * OPUS readme: [ig-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ig-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/ig-fr/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ig-fr/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ig-fr/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ig.fr | 25.6 | 0.427 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-ig-fr
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "ig", "fr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #ig #fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-ig-fr * source languages: ig * target languages: fr * OPUS readme: ig-fr * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 25.6, chr-F: 0.427
[ "### opus-mt-ig-fr\n\n\n* source languages: ig\n* target languages: fr\n* OPUS readme: ig-fr\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 25.6, chr-F: 0.427" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ig #fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-ig-fr\n\n\n* source languages: ig\n* target languages: fr\n* OPUS readme: ig-fr\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 25.6, chr-F: 0.427" ]
[ 52, 109 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ig #fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-ig-fr\n\n\n* source languages: ig\n* target languages: fr\n* OPUS readme: ig-fr\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 25.6, chr-F: 0.427" ]
translation
transformers
### opus-mt-ig-sv * source languages: ig * target languages: sv * OPUS readme: [ig-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ig-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/ig-sv/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ig-sv/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ig-sv/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ig.sv | 27.0 | 0.451 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-ig-sv
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "ig", "sv", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #ig #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-ig-sv * source languages: ig * target languages: sv * OPUS readme: ig-sv * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 27.0, chr-F: 0.451
[ "### opus-mt-ig-sv\n\n\n* source languages: ig\n* target languages: sv\n* OPUS readme: ig-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 27.0, chr-F: 0.451" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ig #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-ig-sv\n\n\n* source languages: ig\n* target languages: sv\n* OPUS readme: ig-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 27.0, chr-F: 0.451" ]
[ 52, 108 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ig #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-ig-sv\n\n\n* source languages: ig\n* target languages: sv\n* OPUS readme: ig-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 27.0, chr-F: 0.451" ]
translation
transformers
### iir-eng * source group: Indo-Iranian languages * target group: English * OPUS readme: [iir-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/iir-eng/README.md) * model: transformer * source language(s): asm awa ben bho gom guj hif_Latn hin jdt_Cyrl kur_Arab kur_Latn mai mar npi ori oss pan_Guru pes pes_Latn pes_Thaa pnb pus rom san_Deva sin snd_Arab tgk_Cyrl tly_Latn urd zza * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus2m-2020-08-01.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/iir-eng/opus2m-2020-08-01.zip) * test set translations: [opus2m-2020-08-01.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/iir-eng/opus2m-2020-08-01.test.txt) * test set scores: [opus2m-2020-08-01.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/iir-eng/opus2m-2020-08-01.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newsdev2014-hineng.hin.eng | 8.1 | 0.324 | | newsdev2019-engu-gujeng.guj.eng | 8.1 | 0.309 | | newstest2014-hien-hineng.hin.eng | 12.1 | 0.380 | | newstest2019-guen-gujeng.guj.eng | 6.0 | 0.280 | | Tatoeba-test.asm-eng.asm.eng | 13.9 | 0.327 | | Tatoeba-test.awa-eng.awa.eng | 7.0 | 0.219 | | Tatoeba-test.ben-eng.ben.eng | 42.5 | 0.576 | | Tatoeba-test.bho-eng.bho.eng | 27.3 | 0.452 | | Tatoeba-test.fas-eng.fas.eng | 5.6 | 0.262 | | Tatoeba-test.guj-eng.guj.eng | 15.9 | 0.350 | | Tatoeba-test.hif-eng.hif.eng | 10.1 | 0.247 | | Tatoeba-test.hin-eng.hin.eng | 36.5 | 0.544 | | Tatoeba-test.jdt-eng.jdt.eng | 11.4 | 0.094 | | Tatoeba-test.kok-eng.kok.eng | 6.6 | 0.256 | | Tatoeba-test.kur-eng.kur.eng | 3.4 | 0.149 | | Tatoeba-test.lah-eng.lah.eng | 17.4 | 0.301 | | Tatoeba-test.mai-eng.mai.eng | 65.4 | 0.703 | | Tatoeba-test.mar-eng.mar.eng | 22.5 | 0.468 | | Tatoeba-test.multi.eng | 21.3 | 0.424 | | Tatoeba-test.nep-eng.nep.eng | 3.4 | 0.185 | | Tatoeba-test.ori-eng.ori.eng | 4.8 | 0.244 | | Tatoeba-test.oss-eng.oss.eng | 1.6 | 0.173 | | Tatoeba-test.pan-eng.pan.eng | 14.8 | 0.348 | | Tatoeba-test.pus-eng.pus.eng | 1.1 | 0.182 | | Tatoeba-test.rom-eng.rom.eng | 2.8 | 0.185 | | Tatoeba-test.san-eng.san.eng | 2.8 | 0.185 | | Tatoeba-test.sin-eng.sin.eng | 22.8 | 0.474 | | Tatoeba-test.snd-eng.snd.eng | 8.2 | 0.287 | | Tatoeba-test.tgk-eng.tgk.eng | 11.9 | 0.321 | | Tatoeba-test.tly-eng.tly.eng | 0.9 | 0.076 | | Tatoeba-test.urd-eng.urd.eng | 23.9 | 0.438 | | Tatoeba-test.zza-eng.zza.eng | 0.6 | 0.098 | ### System Info: - hf_name: iir-eng - source_languages: iir - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/iir-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['bn', 'or', 'gu', 'mr', 'ur', 'hi', 'ps', 'os', 'as', 'si', 'iir', 'en'] - src_constituents: {'pnb', 'gom', 'ben', 'hif_Latn', 'ori', 'guj', 'pan_Guru', 'snd_Arab', 'npi', 'mar', 'urd', 'pes', 'bho', 'kur_Arab', 'tgk_Cyrl', 'hin', 'kur_Latn', 'pes_Thaa', 'pus', 'san_Deva', 'oss', 'tly_Latn', 'jdt_Cyrl', 'asm', 'zza', 'rom', 'mai', 'pes_Latn', 'awa', 'sin'} - tgt_constituents: {'eng'} - src_multilingual: True - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/iir-eng/opus2m-2020-08-01.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/iir-eng/opus2m-2020-08-01.test.txt - src_alpha3: iir - tgt_alpha3: eng - short_pair: iir-en - chrF2_score: 0.424 - bleu: 21.3 - brevity_penalty: 1.0 - ref_len: 67026.0 - src_name: Indo-Iranian languages - tgt_name: English - train_date: 2020-08-01 - src_alpha2: iir - tgt_alpha2: en - prefer_old: False - long_pair: iir-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["bn", "or", "gu", "mr", "ur", "hi", "ps", "os", "as", "si", "iir", "en"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-iir-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "bn", "or", "gu", "mr", "ur", "hi", "ps", "os", "as", "si", "iir", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "bn", "or", "gu", "mr", "ur", "hi", "ps", "os", "as", "si", "iir", "en" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #bn #or #gu #mr #ur #hi #ps #os #as #si #iir #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### iir-eng * source group: Indo-Iranian languages * target group: English * OPUS readme: iir-eng * model: transformer * source language(s): asm awa ben bho gom guj hif\_Latn hin jdt\_Cyrl kur\_Arab kur\_Latn mai mar npi ori oss pan\_Guru pes pes\_Latn pes\_Thaa pnb pus rom san\_Deva sin snd\_Arab tgk\_Cyrl tly\_Latn urd zza * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 8.1, chr-F: 0.324 testset: URL, BLEU: 8.1, chr-F: 0.309 testset: URL, BLEU: 12.1, chr-F: 0.380 testset: URL, BLEU: 6.0, chr-F: 0.280 testset: URL, BLEU: 13.9, chr-F: 0.327 testset: URL, BLEU: 7.0, chr-F: 0.219 testset: URL, BLEU: 42.5, chr-F: 0.576 testset: URL, BLEU: 27.3, chr-F: 0.452 testset: URL, BLEU: 5.6, chr-F: 0.262 testset: URL, BLEU: 15.9, chr-F: 0.350 testset: URL, BLEU: 10.1, chr-F: 0.247 testset: URL, BLEU: 36.5, chr-F: 0.544 testset: URL, BLEU: 11.4, chr-F: 0.094 testset: URL, BLEU: 6.6, chr-F: 0.256 testset: URL, BLEU: 3.4, chr-F: 0.149 testset: URL, BLEU: 17.4, chr-F: 0.301 testset: URL, BLEU: 65.4, chr-F: 0.703 testset: URL, BLEU: 22.5, chr-F: 0.468 testset: URL, BLEU: 21.3, chr-F: 0.424 testset: URL, BLEU: 3.4, chr-F: 0.185 testset: URL, BLEU: 4.8, chr-F: 0.244 testset: URL, BLEU: 1.6, chr-F: 0.173 testset: URL, BLEU: 14.8, chr-F: 0.348 testset: URL, BLEU: 1.1, chr-F: 0.182 testset: URL, BLEU: 2.8, chr-F: 0.185 testset: URL, BLEU: 2.8, chr-F: 0.185 testset: URL, BLEU: 22.8, chr-F: 0.474 testset: URL, BLEU: 8.2, chr-F: 0.287 testset: URL, BLEU: 11.9, chr-F: 0.321 testset: URL, BLEU: 0.9, chr-F: 0.076 testset: URL, BLEU: 23.9, chr-F: 0.438 testset: URL, BLEU: 0.6, chr-F: 0.098 ### System Info: * hf\_name: iir-eng * source\_languages: iir * target\_languages: eng * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['bn', 'or', 'gu', 'mr', 'ur', 'hi', 'ps', 'os', 'as', 'si', 'iir', 'en'] * src\_constituents: {'pnb', 'gom', 'ben', 'hif\_Latn', 'ori', 'guj', 'pan\_Guru', 'snd\_Arab', 'npi', 'mar', 'urd', 'pes', 'bho', 'kur\_Arab', 'tgk\_Cyrl', 'hin', 'kur\_Latn', 'pes\_Thaa', 'pus', 'san\_Deva', 'oss', 'tly\_Latn', 'jdt\_Cyrl', 'asm', 'zza', 'rom', 'mai', 'pes\_Latn', 'awa', 'sin'} * tgt\_constituents: {'eng'} * src\_multilingual: True * tgt\_multilingual: False * prepro: normalization + SentencePiece (spm32k,spm32k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: iir * tgt\_alpha3: eng * short\_pair: iir-en * chrF2\_score: 0.424 * bleu: 21.3 * brevity\_penalty: 1.0 * ref\_len: 67026.0 * src\_name: Indo-Iranian languages * tgt\_name: English * train\_date: 2020-08-01 * src\_alpha2: iir * tgt\_alpha2: en * prefer\_old: False * long\_pair: iir-eng * helsinki\_git\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 * transformers\_git\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b * port\_machine: brutasse * port\_time: 2020-08-21-14:41
[ "### iir-eng\n\n\n* source group: Indo-Iranian languages\n* target group: English\n* OPUS readme: iir-eng\n* model: transformer\n* source language(s): asm awa ben bho gom guj hif\\_Latn hin jdt\\_Cyrl kur\\_Arab kur\\_Latn mai mar npi ori oss pan\\_Guru pes pes\\_Latn pes\\_Thaa pnb pus rom san\\_Deva sin snd\\_Arab tgk\\_Cyrl tly\\_Latn urd zza\n* target language(s): eng\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 8.1, chr-F: 0.324\ntestset: URL, BLEU: 8.1, chr-F: 0.309\ntestset: URL, BLEU: 12.1, chr-F: 0.380\ntestset: URL, BLEU: 6.0, chr-F: 0.280\ntestset: URL, BLEU: 13.9, chr-F: 0.327\ntestset: URL, BLEU: 7.0, chr-F: 0.219\ntestset: URL, BLEU: 42.5, chr-F: 0.576\ntestset: URL, BLEU: 27.3, chr-F: 0.452\ntestset: URL, BLEU: 5.6, chr-F: 0.262\ntestset: URL, BLEU: 15.9, chr-F: 0.350\ntestset: URL, BLEU: 10.1, chr-F: 0.247\ntestset: URL, BLEU: 36.5, chr-F: 0.544\ntestset: URL, BLEU: 11.4, chr-F: 0.094\ntestset: URL, BLEU: 6.6, chr-F: 0.256\ntestset: URL, BLEU: 3.4, chr-F: 0.149\ntestset: URL, BLEU: 17.4, chr-F: 0.301\ntestset: URL, BLEU: 65.4, chr-F: 0.703\ntestset: URL, BLEU: 22.5, chr-F: 0.468\ntestset: URL, BLEU: 21.3, chr-F: 0.424\ntestset: URL, BLEU: 3.4, chr-F: 0.185\ntestset: URL, BLEU: 4.8, chr-F: 0.244\ntestset: URL, BLEU: 1.6, chr-F: 0.173\ntestset: URL, BLEU: 14.8, chr-F: 0.348\ntestset: URL, BLEU: 1.1, chr-F: 0.182\ntestset: URL, BLEU: 2.8, chr-F: 0.185\ntestset: URL, BLEU: 2.8, chr-F: 0.185\ntestset: URL, BLEU: 22.8, chr-F: 0.474\ntestset: URL, BLEU: 8.2, chr-F: 0.287\ntestset: URL, BLEU: 11.9, chr-F: 0.321\ntestset: URL, BLEU: 0.9, chr-F: 0.076\ntestset: URL, BLEU: 23.9, chr-F: 0.438\ntestset: URL, BLEU: 0.6, chr-F: 0.098", "### System Info:\n\n\n* hf\\_name: iir-eng\n* source\\_languages: iir\n* target\\_languages: eng\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['bn', 'or', 'gu', 'mr', 'ur', 'hi', 'ps', 'os', 'as', 'si', 'iir', 'en']\n* src\\_constituents: {'pnb', 'gom', 'ben', 'hif\\_Latn', 'ori', 'guj', 'pan\\_Guru', 'snd\\_Arab', 'npi', 'mar', 'urd', 'pes', 'bho', 'kur\\_Arab', 'tgk\\_Cyrl', 'hin', 'kur\\_Latn', 'pes\\_Thaa', 'pus', 'san\\_Deva', 'oss', 'tly\\_Latn', 'jdt\\_Cyrl', 'asm', 'zza', 'rom', 'mai', 'pes\\_Latn', 'awa', 'sin'}\n* tgt\\_constituents: {'eng'}\n* src\\_multilingual: True\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: iir\n* tgt\\_alpha3: eng\n* short\\_pair: iir-en\n* chrF2\\_score: 0.424\n* bleu: 21.3\n* brevity\\_penalty: 1.0\n* ref\\_len: 67026.0\n* src\\_name: Indo-Iranian languages\n* tgt\\_name: English\n* train\\_date: 2020-08-01\n* src\\_alpha2: iir\n* tgt\\_alpha2: en\n* prefer\\_old: False\n* long\\_pair: iir-eng\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #bn #or #gu #mr #ur #hi #ps #os #as #si #iir #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### iir-eng\n\n\n* source group: Indo-Iranian languages\n* target group: English\n* OPUS readme: iir-eng\n* model: transformer\n* source language(s): asm awa ben bho gom guj hif\\_Latn hin jdt\\_Cyrl kur\\_Arab kur\\_Latn mai mar npi ori oss pan\\_Guru pes pes\\_Latn pes\\_Thaa pnb pus rom san\\_Deva sin snd\\_Arab tgk\\_Cyrl tly\\_Latn urd zza\n* target language(s): eng\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 8.1, chr-F: 0.324\ntestset: URL, BLEU: 8.1, chr-F: 0.309\ntestset: URL, BLEU: 12.1, chr-F: 0.380\ntestset: URL, BLEU: 6.0, chr-F: 0.280\ntestset: URL, BLEU: 13.9, chr-F: 0.327\ntestset: URL, BLEU: 7.0, chr-F: 0.219\ntestset: URL, BLEU: 42.5, chr-F: 0.576\ntestset: URL, BLEU: 27.3, chr-F: 0.452\ntestset: URL, BLEU: 5.6, chr-F: 0.262\ntestset: URL, BLEU: 15.9, chr-F: 0.350\ntestset: URL, BLEU: 10.1, chr-F: 0.247\ntestset: URL, BLEU: 36.5, chr-F: 0.544\ntestset: URL, BLEU: 11.4, chr-F: 0.094\ntestset: URL, BLEU: 6.6, chr-F: 0.256\ntestset: URL, BLEU: 3.4, chr-F: 0.149\ntestset: URL, BLEU: 17.4, chr-F: 0.301\ntestset: URL, BLEU: 65.4, chr-F: 0.703\ntestset: URL, BLEU: 22.5, chr-F: 0.468\ntestset: URL, BLEU: 21.3, chr-F: 0.424\ntestset: URL, BLEU: 3.4, chr-F: 0.185\ntestset: URL, BLEU: 4.8, chr-F: 0.244\ntestset: URL, BLEU: 1.6, chr-F: 0.173\ntestset: URL, BLEU: 14.8, chr-F: 0.348\ntestset: URL, BLEU: 1.1, chr-F: 0.182\ntestset: URL, BLEU: 2.8, chr-F: 0.185\ntestset: URL, BLEU: 2.8, chr-F: 0.185\ntestset: URL, BLEU: 22.8, chr-F: 0.474\ntestset: URL, BLEU: 8.2, chr-F: 0.287\ntestset: URL, BLEU: 11.9, chr-F: 0.321\ntestset: URL, BLEU: 0.9, chr-F: 0.076\ntestset: URL, BLEU: 23.9, chr-F: 0.438\ntestset: URL, BLEU: 0.6, chr-F: 0.098", "### System Info:\n\n\n* hf\\_name: iir-eng\n* source\\_languages: iir\n* target\\_languages: eng\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['bn', 'or', 'gu', 'mr', 'ur', 'hi', 'ps', 'os', 'as', 'si', 'iir', 'en']\n* src\\_constituents: {'pnb', 'gom', 'ben', 'hif\\_Latn', 'ori', 'guj', 'pan\\_Guru', 'snd\\_Arab', 'npi', 'mar', 'urd', 'pes', 'bho', 'kur\\_Arab', 'tgk\\_Cyrl', 'hin', 'kur\\_Latn', 'pes\\_Thaa', 'pus', 'san\\_Deva', 'oss', 'tly\\_Latn', 'jdt\\_Cyrl', 'asm', 'zza', 'rom', 'mai', 'pes\\_Latn', 'awa', 'sin'}\n* tgt\\_constituents: {'eng'}\n* src\\_multilingual: True\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: iir\n* tgt\\_alpha3: eng\n* short\\_pair: iir-en\n* chrF2\\_score: 0.424\n* bleu: 21.3\n* brevity\\_penalty: 1.0\n* ref\\_len: 67026.0\n* src\\_name: Indo-Iranian languages\n* tgt\\_name: English\n* train\\_date: 2020-08-01\n* src\\_alpha2: iir\n* tgt\\_alpha2: en\n* prefer\\_old: False\n* long\\_pair: iir-eng\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ 72, 923, 625 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #bn #or #gu #mr #ur #hi #ps #os #as #si #iir #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### iir-eng\n\n\n* source group: Indo-Iranian languages\n* target group: English\n* OPUS readme: iir-eng\n* model: transformer\n* source language(s): asm awa ben bho gom guj hif\\_Latn hin jdt\\_Cyrl kur\\_Arab kur\\_Latn mai mar npi ori oss pan\\_Guru pes pes\\_Latn pes\\_Thaa pnb pus rom san\\_Deva sin snd\\_Arab tgk\\_Cyrl tly\\_Latn urd zza\n* target language(s): eng\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 8.1, chr-F: 0.324\ntestset: URL, BLEU: 8.1, chr-F: 0.309\ntestset: URL, BLEU: 12.1, chr-F: 0.380\ntestset: URL, BLEU: 6.0, chr-F: 0.280\ntestset: URL, BLEU: 13.9, chr-F: 0.327\ntestset: URL, BLEU: 7.0, chr-F: 0.219\ntestset: URL, BLEU: 42.5, chr-F: 0.576\ntestset: URL, BLEU: 27.3, chr-F: 0.452\ntestset: URL, BLEU: 5.6, chr-F: 0.262\ntestset: URL, BLEU: 15.9, chr-F: 0.350\ntestset: URL, BLEU: 10.1, chr-F: 0.247\ntestset: URL, BLEU: 36.5, chr-F: 0.544\ntestset: URL, BLEU: 11.4, chr-F: 0.094\ntestset: URL, BLEU: 6.6, chr-F: 0.256\ntestset: URL, BLEU: 3.4, chr-F: 0.149\ntestset: URL, BLEU: 17.4, chr-F: 0.301\ntestset: URL, BLEU: 65.4, chr-F: 0.703\ntestset: URL, BLEU: 22.5, chr-F: 0.468\ntestset: URL, BLEU: 21.3, chr-F: 0.424\ntestset: URL, BLEU: 3.4, chr-F: 0.185\ntestset: URL, BLEU: 4.8, chr-F: 0.244\ntestset: URL, BLEU: 1.6, chr-F: 0.173\ntestset: URL, BLEU: 14.8, chr-F: 0.348\ntestset: URL, BLEU: 1.1, chr-F: 0.182\ntestset: URL, BLEU: 2.8, chr-F: 0.185\ntestset: URL, BLEU: 2.8, chr-F: 0.185\ntestset: URL, BLEU: 22.8, chr-F: 0.474\ntestset: URL, BLEU: 8.2, chr-F: 0.287\ntestset: URL, BLEU: 11.9, chr-F: 0.321\ntestset: URL, BLEU: 0.9, chr-F: 0.076\ntestset: URL, BLEU: 23.9, chr-F: 0.438\ntestset: URL, BLEU: 0.6, chr-F: 0.098### System Info:\n\n\n* hf\\_name: iir-eng\n* source\\_languages: iir\n* target\\_languages: eng\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['bn', 'or', 'gu', 'mr', 'ur', 'hi', 'ps', 'os', 'as', 'si', 'iir', 'en']\n* src\\_constituents: {'pnb', 'gom', 'ben', 'hif\\_Latn', 'ori', 'guj', 'pan\\_Guru', 'snd\\_Arab', 'npi', 'mar', 'urd', 'pes', 'bho', 'kur\\_Arab', 'tgk\\_Cyrl', 'hin', 'kur\\_Latn', 'pes\\_Thaa', 'pus', 'san\\_Deva', 'oss', 'tly\\_Latn', 'jdt\\_Cyrl', 'asm', 'zza', 'rom', 'mai', 'pes\\_Latn', 'awa', 'sin'}\n* tgt\\_constituents: {'eng'}\n* src\\_multilingual: True\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: iir\n* tgt\\_alpha3: eng\n* short\\_pair: iir-en\n* chrF2\\_score: 0.424\n* bleu: 21.3\n* brevity\\_penalty: 1.0\n* ref\\_len: 67026.0\n* src\\_name: Indo-Iranian languages\n* tgt\\_name: English\n* train\\_date: 2020-08-01\n* src\\_alpha2: iir\n* tgt\\_alpha2: en\n* prefer\\_old: False\n* long\\_pair: iir-eng\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
translation
transformers
### iir-iir * source group: Indo-Iranian languages * target group: Indo-Iranian languages * OPUS readme: [iir-iir](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/iir-iir/README.md) * model: transformer * source language(s): asm hin mar urd zza * target language(s): asm hin mar urd zza * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-07-27.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/iir-iir/opus-2020-07-27.zip) * test set translations: [opus-2020-07-27.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/iir-iir/opus-2020-07-27.test.txt) * test set scores: [opus-2020-07-27.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/iir-iir/opus-2020-07-27.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.asm-hin.asm.hin | 3.5 | 0.202 | | Tatoeba-test.asm-zza.asm.zza | 12.4 | 0.014 | | Tatoeba-test.hin-asm.hin.asm | 6.2 | 0.238 | | Tatoeba-test.hin-mar.hin.mar | 27.0 | 0.560 | | Tatoeba-test.hin-urd.hin.urd | 21.4 | 0.507 | | Tatoeba-test.mar-hin.mar.hin | 13.4 | 0.463 | | Tatoeba-test.multi.multi | 17.7 | 0.460 | | Tatoeba-test.urd-hin.urd.hin | 13.4 | 0.363 | | Tatoeba-test.zza-asm.zza.asm | 5.3 | 0.000 | ### System Info: - hf_name: iir-iir - source_languages: iir - target_languages: iir - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/iir-iir/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['bn', 'or', 'gu', 'mr', 'ur', 'hi', 'ps', 'os', 'as', 'si', 'iir'] - src_constituents: {'pnb', 'gom', 'ben', 'hif_Latn', 'ori', 'guj', 'pan_Guru', 'snd_Arab', 'npi', 'mar', 'urd', 'pes', 'bho', 'kur_Arab', 'tgk_Cyrl', 'hin', 'kur_Latn', 'pes_Thaa', 'pus', 'san_Deva', 'oss', 'tly_Latn', 'jdt_Cyrl', 'asm', 'zza', 'rom', 'mai', 'pes_Latn', 'awa', 'sin'} - tgt_constituents: {'pnb', 'gom', 'ben', 'hif_Latn', 'ori', 'guj', 'pan_Guru', 'snd_Arab', 'npi', 'mar', 'urd', 'pes', 'bho', 'kur_Arab', 'tgk_Cyrl', 'hin', 'kur_Latn', 'pes_Thaa', 'pus', 'san_Deva', 'oss', 'tly_Latn', 'jdt_Cyrl', 'asm', 'zza', 'rom', 'mai', 'pes_Latn', 'awa', 'sin'} - src_multilingual: True - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/iir-iir/opus-2020-07-27.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/iir-iir/opus-2020-07-27.test.txt - src_alpha3: iir - tgt_alpha3: iir - short_pair: iir-iir - chrF2_score: 0.46 - bleu: 17.7 - brevity_penalty: 1.0 - ref_len: 4992.0 - src_name: Indo-Iranian languages - tgt_name: Indo-Iranian languages - train_date: 2020-07-27 - src_alpha2: iir - tgt_alpha2: iir - prefer_old: False - long_pair: iir-iir - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["bn", "or", "gu", "mr", "ur", "hi", "ps", "os", "as", "si", "iir"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-iir-iir
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "bn", "or", "gu", "mr", "ur", "hi", "ps", "os", "as", "si", "iir", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "bn", "or", "gu", "mr", "ur", "hi", "ps", "os", "as", "si", "iir" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #bn #or #gu #mr #ur #hi #ps #os #as #si #iir #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### iir-iir * source group: Indo-Iranian languages * target group: Indo-Iranian languages * OPUS readme: iir-iir * model: transformer * source language(s): asm hin mar urd zza * target language(s): asm hin mar urd zza * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of '>>id<<' (id = valid target language ID) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 3.5, chr-F: 0.202 testset: URL, BLEU: 12.4, chr-F: 0.014 testset: URL, BLEU: 6.2, chr-F: 0.238 testset: URL, BLEU: 27.0, chr-F: 0.560 testset: URL, BLEU: 21.4, chr-F: 0.507 testset: URL, BLEU: 13.4, chr-F: 0.463 testset: URL, BLEU: 17.7, chr-F: 0.460 testset: URL, BLEU: 13.4, chr-F: 0.363 testset: URL, BLEU: 5.3, chr-F: 0.000 ### System Info: * hf\_name: iir-iir * source\_languages: iir * target\_languages: iir * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['bn', 'or', 'gu', 'mr', 'ur', 'hi', 'ps', 'os', 'as', 'si', 'iir'] * src\_constituents: {'pnb', 'gom', 'ben', 'hif\_Latn', 'ori', 'guj', 'pan\_Guru', 'snd\_Arab', 'npi', 'mar', 'urd', 'pes', 'bho', 'kur\_Arab', 'tgk\_Cyrl', 'hin', 'kur\_Latn', 'pes\_Thaa', 'pus', 'san\_Deva', 'oss', 'tly\_Latn', 'jdt\_Cyrl', 'asm', 'zza', 'rom', 'mai', 'pes\_Latn', 'awa', 'sin'} * tgt\_constituents: {'pnb', 'gom', 'ben', 'hif\_Latn', 'ori', 'guj', 'pan\_Guru', 'snd\_Arab', 'npi', 'mar', 'urd', 'pes', 'bho', 'kur\_Arab', 'tgk\_Cyrl', 'hin', 'kur\_Latn', 'pes\_Thaa', 'pus', 'san\_Deva', 'oss', 'tly\_Latn', 'jdt\_Cyrl', 'asm', 'zza', 'rom', 'mai', 'pes\_Latn', 'awa', 'sin'} * src\_multilingual: True * tgt\_multilingual: True * prepro: normalization + SentencePiece (spm32k,spm32k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: iir * tgt\_alpha3: iir * short\_pair: iir-iir * chrF2\_score: 0.46 * bleu: 17.7 * brevity\_penalty: 1.0 * ref\_len: 4992.0 * src\_name: Indo-Iranian languages * tgt\_name: Indo-Iranian languages * train\_date: 2020-07-27 * src\_alpha2: iir * tgt\_alpha2: iir * prefer\_old: False * long\_pair: iir-iir * helsinki\_git\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 * transformers\_git\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b * port\_machine: brutasse * port\_time: 2020-08-21-14:41
[ "### iir-iir\n\n\n* source group: Indo-Iranian languages\n* target group: Indo-Iranian languages\n* OPUS readme: iir-iir\n* model: transformer\n* source language(s): asm hin mar urd zza\n* target language(s): asm hin mar urd zza\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* a sentence initial language token is required in the form of '>>id<<' (id = valid target language ID)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 3.5, chr-F: 0.202\ntestset: URL, BLEU: 12.4, chr-F: 0.014\ntestset: URL, BLEU: 6.2, chr-F: 0.238\ntestset: URL, BLEU: 27.0, chr-F: 0.560\ntestset: URL, BLEU: 21.4, chr-F: 0.507\ntestset: URL, BLEU: 13.4, chr-F: 0.463\ntestset: URL, BLEU: 17.7, chr-F: 0.460\ntestset: URL, BLEU: 13.4, chr-F: 0.363\ntestset: URL, BLEU: 5.3, chr-F: 0.000", "### System Info:\n\n\n* hf\\_name: iir-iir\n* source\\_languages: iir\n* target\\_languages: iir\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['bn', 'or', 'gu', 'mr', 'ur', 'hi', 'ps', 'os', 'as', 'si', 'iir']\n* src\\_constituents: {'pnb', 'gom', 'ben', 'hif\\_Latn', 'ori', 'guj', 'pan\\_Guru', 'snd\\_Arab', 'npi', 'mar', 'urd', 'pes', 'bho', 'kur\\_Arab', 'tgk\\_Cyrl', 'hin', 'kur\\_Latn', 'pes\\_Thaa', 'pus', 'san\\_Deva', 'oss', 'tly\\_Latn', 'jdt\\_Cyrl', 'asm', 'zza', 'rom', 'mai', 'pes\\_Latn', 'awa', 'sin'}\n* tgt\\_constituents: {'pnb', 'gom', 'ben', 'hif\\_Latn', 'ori', 'guj', 'pan\\_Guru', 'snd\\_Arab', 'npi', 'mar', 'urd', 'pes', 'bho', 'kur\\_Arab', 'tgk\\_Cyrl', 'hin', 'kur\\_Latn', 'pes\\_Thaa', 'pus', 'san\\_Deva', 'oss', 'tly\\_Latn', 'jdt\\_Cyrl', 'asm', 'zza', 'rom', 'mai', 'pes\\_Latn', 'awa', 'sin'}\n* src\\_multilingual: True\n* tgt\\_multilingual: True\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: iir\n* tgt\\_alpha3: iir\n* short\\_pair: iir-iir\n* chrF2\\_score: 0.46\n* bleu: 17.7\n* brevity\\_penalty: 1.0\n* ref\\_len: 4992.0\n* src\\_name: Indo-Iranian languages\n* tgt\\_name: Indo-Iranian languages\n* train\\_date: 2020-07-27\n* src\\_alpha2: iir\n* tgt\\_alpha2: iir\n* prefer\\_old: False\n* long\\_pair: iir-iir\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #bn #or #gu #mr #ur #hi #ps #os #as #si #iir #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### iir-iir\n\n\n* source group: Indo-Iranian languages\n* target group: Indo-Iranian languages\n* OPUS readme: iir-iir\n* model: transformer\n* source language(s): asm hin mar urd zza\n* target language(s): asm hin mar urd zza\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* a sentence initial language token is required in the form of '>>id<<' (id = valid target language ID)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 3.5, chr-F: 0.202\ntestset: URL, BLEU: 12.4, chr-F: 0.014\ntestset: URL, BLEU: 6.2, chr-F: 0.238\ntestset: URL, BLEU: 27.0, chr-F: 0.560\ntestset: URL, BLEU: 21.4, chr-F: 0.507\ntestset: URL, BLEU: 13.4, chr-F: 0.463\ntestset: URL, BLEU: 17.7, chr-F: 0.460\ntestset: URL, BLEU: 13.4, chr-F: 0.363\ntestset: URL, BLEU: 5.3, chr-F: 0.000", "### System Info:\n\n\n* hf\\_name: iir-iir\n* source\\_languages: iir\n* target\\_languages: iir\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['bn', 'or', 'gu', 'mr', 'ur', 'hi', 'ps', 'os', 'as', 'si', 'iir']\n* src\\_constituents: {'pnb', 'gom', 'ben', 'hif\\_Latn', 'ori', 'guj', 'pan\\_Guru', 'snd\\_Arab', 'npi', 'mar', 'urd', 'pes', 'bho', 'kur\\_Arab', 'tgk\\_Cyrl', 'hin', 'kur\\_Latn', 'pes\\_Thaa', 'pus', 'san\\_Deva', 'oss', 'tly\\_Latn', 'jdt\\_Cyrl', 'asm', 'zza', 'rom', 'mai', 'pes\\_Latn', 'awa', 'sin'}\n* tgt\\_constituents: {'pnb', 'gom', 'ben', 'hif\\_Latn', 'ori', 'guj', 'pan\\_Guru', 'snd\\_Arab', 'npi', 'mar', 'urd', 'pes', 'bho', 'kur\\_Arab', 'tgk\\_Cyrl', 'hin', 'kur\\_Latn', 'pes\\_Thaa', 'pus', 'san\\_Deva', 'oss', 'tly\\_Latn', 'jdt\\_Cyrl', 'asm', 'zza', 'rom', 'mai', 'pes\\_Latn', 'awa', 'sin'}\n* src\\_multilingual: True\n* tgt\\_multilingual: True\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: iir\n* tgt\\_alpha3: iir\n* short\\_pair: iir-iir\n* chrF2\\_score: 0.46\n* bleu: 17.7\n* brevity\\_penalty: 1.0\n* ref\\_len: 4992.0\n* src\\_name: Indo-Iranian languages\n* tgt\\_name: Indo-Iranian languages\n* train\\_date: 2020-07-27\n* src\\_alpha2: iir\n* tgt\\_alpha2: iir\n* prefer\\_old: False\n* long\\_pair: iir-iir\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ 70, 359, 815 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #bn #or #gu #mr #ur #hi #ps #os #as #si #iir #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### iir-iir\n\n\n* source group: Indo-Iranian languages\n* target group: Indo-Iranian languages\n* OPUS readme: iir-iir\n* model: transformer\n* source language(s): asm hin mar urd zza\n* target language(s): asm hin mar urd zza\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* a sentence initial language token is required in the form of '>>id<<' (id = valid target language ID)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 3.5, chr-F: 0.202\ntestset: URL, BLEU: 12.4, chr-F: 0.014\ntestset: URL, BLEU: 6.2, chr-F: 0.238\ntestset: URL, BLEU: 27.0, chr-F: 0.560\ntestset: URL, BLEU: 21.4, chr-F: 0.507\ntestset: URL, BLEU: 13.4, chr-F: 0.463\ntestset: URL, BLEU: 17.7, chr-F: 0.460\ntestset: URL, BLEU: 13.4, chr-F: 0.363\ntestset: URL, BLEU: 5.3, chr-F: 0.000### System Info:\n\n\n* hf\\_name: iir-iir\n* source\\_languages: iir\n* target\\_languages: iir\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['bn', 'or', 'gu', 'mr', 'ur', 'hi', 'ps', 'os', 'as', 'si', 'iir']\n* src\\_constituents: {'pnb', 'gom', 'ben', 'hif\\_Latn', 'ori', 'guj', 'pan\\_Guru', 'snd\\_Arab', 'npi', 'mar', 'urd', 'pes', 'bho', 'kur\\_Arab', 'tgk\\_Cyrl', 'hin', 'kur\\_Latn', 'pes\\_Thaa', 'pus', 'san\\_Deva', 'oss', 'tly\\_Latn', 'jdt\\_Cyrl', 'asm', 'zza', 'rom', 'mai', 'pes\\_Latn', 'awa', 'sin'}\n* tgt\\_constituents: {'pnb', 'gom', 'ben', 'hif\\_Latn', 'ori', 'guj', 'pan\\_Guru', 'snd\\_Arab', 'npi', 'mar', 'urd', 'pes', 'bho', 'kur\\_Arab', 'tgk\\_Cyrl', 'hin', 'kur\\_Latn', 'pes\\_Thaa', 'pus', 'san\\_Deva', 'oss', 'tly\\_Latn', 'jdt\\_Cyrl', 'asm', 'zza', 'rom', 'mai', 'pes\\_Latn', 'awa', 'sin'}\n* src\\_multilingual: True\n* tgt\\_multilingual: True\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: iir\n* tgt\\_alpha3: iir\n* short\\_pair: iir-iir\n* chrF2\\_score: 0.46\n* bleu: 17.7\n* brevity\\_penalty: 1.0\n* ref\\_len: 4992.0\n* src\\_name: Indo-Iranian languages\n* tgt\\_name: Indo-Iranian languages\n* train\\_date: 2020-07-27\n* src\\_alpha2: iir\n* tgt\\_alpha2: iir\n* prefer\\_old: False\n* long\\_pair: iir-iir\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
translation
transformers
### opus-mt-ilo-de * source languages: ilo * target languages: de * OPUS readme: [ilo-de](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ilo-de/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/ilo-de/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ilo-de/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ilo-de/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ilo.de | 26.1 | 0.474 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-ilo-de
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "ilo", "de", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #ilo #de #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-ilo-de * source languages: ilo * target languages: de * OPUS readme: ilo-de * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 26.1, chr-F: 0.474
[ "### opus-mt-ilo-de\n\n\n* source languages: ilo\n* target languages: de\n* OPUS readme: ilo-de\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 26.1, chr-F: 0.474" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ilo #de #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-ilo-de\n\n\n* source languages: ilo\n* target languages: de\n* OPUS readme: ilo-de\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 26.1, chr-F: 0.474" ]
[ 52, 109 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ilo #de #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-ilo-de\n\n\n* source languages: ilo\n* target languages: de\n* OPUS readme: ilo-de\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 26.1, chr-F: 0.474" ]
translation
transformers
### ilo-eng * source group: Iloko * target group: English * OPUS readme: [ilo-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ilo-eng/README.md) * model: transformer-align * source language(s): ilo * target language(s): eng * model: transformer-align * pre-processing: normalization + SentencePiece (spm12k,spm12k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ilo-eng/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ilo-eng/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ilo-eng/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.ilo.eng | 36.4 | 0.558 | ### System Info: - hf_name: ilo-eng - source_languages: ilo - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ilo-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ilo', 'en'] - src_constituents: {'ilo'} - tgt_constituents: {'eng'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm12k,spm12k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ilo-eng/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ilo-eng/opus-2020-06-16.test.txt - src_alpha3: ilo - tgt_alpha3: eng - short_pair: ilo-en - chrF2_score: 0.5579999999999999 - bleu: 36.4 - brevity_penalty: 1.0 - ref_len: 7384.0 - src_name: Iloko - tgt_name: English - train_date: 2020-06-16 - src_alpha2: ilo - tgt_alpha2: en - prefer_old: False - long_pair: ilo-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["ilo", "en"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-ilo-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "ilo", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "ilo", "en" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #ilo #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### ilo-eng * source group: Iloko * target group: English * OPUS readme: ilo-eng * model: transformer-align * source language(s): ilo * target language(s): eng * model: transformer-align * pre-processing: normalization + SentencePiece (spm12k,spm12k) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 36.4, chr-F: 0.558 ### System Info: * hf\_name: ilo-eng * source\_languages: ilo * target\_languages: eng * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['ilo', 'en'] * src\_constituents: {'ilo'} * tgt\_constituents: {'eng'} * src\_multilingual: False * tgt\_multilingual: False * prepro: normalization + SentencePiece (spm12k,spm12k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: ilo * tgt\_alpha3: eng * short\_pair: ilo-en * chrF2\_score: 0.5579999999999999 * bleu: 36.4 * brevity\_penalty: 1.0 * ref\_len: 7384.0 * src\_name: Iloko * tgt\_name: English * train\_date: 2020-06-16 * src\_alpha2: ilo * tgt\_alpha2: en * prefer\_old: False * long\_pair: ilo-eng * helsinki\_git\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 * transformers\_git\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b * port\_machine: brutasse * port\_time: 2020-08-21-14:41
[ "### ilo-eng\n\n\n* source group: Iloko\n* target group: English\n* OPUS readme: ilo-eng\n* model: transformer-align\n* source language(s): ilo\n* target language(s): eng\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm12k,spm12k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 36.4, chr-F: 0.558", "### System Info:\n\n\n* hf\\_name: ilo-eng\n* source\\_languages: ilo\n* target\\_languages: eng\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['ilo', 'en']\n* src\\_constituents: {'ilo'}\n* tgt\\_constituents: {'eng'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm12k,spm12k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: ilo\n* tgt\\_alpha3: eng\n* short\\_pair: ilo-en\n* chrF2\\_score: 0.5579999999999999\n* bleu: 36.4\n* brevity\\_penalty: 1.0\n* ref\\_len: 7384.0\n* src\\_name: Iloko\n* tgt\\_name: English\n* train\\_date: 2020-06-16\n* src\\_alpha2: ilo\n* tgt\\_alpha2: en\n* prefer\\_old: False\n* long\\_pair: ilo-eng\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ilo #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### ilo-eng\n\n\n* source group: Iloko\n* target group: English\n* OPUS readme: ilo-eng\n* model: transformer-align\n* source language(s): ilo\n* target language(s): eng\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm12k,spm12k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 36.4, chr-F: 0.558", "### System Info:\n\n\n* hf\\_name: ilo-eng\n* source\\_languages: ilo\n* target\\_languages: eng\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['ilo', 'en']\n* src\\_constituents: {'ilo'}\n* tgt\\_constituents: {'eng'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm12k,spm12k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: ilo\n* tgt\\_alpha3: eng\n* short\\_pair: ilo-en\n* chrF2\\_score: 0.5579999999999999\n* bleu: 36.4\n* brevity\\_penalty: 1.0\n* ref\\_len: 7384.0\n* src\\_name: Iloko\n* tgt\\_name: English\n* train\\_date: 2020-06-16\n* src\\_alpha2: ilo\n* tgt\\_alpha2: en\n* prefer\\_old: False\n* long\\_pair: ilo-eng\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ 52, 135, 413 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ilo #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### ilo-eng\n\n\n* source group: Iloko\n* target group: English\n* OPUS readme: ilo-eng\n* model: transformer-align\n* source language(s): ilo\n* target language(s): eng\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm12k,spm12k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 36.4, chr-F: 0.558### System Info:\n\n\n* hf\\_name: ilo-eng\n* source\\_languages: ilo\n* target\\_languages: eng\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['ilo', 'en']\n* src\\_constituents: {'ilo'}\n* tgt\\_constituents: {'eng'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm12k,spm12k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: ilo\n* tgt\\_alpha3: eng\n* short\\_pair: ilo-en\n* chrF2\\_score: 0.5579999999999999\n* bleu: 36.4\n* brevity\\_penalty: 1.0\n* ref\\_len: 7384.0\n* src\\_name: Iloko\n* tgt\\_name: English\n* train\\_date: 2020-06-16\n* src\\_alpha2: ilo\n* tgt\\_alpha2: en\n* prefer\\_old: False\n* long\\_pair: ilo-eng\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
translation
transformers
### opus-mt-ilo-es * source languages: ilo * target languages: es * OPUS readme: [ilo-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ilo-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/ilo-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ilo-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ilo-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ilo.es | 30.7 | 0.496 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-ilo-es
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "ilo", "es", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #ilo #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-ilo-es * source languages: ilo * target languages: es * OPUS readme: ilo-es * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 30.7, chr-F: 0.496
[ "### opus-mt-ilo-es\n\n\n* source languages: ilo\n* target languages: es\n* OPUS readme: ilo-es\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 30.7, chr-F: 0.496" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ilo #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-ilo-es\n\n\n* source languages: ilo\n* target languages: es\n* OPUS readme: ilo-es\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 30.7, chr-F: 0.496" ]
[ 52, 109 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ilo #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-ilo-es\n\n\n* source languages: ilo\n* target languages: es\n* OPUS readme: ilo-es\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 30.7, chr-F: 0.496" ]
translation
transformers
### opus-mt-ilo-fi * source languages: ilo * target languages: fi * OPUS readme: [ilo-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ilo-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/ilo-fi/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ilo-fi/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ilo-fi/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ilo.fi | 27.7 | 0.516 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-ilo-fi
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "ilo", "fi", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #ilo #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-ilo-fi * source languages: ilo * target languages: fi * OPUS readme: ilo-fi * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 27.7, chr-F: 0.516
[ "### opus-mt-ilo-fi\n\n\n* source languages: ilo\n* target languages: fi\n* OPUS readme: ilo-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 27.7, chr-F: 0.516" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ilo #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-ilo-fi\n\n\n* source languages: ilo\n* target languages: fi\n* OPUS readme: ilo-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 27.7, chr-F: 0.516" ]
[ 52, 109 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ilo #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-ilo-fi\n\n\n* source languages: ilo\n* target languages: fi\n* OPUS readme: ilo-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 27.7, chr-F: 0.516" ]
translation
transformers
### opus-mt-ilo-sv * source languages: ilo * target languages: sv * OPUS readme: [ilo-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ilo-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/ilo-sv/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ilo-sv/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ilo-sv/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.ilo.sv | 31.9 | 0.515 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-ilo-sv
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "ilo", "sv", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #ilo #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-ilo-sv * source languages: ilo * target languages: sv * OPUS readme: ilo-sv * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 31.9, chr-F: 0.515
[ "### opus-mt-ilo-sv\n\n\n* source languages: ilo\n* target languages: sv\n* OPUS readme: ilo-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 31.9, chr-F: 0.515" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ilo #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-ilo-sv\n\n\n* source languages: ilo\n* target languages: sv\n* OPUS readme: ilo-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 31.9, chr-F: 0.515" ]
[ 52, 109 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ilo #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-ilo-sv\n\n\n* source languages: ilo\n* target languages: sv\n* OPUS readme: ilo-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 31.9, chr-F: 0.515" ]
translation
transformers
### inc-eng * source group: Indic languages * target group: English * OPUS readme: [inc-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/inc-eng/README.md) * model: transformer * source language(s): asm awa ben bho gom guj hif_Latn hin mai mar npi ori pan_Guru pnb rom san_Deva sin snd_Arab urd * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus2m-2020-08-01.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/inc-eng/opus2m-2020-08-01.zip) * test set translations: [opus2m-2020-08-01.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/inc-eng/opus2m-2020-08-01.test.txt) * test set scores: [opus2m-2020-08-01.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/inc-eng/opus2m-2020-08-01.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newsdev2014-hineng.hin.eng | 8.9 | 0.341 | | newsdev2019-engu-gujeng.guj.eng | 8.7 | 0.321 | | newstest2014-hien-hineng.hin.eng | 13.1 | 0.396 | | newstest2019-guen-gujeng.guj.eng | 6.5 | 0.290 | | Tatoeba-test.asm-eng.asm.eng | 18.1 | 0.363 | | Tatoeba-test.awa-eng.awa.eng | 6.2 | 0.222 | | Tatoeba-test.ben-eng.ben.eng | 44.7 | 0.595 | | Tatoeba-test.bho-eng.bho.eng | 29.4 | 0.458 | | Tatoeba-test.guj-eng.guj.eng | 19.3 | 0.383 | | Tatoeba-test.hif-eng.hif.eng | 3.7 | 0.220 | | Tatoeba-test.hin-eng.hin.eng | 38.6 | 0.564 | | Tatoeba-test.kok-eng.kok.eng | 6.6 | 0.287 | | Tatoeba-test.lah-eng.lah.eng | 16.0 | 0.272 | | Tatoeba-test.mai-eng.mai.eng | 75.6 | 0.796 | | Tatoeba-test.mar-eng.mar.eng | 25.9 | 0.497 | | Tatoeba-test.multi.eng | 29.0 | 0.502 | | Tatoeba-test.nep-eng.nep.eng | 4.5 | 0.198 | | Tatoeba-test.ori-eng.ori.eng | 5.0 | 0.226 | | Tatoeba-test.pan-eng.pan.eng | 17.4 | 0.375 | | Tatoeba-test.rom-eng.rom.eng | 1.7 | 0.174 | | Tatoeba-test.san-eng.san.eng | 5.0 | 0.173 | | Tatoeba-test.sin-eng.sin.eng | 31.2 | 0.511 | | Tatoeba-test.snd-eng.snd.eng | 45.7 | 0.670 | | Tatoeba-test.urd-eng.urd.eng | 25.6 | 0.456 | ### System Info: - hf_name: inc-eng - source_languages: inc - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/inc-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['bn', 'or', 'gu', 'mr', 'ur', 'hi', 'as', 'si', 'inc', 'en'] - src_constituents: {'pnb', 'gom', 'ben', 'hif_Latn', 'ori', 'guj', 'pan_Guru', 'snd_Arab', 'npi', 'mar', 'urd', 'bho', 'hin', 'san_Deva', 'asm', 'rom', 'mai', 'awa', 'sin'} - tgt_constituents: {'eng'} - src_multilingual: True - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/inc-eng/opus2m-2020-08-01.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/inc-eng/opus2m-2020-08-01.test.txt - src_alpha3: inc - tgt_alpha3: eng - short_pair: inc-en - chrF2_score: 0.502 - bleu: 29.0 - brevity_penalty: 1.0 - ref_len: 64706.0 - src_name: Indic languages - tgt_name: English - train_date: 2020-08-01 - src_alpha2: inc - tgt_alpha2: en - prefer_old: False - long_pair: inc-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["bn", "or", "gu", "mr", "ur", "hi", "as", "si", "inc", "en"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-inc-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "bn", "or", "gu", "mr", "ur", "hi", "as", "si", "inc", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "bn", "or", "gu", "mr", "ur", "hi", "as", "si", "inc", "en" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #bn #or #gu #mr #ur #hi #as #si #inc #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### inc-eng * source group: Indic languages * target group: English * OPUS readme: inc-eng * model: transformer * source language(s): asm awa ben bho gom guj hif\_Latn hin mai mar npi ori pan\_Guru pnb rom san\_Deva sin snd\_Arab urd * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 8.9, chr-F: 0.341 testset: URL, BLEU: 8.7, chr-F: 0.321 testset: URL, BLEU: 13.1, chr-F: 0.396 testset: URL, BLEU: 6.5, chr-F: 0.290 testset: URL, BLEU: 18.1, chr-F: 0.363 testset: URL, BLEU: 6.2, chr-F: 0.222 testset: URL, BLEU: 44.7, chr-F: 0.595 testset: URL, BLEU: 29.4, chr-F: 0.458 testset: URL, BLEU: 19.3, chr-F: 0.383 testset: URL, BLEU: 3.7, chr-F: 0.220 testset: URL, BLEU: 38.6, chr-F: 0.564 testset: URL, BLEU: 6.6, chr-F: 0.287 testset: URL, BLEU: 16.0, chr-F: 0.272 testset: URL, BLEU: 75.6, chr-F: 0.796 testset: URL, BLEU: 25.9, chr-F: 0.497 testset: URL, BLEU: 29.0, chr-F: 0.502 testset: URL, BLEU: 4.5, chr-F: 0.198 testset: URL, BLEU: 5.0, chr-F: 0.226 testset: URL, BLEU: 17.4, chr-F: 0.375 testset: URL, BLEU: 1.7, chr-F: 0.174 testset: URL, BLEU: 5.0, chr-F: 0.173 testset: URL, BLEU: 31.2, chr-F: 0.511 testset: URL, BLEU: 45.7, chr-F: 0.670 testset: URL, BLEU: 25.6, chr-F: 0.456 ### System Info: * hf\_name: inc-eng * source\_languages: inc * target\_languages: eng * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['bn', 'or', 'gu', 'mr', 'ur', 'hi', 'as', 'si', 'inc', 'en'] * src\_constituents: {'pnb', 'gom', 'ben', 'hif\_Latn', 'ori', 'guj', 'pan\_Guru', 'snd\_Arab', 'npi', 'mar', 'urd', 'bho', 'hin', 'san\_Deva', 'asm', 'rom', 'mai', 'awa', 'sin'} * tgt\_constituents: {'eng'} * src\_multilingual: True * tgt\_multilingual: False * prepro: normalization + SentencePiece (spm32k,spm32k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: inc * tgt\_alpha3: eng * short\_pair: inc-en * chrF2\_score: 0.502 * bleu: 29.0 * brevity\_penalty: 1.0 * ref\_len: 64706.0 * src\_name: Indic languages * tgt\_name: English * train\_date: 2020-08-01 * src\_alpha2: inc * tgt\_alpha2: en * prefer\_old: False * long\_pair: inc-eng * helsinki\_git\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 * transformers\_git\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b * port\_machine: brutasse * port\_time: 2020-08-21-14:41
[ "### inc-eng\n\n\n* source group: Indic languages\n* target group: English\n* OPUS readme: inc-eng\n* model: transformer\n* source language(s): asm awa ben bho gom guj hif\\_Latn hin mai mar npi ori pan\\_Guru pnb rom san\\_Deva sin snd\\_Arab urd\n* target language(s): eng\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 8.9, chr-F: 0.341\ntestset: URL, BLEU: 8.7, chr-F: 0.321\ntestset: URL, BLEU: 13.1, chr-F: 0.396\ntestset: URL, BLEU: 6.5, chr-F: 0.290\ntestset: URL, BLEU: 18.1, chr-F: 0.363\ntestset: URL, BLEU: 6.2, chr-F: 0.222\ntestset: URL, BLEU: 44.7, chr-F: 0.595\ntestset: URL, BLEU: 29.4, chr-F: 0.458\ntestset: URL, BLEU: 19.3, chr-F: 0.383\ntestset: URL, BLEU: 3.7, chr-F: 0.220\ntestset: URL, BLEU: 38.6, chr-F: 0.564\ntestset: URL, BLEU: 6.6, chr-F: 0.287\ntestset: URL, BLEU: 16.0, chr-F: 0.272\ntestset: URL, BLEU: 75.6, chr-F: 0.796\ntestset: URL, BLEU: 25.9, chr-F: 0.497\ntestset: URL, BLEU: 29.0, chr-F: 0.502\ntestset: URL, BLEU: 4.5, chr-F: 0.198\ntestset: URL, BLEU: 5.0, chr-F: 0.226\ntestset: URL, BLEU: 17.4, chr-F: 0.375\ntestset: URL, BLEU: 1.7, chr-F: 0.174\ntestset: URL, BLEU: 5.0, chr-F: 0.173\ntestset: URL, BLEU: 31.2, chr-F: 0.511\ntestset: URL, BLEU: 45.7, chr-F: 0.670\ntestset: URL, BLEU: 25.6, chr-F: 0.456", "### System Info:\n\n\n* hf\\_name: inc-eng\n* source\\_languages: inc\n* target\\_languages: eng\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['bn', 'or', 'gu', 'mr', 'ur', 'hi', 'as', 'si', 'inc', 'en']\n* src\\_constituents: {'pnb', 'gom', 'ben', 'hif\\_Latn', 'ori', 'guj', 'pan\\_Guru', 'snd\\_Arab', 'npi', 'mar', 'urd', 'bho', 'hin', 'san\\_Deva', 'asm', 'rom', 'mai', 'awa', 'sin'}\n* tgt\\_constituents: {'eng'}\n* src\\_multilingual: True\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: inc\n* tgt\\_alpha3: eng\n* short\\_pair: inc-en\n* chrF2\\_score: 0.502\n* bleu: 29.0\n* brevity\\_penalty: 1.0\n* ref\\_len: 64706.0\n* src\\_name: Indic languages\n* tgt\\_name: English\n* train\\_date: 2020-08-01\n* src\\_alpha2: inc\n* tgt\\_alpha2: en\n* prefer\\_old: False\n* long\\_pair: inc-eng\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #bn #or #gu #mr #ur #hi #as #si #inc #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### inc-eng\n\n\n* source group: Indic languages\n* target group: English\n* OPUS readme: inc-eng\n* model: transformer\n* source language(s): asm awa ben bho gom guj hif\\_Latn hin mai mar npi ori pan\\_Guru pnb rom san\\_Deva sin snd\\_Arab urd\n* target language(s): eng\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 8.9, chr-F: 0.341\ntestset: URL, BLEU: 8.7, chr-F: 0.321\ntestset: URL, BLEU: 13.1, chr-F: 0.396\ntestset: URL, BLEU: 6.5, chr-F: 0.290\ntestset: URL, BLEU: 18.1, chr-F: 0.363\ntestset: URL, BLEU: 6.2, chr-F: 0.222\ntestset: URL, BLEU: 44.7, chr-F: 0.595\ntestset: URL, BLEU: 29.4, chr-F: 0.458\ntestset: URL, BLEU: 19.3, chr-F: 0.383\ntestset: URL, BLEU: 3.7, chr-F: 0.220\ntestset: URL, BLEU: 38.6, chr-F: 0.564\ntestset: URL, BLEU: 6.6, chr-F: 0.287\ntestset: URL, BLEU: 16.0, chr-F: 0.272\ntestset: URL, BLEU: 75.6, chr-F: 0.796\ntestset: URL, BLEU: 25.9, chr-F: 0.497\ntestset: URL, BLEU: 29.0, chr-F: 0.502\ntestset: URL, BLEU: 4.5, chr-F: 0.198\ntestset: URL, BLEU: 5.0, chr-F: 0.226\ntestset: URL, BLEU: 17.4, chr-F: 0.375\ntestset: URL, BLEU: 1.7, chr-F: 0.174\ntestset: URL, BLEU: 5.0, chr-F: 0.173\ntestset: URL, BLEU: 31.2, chr-F: 0.511\ntestset: URL, BLEU: 45.7, chr-F: 0.670\ntestset: URL, BLEU: 25.6, chr-F: 0.456", "### System Info:\n\n\n* hf\\_name: inc-eng\n* source\\_languages: inc\n* target\\_languages: eng\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['bn', 'or', 'gu', 'mr', 'ur', 'hi', 'as', 'si', 'inc', 'en']\n* src\\_constituents: {'pnb', 'gom', 'ben', 'hif\\_Latn', 'ori', 'guj', 'pan\\_Guru', 'snd\\_Arab', 'npi', 'mar', 'urd', 'bho', 'hin', 'san\\_Deva', 'asm', 'rom', 'mai', 'awa', 'sin'}\n* tgt\\_constituents: {'eng'}\n* src\\_multilingual: True\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: inc\n* tgt\\_alpha3: eng\n* short\\_pair: inc-en\n* chrF2\\_score: 0.502\n* bleu: 29.0\n* brevity\\_penalty: 1.0\n* ref\\_len: 64706.0\n* src\\_name: Indic languages\n* tgt\\_name: English\n* train\\_date: 2020-08-01\n* src\\_alpha2: inc\n* tgt\\_alpha2: en\n* prefer\\_old: False\n* long\\_pair: inc-eng\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ 67, 690, 524 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #bn #or #gu #mr #ur #hi #as #si #inc #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### inc-eng\n\n\n* source group: Indic languages\n* target group: English\n* OPUS readme: inc-eng\n* model: transformer\n* source language(s): asm awa ben bho gom guj hif\\_Latn hin mai mar npi ori pan\\_Guru pnb rom san\\_Deva sin snd\\_Arab urd\n* target language(s): eng\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 8.9, chr-F: 0.341\ntestset: URL, BLEU: 8.7, chr-F: 0.321\ntestset: URL, BLEU: 13.1, chr-F: 0.396\ntestset: URL, BLEU: 6.5, chr-F: 0.290\ntestset: URL, BLEU: 18.1, chr-F: 0.363\ntestset: URL, BLEU: 6.2, chr-F: 0.222\ntestset: URL, BLEU: 44.7, chr-F: 0.595\ntestset: URL, BLEU: 29.4, chr-F: 0.458\ntestset: URL, BLEU: 19.3, chr-F: 0.383\ntestset: URL, BLEU: 3.7, chr-F: 0.220\ntestset: URL, BLEU: 38.6, chr-F: 0.564\ntestset: URL, BLEU: 6.6, chr-F: 0.287\ntestset: URL, BLEU: 16.0, chr-F: 0.272\ntestset: URL, BLEU: 75.6, chr-F: 0.796\ntestset: URL, BLEU: 25.9, chr-F: 0.497\ntestset: URL, BLEU: 29.0, chr-F: 0.502\ntestset: URL, BLEU: 4.5, chr-F: 0.198\ntestset: URL, BLEU: 5.0, chr-F: 0.226\ntestset: URL, BLEU: 17.4, chr-F: 0.375\ntestset: URL, BLEU: 1.7, chr-F: 0.174\ntestset: URL, BLEU: 5.0, chr-F: 0.173\ntestset: URL, BLEU: 31.2, chr-F: 0.511\ntestset: URL, BLEU: 45.7, chr-F: 0.670\ntestset: URL, BLEU: 25.6, chr-F: 0.456### System Info:\n\n\n* hf\\_name: inc-eng\n* source\\_languages: inc\n* target\\_languages: eng\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['bn', 'or', 'gu', 'mr', 'ur', 'hi', 'as', 'si', 'inc', 'en']\n* src\\_constituents: {'pnb', 'gom', 'ben', 'hif\\_Latn', 'ori', 'guj', 'pan\\_Guru', 'snd\\_Arab', 'npi', 'mar', 'urd', 'bho', 'hin', 'san\\_Deva', 'asm', 'rom', 'mai', 'awa', 'sin'}\n* tgt\\_constituents: {'eng'}\n* src\\_multilingual: True\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: inc\n* tgt\\_alpha3: eng\n* short\\_pair: inc-en\n* chrF2\\_score: 0.502\n* bleu: 29.0\n* brevity\\_penalty: 1.0\n* ref\\_len: 64706.0\n* src\\_name: Indic languages\n* tgt\\_name: English\n* train\\_date: 2020-08-01\n* src\\_alpha2: inc\n* tgt\\_alpha2: en\n* prefer\\_old: False\n* long\\_pair: inc-eng\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
translation
transformers
### inc-inc * source group: Indic languages * target group: Indic languages * OPUS readme: [inc-inc](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/inc-inc/README.md) * model: transformer * source language(s): asm hin mar urd * target language(s): asm hin mar urd * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-07-27.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/inc-inc/opus-2020-07-27.zip) * test set translations: [opus-2020-07-27.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/inc-inc/opus-2020-07-27.test.txt) * test set scores: [opus-2020-07-27.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/inc-inc/opus-2020-07-27.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.asm-hin.asm.hin | 2.6 | 0.231 | | Tatoeba-test.hin-asm.hin.asm | 9.1 | 0.262 | | Tatoeba-test.hin-mar.hin.mar | 28.1 | 0.548 | | Tatoeba-test.hin-urd.hin.urd | 19.9 | 0.508 | | Tatoeba-test.mar-hin.mar.hin | 11.6 | 0.466 | | Tatoeba-test.multi.multi | 17.1 | 0.464 | | Tatoeba-test.urd-hin.urd.hin | 13.5 | 0.377 | ### System Info: - hf_name: inc-inc - source_languages: inc - target_languages: inc - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/inc-inc/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['bn', 'or', 'gu', 'mr', 'ur', 'hi', 'as', 'si', 'inc'] - src_constituents: {'pnb', 'gom', 'ben', 'hif_Latn', 'ori', 'guj', 'pan_Guru', 'snd_Arab', 'npi', 'mar', 'urd', 'bho', 'hin', 'san_Deva', 'asm', 'rom', 'mai', 'awa', 'sin'} - tgt_constituents: {'pnb', 'gom', 'ben', 'hif_Latn', 'ori', 'guj', 'pan_Guru', 'snd_Arab', 'npi', 'mar', 'urd', 'bho', 'hin', 'san_Deva', 'asm', 'rom', 'mai', 'awa', 'sin'} - src_multilingual: True - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/inc-inc/opus-2020-07-27.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/inc-inc/opus-2020-07-27.test.txt - src_alpha3: inc - tgt_alpha3: inc - short_pair: inc-inc - chrF2_score: 0.46399999999999997 - bleu: 17.1 - brevity_penalty: 1.0 - ref_len: 4985.0 - src_name: Indic languages - tgt_name: Indic languages - train_date: 2020-07-27 - src_alpha2: inc - tgt_alpha2: inc - prefer_old: False - long_pair: inc-inc - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["bn", "or", "gu", "mr", "ur", "hi", "as", "si", "inc"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-inc-inc
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "bn", "or", "gu", "mr", "ur", "hi", "as", "si", "inc", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "bn", "or", "gu", "mr", "ur", "hi", "as", "si", "inc" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #bn #or #gu #mr #ur #hi #as #si #inc #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### inc-inc * source group: Indic languages * target group: Indic languages * OPUS readme: inc-inc * model: transformer * source language(s): asm hin mar urd * target language(s): asm hin mar urd * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of '>>id<<' (id = valid target language ID) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 2.6, chr-F: 0.231 testset: URL, BLEU: 9.1, chr-F: 0.262 testset: URL, BLEU: 28.1, chr-F: 0.548 testset: URL, BLEU: 19.9, chr-F: 0.508 testset: URL, BLEU: 11.6, chr-F: 0.466 testset: URL, BLEU: 17.1, chr-F: 0.464 testset: URL, BLEU: 13.5, chr-F: 0.377 ### System Info: * hf\_name: inc-inc * source\_languages: inc * target\_languages: inc * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['bn', 'or', 'gu', 'mr', 'ur', 'hi', 'as', 'si', 'inc'] * src\_constituents: {'pnb', 'gom', 'ben', 'hif\_Latn', 'ori', 'guj', 'pan\_Guru', 'snd\_Arab', 'npi', 'mar', 'urd', 'bho', 'hin', 'san\_Deva', 'asm', 'rom', 'mai', 'awa', 'sin'} * tgt\_constituents: {'pnb', 'gom', 'ben', 'hif\_Latn', 'ori', 'guj', 'pan\_Guru', 'snd\_Arab', 'npi', 'mar', 'urd', 'bho', 'hin', 'san\_Deva', 'asm', 'rom', 'mai', 'awa', 'sin'} * src\_multilingual: True * tgt\_multilingual: True * prepro: normalization + SentencePiece (spm32k,spm32k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: inc * tgt\_alpha3: inc * short\_pair: inc-inc * chrF2\_score: 0.46399999999999997 * bleu: 17.1 * brevity\_penalty: 1.0 * ref\_len: 4985.0 * src\_name: Indic languages * tgt\_name: Indic languages * train\_date: 2020-07-27 * src\_alpha2: inc * tgt\_alpha2: inc * prefer\_old: False * long\_pair: inc-inc * helsinki\_git\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 * transformers\_git\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b * port\_machine: brutasse * port\_time: 2020-08-21-14:41
[ "### inc-inc\n\n\n* source group: Indic languages\n* target group: Indic languages\n* OPUS readme: inc-inc\n* model: transformer\n* source language(s): asm hin mar urd\n* target language(s): asm hin mar urd\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* a sentence initial language token is required in the form of '>>id<<' (id = valid target language ID)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 2.6, chr-F: 0.231\ntestset: URL, BLEU: 9.1, chr-F: 0.262\ntestset: URL, BLEU: 28.1, chr-F: 0.548\ntestset: URL, BLEU: 19.9, chr-F: 0.508\ntestset: URL, BLEU: 11.6, chr-F: 0.466\ntestset: URL, BLEU: 17.1, chr-F: 0.464\ntestset: URL, BLEU: 13.5, chr-F: 0.377", "### System Info:\n\n\n* hf\\_name: inc-inc\n* source\\_languages: inc\n* target\\_languages: inc\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['bn', 'or', 'gu', 'mr', 'ur', 'hi', 'as', 'si', 'inc']\n* src\\_constituents: {'pnb', 'gom', 'ben', 'hif\\_Latn', 'ori', 'guj', 'pan\\_Guru', 'snd\\_Arab', 'npi', 'mar', 'urd', 'bho', 'hin', 'san\\_Deva', 'asm', 'rom', 'mai', 'awa', 'sin'}\n* tgt\\_constituents: {'pnb', 'gom', 'ben', 'hif\\_Latn', 'ori', 'guj', 'pan\\_Guru', 'snd\\_Arab', 'npi', 'mar', 'urd', 'bho', 'hin', 'san\\_Deva', 'asm', 'rom', 'mai', 'awa', 'sin'}\n* src\\_multilingual: True\n* tgt\\_multilingual: True\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: inc\n* tgt\\_alpha3: inc\n* short\\_pair: inc-inc\n* chrF2\\_score: 0.46399999999999997\n* bleu: 17.1\n* brevity\\_penalty: 1.0\n* ref\\_len: 4985.0\n* src\\_name: Indic languages\n* tgt\\_name: Indic languages\n* train\\_date: 2020-07-27\n* src\\_alpha2: inc\n* tgt\\_alpha2: inc\n* prefer\\_old: False\n* long\\_pair: inc-inc\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #bn #or #gu #mr #ur #hi #as #si #inc #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### inc-inc\n\n\n* source group: Indic languages\n* target group: Indic languages\n* OPUS readme: inc-inc\n* model: transformer\n* source language(s): asm hin mar urd\n* target language(s): asm hin mar urd\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* a sentence initial language token is required in the form of '>>id<<' (id = valid target language ID)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 2.6, chr-F: 0.231\ntestset: URL, BLEU: 9.1, chr-F: 0.262\ntestset: URL, BLEU: 28.1, chr-F: 0.548\ntestset: URL, BLEU: 19.9, chr-F: 0.508\ntestset: URL, BLEU: 11.6, chr-F: 0.466\ntestset: URL, BLEU: 17.1, chr-F: 0.464\ntestset: URL, BLEU: 13.5, chr-F: 0.377", "### System Info:\n\n\n* hf\\_name: inc-inc\n* source\\_languages: inc\n* target\\_languages: inc\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['bn', 'or', 'gu', 'mr', 'ur', 'hi', 'as', 'si', 'inc']\n* src\\_constituents: {'pnb', 'gom', 'ben', 'hif\\_Latn', 'ori', 'guj', 'pan\\_Guru', 'snd\\_Arab', 'npi', 'mar', 'urd', 'bho', 'hin', 'san\\_Deva', 'asm', 'rom', 'mai', 'awa', 'sin'}\n* tgt\\_constituents: {'pnb', 'gom', 'ben', 'hif\\_Latn', 'ori', 'guj', 'pan\\_Guru', 'snd\\_Arab', 'npi', 'mar', 'urd', 'bho', 'hin', 'san\\_Deva', 'asm', 'rom', 'mai', 'awa', 'sin'}\n* src\\_multilingual: True\n* tgt\\_multilingual: True\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: inc\n* tgt\\_alpha3: inc\n* short\\_pair: inc-inc\n* chrF2\\_score: 0.46399999999999997\n* bleu: 17.1\n* brevity\\_penalty: 1.0\n* ref\\_len: 4985.0\n* src\\_name: Indic languages\n* tgt\\_name: Indic languages\n* train\\_date: 2020-07-27\n* src\\_alpha2: inc\n* tgt\\_alpha2: inc\n* prefer\\_old: False\n* long\\_pair: inc-inc\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ 65, 306, 633 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #bn #or #gu #mr #ur #hi #as #si #inc #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### inc-inc\n\n\n* source group: Indic languages\n* target group: Indic languages\n* OPUS readme: inc-inc\n* model: transformer\n* source language(s): asm hin mar urd\n* target language(s): asm hin mar urd\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* a sentence initial language token is required in the form of '>>id<<' (id = valid target language ID)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 2.6, chr-F: 0.231\ntestset: URL, BLEU: 9.1, chr-F: 0.262\ntestset: URL, BLEU: 28.1, chr-F: 0.548\ntestset: URL, BLEU: 19.9, chr-F: 0.508\ntestset: URL, BLEU: 11.6, chr-F: 0.466\ntestset: URL, BLEU: 17.1, chr-F: 0.464\ntestset: URL, BLEU: 13.5, chr-F: 0.377### System Info:\n\n\n* hf\\_name: inc-inc\n* source\\_languages: inc\n* target\\_languages: inc\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['bn', 'or', 'gu', 'mr', 'ur', 'hi', 'as', 'si', 'inc']\n* src\\_constituents: {'pnb', 'gom', 'ben', 'hif\\_Latn', 'ori', 'guj', 'pan\\_Guru', 'snd\\_Arab', 'npi', 'mar', 'urd', 'bho', 'hin', 'san\\_Deva', 'asm', 'rom', 'mai', 'awa', 'sin'}\n* tgt\\_constituents: {'pnb', 'gom', 'ben', 'hif\\_Latn', 'ori', 'guj', 'pan\\_Guru', 'snd\\_Arab', 'npi', 'mar', 'urd', 'bho', 'hin', 'san\\_Deva', 'asm', 'rom', 'mai', 'awa', 'sin'}\n* src\\_multilingual: True\n* tgt\\_multilingual: True\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: inc\n* tgt\\_alpha3: inc\n* short\\_pair: inc-inc\n* chrF2\\_score: 0.46399999999999997\n* bleu: 17.1\n* brevity\\_penalty: 1.0\n* ref\\_len: 4985.0\n* src\\_name: Indic languages\n* tgt\\_name: Indic languages\n* train\\_date: 2020-07-27\n* src\\_alpha2: inc\n* tgt\\_alpha2: inc\n* prefer\\_old: False\n* long\\_pair: inc-inc\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
translation
transformers
### ine-eng * source group: Indo-European languages * target group: English * OPUS readme: [ine-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ine-eng/README.md) * model: transformer * source language(s): afr aln ang_Latn arg asm ast awa bel bel_Latn ben bho bos_Latn bre bul bul_Latn cat ces cor cos csb_Latn cym dan deu dsb egl ell enm_Latn ext fao fra frm_Latn frr fry gcf_Latn gla gle glg glv gom gos got_Goth grc_Grek gsw guj hat hif_Latn hin hrv hsb hye ind isl ita jdt_Cyrl ksh kur_Arab kur_Latn lad lad_Latn lat_Latn lav lij lit lld_Latn lmo ltg ltz mai mar max_Latn mfe min mkd mwl nds nld nno nob nob_Hebr non_Latn npi oci ori orv_Cyrl oss pan_Guru pap pdc pes pes_Latn pes_Thaa pms pnb pol por prg_Latn pus roh rom ron rue rus san_Deva scn sco sgs sin slv snd_Arab spa sqi srp_Cyrl srp_Latn stq swe swg tgk_Cyrl tly_Latn tmw_Latn ukr urd vec wln yid zlm_Latn zsm_Latn zza * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus2m-2020-08-01.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ine-eng/opus2m-2020-08-01.zip) * test set translations: [opus2m-2020-08-01.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ine-eng/opus2m-2020-08-01.test.txt) * test set scores: [opus2m-2020-08-01.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ine-eng/opus2m-2020-08-01.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newsdev2014-hineng.hin.eng | 11.2 | 0.375 | | newsdev2016-enro-roneng.ron.eng | 35.5 | 0.614 | | newsdev2017-enlv-laveng.lav.eng | 25.1 | 0.542 | | newsdev2019-engu-gujeng.guj.eng | 16.0 | 0.420 | | newsdev2019-enlt-liteng.lit.eng | 24.0 | 0.522 | | newsdiscussdev2015-enfr-fraeng.fra.eng | 30.1 | 0.550 | | newsdiscusstest2015-enfr-fraeng.fra.eng | 33.4 | 0.572 | | newssyscomb2009-ceseng.ces.eng | 24.0 | 0.520 | | newssyscomb2009-deueng.deu.eng | 25.7 | 0.526 | | newssyscomb2009-fraeng.fra.eng | 27.9 | 0.550 | | newssyscomb2009-itaeng.ita.eng | 31.4 | 0.574 | | newssyscomb2009-spaeng.spa.eng | 28.3 | 0.555 | | news-test2008-deueng.deu.eng | 24.0 | 0.515 | | news-test2008-fraeng.fra.eng | 24.5 | 0.524 | | news-test2008-spaeng.spa.eng | 25.5 | 0.533 | | newstest2009-ceseng.ces.eng | 23.3 | 0.516 | | newstest2009-deueng.deu.eng | 23.2 | 0.512 | | newstest2009-fraeng.fra.eng | 27.3 | 0.545 | | newstest2009-itaeng.ita.eng | 30.3 | 0.567 | | newstest2009-spaeng.spa.eng | 27.9 | 0.549 | | newstest2010-ceseng.ces.eng | 23.8 | 0.523 | | newstest2010-deueng.deu.eng | 26.2 | 0.545 | | newstest2010-fraeng.fra.eng | 28.6 | 0.562 | | newstest2010-spaeng.spa.eng | 31.4 | 0.581 | | newstest2011-ceseng.ces.eng | 24.2 | 0.521 | | newstest2011-deueng.deu.eng | 23.9 | 0.522 | | newstest2011-fraeng.fra.eng | 29.5 | 0.570 | | newstest2011-spaeng.spa.eng | 30.3 | 0.570 | | newstest2012-ceseng.ces.eng | 23.5 | 0.516 | | newstest2012-deueng.deu.eng | 24.9 | 0.529 | | newstest2012-fraeng.fra.eng | 30.0 | 0.568 | | newstest2012-ruseng.rus.eng | 29.9 | 0.565 | | newstest2012-spaeng.spa.eng | 33.3 | 0.593 | | newstest2013-ceseng.ces.eng | 25.6 | 0.531 | | newstest2013-deueng.deu.eng | 27.7 | 0.545 | | newstest2013-fraeng.fra.eng | 30.0 | 0.561 | | newstest2013-ruseng.rus.eng | 24.4 | 0.514 | | newstest2013-spaeng.spa.eng | 30.8 | 0.577 | | newstest2014-csen-ceseng.ces.eng | 27.7 | 0.558 | | newstest2014-deen-deueng.deu.eng | 27.7 | 0.545 | | newstest2014-fren-fraeng.fra.eng | 32.2 | 0.592 | | newstest2014-hien-hineng.hin.eng | 16.7 | 0.450 | | newstest2014-ruen-ruseng.rus.eng | 27.2 | 0.552 | | newstest2015-encs-ceseng.ces.eng | 25.4 | 0.518 | | newstest2015-ende-deueng.deu.eng | 28.8 | 0.552 | | newstest2015-enru-ruseng.rus.eng | 25.6 | 0.527 | | newstest2016-encs-ceseng.ces.eng | 27.0 | 0.540 | | newstest2016-ende-deueng.deu.eng | 33.5 | 0.592 | | newstest2016-enro-roneng.ron.eng | 32.8 | 0.591 | | newstest2016-enru-ruseng.rus.eng | 24.8 | 0.523 | | newstest2017-encs-ceseng.ces.eng | 23.7 | 0.510 | | newstest2017-ende-deueng.deu.eng | 29.3 | 0.556 | | newstest2017-enlv-laveng.lav.eng | 18.9 | 0.486 | | newstest2017-enru-ruseng.rus.eng | 28.0 | 0.546 | | newstest2018-encs-ceseng.ces.eng | 24.9 | 0.521 | | newstest2018-ende-deueng.deu.eng | 36.0 | 0.604 | | newstest2018-enru-ruseng.rus.eng | 23.8 | 0.517 | | newstest2019-deen-deueng.deu.eng | 31.5 | 0.570 | | newstest2019-guen-gujeng.guj.eng | 12.1 | 0.377 | | newstest2019-lten-liteng.lit.eng | 26.6 | 0.555 | | newstest2019-ruen-ruseng.rus.eng | 27.5 | 0.541 | | Tatoeba-test.afr-eng.afr.eng | 59.0 | 0.724 | | Tatoeba-test.ang-eng.ang.eng | 9.9 | 0.254 | | Tatoeba-test.arg-eng.arg.eng | 41.6 | 0.487 | | Tatoeba-test.asm-eng.asm.eng | 22.8 | 0.392 | | Tatoeba-test.ast-eng.ast.eng | 36.1 | 0.521 | | Tatoeba-test.awa-eng.awa.eng | 11.6 | 0.280 | | Tatoeba-test.bel-eng.bel.eng | 42.2 | 0.597 | | Tatoeba-test.ben-eng.ben.eng | 45.8 | 0.598 | | Tatoeba-test.bho-eng.bho.eng | 34.4 | 0.518 | | Tatoeba-test.bre-eng.bre.eng | 24.4 | 0.405 | | Tatoeba-test.bul-eng.bul.eng | 50.8 | 0.660 | | Tatoeba-test.cat-eng.cat.eng | 51.2 | 0.677 | | Tatoeba-test.ces-eng.ces.eng | 47.6 | 0.641 | | Tatoeba-test.cor-eng.cor.eng | 5.4 | 0.214 | | Tatoeba-test.cos-eng.cos.eng | 61.0 | 0.675 | | Tatoeba-test.csb-eng.csb.eng | 22.5 | 0.394 | | Tatoeba-test.cym-eng.cym.eng | 34.7 | 0.522 | | Tatoeba-test.dan-eng.dan.eng | 56.2 | 0.708 | | Tatoeba-test.deu-eng.deu.eng | 44.9 | 0.625 | | Tatoeba-test.dsb-eng.dsb.eng | 21.0 | 0.383 | | Tatoeba-test.egl-eng.egl.eng | 6.9 | 0.221 | | Tatoeba-test.ell-eng.ell.eng | 62.1 | 0.741 | | Tatoeba-test.enm-eng.enm.eng | 22.6 | 0.466 | | Tatoeba-test.ext-eng.ext.eng | 33.2 | 0.496 | | Tatoeba-test.fao-eng.fao.eng | 28.1 | 0.460 | | Tatoeba-test.fas-eng.fas.eng | 9.6 | 0.306 | | Tatoeba-test.fra-eng.fra.eng | 50.3 | 0.661 | | Tatoeba-test.frm-eng.frm.eng | 30.0 | 0.457 | | Tatoeba-test.frr-eng.frr.eng | 15.2 | 0.301 | | Tatoeba-test.fry-eng.fry.eng | 34.4 | 0.525 | | Tatoeba-test.gcf-eng.gcf.eng | 18.4 | 0.317 | | Tatoeba-test.gla-eng.gla.eng | 24.1 | 0.400 | | Tatoeba-test.gle-eng.gle.eng | 52.2 | 0.671 | | Tatoeba-test.glg-eng.glg.eng | 50.5 | 0.669 | | Tatoeba-test.glv-eng.glv.eng | 5.7 | 0.189 | | Tatoeba-test.gos-eng.gos.eng | 19.2 | 0.378 | | Tatoeba-test.got-eng.got.eng | 0.1 | 0.022 | | Tatoeba-test.grc-eng.grc.eng | 0.9 | 0.095 | | Tatoeba-test.gsw-eng.gsw.eng | 23.9 | 0.390 | | Tatoeba-test.guj-eng.guj.eng | 28.0 | 0.428 | | Tatoeba-test.hat-eng.hat.eng | 44.2 | 0.567 | | Tatoeba-test.hbs-eng.hbs.eng | 51.6 | 0.666 | | Tatoeba-test.hif-eng.hif.eng | 22.3 | 0.451 | | Tatoeba-test.hin-eng.hin.eng | 41.7 | 0.585 | | Tatoeba-test.hsb-eng.hsb.eng | 46.4 | 0.590 | | Tatoeba-test.hye-eng.hye.eng | 40.4 | 0.564 | | Tatoeba-test.isl-eng.isl.eng | 43.8 | 0.605 | | Tatoeba-test.ita-eng.ita.eng | 60.7 | 0.735 | | Tatoeba-test.jdt-eng.jdt.eng | 5.5 | 0.091 | | Tatoeba-test.kok-eng.kok.eng | 7.8 | 0.205 | | Tatoeba-test.ksh-eng.ksh.eng | 15.8 | 0.284 | | Tatoeba-test.kur-eng.kur.eng | 11.6 | 0.232 | | Tatoeba-test.lad-eng.lad.eng | 30.7 | 0.484 | | Tatoeba-test.lah-eng.lah.eng | 11.0 | 0.286 | | Tatoeba-test.lat-eng.lat.eng | 24.4 | 0.432 | | Tatoeba-test.lav-eng.lav.eng | 47.2 | 0.646 | | Tatoeba-test.lij-eng.lij.eng | 9.0 | 0.287 | | Tatoeba-test.lit-eng.lit.eng | 51.7 | 0.670 | | Tatoeba-test.lld-eng.lld.eng | 22.4 | 0.369 | | Tatoeba-test.lmo-eng.lmo.eng | 26.1 | 0.381 | | Tatoeba-test.ltz-eng.ltz.eng | 39.8 | 0.536 | | Tatoeba-test.mai-eng.mai.eng | 72.3 | 0.758 | | Tatoeba-test.mar-eng.mar.eng | 32.0 | 0.554 | | Tatoeba-test.mfe-eng.mfe.eng | 63.1 | 0.822 | | Tatoeba-test.mkd-eng.mkd.eng | 49.5 | 0.638 | | Tatoeba-test.msa-eng.msa.eng | 38.6 | 0.566 | | Tatoeba-test.multi.eng | 45.6 | 0.615 | | Tatoeba-test.mwl-eng.mwl.eng | 40.4 | 0.767 | | Tatoeba-test.nds-eng.nds.eng | 35.5 | 0.538 | | Tatoeba-test.nep-eng.nep.eng | 4.9 | 0.209 | | Tatoeba-test.nld-eng.nld.eng | 54.2 | 0.694 | | Tatoeba-test.non-eng.non.eng | 39.3 | 0.573 | | Tatoeba-test.nor-eng.nor.eng | 50.9 | 0.663 | | Tatoeba-test.oci-eng.oci.eng | 19.6 | 0.386 | | Tatoeba-test.ori-eng.ori.eng | 16.2 | 0.364 | | Tatoeba-test.orv-eng.orv.eng | 13.6 | 0.288 | | Tatoeba-test.oss-eng.oss.eng | 9.4 | 0.301 | | Tatoeba-test.pan-eng.pan.eng | 17.1 | 0.389 | | Tatoeba-test.pap-eng.pap.eng | 57.0 | 0.680 | | Tatoeba-test.pdc-eng.pdc.eng | 41.6 | 0.526 | | Tatoeba-test.pms-eng.pms.eng | 13.7 | 0.333 | | Tatoeba-test.pol-eng.pol.eng | 46.5 | 0.632 | | Tatoeba-test.por-eng.por.eng | 56.4 | 0.710 | | Tatoeba-test.prg-eng.prg.eng | 2.3 | 0.193 | | Tatoeba-test.pus-eng.pus.eng | 3.2 | 0.194 | | Tatoeba-test.roh-eng.roh.eng | 17.5 | 0.420 | | Tatoeba-test.rom-eng.rom.eng | 5.0 | 0.237 | | Tatoeba-test.ron-eng.ron.eng | 51.4 | 0.670 | | Tatoeba-test.rue-eng.rue.eng | 26.0 | 0.447 | | Tatoeba-test.rus-eng.rus.eng | 47.8 | 0.634 | | Tatoeba-test.san-eng.san.eng | 4.0 | 0.195 | | Tatoeba-test.scn-eng.scn.eng | 45.1 | 0.440 | | Tatoeba-test.sco-eng.sco.eng | 41.9 | 0.582 | | Tatoeba-test.sgs-eng.sgs.eng | 38.7 | 0.498 | | Tatoeba-test.sin-eng.sin.eng | 29.7 | 0.499 | | Tatoeba-test.slv-eng.slv.eng | 38.2 | 0.564 | | Tatoeba-test.snd-eng.snd.eng | 12.7 | 0.342 | | Tatoeba-test.spa-eng.spa.eng | 53.2 | 0.687 | | Tatoeba-test.sqi-eng.sqi.eng | 51.9 | 0.679 | | Tatoeba-test.stq-eng.stq.eng | 9.0 | 0.391 | | Tatoeba-test.swe-eng.swe.eng | 57.4 | 0.705 | | Tatoeba-test.swg-eng.swg.eng | 18.0 | 0.338 | | Tatoeba-test.tgk-eng.tgk.eng | 24.3 | 0.413 | | Tatoeba-test.tly-eng.tly.eng | 1.1 | 0.094 | | Tatoeba-test.ukr-eng.ukr.eng | 48.0 | 0.639 | | Tatoeba-test.urd-eng.urd.eng | 27.2 | 0.471 | | Tatoeba-test.vec-eng.vec.eng | 28.0 | 0.398 | | Tatoeba-test.wln-eng.wln.eng | 17.5 | 0.320 | | Tatoeba-test.yid-eng.yid.eng | 26.9 | 0.457 | | Tatoeba-test.zza-eng.zza.eng | 1.7 | 0.131 | ### System Info: - hf_name: ine-eng - source_languages: ine - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ine-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ca', 'es', 'os', 'ro', 'fy', 'cy', 'sc', 'is', 'yi', 'lb', 'an', 'sq', 'fr', 'ht', 'rm', 'ps', 'af', 'uk', 'sl', 'lt', 'bg', 'be', 'gd', 'si', 'en', 'br', 'mk', 'or', 'mr', 'ru', 'fo', 'co', 'oc', 'pl', 'gl', 'nb', 'bn', 'id', 'hy', 'da', 'gv', 'nl', 'pt', 'hi', 'as', 'kw', 'ga', 'sv', 'gu', 'wa', 'lv', 'el', 'it', 'hr', 'ur', 'nn', 'de', 'cs', 'ine'] - src_constituents: {'cat', 'spa', 'pap', 'mwl', 'lij', 'bos_Latn', 'lad_Latn', 'lat_Latn', 'pcd', 'oss', 'ron', 'fry', 'cym', 'awa', 'swg', 'zsm_Latn', 'srd', 'gcf_Latn', 'isl', 'yid', 'bho', 'ltz', 'kur_Latn', 'arg', 'pes_Thaa', 'sqi', 'csb_Latn', 'fra', 'hat', 'non_Latn', 'sco', 'pnb', 'roh', 'bul_Latn', 'pus', 'afr', 'ukr', 'slv', 'lit', 'tmw_Latn', 'hsb', 'tly_Latn', 'bul', 'bel', 'got_Goth', 'lat_Grek', 'ext', 'gla', 'mai', 'sin', 'hif_Latn', 'eng', 'bre', 'nob_Hebr', 'prg_Latn', 'ang_Latn', 'aln', 'mkd', 'ori', 'mar', 'afr_Arab', 'san_Deva', 'gos', 'rus', 'fao', 'orv_Cyrl', 'bel_Latn', 'cos', 'zza', 'grc_Grek', 'oci', 'mfe', 'gom', 'bjn', 'sgs', 'tgk_Cyrl', 'hye_Latn', 'pdc', 'srp_Cyrl', 'pol', 'ast', 'glg', 'pms', 'nob', 'ben', 'min', 'srp_Latn', 'zlm_Latn', 'ind', 'rom', 'hye', 'scn', 'enm_Latn', 'lmo', 'npi', 'pes', 'dan', 'rus_Latn', 'jdt_Cyrl', 'gsw', 'glv', 'nld', 'snd_Arab', 'kur_Arab', 'por', 'hin', 'dsb', 'asm', 'lad', 'frm_Latn', 'ksh', 'pan_Guru', 'cor', 'gle', 'swe', 'guj', 'wln', 'lav', 'ell', 'frr', 'rue', 'ita', 'hrv', 'urd', 'stq', 'nno', 'deu', 'lld_Latn', 'ces', 'egl', 'vec', 'max_Latn', 'pes_Latn', 'ltg', 'nds'} - tgt_constituents: {'eng'} - src_multilingual: True - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ine-eng/opus2m-2020-08-01.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ine-eng/opus2m-2020-08-01.test.txt - src_alpha3: ine - tgt_alpha3: eng - short_pair: ine-en - chrF2_score: 0.615 - bleu: 45.6 - brevity_penalty: 0.997 - ref_len: 71872.0 - src_name: Indo-European languages - tgt_name: English - train_date: 2020-08-01 - src_alpha2: ine - tgt_alpha2: en - prefer_old: False - long_pair: ine-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["ca", "es", "os", "ro", "fy", "cy", "sc", "is", "yi", "lb", "an", "sq", "fr", "ht", "rm", "ps", "af", "uk", "sl", "lt", "bg", "be", "gd", "si", "en", "br", "mk", "or", "mr", "ru", "fo", "co", "oc", "pl", "gl", "nb", "bn", "id", "hy", "da", "gv", "nl", "pt", "hi", "as", "kw", "ga", "sv", "gu", "wa", "lv", "el", "it", "hr", "ur", "nn", "de", "cs", "ine"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-ine-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "ca", "es", "os", "ro", "fy", "cy", "sc", "is", "yi", "lb", "an", "sq", "fr", "ht", "rm", "ps", "af", "uk", "sl", "lt", "bg", "be", "gd", "si", "en", "br", "mk", "or", "mr", "ru", "fo", "co", "oc", "pl", "gl", "nb", "bn", "id", "hy", "da", "gv", "nl", "pt", "hi", "as", "kw", "ga", "sv", "gu", "wa", "lv", "el", "it", "hr", "ur", "nn", "de", "cs", "ine", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "ca", "es", "os", "ro", "fy", "cy", "sc", "is", "yi", "lb", "an", "sq", "fr", "ht", "rm", "ps", "af", "uk", "sl", "lt", "bg", "be", "gd", "si", "en", "br", "mk", "or", "mr", "ru", "fo", "co", "oc", "pl", "gl", "nb", "bn", "id", "hy", "da", "gv", "nl", "pt", "hi", "as", "kw", "ga", "sv", "gu", "wa", "lv", "el", "it", "hr", "ur", "nn", "de", "cs", "ine" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #ca #es #os #ro #fy #cy #sc #is #yi #lb #an #sq #fr #ht #rm #ps #af #uk #sl #lt #bg #be #gd #si #en #br #mk #or #mr #ru #fo #co #oc #pl #gl #nb #bn #id #hy #da #gv #nl #pt #hi #as #kw #ga #sv #gu #wa #lv #el #it #hr #ur #nn #de #cs #ine #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### ine-eng * source group: Indo-European languages * target group: English * OPUS readme: ine-eng * model: transformer * source language(s): afr aln ang\_Latn arg asm ast awa bel bel\_Latn ben bho bos\_Latn bre bul bul\_Latn cat ces cor cos csb\_Latn cym dan deu dsb egl ell enm\_Latn ext fao fra frm\_Latn frr fry gcf\_Latn gla gle glg glv gom gos got\_Goth grc\_Grek gsw guj hat hif\_Latn hin hrv hsb hye ind isl ita jdt\_Cyrl ksh kur\_Arab kur\_Latn lad lad\_Latn lat\_Latn lav lij lit lld\_Latn lmo ltg ltz mai mar max\_Latn mfe min mkd mwl nds nld nno nob nob\_Hebr non\_Latn npi oci ori orv\_Cyrl oss pan\_Guru pap pdc pes pes\_Latn pes\_Thaa pms pnb pol por prg\_Latn pus roh rom ron rue rus san\_Deva scn sco sgs sin slv snd\_Arab spa sqi srp\_Cyrl srp\_Latn stq swe swg tgk\_Cyrl tly\_Latn tmw\_Latn ukr urd vec wln yid zlm\_Latn zsm\_Latn zza * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 11.2, chr-F: 0.375 testset: URL, BLEU: 35.5, chr-F: 0.614 testset: URL, BLEU: 25.1, chr-F: 0.542 testset: URL, BLEU: 16.0, chr-F: 0.420 testset: URL, BLEU: 24.0, chr-F: 0.522 testset: URL, BLEU: 30.1, chr-F: 0.550 testset: URL, BLEU: 33.4, chr-F: 0.572 testset: URL, BLEU: 24.0, chr-F: 0.520 testset: URL, BLEU: 25.7, chr-F: 0.526 testset: URL, BLEU: 27.9, chr-F: 0.550 testset: URL, BLEU: 31.4, chr-F: 0.574 testset: URL, BLEU: 28.3, chr-F: 0.555 testset: URL, BLEU: 24.0, chr-F: 0.515 testset: URL, BLEU: 24.5, chr-F: 0.524 testset: URL, BLEU: 25.5, chr-F: 0.533 testset: URL, BLEU: 23.3, chr-F: 0.516 testset: URL, BLEU: 23.2, chr-F: 0.512 testset: URL, BLEU: 27.3, chr-F: 0.545 testset: URL, BLEU: 30.3, chr-F: 0.567 testset: URL, BLEU: 27.9, chr-F: 0.549 testset: URL, BLEU: 23.8, chr-F: 0.523 testset: URL, BLEU: 26.2, chr-F: 0.545 testset: URL, BLEU: 28.6, chr-F: 0.562 testset: URL, BLEU: 31.4, chr-F: 0.581 testset: URL, BLEU: 24.2, chr-F: 0.521 testset: URL, BLEU: 23.9, chr-F: 0.522 testset: URL, BLEU: 29.5, chr-F: 0.570 testset: URL, BLEU: 30.3, chr-F: 0.570 testset: URL, BLEU: 23.5, chr-F: 0.516 testset: URL, BLEU: 24.9, chr-F: 0.529 testset: URL, BLEU: 30.0, chr-F: 0.568 testset: URL, BLEU: 29.9, chr-F: 0.565 testset: URL, BLEU: 33.3, chr-F: 0.593 testset: URL, BLEU: 25.6, chr-F: 0.531 testset: URL, BLEU: 27.7, chr-F: 0.545 testset: URL, BLEU: 30.0, chr-F: 0.561 testset: URL, BLEU: 24.4, chr-F: 0.514 testset: URL, BLEU: 30.8, chr-F: 0.577 testset: URL, BLEU: 27.7, chr-F: 0.558 testset: URL, BLEU: 27.7, chr-F: 0.545 testset: URL, BLEU: 32.2, chr-F: 0.592 testset: URL, BLEU: 16.7, chr-F: 0.450 testset: URL, BLEU: 27.2, chr-F: 0.552 testset: URL, BLEU: 25.4, chr-F: 0.518 testset: URL, BLEU: 28.8, chr-F: 0.552 testset: URL, BLEU: 25.6, chr-F: 0.527 testset: URL, BLEU: 27.0, chr-F: 0.540 testset: URL, BLEU: 33.5, chr-F: 0.592 testset: URL, BLEU: 32.8, chr-F: 0.591 testset: URL, BLEU: 24.8, chr-F: 0.523 testset: URL, BLEU: 23.7, chr-F: 0.510 testset: URL, BLEU: 29.3, chr-F: 0.556 testset: URL, BLEU: 18.9, chr-F: 0.486 testset: URL, BLEU: 28.0, chr-F: 0.546 testset: URL, BLEU: 24.9, chr-F: 0.521 testset: URL, BLEU: 36.0, chr-F: 0.604 testset: URL, BLEU: 23.8, chr-F: 0.517 testset: URL, BLEU: 31.5, chr-F: 0.570 testset: URL, BLEU: 12.1, chr-F: 0.377 testset: URL, BLEU: 26.6, chr-F: 0.555 testset: URL, BLEU: 27.5, chr-F: 0.541 testset: URL, BLEU: 59.0, chr-F: 0.724 testset: URL, BLEU: 9.9, chr-F: 0.254 testset: URL, BLEU: 41.6, chr-F: 0.487 testset: URL, BLEU: 22.8, chr-F: 0.392 testset: URL, BLEU: 36.1, chr-F: 0.521 testset: URL, BLEU: 11.6, chr-F: 0.280 testset: URL, BLEU: 42.2, chr-F: 0.597 testset: URL, BLEU: 45.8, chr-F: 0.598 testset: URL, BLEU: 34.4, chr-F: 0.518 testset: URL, BLEU: 24.4, chr-F: 0.405 testset: URL, BLEU: 50.8, chr-F: 0.660 testset: URL, BLEU: 51.2, chr-F: 0.677 testset: URL, BLEU: 47.6, chr-F: 0.641 testset: URL, BLEU: 5.4, chr-F: 0.214 testset: URL, BLEU: 61.0, chr-F: 0.675 testset: URL, BLEU: 22.5, chr-F: 0.394 testset: URL, BLEU: 34.7, chr-F: 0.522 testset: URL, BLEU: 56.2, chr-F: 0.708 testset: URL, BLEU: 44.9, chr-F: 0.625 testset: URL, BLEU: 21.0, chr-F: 0.383 testset: URL, BLEU: 6.9, chr-F: 0.221 testset: URL, BLEU: 62.1, chr-F: 0.741 testset: URL, BLEU: 22.6, chr-F: 0.466 testset: URL, BLEU: 33.2, chr-F: 0.496 testset: URL, BLEU: 28.1, chr-F: 0.460 testset: URL, BLEU: 9.6, chr-F: 0.306 testset: URL, BLEU: 50.3, chr-F: 0.661 testset: URL, BLEU: 30.0, chr-F: 0.457 testset: URL, BLEU: 15.2, chr-F: 0.301 testset: URL, BLEU: 34.4, chr-F: 0.525 testset: URL, BLEU: 18.4, chr-F: 0.317 testset: URL, BLEU: 24.1, chr-F: 0.400 testset: URL, BLEU: 52.2, chr-F: 0.671 testset: URL, BLEU: 50.5, chr-F: 0.669 testset: URL, BLEU: 5.7, chr-F: 0.189 testset: URL, BLEU: 19.2, chr-F: 0.378 testset: URL, BLEU: 0.1, chr-F: 0.022 testset: URL, BLEU: 0.9, chr-F: 0.095 testset: URL, BLEU: 23.9, chr-F: 0.390 testset: URL, BLEU: 28.0, chr-F: 0.428 testset: URL, BLEU: 44.2, chr-F: 0.567 testset: URL, BLEU: 51.6, chr-F: 0.666 testset: URL, BLEU: 22.3, chr-F: 0.451 testset: URL, BLEU: 41.7, chr-F: 0.585 testset: URL, BLEU: 46.4, chr-F: 0.590 testset: URL, BLEU: 40.4, chr-F: 0.564 testset: URL, BLEU: 43.8, chr-F: 0.605 testset: URL, BLEU: 60.7, chr-F: 0.735 testset: URL, BLEU: 5.5, chr-F: 0.091 testset: URL, BLEU: 7.8, chr-F: 0.205 testset: URL, BLEU: 15.8, chr-F: 0.284 testset: URL, BLEU: 11.6, chr-F: 0.232 testset: URL, BLEU: 30.7, chr-F: 0.484 testset: URL, BLEU: 11.0, chr-F: 0.286 testset: URL, BLEU: 24.4, chr-F: 0.432 testset: URL, BLEU: 47.2, chr-F: 0.646 testset: URL, BLEU: 9.0, chr-F: 0.287 testset: URL, BLEU: 51.7, chr-F: 0.670 testset: URL, BLEU: 22.4, chr-F: 0.369 testset: URL, BLEU: 26.1, chr-F: 0.381 testset: URL, BLEU: 39.8, chr-F: 0.536 testset: URL, BLEU: 72.3, chr-F: 0.758 testset: URL, BLEU: 32.0, chr-F: 0.554 testset: URL, BLEU: 63.1, chr-F: 0.822 testset: URL, BLEU: 49.5, chr-F: 0.638 testset: URL, BLEU: 38.6, chr-F: 0.566 testset: URL, BLEU: 45.6, chr-F: 0.615 testset: URL, BLEU: 40.4, chr-F: 0.767 testset: URL, BLEU: 35.5, chr-F: 0.538 testset: URL, BLEU: 4.9, chr-F: 0.209 testset: URL, BLEU: 54.2, chr-F: 0.694 testset: URL, BLEU: 39.3, chr-F: 0.573 testset: URL, BLEU: 50.9, chr-F: 0.663 testset: URL, BLEU: 19.6, chr-F: 0.386 testset: URL, BLEU: 16.2, chr-F: 0.364 testset: URL, BLEU: 13.6, chr-F: 0.288 testset: URL, BLEU: 9.4, chr-F: 0.301 testset: URL, BLEU: 17.1, chr-F: 0.389 testset: URL, BLEU: 57.0, chr-F: 0.680 testset: URL, BLEU: 41.6, chr-F: 0.526 testset: URL, BLEU: 13.7, chr-F: 0.333 testset: URL, BLEU: 46.5, chr-F: 0.632 testset: URL, BLEU: 56.4, chr-F: 0.710 testset: URL, BLEU: 2.3, chr-F: 0.193 testset: URL, BLEU: 3.2, chr-F: 0.194 testset: URL, BLEU: 17.5, chr-F: 0.420 testset: URL, BLEU: 5.0, chr-F: 0.237 testset: URL, BLEU: 51.4, chr-F: 0.670 testset: URL, BLEU: 26.0, chr-F: 0.447 testset: URL, BLEU: 47.8, chr-F: 0.634 testset: URL, BLEU: 4.0, chr-F: 0.195 testset: URL, BLEU: 45.1, chr-F: 0.440 testset: URL, BLEU: 41.9, chr-F: 0.582 testset: URL, BLEU: 38.7, chr-F: 0.498 testset: URL, BLEU: 29.7, chr-F: 0.499 testset: URL, BLEU: 38.2, chr-F: 0.564 testset: URL, BLEU: 12.7, chr-F: 0.342 testset: URL, BLEU: 53.2, chr-F: 0.687 testset: URL, BLEU: 51.9, chr-F: 0.679 testset: URL, BLEU: 9.0, chr-F: 0.391 testset: URL, BLEU: 57.4, chr-F: 0.705 testset: URL, BLEU: 18.0, chr-F: 0.338 testset: URL, BLEU: 24.3, chr-F: 0.413 testset: URL, BLEU: 1.1, chr-F: 0.094 testset: URL, BLEU: 48.0, chr-F: 0.639 testset: URL, BLEU: 27.2, chr-F: 0.471 testset: URL, BLEU: 28.0, chr-F: 0.398 testset: URL, BLEU: 17.5, chr-F: 0.320 testset: URL, BLEU: 26.9, chr-F: 0.457 testset: URL, BLEU: 1.7, chr-F: 0.131 ### System Info: * hf\_name: ine-eng * source\_languages: ine * target\_languages: eng * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['ca', 'es', 'os', 'ro', 'fy', 'cy', 'sc', 'is', 'yi', 'lb', 'an', 'sq', 'fr', 'ht', 'rm', 'ps', 'af', 'uk', 'sl', 'lt', 'bg', 'be', 'gd', 'si', 'en', 'br', 'mk', 'or', 'mr', 'ru', 'fo', 'co', 'oc', 'pl', 'gl', 'nb', 'bn', 'id', 'hy', 'da', 'gv', 'nl', 'pt', 'hi', 'as', 'kw', 'ga', 'sv', 'gu', 'wa', 'lv', 'el', 'it', 'hr', 'ur', 'nn', 'de', 'cs', 'ine'] * src\_constituents: {'cat', 'spa', 'pap', 'mwl', 'lij', 'bos\_Latn', 'lad\_Latn', 'lat\_Latn', 'pcd', 'oss', 'ron', 'fry', 'cym', 'awa', 'swg', 'zsm\_Latn', 'srd', 'gcf\_Latn', 'isl', 'yid', 'bho', 'ltz', 'kur\_Latn', 'arg', 'pes\_Thaa', 'sqi', 'csb\_Latn', 'fra', 'hat', 'non\_Latn', 'sco', 'pnb', 'roh', 'bul\_Latn', 'pus', 'afr', 'ukr', 'slv', 'lit', 'tmw\_Latn', 'hsb', 'tly\_Latn', 'bul', 'bel', 'got\_Goth', 'lat\_Grek', 'ext', 'gla', 'mai', 'sin', 'hif\_Latn', 'eng', 'bre', 'nob\_Hebr', 'prg\_Latn', 'ang\_Latn', 'aln', 'mkd', 'ori', 'mar', 'afr\_Arab', 'san\_Deva', 'gos', 'rus', 'fao', 'orv\_Cyrl', 'bel\_Latn', 'cos', 'zza', 'grc\_Grek', 'oci', 'mfe', 'gom', 'bjn', 'sgs', 'tgk\_Cyrl', 'hye\_Latn', 'pdc', 'srp\_Cyrl', 'pol', 'ast', 'glg', 'pms', 'nob', 'ben', 'min', 'srp\_Latn', 'zlm\_Latn', 'ind', 'rom', 'hye', 'scn', 'enm\_Latn', 'lmo', 'npi', 'pes', 'dan', 'rus\_Latn', 'jdt\_Cyrl', 'gsw', 'glv', 'nld', 'snd\_Arab', 'kur\_Arab', 'por', 'hin', 'dsb', 'asm', 'lad', 'frm\_Latn', 'ksh', 'pan\_Guru', 'cor', 'gle', 'swe', 'guj', 'wln', 'lav', 'ell', 'frr', 'rue', 'ita', 'hrv', 'urd', 'stq', 'nno', 'deu', 'lld\_Latn', 'ces', 'egl', 'vec', 'max\_Latn', 'pes\_Latn', 'ltg', 'nds'} * tgt\_constituents: {'eng'} * src\_multilingual: True * tgt\_multilingual: False * prepro: normalization + SentencePiece (spm32k,spm32k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: ine * tgt\_alpha3: eng * short\_pair: ine-en * chrF2\_score: 0.615 * bleu: 45.6 * brevity\_penalty: 0.997 * ref\_len: 71872.0 * src\_name: Indo-European languages * tgt\_name: English * train\_date: 2020-08-01 * src\_alpha2: ine * tgt\_alpha2: en * prefer\_old: False * long\_pair: ine-eng * helsinki\_git\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 * transformers\_git\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b * port\_machine: brutasse * port\_time: 2020-08-21-14:41
[ "### ine-eng\n\n\n* source group: Indo-European languages\n* target group: English\n* OPUS readme: ine-eng\n* model: transformer\n* source language(s): afr aln ang\\_Latn arg asm ast awa bel bel\\_Latn ben bho bos\\_Latn bre bul bul\\_Latn cat ces cor cos csb\\_Latn cym dan deu dsb egl ell enm\\_Latn ext fao fra frm\\_Latn frr fry gcf\\_Latn gla gle glg glv gom gos got\\_Goth grc\\_Grek gsw guj hat hif\\_Latn hin hrv hsb hye ind isl ita jdt\\_Cyrl ksh kur\\_Arab kur\\_Latn lad lad\\_Latn lat\\_Latn lav lij lit lld\\_Latn lmo ltg ltz mai mar max\\_Latn mfe min mkd mwl nds nld nno nob nob\\_Hebr non\\_Latn npi oci ori orv\\_Cyrl oss pan\\_Guru pap pdc pes pes\\_Latn pes\\_Thaa pms pnb pol por prg\\_Latn pus roh rom ron rue rus san\\_Deva scn sco sgs sin slv snd\\_Arab spa sqi srp\\_Cyrl srp\\_Latn stq swe swg tgk\\_Cyrl tly\\_Latn tmw\\_Latn ukr urd vec wln yid zlm\\_Latn zsm\\_Latn zza\n* target language(s): eng\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 11.2, chr-F: 0.375\ntestset: URL, BLEU: 35.5, chr-F: 0.614\ntestset: URL, BLEU: 25.1, chr-F: 0.542\ntestset: URL, BLEU: 16.0, chr-F: 0.420\ntestset: URL, BLEU: 24.0, chr-F: 0.522\ntestset: URL, BLEU: 30.1, chr-F: 0.550\ntestset: URL, BLEU: 33.4, chr-F: 0.572\ntestset: URL, BLEU: 24.0, chr-F: 0.520\ntestset: URL, BLEU: 25.7, chr-F: 0.526\ntestset: URL, BLEU: 27.9, chr-F: 0.550\ntestset: URL, BLEU: 31.4, chr-F: 0.574\ntestset: URL, BLEU: 28.3, chr-F: 0.555\ntestset: URL, BLEU: 24.0, chr-F: 0.515\ntestset: URL, BLEU: 24.5, chr-F: 0.524\ntestset: URL, BLEU: 25.5, chr-F: 0.533\ntestset: URL, BLEU: 23.3, chr-F: 0.516\ntestset: URL, BLEU: 23.2, chr-F: 0.512\ntestset: URL, BLEU: 27.3, chr-F: 0.545\ntestset: URL, BLEU: 30.3, chr-F: 0.567\ntestset: URL, BLEU: 27.9, chr-F: 0.549\ntestset: URL, BLEU: 23.8, chr-F: 0.523\ntestset: URL, BLEU: 26.2, chr-F: 0.545\ntestset: URL, BLEU: 28.6, chr-F: 0.562\ntestset: URL, BLEU: 31.4, chr-F: 0.581\ntestset: URL, BLEU: 24.2, chr-F: 0.521\ntestset: URL, BLEU: 23.9, chr-F: 0.522\ntestset: URL, BLEU: 29.5, chr-F: 0.570\ntestset: URL, BLEU: 30.3, chr-F: 0.570\ntestset: URL, BLEU: 23.5, chr-F: 0.516\ntestset: URL, BLEU: 24.9, chr-F: 0.529\ntestset: URL, BLEU: 30.0, chr-F: 0.568\ntestset: URL, BLEU: 29.9, chr-F: 0.565\ntestset: URL, BLEU: 33.3, chr-F: 0.593\ntestset: URL, BLEU: 25.6, chr-F: 0.531\ntestset: URL, BLEU: 27.7, chr-F: 0.545\ntestset: URL, BLEU: 30.0, chr-F: 0.561\ntestset: URL, BLEU: 24.4, chr-F: 0.514\ntestset: URL, BLEU: 30.8, chr-F: 0.577\ntestset: URL, BLEU: 27.7, chr-F: 0.558\ntestset: URL, BLEU: 27.7, chr-F: 0.545\ntestset: URL, BLEU: 32.2, chr-F: 0.592\ntestset: URL, BLEU: 16.7, chr-F: 0.450\ntestset: URL, BLEU: 27.2, chr-F: 0.552\ntestset: URL, BLEU: 25.4, chr-F: 0.518\ntestset: URL, BLEU: 28.8, chr-F: 0.552\ntestset: URL, BLEU: 25.6, chr-F: 0.527\ntestset: URL, BLEU: 27.0, chr-F: 0.540\ntestset: URL, BLEU: 33.5, chr-F: 0.592\ntestset: URL, BLEU: 32.8, chr-F: 0.591\ntestset: URL, BLEU: 24.8, chr-F: 0.523\ntestset: URL, BLEU: 23.7, chr-F: 0.510\ntestset: URL, BLEU: 29.3, chr-F: 0.556\ntestset: URL, BLEU: 18.9, chr-F: 0.486\ntestset: URL, BLEU: 28.0, chr-F: 0.546\ntestset: URL, BLEU: 24.9, chr-F: 0.521\ntestset: URL, BLEU: 36.0, chr-F: 0.604\ntestset: URL, BLEU: 23.8, chr-F: 0.517\ntestset: URL, BLEU: 31.5, chr-F: 0.570\ntestset: URL, BLEU: 12.1, chr-F: 0.377\ntestset: URL, BLEU: 26.6, chr-F: 0.555\ntestset: URL, BLEU: 27.5, chr-F: 0.541\ntestset: URL, BLEU: 59.0, chr-F: 0.724\ntestset: URL, BLEU: 9.9, chr-F: 0.254\ntestset: URL, BLEU: 41.6, chr-F: 0.487\ntestset: URL, BLEU: 22.8, chr-F: 0.392\ntestset: URL, BLEU: 36.1, chr-F: 0.521\ntestset: URL, BLEU: 11.6, chr-F: 0.280\ntestset: URL, BLEU: 42.2, chr-F: 0.597\ntestset: URL, BLEU: 45.8, chr-F: 0.598\ntestset: URL, BLEU: 34.4, chr-F: 0.518\ntestset: URL, BLEU: 24.4, chr-F: 0.405\ntestset: URL, BLEU: 50.8, chr-F: 0.660\ntestset: URL, BLEU: 51.2, chr-F: 0.677\ntestset: URL, BLEU: 47.6, chr-F: 0.641\ntestset: URL, BLEU: 5.4, chr-F: 0.214\ntestset: URL, BLEU: 61.0, chr-F: 0.675\ntestset: URL, BLEU: 22.5, chr-F: 0.394\ntestset: URL, BLEU: 34.7, chr-F: 0.522\ntestset: URL, BLEU: 56.2, chr-F: 0.708\ntestset: URL, BLEU: 44.9, chr-F: 0.625\ntestset: URL, BLEU: 21.0, chr-F: 0.383\ntestset: URL, BLEU: 6.9, chr-F: 0.221\ntestset: URL, BLEU: 62.1, chr-F: 0.741\ntestset: URL, BLEU: 22.6, chr-F: 0.466\ntestset: URL, BLEU: 33.2, chr-F: 0.496\ntestset: URL, BLEU: 28.1, chr-F: 0.460\ntestset: URL, BLEU: 9.6, chr-F: 0.306\ntestset: URL, BLEU: 50.3, chr-F: 0.661\ntestset: URL, BLEU: 30.0, chr-F: 0.457\ntestset: URL, BLEU: 15.2, chr-F: 0.301\ntestset: URL, BLEU: 34.4, chr-F: 0.525\ntestset: URL, BLEU: 18.4, chr-F: 0.317\ntestset: URL, BLEU: 24.1, chr-F: 0.400\ntestset: URL, BLEU: 52.2, chr-F: 0.671\ntestset: URL, BLEU: 50.5, chr-F: 0.669\ntestset: URL, BLEU: 5.7, chr-F: 0.189\ntestset: URL, BLEU: 19.2, chr-F: 0.378\ntestset: URL, BLEU: 0.1, chr-F: 0.022\ntestset: URL, BLEU: 0.9, chr-F: 0.095\ntestset: URL, BLEU: 23.9, chr-F: 0.390\ntestset: URL, BLEU: 28.0, chr-F: 0.428\ntestset: URL, BLEU: 44.2, chr-F: 0.567\ntestset: URL, BLEU: 51.6, chr-F: 0.666\ntestset: URL, BLEU: 22.3, chr-F: 0.451\ntestset: URL, BLEU: 41.7, chr-F: 0.585\ntestset: URL, BLEU: 46.4, chr-F: 0.590\ntestset: URL, BLEU: 40.4, chr-F: 0.564\ntestset: URL, BLEU: 43.8, chr-F: 0.605\ntestset: URL, BLEU: 60.7, chr-F: 0.735\ntestset: URL, BLEU: 5.5, chr-F: 0.091\ntestset: URL, BLEU: 7.8, chr-F: 0.205\ntestset: URL, BLEU: 15.8, chr-F: 0.284\ntestset: URL, BLEU: 11.6, chr-F: 0.232\ntestset: URL, BLEU: 30.7, chr-F: 0.484\ntestset: URL, BLEU: 11.0, chr-F: 0.286\ntestset: URL, BLEU: 24.4, chr-F: 0.432\ntestset: URL, BLEU: 47.2, chr-F: 0.646\ntestset: URL, BLEU: 9.0, chr-F: 0.287\ntestset: URL, BLEU: 51.7, chr-F: 0.670\ntestset: URL, BLEU: 22.4, chr-F: 0.369\ntestset: URL, BLEU: 26.1, chr-F: 0.381\ntestset: URL, BLEU: 39.8, chr-F: 0.536\ntestset: URL, BLEU: 72.3, chr-F: 0.758\ntestset: URL, BLEU: 32.0, chr-F: 0.554\ntestset: URL, BLEU: 63.1, chr-F: 0.822\ntestset: URL, BLEU: 49.5, chr-F: 0.638\ntestset: URL, BLEU: 38.6, chr-F: 0.566\ntestset: URL, BLEU: 45.6, chr-F: 0.615\ntestset: URL, BLEU: 40.4, chr-F: 0.767\ntestset: URL, BLEU: 35.5, chr-F: 0.538\ntestset: URL, BLEU: 4.9, chr-F: 0.209\ntestset: URL, BLEU: 54.2, chr-F: 0.694\ntestset: URL, BLEU: 39.3, chr-F: 0.573\ntestset: URL, BLEU: 50.9, chr-F: 0.663\ntestset: URL, BLEU: 19.6, chr-F: 0.386\ntestset: URL, BLEU: 16.2, chr-F: 0.364\ntestset: URL, BLEU: 13.6, chr-F: 0.288\ntestset: URL, BLEU: 9.4, chr-F: 0.301\ntestset: URL, BLEU: 17.1, chr-F: 0.389\ntestset: URL, BLEU: 57.0, chr-F: 0.680\ntestset: URL, BLEU: 41.6, chr-F: 0.526\ntestset: URL, BLEU: 13.7, chr-F: 0.333\ntestset: URL, BLEU: 46.5, chr-F: 0.632\ntestset: URL, BLEU: 56.4, chr-F: 0.710\ntestset: URL, BLEU: 2.3, chr-F: 0.193\ntestset: URL, BLEU: 3.2, chr-F: 0.194\ntestset: URL, BLEU: 17.5, chr-F: 0.420\ntestset: URL, BLEU: 5.0, chr-F: 0.237\ntestset: URL, BLEU: 51.4, chr-F: 0.670\ntestset: URL, BLEU: 26.0, chr-F: 0.447\ntestset: URL, BLEU: 47.8, chr-F: 0.634\ntestset: URL, BLEU: 4.0, chr-F: 0.195\ntestset: URL, BLEU: 45.1, chr-F: 0.440\ntestset: URL, BLEU: 41.9, chr-F: 0.582\ntestset: URL, BLEU: 38.7, chr-F: 0.498\ntestset: URL, BLEU: 29.7, chr-F: 0.499\ntestset: URL, BLEU: 38.2, chr-F: 0.564\ntestset: URL, BLEU: 12.7, chr-F: 0.342\ntestset: URL, BLEU: 53.2, chr-F: 0.687\ntestset: URL, BLEU: 51.9, chr-F: 0.679\ntestset: URL, BLEU: 9.0, chr-F: 0.391\ntestset: URL, BLEU: 57.4, chr-F: 0.705\ntestset: URL, BLEU: 18.0, chr-F: 0.338\ntestset: URL, BLEU: 24.3, chr-F: 0.413\ntestset: URL, BLEU: 1.1, chr-F: 0.094\ntestset: URL, BLEU: 48.0, chr-F: 0.639\ntestset: URL, BLEU: 27.2, chr-F: 0.471\ntestset: URL, BLEU: 28.0, chr-F: 0.398\ntestset: URL, BLEU: 17.5, chr-F: 0.320\ntestset: URL, BLEU: 26.9, chr-F: 0.457\ntestset: URL, BLEU: 1.7, chr-F: 0.131", "### System Info:\n\n\n* hf\\_name: ine-eng\n* source\\_languages: ine\n* target\\_languages: eng\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['ca', 'es', 'os', 'ro', 'fy', 'cy', 'sc', 'is', 'yi', 'lb', 'an', 'sq', 'fr', 'ht', 'rm', 'ps', 'af', 'uk', 'sl', 'lt', 'bg', 'be', 'gd', 'si', 'en', 'br', 'mk', 'or', 'mr', 'ru', 'fo', 'co', 'oc', 'pl', 'gl', 'nb', 'bn', 'id', 'hy', 'da', 'gv', 'nl', 'pt', 'hi', 'as', 'kw', 'ga', 'sv', 'gu', 'wa', 'lv', 'el', 'it', 'hr', 'ur', 'nn', 'de', 'cs', 'ine']\n* src\\_constituents: {'cat', 'spa', 'pap', 'mwl', 'lij', 'bos\\_Latn', 'lad\\_Latn', 'lat\\_Latn', 'pcd', 'oss', 'ron', 'fry', 'cym', 'awa', 'swg', 'zsm\\_Latn', 'srd', 'gcf\\_Latn', 'isl', 'yid', 'bho', 'ltz', 'kur\\_Latn', 'arg', 'pes\\_Thaa', 'sqi', 'csb\\_Latn', 'fra', 'hat', 'non\\_Latn', 'sco', 'pnb', 'roh', 'bul\\_Latn', 'pus', 'afr', 'ukr', 'slv', 'lit', 'tmw\\_Latn', 'hsb', 'tly\\_Latn', 'bul', 'bel', 'got\\_Goth', 'lat\\_Grek', 'ext', 'gla', 'mai', 'sin', 'hif\\_Latn', 'eng', 'bre', 'nob\\_Hebr', 'prg\\_Latn', 'ang\\_Latn', 'aln', 'mkd', 'ori', 'mar', 'afr\\_Arab', 'san\\_Deva', 'gos', 'rus', 'fao', 'orv\\_Cyrl', 'bel\\_Latn', 'cos', 'zza', 'grc\\_Grek', 'oci', 'mfe', 'gom', 'bjn', 'sgs', 'tgk\\_Cyrl', 'hye\\_Latn', 'pdc', 'srp\\_Cyrl', 'pol', 'ast', 'glg', 'pms', 'nob', 'ben', 'min', 'srp\\_Latn', 'zlm\\_Latn', 'ind', 'rom', 'hye', 'scn', 'enm\\_Latn', 'lmo', 'npi', 'pes', 'dan', 'rus\\_Latn', 'jdt\\_Cyrl', 'gsw', 'glv', 'nld', 'snd\\_Arab', 'kur\\_Arab', 'por', 'hin', 'dsb', 'asm', 'lad', 'frm\\_Latn', 'ksh', 'pan\\_Guru', 'cor', 'gle', 'swe', 'guj', 'wln', 'lav', 'ell', 'frr', 'rue', 'ita', 'hrv', 'urd', 'stq', 'nno', 'deu', 'lld\\_Latn', 'ces', 'egl', 'vec', 'max\\_Latn', 'pes\\_Latn', 'ltg', 'nds'}\n* tgt\\_constituents: {'eng'}\n* src\\_multilingual: True\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: ine\n* tgt\\_alpha3: eng\n* short\\_pair: ine-en\n* chrF2\\_score: 0.615\n* bleu: 45.6\n* brevity\\_penalty: 0.997\n* ref\\_len: 71872.0\n* src\\_name: Indo-European languages\n* tgt\\_name: English\n* train\\_date: 2020-08-01\n* src\\_alpha2: ine\n* tgt\\_alpha2: en\n* prefer\\_old: False\n* long\\_pair: ine-eng\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ca #es #os #ro #fy #cy #sc #is #yi #lb #an #sq #fr #ht #rm #ps #af #uk #sl #lt #bg #be #gd #si #en #br #mk #or #mr #ru #fo #co #oc #pl #gl #nb #bn #id #hy #da #gv #nl #pt #hi #as #kw #ga #sv #gu #wa #lv #el #it #hr #ur #nn #de #cs #ine #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### ine-eng\n\n\n* source group: Indo-European languages\n* target group: English\n* OPUS readme: ine-eng\n* model: transformer\n* source language(s): afr aln ang\\_Latn arg asm ast awa bel bel\\_Latn ben bho bos\\_Latn bre bul bul\\_Latn cat ces cor cos csb\\_Latn cym dan deu dsb egl ell enm\\_Latn ext fao fra frm\\_Latn frr fry gcf\\_Latn gla gle glg glv gom gos got\\_Goth grc\\_Grek gsw guj hat hif\\_Latn hin hrv hsb hye ind isl ita jdt\\_Cyrl ksh kur\\_Arab kur\\_Latn lad lad\\_Latn lat\\_Latn lav lij lit lld\\_Latn lmo ltg ltz mai mar max\\_Latn mfe min mkd mwl nds nld nno nob nob\\_Hebr non\\_Latn npi oci ori orv\\_Cyrl oss pan\\_Guru pap pdc pes pes\\_Latn pes\\_Thaa pms pnb pol por prg\\_Latn pus roh rom ron rue rus san\\_Deva scn sco sgs sin slv snd\\_Arab spa sqi srp\\_Cyrl srp\\_Latn stq swe swg tgk\\_Cyrl tly\\_Latn tmw\\_Latn ukr urd vec wln yid zlm\\_Latn zsm\\_Latn zza\n* target language(s): eng\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 11.2, chr-F: 0.375\ntestset: URL, BLEU: 35.5, chr-F: 0.614\ntestset: URL, BLEU: 25.1, chr-F: 0.542\ntestset: URL, BLEU: 16.0, chr-F: 0.420\ntestset: URL, BLEU: 24.0, chr-F: 0.522\ntestset: URL, BLEU: 30.1, chr-F: 0.550\ntestset: URL, BLEU: 33.4, chr-F: 0.572\ntestset: URL, BLEU: 24.0, chr-F: 0.520\ntestset: URL, BLEU: 25.7, chr-F: 0.526\ntestset: URL, BLEU: 27.9, chr-F: 0.550\ntestset: URL, BLEU: 31.4, chr-F: 0.574\ntestset: URL, BLEU: 28.3, chr-F: 0.555\ntestset: URL, BLEU: 24.0, chr-F: 0.515\ntestset: URL, BLEU: 24.5, chr-F: 0.524\ntestset: URL, BLEU: 25.5, chr-F: 0.533\ntestset: URL, BLEU: 23.3, chr-F: 0.516\ntestset: URL, BLEU: 23.2, chr-F: 0.512\ntestset: URL, BLEU: 27.3, chr-F: 0.545\ntestset: URL, BLEU: 30.3, chr-F: 0.567\ntestset: URL, BLEU: 27.9, chr-F: 0.549\ntestset: URL, BLEU: 23.8, chr-F: 0.523\ntestset: URL, BLEU: 26.2, chr-F: 0.545\ntestset: URL, BLEU: 28.6, chr-F: 0.562\ntestset: URL, BLEU: 31.4, chr-F: 0.581\ntestset: URL, BLEU: 24.2, chr-F: 0.521\ntestset: URL, BLEU: 23.9, chr-F: 0.522\ntestset: URL, BLEU: 29.5, chr-F: 0.570\ntestset: URL, BLEU: 30.3, chr-F: 0.570\ntestset: URL, BLEU: 23.5, chr-F: 0.516\ntestset: URL, BLEU: 24.9, chr-F: 0.529\ntestset: URL, BLEU: 30.0, chr-F: 0.568\ntestset: URL, BLEU: 29.9, chr-F: 0.565\ntestset: URL, BLEU: 33.3, chr-F: 0.593\ntestset: URL, BLEU: 25.6, chr-F: 0.531\ntestset: URL, BLEU: 27.7, chr-F: 0.545\ntestset: URL, BLEU: 30.0, chr-F: 0.561\ntestset: URL, BLEU: 24.4, chr-F: 0.514\ntestset: URL, BLEU: 30.8, chr-F: 0.577\ntestset: URL, BLEU: 27.7, chr-F: 0.558\ntestset: URL, BLEU: 27.7, chr-F: 0.545\ntestset: URL, BLEU: 32.2, chr-F: 0.592\ntestset: URL, BLEU: 16.7, chr-F: 0.450\ntestset: URL, BLEU: 27.2, chr-F: 0.552\ntestset: URL, BLEU: 25.4, chr-F: 0.518\ntestset: URL, BLEU: 28.8, chr-F: 0.552\ntestset: URL, BLEU: 25.6, chr-F: 0.527\ntestset: URL, BLEU: 27.0, chr-F: 0.540\ntestset: URL, BLEU: 33.5, chr-F: 0.592\ntestset: URL, BLEU: 32.8, chr-F: 0.591\ntestset: URL, BLEU: 24.8, chr-F: 0.523\ntestset: URL, BLEU: 23.7, chr-F: 0.510\ntestset: URL, BLEU: 29.3, chr-F: 0.556\ntestset: URL, BLEU: 18.9, chr-F: 0.486\ntestset: URL, BLEU: 28.0, chr-F: 0.546\ntestset: URL, BLEU: 24.9, chr-F: 0.521\ntestset: URL, BLEU: 36.0, chr-F: 0.604\ntestset: URL, BLEU: 23.8, chr-F: 0.517\ntestset: URL, BLEU: 31.5, chr-F: 0.570\ntestset: URL, BLEU: 12.1, chr-F: 0.377\ntestset: URL, BLEU: 26.6, chr-F: 0.555\ntestset: URL, BLEU: 27.5, chr-F: 0.541\ntestset: URL, BLEU: 59.0, chr-F: 0.724\ntestset: URL, BLEU: 9.9, chr-F: 0.254\ntestset: URL, BLEU: 41.6, chr-F: 0.487\ntestset: URL, BLEU: 22.8, chr-F: 0.392\ntestset: URL, BLEU: 36.1, chr-F: 0.521\ntestset: URL, BLEU: 11.6, chr-F: 0.280\ntestset: URL, BLEU: 42.2, chr-F: 0.597\ntestset: URL, BLEU: 45.8, chr-F: 0.598\ntestset: URL, BLEU: 34.4, chr-F: 0.518\ntestset: URL, BLEU: 24.4, chr-F: 0.405\ntestset: URL, BLEU: 50.8, chr-F: 0.660\ntestset: URL, BLEU: 51.2, chr-F: 0.677\ntestset: URL, BLEU: 47.6, chr-F: 0.641\ntestset: URL, BLEU: 5.4, chr-F: 0.214\ntestset: URL, BLEU: 61.0, chr-F: 0.675\ntestset: URL, BLEU: 22.5, chr-F: 0.394\ntestset: URL, BLEU: 34.7, chr-F: 0.522\ntestset: URL, BLEU: 56.2, chr-F: 0.708\ntestset: URL, BLEU: 44.9, chr-F: 0.625\ntestset: URL, BLEU: 21.0, chr-F: 0.383\ntestset: URL, BLEU: 6.9, chr-F: 0.221\ntestset: URL, BLEU: 62.1, chr-F: 0.741\ntestset: URL, BLEU: 22.6, chr-F: 0.466\ntestset: URL, BLEU: 33.2, chr-F: 0.496\ntestset: URL, BLEU: 28.1, chr-F: 0.460\ntestset: URL, BLEU: 9.6, chr-F: 0.306\ntestset: URL, BLEU: 50.3, chr-F: 0.661\ntestset: URL, BLEU: 30.0, chr-F: 0.457\ntestset: URL, BLEU: 15.2, chr-F: 0.301\ntestset: URL, BLEU: 34.4, chr-F: 0.525\ntestset: URL, BLEU: 18.4, chr-F: 0.317\ntestset: URL, BLEU: 24.1, chr-F: 0.400\ntestset: URL, BLEU: 52.2, chr-F: 0.671\ntestset: URL, BLEU: 50.5, chr-F: 0.669\ntestset: URL, BLEU: 5.7, chr-F: 0.189\ntestset: URL, BLEU: 19.2, chr-F: 0.378\ntestset: URL, BLEU: 0.1, chr-F: 0.022\ntestset: URL, BLEU: 0.9, chr-F: 0.095\ntestset: URL, BLEU: 23.9, chr-F: 0.390\ntestset: URL, BLEU: 28.0, chr-F: 0.428\ntestset: URL, BLEU: 44.2, chr-F: 0.567\ntestset: URL, BLEU: 51.6, chr-F: 0.666\ntestset: URL, BLEU: 22.3, chr-F: 0.451\ntestset: URL, BLEU: 41.7, chr-F: 0.585\ntestset: URL, BLEU: 46.4, chr-F: 0.590\ntestset: URL, BLEU: 40.4, chr-F: 0.564\ntestset: URL, BLEU: 43.8, chr-F: 0.605\ntestset: URL, BLEU: 60.7, chr-F: 0.735\ntestset: URL, BLEU: 5.5, chr-F: 0.091\ntestset: URL, BLEU: 7.8, chr-F: 0.205\ntestset: URL, BLEU: 15.8, chr-F: 0.284\ntestset: URL, BLEU: 11.6, chr-F: 0.232\ntestset: URL, BLEU: 30.7, chr-F: 0.484\ntestset: URL, BLEU: 11.0, chr-F: 0.286\ntestset: URL, BLEU: 24.4, chr-F: 0.432\ntestset: URL, BLEU: 47.2, chr-F: 0.646\ntestset: URL, BLEU: 9.0, chr-F: 0.287\ntestset: URL, BLEU: 51.7, chr-F: 0.670\ntestset: URL, BLEU: 22.4, chr-F: 0.369\ntestset: URL, BLEU: 26.1, chr-F: 0.381\ntestset: URL, BLEU: 39.8, chr-F: 0.536\ntestset: URL, BLEU: 72.3, chr-F: 0.758\ntestset: URL, BLEU: 32.0, chr-F: 0.554\ntestset: URL, BLEU: 63.1, chr-F: 0.822\ntestset: URL, BLEU: 49.5, chr-F: 0.638\ntestset: URL, BLEU: 38.6, chr-F: 0.566\ntestset: URL, BLEU: 45.6, chr-F: 0.615\ntestset: URL, BLEU: 40.4, chr-F: 0.767\ntestset: URL, BLEU: 35.5, chr-F: 0.538\ntestset: URL, BLEU: 4.9, chr-F: 0.209\ntestset: URL, BLEU: 54.2, chr-F: 0.694\ntestset: URL, BLEU: 39.3, chr-F: 0.573\ntestset: URL, BLEU: 50.9, chr-F: 0.663\ntestset: URL, BLEU: 19.6, chr-F: 0.386\ntestset: URL, BLEU: 16.2, chr-F: 0.364\ntestset: URL, BLEU: 13.6, chr-F: 0.288\ntestset: URL, BLEU: 9.4, chr-F: 0.301\ntestset: URL, BLEU: 17.1, chr-F: 0.389\ntestset: URL, BLEU: 57.0, chr-F: 0.680\ntestset: URL, BLEU: 41.6, chr-F: 0.526\ntestset: URL, BLEU: 13.7, chr-F: 0.333\ntestset: URL, BLEU: 46.5, chr-F: 0.632\ntestset: URL, BLEU: 56.4, chr-F: 0.710\ntestset: URL, BLEU: 2.3, chr-F: 0.193\ntestset: URL, BLEU: 3.2, chr-F: 0.194\ntestset: URL, BLEU: 17.5, chr-F: 0.420\ntestset: URL, BLEU: 5.0, chr-F: 0.237\ntestset: URL, BLEU: 51.4, chr-F: 0.670\ntestset: URL, BLEU: 26.0, chr-F: 0.447\ntestset: URL, BLEU: 47.8, chr-F: 0.634\ntestset: URL, BLEU: 4.0, chr-F: 0.195\ntestset: URL, BLEU: 45.1, chr-F: 0.440\ntestset: URL, BLEU: 41.9, chr-F: 0.582\ntestset: URL, BLEU: 38.7, chr-F: 0.498\ntestset: URL, BLEU: 29.7, chr-F: 0.499\ntestset: URL, BLEU: 38.2, chr-F: 0.564\ntestset: URL, BLEU: 12.7, chr-F: 0.342\ntestset: URL, BLEU: 53.2, chr-F: 0.687\ntestset: URL, BLEU: 51.9, chr-F: 0.679\ntestset: URL, BLEU: 9.0, chr-F: 0.391\ntestset: URL, BLEU: 57.4, chr-F: 0.705\ntestset: URL, BLEU: 18.0, chr-F: 0.338\ntestset: URL, BLEU: 24.3, chr-F: 0.413\ntestset: URL, BLEU: 1.1, chr-F: 0.094\ntestset: URL, BLEU: 48.0, chr-F: 0.639\ntestset: URL, BLEU: 27.2, chr-F: 0.471\ntestset: URL, BLEU: 28.0, chr-F: 0.398\ntestset: URL, BLEU: 17.5, chr-F: 0.320\ntestset: URL, BLEU: 26.9, chr-F: 0.457\ntestset: URL, BLEU: 1.7, chr-F: 0.131", "### System Info:\n\n\n* hf\\_name: ine-eng\n* source\\_languages: ine\n* target\\_languages: eng\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['ca', 'es', 'os', 'ro', 'fy', 'cy', 'sc', 'is', 'yi', 'lb', 'an', 'sq', 'fr', 'ht', 'rm', 'ps', 'af', 'uk', 'sl', 'lt', 'bg', 'be', 'gd', 'si', 'en', 'br', 'mk', 'or', 'mr', 'ru', 'fo', 'co', 'oc', 'pl', 'gl', 'nb', 'bn', 'id', 'hy', 'da', 'gv', 'nl', 'pt', 'hi', 'as', 'kw', 'ga', 'sv', 'gu', 'wa', 'lv', 'el', 'it', 'hr', 'ur', 'nn', 'de', 'cs', 'ine']\n* src\\_constituents: {'cat', 'spa', 'pap', 'mwl', 'lij', 'bos\\_Latn', 'lad\\_Latn', 'lat\\_Latn', 'pcd', 'oss', 'ron', 'fry', 'cym', 'awa', 'swg', 'zsm\\_Latn', 'srd', 'gcf\\_Latn', 'isl', 'yid', 'bho', 'ltz', 'kur\\_Latn', 'arg', 'pes\\_Thaa', 'sqi', 'csb\\_Latn', 'fra', 'hat', 'non\\_Latn', 'sco', 'pnb', 'roh', 'bul\\_Latn', 'pus', 'afr', 'ukr', 'slv', 'lit', 'tmw\\_Latn', 'hsb', 'tly\\_Latn', 'bul', 'bel', 'got\\_Goth', 'lat\\_Grek', 'ext', 'gla', 'mai', 'sin', 'hif\\_Latn', 'eng', 'bre', 'nob\\_Hebr', 'prg\\_Latn', 'ang\\_Latn', 'aln', 'mkd', 'ori', 'mar', 'afr\\_Arab', 'san\\_Deva', 'gos', 'rus', 'fao', 'orv\\_Cyrl', 'bel\\_Latn', 'cos', 'zza', 'grc\\_Grek', 'oci', 'mfe', 'gom', 'bjn', 'sgs', 'tgk\\_Cyrl', 'hye\\_Latn', 'pdc', 'srp\\_Cyrl', 'pol', 'ast', 'glg', 'pms', 'nob', 'ben', 'min', 'srp\\_Latn', 'zlm\\_Latn', 'ind', 'rom', 'hye', 'scn', 'enm\\_Latn', 'lmo', 'npi', 'pes', 'dan', 'rus\\_Latn', 'jdt\\_Cyrl', 'gsw', 'glv', 'nld', 'snd\\_Arab', 'kur\\_Arab', 'por', 'hin', 'dsb', 'asm', 'lad', 'frm\\_Latn', 'ksh', 'pan\\_Guru', 'cor', 'gle', 'swe', 'guj', 'wln', 'lav', 'ell', 'frr', 'rue', 'ita', 'hrv', 'urd', 'stq', 'nno', 'deu', 'lld\\_Latn', 'ces', 'egl', 'vec', 'max\\_Latn', 'pes\\_Latn', 'ltg', 'nds'}\n* tgt\\_constituents: {'eng'}\n* src\\_multilingual: True\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: ine\n* tgt\\_alpha3: eng\n* short\\_pair: ine-en\n* chrF2\\_score: 0.615\n* bleu: 45.6\n* brevity\\_penalty: 0.997\n* ref\\_len: 71872.0\n* src\\_name: Indo-European languages\n* tgt\\_name: English\n* train\\_date: 2020-08-01\n* src\\_alpha2: ine\n* tgt\\_alpha2: en\n* prefer\\_old: False\n* long\\_pair: ine-eng\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ 178, 4368, 1459 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ca #es #os #ro #fy #cy #sc #is #yi #lb #an #sq #fr #ht #rm #ps #af #uk #sl #lt #bg #be #gd #si #en #br #mk #or #mr #ru #fo #co #oc #pl #gl #nb #bn #id #hy #da #gv #nl #pt #hi #as #kw #ga #sv #gu #wa #lv #el #it #hr #ur #nn #de #cs #ine #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### ine-eng\n\n\n* source group: Indo-European languages\n* target group: English\n* OPUS readme: ine-eng\n* model: transformer\n* source language(s): afr aln ang\\_Latn arg asm ast awa bel bel\\_Latn ben bho bos\\_Latn bre bul bul\\_Latn cat ces cor cos csb\\_Latn cym dan deu dsb egl ell enm\\_Latn ext fao fra frm\\_Latn frr fry gcf\\_Latn gla gle glg glv gom gos got\\_Goth grc\\_Grek gsw guj hat hif\\_Latn hin hrv hsb hye ind isl ita jdt\\_Cyrl ksh kur\\_Arab kur\\_Latn lad lad\\_Latn lat\\_Latn lav lij lit lld\\_Latn lmo ltg ltz mai mar max\\_Latn mfe min mkd mwl nds nld nno nob nob\\_Hebr non\\_Latn npi oci ori orv\\_Cyrl oss pan\\_Guru pap pdc pes pes\\_Latn pes\\_Thaa pms pnb pol por prg\\_Latn pus roh rom ron rue rus san\\_Deva scn sco sgs sin slv snd\\_Arab spa sqi srp\\_Cyrl srp\\_Latn stq swe swg tgk\\_Cyrl tly\\_Latn tmw\\_Latn ukr urd vec wln yid zlm\\_Latn zsm\\_Latn zza\n* target language(s): eng\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 11.2, chr-F: 0.375\ntestset: URL, BLEU: 35.5, chr-F: 0.614\ntestset: URL, BLEU: 25.1, chr-F: 0.542\ntestset: URL, BLEU: 16.0, chr-F: 0.420\ntestset: URL, BLEU: 24.0, chr-F: 0.522\ntestset: URL, BLEU: 30.1, chr-F: 0.550\ntestset: URL, BLEU: 33.4, chr-F: 0.572\ntestset: URL, BLEU: 24.0, chr-F: 0.520\ntestset: URL, BLEU: 25.7, chr-F: 0.526\ntestset: URL, BLEU: 27.9, chr-F: 0.550\ntestset: URL, BLEU: 31.4, chr-F: 0.574\ntestset: URL, BLEU: 28.3, chr-F: 0.555\ntestset: URL, BLEU: 24.0, chr-F: 0.515\ntestset: URL, BLEU: 24.5, chr-F: 0.524\ntestset: URL, BLEU: 25.5, chr-F: 0.533\ntestset: URL, BLEU: 23.3, chr-F: 0.516\ntestset: URL, BLEU: 23.2, chr-F: 0.512\ntestset: URL, BLEU: 27.3, chr-F: 0.545\ntestset: URL, BLEU: 30.3, chr-F: 0.567\ntestset: URL, BLEU: 27.9, chr-F: 0.549\ntestset: URL, BLEU: 23.8, chr-F: 0.523\ntestset: URL, BLEU: 26.2, chr-F: 0.545\ntestset: URL, BLEU: 28.6, chr-F: 0.562\ntestset: URL, BLEU: 31.4, chr-F: 0.581\ntestset: URL, BLEU: 24.2, chr-F: 0.521\ntestset: URL, BLEU: 23.9, chr-F: 0.522\ntestset: URL, BLEU: 29.5, chr-F: 0.570\ntestset: URL, BLEU: 30.3, chr-F: 0.570\ntestset: URL, BLEU: 23.5, chr-F: 0.516\ntestset: URL, BLEU: 24.9, chr-F: 0.529\ntestset: URL, BLEU: 30.0, chr-F: 0.568\ntestset: URL, BLEU: 29.9, chr-F: 0.565\ntestset: URL, BLEU: 33.3, chr-F: 0.593\ntestset: URL, BLEU: 25.6, chr-F: 0.531\ntestset: URL, BLEU: 27.7, chr-F: 0.545\ntestset: URL, BLEU: 30.0, chr-F: 0.561\ntestset: URL, BLEU: 24.4, chr-F: 0.514\ntestset: URL, BLEU: 30.8, chr-F: 0.577\ntestset: URL, BLEU: 27.7, chr-F: 0.558\ntestset: URL, BLEU: 27.7, chr-F: 0.545\ntestset: URL, BLEU: 32.2, chr-F: 0.592\ntestset: URL, BLEU: 16.7, chr-F: 0.450\ntestset: URL, BLEU: 27.2, chr-F: 0.552\ntestset: URL, BLEU: 25.4, chr-F: 0.518\ntestset: URL, BLEU: 28.8, chr-F: 0.552\ntestset: URL, BLEU: 25.6, chr-F: 0.527\ntestset: URL, BLEU: 27.0, chr-F: 0.540\ntestset: URL, BLEU: 33.5, chr-F: 0.592\ntestset: URL, BLEU: 32.8, chr-F: 0.591\ntestset: URL, BLEU: 24.8, chr-F: 0.523\ntestset: URL, BLEU: 23.7, chr-F: 0.510\ntestset: URL, BLEU: 29.3, chr-F: 0.556\ntestset: URL, BLEU: 18.9, chr-F: 0.486\ntestset: URL, BLEU: 28.0, chr-F: 0.546\ntestset: URL, BLEU: 24.9, chr-F: 0.521\ntestset: URL, BLEU: 36.0, chr-F: 0.604\ntestset: URL, BLEU: 23.8, chr-F: 0.517\ntestset: URL, BLEU: 31.5, chr-F: 0.570\ntestset: URL, BLEU: 12.1, chr-F: 0.377\ntestset: URL, BLEU: 26.6, chr-F: 0.555\ntestset: URL, BLEU: 27.5, chr-F: 0.541\ntestset: URL, BLEU: 59.0, chr-F: 0.724\ntestset: URL, BLEU: 9.9, chr-F: 0.254\ntestset: URL, BLEU: 41.6, chr-F: 0.487\ntestset: URL, BLEU: 22.8, chr-F: 0.392\ntestset: URL, BLEU: 36.1, chr-F: 0.521\ntestset: URL, BLEU: 11.6, chr-F: 0.280\ntestset: URL, BLEU: 42.2, chr-F: 0.597\ntestset: URL, BLEU: 45.8, chr-F: 0.598\ntestset: URL, BLEU: 34.4, chr-F: 0.518\ntestset: URL, BLEU: 24.4, chr-F: 0.405\ntestset: URL, BLEU: 50.8, chr-F: 0.660\ntestset: URL, BLEU: 51.2, chr-F: 0.677\ntestset: URL, BLEU: 47.6, chr-F: 0.641\ntestset: URL, BLEU: 5.4, chr-F: 0.214\ntestset: URL, BLEU: 61.0, chr-F: 0.675\ntestset: URL, BLEU: 22.5, chr-F: 0.394\ntestset: URL, BLEU: 34.7, chr-F: 0.522\ntestset: URL, BLEU: 56.2, chr-F: 0.708\ntestset: URL, BLEU: 44.9, chr-F: 0.625\ntestset: URL, BLEU: 21.0, chr-F: 0.383\ntestset: URL, BLEU: 6.9, chr-F: 0.221\ntestset: URL, BLEU: 62.1, chr-F: 0.741\ntestset: URL, BLEU: 22.6, chr-F: 0.466\ntestset: URL, BLEU: 33.2, chr-F: 0.496\ntestset: URL, BLEU: 28.1, chr-F: 0.460\ntestset: URL, BLEU: 9.6, chr-F: 0.306\ntestset: URL, BLEU: 50.3, chr-F: 0.661\ntestset: URL, BLEU: 30.0, chr-F: 0.457\ntestset: URL, BLEU: 15.2, chr-F: 0.301\ntestset: URL, BLEU: 34.4, chr-F: 0.525\ntestset: URL, BLEU: 18.4, chr-F: 0.317\ntestset: URL, BLEU: 24.1, chr-F: 0.400\ntestset: URL, BLEU: 52.2, chr-F: 0.671\ntestset: URL, BLEU: 50.5, chr-F: 0.669\ntestset: URL, BLEU: 5.7, chr-F: 0.189\ntestset: URL, BLEU: 19.2, chr-F: 0.378\ntestset: URL, BLEU: 0.1, chr-F: 0.022\ntestset: URL, BLEU: 0.9, chr-F: 0.095\ntestset: URL, BLEU: 23.9, chr-F: 0.390\ntestset: URL, BLEU: 28.0, chr-F: 0.428\ntestset: URL, BLEU: 44.2, chr-F: 0.567\ntestset: URL, BLEU: 51.6, chr-F: 0.666\ntestset: URL, BLEU: 22.3, chr-F: 0.451\ntestset: URL, BLEU: 41.7, chr-F: 0.585\ntestset: URL, BLEU: 46.4, chr-F: 0.590\ntestset: URL, BLEU: 40.4, chr-F: 0.564\ntestset: URL, BLEU: 43.8, chr-F: 0.605\ntestset: URL, BLEU: 60.7, chr-F: 0.735\ntestset: URL, BLEU: 5.5, chr-F: 0.091\ntestset: URL, BLEU: 7.8, chr-F: 0.205\ntestset: URL, BLEU: 15.8, chr-F: 0.284\ntestset: URL, BLEU: 11.6, chr-F: 0.232\ntestset: URL, BLEU: 30.7, chr-F: 0.484\ntestset: URL, BLEU: 11.0, chr-F: 0.286\ntestset: URL, BLEU: 24.4, chr-F: 0.432\ntestset: URL, BLEU: 47.2, chr-F: 0.646\ntestset: URL, BLEU: 9.0, chr-F: 0.287\ntestset: URL, BLEU: 51.7, chr-F: 0.670\ntestset: URL, BLEU: 22.4, chr-F: 0.369\ntestset: URL, BLEU: 26.1, chr-F: 0.381\ntestset: URL, BLEU: 39.8, chr-F: 0.536\ntestset: URL, BLEU: 72.3, chr-F: 0.758\ntestset: URL, BLEU: 32.0, chr-F: 0.554\ntestset: URL, BLEU: 63.1, chr-F: 0.822\ntestset: URL, BLEU: 49.5, chr-F: 0.638\ntestset: URL, BLEU: 38.6, chr-F: 0.566\ntestset: URL, BLEU: 45.6, chr-F: 0.615\ntestset: URL, BLEU: 40.4, chr-F: 0.767\ntestset: URL, BLEU: 35.5, chr-F: 0.538\ntestset: URL, BLEU: 4.9, chr-F: 0.209\ntestset: URL, BLEU: 54.2, chr-F: 0.694\ntestset: URL, BLEU: 39.3, chr-F: 0.573\ntestset: URL, BLEU: 50.9, chr-F: 0.663\ntestset: URL, BLEU: 19.6, chr-F: 0.386\ntestset: URL, BLEU: 16.2, chr-F: 0.364\ntestset: URL, BLEU: 13.6, chr-F: 0.288\ntestset: URL, BLEU: 9.4, chr-F: 0.301\ntestset: URL, BLEU: 17.1, chr-F: 0.389\ntestset: URL, BLEU: 57.0, chr-F: 0.680\ntestset: URL, BLEU: 41.6, chr-F: 0.526\ntestset: URL, BLEU: 13.7, chr-F: 0.333\ntestset: URL, BLEU: 46.5, chr-F: 0.632\ntestset: URL, BLEU: 56.4, chr-F: 0.710\ntestset: URL, BLEU: 2.3, chr-F: 0.193\ntestset: URL, BLEU: 3.2, chr-F: 0.194\ntestset: URL, BLEU: 17.5, chr-F: 0.420\ntestset: URL, BLEU: 5.0, chr-F: 0.237\ntestset: URL, BLEU: 51.4, chr-F: 0.670\ntestset: URL, BLEU: 26.0, chr-F: 0.447\ntestset: URL, BLEU: 47.8, chr-F: 0.634\ntestset: URL, BLEU: 4.0, chr-F: 0.195\ntestset: URL, BLEU: 45.1, chr-F: 0.440\ntestset: URL, BLEU: 41.9, chr-F: 0.582\ntestset: URL, BLEU: 38.7, chr-F: 0.498\ntestset: URL, BLEU: 29.7, chr-F: 0.499\ntestset: URL, BLEU: 38.2, chr-F: 0.564\ntestset: URL, BLEU: 12.7, chr-F: 0.342\ntestset: URL, BLEU: 53.2, chr-F: 0.687\ntestset: URL, BLEU: 51.9, chr-F: 0.679\ntestset: URL, BLEU: 9.0, chr-F: 0.391\ntestset: URL, BLEU: 57.4, chr-F: 0.705\ntestset: URL, BLEU: 18.0, chr-F: 0.338\ntestset: URL, BLEU: 24.3, chr-F: 0.413\ntestset: URL, BLEU: 1.1, chr-F: 0.094\ntestset: URL, BLEU: 48.0, chr-F: 0.639\ntestset: URL, BLEU: 27.2, chr-F: 0.471\ntestset: URL, BLEU: 28.0, chr-F: 0.398\ntestset: URL, BLEU: 17.5, chr-F: 0.320\ntestset: URL, BLEU: 26.9, chr-F: 0.457\ntestset: URL, BLEU: 1.7, chr-F: 0.131### System Info:\n\n\n* hf\\_name: ine-eng\n* source\\_languages: ine\n* target\\_languages: eng\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['ca', 'es', 'os', 'ro', 'fy', 'cy', 'sc', 'is', 'yi', 'lb', 'an', 'sq', 'fr', 'ht', 'rm', 'ps', 'af', 'uk', 'sl', 'lt', 'bg', 'be', 'gd', 'si', 'en', 'br', 'mk', 'or', 'mr', 'ru', 'fo', 'co', 'oc', 'pl', 'gl', 'nb', 'bn', 'id', 'hy', 'da', 'gv', 'nl', 'pt', 'hi', 'as', 'kw', 'ga', 'sv', 'gu', 'wa', 'lv', 'el', 'it', 'hr', 'ur', 'nn', 'de', 'cs', 'ine']\n* src\\_constituents: {'cat', 'spa', 'pap', 'mwl', 'lij', 'bos\\_Latn', 'lad\\_Latn', 'lat\\_Latn', 'pcd', 'oss', 'ron', 'fry', 'cym', 'awa', 'swg', 'zsm\\_Latn', 'srd', 'gcf\\_Latn', 'isl', 'yid', 'bho', 'ltz', 'kur\\_Latn', 'arg', 'pes\\_Thaa', 'sqi', 'csb\\_Latn', 'fra', 'hat', 'non\\_Latn', 'sco', 'pnb', 'roh', 'bul\\_Latn', 'pus', 'afr', 'ukr', 'slv', 'lit', 'tmw\\_Latn', 'hsb', 'tly\\_Latn', 'bul', 'bel', 'got\\_Goth', 'lat\\_Grek', 'ext', 'gla', 'mai', 'sin', 'hif\\_Latn', 'eng', 'bre', 'nob\\_Hebr', 'prg\\_Latn', 'ang\\_Latn', 'aln', 'mkd', 'ori', 'mar', 'afr\\_Arab', 'san\\_Deva', 'gos', 'rus', 'fao', 'orv\\_Cyrl', 'bel\\_Latn', 'cos', 'zza', 'grc\\_Grek', 'oci', 'mfe', 'gom', 'bjn', 'sgs', 'tgk\\_Cyrl', 'hye\\_Latn', 'pdc', 'srp\\_Cyrl', 'pol', 'ast', 'glg', 'pms', 'nob', 'ben', 'min', 'srp\\_Latn', 'zlm\\_Latn', 'ind', 'rom', 'hye', 'scn', 'enm\\_Latn', 'lmo', 'npi', 'pes', 'dan', 'rus\\_Latn', 'jdt\\_Cyrl', 'gsw', 'glv', 'nld', 'snd\\_Arab', 'kur\\_Arab', 'por', 'hin', 'dsb', 'asm', 'lad', 'frm\\_Latn', 'ksh', 'pan\\_Guru', 'cor', 'gle', 'swe', 'guj', 'wln', 'lav', 'ell', 'frr', 'rue', 'ita', 'hrv', 'urd', 'stq', 'nno', 'deu', 'lld\\_Latn', 'ces', 'egl', 'vec', 'max\\_Latn', 'pes\\_Latn', 'ltg', 'nds'}\n* tgt\\_constituents: {'eng'}\n* src\\_multilingual: True\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: ine\n* tgt\\_alpha3: eng\n* short\\_pair: ine-en\n* chrF2\\_score: 0.615\n* bleu: 45.6\n* brevity\\_penalty: 0.997\n* ref\\_len: 71872.0\n* src\\_name: Indo-European languages\n* tgt\\_name: English\n* train\\_date: 2020-08-01\n* src\\_alpha2: ine\n* tgt\\_alpha2: en\n* prefer\\_old: False\n* long\\_pair: ine-eng\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
translation
transformers
### ine-ine * source group: Indo-European languages * target group: Indo-European languages * OPUS readme: [ine-ine](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ine-ine/README.md) * model: transformer * source language(s): afr afr_Arab aln ang_Latn arg asm ast awa bel bel_Latn ben bho bjn bos_Latn bre bul bul_Latn cat ces cor cos csb_Latn cym dan deu dsb egl ell eng enm_Latn ext fao fra frm_Latn frr fry gcf_Latn gla gle glg glv gom gos got_Goth grc_Grek gsw guj hat hif_Latn hin hrv hsb hye hye_Latn ind isl ita jdt_Cyrl ksh kur_Arab kur_Latn lad lad_Latn lat_Grek lat_Latn lav lij lit lld_Latn lmo ltg ltz mai mar max_Latn mfe min mkd mwl nds nld nno nob nob_Hebr non_Latn npi oci ori orv_Cyrl oss pan_Guru pap pcd pdc pes pes_Latn pes_Thaa pms pnb pol por prg_Latn pus roh rom ron rue rus rus_Latn san_Deva scn sco sgs sin slv snd_Arab spa sqi srd srp_Cyrl srp_Latn stq swe swg tgk_Cyrl tly_Latn tmw_Latn ukr urd vec wln yid zlm_Latn zsm_Latn zza * target language(s): afr afr_Arab aln ang_Latn arg asm ast awa bel bel_Latn ben bho bjn bos_Latn bre bul bul_Latn cat ces cor cos csb_Latn cym dan deu dsb egl ell eng enm_Latn ext fao fra frm_Latn frr fry gcf_Latn gla gle glg glv gom gos got_Goth grc_Grek gsw guj hat hif_Latn hin hrv hsb hye hye_Latn ind isl ita jdt_Cyrl ksh kur_Arab kur_Latn lad lad_Latn lat_Grek lat_Latn lav lij lit lld_Latn lmo ltg ltz mai mar max_Latn mfe min mkd mwl nds nld nno nob nob_Hebr non_Latn npi oci ori orv_Cyrl oss pan_Guru pap pcd pdc pes pes_Latn pes_Thaa pms pnb pol por prg_Latn pus roh rom ron rue rus rus_Latn san_Deva scn sco sgs sin slv snd_Arab spa sqi srd srp_Cyrl srp_Latn stq swe swg tgk_Cyrl tly_Latn tmw_Latn ukr urd vec wln yid zlm_Latn zsm_Latn zza * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-07-27.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ine-ine/opus-2020-07-27.zip) * test set translations: [opus-2020-07-27.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ine-ine/opus-2020-07-27.test.txt) * test set scores: [opus-2020-07-27.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ine-ine/opus-2020-07-27.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | euelections_dev2019.de-fr-deufra.deu.fra | 19.2 | 0.482 | | euelections_dev2019.fr-de-fradeu.fra.deu | 15.8 | 0.470 | | newsdev2014-enghin.eng.hin | 4.0 | 0.245 | | newsdev2014-hineng.hin.eng | 6.8 | 0.301 | | newsdev2016-enro-engron.eng.ron | 17.3 | 0.470 | | newsdev2016-enro-roneng.ron.eng | 26.0 | 0.534 | | newsdev2017-enlv-englav.eng.lav | 12.1 | 0.416 | | newsdev2017-enlv-laveng.lav.eng | 15.9 | 0.443 | | newsdev2019-engu-engguj.eng.guj | 2.5 | 0.200 | | newsdev2019-engu-gujeng.guj.eng | 7.1 | 0.302 | | newsdev2019-enlt-englit.eng.lit | 10.6 | 0.407 | | newsdev2019-enlt-liteng.lit.eng | 14.9 | 0.428 | | newsdiscussdev2015-enfr-engfra.eng.fra | 22.6 | 0.507 | | newsdiscussdev2015-enfr-fraeng.fra.eng | 23.5 | 0.495 | | newsdiscusstest2015-enfr-engfra.eng.fra | 25.1 | 0.528 | | newsdiscusstest2015-enfr-fraeng.fra.eng | 26.4 | 0.517 | | newssyscomb2009-cesdeu.ces.deu | 13.1 | 0.432 | | newssyscomb2009-ceseng.ces.eng | 18.4 | 0.463 | | newssyscomb2009-cesfra.ces.fra | 15.5 | 0.452 | | newssyscomb2009-cesita.ces.ita | 14.8 | 0.458 | | newssyscomb2009-cesspa.ces.spa | 18.4 | 0.462 | | newssyscomb2009-deuces.deu.ces | 10.5 | 0.381 | | newssyscomb2009-deueng.deu.eng | 19.5 | 0.467 | | newssyscomb2009-deufra.deu.fra | 16.4 | 0.459 | | newssyscomb2009-deuita.deu.ita | 15.5 | 0.456 | | newssyscomb2009-deuspa.deu.spa | 18.4 | 0.466 | | newssyscomb2009-engces.eng.ces | 11.9 | 0.394 | | newssyscomb2009-engdeu.eng.deu | 13.9 | 0.446 | | newssyscomb2009-engfra.eng.fra | 20.7 | 0.502 | | newssyscomb2009-engita.eng.ita | 21.3 | 0.516 | | newssyscomb2009-engspa.eng.spa | 22.3 | 0.506 | | newssyscomb2009-fraces.fra.ces | 11.5 | 0.390 | | newssyscomb2009-fradeu.fra.deu | 13.4 | 0.437 | | newssyscomb2009-fraeng.fra.eng | 22.8 | 0.499 | | newssyscomb2009-fraita.fra.ita | 22.2 | 0.533 | | newssyscomb2009-fraspa.fra.spa | 26.2 | 0.539 | | newssyscomb2009-itaces.ita.ces | 12.3 | 0.397 | | newssyscomb2009-itadeu.ita.deu | 13.3 | 0.436 | | newssyscomb2009-itaeng.ita.eng | 24.7 | 0.517 | | newssyscomb2009-itafra.ita.fra | 24.0 | 0.528 | | newssyscomb2009-itaspa.ita.spa | 26.3 | 0.537 | | newssyscomb2009-spaces.spa.ces | 12.0 | 0.400 | | newssyscomb2009-spadeu.spa.deu | 13.9 | 0.440 | | newssyscomb2009-spaeng.spa.eng | 22.9 | 0.509 | | newssyscomb2009-spafra.spa.fra | 24.2 | 0.538 | | newssyscomb2009-spaita.spa.ita | 24.5 | 0.547 | | news-test2008-cesdeu.ces.deu | 12.0 | 0.422 | | news-test2008-cesfra.ces.fra | 15.1 | 0.444 | | news-test2008-cesspa.ces.spa | 16.4 | 0.451 | | news-test2008-deuces.deu.ces | 9.9 | 0.369 | | news-test2008-deueng.deu.eng | 18.0 | 0.456 | | news-test2008-deufra.deu.fra | 16.4 | 0.453 | | news-test2008-deuspa.deu.spa | 17.0 | 0.452 | | news-test2008-engces.eng.ces | 10.5 | 0.375 | | news-test2008-engdeu.eng.deu | 14.5 | 0.439 | | news-test2008-engfra.eng.fra | 18.9 | 0.481 | | news-test2008-engspa.eng.spa | 20.9 | 0.491 | | news-test2008-fraces.fra.ces | 10.7 | 0.380 | | news-test2008-fradeu.fra.deu | 13.8 | 0.435 | | news-test2008-fraeng.fra.eng | 19.8 | 0.479 | | news-test2008-fraspa.fra.spa | 24.8 | 0.522 | | news-test2008-spaces.spa.ces | 11.0 | 0.380 | | news-test2008-spadeu.spa.deu | 14.0 | 0.433 | | news-test2008-spaeng.spa.eng | 20.6 | 0.488 | | news-test2008-spafra.spa.fra | 23.3 | 0.518 | | newstest2009-cesdeu.ces.deu | 12.9 | 0.427 | | newstest2009-ceseng.ces.eng | 17.0 | 0.456 | | newstest2009-cesfra.ces.fra | 15.4 | 0.447 | | newstest2009-cesita.ces.ita | 14.9 | 0.454 | | newstest2009-cesspa.ces.spa | 17.1 | 0.458 | | newstest2009-deuces.deu.ces | 10.3 | 0.370 | | newstest2009-deueng.deu.eng | 17.7 | 0.458 | | newstest2009-deufra.deu.fra | 15.9 | 0.447 | | newstest2009-deuita.deu.ita | 14.7 | 0.446 | | newstest2009-deuspa.deu.spa | 17.2 | 0.453 | | newstest2009-engces.eng.ces | 11.0 | 0.387 | | newstest2009-engdeu.eng.deu | 13.6 | 0.440 | | newstest2009-engfra.eng.fra | 20.3 | 0.496 | | newstest2009-engita.eng.ita | 20.8 | 0.509 | | newstest2009-engspa.eng.spa | 21.9 | 0.503 | | newstest2009-fraces.fra.ces | 11.3 | 0.385 | | newstest2009-fradeu.fra.deu | 14.0 | 0.436 | | newstest2009-fraeng.fra.eng | 21.8 | 0.496 | | newstest2009-fraita.fra.ita | 22.1 | 0.526 | | newstest2009-fraspa.fra.spa | 24.8 | 0.525 | | newstest2009-itaces.ita.ces | 11.5 | 0.382 | | newstest2009-itadeu.ita.deu | 13.3 | 0.430 | | newstest2009-itaeng.ita.eng | 23.6 | 0.508 | | newstest2009-itafra.ita.fra | 22.9 | 0.516 | | newstest2009-itaspa.ita.spa | 25.4 | 0.529 | | newstest2009-spaces.spa.ces | 11.3 | 0.386 | | newstest2009-spadeu.spa.deu | 13.5 | 0.434 | | newstest2009-spaeng.spa.eng | 22.4 | 0.500 | | newstest2009-spafra.spa.fra | 23.2 | 0.520 | | newstest2009-spaita.spa.ita | 24.0 | 0.538 | | newstest2010-cesdeu.ces.deu | 13.1 | 0.431 | | newstest2010-ceseng.ces.eng | 16.9 | 0.459 | | newstest2010-cesfra.ces.fra | 15.6 | 0.450 | | newstest2010-cesspa.ces.spa | 18.5 | 0.467 | | newstest2010-deuces.deu.ces | 11.4 | 0.387 | | newstest2010-deueng.deu.eng | 19.6 | 0.481 | | newstest2010-deufra.deu.fra | 17.7 | 0.471 | | newstest2010-deuspa.deu.spa | 20.0 | 0.478 | | newstest2010-engces.eng.ces | 11.4 | 0.393 | | newstest2010-engdeu.eng.deu | 15.1 | 0.448 | | newstest2010-engfra.eng.fra | 21.4 | 0.506 | | newstest2010-engspa.eng.spa | 25.0 | 0.525 | | newstest2010-fraces.fra.ces | 11.1 | 0.386 | | newstest2010-fradeu.fra.deu | 14.2 | 0.442 | | newstest2010-fraeng.fra.eng | 22.6 | 0.507 | | newstest2010-fraspa.fra.spa | 26.6 | 0.542 | | newstest2010-spaces.spa.ces | 12.2 | 0.396 | | newstest2010-spadeu.spa.deu | 15.1 | 0.445 | | newstest2010-spaeng.spa.eng | 24.3 | 0.521 | | newstest2010-spafra.spa.fra | 24.8 | 0.536 | | newstest2011-cesdeu.ces.deu | 13.1 | 0.423 | | newstest2011-ceseng.ces.eng | 18.2 | 0.463 | | newstest2011-cesfra.ces.fra | 17.4 | 0.458 | | newstest2011-cesspa.ces.spa | 18.9 | 0.464 | | newstest2011-deuces.deu.ces | 11.2 | 0.376 | | newstest2011-deueng.deu.eng | 18.3 | 0.464 | | newstest2011-deufra.deu.fra | 17.0 | 0.457 | | newstest2011-deuspa.deu.spa | 19.2 | 0.464 | | newstest2011-engces.eng.ces | 12.4 | 0.395 | | newstest2011-engdeu.eng.deu | 14.5 | 0.437 | | newstest2011-engfra.eng.fra | 23.6 | 0.522 | | newstest2011-engspa.eng.spa | 26.6 | 0.530 | | newstest2011-fraces.fra.ces | 12.5 | 0.394 | | newstest2011-fradeu.fra.deu | 14.2 | 0.433 | | newstest2011-fraeng.fra.eng | 24.3 | 0.521 | | newstest2011-fraspa.fra.spa | 29.1 | 0.551 | | newstest2011-spaces.spa.ces | 12.3 | 0.390 | | newstest2011-spadeu.spa.deu | 14.4 | 0.435 | | newstest2011-spaeng.spa.eng | 25.0 | 0.521 | | newstest2011-spafra.spa.fra | 25.6 | 0.537 | | newstest2012-cesdeu.ces.deu | 13.1 | 0.420 | | newstest2012-ceseng.ces.eng | 17.5 | 0.457 | | newstest2012-cesfra.ces.fra | 16.8 | 0.452 | | newstest2012-cesrus.ces.rus | 11.2 | 0.379 | | newstest2012-cesspa.ces.spa | 18.1 | 0.457 | | newstest2012-deuces.deu.ces | 11.2 | 0.368 | | newstest2012-deueng.deu.eng | 19.4 | 0.472 | | newstest2012-deufra.deu.fra | 17.7 | 0.464 | | newstest2012-deurus.deu.rus | 10.3 | 0.370 | | newstest2012-deuspa.deu.spa | 19.6 | 0.467 | | newstest2012-engces.eng.ces | 11.1 | 0.375 | | newstest2012-engdeu.eng.deu | 14.6 | 0.440 | | newstest2012-engfra.eng.fra | 22.4 | 0.512 | | newstest2012-engrus.eng.rus | 17.6 | 0.452 | | newstest2012-engspa.eng.spa | 26.5 | 0.527 | | newstest2012-fraces.fra.ces | 11.9 | 0.383 | | newstest2012-fradeu.fra.deu | 14.6 | 0.437 | | newstest2012-fraeng.fra.eng | 24.3 | 0.516 | | newstest2012-frarus.fra.rus | 11.9 | 0.393 | | newstest2012-fraspa.fra.spa | 28.3 | 0.545 | | newstest2012-rusces.rus.ces | 9.0 | 0.340 | | newstest2012-rusdeu.rus.deu | 10.0 | 0.383 | | newstest2012-ruseng.rus.eng | 22.4 | 0.492 | | newstest2012-rusfra.rus.fra | 13.3 | 0.427 | | newstest2012-russpa.rus.spa | 16.6 | 0.437 | | newstest2012-spaces.spa.ces | 11.9 | 0.381 | | newstest2012-spadeu.spa.deu | 14.8 | 0.440 | | newstest2012-spaeng.spa.eng | 26.5 | 0.534 | | newstest2012-spafra.spa.fra | 25.0 | 0.539 | | newstest2012-sparus.spa.rus | 12.4 | 0.401 | | newstest2013-cesdeu.ces.deu | 14.3 | 0.434 | | newstest2013-ceseng.ces.eng | 18.5 | 0.463 | | newstest2013-cesfra.ces.fra | 16.6 | 0.444 | | newstest2013-cesrus.ces.rus | 13.6 | 0.406 | | newstest2013-cesspa.ces.spa | 18.2 | 0.455 | | newstest2013-deuces.deu.ces | 11.7 | 0.380 | | newstest2013-deueng.deu.eng | 20.9 | 0.481 | | newstest2013-deufra.deu.fra | 18.1 | 0.460 | | newstest2013-deurus.deu.rus | 11.7 | 0.384 | | newstest2013-deuspa.deu.spa | 19.4 | 0.463 | | newstest2013-engces.eng.ces | 12.7 | 0.394 | | newstest2013-engdeu.eng.deu | 16.7 | 0.455 | | newstest2013-engfra.eng.fra | 22.7 | 0.499 | | newstest2013-engrus.eng.rus | 13.3 | 0.408 | | newstest2013-engspa.eng.spa | 23.6 | 0.506 | | newstest2013-fraces.fra.ces | 11.8 | 0.379 | | newstest2013-fradeu.fra.deu | 15.6 | 0.446 | | newstest2013-fraeng.fra.eng | 23.6 | 0.506 | | newstest2013-frarus.fra.rus | 12.9 | 0.399 | | newstest2013-fraspa.fra.spa | 25.3 | 0.519 | | newstest2013-rusces.rus.ces | 11.6 | 0.376 | | newstest2013-rusdeu.rus.deu | 12.4 | 0.410 | | newstest2013-ruseng.rus.eng | 17.8 | 0.448 | | newstest2013-rusfra.rus.fra | 14.8 | 0.434 | | newstest2013-russpa.rus.spa | 17.9 | 0.446 | | newstest2013-spaces.spa.ces | 12.5 | 0.391 | | newstest2013-spadeu.spa.deu | 15.9 | 0.449 | | newstest2013-spaeng.spa.eng | 24.0 | 0.518 | | newstest2013-spafra.spa.fra | 24.3 | 0.522 | | newstest2013-sparus.spa.rus | 13.9 | 0.411 | | newstest2014-csen-ceseng.ces.eng | 19.0 | 0.475 | | newstest2014-deen-deueng.deu.eng | 19.2 | 0.468 | | newstest2014-fren-fraeng.fra.eng | 23.9 | 0.521 | | newstest2014-hien-enghin.eng.hin | 5.9 | 0.268 | | newstest2014-hien-hineng.hin.eng | 8.8 | 0.348 | | newstest2014-ruen-ruseng.rus.eng | 19.1 | 0.475 | | newstest2015-encs-ceseng.ces.eng | 17.9 | 0.450 | | newstest2015-encs-engces.eng.ces | 12.1 | 0.392 | | newstest2015-ende-deueng.deu.eng | 21.1 | 0.480 | | newstest2015-ende-engdeu.eng.deu | 18.7 | 0.475 | | newstest2015-enru-engrus.eng.rus | 15.4 | 0.431 | | newstest2015-enru-ruseng.rus.eng | 18.1 | 0.454 | | newstest2016-encs-ceseng.ces.eng | 18.6 | 0.465 | | newstest2016-encs-engces.eng.ces | 13.3 | 0.403 | | newstest2016-ende-deueng.deu.eng | 24.0 | 0.508 | | newstest2016-ende-engdeu.eng.deu | 21.4 | 0.494 | | newstest2016-enro-engron.eng.ron | 16.8 | 0.457 | | newstest2016-enro-roneng.ron.eng | 24.9 | 0.522 | | newstest2016-enru-engrus.eng.rus | 13.7 | 0.417 | | newstest2016-enru-ruseng.rus.eng | 17.3 | 0.453 | | newstest2017-encs-ceseng.ces.eng | 16.7 | 0.444 | | newstest2017-encs-engces.eng.ces | 10.9 | 0.375 | | newstest2017-ende-deueng.deu.eng | 21.5 | 0.484 | | newstest2017-ende-engdeu.eng.deu | 17.5 | 0.464 | | newstest2017-enlv-englav.eng.lav | 9.1 | 0.388 | | newstest2017-enlv-laveng.lav.eng | 11.5 | 0.404 | | newstest2017-enru-engrus.eng.rus | 14.8 | 0.432 | | newstest2017-enru-ruseng.rus.eng | 19.3 | 0.467 | | newstest2018-encs-ceseng.ces.eng | 17.1 | 0.450 | | newstest2018-encs-engces.eng.ces | 10.9 | 0.380 | | newstest2018-ende-deueng.deu.eng | 26.0 | 0.518 | | newstest2018-ende-engdeu.eng.deu | 24.3 | 0.514 | | newstest2018-enru-engrus.eng.rus | 12.5 | 0.417 | | newstest2018-enru-ruseng.rus.eng | 16.4 | 0.443 | | newstest2019-csde-cesdeu.ces.deu | 13.9 | 0.432 | | newstest2019-decs-deuces.deu.ces | 11.7 | 0.383 | | newstest2019-deen-deueng.deu.eng | 22.2 | 0.483 | | newstest2019-defr-deufra.deu.fra | 20.1 | 0.496 | | newstest2019-encs-engces.eng.ces | 12.3 | 0.389 | | newstest2019-ende-engdeu.eng.deu | 22.0 | 0.497 | | newstest2019-engu-engguj.eng.guj | 3.1 | 0.208 | | newstest2019-enlt-englit.eng.lit | 7.8 | 0.369 | | newstest2019-enru-engrus.eng.rus | 14.6 | 0.408 | | newstest2019-frde-fradeu.fra.deu | 16.4 | 0.483 | | newstest2019-guen-gujeng.guj.eng | 6.1 | 0.288 | | newstest2019-lten-liteng.lit.eng | 16.9 | 0.456 | | newstest2019-ruen-ruseng.rus.eng | 20.2 | 0.468 | | Tatoeba-test.afr-ang.afr.ang | 16.0 | 0.152 | | Tatoeba-test.afr-ces.afr.ces | 10.2 | 0.333 | | Tatoeba-test.afr-dan.afr.dan | 32.6 | 0.651 | | Tatoeba-test.afr-deu.afr.deu | 34.5 | 0.556 | | Tatoeba-test.afr-eng.afr.eng | 48.1 | 0.638 | | Tatoeba-test.afr-enm.afr.enm | 10.2 | 0.416 | | Tatoeba-test.afr-fra.afr.fra | 41.9 | 0.612 | | Tatoeba-test.afr-fry.afr.fry | 0.0 | 0.112 | | Tatoeba-test.afr-gos.afr.gos | 0.3 | 0.068 | | Tatoeba-test.afr-isl.afr.isl | 12.2 | 0.419 | | Tatoeba-test.afr-ita.afr.ita | 48.7 | 0.637 | | Tatoeba-test.afr-lat.afr.lat | 8.4 | 0.407 | | Tatoeba-test.afr-ltz.afr.ltz | 19.0 | 0.357 | | Tatoeba-test.afr-mkd.afr.mkd | 0.0 | 0.238 | | Tatoeba-test.afr-msa.afr.msa | 1.4 | 0.080 | | Tatoeba-test.afr-nld.afr.nld | 45.7 | 0.643 | | Tatoeba-test.afr-nor.afr.nor | 55.3 | 0.687 | | Tatoeba-test.afr-pol.afr.pol | 39.3 | 0.563 | | Tatoeba-test.afr-por.afr.por | 33.9 | 0.586 | | Tatoeba-test.afr-ron.afr.ron | 22.6 | 0.475 | | Tatoeba-test.afr-rus.afr.rus | 32.1 | 0.525 | | Tatoeba-test.afr-spa.afr.spa | 44.1 | 0.611 | | Tatoeba-test.afr-swe.afr.swe | 71.6 | 0.814 | | Tatoeba-test.afr-ukr.afr.ukr | 31.0 | 0.481 | | Tatoeba-test.afr-yid.afr.yid | 100.0 | 1.000 | | Tatoeba-test.ang-afr.ang.afr | 0.0 | 0.133 | | Tatoeba-test.ang-ces.ang.ces | 5.5 | 0.129 | | Tatoeba-test.ang-dan.ang.dan | 22.2 | 0.345 | | Tatoeba-test.ang-deu.ang.deu | 6.3 | 0.251 | | Tatoeba-test.ang-eng.ang.eng | 7.9 | 0.255 | | Tatoeba-test.ang-enm.ang.enm | 0.8 | 0.133 | | Tatoeba-test.ang-fao.ang.fao | 16.0 | 0.086 | | Tatoeba-test.ang-fra.ang.fra | 6.0 | 0.185 | | Tatoeba-test.ang-gos.ang.gos | 0.6 | 0.000 | | Tatoeba-test.ang-isl.ang.isl | 16.0 | 0.102 | | Tatoeba-test.ang-ita.ang.ita | 13.2 | 0.301 | | Tatoeba-test.ang-kur.ang.kur | 7.6 | 0.062 | | Tatoeba-test.ang-lad.ang.lad | 0.2 | 0.025 | | Tatoeba-test.ang-lat.ang.lat | 6.6 | 0.198 | | Tatoeba-test.ang-ltz.ang.ltz | 5.5 | 0.121 | | Tatoeba-test.ang-por.ang.por | 11.4 | 0.498 | | Tatoeba-test.ang-rus.ang.rus | 2.4 | 0.103 | | Tatoeba-test.ang-spa.ang.spa | 8.1 | 0.249 | | Tatoeba-test.ang-ukr.ang.ukr | 16.4 | 0.195 | | Tatoeba-test.ang-yid.ang.yid | 1.1 | 0.117 | | Tatoeba-test.arg-eng.arg.eng | 28.2 | 0.394 | | Tatoeba-test.arg-fra.arg.fra | 39.8 | 0.445 | | Tatoeba-test.arg-spa.arg.spa | 52.3 | 0.608 | | Tatoeba-test.asm-dan.asm.dan | 8.6 | 0.261 | | Tatoeba-test.asm-deu.asm.deu | 19.2 | 0.629 | | Tatoeba-test.asm-eng.asm.eng | 18.2 | 0.369 | | Tatoeba-test.asm-fra.asm.fra | 4.3 | 0.145 | | Tatoeba-test.asm-hin.asm.hin | 4.5 | 0.366 | | Tatoeba-test.asm-ita.asm.ita | 12.1 | 0.310 | | Tatoeba-test.asm-zza.asm.zza | 8.1 | 0.050 | | Tatoeba-test.ast-deu.ast.deu | 30.1 | 0.463 | | Tatoeba-test.ast-eng.ast.eng | 27.6 | 0.441 | | Tatoeba-test.ast-fra.ast.fra | 29.4 | 0.501 | | Tatoeba-test.ast-gos.ast.gos | 2.6 | 0.030 | | Tatoeba-test.ast-nds.ast.nds | 10.0 | 0.280 | | Tatoeba-test.ast-nld.ast.nld | 100.0 | 1.000 | | Tatoeba-test.ast-por.ast.por | 100.0 | 1.000 | | Tatoeba-test.ast-rus.ast.rus | 35.9 | 0.682 | | Tatoeba-test.ast-spa.ast.spa | 41.7 | 0.601 | | Tatoeba-test.awa-eng.awa.eng | 2.4 | 0.201 | | Tatoeba-test.bel-bul.bel.bul | 53.7 | 0.808 | | Tatoeba-test.bel-ces.bel.ces | 27.6 | 0.483 | | Tatoeba-test.bel-cym.bel.cym | 32.6 | 0.449 | | Tatoeba-test.bel-dan.bel.dan | 29.1 | 0.506 | | Tatoeba-test.bel-deu.bel.deu | 29.5 | 0.522 | | Tatoeba-test.bel-eng.bel.eng | 31.8 | 0.512 | | Tatoeba-test.bel-fra.bel.fra | 30.9 | 0.527 | | Tatoeba-test.bel-hbs.bel.hbs | 39.3 | 0.608 | | Tatoeba-test.bel-ita.bel.ita | 32.8 | 0.540 | | Tatoeba-test.bel-kur.bel.kur | 12.7 | 0.178 | | Tatoeba-test.bel-lad.bel.lad | 4.5 | 0.185 | | Tatoeba-test.bel-lat.bel.lat | 3.7 | 0.251 | | Tatoeba-test.bel-mkd.bel.mkd | 19.3 | 0.531 | | Tatoeba-test.bel-msa.bel.msa | 1.0 | 0.147 | | Tatoeba-test.bel-nld.bel.nld | 27.1 | 0.481 | | Tatoeba-test.bel-nor.bel.nor | 37.0 | 0.494 | | Tatoeba-test.bel-pol.bel.pol | 34.8 | 0.565 | | Tatoeba-test.bel-por.bel.por | 21.7 | 0.401 | | Tatoeba-test.bel-rus.bel.rus | 42.3 | 0.643 | | Tatoeba-test.bel-spa.bel.spa | 28.2 | 0.534 | | Tatoeba-test.bel-ukr.bel.ukr | 41.6 | 0.643 | | Tatoeba-test.bel-yid.bel.yid | 2.9 | 0.254 | | Tatoeba-test.ben-deu.ben.deu | 34.6 | 0.408 | | Tatoeba-test.ben-eng.ben.eng | 26.5 | 0.430 | | Tatoeba-test.ben-fra.ben.fra | 21.6 | 0.466 | | Tatoeba-test.ben-ita.ben.ita | 26.8 | 0.424 | | Tatoeba-test.ben-spa.ben.spa | 28.9 | 0.473 | | Tatoeba-test.bho-eng.bho.eng | 21.0 | 0.384 | | Tatoeba-test.bho-fra.bho.fra | 100.0 | 1.000 | | Tatoeba-test.bre-ces.bre.ces | 2.2 | 0.178 | | Tatoeba-test.bre-deu.bre.deu | 7.7 | 0.296 | | Tatoeba-test.bre-eng.bre.eng | 13.6 | 0.309 | | Tatoeba-test.bre-fra.bre.fra | 8.6 | 0.251 | | Tatoeba-test.bre-ita.bre.ita | 12.2 | 0.272 | | Tatoeba-test.bre-msa.bre.msa | 0.9 | 0.081 | | Tatoeba-test.bre-nld.bre.nld | 3.0 | 0.217 | | Tatoeba-test.bre-nor.bre.nor | 1.4 | 0.158 | | Tatoeba-test.bul-bel.bul.bel | 14.1 | 0.582 | | Tatoeba-test.bul-ces.bul.ces | 52.8 | 0.725 | | Tatoeba-test.bul-dan.bul.dan | 66.9 | 0.951 | | Tatoeba-test.bul-deu.bul.deu | 31.2 | 0.530 | | Tatoeba-test.bul-ell.bul.ell | 29.1 | 0.497 | | Tatoeba-test.bul-eng.bul.eng | 36.5 | 0.547 | | Tatoeba-test.bul-enm.bul.enm | 5.3 | 0.299 | | Tatoeba-test.bul-fas.bul.fas | 8.9 | 0.511 | | Tatoeba-test.bul-fra.bul.fra | 36.1 | 0.558 | | Tatoeba-test.bul-hbs.bul.hbs | 100.0 | 1.000 | | Tatoeba-test.bul-ita.bul.ita | 24.5 | 0.479 | | Tatoeba-test.bul-lad.bul.lad | 8.1 | 0.302 | | Tatoeba-test.bul-lat.bul.lat | 13.4 | 0.337 | | Tatoeba-test.bul-mkd.bul.mkd | 38.2 | 0.811 | | Tatoeba-test.bul-msa.bul.msa | 15.0 | 0.431 | | Tatoeba-test.bul-nld.bul.nld | 31.8 | 0.505 | | Tatoeba-test.bul-nor.bul.nor | 66.9 | 0.951 | | Tatoeba-test.bul-pol.bul.pol | 24.4 | 0.461 | | Tatoeba-test.bul-por.bul.por | 29.2 | 0.484 | | Tatoeba-test.bul-ron.bul.ron | 42.7 | 0.776 | | Tatoeba-test.bul-rus.bul.rus | 28.7 | 0.522 | | Tatoeba-test.bul-spa.bul.spa | 32.1 | 0.520 | | Tatoeba-test.bul-swe.bul.swe | 66.9 | 0.611 | | Tatoeba-test.bul-ukr.bul.ukr | 34.3 | 0.567 | | Tatoeba-test.bul-yid.bul.yid | 13.7 | 0.163 | | Tatoeba-test.cat-deu.cat.deu | 31.0 | 0.523 | | Tatoeba-test.cat-ell.cat.ell | 17.0 | 0.423 | | Tatoeba-test.cat-eng.cat.eng | 39.4 | 0.582 | | Tatoeba-test.cat-enm.cat.enm | 5.3 | 0.370 | | Tatoeba-test.cat-fao.cat.fao | 16.0 | 0.301 | | Tatoeba-test.cat-fra.cat.fra | 41.0 | 0.606 | | Tatoeba-test.cat-ita.cat.ita | 39.8 | 0.626 | | Tatoeba-test.cat-nld.cat.nld | 35.9 | 0.555 | | Tatoeba-test.cat-pol.cat.pol | 23.0 | 0.456 | | Tatoeba-test.cat-por.cat.por | 38.9 | 0.618 | | Tatoeba-test.cat-ron.cat.ron | 16.0 | 0.311 | | Tatoeba-test.cat-rus.cat.rus | 28.8 | 0.507 | | Tatoeba-test.cat-spa.cat.spa | 55.2 | 0.731 | | Tatoeba-test.cat-swe.cat.swe | 100.0 | 1.000 | | Tatoeba-test.cat-ukr.cat.ukr | 30.8 | 0.512 | | Tatoeba-test.cat-yid.cat.yid | 100.0 | 1.000 | | Tatoeba-test.ces-afr.ces.afr | 17.0 | 0.426 | | Tatoeba-test.ces-ang.ces.ang | 3.3 | 0.165 | | Tatoeba-test.ces-bel.ces.bel | 23.3 | 0.466 | | Tatoeba-test.ces-bre.ces.bre | 0.7 | 0.126 | | Tatoeba-test.ces-bul.ces.bul | 45.2 | 0.690 | | Tatoeba-test.ces-cor.ces.cor | 3.4 | 0.072 | | Tatoeba-test.ces-dan.ces.dan | 12.7 | 0.706 | | Tatoeba-test.ces-deu.ces.deu | 32.2 | 0.526 | | Tatoeba-test.ces-ell.ces.ell | 24.4 | 0.422 | | Tatoeba-test.ces-eng.ces.eng | 33.8 | 0.529 | | Tatoeba-test.ces-enm.ces.enm | 1.7 | 0.157 | | Tatoeba-test.ces-fao.ces.fao | 3.7 | 0.252 | | Tatoeba-test.ces-fas.ces.fas | 20.1 | 0.229 | | Tatoeba-test.ces-fra.ces.fra | 36.9 | 0.564 | | Tatoeba-test.ces-fry.ces.fry | 7.7 | 0.338 | | Tatoeba-test.ces-grc.ces.grc | 0.6 | 0.011 | | Tatoeba-test.ces-hbs.ces.hbs | 39.7 | 0.580 | | Tatoeba-test.ces-hsb.ces.hsb | 7.0 | 0.230 | | Tatoeba-test.ces-ita.ces.ita | 28.2 | 0.516 | | Tatoeba-test.ces-lad.ces.lad | 1.7 | 0.303 | | Tatoeba-test.ces-lat.ces.lat | 6.5 | 0.304 | | Tatoeba-test.ces-ltz.ces.ltz | 6.6 | 0.202 | | Tatoeba-test.ces-mkd.ces.mkd | 31.4 | 0.586 | | Tatoeba-test.ces-msa.ces.msa | 6.4 | 0.312 | | Tatoeba-test.ces-nds.ces.nds | 19.9 | 0.468 | | Tatoeba-test.ces-nld.ces.nld | 35.1 | 0.535 | | Tatoeba-test.ces-nor.ces.nor | 41.7 | 0.610 | | Tatoeba-test.ces-pol.ces.pol | 30.5 | 0.530 | | Tatoeba-test.ces-por.ces.por | 33.0 | 0.533 | | Tatoeba-test.ces-ron.ces.ron | 9.9 | 0.406 | | Tatoeba-test.ces-rus.ces.rus | 36.9 | 0.564 | | Tatoeba-test.ces-slv.ces.slv | 4.1 | 0.236 | | Tatoeba-test.ces-spa.ces.spa | 33.3 | 0.531 | | Tatoeba-test.ces-swe.ces.swe | 51.4 | 0.586 | | Tatoeba-test.ces-swg.ces.swg | 4.8 | 0.118 | | Tatoeba-test.ces-ukr.ces.ukr | 34.6 | 0.522 | | Tatoeba-test.ces-yid.ces.yid | 2.1 | 0.252 | | Tatoeba-test.cor-ces.cor.ces | 8.9 | 0.233 | | Tatoeba-test.cor-cym.cor.cym | 6.7 | 0.205 | | Tatoeba-test.cor-deu.cor.deu | 4.8 | 0.211 | | Tatoeba-test.cor-ell.cor.ell | 3.4 | 0.182 | | Tatoeba-test.cor-eng.cor.eng | 4.4 | 0.193 | | Tatoeba-test.cor-fra.cor.fra | 5.0 | 0.221 | | Tatoeba-test.cor-ita.cor.ita | 6.6 | 0.211 | | Tatoeba-test.cor-nld.cor.nld | 9.3 | 0.221 | | Tatoeba-test.cor-nor.cor.nor | 19.6 | 0.282 | | Tatoeba-test.cor-pol.cor.pol | 2.9 | 0.171 | | Tatoeba-test.cor-por.cor.por | 4.3 | 0.187 | | Tatoeba-test.cor-rus.cor.rus | 2.4 | 0.154 | | Tatoeba-test.cor-spa.cor.spa | 3.6 | 0.187 | | Tatoeba-test.cos-deu.cos.deu | 0.0 | 0.877 | | Tatoeba-test.cos-eng.cos.eng | 39.2 | 0.473 | | Tatoeba-test.cos-fra.cos.fra | 19.0 | 0.352 | | Tatoeba-test.cos-pms.cos.pms | 1.6 | 0.066 | | Tatoeba-test.csb-deu.csb.deu | 17.5 | 0.336 | | Tatoeba-test.csb-eng.csb.eng | 14.0 | 0.347 | | Tatoeba-test.csb-spa.csb.spa | 3.8 | 0.278 | | Tatoeba-test.cym-bel.cym.bel | 100.0 | 1.000 | | Tatoeba-test.cym-cor.cym.cor | 0.0 | 0.014 | | Tatoeba-test.cym-deu.cym.deu | 32.6 | 0.507 | | Tatoeba-test.cym-eng.cym.eng | 33.1 | 0.496 | | Tatoeba-test.cym-fra.cym.fra | 27.0 | 0.447 | | Tatoeba-test.cym-gla.cym.gla | 5.7 | 0.223 | | Tatoeba-test.cym-gle.cym.gle | 13.1 | 0.380 | | Tatoeba-test.cym-glv.cym.glv | 5.3 | 0.186 | | Tatoeba-test.cym-ita.cym.ita | 28.3 | 0.498 | | Tatoeba-test.cym-lat.cym.lat | 3.7 | 0.185 | | Tatoeba-test.cym-msa.cym.msa | 8.0 | 0.067 | | Tatoeba-test.cym-nor.cym.nor | 37.5 | 0.603 | | Tatoeba-test.cym-pol.cym.pol | 37.8 | 0.488 | | Tatoeba-test.cym-rus.cym.rus | 32.1 | 0.480 | | Tatoeba-test.cym-spa.cym.spa | 31.6 | 0.523 | | Tatoeba-test.cym-yid.cym.yid | 4.8 | 0.072 | | Tatoeba-test.dan-afr.dan.afr | 40.5 | 0.774 | | Tatoeba-test.dan-ang.dan.ang | 1.2 | 0.066 | | Tatoeba-test.dan-asm.dan.asm | 13.1 | 0.156 | | Tatoeba-test.dan-bel.dan.bel | 27.2 | 0.746 | | Tatoeba-test.dan-bul.dan.bul | 35.4 | 0.529 | | Tatoeba-test.dan-ces.dan.ces | 19.0 | 0.349 | | Tatoeba-test.dan-deu.dan.deu | 35.8 | 0.582 | | Tatoeba-test.dan-ell.dan.ell | 19.0 | 0.337 | | Tatoeba-test.dan-eng.dan.eng | 43.4 | 0.609 | | Tatoeba-test.dan-enm.dan.enm | 18.1 | 0.515 | | Tatoeba-test.dan-fao.dan.fao | 9.7 | 0.162 | | Tatoeba-test.dan-fas.dan.fas | 14.1 | 0.410 | | Tatoeba-test.dan-fra.dan.fra | 47.0 | 0.640 | | Tatoeba-test.dan-gos.dan.gos | 2.6 | 0.195 | | Tatoeba-test.dan-isl.dan.isl | 12.2 | 0.344 | | Tatoeba-test.dan-ita.dan.ita | 36.3 | 0.589 | | Tatoeba-test.dan-kur.dan.kur | 3.5 | 0.270 | | Tatoeba-test.dan-lad.dan.lad | 0.4 | 0.096 | | Tatoeba-test.dan-lat.dan.lat | 3.9 | 0.376 | | Tatoeba-test.dan-lav.dan.lav | 68.7 | 0.786 | | Tatoeba-test.dan-ltz.dan.ltz | 71.4 | 0.554 | | Tatoeba-test.dan-mar.dan.mar | 3.7 | 0.220 | | Tatoeba-test.dan-nds.dan.nds | 4.9 | 0.219 | | Tatoeba-test.dan-nld.dan.nld | 47.2 | 0.650 | | Tatoeba-test.dan-nor.dan.nor | 58.8 | 0.749 | | Tatoeba-test.dan-pol.dan.pol | 27.1 | 0.527 | | Tatoeba-test.dan-por.dan.por | 41.5 | 0.616 | | Tatoeba-test.dan-ron.dan.ron | 100.0 | 1.000 | | Tatoeba-test.dan-rus.dan.rus | 30.8 | 0.518 | | Tatoeba-test.dan-spa.dan.spa | 36.6 | 0.578 | | Tatoeba-test.dan-swe.dan.swe | 53.8 | 0.696 | | Tatoeba-test.dan-swg.dan.swg | 4.8 | 0.184 | | Tatoeba-test.dan-ukr.dan.ukr | 15.9 | 0.489 | | Tatoeba-test.dan-urd.dan.urd | 21.7 | 0.544 | | Tatoeba-test.dan-yid.dan.yid | 13.0 | 0.252 | | Tatoeba-test.deu-afr.deu.afr | 37.5 | 0.566 | | Tatoeba-test.deu-ang.deu.ang | 0.6 | 0.131 | | Tatoeba-test.deu-asm.deu.asm | 20.0 | 0.580 | | Tatoeba-test.deu-ast.deu.ast | 16.5 | 0.389 | | Tatoeba-test.deu-bel.deu.bel | 19.6 | 0.450 | | Tatoeba-test.deu-ben.deu.ben | 34.5 | 0.319 | | Tatoeba-test.deu-bre.deu.bre | 3.2 | 0.196 | | Tatoeba-test.deu-bul.deu.bul | 32.6 | 0.517 | | Tatoeba-test.deu-cat.deu.cat | 28.4 | 0.503 | | Tatoeba-test.deu-ces.deu.ces | 24.3 | 0.465 | | Tatoeba-test.deu-cor.deu.cor | 0.2 | 0.043 | | Tatoeba-test.deu-cos.deu.cos | 2.4 | 0.020 | | Tatoeba-test.deu-csb.deu.csb | 4.4 | 0.178 | | Tatoeba-test.deu-cym.deu.cym | 11.3 | 0.378 | | Tatoeba-test.deu-dan.deu.dan | 37.8 | 0.579 | | Tatoeba-test.deu-dsb.deu.dsb | 0.1 | 0.082 | | Tatoeba-test.deu-egl.deu.egl | 3.3 | 0.050 | | Tatoeba-test.deu-ell.deu.ell | 27.1 | 0.485 | | Tatoeba-test.deu-eng.deu.eng | 34.7 | 0.539 | | Tatoeba-test.deu-enm.deu.enm | 6.7 | 0.331 | | Tatoeba-test.deu-fas.deu.fas | 4.5 | 0.235 | | Tatoeba-test.deu-fra.deu.fra | 31.9 | 0.527 | | Tatoeba-test.deu-frr.deu.frr | 0.2 | 0.101 | | Tatoeba-test.deu-fry.deu.fry | 13.7 | 0.358 | | Tatoeba-test.deu-gla.deu.gla | 7.2 | 0.304 | | Tatoeba-test.deu-gle.deu.gle | 8.9 | 0.349 | | Tatoeba-test.deu-glg.deu.glg | 28.9 | 0.513 | | Tatoeba-test.deu-gos.deu.gos | 0.7 | 0.157 | | Tatoeba-test.deu-got.deu.got | 0.2 | 0.010 | | Tatoeba-test.deu-grc.deu.grc | 0.1 | 0.005 | | Tatoeba-test.deu-gsw.deu.gsw | 0.2 | 0.073 | | Tatoeba-test.deu-hbs.deu.hbs | 23.2 | 0.470 | | Tatoeba-test.deu-hin.deu.hin | 12.5 | 0.367 | | Tatoeba-test.deu-hsb.deu.hsb | 5.4 | 0.249 | | Tatoeba-test.deu-hye.deu.hye | 12.9 | 0.263 | | Tatoeba-test.deu-isl.deu.isl | 16.5 | 0.395 | | Tatoeba-test.deu-ita.deu.ita | 29.2 | 0.536 | | Tatoeba-test.deu-ksh.deu.ksh | 0.6 | 0.092 | | Tatoeba-test.deu-kur.deu.kur | 11.2 | 0.183 | | Tatoeba-test.deu-lad.deu.lad | 0.3 | 0.112 | | Tatoeba-test.deu-lat.deu.lat | 6.4 | 0.301 | | Tatoeba-test.deu-lav.deu.lav | 29.6 | 0.502 | | Tatoeba-test.deu-lit.deu.lit | 17.4 | 0.445 | | Tatoeba-test.deu-ltz.deu.ltz | 18.5 | 0.380 | | Tatoeba-test.deu-mar.deu.mar | 7.9 | 0.245 | | Tatoeba-test.deu-mkd.deu.mkd | 21.9 | 0.449 | | Tatoeba-test.deu-msa.deu.msa | 21.9 | 0.478 | | Tatoeba-test.deu-nds.deu.nds | 13.6 | 0.391 | | Tatoeba-test.deu-nld.deu.nld | 37.2 | 0.574 | | Tatoeba-test.deu-nor.deu.nor | 34.5 | 0.562 | | Tatoeba-test.deu-oci.deu.oci | 4.7 | 0.261 | | Tatoeba-test.deu-orv.deu.orv | 0.2 | 0.006 | | Tatoeba-test.deu-pdc.deu.pdc | 0.6 | 0.064 | | Tatoeba-test.deu-pms.deu.pms | 0.2 | 0.064 | | Tatoeba-test.deu-pol.deu.pol | 23.6 | 0.477 | | Tatoeba-test.deu-por.deu.por | 25.1 | 0.480 | | Tatoeba-test.deu-prg.deu.prg | 0.2 | 0.070 | | Tatoeba-test.deu-roh.deu.roh | 0.2 | 0.059 | | Tatoeba-test.deu-rom.deu.rom | 5.2 | 0.179 | | Tatoeba-test.deu-ron.deu.ron | 25.7 | 0.484 | | Tatoeba-test.deu-rus.deu.rus | 27.1 | 0.494 | | Tatoeba-test.deu-scn.deu.scn | 1.6 | 0.076 | | Tatoeba-test.deu-sco.deu.sco | 10.8 | 0.281 | | Tatoeba-test.deu-slv.deu.slv | 8.1 | 0.251 | | Tatoeba-test.deu-spa.deu.spa | 31.5 | 0.534 | | Tatoeba-test.deu-stq.deu.stq | 0.6 | 0.144 | | Tatoeba-test.deu-swe.deu.swe | 39.1 | 0.572 | | Tatoeba-test.deu-swg.deu.swg | 0.1 | 0.088 | | Tatoeba-test.deu-tgk.deu.tgk | 13.1 | 0.406 | | Tatoeba-test.deu-ukr.deu.ukr | 27.2 | 0.489 | | Tatoeba-test.deu-urd.deu.urd | 13.4 | 0.350 | | Tatoeba-test.deu-yid.deu.yid | 6.0 | 0.262 | | Tatoeba-test.dsb-deu.dsb.deu | 14.1 | 0.366 | | Tatoeba-test.dsb-eng.dsb.eng | 19.0 | 0.424 | | Tatoeba-test.dsb-nld.dsb.nld | 15.4 | 0.342 | | Tatoeba-test.dsb-pol.dsb.pol | 15.2 | 0.315 | | Tatoeba-test.dsb-rus.dsb.rus | 35.4 | 0.394 | | Tatoeba-test.dsb-spa.dsb.spa | 12.6 | 0.401 | | Tatoeba-test.egl-deu.egl.deu | 2.9 | 0.168 | | Tatoeba-test.egl-eng.egl.eng | 5.2 | 0.207 | | Tatoeba-test.egl-fra.egl.fra | 6.4 | 0.215 | | Tatoeba-test.egl-ita.egl.ita | 1.6 | 0.180 | | Tatoeba-test.egl-spa.egl.spa | 3.9 | 0.199 | | Tatoeba-test.ell-bul.ell.bul | 26.6 | 0.483 | | Tatoeba-test.ell-cat.ell.cat | 20.2 | 0.398 | | Tatoeba-test.ell-ces.ell.ces | 12.1 | 0.380 | | Tatoeba-test.ell-cor.ell.cor | 0.7 | 0.039 | | Tatoeba-test.ell-dan.ell.dan | 53.7 | 0.513 | | Tatoeba-test.ell-deu.ell.deu | 30.5 | 0.503 | | Tatoeba-test.ell-eng.ell.eng | 43.1 | 0.589 | | Tatoeba-test.ell-enm.ell.enm | 12.7 | 0.541 | | Tatoeba-test.ell-fas.ell.fas | 5.3 | 0.210 | | Tatoeba-test.ell-fra.ell.fra | 39.5 | 0.563 | | Tatoeba-test.ell-glg.ell.glg | 11.6 | 0.343 | | Tatoeba-test.ell-ita.ell.ita | 30.9 | 0.524 | | Tatoeba-test.ell-msa.ell.msa | 57.6 | 0.572 | | Tatoeba-test.ell-nds.ell.nds | 4.9 | 0.244 | | Tatoeba-test.ell-nld.ell.nld | 38.0 | 0.562 | | Tatoeba-test.ell-nor.ell.nor | 40.8 | 0.615 | | Tatoeba-test.ell-pap.ell.pap | 72.6 | 0.846 | | Tatoeba-test.ell-pol.ell.pol | 26.8 | 0.514 | | Tatoeba-test.ell-por.ell.por | 27.1 | 0.493 | | Tatoeba-test.ell-rus.ell.rus | 30.8 | 0.512 | | Tatoeba-test.ell-spa.ell.spa | 30.8 | 0.475 | | Tatoeba-test.ell-swe.ell.swe | 36.0 | 0.521 | | Tatoeba-test.ell-ukr.ell.ukr | 12.6 | 0.364 | | Tatoeba-test.ell-yid.ell.yid | 100.0 | 1.000 | | Tatoeba-test.eng-afr.eng.afr | 46.1 | 0.633 | | Tatoeba-test.eng-ang.eng.ang | 5.1 | 0.136 | | Tatoeba-test.eng-arg.eng.arg | 5.1 | 0.199 | | Tatoeba-test.eng-asm.eng.asm | 0.8 | 0.208 | | Tatoeba-test.eng-ast.eng.ast | 16.8 | 0.380 | | Tatoeba-test.eng-awa.eng.awa | 0.2 | 0.002 | | Tatoeba-test.eng-bel.eng.bel | 16.6 | 0.415 | | Tatoeba-test.eng-ben.eng.ben | 7.0 | 0.321 | | Tatoeba-test.eng-bho.eng.bho | 0.2 | 0.003 | | Tatoeba-test.eng-bre.eng.bre | 6.6 | 0.251 | | Tatoeba-test.eng-bul.eng.bul | 31.5 | 0.513 | | Tatoeba-test.eng-cat.eng.cat | 33.5 | 0.550 | | Tatoeba-test.eng-ces.eng.ces | 25.6 | 0.466 | | Tatoeba-test.eng-cor.eng.cor | 0.1 | 0.035 | | Tatoeba-test.eng-cos.eng.cos | 0.8 | 0.135 | | Tatoeba-test.eng-csb.eng.csb | 1.4 | 0.194 | | Tatoeba-test.eng-cym.eng.cym | 18.8 | 0.422 | | Tatoeba-test.eng-dan.eng.dan | 41.2 | 0.591 | | Tatoeba-test.eng-deu.eng.deu | 27.9 | 0.503 | | Tatoeba-test.eng-dsb.eng.dsb | 0.7 | 0.125 | | Tatoeba-test.eng-egl.eng.egl | 0.1 | 0.062 | | Tatoeba-test.eng-ell.eng.ell | 30.7 | 0.540 | | Tatoeba-test.eng-enm.eng.enm | 4.9 | 0.283 | | Tatoeba-test.eng-ext.eng.ext | 3.9 | 0.217 | | Tatoeba-test.eng-fao.eng.fao | 5.9 | 0.276 | | Tatoeba-test.eng-fas.eng.fas | 4.8 | 0.239 | | Tatoeba-test.eng-fra.eng.fra | 34.6 | 0.551 | | Tatoeba-test.eng-frm.eng.frm | 0.2 | 0.099 | | Tatoeba-test.eng-frr.eng.frr | 5.5 | 0.040 | | Tatoeba-test.eng-fry.eng.fry | 13.1 | 0.357 | | Tatoeba-test.eng-gcf.eng.gcf | 0.4 | 0.085 | | Tatoeba-test.eng-gla.eng.gla | 7.4 | 0.293 | | Tatoeba-test.eng-gle.eng.gle | 20.0 | 0.415 | | Tatoeba-test.eng-glg.eng.glg | 29.9 | 0.528 | | Tatoeba-test.eng-glv.eng.glv | 5.9 | 0.220 | | Tatoeba-test.eng-gos.eng.gos | 0.5 | 0.137 | | Tatoeba-test.eng-got.eng.got | 0.1 | 0.009 | | Tatoeba-test.eng-grc.eng.grc | 0.0 | 0.005 | | Tatoeba-test.eng-gsw.eng.gsw | 0.5 | 0.103 | | Tatoeba-test.eng-guj.eng.guj | 6.4 | 0.241 | | Tatoeba-test.eng-hat.eng.hat | 28.2 | 0.460 | | Tatoeba-test.eng-hbs.eng.hbs | 26.0 | 0.485 | | Tatoeba-test.eng-hif.eng.hif | 0.8 | 0.228 | | Tatoeba-test.eng-hin.eng.hin | 11.2 | 0.364 | | Tatoeba-test.eng-hsb.eng.hsb | 10.6 | 0.277 | | Tatoeba-test.eng-hye.eng.hye | 10.9 | 0.307 | | Tatoeba-test.eng-isl.eng.isl | 13.8 | 0.368 | | Tatoeba-test.eng-ita.eng.ita | 33.8 | 0.571 | | Tatoeba-test.eng-jdt.eng.jdt | 3.0 | 0.007 | | Tatoeba-test.eng-kok.eng.kok | 4.8 | 0.005 | | Tatoeba-test.eng-ksh.eng.ksh | 0.4 | 0.092 | | Tatoeba-test.eng-kur.eng.kur | 9.0 | 0.174 | | Tatoeba-test.eng-lad.eng.lad | 0.5 | 0.144 | | Tatoeba-test.eng-lah.eng.lah | 0.1 | 0.000 | | Tatoeba-test.eng-lat.eng.lat | 7.7 | 0.333 | | Tatoeba-test.eng-lav.eng.lav | 25.1 | 0.480 | | Tatoeba-test.eng-lij.eng.lij | 0.4 | 0.101 | | Tatoeba-test.eng-lit.eng.lit | 21.0 | 0.492 | | Tatoeba-test.eng-lld.eng.lld | 0.5 | 0.143 | | Tatoeba-test.eng-lmo.eng.lmo | 0.5 | 0.135 | | Tatoeba-test.eng-ltz.eng.ltz | 15.6 | 0.345 | | Tatoeba-test.eng-mai.eng.mai | 9.3 | 0.251 | | Tatoeba-test.eng-mar.eng.mar | 9.5 | 0.326 | | Tatoeba-test.eng-mfe.eng.mfe | 54.1 | 0.747 | | Tatoeba-test.eng-mkd.eng.mkd | 29.8 | 0.503 | | Tatoeba-test.eng-msa.eng.msa | 20.0 | 0.449 | | Tatoeba-test.eng-mwl.eng.mwl | 9.3 | 0.231 | | Tatoeba-test.eng-nds.eng.nds | 12.2 | 0.357 | | Tatoeba-test.eng-nep.eng.nep | 0.2 | 0.003 | | Tatoeba-test.eng-nld.eng.nld | 37.1 | 0.570 | | Tatoeba-test.eng-non.eng.non | 0.5 | 0.078 | | Tatoeba-test.eng-nor.eng.nor | 38.4 | 0.575 | | Tatoeba-test.eng-oci.eng.oci | 4.8 | 0.249 | | Tatoeba-test.eng-ori.eng.ori | 2.8 | 0.185 | | Tatoeba-test.eng-orv.eng.orv | 0.1 | 0.011 | | Tatoeba-test.eng-oss.eng.oss | 2.6 | 0.166 | | Tatoeba-test.eng-pan.eng.pan | 2.6 | 0.214 | | Tatoeba-test.eng-pap.eng.pap | 39.8 | 0.566 | | Tatoeba-test.eng-pdc.eng.pdc | 1.0 | 0.131 | | Tatoeba-test.eng-pms.eng.pms | 0.9 | 0.124 | | Tatoeba-test.eng-pol.eng.pol | 26.2 | 0.500 | | Tatoeba-test.eng-por.eng.por | 31.5 | 0.545 | | Tatoeba-test.eng-prg.eng.prg | 0.2 | 0.088 | | Tatoeba-test.eng-pus.eng.pus | 0.4 | 0.108 | | Tatoeba-test.eng-roh.eng.roh | 1.8 | 0.192 | | Tatoeba-test.eng-rom.eng.rom | 7.6 | 0.313 | | Tatoeba-test.eng-ron.eng.ron | 27.6 | 0.508 | | Tatoeba-test.eng-rue.eng.rue | 0.1 | 0.011 | | Tatoeba-test.eng-rus.eng.rus | 28.6 | 0.496 | | Tatoeba-test.eng-san.eng.san | 2.0 | 0.098 | | Tatoeba-test.eng-scn.eng.scn | 0.9 | 0.080 | | Tatoeba-test.eng-sco.eng.sco | 24.5 | 0.501 | | Tatoeba-test.eng-sgs.eng.sgs | 1.3 | 0.105 | | Tatoeba-test.eng-sin.eng.sin | 3.0 | 0.178 | | Tatoeba-test.eng-slv.eng.slv | 12.5 | 0.298 | | Tatoeba-test.eng-snd.eng.snd | 1.7 | 0.214 | | Tatoeba-test.eng-spa.eng.spa | 36.3 | 0.575 | | Tatoeba-test.eng-sqi.eng.sqi | 22.1 | 0.459 | | Tatoeba-test.eng-stq.eng.stq | 5.2 | 0.316 | | Tatoeba-test.eng-swe.eng.swe | 42.4 | 0.591 | | Tatoeba-test.eng-swg.eng.swg | 0.6 | 0.145 | | Tatoeba-test.eng-tgk.eng.tgk | 1.9 | 0.255 | | Tatoeba-test.eng-tly.eng.tly | 0.3 | 0.054 | | Tatoeba-test.eng-ukr.eng.ukr | 27.3 | 0.478 | | Tatoeba-test.eng-urd.eng.urd | 7.0 | 0.310 | | Tatoeba-test.eng-vec.eng.vec | 0.9 | 0.116 | | Tatoeba-test.eng-wln.eng.wln | 4.0 | 0.164 | | Tatoeba-test.eng-yid.eng.yid | 5.9 | 0.260 | | Tatoeba-test.eng-zza.eng.zza | 0.4 | 0.071 | | Tatoeba-test.enm-afr.enm.afr | 20.1 | 0.420 | | Tatoeba-test.enm-ang.enm.ang | 0.6 | 0.057 | | Tatoeba-test.enm-bul.enm.bul | 22.8 | 0.278 | | Tatoeba-test.enm-cat.enm.cat | 9.0 | 0.360 | | Tatoeba-test.enm-ces.enm.ces | 19.0 | 0.324 | | Tatoeba-test.enm-dan.enm.dan | 35.8 | 0.523 | | Tatoeba-test.enm-deu.enm.deu | 35.7 | 0.495 | | Tatoeba-test.enm-ell.enm.ell | 42.7 | 0.644 | | Tatoeba-test.enm-eng.enm.eng | 22.4 | 0.477 | | Tatoeba-test.enm-fas.enm.fas | 4.3 | 0.141 | | Tatoeba-test.enm-fra.enm.fra | 9.0 | 0.345 | | Tatoeba-test.enm-fry.enm.fry | 16.0 | 0.289 | | Tatoeba-test.enm-gle.enm.gle | 4.1 | 0.143 | | Tatoeba-test.enm-gos.enm.gos | 3.0 | 0.247 | | Tatoeba-test.enm-hbs.enm.hbs | 11.6 | 0.294 | | Tatoeba-test.enm-isl.enm.isl | 19.0 | 0.220 | | Tatoeba-test.enm-ita.enm.ita | 4.8 | 0.188 | | Tatoeba-test.enm-ksh.enm.ksh | 6.1 | 0.136 | | Tatoeba-test.enm-kur.enm.kur | 16.0 | 0.054 | | Tatoeba-test.enm-lad.enm.lad | 0.7 | 0.124 | | Tatoeba-test.enm-lat.enm.lat | 5.4 | 0.238 | | Tatoeba-test.enm-mwl.enm.mwl | 10.5 | 0.155 | | Tatoeba-test.enm-nds.enm.nds | 18.6 | 0.427 | | Tatoeba-test.enm-nld.enm.nld | 38.9 | 0.611 | | Tatoeba-test.enm-nor.enm.nor | 6.8 | 0.276 | | Tatoeba-test.enm-oci.enm.oci | 10.5 | 0.138 | | Tatoeba-test.enm-por.enm.por | 12.7 | 0.088 | | Tatoeba-test.enm-ron.enm.ron | 7.6 | 0.109 | | Tatoeba-test.enm-rus.enm.rus | 18.8 | 0.254 | | Tatoeba-test.enm-spa.enm.spa | 21.4 | 0.339 | | Tatoeba-test.enm-ukr.enm.ukr | 4.0 | 0.440 | | Tatoeba-test.enm-yid.enm.yid | 5.3 | 0.231 | | Tatoeba-test.ext-eng.ext.eng | 24.9 | 0.420 | | Tatoeba-test.fao-ang.fao.ang | 0.0 | 0.056 | | Tatoeba-test.fao-cat.fao.cat | 16.0 | 0.171 | | Tatoeba-test.fao-ces.fao.ces | 2.1 | 0.258 | | Tatoeba-test.fao-dan.fao.dan | 43.5 | 0.557 | | Tatoeba-test.fao-eng.fao.eng | 21.3 | 0.402 | | Tatoeba-test.fao-fra.fao.fra | 3.0 | 0.164 | | Tatoeba-test.fao-gos.fao.gos | 12.7 | 0.142 | | Tatoeba-test.fao-isl.fao.isl | 10.5 | 0.131 | | Tatoeba-test.fao-msa.fao.msa | 0.6 | 0.087 | | Tatoeba-test.fao-nor.fao.nor | 26.2 | 0.443 | | Tatoeba-test.fao-pol.fao.pol | 3.6 | 0.176 | | Tatoeba-test.fao-swe.fao.swe | 0.0 | 0.632 | | Tatoeba-test.fas-bul.fas.bul | 5.8 | 0.163 | | Tatoeba-test.fas-ces.fas.ces | 14.5 | 0.104 | | Tatoeba-test.fas-dan.fas.dan | 53.7 | 0.504 | | Tatoeba-test.fas-deu.fas.deu | 8.5 | 0.311 | | Tatoeba-test.fas-ell.fas.ell | 8.7 | 0.259 | | Tatoeba-test.fas-eng.fas.eng | 10.3 | 0.303 | | Tatoeba-test.fas-enm.fas.enm | 1.3 | 0.006 | | Tatoeba-test.fas-fra.fas.fra | 8.6 | 0.331 | | Tatoeba-test.fas-ita.fas.ita | 7.2 | 0.301 | | Tatoeba-test.fas-lad.fas.lad | 0.4 | 0.074 | | Tatoeba-test.fas-lat.fas.lat | 14.4 | 0.256 | | Tatoeba-test.fas-msa.fas.msa | 9.8 | 0.325 | | Tatoeba-test.fas-nds.fas.nds | 6.6 | 0.127 | | Tatoeba-test.fas-nld.fas.nld | 50.0 | 0.657 | | Tatoeba-test.fas-pol.fas.pol | 4.5 | 0.223 | | Tatoeba-test.fas-por.fas.por | 8.6 | 0.316 | | Tatoeba-test.fas-ron.fas.ron | 19.1 | 0.445 | | Tatoeba-test.fas-rus.fas.rus | 9.8 | 0.313 | | Tatoeba-test.fas-spa.fas.spa | 9.1 | 0.318 | | Tatoeba-test.fas-ukr.fas.ukr | 4.8 | 0.213 | | Tatoeba-test.fas-yid.fas.yid | 2.0 | 0.138 | | Tatoeba-test.fra-afr.fra.afr | 49.7 | 0.630 | | Tatoeba-test.fra-ang.fra.ang | 1.0 | 0.105 | | Tatoeba-test.fra-arg.fra.arg | 0.0 | 0.011 | | Tatoeba-test.fra-asm.fra.asm | 4.1 | 0.194 | | Tatoeba-test.fra-ast.fra.ast | 23.0 | 0.410 | | Tatoeba-test.fra-bel.fra.bel | 22.2 | 0.448 | | Tatoeba-test.fra-ben.fra.ben | 6.4 | 0.341 | | Tatoeba-test.fra-bho.fra.bho | 1.2 | 0.035 | | Tatoeba-test.fra-bre.fra.bre | 3.4 | 0.204 | | Tatoeba-test.fra-bul.fra.bul | 31.2 | 0.528 | | Tatoeba-test.fra-cat.fra.cat | 33.9 | 0.570 | | Tatoeba-test.fra-ces.fra.ces | 26.9 | 0.490 | | Tatoeba-test.fra-cor.fra.cor | 0.2 | 0.039 | | Tatoeba-test.fra-cos.fra.cos | 0.3 | 0.061 | | Tatoeba-test.fra-cym.fra.cym | 17.3 | 0.455 | | Tatoeba-test.fra-dan.fra.dan | 47.1 | 0.634 | | Tatoeba-test.fra-deu.fra.deu | 31.1 | 0.530 | | Tatoeba-test.fra-egl.fra.egl | 0.7 | 0.061 | | Tatoeba-test.fra-ell.fra.ell | 32.4 | 0.544 | | Tatoeba-test.fra-eng.fra.eng | 40.1 | 0.583 | | Tatoeba-test.fra-enm.fra.enm | 5.1 | 0.207 | | Tatoeba-test.fra-fao.fra.fao | 1.8 | 0.304 | | Tatoeba-test.fra-fas.fra.fas | 5.6 | 0.233 | | Tatoeba-test.fra-frm.fra.frm | 0.3 | 0.149 | | Tatoeba-test.fra-frr.fra.frr | 6.4 | 0.412 | | Tatoeba-test.fra-fry.fra.fry | 11.4 | 0.357 | | Tatoeba-test.fra-gcf.fra.gcf | 0.1 | 0.067 | | Tatoeba-test.fra-gla.fra.gla | 9.1 | 0.316 | | Tatoeba-test.fra-gle.fra.gle | 16.8 | 0.416 | | Tatoeba-test.fra-glg.fra.glg | 34.5 | 0.562 | | Tatoeba-test.fra-gos.fra.gos | 5.5 | 0.204 | | Tatoeba-test.fra-got.fra.got | 0.2 | 0.001 | | Tatoeba-test.fra-grc.fra.grc | 0.1 | 0.006 | | Tatoeba-test.fra-hat.fra.hat | 20.8 | 0.424 | | Tatoeba-test.fra-hbs.fra.hbs | 28.9 | 0.511 | | Tatoeba-test.fra-hin.fra.hin | 5.1 | 0.336 | | Tatoeba-test.fra-hye.fra.hye | 11.5 | 0.401 | | Tatoeba-test.fra-isl.fra.isl | 17.2 | 0.362 | | Tatoeba-test.fra-ita.fra.ita | 37.7 | 0.606 | | Tatoeba-test.fra-ksh.fra.ksh | 2.8 | 0.148 | | Tatoeba-test.fra-kur.fra.kur | 14.3 | 0.188 | | Tatoeba-test.fra-lad.fra.lad | 0.4 | 0.129 | | Tatoeba-test.fra-lat.fra.lat | 2.8 | 0.258 | | Tatoeba-test.fra-lav.fra.lav | 30.3 | 0.490 | | Tatoeba-test.fra-lij.fra.lij | 0.3 | 0.099 | | Tatoeba-test.fra-lit.fra.lit | 18.3 | 0.461 | | Tatoeba-test.fra-lld.fra.lld | 0.6 | 0.185 | | Tatoeba-test.fra-lmo.fra.lmo | 1.2 | 0.163 | | Tatoeba-test.fra-ltz.fra.ltz | 15.3 | 0.385 | | Tatoeba-test.fra-mar.fra.mar | 45.7 | 0.393 | | Tatoeba-test.fra-mkd.fra.mkd | 29.5 | 0.498 | | Tatoeba-test.fra-msa.fra.msa | 19.4 | 0.456 | | Tatoeba-test.fra-nds.fra.nds | 12.9 | 0.356 | | Tatoeba-test.fra-nld.fra.nld | 33.0 | 0.532 | | Tatoeba-test.fra-non.fra.non | 1.2 | 0.072 | | Tatoeba-test.fra-nor.fra.nor | 35.1 | 0.553 | | Tatoeba-test.fra-oci.fra.oci | 6.8 | 0.313 | | Tatoeba-test.fra-orv.fra.orv | 0.2 | 0.004 | | Tatoeba-test.fra-oss.fra.oss | 3.6 | 0.112 | | Tatoeba-test.fra-pap.fra.pap | 78.3 | 0.917 | | Tatoeba-test.fra-pcd.fra.pcd | 0.1 | 0.084 | | Tatoeba-test.fra-pms.fra.pms | 0.3 | 0.117 | | Tatoeba-test.fra-pol.fra.pol | 22.4 | 0.468 | | Tatoeba-test.fra-por.fra.por | 33.0 | 0.559 | | Tatoeba-test.fra-prg.fra.prg | 0.6 | 0.084 | | Tatoeba-test.fra-roh.fra.roh | 5.9 | 0.278 | | Tatoeba-test.fra-rom.fra.rom | 4.2 | 0.257 | | Tatoeba-test.fra-ron.fra.ron | 29.7 | 0.531 | | Tatoeba-test.fra-rus.fra.rus | 28.8 | 0.498 | | Tatoeba-test.fra-scn.fra.scn | 0.4 | 0.056 | | Tatoeba-test.fra-sco.fra.sco | 1.7 | 0.222 | | Tatoeba-test.fra-slv.fra.slv | 2.4 | 0.207 | | Tatoeba-test.fra-spa.fra.spa | 38.6 | 0.598 | | Tatoeba-test.fra-sqi.fra.sqi | 23.9 | 0.455 | | Tatoeba-test.fra-srd.fra.srd | 1.2 | 0.159 | | Tatoeba-test.fra-swe.fra.swe | 44.2 | 0.609 | | Tatoeba-test.fra-swg.fra.swg | 2.4 | 0.123 | | Tatoeba-test.fra-tgk.fra.tgk | 2.8 | 0.244 | | Tatoeba-test.fra-tly.fra.tly | 0.5 | 0.034 | | Tatoeba-test.fra-ukr.fra.ukr | 26.7 | 0.474 | | Tatoeba-test.fra-urd.fra.urd | 2.3 | 0.333 | | Tatoeba-test.fra-vec.fra.vec | 0.6 | 0.088 | | Tatoeba-test.fra-wln.fra.wln | 5.3 | 0.178 | | Tatoeba-test.fra-yid.fra.yid | 8.7 | 0.271 | | Tatoeba-test.frm-eng.frm.eng | 19.2 | 0.394 | | Tatoeba-test.frm-fra.frm.fra | 12.3 | 0.482 | | Tatoeba-test.frr-deu.frr.deu | 8.3 | 0.286 | | Tatoeba-test.frr-eng.frr.eng | 6.1 | 0.181 | | Tatoeba-test.frr-fra.frr.fra | 12.7 | 0.535 | | Tatoeba-test.frr-fry.frr.fry | 4.1 | 0.144 | | Tatoeba-test.frr-gos.frr.gos | 0.5 | 0.033 | | Tatoeba-test.frr-nds.frr.nds | 12.4 | 0.127 | | Tatoeba-test.frr-nld.frr.nld | 6.9 | 0.233 | | Tatoeba-test.frr-stq.frr.stq | 0.5 | 0.045 | | Tatoeba-test.fry-afr.fry.afr | 0.0 | 0.244 | | Tatoeba-test.fry-ces.fry.ces | 4.2 | 0.280 | | Tatoeba-test.fry-deu.fry.deu | 21.7 | 0.448 | | Tatoeba-test.fry-eng.fry.eng | 22.9 | 0.431 | | Tatoeba-test.fry-enm.fry.enm | 10.7 | 0.140 | | Tatoeba-test.fry-fra.fry.fra | 31.8 | 0.455 | | Tatoeba-test.fry-frr.fry.frr | 0.5 | 0.040 | | Tatoeba-test.fry-gos.fry.gos | 0.7 | 0.204 | | Tatoeba-test.fry-ita.fry.ita | 34.8 | 0.528 | | Tatoeba-test.fry-lat.fry.lat | 8.1 | 0.318 | | Tatoeba-test.fry-ltz.fry.ltz | 21.4 | 0.324 | | Tatoeba-test.fry-msa.fry.msa | 0.1 | 0.000 | | Tatoeba-test.fry-nds.fry.nds | 6.6 | 0.127 | | Tatoeba-test.fry-nld.fry.nld | 35.7 | 0.576 | | Tatoeba-test.fry-nor.fry.nor | 32.6 | 0.511 | | Tatoeba-test.fry-pol.fry.pol | 17.7 | 0.342 | | Tatoeba-test.fry-por.fry.por | 12.1 | 0.304 | | Tatoeba-test.fry-rus.fry.rus | 31.7 | 0.438 | | Tatoeba-test.fry-spa.fry.spa | 30.6 | 0.479 | | Tatoeba-test.fry-stq.fry.stq | 0.5 | 0.156 | | Tatoeba-test.fry-swe.fry.swe | 27.5 | 0.247 | | Tatoeba-test.fry-ukr.fry.ukr | 16.1 | 0.330 | | Tatoeba-test.fry-yid.fry.yid | 4.0 | 0.167 | | Tatoeba-test.gcf-eng.gcf.eng | 13.2 | 0.257 | | Tatoeba-test.gcf-fra.gcf.fra | 6.0 | 0.241 | | Tatoeba-test.gcf-lad.gcf.lad | 0.0 | 0.170 | | Tatoeba-test.gcf-por.gcf.por | 0.0 | 0.427 | | Tatoeba-test.gcf-rus.gcf.rus | 0.0 | 1.000 | | Tatoeba-test.gcf-spa.gcf.spa | 31.8 | 0.374 | | Tatoeba-test.gla-cym.gla.cym | 11.5 | 0.416 | | Tatoeba-test.gla-deu.gla.deu | 15.1 | 0.348 | | Tatoeba-test.gla-eng.gla.eng | 17.5 | 0.329 | | Tatoeba-test.gla-fra.gla.fra | 13.1 | 0.346 | | Tatoeba-test.gla-ita.gla.ita | 12.1 | 0.306 | | Tatoeba-test.gla-ksh.gla.ksh | 8.0 | 0.035 | | Tatoeba-test.gla-pol.gla.pol | 20.8 | 0.299 | | Tatoeba-test.gla-por.gla.por | 13.7 | 0.355 | | Tatoeba-test.gla-rus.gla.rus | 24.7 | 0.423 | | Tatoeba-test.gla-spa.gla.spa | 12.7 | 0.322 | | Tatoeba-test.gle-cym.gle.cym | 7.8 | 0.288 | | Tatoeba-test.gle-deu.gle.deu | 13.5 | 0.390 | | Tatoeba-test.gle-eng.gle.eng | 32.0 | 0.490 | | Tatoeba-test.gle-enm.gle.enm | 5.0 | 0.135 | | Tatoeba-test.gle-fra.gle.fra | 18.0 | 0.403 | | Tatoeba-test.gle-glv.gle.glv | 16.9 | 0.377 | | Tatoeba-test.gle-kur.gle.kur | 0.0 | 0.077 | | Tatoeba-test.gle-lad.gle.lad | 2.4 | 0.328 | | Tatoeba-test.gle-ron.gle.ron | 0.0 | 0.673 | | Tatoeba-test.gle-rus.gle.rus | 2.5 | 0.139 | | Tatoeba-test.gle-spa.gle.spa | 24.5 | 0.458 | | Tatoeba-test.gle-yid.gle.yid | 13.3 | 0.324 | | Tatoeba-test.glg-deu.glg.deu | 30.4 | 0.539 | | Tatoeba-test.glg-ell.glg.ell | 30.2 | 0.448 | | Tatoeba-test.glg-eng.glg.eng | 37.9 | 0.571 | | Tatoeba-test.glg-fra.glg.fra | 45.8 | 0.627 | | Tatoeba-test.glg-ita.glg.ita | 31.1 | 0.561 | | Tatoeba-test.glg-nld.glg.nld | 36.2 | 0.573 | | Tatoeba-test.glg-pol.glg.pol | 22.7 | 0.524 | | Tatoeba-test.glg-por.glg.por | 47.4 | 0.674 | | Tatoeba-test.glg-rus.glg.rus | 28.4 | 0.465 | | Tatoeba-test.glg-spa.glg.spa | 53.2 | 0.704 | | Tatoeba-test.glv-cym.glv.cym | 1.4 | 0.140 | | Tatoeba-test.glv-eng.glv.eng | 3.2 | 0.104 | | Tatoeba-test.glv-gle.glv.gle | 9.9 | 0.243 | | Tatoeba-test.gos-afr.gos.afr | 6.2 | 0.269 | | Tatoeba-test.gos-ang.gos.ang | 0.0 | 0.056 | | Tatoeba-test.gos-ast.gos.ast | 6.6 | 0.107 | | Tatoeba-test.gos-dan.gos.dan | 12.0 | 0.356 | | Tatoeba-test.gos-deu.gos.deu | 15.7 | 0.384 | | Tatoeba-test.gos-eng.gos.eng | 14.8 | 0.320 | | Tatoeba-test.gos-enm.gos.enm | 4.1 | 0.292 | | Tatoeba-test.gos-fao.gos.fao | 19.0 | 0.111 | | Tatoeba-test.gos-fra.gos.fra | 8.4 | 0.321 | | Tatoeba-test.gos-frr.gos.frr | 0.9 | 0.064 | | Tatoeba-test.gos-fry.gos.fry | 13.5 | 0.361 | | Tatoeba-test.gos-isl.gos.isl | 8.2 | 0.228 | | Tatoeba-test.gos-ita.gos.ita | 31.9 | 0.610 | | Tatoeba-test.gos-kur.gos.kur | 0.0 | 0.050 | | Tatoeba-test.gos-lad.gos.lad | 0.5 | 0.010 | | Tatoeba-test.gos-lat.gos.lat | 4.5 | 0.206 | | Tatoeba-test.gos-ltz.gos.ltz | 4.2 | 0.220 | | Tatoeba-test.gos-nds.gos.nds | 3.9 | 0.202 | | Tatoeba-test.gos-nld.gos.nld | 16.8 | 0.389 | | Tatoeba-test.gos-rus.gos.rus | 5.2 | 0.298 | | Tatoeba-test.gos-spa.gos.spa | 24.7 | 0.406 | | Tatoeba-test.gos-stq.gos.stq | 0.4 | 0.137 | | Tatoeba-test.gos-swe.gos.swe | 16.8 | 0.310 | | Tatoeba-test.gos-ukr.gos.ukr | 5.4 | 0.370 | | Tatoeba-test.gos-yid.gos.yid | 4.3 | 0.170 | | Tatoeba-test.got-deu.got.deu | 0.6 | 0.044 | | Tatoeba-test.got-eng.got.eng | 0.1 | 0.050 | | Tatoeba-test.got-fra.got.fra | 0.2 | 0.064 | | Tatoeba-test.got-nor.got.nor | 3.1 | 0.013 | | Tatoeba-test.got-spa.got.spa | 0.2 | 0.050 | | Tatoeba-test.grc-ces.grc.ces | 2.7 | 0.155 | | Tatoeba-test.grc-deu.grc.deu | 4.7 | 0.198 | | Tatoeba-test.grc-eng.grc.eng | 1.9 | 0.146 | | Tatoeba-test.grc-fra.grc.fra | 12.8 | 0.234 | | Tatoeba-test.grc-lat.grc.lat | 0.5 | 0.114 | | Tatoeba-test.grc-por.grc.por | 0.8 | 0.163 | | Tatoeba-test.grc-spa.grc.spa | 2.4 | 0.141 | | Tatoeba-test.gsw-deu.gsw.deu | 12.6 | 0.393 | | Tatoeba-test.gsw-eng.gsw.eng | 15.9 | 0.322 | | Tatoeba-test.gsw-spa.gsw.spa | 19.0 | 0.308 | | Tatoeba-test.guj-eng.guj.eng | 15.9 | 0.301 | | Tatoeba-test.guj-spa.guj.spa | 14.7 | 0.250 | | Tatoeba-test.hat-eng.hat.eng | 38.5 | 0.522 | | Tatoeba-test.hat-fra.hat.fra | 17.6 | 0.424 | | Tatoeba-test.hat-nld.hat.nld | 32.0 | 0.472 | | Tatoeba-test.hat-spa.hat.spa | 31.2 | 0.496 | | Tatoeba-test.hbs-bel.hbs.bel | 40.1 | 0.579 | | Tatoeba-test.hbs-bul.hbs.bul | 100.0 | 1.000 | | Tatoeba-test.hbs-ces.hbs.ces | 27.8 | 0.543 | | Tatoeba-test.hbs-deu.hbs.deu | 32.9 | 0.545 | | Tatoeba-test.hbs-eng.hbs.eng | 38.6 | 0.563 | | Tatoeba-test.hbs-enm.hbs.enm | 2.3 | 0.299 | | Tatoeba-test.hbs-fra.hbs.fra | 33.3 | 0.548 | | Tatoeba-test.hbs-ita.hbs.ita | 37.9 | 0.602 | | Tatoeba-test.hbs-lat.hbs.lat | 9.8 | 0.289 | | Tatoeba-test.hbs-mkd.hbs.mkd | 38.0 | 0.718 | | Tatoeba-test.hbs-nor.hbs.nor | 31.8 | 0.528 | | Tatoeba-test.hbs-pol.hbs.pol | 31.7 | 0.548 | | Tatoeba-test.hbs-por.hbs.por | 28.1 | 0.484 | | Tatoeba-test.hbs-rus.hbs.rus | 38.9 | 0.596 | | Tatoeba-test.hbs-spa.hbs.spa | 38.6 | 0.589 | | Tatoeba-test.hbs-swe.hbs.swe | 100.0 | 1.000 | | Tatoeba-test.hbs-ukr.hbs.ukr | 36.0 | 0.557 | | Tatoeba-test.hbs-urd.hbs.urd | 8.1 | 0.441 | | Tatoeba-test.hif-eng.hif.eng | 8.9 | 0.439 | | Tatoeba-test.hin-asm.hin.asm | 8.8 | 0.288 | | Tatoeba-test.hin-deu.hin.deu | 26.1 | 0.414 | | Tatoeba-test.hin-eng.hin.eng | 25.5 | 0.440 | | Tatoeba-test.hin-fra.hin.fra | 30.1 | 0.449 | | Tatoeba-test.hin-mar.hin.mar | 12.6 | 0.412 | | Tatoeba-test.hin-nor.hin.nor | 9.9 | 0.416 | | Tatoeba-test.hin-pol.hin.pol | 8.4 | 0.289 | | Tatoeba-test.hin-rus.hin.rus | 21.2 | 0.395 | | Tatoeba-test.hin-spa.hin.spa | 25.9 | 0.384 | | Tatoeba-test.hin-swe.hin.swe | 100.0 | 1.000 | | Tatoeba-test.hin-urd.hin.urd | 10.4 | 0.376 | | Tatoeba-test.hsb-ces.hsb.ces | 18.1 | 0.373 | | Tatoeba-test.hsb-deu.hsb.deu | 24.4 | 0.467 | | Tatoeba-test.hsb-eng.hsb.eng | 42.9 | 0.583 | | Tatoeba-test.hsb-spa.hsb.spa | 19.5 | 0.444 | | Tatoeba-test.hye-deu.hye.deu | 11.6 | 0.323 | | Tatoeba-test.hye-eng.hye.eng | 22.1 | 0.398 | | Tatoeba-test.hye-fra.hye.fra | 32.1 | 0.386 | | Tatoeba-test.hye-rus.hye.rus | 21.9 | 0.407 | | Tatoeba-test.hye-spa.hye.spa | 29.3 | 0.476 | | Tatoeba-test.isl-afr.isl.afr | 40.5 | 0.708 | | Tatoeba-test.isl-ang.isl.ang | 0.0 | 0.034 | | Tatoeba-test.isl-dan.isl.dan | 38.1 | 0.582 | | Tatoeba-test.isl-deu.isl.deu | 31.8 | 0.511 | | Tatoeba-test.isl-eng.isl.eng | 29.8 | 0.483 | | Tatoeba-test.isl-enm.isl.enm | 39.8 | 0.336 | | Tatoeba-test.isl-fao.isl.fao | 26.3 | 0.441 | | Tatoeba-test.isl-fra.isl.fra | 27.3 | 0.469 | | Tatoeba-test.isl-gos.isl.gos | 1.9 | 0.047 | | Tatoeba-test.isl-ita.isl.ita | 28.9 | 0.501 | | Tatoeba-test.isl-lat.isl.lat | 2.6 | 0.135 | | Tatoeba-test.isl-lav.isl.lav | 59.6 | 0.740 | | Tatoeba-test.isl-msa.isl.msa | 0.1 | 0.012 | | Tatoeba-test.isl-nor.isl.nor | 40.2 | 0.566 | | Tatoeba-test.isl-pol.isl.pol | 19.7 | 0.358 | | Tatoeba-test.isl-por.isl.por | 17.4 | 0.465 | | Tatoeba-test.isl-rus.isl.rus | 18.0 | 0.386 | | Tatoeba-test.isl-spa.isl.spa | 30.7 | 0.496 | | Tatoeba-test.isl-stq.isl.stq | 10.7 | 0.133 | | Tatoeba-test.isl-swe.isl.swe | 38.1 | 0.539 | | Tatoeba-test.ita-afr.ita.afr | 53.2 | 0.676 | | Tatoeba-test.ita-ang.ita.ang | 3.8 | 0.125 | | Tatoeba-test.ita-asm.ita.asm | 3.4 | 0.252 | | Tatoeba-test.ita-bel.ita.bel | 24.2 | 0.460 | | Tatoeba-test.ita-ben.ita.ben | 12.1 | 0.427 | | Tatoeba-test.ita-bre.ita.bre | 4.7 | 0.287 | | Tatoeba-test.ita-bul.ita.bul | 27.8 | 0.482 | | Tatoeba-test.ita-cat.ita.cat | 40.6 | 0.608 | | Tatoeba-test.ita-ces.ita.ces | 23.1 | 0.450 | | Tatoeba-test.ita-cor.ita.cor | 0.8 | 0.060 | | Tatoeba-test.ita-cym.ita.cym | 10.1 | 0.375 | | Tatoeba-test.ita-dan.ita.dan | 38.9 | 0.577 | | Tatoeba-test.ita-deu.ita.deu | 31.7 | 0.539 | | Tatoeba-test.ita-egl.ita.egl | 0.2 | 0.061 | | Tatoeba-test.ita-ell.ita.ell | 31.5 | 0.539 | | Tatoeba-test.ita-eng.ita.eng | 47.4 | 0.633 | | Tatoeba-test.ita-enm.ita.enm | 6.4 | 0.247 | | Tatoeba-test.ita-fas.ita.fas | 4.2 | 0.236 | | Tatoeba-test.ita-fra.ita.fra | 46.6 | 0.642 | | Tatoeba-test.ita-fry.ita.fry | 20.0 | 0.409 | | Tatoeba-test.ita-gla.ita.gla | 7.8 | 0.312 | | Tatoeba-test.ita-glg.ita.glg | 36.3 | 0.577 | | Tatoeba-test.ita-gos.ita.gos | 1.1 | 0.030 | | Tatoeba-test.ita-hbs.ita.hbs | 39.4 | 0.595 | | Tatoeba-test.ita-isl.ita.isl | 18.5 | 0.408 | | Tatoeba-test.ita-kur.ita.kur | 1.9 | 0.160 | | Tatoeba-test.ita-lad.ita.lad | 1.0 | 0.178 | | Tatoeba-test.ita-lat.ita.lat | 7.1 | 0.320 | | Tatoeba-test.ita-lav.ita.lav | 29.0 | 0.511 | | Tatoeba-test.ita-lij.ita.lij | 0.2 | 0.107 | | Tatoeba-test.ita-lit.ita.lit | 20.7 | 0.475 | | Tatoeba-test.ita-ltz.ita.ltz | 20.6 | 0.373 | | Tatoeba-test.ita-msa.ita.msa | 14.3 | 0.409 | | Tatoeba-test.ita-nds.ita.nds | 13.3 | 0.378 | | Tatoeba-test.ita-nld.ita.nld | 37.8 | 0.578 | | Tatoeba-test.ita-nor.ita.nor | 35.7 | 0.578 | | Tatoeba-test.ita-oci.ita.oci | 11.0 | 0.369 | | Tatoeba-test.ita-orv.ita.orv | 1.2 | 0.010 | | Tatoeba-test.ita-pms.ita.pms | 0.2 | 0.110 | | Tatoeba-test.ita-pol.ita.pol | 25.9 | 0.507 | | Tatoeba-test.ita-por.ita.por | 36.8 | 0.597 | | Tatoeba-test.ita-ron.ita.ron | 34.3 | 0.574 | | Tatoeba-test.ita-rus.ita.rus | 28.5 | 0.494 | | Tatoeba-test.ita-slv.ita.slv | 11.7 | 0.364 | | Tatoeba-test.ita-spa.ita.spa | 46.3 | 0.653 | | Tatoeba-test.ita-sqi.ita.sqi | 21.9 | 0.418 | | Tatoeba-test.ita-swe.ita.swe | 37.7 | 0.562 | | Tatoeba-test.ita-ukr.ita.ukr | 33.1 | 0.538 | | Tatoeba-test.ita-vec.ita.vec | 0.8 | 0.095 | | Tatoeba-test.ita-yid.ita.yid | 10.3 | 0.280 | | Tatoeba-test.jdt-eng.jdt.eng | 3.9 | 0.098 | | Tatoeba-test.kok-eng.kok.eng | 5.0 | 0.217 | | Tatoeba-test.ksh-deu.ksh.deu | 12.2 | 0.357 | | Tatoeba-test.ksh-eng.ksh.eng | 4.1 | 0.237 | | Tatoeba-test.ksh-enm.ksh.enm | 5.3 | 0.299 | | Tatoeba-test.ksh-fra.ksh.fra | 15.3 | 0.322 | | Tatoeba-test.ksh-gla.ksh.gla | 0.0 | 0.095 | | Tatoeba-test.ksh-spa.ksh.spa | 11.3 | 0.272 | | Tatoeba-test.kur-ang.kur.ang | 0.0 | 0.069 | | Tatoeba-test.kur-bel.kur.bel | 35.4 | 0.540 | | Tatoeba-test.kur-dan.kur.dan | 24.3 | 0.509 | | Tatoeba-test.kur-deu.kur.deu | 12.0 | 0.226 | | Tatoeba-test.kur-eng.kur.eng | 10.0 | 0.205 | | Tatoeba-test.kur-enm.kur.enm | 5.5 | 0.048 | | Tatoeba-test.kur-fra.kur.fra | 16.5 | 0.236 | | Tatoeba-test.kur-gle.kur.gle | 7.6 | 0.081 | | Tatoeba-test.kur-gos.kur.gos | 1.6 | 0.013 | | Tatoeba-test.kur-ita.kur.ita | 11.4 | 0.362 | | Tatoeba-test.kur-lad.kur.lad | 0.2 | 0.067 | | Tatoeba-test.kur-lat.kur.lat | 6.1 | 0.240 | | Tatoeba-test.kur-lld.kur.lld | 1.9 | 0.161 | | Tatoeba-test.kur-nld.kur.nld | 3.3 | 0.155 | | Tatoeba-test.kur-nor.kur.nor | 31.9 | 0.184 | | Tatoeba-test.kur-pol.kur.pol | 5.0 | 0.230 | | Tatoeba-test.kur-por.kur.por | 37.0 | 0.295 | | Tatoeba-test.kur-rus.kur.rus | 1.3 | 0.184 | | Tatoeba-test.kur-spa.kur.spa | 39.1 | 0.426 | | Tatoeba-test.kur-swe.kur.swe | 4.3 | 0.206 | | Tatoeba-test.kur-yid.kur.yid | 2.1 | 0.164 | | Tatoeba-test.lad-ang.lad.ang | 1.4 | 0.046 | | Tatoeba-test.lad-bel.lad.bel | 9.7 | 0.330 | | Tatoeba-test.lad-bul.lad.bul | 35.4 | 0.529 | | Tatoeba-test.lad-ces.lad.ces | 33.1 | 0.604 | | Tatoeba-test.lad-dan.lad.dan | 15.4 | 0.325 | | Tatoeba-test.lad-deu.lad.deu | 19.3 | 0.405 | | Tatoeba-test.lad-eng.lad.eng | 23.1 | 0.421 | | Tatoeba-test.lad-enm.lad.enm | 2.2 | 0.173 | | Tatoeba-test.lad-fas.lad.fas | 5.2 | 0.194 | | Tatoeba-test.lad-fra.lad.fra | 26.3 | 0.405 | | Tatoeba-test.lad-gcf.lad.gcf | 0.0 | 0.170 | | Tatoeba-test.lad-gle.lad.gle | 21.4 | 0.347 | | Tatoeba-test.lad-gos.lad.gos | 1.2 | 0.058 | | Tatoeba-test.lad-ita.lad.ita | 22.7 | 0.479 | | Tatoeba-test.lad-kur.lad.kur | 2.4 | 0.190 | | Tatoeba-test.lad-lat.lad.lat | 3.4 | 0.239 | | Tatoeba-test.lad-ltz.lad.ltz | 45.5 | 0.580 | | Tatoeba-test.lad-nds.lad.nds | 23.0 | 0.690 | | Tatoeba-test.lad-nld.lad.nld | 33.5 | 0.449 | | Tatoeba-test.lad-nor.lad.nor | 66.9 | 0.951 | | Tatoeba-test.lad-pol.lad.pol | 0.0 | 0.076 | | Tatoeba-test.lad-por.lad.por | 27.5 | 0.448 | | Tatoeba-test.lad-ron.lad.ron | 78.3 | 0.693 | | Tatoeba-test.lad-rus.lad.rus | 6.5 | 0.308 | | Tatoeba-test.lad-sco.lad.sco | 0.0 | 0.179 | | Tatoeba-test.lad-slv.lad.slv | 59.5 | 0.602 | | Tatoeba-test.lad-spa.lad.spa | 37.0 | 0.553 | | Tatoeba-test.lad-swe.lad.swe | 66.9 | 0.783 | | Tatoeba-test.lad-ukr.lad.ukr | 8.1 | 0.282 | | Tatoeba-test.lad-yid.lad.yid | 4.8 | 0.212 | | Tatoeba-test.lah-eng.lah.eng | 5.0 | 0.237 | | Tatoeba-test.lat-afr.lat.afr | 100.0 | 1.000 | | Tatoeba-test.lat-ang.lat.ang | 0.9 | 0.068 | | Tatoeba-test.lat-bel.lat.bel | 10.6 | 0.284 | | Tatoeba-test.lat-bul.lat.bul | 27.5 | 0.481 | | Tatoeba-test.lat-ces.lat.ces | 15.6 | 0.331 | | Tatoeba-test.lat-cym.lat.cym | 2.9 | 0.203 | | Tatoeba-test.lat-dan.lat.dan | 29.4 | 0.479 | | Tatoeba-test.lat-deu.lat.deu | 19.9 | 0.391 | | Tatoeba-test.lat-eng.lat.eng | 20.5 | 0.396 | | Tatoeba-test.lat-enm.lat.enm | 1.0 | 0.082 | | Tatoeba-test.lat-fas.lat.fas | 7.9 | 0.407 | | Tatoeba-test.lat-fra.lat.fra | 9.3 | 0.286 | | Tatoeba-test.lat-fry.lat.fry | 7.1 | 0.192 | | Tatoeba-test.lat-gos.lat.gos | 3.6 | 0.150 | | Tatoeba-test.lat-grc.lat.grc | 0.2 | 0.001 | | Tatoeba-test.lat-hbs.lat.hbs | 15.1 | 0.322 | | Tatoeba-test.lat-isl.lat.isl | 8.3 | 0.108 | | Tatoeba-test.lat-ita.lat.ita | 20.7 | 0.415 | | Tatoeba-test.lat-kur.lat.kur | 7.9 | 0.260 | | Tatoeba-test.lat-lad.lat.lad | 0.2 | 0.087 | | Tatoeba-test.lat-lit.lat.lit | 5.6 | 0.301 | | Tatoeba-test.lat-ltz.lat.ltz | 10.2 | 0.352 | | Tatoeba-test.lat-nld.lat.nld | 24.3 | 0.444 | | Tatoeba-test.lat-nor.lat.nor | 14.5 | 0.338 | | Tatoeba-test.lat-orv.lat.orv | 0.1 | 0.006 | | Tatoeba-test.lat-pol.lat.pol | 21.8 | 0.412 | | Tatoeba-test.lat-por.lat.por | 12.2 | 0.336 | | Tatoeba-test.lat-ron.lat.ron | 12.7 | 0.343 | | Tatoeba-test.lat-rus.lat.rus | 16.6 | 0.362 | | Tatoeba-test.lat-sco.lat.sco | 3.2 | 0.215 | | Tatoeba-test.lat-spa.lat.spa | 18.9 | 0.414 | | Tatoeba-test.lat-swe.lat.swe | 53.4 | 0.708 | | Tatoeba-test.lat-ukr.lat.ukr | 14.0 | 0.343 | | Tatoeba-test.lat-yid.lat.yid | 2.1 | 0.182 | | Tatoeba-test.lav-dan.lav.dan | 100.0 | 1.000 | | Tatoeba-test.lav-deu.lav.deu | 34.5 | 0.540 | | Tatoeba-test.lav-eng.lav.eng | 33.6 | 0.520 | | Tatoeba-test.lav-fra.lav.fra | 40.5 | 0.598 | | Tatoeba-test.lav-isl.lav.isl | 72.7 | 0.770 | | Tatoeba-test.lav-ita.lav.ita | 30.5 | 0.570 | | Tatoeba-test.lav-lav.lav.lav | 5.7 | 0.362 | | Tatoeba-test.lav-lit.lav.lit | 23.5 | 0.504 | | Tatoeba-test.lav-mkd.lav.mkd | 13.7 | 0.550 | | Tatoeba-test.lav-pol.lav.pol | 37.6 | 0.551 | | Tatoeba-test.lav-rus.lav.rus | 32.5 | 0.517 | | Tatoeba-test.lav-slv.lav.slv | 8.6 | 0.483 | | Tatoeba-test.lav-spa.lav.spa | 26.6 | 0.511 | | Tatoeba-test.lav-swe.lav.swe | 95.1 | 0.958 | | Tatoeba-test.lav-ukr.lav.ukr | 9.0 | 0.488 | | Tatoeba-test.lij-eng.lij.eng | 6.8 | 0.251 | | Tatoeba-test.lij-fra.lij.fra | 12.2 | 0.329 | | Tatoeba-test.lij-ita.lij.ita | 10.4 | 0.366 | | Tatoeba-test.lit-deu.lit.deu | 25.7 | 0.472 | | Tatoeba-test.lit-eng.lit.eng | 37.5 | 0.551 | | Tatoeba-test.lit-fra.lit.fra | 32.1 | 0.489 | | Tatoeba-test.lit-ita.lit.ita | 22.3 | 0.460 | | Tatoeba-test.lit-lat.lit.lat | 7.4 | 0.195 | | Tatoeba-test.lit-lav.lit.lav | 22.6 | 0.378 | | Tatoeba-test.lit-mkd.lit.mkd | 9.7 | 0.282 | | Tatoeba-test.lit-msa.lit.msa | 7.2 | 0.374 | | Tatoeba-test.lit-pol.lit.pol | 30.9 | 0.529 | | Tatoeba-test.lit-por.lit.por | 25.0 | 0.439 | | Tatoeba-test.lit-rus.lit.rus | 30.6 | 0.504 | | Tatoeba-test.lit-slv.lit.slv | 8.6 | 0.331 | | Tatoeba-test.lit-spa.lit.spa | 32.9 | 0.516 | | Tatoeba-test.lit-ukr.lit.ukr | 19.6 | 0.371 | | Tatoeba-test.lit-yid.lit.yid | 6.5 | 0.360 | | Tatoeba-test.lld-eng.lld.eng | 13.7 | 0.310 | | Tatoeba-test.lld-fra.lld.fra | 13.1 | 0.368 | | Tatoeba-test.lld-kur.lld.kur | 3.4 | 0.064 | | Tatoeba-test.lld-spa.lld.spa | 9.3 | 0.351 | | Tatoeba-test.lmo-eng.lmo.eng | 22.3 | 0.323 | | Tatoeba-test.lmo-fra.lmo.fra | 10.9 | 0.333 | | Tatoeba-test.ltz-afr.ltz.afr | 49.5 | 0.589 | | Tatoeba-test.ltz-ang.ltz.ang | 0.0 | 0.051 | | Tatoeba-test.ltz-ces.ltz.ces | 9.7 | 0.353 | | Tatoeba-test.ltz-dan.ltz.dan | 65.1 | 0.463 | | Tatoeba-test.ltz-deu.ltz.deu | 35.6 | 0.533 | | Tatoeba-test.ltz-eng.ltz.eng | 33.7 | 0.448 | | Tatoeba-test.ltz-fra.ltz.fra | 24.3 | 0.451 | | Tatoeba-test.ltz-fry.ltz.fry | 23.4 | 0.621 | | Tatoeba-test.ltz-gos.ltz.gos | 0.5 | 0.104 | | Tatoeba-test.ltz-ita.ltz.ita | 14.2 | 0.412 | | Tatoeba-test.ltz-lad.ltz.lad | 7.8 | 0.179 | | Tatoeba-test.ltz-lat.ltz.lat | 7.6 | 0.106 | | Tatoeba-test.ltz-nld.ltz.nld | 32.4 | 0.488 | | Tatoeba-test.ltz-nor.ltz.nor | 27.8 | 0.599 | | Tatoeba-test.ltz-por.ltz.por | 12.7 | 0.319 | | Tatoeba-test.ltz-rus.ltz.rus | 18.0 | 0.392 | | Tatoeba-test.ltz-spa.ltz.spa | 15.6 | 0.458 | | Tatoeba-test.ltz-stq.ltz.stq | 0.6 | 0.065 | | Tatoeba-test.ltz-swe.ltz.swe | 32.5 | 0.403 | | Tatoeba-test.ltz-yid.ltz.yid | 1.4 | 0.236 | | Tatoeba-test.mai-eng.mai.eng | 49.8 | 0.429 | | Tatoeba-test.mai-spa.mai.spa | 18.6 | 0.460 | | Tatoeba-test.mar-dan.mar.dan | 5.1 | 0.230 | | Tatoeba-test.mar-deu.mar.deu | 14.2 | 0.379 | | Tatoeba-test.mar-eng.mar.eng | 20.0 | 0.422 | | Tatoeba-test.mar-fra.mar.fra | 40.7 | 0.470 | | Tatoeba-test.mar-hin.mar.hin | 7.3 | 0.407 | | Tatoeba-test.mar-rus.mar.rus | 35.4 | 0.638 | | Tatoeba-test.mfe-eng.mfe.eng | 49.0 | 0.615 | | Tatoeba-test.mkd-afr.mkd.afr | 42.7 | 0.655 | | Tatoeba-test.mkd-bel.mkd.bel | 9.7 | 0.362 | | Tatoeba-test.mkd-bul.mkd.bul | 61.6 | 0.819 | | Tatoeba-test.mkd-ces.mkd.ces | 15.0 | 0.506 | | Tatoeba-test.mkd-deu.mkd.deu | 31.0 | 0.548 | | Tatoeba-test.mkd-eng.mkd.eng | 35.8 | 0.524 | | Tatoeba-test.mkd-fra.mkd.fra | 30.2 | 0.486 | | Tatoeba-test.mkd-hbs.mkd.hbs | 32.5 | 0.589 | | Tatoeba-test.mkd-lav.mkd.lav | 16.6 | 0.557 | | Tatoeba-test.mkd-lit.mkd.lit | 11.6 | 0.395 | | Tatoeba-test.mkd-nld.mkd.nld | 42.7 | 0.680 | | Tatoeba-test.mkd-pol.mkd.pol | 53.7 | 0.833 | | Tatoeba-test.mkd-por.mkd.por | 10.1 | 0.492 | | Tatoeba-test.mkd-ron.mkd.ron | 9.7 | 0.196 | | Tatoeba-test.mkd-rus.mkd.rus | 24.7 | 0.727 | | Tatoeba-test.mkd-spa.mkd.spa | 43.2 | 0.601 | | Tatoeba-test.mkd-swe.mkd.swe | 23.6 | 0.361 | | Tatoeba-test.mkd-ukr.mkd.ukr | 42.7 | 0.864 | | Tatoeba-test.msa-afr.msa.afr | 3.4 | 0.323 | | Tatoeba-test.msa-bel.msa.bel | 17.1 | 0.418 | | Tatoeba-test.msa-bre.msa.bre | 1.8 | 0.199 | | Tatoeba-test.msa-bul.msa.bul | 11.9 | 0.258 | | Tatoeba-test.msa-ces.msa.ces | 3.4 | 0.115 | | Tatoeba-test.msa-cym.msa.cym | 0.0 | 0.000 | | Tatoeba-test.msa-deu.msa.deu | 23.5 | 0.470 | | Tatoeba-test.msa-ell.msa.ell | 19.7 | 0.490 | | Tatoeba-test.msa-eng.msa.eng | 27.8 | 0.472 | | Tatoeba-test.msa-fao.msa.fao | 2.0 | 0.232 | | Tatoeba-test.msa-fas.msa.fas | 5.9 | 0.241 | | Tatoeba-test.msa-fra.msa.fra | 25.9 | 0.465 | | Tatoeba-test.msa-fry.msa.fry | 1.7 | 0.195 | | Tatoeba-test.msa-isl.msa.isl | 3.4 | 0.228 | | Tatoeba-test.msa-ita.msa.ita | 23.4 | 0.481 | | Tatoeba-test.msa-lit.msa.lit | 11.5 | 0.304 | | Tatoeba-test.msa-msa.msa.msa | 5.8 | 0.243 | | Tatoeba-test.msa-nld.msa.nld | 20.9 | 0.442 | | Tatoeba-test.msa-nor.msa.nor | 14.8 | 0.431 | | Tatoeba-test.msa-pap.msa.pap | 83.8 | 0.946 | | Tatoeba-test.msa-pol.msa.pol | 9.1 | 0.349 | | Tatoeba-test.msa-por.msa.por | 15.4 | 0.385 | | Tatoeba-test.msa-ron.msa.ron | 3.4 | 0.195 | | Tatoeba-test.msa-rus.msa.rus | 18.8 | 0.401 | | Tatoeba-test.msa-san.msa.san | 0.0 | 0.056 | | Tatoeba-test.msa-spa.msa.spa | 22.6 | 0.451 | | Tatoeba-test.msa-ukr.msa.ukr | 5.7 | 0.267 | | Tatoeba-test.msa-urd.msa.urd | 8.0 | 0.102 | | Tatoeba-test.multi.multi | 30.8 | 0.509 | | Tatoeba-test.mwl-eng.mwl.eng | 22.8 | 0.416 | | Tatoeba-test.mwl-enm.mwl.enm | 7.0 | 0.321 | | Tatoeba-test.mwl-por.mwl.por | 35.4 | 0.561 | | Tatoeba-test.nds-ast.nds.ast | 42.7 | 0.835 | | Tatoeba-test.nds-ces.nds.ces | 38.3 | 0.491 | | Tatoeba-test.nds-dan.nds.dan | 18.5 | 0.399 | | Tatoeba-test.nds-deu.nds.deu | 32.6 | 0.552 | | Tatoeba-test.nds-ell.nds.ell | 18.1 | 0.426 | | Tatoeba-test.nds-eng.nds.eng | 28.9 | 0.480 | | Tatoeba-test.nds-enm.nds.enm | 6.9 | 0.198 | | Tatoeba-test.nds-fas.nds.fas | 6.6 | 0.187 | | Tatoeba-test.nds-fra.nds.fra | 31.9 | 0.498 | | Tatoeba-test.nds-frr.nds.frr | 0.5 | 0.000 | | Tatoeba-test.nds-fry.nds.fry | 0.0 | 0.023 | | Tatoeba-test.nds-gos.nds.gos | 1.2 | 0.148 | | Tatoeba-test.nds-ita.nds.ita | 28.5 | 0.505 | | Tatoeba-test.nds-lad.nds.lad | 7.8 | 0.164 | | Tatoeba-test.nds-nld.nds.nld | 38.2 | 0.584 | | Tatoeba-test.nds-nor.nds.nor | 42.8 | 0.612 | | Tatoeba-test.nds-pol.nds.pol | 15.3 | 0.405 | | Tatoeba-test.nds-por.nds.por | 26.0 | 0.447 | | Tatoeba-test.nds-ron.nds.ron | 0.0 | 0.353 | | Tatoeba-test.nds-rus.nds.rus | 24.3 | 0.440 | | Tatoeba-test.nds-spa.nds.spa | 31.7 | 0.527 | | Tatoeba-test.nds-swg.nds.swg | 0.1 | 0.080 | | Tatoeba-test.nds-ukr.nds.ukr | 20.1 | 0.464 | | Tatoeba-test.nds-yid.nds.yid | 42.8 | 0.365 | | Tatoeba-test.nep-eng.nep.eng | 2.1 | 0.161 | | Tatoeba-test.nld-afr.nld.afr | 50.1 | 0.670 | | Tatoeba-test.nld-ast.nld.ast | 42.7 | 0.835 | | Tatoeba-test.nld-bel.nld.bel | 17.5 | 0.410 | | Tatoeba-test.nld-bre.nld.bre | 3.2 | 0.189 | | Tatoeba-test.nld-bul.nld.bul | 28.7 | 0.468 | | Tatoeba-test.nld-cat.nld.cat | 31.9 | 0.546 | | Tatoeba-test.nld-ces.nld.ces | 24.4 | 0.504 | | Tatoeba-test.nld-cor.nld.cor | 0.6 | 0.048 | | Tatoeba-test.nld-dan.nld.dan | 49.1 | 0.660 | | Tatoeba-test.nld-deu.nld.deu | 38.3 | 0.589 | | Tatoeba-test.nld-dsb.nld.dsb | 0.2 | 0.084 | | Tatoeba-test.nld-ell.nld.ell | 35.3 | 0.528 | | Tatoeba-test.nld-eng.nld.eng | 42.4 | 0.602 | | Tatoeba-test.nld-enm.nld.enm | 6.1 | 0.269 | | Tatoeba-test.nld-fas.nld.fas | 18.6 | 0.459 | | Tatoeba-test.nld-fra.nld.fra | 35.7 | 0.549 | | Tatoeba-test.nld-frr.nld.frr | 2.8 | 0.099 | | Tatoeba-test.nld-fry.nld.fry | 19.2 | 0.438 | | Tatoeba-test.nld-glg.nld.glg | 35.0 | 0.576 | | Tatoeba-test.nld-gos.nld.gos | 0.5 | 0.129 | | Tatoeba-test.nld-hat.nld.hat | 26.8 | 0.418 | | Tatoeba-test.nld-ita.nld.ita | 35.3 | 0.580 | | Tatoeba-test.nld-kur.nld.kur | 4.2 | 0.147 | | Tatoeba-test.nld-lad.nld.lad | 0.7 | 0.101 | | Tatoeba-test.nld-lat.nld.lat | 6.7 | 0.314 | | Tatoeba-test.nld-ltz.nld.ltz | 17.6 | 0.384 | | Tatoeba-test.nld-mkd.nld.mkd | 0.0 | 0.238 | | Tatoeba-test.nld-msa.nld.msa | 3.6 | 0.210 | | Tatoeba-test.nld-nds.nld.nds | 15.9 | 0.405 | | Tatoeba-test.nld-nor.nld.nor | 42.4 | 0.618 | | Tatoeba-test.nld-oci.nld.oci | 9.0 | 0.306 | | Tatoeba-test.nld-pap.nld.pap | 38.9 | 0.531 | | Tatoeba-test.nld-pol.nld.pol | 25.8 | 0.498 | | Tatoeba-test.nld-por.nld.por | 31.7 | 0.535 | | Tatoeba-test.nld-ron.nld.ron | 26.6 | 0.495 | | Tatoeba-test.nld-rus.nld.rus | 30.0 | 0.512 | | Tatoeba-test.nld-sco.nld.sco | 4.3 | 0.299 | | Tatoeba-test.nld-spa.nld.spa | 35.0 | 0.560 | | Tatoeba-test.nld-stq.nld.stq | 1.6 | 0.201 | | Tatoeba-test.nld-swe.nld.swe | 72.2 | 0.801 | | Tatoeba-test.nld-swg.nld.swg | 5.0 | 0.129 | | Tatoeba-test.nld-ukr.nld.ukr | 26.2 | 0.481 | | Tatoeba-test.nld-wln.nld.wln | 3.5 | 0.133 | | Tatoeba-test.nld-yid.nld.yid | 11.5 | 0.293 | | Tatoeba-test.non-eng.non.eng | 30.3 | 0.471 | | Tatoeba-test.non-fra.non.fra | 90.1 | 0.839 | | Tatoeba-test.nor-afr.nor.afr | 50.0 | 0.638 | | Tatoeba-test.nor-bel.nor.bel | 42.2 | 0.467 | | Tatoeba-test.nor-bre.nor.bre | 3.2 | 0.188 | | Tatoeba-test.nor-bul.nor.bul | 35.4 | 0.529 | | Tatoeba-test.nor-ces.nor.ces | 38.0 | 0.627 | | Tatoeba-test.nor-cor.nor.cor | 3.2 | 0.072 | | Tatoeba-test.nor-cym.nor.cym | 14.7 | 0.465 | | Tatoeba-test.nor-dan.nor.dan | 59.0 | 0.757 | | Tatoeba-test.nor-deu.nor.deu | 32.4 | 0.560 | | Tatoeba-test.nor-ell.nor.ell | 29.9 | 0.507 | | Tatoeba-test.nor-eng.nor.eng | 40.8 | 0.585 | | Tatoeba-test.nor-enm.nor.enm | 4.2 | 0.303 | | Tatoeba-test.nor-fao.nor.fao | 10.0 | 0.345 | | Tatoeba-test.nor-fra.nor.fra | 38.4 | 0.572 | | Tatoeba-test.nor-fry.nor.fry | 18.7 | 0.375 | | Tatoeba-test.nor-got.nor.got | 10.7 | 0.015 | | Tatoeba-test.nor-hbs.nor.hbs | 21.7 | 0.465 | | Tatoeba-test.nor-hin.nor.hin | 14.8 | 0.307 | | Tatoeba-test.nor-isl.nor.isl | 23.2 | 0.445 | | Tatoeba-test.nor-ita.nor.ita | 35.2 | 0.594 | | Tatoeba-test.nor-kur.nor.kur | 10.7 | 0.037 | | Tatoeba-test.nor-lad.nor.lad | 6.6 | 0.370 | | Tatoeba-test.nor-lat.nor.lat | 3.6 | 0.261 | | Tatoeba-test.nor-ltz.nor.ltz | 12.2 | 0.404 | | Tatoeba-test.nor-msa.nor.msa | 8.0 | 0.442 | | Tatoeba-test.nor-nds.nor.nds | 20.3 | 0.466 | | Tatoeba-test.nor-nld.nor.nld | 39.1 | 0.598 | | Tatoeba-test.nor-nor.nor.nor | 49.0 | 0.698 | | Tatoeba-test.nor-pol.nor.pol | 26.3 | 0.515 | | Tatoeba-test.nor-por.nor.por | 31.0 | 0.543 | | Tatoeba-test.nor-ron.nor.ron | 28.0 | 0.475 | | Tatoeba-test.nor-rus.nor.rus | 28.1 | 0.513 | | Tatoeba-test.nor-slv.nor.slv | 1.2 | 0.193 | | Tatoeba-test.nor-spa.nor.spa | 38.2 | 0.598 | | Tatoeba-test.nor-swe.nor.swe | 58.8 | 0.741 | | Tatoeba-test.nor-ukr.nor.ukr | 29.1 | 0.515 | | Tatoeba-test.nor-yid.nor.yid | 42.6 | 0.473 | | Tatoeba-test.oci-deu.oci.deu | 11.2 | 0.346 | | Tatoeba-test.oci-eng.oci.eng | 13.4 | 0.331 | | Tatoeba-test.oci-enm.oci.enm | 5.3 | 0.206 | | Tatoeba-test.oci-fra.oci.fra | 19.6 | 0.423 | | Tatoeba-test.oci-ita.oci.ita | 24.5 | 0.493 | | Tatoeba-test.oci-nld.oci.nld | 22.5 | 0.408 | | Tatoeba-test.oci-pol.oci.pol | 8.8 | 0.322 | | Tatoeba-test.oci-rus.oci.rus | 16.4 | 0.387 | | Tatoeba-test.oci-spa.oci.spa | 20.4 | 0.442 | | Tatoeba-test.oci-yid.oci.yid | 66.9 | 0.968 | | Tatoeba-test.ori-eng.ori.eng | 3.9 | 0.168 | | Tatoeba-test.ori-rus.ori.rus | 9.1 | 0.175 | | Tatoeba-test.orv-deu.orv.deu | 5.8 | 0.256 | | Tatoeba-test.orv-eng.orv.eng | 8.4 | 0.243 | | Tatoeba-test.orv-fra.orv.fra | 8.9 | 0.244 | | Tatoeba-test.orv-ita.orv.ita | 8.1 | 0.297 | | Tatoeba-test.orv-lat.orv.lat | 1.2 | 0.207 | | Tatoeba-test.orv-pol.orv.pol | 11.6 | 0.338 | | Tatoeba-test.orv-rus.orv.rus | 8.2 | 0.234 | | Tatoeba-test.orv-spa.orv.spa | 7.8 | 0.331 | | Tatoeba-test.orv-ukr.orv.ukr | 6.4 | 0.217 | | Tatoeba-test.oss-eng.oss.eng | 5.8 | 0.230 | | Tatoeba-test.oss-fra.oss.fra | 10.8 | 0.279 | | Tatoeba-test.oss-rus.oss.rus | 6.0 | 0.225 | | Tatoeba-test.pan-eng.pan.eng | 6.1 | 0.256 | | Tatoeba-test.pap-ell.pap.ell | 0.0 | 0.626 | | Tatoeba-test.pap-eng.pap.eng | 45.7 | 0.586 | | Tatoeba-test.pap-fra.pap.fra | 43.9 | 0.589 | | Tatoeba-test.pap-msa.pap.msa | 0.0 | 0.347 | | Tatoeba-test.pap-nld.pap.nld | 41.9 | 0.587 | | Tatoeba-test.pcd-fra.pcd.fra | 14.4 | 0.365 | | Tatoeba-test.pcd-spa.pcd.spa | 5.8 | 0.274 | | Tatoeba-test.pdc-deu.pdc.deu | 33.0 | 0.474 | | Tatoeba-test.pdc-eng.pdc.eng | 36.1 | 0.479 | | Tatoeba-test.pms-cos.pms.cos | 0.7 | 0.026 | | Tatoeba-test.pms-deu.pms.deu | 13.1 | 0.310 | | Tatoeba-test.pms-eng.pms.eng | 8.8 | 0.296 | | Tatoeba-test.pms-fra.pms.fra | 13.0 | 0.309 | | Tatoeba-test.pms-ita.pms.ita | 10.0 | 0.327 | | Tatoeba-test.pms-pol.pms.pol | 15.2 | 0.304 | | Tatoeba-test.pms-spa.pms.spa | 10.4 | 0.352 | | Tatoeba-test.pol-afr.pol.afr | 40.2 | 0.589 | | Tatoeba-test.pol-bel.pol.bel | 24.8 | 0.503 | | Tatoeba-test.pol-bul.pol.bul | 29.4 | 0.508 | | Tatoeba-test.pol-cat.pol.cat | 20.3 | 0.416 | | Tatoeba-test.pol-ces.pol.ces | 28.0 | 0.489 | | Tatoeba-test.pol-cor.pol.cor | 1.3 | 0.052 | | Tatoeba-test.pol-cym.pol.cym | 7.0 | 0.347 | | Tatoeba-test.pol-dan.pol.dan | 37.0 | 0.551 | | Tatoeba-test.pol-deu.pol.deu | 29.1 | 0.508 | | Tatoeba-test.pol-dsb.pol.dsb | 0.8 | 0.070 | | Tatoeba-test.pol-ell.pol.ell | 32.3 | 0.519 | | Tatoeba-test.pol-eng.pol.eng | 34.1 | 0.531 | | Tatoeba-test.pol-fao.pol.fao | 1.2 | 0.234 | | Tatoeba-test.pol-fas.pol.fas | 6.5 | 0.208 | | Tatoeba-test.pol-fra.pol.fra | 30.8 | 0.510 | | Tatoeba-test.pol-fry.pol.fry | 7.2 | 0.287 | | Tatoeba-test.pol-gla.pol.gla | 14.6 | 0.301 | | Tatoeba-test.pol-glg.pol.glg | 18.4 | 0.498 | | Tatoeba-test.pol-hbs.pol.hbs | 31.8 | 0.546 | | Tatoeba-test.pol-hin.pol.hin | 3.5 | 0.193 | | Tatoeba-test.pol-isl.pol.isl | 11.4 | 0.336 | | Tatoeba-test.pol-ita.pol.ita | 28.5 | 0.522 | | Tatoeba-test.pol-kur.pol.kur | 2.6 | 0.134 | | Tatoeba-test.pol-lad.pol.lad | 16.0 | 0.265 | | Tatoeba-test.pol-lat.pol.lat | 7.2 | 0.311 | | Tatoeba-test.pol-lav.pol.lav | 22.9 | 0.450 | | Tatoeba-test.pol-lit.pol.lit | 21.2 | 0.493 | | Tatoeba-test.pol-mkd.pol.mkd | 38.0 | 0.718 | | Tatoeba-test.pol-msa.pol.msa | 2.2 | 0.173 | | Tatoeba-test.pol-nds.pol.nds | 14.4 | 0.370 | | Tatoeba-test.pol-nld.pol.nld | 30.6 | 0.501 | | Tatoeba-test.pol-nor.pol.nor | 33.3 | 0.536 | | Tatoeba-test.pol-oci.pol.oci | 4.0 | 0.282 | | Tatoeba-test.pol-orv.pol.orv | 0.4 | 0.005 | | Tatoeba-test.pol-pms.pol.pms | 1.3 | 0.032 | | Tatoeba-test.pol-por.pol.por | 25.9 | 0.491 | | Tatoeba-test.pol-prg.pol.prg | 0.0 | 0.083 | | Tatoeba-test.pol-ron.pol.ron | 26.5 | 0.487 | | Tatoeba-test.pol-rus.pol.rus | 34.7 | 0.550 | | Tatoeba-test.pol-slv.pol.slv | 7.4 | 0.256 | | Tatoeba-test.pol-spa.pol.spa | 30.7 | 0.516 | | Tatoeba-test.pol-swe.pol.swe | 35.0 | 0.530 | | Tatoeba-test.pol-ukr.pol.ukr | 32.8 | 0.538 | | Tatoeba-test.pol-urd.pol.urd | 5.6 | 0.381 | | Tatoeba-test.pol-yid.pol.yid | 4.8 | 0.146 | | Tatoeba-test.por-afr.por.afr | 48.1 | 0.653 | | Tatoeba-test.por-ang.por.ang | 8.4 | 0.213 | | Tatoeba-test.por-ast.por.ast | 42.7 | 0.835 | | Tatoeba-test.por-bel.por.bel | 9.7 | 0.539 | | Tatoeba-test.por-bul.por.bul | 41.5 | 0.569 | | Tatoeba-test.por-cat.por.cat | 36.9 | 0.612 | | Tatoeba-test.por-ces.por.ces | 29.0 | 0.526 | | Tatoeba-test.por-cor.por.cor | 0.8 | 0.049 | | Tatoeba-test.por-dan.por.dan | 51.4 | 0.668 | | Tatoeba-test.por-deu.por.deu | 30.8 | 0.532 | | Tatoeba-test.por-ell.por.ell | 33.8 | 0.556 | | Tatoeba-test.por-eng.por.eng | 44.5 | 0.622 | | Tatoeba-test.por-enm.por.enm | 10.7 | 0.190 | | Tatoeba-test.por-fas.por.fas | 4.5 | 0.273 | | Tatoeba-test.por-fra.por.fra | 43.0 | 0.625 | | Tatoeba-test.por-fry.por.fry | 8.9 | 0.365 | | Tatoeba-test.por-gcf.por.gcf | 16.0 | 0.079 | | Tatoeba-test.por-gla.por.gla | 12.1 | 0.315 | | Tatoeba-test.por-glg.por.glg | 49.2 | 0.700 | | Tatoeba-test.por-grc.por.grc | 0.1 | 0.004 | | Tatoeba-test.por-hbs.por.hbs | 39.2 | 0.575 | | Tatoeba-test.por-isl.por.isl | 15.5 | 0.387 | | Tatoeba-test.por-ita.por.ita | 39.9 | 0.637 | | Tatoeba-test.por-kur.por.kur | 3.0 | 0.133 | | Tatoeba-test.por-lad.por.lad | 0.6 | 0.172 | | Tatoeba-test.por-lat.por.lat | 5.4 | 0.325 | | Tatoeba-test.por-lit.por.lit | 18.8 | 0.418 | | Tatoeba-test.por-ltz.por.ltz | 16.8 | 0.569 | | Tatoeba-test.por-mkd.por.mkd | 27.3 | 0.571 | | Tatoeba-test.por-msa.por.msa | 7.6 | 0.327 | | Tatoeba-test.por-mwl.por.mwl | 30.5 | 0.559 | | Tatoeba-test.por-nds.por.nds | 14.2 | 0.370 | | Tatoeba-test.por-nld.por.nld | 35.6 | 0.558 | | Tatoeba-test.por-nor.por.nor | 38.0 | 0.587 | | Tatoeba-test.por-pol.por.pol | 25.5 | 0.510 | | Tatoeba-test.por-roh.por.roh | 5.5 | 0.058 | | Tatoeba-test.por-ron.por.ron | 32.0 | 0.557 | | Tatoeba-test.por-rus.por.rus | 26.8 | 0.493 | | Tatoeba-test.por-spa.por.spa | 48.7 | 0.686 | | Tatoeba-test.por-swe.por.swe | 43.4 | 0.612 | | Tatoeba-test.por-ukr.por.ukr | 27.5 | 0.500 | | Tatoeba-test.por-yid.por.yid | 9.3 | 0.293 | | Tatoeba-test.prg-deu.prg.deu | 2.2 | 0.183 | | Tatoeba-test.prg-eng.prg.eng | 1.3 | 0.179 | | Tatoeba-test.prg-fra.prg.fra | 2.3 | 0.183 | | Tatoeba-test.prg-pol.prg.pol | 0.5 | 0.173 | | Tatoeba-test.prg-spa.prg.spa | 3.4 | 0.200 | | Tatoeba-test.pus-eng.pus.eng | 1.6 | 0.166 | | Tatoeba-test.roh-deu.roh.deu | 8.3 | 0.311 | | Tatoeba-test.roh-eng.roh.eng | 9.5 | 0.361 | | Tatoeba-test.roh-fra.roh.fra | 8.8 | 0.415 | | Tatoeba-test.roh-por.roh.por | 21.4 | 0.347 | | Tatoeba-test.roh-spa.roh.spa | 13.3 | 0.434 | | Tatoeba-test.rom-deu.rom.deu | 2.9 | 0.204 | | Tatoeba-test.rom-eng.rom.eng | 5.3 | 0.243 | | Tatoeba-test.rom-fra.rom.fra | 6.5 | 0.194 | | Tatoeba-test.ron-afr.ron.afr | 30.2 | 0.667 | | Tatoeba-test.ron-bul.ron.bul | 35.4 | 0.493 | | Tatoeba-test.ron-cat.ron.cat | 23.6 | 0.542 | | Tatoeba-test.ron-ces.ron.ces | 10.6 | 0.344 | | Tatoeba-test.ron-dan.ron.dan | 12.7 | 0.652 | | Tatoeba-test.ron-deu.ron.deu | 32.1 | 0.524 | | Tatoeba-test.ron-eng.ron.eng | 38.4 | 0.566 | | Tatoeba-test.ron-enm.ron.enm | 5.3 | 0.351 | | Tatoeba-test.ron-fas.ron.fas | 7.3 | 0.338 | | Tatoeba-test.ron-fra.ron.fra | 38.0 | 0.571 | | Tatoeba-test.ron-gle.ron.gle | 10.7 | 0.116 | | Tatoeba-test.ron-ita.ron.ita | 36.2 | 0.587 | | Tatoeba-test.ron-lad.ron.lad | 2.4 | 0.233 | | Tatoeba-test.ron-lat.ron.lat | 6.5 | 0.368 | | Tatoeba-test.ron-mkd.ron.mkd | 27.5 | 0.484 | | Tatoeba-test.ron-msa.ron.msa | 0.8 | 0.082 | | Tatoeba-test.ron-nds.ron.nds | 9.7 | 0.168 | | Tatoeba-test.ron-nld.ron.nld | 32.5 | 0.522 | | Tatoeba-test.ron-nor.ron.nor | 45.2 | 0.656 | | Tatoeba-test.ron-pol.ron.pol | 32.2 | 0.554 | | Tatoeba-test.ron-por.ron.por | 33.6 | 0.577 | | Tatoeba-test.ron-rus.ron.rus | 33.3 | 0.536 | | Tatoeba-test.ron-slv.ron.slv | 19.0 | 0.113 | | Tatoeba-test.ron-spa.ron.spa | 40.8 | 0.605 | | Tatoeba-test.ron-swe.ron.swe | 12.7 | 0.288 | | Tatoeba-test.ron-yid.ron.yid | 19.7 | 0.285 | | Tatoeba-test.rue-eng.rue.eng | 18.7 | 0.359 | | Tatoeba-test.rue-spa.rue.spa | 30.1 | 0.455 | | Tatoeba-test.rus-afr.rus.afr | 34.7 | 0.540 | | Tatoeba-test.rus-ang.rus.ang | 0.0 | 0.042 | | Tatoeba-test.rus-ast.rus.ast | 42.7 | 0.835 | | Tatoeba-test.rus-bel.rus.bel | 35.0 | 0.587 | | Tatoeba-test.rus-bul.rus.bul | 30.8 | 0.534 | | Tatoeba-test.rus-cat.rus.cat | 27.9 | 0.512 | | Tatoeba-test.rus-ces.rus.ces | 33.8 | 0.537 | | Tatoeba-test.rus-cor.rus.cor | 0.4 | 0.038 | | Tatoeba-test.rus-cym.rus.cym | 7.6 | 0.384 | | Tatoeba-test.rus-dan.rus.dan | 37.9 | 0.559 | | Tatoeba-test.rus-deu.rus.deu | 31.3 | 0.528 | | Tatoeba-test.rus-dsb.rus.dsb | 16.0 | 0.060 | | Tatoeba-test.rus-ell.rus.ell | 29.0 | 0.512 | | Tatoeba-test.rus-eng.rus.eng | 37.6 | 0.553 | | Tatoeba-test.rus-enm.rus.enm | 1.6 | 0.138 | | Tatoeba-test.rus-fas.rus.fas | 4.2 | 0.278 | | Tatoeba-test.rus-fra.rus.fra | 33.0 | 0.524 | | Tatoeba-test.rus-fry.rus.fry | 16.3 | 0.308 | | Tatoeba-test.rus-gcf.rus.gcf | 10.7 | 0.045 | | Tatoeba-test.rus-gla.rus.gla | 22.3 | 0.427 | | Tatoeba-test.rus-gle.rus.gle | 5.9 | 0.310 | | Tatoeba-test.rus-glg.rus.glg | 20.6 | 0.459 | | Tatoeba-test.rus-gos.rus.gos | 1.5 | 0.152 | | Tatoeba-test.rus-hbs.rus.hbs | 31.0 | 0.546 | | Tatoeba-test.rus-hin.rus.hin | 5.5 | 0.326 | | Tatoeba-test.rus-hye.rus.hye | 12.7 | 0.365 | | Tatoeba-test.rus-isl.rus.isl | 9.0 | 0.320 | | Tatoeba-test.rus-ita.rus.ita | 26.6 | 0.495 | | Tatoeba-test.rus-kur.rus.kur | 5.6 | 0.210 | | Tatoeba-test.rus-lad.rus.lad | 1.0 | 0.169 | | Tatoeba-test.rus-lat.rus.lat | 7.9 | 0.328 | | Tatoeba-test.rus-lav.rus.lav | 31.1 | 0.519 | | Tatoeba-test.rus-lit.rus.lit | 22.0 | 0.489 | | Tatoeba-test.rus-ltz.rus.ltz | 19.4 | 0.263 | | Tatoeba-test.rus-mar.rus.mar | 19.0 | 0.217 | | Tatoeba-test.rus-mkd.rus.mkd | 38.5 | 0.662 | | Tatoeba-test.rus-msa.rus.msa | 6.6 | 0.305 | | Tatoeba-test.rus-nds.rus.nds | 11.5 | 0.350 | | Tatoeba-test.rus-nld.rus.nld | 31.1 | 0.517 | | Tatoeba-test.rus-nor.rus.nor | 31.2 | 0.528 | | Tatoeba-test.rus-oci.rus.oci | 4.9 | 0.261 | | Tatoeba-test.rus-ori.rus.ori | 7.3 | 0.325 | | Tatoeba-test.rus-orv.rus.orv | 0.0 | 0.008 | | Tatoeba-test.rus-oss.rus.oss | 4.8 | 0.198 | | Tatoeba-test.rus-pol.rus.pol | 31.3 | 0.540 | | Tatoeba-test.rus-por.rus.por | 24.5 | 0.476 | | Tatoeba-test.rus-ron.rus.ron | 25.7 | 0.492 | | Tatoeba-test.rus-slv.rus.slv | 20.7 | 0.400 | | Tatoeba-test.rus-spa.rus.spa | 30.9 | 0.526 | | Tatoeba-test.rus-swe.rus.swe | 32.0 | 0.507 | | Tatoeba-test.rus-ukr.rus.ukr | 41.1 | 0.622 | | Tatoeba-test.rus-urd.rus.urd | 7.1 | 0.367 | | Tatoeba-test.rus-yid.rus.yid | 4.7 | 0.253 | | Tatoeba-test.san-eng.san.eng | 2.5 | 0.167 | | Tatoeba-test.san-msa.san.msa | 11.7 | 0.217 | | Tatoeba-test.scn-deu.scn.deu | 3.9 | 0.224 | | Tatoeba-test.scn-eng.scn.eng | 40.7 | 0.420 | | Tatoeba-test.scn-fra.scn.fra | 2.1 | 0.134 | | Tatoeba-test.scn-spa.scn.spa | 3.4 | 0.244 | | Tatoeba-test.sco-deu.sco.deu | 17.2 | 0.310 | | Tatoeba-test.sco-eng.sco.eng | 32.8 | 0.524 | | Tatoeba-test.sco-fra.sco.fra | 5.7 | 0.254 | | Tatoeba-test.sco-lad.sco.lad | 5.3 | 0.023 | | Tatoeba-test.sco-lat.sco.lat | 3.5 | 0.237 | | Tatoeba-test.sco-nld.sco.nld | 11.9 | 0.335 | | Tatoeba-test.sgs-eng.sgs.eng | 23.7 | 0.300 | | Tatoeba-test.sgs-spa.sgs.spa | 0.0 | 0.146 | | Tatoeba-test.sin-eng.sin.eng | 14.1 | 0.313 | | Tatoeba-test.slv-ces.slv.ces | 33.2 | 0.528 | | Tatoeba-test.slv-deu.slv.deu | 33.4 | 0.518 | | Tatoeba-test.slv-eng.slv.eng | 29.9 | 0.489 | | Tatoeba-test.slv-fra.slv.fra | 19.5 | 0.405 | | Tatoeba-test.slv-ita.slv.ita | 28.6 | 0.499 | | Tatoeba-test.slv-lad.slv.lad | 5.5 | 0.296 | | Tatoeba-test.slv-lav.slv.lav | 18.0 | 0.546 | | Tatoeba-test.slv-lit.slv.lit | 18.0 | 0.452 | | Tatoeba-test.slv-nor.slv.nor | 20.3 | 0.406 | | Tatoeba-test.slv-pol.slv.pol | 33.1 | 0.541 | | Tatoeba-test.slv-ron.slv.ron | 12.4 | 0.348 | | Tatoeba-test.slv-rus.slv.rus | 33.4 | 0.519 | | Tatoeba-test.slv-spa.slv.spa | 32.9 | 0.503 | | Tatoeba-test.slv-swe.slv.swe | 14.8 | 0.095 | | Tatoeba-test.slv-ukr.slv.ukr | 30.1 | 0.471 | | Tatoeba-test.snd-eng.snd.eng | 12.7 | 0.377 | | Tatoeba-test.spa-afr.spa.afr | 46.9 | 0.624 | | Tatoeba-test.spa-ang.spa.ang | 1.1 | 0.143 | | Tatoeba-test.spa-arg.spa.arg | 21.6 | 0.446 | | Tatoeba-test.spa-ast.spa.ast | 28.1 | 0.526 | | Tatoeba-test.spa-bel.spa.bel | 22.8 | 0.466 | | Tatoeba-test.spa-ben.spa.ben | 16.9 | 0.442 | | Tatoeba-test.spa-bul.spa.bul | 30.8 | 0.510 | | Tatoeba-test.spa-cat.spa.cat | 49.1 | 0.696 | | Tatoeba-test.spa-ces.spa.ces | 27.2 | 0.497 | | Tatoeba-test.spa-cor.spa.cor | 0.5 | 0.049 | | Tatoeba-test.spa-csb.spa.csb | 5.3 | 0.204 | | Tatoeba-test.spa-cym.spa.cym | 22.4 | 0.476 | | Tatoeba-test.spa-dan.spa.dan | 39.3 | 0.581 | | Tatoeba-test.spa-deu.spa.deu | 30.9 | 0.531 | | Tatoeba-test.spa-dsb.spa.dsb | 0.7 | 0.109 | | Tatoeba-test.spa-egl.spa.egl | 0.9 | 0.060 | | Tatoeba-test.spa-ell.spa.ell | 28.9 | 0.487 | | Tatoeba-test.spa-eng.spa.eng | 41.0 | 0.595 | | Tatoeba-test.spa-enm.spa.enm | 13.9 | 0.188 | | Tatoeba-test.spa-fas.spa.fas | 7.9 | 0.244 | | Tatoeba-test.spa-fra.spa.fra | 41.4 | 0.610 | | Tatoeba-test.spa-fry.spa.fry | 15.8 | 0.397 | | Tatoeba-test.spa-gcf.spa.gcf | 7.0 | 0.060 | | Tatoeba-test.spa-gla.spa.gla | 7.4 | 0.303 | | Tatoeba-test.spa-gle.spa.gle | 22.2 | 0.415 | | Tatoeba-test.spa-glg.spa.glg | 48.8 | 0.683 | | Tatoeba-test.spa-gos.spa.gos | 1.7 | 0.181 | | Tatoeba-test.spa-got.spa.got | 0.3 | 0.010 | | Tatoeba-test.spa-grc.spa.grc | 0.1 | 0.005 | | Tatoeba-test.spa-gsw.spa.gsw | 5.6 | 0.051 | | Tatoeba-test.spa-guj.spa.guj | 15.0 | 0.365 | | Tatoeba-test.spa-hat.spa.hat | 19.9 | 0.409 | | Tatoeba-test.spa-hbs.spa.hbs | 33.2 | 0.529 | | Tatoeba-test.spa-hin.spa.hin | 16.1 | 0.331 | | Tatoeba-test.spa-hsb.spa.hsb | 5.1 | 0.240 | | Tatoeba-test.spa-hye.spa.hye | 13.5 | 0.357 | | Tatoeba-test.spa-isl.spa.isl | 18.0 | 0.410 | | Tatoeba-test.spa-ita.spa.ita | 42.7 | 0.646 | | Tatoeba-test.spa-ksh.spa.ksh | 0.4 | 0.088 | | Tatoeba-test.spa-kur.spa.kur | 5.6 | 0.237 | | Tatoeba-test.spa-lad.spa.lad | 0.9 | 0.157 | | Tatoeba-test.spa-lat.spa.lat | 9.0 | 0.382 | | Tatoeba-test.spa-lav.spa.lav | 23.7 | 0.510 | | Tatoeba-test.spa-lit.spa.lit | 22.4 | 0.477 | | Tatoeba-test.spa-lld.spa.lld | 0.4 | 0.119 | | Tatoeba-test.spa-ltz.spa.ltz | 34.1 | 0.531 | | Tatoeba-test.spa-mai.spa.mai | 29.4 | 0.416 | | Tatoeba-test.spa-mkd.spa.mkd | 37.1 | 0.568 | | Tatoeba-test.spa-msa.spa.msa | 14.0 | 0.405 | | Tatoeba-test.spa-nds.spa.nds | 15.4 | 0.390 | | Tatoeba-test.spa-nld.spa.nld | 34.0 | 0.550 | | Tatoeba-test.spa-nor.spa.nor | 41.1 | 0.608 | | Tatoeba-test.spa-oci.spa.oci | 8.0 | 0.353 | | Tatoeba-test.spa-orv.spa.orv | 0.4 | 0.010 | | Tatoeba-test.spa-pcd.spa.pcd | 0.2 | 0.060 | | Tatoeba-test.spa-pms.spa.pms | 0.6 | 0.122 | | Tatoeba-test.spa-pol.spa.pol | 26.3 | 0.498 | | Tatoeba-test.spa-por.spa.por | 41.6 | 0.638 | | Tatoeba-test.spa-prg.spa.prg | 0.3 | 0.095 | | Tatoeba-test.spa-roh.spa.roh | 4.0 | 0.219 | | Tatoeba-test.spa-ron.spa.ron | 31.9 | 0.550 | | Tatoeba-test.spa-rue.spa.rue | 0.2 | 0.013 | | Tatoeba-test.spa-rus.spa.rus | 29.4 | 0.510 | | Tatoeba-test.spa-scn.spa.scn | 1.6 | 0.086 | | Tatoeba-test.spa-sgs.spa.sgs | 16.0 | 0.111 | | Tatoeba-test.spa-slv.spa.slv | 9.2 | 0.269 | | Tatoeba-test.spa-stq.spa.stq | 8.4 | 0.375 | | Tatoeba-test.spa-swe.spa.swe | 39.5 | 0.572 | | Tatoeba-test.spa-ukr.spa.ukr | 27.8 | 0.495 | | Tatoeba-test.spa-wln.spa.wln | 2.9 | 0.220 | | Tatoeba-test.spa-yid.spa.yid | 10.0 | 0.296 | | Tatoeba-test.sqi-eng.sqi.eng | 30.9 | 0.499 | | Tatoeba-test.sqi-fra.sqi.fra | 29.9 | 0.545 | | Tatoeba-test.sqi-ita.sqi.ita | 24.5 | 0.484 | | Tatoeba-test.srd-fra.srd.fra | 5.8 | 0.347 | | Tatoeba-test.stq-deu.stq.deu | 16.7 | 0.426 | | Tatoeba-test.stq-eng.stq.eng | 8.4 | 0.370 | | Tatoeba-test.stq-frr.stq.frr | 0.6 | 0.032 | | Tatoeba-test.stq-fry.stq.fry | 9.3 | 0.283 | | Tatoeba-test.stq-gos.stq.gos | 0.3 | 0.126 | | Tatoeba-test.stq-isl.stq.isl | 0.0 | 0.102 | | Tatoeba-test.stq-ltz.stq.ltz | 4.0 | 0.175 | | Tatoeba-test.stq-nld.stq.nld | 13.2 | 0.398 | | Tatoeba-test.stq-spa.stq.spa | 7.0 | 0.345 | | Tatoeba-test.stq-yid.stq.yid | 5.0 | 0.110 | | Tatoeba-test.swe-afr.swe.afr | 63.1 | 0.831 | | Tatoeba-test.swe-bul.swe.bul | 35.4 | 0.529 | | Tatoeba-test.swe-cat.swe.cat | 38.5 | 0.528 | | Tatoeba-test.swe-ces.swe.ces | 32.8 | 0.380 | | Tatoeba-test.swe-dan.swe.dan | 54.5 | 0.702 | | Tatoeba-test.swe-deu.swe.deu | 36.7 | 0.570 | | Tatoeba-test.swe-ell.swe.ell | 32.9 | 0.541 | | Tatoeba-test.swe-eng.swe.eng | 44.9 | 0.606 | | Tatoeba-test.swe-fao.swe.fao | 0.0 | 0.877 | | Tatoeba-test.swe-fra.swe.fra | 43.2 | 0.605 | | Tatoeba-test.swe-fry.swe.fry | 42.7 | 0.402 | | Tatoeba-test.swe-gos.swe.gos | 4.8 | 0.253 | | Tatoeba-test.swe-hbs.swe.hbs | 39.3 | 0.591 | | Tatoeba-test.swe-hin.swe.hin | 31.6 | 0.617 | | Tatoeba-test.swe-isl.swe.isl | 21.2 | 0.559 | | Tatoeba-test.swe-ita.swe.ita | 33.1 | 0.548 | | Tatoeba-test.swe-kur.swe.kur | 1.4 | 0.144 | | Tatoeba-test.swe-lad.swe.lad | 6.6 | 0.373 | | Tatoeba-test.swe-lat.swe.lat | 4.5 | 0.453 | | Tatoeba-test.swe-lav.swe.lav | 73.4 | 0.828 | | Tatoeba-test.swe-ltz.swe.ltz | 25.5 | 0.440 | | Tatoeba-test.swe-mkd.swe.mkd | 0.0 | 0.124 | | Tatoeba-test.swe-nld.swe.nld | 71.9 | 0.742 | | Tatoeba-test.swe-nor.swe.nor | 59.5 | 0.742 | | Tatoeba-test.swe-pol.swe.pol | 25.9 | 0.497 | | Tatoeba-test.swe-por.swe.por | 31.3 | 0.546 | | Tatoeba-test.swe-ron.swe.ron | 100.0 | 1.000 | | Tatoeba-test.swe-rus.swe.rus | 28.6 | 0.495 | | Tatoeba-test.swe-slv.swe.slv | 19.0 | 0.116 | | Tatoeba-test.swe-spa.swe.spa | 37.1 | 0.569 | | Tatoeba-test.swe-yid.swe.yid | 13.9 | 0.336 | | Tatoeba-test.swg-ces.swg.ces | 16.5 | 0.438 | | Tatoeba-test.swg-dan.swg.dan | 20.1 | 0.468 | | Tatoeba-test.swg-deu.swg.deu | 8.0 | 0.316 | | Tatoeba-test.swg-eng.swg.eng | 13.0 | 0.300 | | Tatoeba-test.swg-fra.swg.fra | 15.3 | 0.296 | | Tatoeba-test.swg-nds.swg.nds | 0.9 | 0.199 | | Tatoeba-test.swg-nld.swg.nld | 4.9 | 0.287 | | Tatoeba-test.swg-yid.swg.yid | 1.9 | 0.194 | | Tatoeba-test.tgk-deu.tgk.deu | 45.2 | 0.574 | | Tatoeba-test.tgk-eng.tgk.eng | 7.8 | 0.271 | | Tatoeba-test.tgk-fra.tgk.fra | 9.6 | 0.273 | | Tatoeba-test.tly-eng.tly.eng | 0.9 | 0.102 | | Tatoeba-test.tly-fra.tly.fra | 4.4 | 0.054 | | Tatoeba-test.ukr-afr.ukr.afr | 48.3 | 0.646 | | Tatoeba-test.ukr-ang.ukr.ang | 1.4 | 0.034 | | Tatoeba-test.ukr-bel.ukr.bel | 36.7 | 0.601 | | Tatoeba-test.ukr-bul.ukr.bul | 40.4 | 0.601 | | Tatoeba-test.ukr-cat.ukr.cat | 33.9 | 0.538 | | Tatoeba-test.ukr-ces.ukr.ces | 33.1 | 0.524 | | Tatoeba-test.ukr-dan.ukr.dan | 25.8 | 0.469 | | Tatoeba-test.ukr-deu.ukr.deu | 34.0 | 0.543 | | Tatoeba-test.ukr-ell.ukr.ell | 23.0 | 0.493 | | Tatoeba-test.ukr-eng.ukr.eng | 36.1 | 0.538 | | Tatoeba-test.ukr-enm.ukr.enm | 3.6 | 0.400 | | Tatoeba-test.ukr-fas.ukr.fas | 5.3 | 0.240 | | Tatoeba-test.ukr-fra.ukr.fra | 32.0 | 0.519 | | Tatoeba-test.ukr-fry.ukr.fry | 13.6 | 0.318 | | Tatoeba-test.ukr-gos.ukr.gos | 3.8 | 0.199 | | Tatoeba-test.ukr-hbs.ukr.hbs | 33.4 | 0.547 | | Tatoeba-test.ukr-ita.ukr.ita | 32.6 | 0.546 | | Tatoeba-test.ukr-lad.ukr.lad | 1.4 | 0.166 | | Tatoeba-test.ukr-lat.ukr.lat | 8.0 | 0.314 | | Tatoeba-test.ukr-lav.ukr.lav | 10.7 | 0.520 | | Tatoeba-test.ukr-lit.ukr.lit | 59.9 | 0.631 | | Tatoeba-test.ukr-mkd.ukr.mkd | 38.0 | 0.718 | | Tatoeba-test.ukr-msa.ukr.msa | 2.5 | 0.213 | | Tatoeba-test.ukr-nds.ukr.nds | 11.0 | 0.368 | | Tatoeba-test.ukr-nld.ukr.nld | 33.0 | 0.524 | | Tatoeba-test.ukr-nor.ukr.nor | 40.4 | 0.574 | | Tatoeba-test.ukr-orv.ukr.orv | 0.1 | 0.008 | | Tatoeba-test.ukr-pol.ukr.pol | 32.7 | 0.553 | | Tatoeba-test.ukr-por.ukr.por | 26.8 | 0.496 | | Tatoeba-test.ukr-rus.ukr.rus | 45.7 | 0.651 | | Tatoeba-test.ukr-slv.ukr.slv | 11.8 | 0.263 | | Tatoeba-test.ukr-spa.ukr.spa | 31.7 | 0.528 | | Tatoeba-test.ukr-yid.ukr.yid | 3.6 | 0.196 | | Tatoeba-test.urd-dan.urd.dan | 36.7 | 0.586 | | Tatoeba-test.urd-deu.urd.deu | 17.1 | 0.451 | | Tatoeba-test.urd-eng.urd.eng | 17.1 | 0.375 | | Tatoeba-test.urd-fra.urd.fra | 38.1 | 0.565 | | Tatoeba-test.urd-hbs.urd.hbs | 0.0 | 1.000 | | Tatoeba-test.urd-hin.urd.hin | 14.0 | 0.404 | | Tatoeba-test.urd-msa.urd.msa | 1.5 | 0.014 | | Tatoeba-test.urd-pol.urd.pol | 68.7 | 0.695 | | Tatoeba-test.urd-rus.urd.rus | 25.8 | 0.314 | | Tatoeba-test.vec-eng.vec.eng | 13.6 | 0.319 | | Tatoeba-test.vec-fra.vec.fra | 48.3 | 0.680 | | Tatoeba-test.vec-ita.vec.ita | 28.3 | 0.454 | | Tatoeba-test.wln-eng.wln.eng | 4.4 | 0.206 | | Tatoeba-test.wln-fra.wln.fra | 8.0 | 0.282 | | Tatoeba-test.wln-nld.wln.nld | 5.2 | 0.237 | | Tatoeba-test.wln-spa.wln.spa | 9.9 | 0.395 | | Tatoeba-test.yid-afr.yid.afr | 35.4 | 0.868 | | Tatoeba-test.yid-ang.yid.ang | 0.8 | 0.077 | | Tatoeba-test.yid-bel.yid.bel | 4.9 | 0.240 | | Tatoeba-test.yid-bul.yid.bul | 11.3 | 0.054 | | Tatoeba-test.yid-cat.yid.cat | 19.0 | 0.583 | | Tatoeba-test.yid-ces.yid.ces | 5.4 | 0.320 | | Tatoeba-test.yid-cym.yid.cym | 6.3 | 0.239 | | Tatoeba-test.yid-dan.yid.dan | 12.8 | 0.341 | | Tatoeba-test.yid-deu.yid.deu | 17.5 | 0.382 | | Tatoeba-test.yid-ell.yid.ell | 42.7 | 0.797 | | Tatoeba-test.yid-eng.yid.eng | 15.5 | 0.338 | | Tatoeba-test.yid-enm.yid.enm | 2.3 | 0.176 | | Tatoeba-test.yid-fas.yid.fas | 4.5 | 0.207 | | Tatoeba-test.yid-fra.yid.fra | 18.9 | 0.367 | | Tatoeba-test.yid-fry.yid.fry | 6.0 | 0.156 | | Tatoeba-test.yid-gle.yid.gle | 32.2 | 0.448 | | Tatoeba-test.yid-gos.yid.gos | 1.3 | 0.142 | | Tatoeba-test.yid-ita.yid.ita | 15.3 | 0.363 | | Tatoeba-test.yid-kur.yid.kur | 3.2 | 0.166 | | Tatoeba-test.yid-lad.yid.lad | 0.1 | 0.090 | | Tatoeba-test.yid-lat.yid.lat | 1.8 | 0.206 | | Tatoeba-test.yid-lit.yid.lit | 27.8 | 0.560 | | Tatoeba-test.yid-ltz.yid.ltz | 4.2 | 0.316 | | Tatoeba-test.yid-nds.yid.nds | 24.6 | 0.466 | | Tatoeba-test.yid-nld.yid.nld | 24.5 | 0.431 | | Tatoeba-test.yid-nor.yid.nor | 5.0 | 0.318 | | Tatoeba-test.yid-oci.yid.oci | 19.0 | 0.390 | | Tatoeba-test.yid-pol.yid.pol | 15.0 | 0.258 | | Tatoeba-test.yid-por.yid.por | 7.4 | 0.326 | | Tatoeba-test.yid-ron.yid.ron | 12.3 | 0.325 | | Tatoeba-test.yid-rus.yid.rus | 14.2 | 0.324 | | Tatoeba-test.yid-spa.yid.spa | 16.1 | 0.369 | | Tatoeba-test.yid-stq.yid.stq | 3.2 | 0.125 | | Tatoeba-test.yid-swe.yid.swe | 55.9 | 0.672 | | Tatoeba-test.yid-swg.yid.swg | 0.3 | 0.083 | | Tatoeba-test.yid-ukr.yid.ukr | 7.2 | 0.383 | | Tatoeba-test.zza-asm.zza.asm | 0.0 | 0.102 | | Tatoeba-test.zza-eng.zza.eng | 1.9 | 0.135 | ### System Info: - hf_name: ine-ine - source_languages: ine - target_languages: ine - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ine-ine/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ca', 'es', 'os', 'ro', 'fy', 'cy', 'sc', 'is', 'yi', 'lb', 'an', 'sq', 'fr', 'ht', 'rm', 'ps', 'af', 'uk', 'sl', 'lt', 'bg', 'be', 'gd', 'si', 'en', 'br', 'mk', 'or', 'mr', 'ru', 'fo', 'co', 'oc', 'pl', 'gl', 'nb', 'bn', 'id', 'hy', 'da', 'gv', 'nl', 'pt', 'hi', 'as', 'kw', 'ga', 'sv', 'gu', 'wa', 'lv', 'el', 'it', 'hr', 'ur', 'nn', 'de', 'cs', 'ine'] - src_constituents: {'cat', 'spa', 'pap', 'mwl', 'lij', 'bos_Latn', 'lad_Latn', 'lat_Latn', 'pcd', 'oss', 'ron', 'fry', 'cym', 'awa', 'swg', 'zsm_Latn', 'srd', 'gcf_Latn', 'isl', 'yid', 'bho', 'ltz', 'kur_Latn', 'arg', 'pes_Thaa', 'sqi', 'csb_Latn', 'fra', 'hat', 'non_Latn', 'sco', 'pnb', 'roh', 'bul_Latn', 'pus', 'afr', 'ukr', 'slv', 'lit', 'tmw_Latn', 'hsb', 'tly_Latn', 'bul', 'bel', 'got_Goth', 'lat_Grek', 'ext', 'gla', 'mai', 'sin', 'hif_Latn', 'eng', 'bre', 'nob_Hebr', 'prg_Latn', 'ang_Latn', 'aln', 'mkd', 'ori', 'mar', 'afr_Arab', 'san_Deva', 'gos', 'rus', 'fao', 'orv_Cyrl', 'bel_Latn', 'cos', 'zza', 'grc_Grek', 'oci', 'mfe', 'gom', 'bjn', 'sgs', 'tgk_Cyrl', 'hye_Latn', 'pdc', 'srp_Cyrl', 'pol', 'ast', 'glg', 'pms', 'nob', 'ben', 'min', 'srp_Latn', 'zlm_Latn', 'ind', 'rom', 'hye', 'scn', 'enm_Latn', 'lmo', 'npi', 'pes', 'dan', 'rus_Latn', 'jdt_Cyrl', 'gsw', 'glv', 'nld', 'snd_Arab', 'kur_Arab', 'por', 'hin', 'dsb', 'asm', 'lad', 'frm_Latn', 'ksh', 'pan_Guru', 'cor', 'gle', 'swe', 'guj', 'wln', 'lav', 'ell', 'frr', 'rue', 'ita', 'hrv', 'urd', 'stq', 'nno', 'deu', 'lld_Latn', 'ces', 'egl', 'vec', 'max_Latn', 'pes_Latn', 'ltg', 'nds'} - tgt_constituents: {'cat', 'spa', 'pap', 'mwl', 'lij', 'bos_Latn', 'lad_Latn', 'lat_Latn', 'pcd', 'oss', 'ron', 'fry', 'cym', 'awa', 'swg', 'zsm_Latn', 'srd', 'gcf_Latn', 'isl', 'yid', 'bho', 'ltz', 'kur_Latn', 'arg', 'pes_Thaa', 'sqi', 'csb_Latn', 'fra', 'hat', 'non_Latn', 'sco', 'pnb', 'roh', 'bul_Latn', 'pus', 'afr', 'ukr', 'slv', 'lit', 'tmw_Latn', 'hsb', 'tly_Latn', 'bul', 'bel', 'got_Goth', 'lat_Grek', 'ext', 'gla', 'mai', 'sin', 'hif_Latn', 'eng', 'bre', 'nob_Hebr', 'prg_Latn', 'ang_Latn', 'aln', 'mkd', 'ori', 'mar', 'afr_Arab', 'san_Deva', 'gos', 'rus', 'fao', 'orv_Cyrl', 'bel_Latn', 'cos', 'zza', 'grc_Grek', 'oci', 'mfe', 'gom', 'bjn', 'sgs', 'tgk_Cyrl', 'hye_Latn', 'pdc', 'srp_Cyrl', 'pol', 'ast', 'glg', 'pms', 'nob', 'ben', 'min', 'srp_Latn', 'zlm_Latn', 'ind', 'rom', 'hye', 'scn', 'enm_Latn', 'lmo', 'npi', 'pes', 'dan', 'rus_Latn', 'jdt_Cyrl', 'gsw', 'glv', 'nld', 'snd_Arab', 'kur_Arab', 'por', 'hin', 'dsb', 'asm', 'lad', 'frm_Latn', 'ksh', 'pan_Guru', 'cor', 'gle', 'swe', 'guj', 'wln', 'lav', 'ell', 'frr', 'rue', 'ita', 'hrv', 'urd', 'stq', 'nno', 'deu', 'lld_Latn', 'ces', 'egl', 'vec', 'max_Latn', 'pes_Latn', 'ltg', 'nds'} - src_multilingual: True - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ine-ine/opus-2020-07-27.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ine-ine/opus-2020-07-27.test.txt - src_alpha3: ine - tgt_alpha3: ine - short_pair: ine-ine - chrF2_score: 0.509 - bleu: 30.8 - brevity_penalty: 0.9890000000000001 - ref_len: 69953.0 - src_name: Indo-European languages - tgt_name: Indo-European languages - train_date: 2020-07-27 - src_alpha2: ine - tgt_alpha2: ine - prefer_old: False - long_pair: ine-ine - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["ca", "es", "os", "ro", "fy", "cy", "sc", "is", "yi", "lb", "an", "sq", "fr", "ht", "rm", "ps", "af", "uk", "sl", "lt", "bg", "be", "gd", "si", "en", "br", "mk", "or", "mr", "ru", "fo", "co", "oc", "pl", "gl", "nb", "bn", "id", "hy", "da", "gv", "nl", "pt", "hi", "as", "kw", "ga", "sv", "gu", "wa", "lv", "el", "it", "hr", "ur", "nn", "de", "cs", "ine"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-ine-ine
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "ca", "es", "os", "ro", "fy", "cy", "sc", "is", "yi", "lb", "an", "sq", "fr", "ht", "rm", "ps", "af", "uk", "sl", "lt", "bg", "be", "gd", "si", "en", "br", "mk", "or", "mr", "ru", "fo", "co", "oc", "pl", "gl", "nb", "bn", "id", "hy", "da", "gv", "nl", "pt", "hi", "as", "kw", "ga", "sv", "gu", "wa", "lv", "el", "it", "hr", "ur", "nn", "de", "cs", "ine", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "ca", "es", "os", "ro", "fy", "cy", "sc", "is", "yi", "lb", "an", "sq", "fr", "ht", "rm", "ps", "af", "uk", "sl", "lt", "bg", "be", "gd", "si", "en", "br", "mk", "or", "mr", "ru", "fo", "co", "oc", "pl", "gl", "nb", "bn", "id", "hy", "da", "gv", "nl", "pt", "hi", "as", "kw", "ga", "sv", "gu", "wa", "lv", "el", "it", "hr", "ur", "nn", "de", "cs", "ine" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #ca #es #os #ro #fy #cy #sc #is #yi #lb #an #sq #fr #ht #rm #ps #af #uk #sl #lt #bg #be #gd #si #en #br #mk #or #mr #ru #fo #co #oc #pl #gl #nb #bn #id #hy #da #gv #nl #pt #hi #as #kw #ga #sv #gu #wa #lv #el #it #hr #ur #nn #de #cs #ine #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### ine-ine * source group: Indo-European languages * target group: Indo-European languages * OPUS readme: ine-ine * model: transformer * source language(s): afr afr\_Arab aln ang\_Latn arg asm ast awa bel bel\_Latn ben bho bjn bos\_Latn bre bul bul\_Latn cat ces cor cos csb\_Latn cym dan deu dsb egl ell eng enm\_Latn ext fao fra frm\_Latn frr fry gcf\_Latn gla gle glg glv gom gos got\_Goth grc\_Grek gsw guj hat hif\_Latn hin hrv hsb hye hye\_Latn ind isl ita jdt\_Cyrl ksh kur\_Arab kur\_Latn lad lad\_Latn lat\_Grek lat\_Latn lav lij lit lld\_Latn lmo ltg ltz mai mar max\_Latn mfe min mkd mwl nds nld nno nob nob\_Hebr non\_Latn npi oci ori orv\_Cyrl oss pan\_Guru pap pcd pdc pes pes\_Latn pes\_Thaa pms pnb pol por prg\_Latn pus roh rom ron rue rus rus\_Latn san\_Deva scn sco sgs sin slv snd\_Arab spa sqi srd srp\_Cyrl srp\_Latn stq swe swg tgk\_Cyrl tly\_Latn tmw\_Latn ukr urd vec wln yid zlm\_Latn zsm\_Latn zza * target language(s): afr afr\_Arab aln ang\_Latn arg asm ast awa bel bel\_Latn ben bho bjn bos\_Latn bre bul bul\_Latn cat ces cor cos csb\_Latn cym dan deu dsb egl ell eng enm\_Latn ext fao fra frm\_Latn frr fry gcf\_Latn gla gle glg glv gom gos got\_Goth grc\_Grek gsw guj hat hif\_Latn hin hrv hsb hye hye\_Latn ind isl ita jdt\_Cyrl ksh kur\_Arab kur\_Latn lad lad\_Latn lat\_Grek lat\_Latn lav lij lit lld\_Latn lmo ltg ltz mai mar max\_Latn mfe min mkd mwl nds nld nno nob nob\_Hebr non\_Latn npi oci ori orv\_Cyrl oss pan\_Guru pap pcd pdc pes pes\_Latn pes\_Thaa pms pnb pol por prg\_Latn pus roh rom ron rue rus rus\_Latn san\_Deva scn sco sgs sin slv snd\_Arab spa sqi srd srp\_Cyrl srp\_Latn stq swe swg tgk\_Cyrl tly\_Latn tmw\_Latn ukr urd vec wln yid zlm\_Latn zsm\_Latn zza * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of '>>id<<' (id = valid target language ID) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: euelections\_dev2019.URL, BLEU: 19.2, chr-F: 0.482 testset: euelections\_dev2019.URL, BLEU: 15.8, chr-F: 0.470 testset: URL, BLEU: 4.0, chr-F: 0.245 testset: URL, BLEU: 6.8, chr-F: 0.301 testset: URL, BLEU: 17.3, chr-F: 0.470 testset: URL, BLEU: 26.0, chr-F: 0.534 testset: URL, BLEU: 12.1, chr-F: 0.416 testset: URL, BLEU: 15.9, chr-F: 0.443 testset: URL, BLEU: 2.5, chr-F: 0.200 testset: URL, BLEU: 7.1, chr-F: 0.302 testset: URL, BLEU: 10.6, chr-F: 0.407 testset: URL, BLEU: 14.9, chr-F: 0.428 testset: URL, BLEU: 22.6, chr-F: 0.507 testset: URL, BLEU: 23.5, chr-F: 0.495 testset: URL, BLEU: 25.1, chr-F: 0.528 testset: URL, BLEU: 26.4, chr-F: 0.517 testset: URL, BLEU: 13.1, chr-F: 0.432 testset: URL, BLEU: 18.4, chr-F: 0.463 testset: URL, BLEU: 15.5, chr-F: 0.452 testset: URL, BLEU: 14.8, chr-F: 0.458 testset: URL, BLEU: 18.4, chr-F: 0.462 testset: URL, BLEU: 10.5, chr-F: 0.381 testset: URL, BLEU: 19.5, chr-F: 0.467 testset: URL, BLEU: 16.4, chr-F: 0.459 testset: URL, BLEU: 15.5, chr-F: 0.456 testset: URL, BLEU: 18.4, chr-F: 0.466 testset: URL, BLEU: 11.9, chr-F: 0.394 testset: URL, BLEU: 13.9, chr-F: 0.446 testset: URL, BLEU: 20.7, chr-F: 0.502 testset: URL, BLEU: 21.3, chr-F: 0.516 testset: URL, BLEU: 22.3, chr-F: 0.506 testset: URL, BLEU: 11.5, chr-F: 0.390 testset: URL, BLEU: 13.4, chr-F: 0.437 testset: URL, BLEU: 22.8, chr-F: 0.499 testset: URL, BLEU: 22.2, chr-F: 0.533 testset: URL, BLEU: 26.2, chr-F: 0.539 testset: URL, BLEU: 12.3, chr-F: 0.397 testset: URL, BLEU: 13.3, chr-F: 0.436 testset: URL, BLEU: 24.7, chr-F: 0.517 testset: URL, BLEU: 24.0, chr-F: 0.528 testset: URL, BLEU: 26.3, chr-F: 0.537 testset: URL, BLEU: 12.0, chr-F: 0.400 testset: URL, BLEU: 13.9, chr-F: 0.440 testset: URL, BLEU: 22.9, chr-F: 0.509 testset: URL, BLEU: 24.2, chr-F: 0.538 testset: URL, BLEU: 24.5, chr-F: 0.547 testset: URL, BLEU: 12.0, chr-F: 0.422 testset: URL, BLEU: 15.1, chr-F: 0.444 testset: URL, BLEU: 16.4, chr-F: 0.451 testset: URL, BLEU: 9.9, chr-F: 0.369 testset: URL, BLEU: 18.0, chr-F: 0.456 testset: URL, BLEU: 16.4, chr-F: 0.453 testset: URL, BLEU: 17.0, chr-F: 0.452 testset: URL, BLEU: 10.5, chr-F: 0.375 testset: URL, BLEU: 14.5, chr-F: 0.439 testset: URL, BLEU: 18.9, chr-F: 0.481 testset: URL, BLEU: 20.9, chr-F: 0.491 testset: URL, BLEU: 10.7, chr-F: 0.380 testset: URL, BLEU: 13.8, chr-F: 0.435 testset: URL, BLEU: 19.8, chr-F: 0.479 testset: URL, BLEU: 24.8, chr-F: 0.522 testset: URL, BLEU: 11.0, chr-F: 0.380 testset: URL, BLEU: 14.0, chr-F: 0.433 testset: URL, BLEU: 20.6, chr-F: 0.488 testset: URL, BLEU: 23.3, chr-F: 0.518 testset: URL, BLEU: 12.9, chr-F: 0.427 testset: URL, BLEU: 17.0, chr-F: 0.456 testset: URL, BLEU: 15.4, chr-F: 0.447 testset: URL, BLEU: 14.9, chr-F: 0.454 testset: URL, BLEU: 17.1, chr-F: 0.458 testset: URL, BLEU: 10.3, chr-F: 0.370 testset: URL, BLEU: 17.7, chr-F: 0.458 testset: URL, BLEU: 15.9, chr-F: 0.447 testset: URL, BLEU: 14.7, chr-F: 0.446 testset: URL, BLEU: 17.2, chr-F: 0.453 testset: URL, BLEU: 11.0, chr-F: 0.387 testset: URL, BLEU: 13.6, chr-F: 0.440 testset: URL, BLEU: 20.3, chr-F: 0.496 testset: URL, BLEU: 20.8, chr-F: 0.509 testset: URL, BLEU: 21.9, chr-F: 0.503 testset: URL, BLEU: 11.3, chr-F: 0.385 testset: URL, BLEU: 14.0, chr-F: 0.436 testset: URL, BLEU: 21.8, chr-F: 0.496 testset: URL, BLEU: 22.1, chr-F: 0.526 testset: URL, BLEU: 24.8, chr-F: 0.525 testset: URL, BLEU: 11.5, chr-F: 0.382 testset: URL, BLEU: 13.3, chr-F: 0.430 testset: URL, BLEU: 23.6, chr-F: 0.508 testset: URL, BLEU: 22.9, chr-F: 0.516 testset: URL, BLEU: 25.4, chr-F: 0.529 testset: URL, BLEU: 11.3, chr-F: 0.386 testset: URL, BLEU: 13.5, chr-F: 0.434 testset: URL, BLEU: 22.4, chr-F: 0.500 testset: URL, BLEU: 23.2, chr-F: 0.520 testset: URL, BLEU: 24.0, chr-F: 0.538 testset: URL, BLEU: 13.1, chr-F: 0.431 testset: URL, BLEU: 16.9, chr-F: 0.459 testset: URL, BLEU: 15.6, chr-F: 0.450 testset: URL, BLEU: 18.5, chr-F: 0.467 testset: URL, BLEU: 11.4, chr-F: 0.387 testset: URL, BLEU: 19.6, chr-F: 0.481 testset: URL, BLEU: 17.7, chr-F: 0.471 testset: URL, BLEU: 20.0, chr-F: 0.478 testset: URL, BLEU: 11.4, chr-F: 0.393 testset: URL, BLEU: 15.1, chr-F: 0.448 testset: URL, BLEU: 21.4, chr-F: 0.506 testset: URL, BLEU: 25.0, chr-F: 0.525 testset: URL, BLEU: 11.1, chr-F: 0.386 testset: URL, BLEU: 14.2, chr-F: 0.442 testset: URL, BLEU: 22.6, chr-F: 0.507 testset: URL, BLEU: 26.6, chr-F: 0.542 testset: URL, BLEU: 12.2, chr-F: 0.396 testset: URL, BLEU: 15.1, chr-F: 0.445 testset: URL, BLEU: 24.3, chr-F: 0.521 testset: URL, BLEU: 24.8, chr-F: 0.536 testset: URL, BLEU: 13.1, chr-F: 0.423 testset: URL, BLEU: 18.2, chr-F: 0.463 testset: URL, BLEU: 17.4, chr-F: 0.458 testset: URL, BLEU: 18.9, chr-F: 0.464 testset: URL, BLEU: 11.2, chr-F: 0.376 testset: URL, BLEU: 18.3, chr-F: 0.464 testset: URL, BLEU: 17.0, chr-F: 0.457 testset: URL, BLEU: 19.2, chr-F: 0.464 testset: URL, BLEU: 12.4, chr-F: 0.395 testset: URL, BLEU: 14.5, chr-F: 0.437 testset: URL, BLEU: 23.6, chr-F: 0.522 testset: URL, BLEU: 26.6, chr-F: 0.530 testset: URL, BLEU: 12.5, chr-F: 0.394 testset: URL, BLEU: 14.2, chr-F: 0.433 testset: URL, BLEU: 24.3, chr-F: 0.521 testset: URL, BLEU: 29.1, chr-F: 0.551 testset: URL, BLEU: 12.3, chr-F: 0.390 testset: URL, BLEU: 14.4, chr-F: 0.435 testset: URL, BLEU: 25.0, chr-F: 0.521 testset: URL, BLEU: 25.6, chr-F: 0.537 testset: URL, BLEU: 13.1, chr-F: 0.420 testset: URL, BLEU: 17.5, chr-F: 0.457 testset: URL, BLEU: 16.8, chr-F: 0.452 testset: URL, BLEU: 11.2, chr-F: 0.379 testset: URL, BLEU: 18.1, chr-F: 0.457 testset: URL, BLEU: 11.2, chr-F: 0.368 testset: URL, BLEU: 19.4, chr-F: 0.472 testset: URL, BLEU: 17.7, chr-F: 0.464 testset: URL, BLEU: 10.3, chr-F: 0.370 testset: URL, BLEU: 19.6, chr-F: 0.467 testset: URL, BLEU: 11.1, chr-F: 0.375 testset: URL, BLEU: 14.6, chr-F: 0.440 testset: URL, BLEU: 22.4, chr-F: 0.512 testset: URL, BLEU: 17.6, chr-F: 0.452 testset: URL, BLEU: 26.5, chr-F: 0.527 testset: URL, BLEU: 11.9, chr-F: 0.383 testset: URL, BLEU: 14.6, chr-F: 0.437 testset: URL, BLEU: 24.3, chr-F: 0.516 testset: URL, BLEU: 11.9, chr-F: 0.393 testset: URL, BLEU: 28.3, chr-F: 0.545 testset: URL, BLEU: 9.0, chr-F: 0.340 testset: URL, BLEU: 10.0, chr-F: 0.383 testset: URL, BLEU: 22.4, chr-F: 0.492 testset: URL, BLEU: 13.3, chr-F: 0.427 testset: URL, BLEU: 16.6, chr-F: 0.437 testset: URL, BLEU: 11.9, chr-F: 0.381 testset: URL, BLEU: 14.8, chr-F: 0.440 testset: URL, BLEU: 26.5, chr-F: 0.534 testset: URL, BLEU: 25.0, chr-F: 0.539 testset: URL, BLEU: 12.4, chr-F: 0.401 testset: URL, BLEU: 14.3, chr-F: 0.434 testset: URL, BLEU: 18.5, chr-F: 0.463 testset: URL, BLEU: 16.6, chr-F: 0.444 testset: URL, BLEU: 13.6, chr-F: 0.406 testset: URL, BLEU: 18.2, chr-F: 0.455 testset: URL, BLEU: 11.7, chr-F: 0.380 testset: URL, BLEU: 20.9, chr-F: 0.481 testset: URL, BLEU: 18.1, chr-F: 0.460 testset: URL, BLEU: 11.7, chr-F: 0.384 testset: URL, BLEU: 19.4, chr-F: 0.463 testset: URL, BLEU: 12.7, chr-F: 0.394 testset: URL, BLEU: 16.7, chr-F: 0.455 testset: URL, BLEU: 22.7, chr-F: 0.499 testset: URL, BLEU: 13.3, chr-F: 0.408 testset: URL, BLEU: 23.6, chr-F: 0.506 testset: URL, BLEU: 11.8, chr-F: 0.379 testset: URL, BLEU: 15.6, chr-F: 0.446 testset: URL, BLEU: 23.6, chr-F: 0.506 testset: URL, BLEU: 12.9, chr-F: 0.399 testset: URL, BLEU: 25.3, chr-F: 0.519 testset: URL, BLEU: 11.6, chr-F: 0.376 testset: URL, BLEU: 12.4, chr-F: 0.410 testset: URL, BLEU: 17.8, chr-F: 0.448 testset: URL, BLEU: 14.8, chr-F: 0.434 testset: URL, BLEU: 17.9, chr-F: 0.446 testset: URL, BLEU: 12.5, chr-F: 0.391 testset: URL, BLEU: 15.9, chr-F: 0.449 testset: URL, BLEU: 24.0, chr-F: 0.518 testset: URL, BLEU: 24.3, chr-F: 0.522 testset: URL, BLEU: 13.9, chr-F: 0.411 testset: URL, BLEU: 19.0, chr-F: 0.475 testset: URL, BLEU: 19.2, chr-F: 0.468 testset: URL, BLEU: 23.9, chr-F: 0.521 testset: URL, BLEU: 5.9, chr-F: 0.268 testset: URL, BLEU: 8.8, chr-F: 0.348 testset: URL, BLEU: 19.1, chr-F: 0.475 testset: URL, BLEU: 17.9, chr-F: 0.450 testset: URL, BLEU: 12.1, chr-F: 0.392 testset: URL, BLEU: 21.1, chr-F: 0.480 testset: URL, BLEU: 18.7, chr-F: 0.475 testset: URL, BLEU: 15.4, chr-F: 0.431 testset: URL, BLEU: 18.1, chr-F: 0.454 testset: URL, BLEU: 18.6, chr-F: 0.465 testset: URL, BLEU: 13.3, chr-F: 0.403 testset: URL, BLEU: 24.0, chr-F: 0.508 testset: URL, BLEU: 21.4, chr-F: 0.494 testset: URL, BLEU: 16.8, chr-F: 0.457 testset: URL, BLEU: 24.9, chr-F: 0.522 testset: URL, BLEU: 13.7, chr-F: 0.417 testset: URL, BLEU: 17.3, chr-F: 0.453 testset: URL, BLEU: 16.7, chr-F: 0.444 testset: URL, BLEU: 10.9, chr-F: 0.375 testset: URL, BLEU: 21.5, chr-F: 0.484 testset: URL, BLEU: 17.5, chr-F: 0.464 testset: URL, BLEU: 9.1, chr-F: 0.388 testset: URL, BLEU: 11.5, chr-F: 0.404 testset: URL, BLEU: 14.8, chr-F: 0.432 testset: URL, BLEU: 19.3, chr-F: 0.467 testset: URL, BLEU: 17.1, chr-F: 0.450 testset: URL, BLEU: 10.9, chr-F: 0.380 testset: URL, BLEU: 26.0, chr-F: 0.518 testset: URL, BLEU: 24.3, chr-F: 0.514 testset: URL, BLEU: 12.5, chr-F: 0.417 testset: URL, BLEU: 16.4, chr-F: 0.443 testset: URL, BLEU: 13.9, chr-F: 0.432 testset: URL, BLEU: 11.7, chr-F: 0.383 testset: URL, BLEU: 22.2, chr-F: 0.483 testset: URL, BLEU: 20.1, chr-F: 0.496 testset: URL, BLEU: 12.3, chr-F: 0.389 testset: URL, BLEU: 22.0, chr-F: 0.497 testset: URL, BLEU: 3.1, chr-F: 0.208 testset: URL, BLEU: 7.8, chr-F: 0.369 testset: URL, BLEU: 14.6, chr-F: 0.408 testset: URL, BLEU: 16.4, chr-F: 0.483 testset: URL, BLEU: 6.1, chr-F: 0.288 testset: URL, BLEU: 16.9, chr-F: 0.456 testset: URL, BLEU: 20.2, chr-F: 0.468 testset: URL, BLEU: 16.0, chr-F: 0.152 testset: URL, BLEU: 10.2, chr-F: 0.333 testset: URL, BLEU: 32.6, chr-F: 0.651 testset: URL, BLEU: 34.5, chr-F: 0.556 testset: URL, BLEU: 48.1, chr-F: 0.638 testset: URL, BLEU: 10.2, chr-F: 0.416 testset: URL, BLEU: 41.9, chr-F: 0.612 testset: URL, BLEU: 0.0, chr-F: 0.112 testset: URL, BLEU: 0.3, chr-F: 0.068 testset: URL, BLEU: 12.2, chr-F: 0.419 testset: URL, BLEU: 48.7, chr-F: 0.637 testset: URL, BLEU: 8.4, chr-F: 0.407 testset: URL, BLEU: 19.0, chr-F: 0.357 testset: URL, BLEU: 0.0, chr-F: 0.238 testset: URL, BLEU: 1.4, chr-F: 0.080 testset: URL, BLEU: 45.7, chr-F: 0.643 testset: URL, BLEU: 55.3, chr-F: 0.687 testset: URL, BLEU: 39.3, chr-F: 0.563 testset: URL, BLEU: 33.9, chr-F: 0.586 testset: URL, BLEU: 22.6, chr-F: 0.475 testset: URL, BLEU: 32.1, chr-F: 0.525 testset: URL, BLEU: 44.1, chr-F: 0.611 testset: URL, BLEU: 71.6, chr-F: 0.814 testset: URL, BLEU: 31.0, chr-F: 0.481 testset: URL, BLEU: 100.0, chr-F: 1.000 testset: URL, BLEU: 0.0, chr-F: 0.133 testset: URL, BLEU: 5.5, chr-F: 0.129 testset: URL, BLEU: 22.2, chr-F: 0.345 testset: URL, BLEU: 6.3, chr-F: 0.251 testset: URL, BLEU: 7.9, chr-F: 0.255 testset: URL, BLEU: 0.8, chr-F: 0.133 testset: URL, BLEU: 16.0, chr-F: 0.086 testset: URL, BLEU: 6.0, chr-F: 0.185 testset: URL, BLEU: 0.6, chr-F: 0.000 testset: URL, BLEU: 16.0, chr-F: 0.102 testset: URL, BLEU: 13.2, chr-F: 0.301 testset: URL, BLEU: 7.6, chr-F: 0.062 testset: URL, BLEU: 0.2, chr-F: 0.025 testset: URL, BLEU: 6.6, chr-F: 0.198 testset: URL, BLEU: 5.5, chr-F: 0.121 testset: URL, BLEU: 11.4, chr-F: 0.498 testset: URL, BLEU: 2.4, chr-F: 0.103 testset: URL, BLEU: 8.1, chr-F: 0.249 testset: URL, BLEU: 16.4, chr-F: 0.195 testset: URL, BLEU: 1.1, chr-F: 0.117 testset: URL, BLEU: 28.2, chr-F: 0.394 testset: URL, BLEU: 39.8, chr-F: 0.445 testset: URL, BLEU: 52.3, chr-F: 0.608 testset: URL, BLEU: 8.6, chr-F: 0.261 testset: URL, BLEU: 19.2, chr-F: 0.629 testset: URL, BLEU: 18.2, chr-F: 0.369 testset: URL, BLEU: 4.3, chr-F: 0.145 testset: URL, BLEU: 4.5, chr-F: 0.366 testset: URL, BLEU: 12.1, chr-F: 0.310 testset: URL, BLEU: 8.1, chr-F: 0.050 testset: URL, BLEU: 30.1, chr-F: 0.463 testset: URL, BLEU: 27.6, chr-F: 0.441 testset: URL, BLEU: 29.4, chr-F: 0.501 testset: URL, BLEU: 2.6, chr-F: 0.030 testset: URL, BLEU: 10.0, chr-F: 0.280 testset: URL, BLEU: 100.0, chr-F: 1.000 testset: URL, BLEU: 100.0, chr-F: 1.000 testset: URL, BLEU: 35.9, chr-F: 0.682 testset: URL, BLEU: 41.7, chr-F: 0.601 testset: URL, BLEU: 2.4, chr-F: 0.201 testset: URL, BLEU: 53.7, chr-F: 0.808 testset: URL, BLEU: 27.6, chr-F: 0.483 testset: URL, BLEU: 32.6, chr-F: 0.449 testset: URL, BLEU: 29.1, chr-F: 0.506 testset: URL, BLEU: 29.5, chr-F: 0.522 testset: URL, BLEU: 31.8, chr-F: 0.512 testset: URL, BLEU: 30.9, chr-F: 0.527 testset: URL, BLEU: 39.3, chr-F: 0.608 testset: URL, BLEU: 32.8, chr-F: 0.540 testset: URL, BLEU: 12.7, chr-F: 0.178 testset: URL, BLEU: 4.5, chr-F: 0.185 testset: URL, BLEU: 3.7, chr-F: 0.251 testset: URL, BLEU: 19.3, chr-F: 0.531 testset: URL, BLEU: 1.0, chr-F: 0.147 testset: URL, BLEU: 27.1, chr-F: 0.481 testset: URL, BLEU: 37.0, chr-F: 0.494 testset: URL, BLEU: 34.8, chr-F: 0.565 testset: URL, BLEU: 21.7, chr-F: 0.401 testset: URL, BLEU: 42.3, chr-F: 0.643 testset: URL, BLEU: 28.2, chr-F: 0.534 testset: URL, BLEU: 41.6, chr-F: 0.643 testset: URL, BLEU: 2.9, chr-F: 0.254 testset: URL, BLEU: 34.6, chr-F: 0.408 testset: URL, BLEU: 26.5, chr-F: 0.430 testset: URL, BLEU: 21.6, chr-F: 0.466 testset: URL, BLEU: 26.8, chr-F: 0.424 testset: URL, BLEU: 28.9, chr-F: 0.473 testset: URL, BLEU: 21.0, chr-F: 0.384 testset: URL, BLEU: 100.0, chr-F: 1.000 testset: URL, BLEU: 2.2, chr-F: 0.178 testset: URL, BLEU: 7.7, chr-F: 0.296 testset: URL, BLEU: 13.6, chr-F: 0.309 testset: URL, BLEU: 8.6, chr-F: 0.251 testset: URL, BLEU: 12.2, chr-F: 0.272 testset: URL, BLEU: 0.9, chr-F: 0.081 testset: URL, BLEU: 3.0, chr-F: 0.217 testset: URL, BLEU: 1.4, chr-F: 0.158 testset: URL, BLEU: 14.1, chr-F: 0.582 testset: URL, BLEU: 52.8, chr-F: 0.725 testset: URL, BLEU: 66.9, chr-F: 0.951 testset: URL, BLEU: 31.2, chr-F: 0.530 testset: URL, BLEU: 29.1, chr-F: 0.497 testset: URL, BLEU: 36.5, chr-F: 0.547 testset: URL, BLEU: 5.3, chr-F: 0.299 testset: URL, BLEU: 8.9, chr-F: 0.511 testset: URL, BLEU: 36.1, chr-F: 0.558 testset: URL, BLEU: 100.0, chr-F: 1.000 testset: URL, BLEU: 24.5, chr-F: 0.479 testset: URL, BLEU: 8.1, chr-F: 0.302 testset: URL, BLEU: 13.4, chr-F: 0.337 testset: URL, BLEU: 38.2, chr-F: 0.811 testset: URL, BLEU: 15.0, chr-F: 0.431 testset: URL, BLEU: 31.8, chr-F: 0.505 testset: URL, BLEU: 66.9, chr-F: 0.951 testset: URL, BLEU: 24.4, chr-F: 0.461 testset: URL, BLEU: 29.2, chr-F: 0.484 testset: URL, BLEU: 42.7, chr-F: 0.776 testset: URL, BLEU: 28.7, chr-F: 0.522 testset: URL, BLEU: 32.1, chr-F: 0.520 testset: URL, BLEU: 66.9, chr-F: 0.611 testset: URL, BLEU: 34.3, chr-F: 0.567 testset: URL, BLEU: 13.7, chr-F: 0.163 testset: URL, BLEU: 31.0, chr-F: 0.523 testset: URL, BLEU: 17.0, chr-F: 0.423 testset: URL, BLEU: 39.4, chr-F: 0.582 testset: URL, BLEU: 5.3, chr-F: 0.370 testset: URL, BLEU: 16.0, chr-F: 0.301 testset: URL, BLEU: 41.0, chr-F: 0.606 testset: URL, BLEU: 39.8, chr-F: 0.626 testset: URL, BLEU: 35.9, chr-F: 0.555 testset: URL, BLEU: 23.0, chr-F: 0.456 testset: URL, BLEU: 38.9, chr-F: 0.618 testset: URL, BLEU: 16.0, chr-F: 0.311 testset: URL, BLEU: 28.8, chr-F: 0.507 testset: URL, BLEU: 55.2, chr-F: 0.731 testset: URL, BLEU: 100.0, chr-F: 1.000 testset: URL, BLEU: 30.8, chr-F: 0.512 testset: URL, BLEU: 100.0, chr-F: 1.000 testset: URL, BLEU: 17.0, chr-F: 0.426 testset: URL, BLEU: 3.3, chr-F: 0.165 testset: URL, BLEU: 23.3, chr-F: 0.466 testset: URL, BLEU: 0.7, chr-F: 0.126 testset: URL, BLEU: 45.2, chr-F: 0.690 testset: URL, BLEU: 3.4, chr-F: 0.072 testset: URL, BLEU: 12.7, chr-F: 0.706 testset: URL, BLEU: 32.2, chr-F: 0.526 testset: URL, BLEU: 24.4, chr-F: 0.422 testset: URL, BLEU: 33.8, chr-F: 0.529 testset: URL, BLEU: 1.7, chr-F: 0.157 testset: URL, BLEU: 3.7, chr-F: 0.252 testset: URL, BLEU: 20.1, chr-F: 0.229 testset: URL, BLEU: 36.9, chr-F: 0.564 testset: URL, BLEU: 7.7, chr-F: 0.338 testset: URL, BLEU: 0.6, chr-F: 0.011 testset: URL, BLEU: 39.7, chr-F: 0.580 testset: URL, BLEU: 7.0, chr-F: 0.230 testset: URL, BLEU: 28.2, chr-F: 0.516 testset: URL, BLEU: 1.7, chr-F: 0.303 testset: URL, BLEU: 6.5, chr-F: 0.304 testset: URL, BLEU: 6.6, chr-F: 0.202 testset: URL, BLEU: 31.4, chr-F: 0.586 testset: URL, BLEU: 6.4, chr-F: 0.312 testset: URL, BLEU: 19.9, chr-F: 0.468 testset: URL, BLEU: 35.1, chr-F: 0.535 testset: URL, BLEU: 41.7, chr-F: 0.610 testset: URL, BLEU: 30.5, chr-F: 0.530 testset: URL, BLEU: 33.0, chr-F: 0.533 testset: URL, BLEU: 9.9, chr-F: 0.406 testset: URL, BLEU: 36.9, chr-F: 0.564 testset: URL, BLEU: 4.1, chr-F: 0.236 testset: URL, BLEU: 33.3, chr-F: 0.531 testset: URL, BLEU: 51.4, chr-F: 0.586 testset: URL, BLEU: 4.8, chr-F: 0.118 testset: URL, BLEU: 34.6, chr-F: 0.522 testset: URL, BLEU: 2.1, chr-F: 0.252 testset: URL, BLEU: 8.9, chr-F: 0.233 testset: URL, BLEU: 6.7, chr-F: 0.205 testset: URL, BLEU: 4.8, chr-F: 0.211 testset: URL, BLEU: 3.4, chr-F: 0.182 testset: URL, BLEU: 4.4, chr-F: 0.193 testset: URL, BLEU: 5.0, chr-F: 0.221 testset: URL, BLEU: 6.6, chr-F: 0.211 testset: URL, BLEU: 9.3, chr-F: 0.221 testset: URL, BLEU: 19.6, chr-F: 0.282 testset: URL, BLEU: 2.9, chr-F: 0.171 testset: URL, BLEU: 4.3, chr-F: 0.187 testset: URL, BLEU: 2.4, chr-F: 0.154 testset: URL, BLEU: 3.6, chr-F: 0.187 testset: URL, BLEU: 0.0, chr-F: 0.877 testset: URL, BLEU: 39.2, chr-F: 0.473 testset: URL, BLEU: 19.0, chr-F: 0.352 testset: URL, BLEU: 1.6, chr-F: 0.066 testset: URL, BLEU: 17.5, chr-F: 0.336 testset: URL, BLEU: 14.0, chr-F: 0.347 testset: URL, BLEU: 3.8, chr-F: 0.278 testset: URL, BLEU: 100.0, chr-F: 1.000 testset: URL, BLEU: 0.0, chr-F: 0.014 testset: URL, BLEU: 32.6, chr-F: 0.507 testset: URL, BLEU: 33.1, chr-F: 0.496 testset: URL, BLEU: 27.0, chr-F: 0.447 testset: URL, BLEU: 5.7, chr-F: 0.223 testset: URL, BLEU: 13.1, chr-F: 0.380 testset: URL, BLEU: 5.3, chr-F: 0.186 testset: URL, BLEU: 28.3, chr-F: 0.498 testset: URL, BLEU: 3.7, chr-F: 0.185 testset: URL, BLEU: 8.0, chr-F: 0.067 testset: URL, BLEU: 37.5, chr-F: 0.603 testset: URL, BLEU: 37.8, chr-F: 0.488 testset: URL, BLEU: 32.1, chr-F: 0.480 testset: URL, BLEU: 31.6, chr-F: 0.523 testset: URL, BLEU: 4.8, chr-F: 0.072 testset: URL, BLEU: 40.5, chr-F: 0.774 testset: URL, BLEU: 1.2, chr-F: 0.066 testset: URL, BLEU: 13.1, chr-F: 0.156 testset: URL, BLEU: 27.2, chr-F: 0.746 testset: URL, BLEU: 35.4, chr-F: 0.529 testset: URL, BLEU: 19.0, chr-F: 0.349 testset: URL, BLEU: 35.8, chr-F: 0.582 testset: URL, BLEU: 19.0, chr-F: 0.337 testset: URL, BLEU: 43.4, chr-F: 0.609 testset: URL, BLEU: 18.1, chr-F: 0.515 testset: URL, BLEU: 9.7, chr-F: 0.162 testset: URL, BLEU: 14.1, chr-F: 0.410 testset: URL, BLEU: 47.0, chr-F: 0.640 testset: URL, BLEU: 2.6, chr-F: 0.195 testset: URL, BLEU: 12.2, chr-F: 0.344 testset: URL, BLEU: 36.3, chr-F: 0.589 testset: URL, BLEU: 3.5, chr-F: 0.270 testset: URL, BLEU: 0.4, chr-F: 0.096 testset: URL, BLEU: 3.9, chr-F: 0.376 testset: URL, BLEU: 68.7, chr-F: 0.786 testset: URL, BLEU: 71.4, chr-F: 0.554 testset: URL, BLEU: 3.7, chr-F: 0.220 testset: URL, BLEU: 4.9, chr-F: 0.219 testset: URL, BLEU: 47.2, chr-F: 0.650 testset: URL, BLEU: 58.8, chr-F: 0.749 testset: URL, BLEU: 27.1, chr-F: 0.527 testset: URL, BLEU: 41.5, chr-F: 0.616 testset: URL, BLEU: 100.0, chr-F: 1.000 testset: URL, BLEU: 30.8, chr-F: 0.518 testset: URL, BLEU: 36.6, chr-F: 0.578 testset: URL, BLEU: 53.8, chr-F: 0.696 testset: URL, BLEU: 4.8, chr-F: 0.184 testset: URL, BLEU: 15.9, chr-F: 0.489 testset: URL, BLEU: 21.7, chr-F: 0.544 testset: URL, BLEU: 13.0, chr-F: 0.252 testset: URL, BLEU: 37.5, chr-F: 0.566 testset: URL, BLEU: 0.6, chr-F: 0.131 testset: URL, BLEU: 20.0, chr-F: 0.580 testset: URL, BLEU: 16.5, chr-F: 0.389 testset: URL, BLEU: 19.6, chr-F: 0.450 testset: URL, BLEU: 34.5, chr-F: 0.319 testset: URL, BLEU: 3.2, chr-F: 0.196 testset: URL, BLEU: 32.6, chr-F: 0.517 testset: URL, BLEU: 28.4, chr-F: 0.503 testset: URL, BLEU: 24.3, chr-F: 0.465 testset: URL, BLEU: 0.2, chr-F: 0.043 testset: URL, BLEU: 2.4, chr-F: 0.020 testset: URL, BLEU: 4.4, chr-F: 0.178 testset: URL, BLEU: 11.3, chr-F: 0.378 testset: URL, BLEU: 37.8, chr-F: 0.579 testset: URL, BLEU: 0.1, chr-F: 0.082 testset: URL, BLEU: 3.3, chr-F: 0.050 testset: URL, BLEU: 27.1, chr-F: 0.485 testset: URL, BLEU: 34.7, chr-F: 0.539 testset: URL, BLEU: 6.7, chr-F: 0.331 testset: URL, BLEU: 4.5, chr-F: 0.235 testset: URL, BLEU: 31.9, chr-F: 0.527 testset: URL, BLEU: 0.2, chr-F: 0.101 testset: URL, BLEU: 13.7, chr-F: 0.358 testset: URL, BLEU: 7.2, chr-F: 0.304 testset: URL, BLEU: 8.9, chr-F: 0.349 testset: URL, BLEU: 28.9, chr-F: 0.513 testset: URL, BLEU: 0.7, chr-F: 0.157 testset: URL, BLEU: 0.2, chr-F: 0.010 testset: URL, BLEU: 0.1, chr-F: 0.005 testset: URL, BLEU: 0.2, chr-F: 0.073 testset: URL, BLEU: 23.2, chr-F: 0.470 testset: URL, BLEU: 12.5, chr-F: 0.367 testset: URL, BLEU: 5.4, chr-F: 0.249 testset: URL, BLEU: 12.9, chr-F: 0.263 testset: URL, BLEU: 16.5, chr-F: 0.395 testset: URL, BLEU: 29.2, chr-F: 0.536 testset: URL, BLEU: 0.6, chr-F: 0.092 testset: URL, BLEU: 11.2, chr-F: 0.183 testset: URL, BLEU: 0.3, chr-F: 0.112 testset: URL, BLEU: 6.4, chr-F: 0.301 testset: URL, BLEU: 29.6, chr-F: 0.502 testset: URL, BLEU: 17.4, chr-F: 0.445 testset: URL, BLEU: 18.5, chr-F: 0.380 testset: URL, BLEU: 7.9, chr-F: 0.245 testset: URL, BLEU: 21.9, chr-F: 0.449 testset: URL, BLEU: 21.9, chr-F: 0.478 testset: URL, BLEU: 13.6, chr-F: 0.391 testset: URL, BLEU: 37.2, chr-F: 0.574 testset: URL, BLEU: 34.5, chr-F: 0.562 testset: URL, BLEU: 4.7, chr-F: 0.261 testset: URL, BLEU: 0.2, chr-F: 0.006 testset: URL, BLEU: 0.6, chr-F: 0.064 testset: URL, BLEU: 0.2, chr-F: 0.064 testset: URL, BLEU: 23.6, chr-F: 0.477 testset: URL, BLEU: 25.1, chr-F: 0.480 testset: URL, BLEU: 0.2, chr-F: 0.070 testset: URL, BLEU: 0.2, chr-F: 0.059 testset: URL, BLEU: 5.2, chr-F: 0.179 testset: URL, BLEU: 25.7, chr-F: 0.484 testset: URL, BLEU: 27.1, chr-F: 0.494 testset: URL, BLEU: 1.6, chr-F: 0.076 testset: URL, BLEU: 10.8, chr-F: 0.281 testset: URL, BLEU: 8.1, chr-F: 0.251 testset: URL, BLEU: 31.5, chr-F: 0.534 testset: URL, BLEU: 0.6, chr-F: 0.144 testset: URL, BLEU: 39.1, chr-F: 0.572 testset: URL, BLEU: 0.1, chr-F: 0.088 testset: URL, BLEU: 13.1, chr-F: 0.406 testset: URL, BLEU: 27.2, chr-F: 0.489 testset: URL, BLEU: 13.4, chr-F: 0.350 testset: URL, BLEU: 6.0, chr-F: 0.262 testset: URL, BLEU: 14.1, chr-F: 0.366 testset: URL, BLEU: 19.0, chr-F: 0.424 testset: URL, BLEU: 15.4, chr-F: 0.342 testset: URL, BLEU: 15.2, chr-F: 0.315 testset: URL, BLEU: 35.4, chr-F: 0.394 testset: URL, BLEU: 12.6, chr-F: 0.401 testset: URL, BLEU: 2.9, chr-F: 0.168 testset: URL, BLEU: 5.2, chr-F: 0.207 testset: URL, BLEU: 6.4, chr-F: 0.215 testset: URL, BLEU: 1.6, chr-F: 0.180 testset: URL, BLEU: 3.9, chr-F: 0.199 testset: URL, BLEU: 26.6, chr-F: 0.483 testset: URL, BLEU: 20.2, chr-F: 0.398 testset: URL, BLEU: 12.1, chr-F: 0.380 testset: URL, BLEU: 0.7, chr-F: 0.039 testset: URL, BLEU: 53.7, chr-F: 0.513 testset: URL, BLEU: 30.5, chr-F: 0.503 testset: URL, BLEU: 43.1, chr-F: 0.589 testset: URL, BLEU: 12.7, chr-F: 0.541 testset: URL, BLEU: 5.3, chr-F: 0.210 testset: URL, BLEU: 39.5, chr-F: 0.563 testset: URL, BLEU: 11.6, chr-F: 0.343 testset: URL, BLEU: 30.9, chr-F: 0.524 testset: URL, BLEU: 57.6, chr-F: 0.572 testset: URL, BLEU: 4.9, chr-F: 0.244 testset: URL, BLEU: 38.0, chr-F: 0.562 testset: URL, BLEU: 40.8, chr-F: 0.615 testset: URL, BLEU: 72.6, chr-F: 0.846 testset: URL, BLEU: 26.8, chr-F: 0.514 testset: URL, BLEU: 27.1, chr-F: 0.493 testset: URL, BLEU: 30.8, chr-F: 0.512 testset: URL, BLEU: 30.8, chr-F: 0.475 testset: URL, BLEU: 36.0, chr-F: 0.521 testset: URL, BLEU: 12.6, chr-F: 0.364 testset: URL, BLEU: 100.0, chr-F: 1.000 testset: URL, BLEU: 46.1, chr-F: 0.633 testset: URL, BLEU: 5.1, chr-F: 0.136 testset: URL, BLEU: 5.1, chr-F: 0.199 testset: URL, BLEU: 0.8, chr-F: 0.208 testset: URL, BLEU: 16.8, chr-F: 0.380 testset: URL, BLEU: 0.2, chr-F: 0.002 testset: URL, BLEU: 16.6, chr-F: 0.415 testset: URL, BLEU: 7.0, chr-F: 0.321 testset: URL, BLEU: 0.2, chr-F: 0.003 testset: URL, BLEU: 6.6, chr-F: 0.251 testset: URL, BLEU: 31.5, chr-F: 0.513 testset: URL, BLEU: 33.5, chr-F: 0.550 testset: URL, BLEU: 25.6, chr-F: 0.466 testset: URL, BLEU: 0.1, chr-F: 0.035 testset: URL, BLEU: 0.8, chr-F: 0.135 testset: URL, BLEU: 1.4, chr-F: 0.194 testset: URL, BLEU: 18.8, chr-F: 0.422 testset: URL, BLEU: 41.2, chr-F: 0.591 testset: URL, BLEU: 27.9, chr-F: 0.503 testset: URL, BLEU: 0.7, chr-F: 0.125 testset: URL, BLEU: 0.1, chr-F: 0.062 testset: URL, BLEU: 30.7, chr-F: 0.540 testset: URL, BLEU: 4.9, chr-F: 0.283 testset: URL, BLEU: 3.9, chr-F: 0.217 testset: URL, BLEU: 5.9, chr-F: 0.276 testset: URL, BLEU: 4.8, chr-F: 0.239 testset: URL, BLEU: 34.6, chr-F: 0.551 testset: URL, BLEU: 0.2, chr-F: 0.099 testset: URL, BLEU: 5.5, chr-F: 0.040 testset: URL, BLEU: 13.1, chr-F: 0.357 testset: URL, BLEU: 0.4, chr-F: 0.085 testset: URL, BLEU: 7.4, chr-F: 0.293 testset: URL, BLEU: 20.0, chr-F: 0.415 testset: URL, BLEU: 29.9, chr-F: 0.528 testset: URL, BLEU: 5.9, chr-F: 0.220 testset: URL, BLEU: 0.5, chr-F: 0.137 testset: URL, BLEU: 0.1, chr-F: 0.009 testset: URL, BLEU: 0.0, chr-F: 0.005 testset: URL, BLEU: 0.5, chr-F: 0.103 testset: URL, BLEU: 6.4, chr-F: 0.241 testset: URL, BLEU: 28.2, chr-F: 0.460 testset: URL, BLEU: 26.0, chr-F: 0.485 testset: URL, BLEU: 0.8, chr-F: 0.228 testset: URL, BLEU: 11.2, chr-F: 0.364 testset: URL, BLEU: 10.6, chr-F: 0.277 testset: URL, BLEU: 10.9, chr-F: 0.307 testset: URL, BLEU: 13.8, chr-F: 0.368 testset: URL, BLEU: 33.8, chr-F: 0.571 testset: URL, BLEU: 3.0, chr-F: 0.007 testset: URL, BLEU: 4.8, chr-F: 0.005 testset: URL, BLEU: 0.4, chr-F: 0.092 testset: URL, BLEU: 9.0, chr-F: 0.174 testset: URL, BLEU: 0.5, chr-F: 0.144 testset: URL, BLEU: 0.1, chr-F: 0.000 testset: URL, BLEU: 7.7, chr-F: 0.333 testset: URL, BLEU: 25.1, chr-F: 0.480 testset: URL, BLEU: 0.4, chr-F: 0.101 testset: URL, BLEU: 21.0, chr-F: 0.492 testset: URL, BLEU: 0.5, chr-F: 0.143 testset: URL, BLEU: 0.5, chr-F: 0.135 testset: URL, BLEU: 15.6, chr-F: 0.345 testset: URL, BLEU: 9.3, chr-F: 0.251 testset: URL, BLEU: 9.5, chr-F: 0.326 testset: URL, BLEU: 54.1, chr-F: 0.747 testset: URL, BLEU: 29.8, chr-F: 0.503 testset: URL, BLEU: 20.0, chr-F: 0.449 testset: URL, BLEU: 9.3, chr-F: 0.231 testset: URL, BLEU: 12.2, chr-F: 0.357 testset: URL, BLEU: 0.2, chr-F: 0.003 testset: URL, BLEU: 37.1, chr-F: 0.570 testset: URL, BLEU: 0.5, chr-F: 0.078 testset: URL, BLEU: 38.4, chr-F: 0.575 testset: URL, BLEU: 4.8, chr-F: 0.249 testset: URL, BLEU: 2.8, chr-F: 0.185 testset: URL, BLEU: 0.1, chr-F: 0.011 testset: URL, BLEU: 2.6, chr-F: 0.166 testset: URL, BLEU: 2.6, chr-F: 0.214 testset: URL, BLEU: 39.8, chr-F: 0.566 testset: URL, BLEU: 1.0, chr-F: 0.131 testset: URL, BLEU: 0.9, chr-F: 0.124 testset: URL, BLEU: 26.2, chr-F: 0.500 testset: URL, BLEU: 31.5, chr-F: 0.545 testset: URL, BLEU: 0.2, chr-F: 0.088 testset: URL, BLEU: 0.4, chr-F: 0.108 testset: URL, BLEU: 1.8, chr-F: 0.192 testset: URL, BLEU: 7.6, chr-F: 0.313 testset: URL, BLEU: 27.6, chr-F: 0.508 testset: URL, BLEU: 0.1, chr-F: 0.011 testset: URL, BLEU: 28.6, chr-F: 0.496 testset: URL, BLEU: 2.0, chr-F: 0.098 testset: URL, BLEU: 0.9, chr-F: 0.080 testset: URL, BLEU: 24.5, chr-F: 0.501 testset: URL, BLEU: 1.3, chr-F: 0.105 testset: URL, BLEU: 3.0, chr-F: 0.178 testset: URL, BLEU: 12.5, chr-F: 0.298 testset: URL, BLEU: 1.7, chr-F: 0.214 testset: URL, BLEU: 36.3, chr-F: 0.575 testset: URL, BLEU: 22.1, chr-F: 0.459 testset: URL, BLEU: 5.2, chr-F: 0.316 testset: URL, BLEU: 42.4, chr-F: 0.591 testset: URL, BLEU: 0.6, chr-F: 0.145 testset: URL, BLEU: 1.9, chr-F: 0.255 testset: URL, BLEU: 0.3, chr-F: 0.054 testset: URL, BLEU: 27.3, chr-F: 0.478 testset: URL, BLEU: 7.0, chr-F: 0.310 testset: URL, BLEU: 0.9, chr-F: 0.116 testset: URL, BLEU: 4.0, chr-F: 0.164 testset: URL, BLEU: 5.9, chr-F: 0.260 testset: URL, BLEU: 0.4, chr-F: 0.071 testset: URL, BLEU: 20.1, chr-F: 0.420 testset: URL, BLEU: 0.6, chr-F: 0.057 testset: URL, BLEU: 22.8, chr-F: 0.278 testset: URL, BLEU: 9.0, chr-F: 0.360 testset: URL, BLEU: 19.0, chr-F: 0.324 testset: URL, BLEU: 35.8, chr-F: 0.523 testset: URL, BLEU: 35.7, chr-F: 0.495 testset: URL, BLEU: 42.7, chr-F: 0.644 testset: URL, BLEU: 22.4, chr-F: 0.477 testset: URL, BLEU: 4.3, chr-F: 0.141 testset: URL, BLEU: 9.0, chr-F: 0.345 testset: URL, BLEU: 16.0, chr-F: 0.289 testset: URL, BLEU: 4.1, chr-F: 0.143 testset: URL, BLEU: 3.0, chr-F: 0.247 testset: URL, BLEU: 11.6, chr-F: 0.294 testset: URL, BLEU: 19.0, chr-F: 0.220 testset: URL, BLEU: 4.8, chr-F: 0.188 testset: URL, BLEU: 6.1, chr-F: 0.136 testset: URL, BLEU: 16.0, chr-F: 0.054 testset: URL, BLEU: 0.7, chr-F: 0.124 testset: URL, BLEU: 5.4, chr-F: 0.238 testset: URL, BLEU: 10.5, chr-F: 0.155 testset: URL, BLEU: 18.6, chr-F: 0.427 testset: URL, BLEU: 38.9, chr-F: 0.611 testset: URL, BLEU: 6.8, chr-F: 0.276 testset: URL, BLEU: 10.5, chr-F: 0.138 testset: URL, BLEU: 12.7, chr-F: 0.088 testset: URL, BLEU: 7.6, chr-F: 0.109 testset: URL, BLEU: 18.8, chr-F: 0.254 testset: URL, BLEU: 21.4, chr-F: 0.339 testset: URL, BLEU: 4.0, chr-F: 0.440 testset: URL, BLEU: 5.3, chr-F: 0.231 testset: URL, BLEU: 24.9, chr-F: 0.420 testset: URL, BLEU: 0.0, chr-F: 0.056 testset: URL, BLEU: 16.0, chr-F: 0.171 testset: URL, BLEU: 2.1, chr-F: 0.258 testset: URL, BLEU: 43.5, chr-F: 0.557 testset: URL, BLEU: 21.3, chr-F: 0.402 testset: URL, BLEU: 3.0, chr-F: 0.164 testset: URL, BLEU: 12.7, chr-F: 0.142 testset: URL, BLEU: 10.5, chr-F: 0.131 testset: URL, BLEU: 0.6, chr-F: 0.087 testset: URL, BLEU: 26.2, chr-F: 0.443 testset: URL, BLEU: 3.6, chr-F: 0.176 testset: URL, BLEU: 0.0, chr-F: 0.632 testset: URL, BLEU: 5.8, chr-F: 0.163 testset: URL, BLEU: 14.5, chr-F: 0.104 testset: URL, BLEU: 53.7, chr-F: 0.504 testset: URL, BLEU: 8.5, chr-F: 0.311 testset: URL, BLEU: 8.7, chr-F: 0.259 testset: URL, BLEU: 10.3, chr-F: 0.303 testset: URL, BLEU: 1.3, chr-F: 0.006 testset: URL, BLEU: 8.6, chr-F: 0.331 testset: URL, BLEU: 7.2, chr-F: 0.301 testset: URL, BLEU: 0.4, chr-F: 0.074 testset: URL, BLEU: 14.4, chr-F: 0.256 testset: URL, BLEU: 9.8, chr-F: 0.325 testset: URL, BLEU: 6.6, chr-F: 0.127 testset: URL, BLEU: 50.0, chr-F: 0.657 testset: URL, BLEU: 4.5, chr-F: 0.223 testset: URL, BLEU: 8.6, chr-F: 0.316 testset: URL, BLEU: 19.1, chr-F: 0.445 testset: URL, BLEU: 9.8, chr-F: 0.313 testset: URL, BLEU: 9.1, chr-F: 0.318 testset: URL, BLEU: 4.8, chr-F: 0.213 testset: URL, BLEU: 2.0, chr-F: 0.138 testset: URL, BLEU: 49.7, chr-F: 0.630 testset: URL, BLEU: 1.0, chr-F: 0.105 testset: URL, BLEU: 0.0, chr-F: 0.011 testset: URL, BLEU: 4.1, chr-F: 0.194 testset: URL, BLEU: 23.0, chr-F: 0.410 testset: URL, BLEU: 22.2, chr-F: 0.448 testset: URL, BLEU: 6.4, chr-F: 0.341 testset: URL, BLEU: 1.2, chr-F: 0.035 testset: URL, BLEU: 3.4, chr-F: 0.204 testset: URL, BLEU: 31.2, chr-F: 0.528 testset: URL, BLEU: 33.9, chr-F: 0.570 testset: URL, BLEU: 26.9, chr-F: 0.490 testset: URL, BLEU: 0.2, chr-F: 0.039 testset: URL, BLEU: 0.3, chr-F: 0.061 testset: URL, BLEU: 17.3, chr-F: 0.455 testset: URL, BLEU: 47.1, chr-F: 0.634 testset: URL, BLEU: 31.1, chr-F: 0.530 testset: URL, BLEU: 0.7, chr-F: 0.061 testset: URL, BLEU: 32.4, chr-F: 0.544 testset: URL, BLEU: 40.1, chr-F: 0.583 testset: URL, BLEU: 5.1, chr-F: 0.207 testset: URL, BLEU: 1.8, chr-F: 0.304 testset: URL, BLEU: 5.6, chr-F: 0.233 testset: URL, BLEU: 0.3, chr-F: 0.149 testset: URL, BLEU: 6.4, chr-F: 0.412 testset: URL, BLEU: 11.4, chr-F: 0.357 testset: URL, BLEU: 0.1, chr-F: 0.067 testset: URL, BLEU: 9.1, chr-F: 0.316 testset: URL, BLEU: 16.8, chr-F: 0.416 testset: URL, BLEU: 34.5, chr-F: 0.562 testset: URL, BLEU: 5.5, chr-F: 0.204 testset: URL, BLEU: 0.2, chr-F: 0.001 testset: URL, BLEU: 0.1, chr-F: 0.006 testset: URL, BLEU: 20.8, chr-F: 0.424 testset: URL, BLEU: 28.9, chr-F: 0.511 testset: URL, BLEU: 5.1, chr-F: 0.336 testset: URL, BLEU: 11.5, chr-F: 0.401 testset: URL, BLEU: 17.2, chr-F: 0.362 testset: URL, BLEU: 37.7, chr-F: 0.606 testset: URL, BLEU: 2.8, chr-F: 0.148 testset: URL, BLEU: 14.3, chr-F: 0.188 testset: URL, BLEU: 0.4, chr-F: 0.129 testset: URL, BLEU: 2.8, chr-F: 0.258 testset: URL, BLEU: 30.3, chr-F: 0.490 testset: URL, BLEU: 0.3, chr-F: 0.099 testset: URL, BLEU: 18.3, chr-F: 0.461 testset: URL, BLEU: 0.6, chr-F: 0.185 testset: URL, BLEU: 1.2, chr-F: 0.163 testset: URL, BLEU: 15.3, chr-F: 0.385 testset: URL, BLEU: 45.7, chr-F: 0.393 testset: URL, BLEU: 29.5, chr-F: 0.498 testset: URL, BLEU: 19.4, chr-F: 0.456 testset: URL, BLEU: 12.9, chr-F: 0.356 testset: URL, BLEU: 33.0, chr-F: 0.532 testset: URL, BLEU: 1.2, chr-F: 0.072 testset: URL, BLEU: 35.1, chr-F: 0.553 testset: URL, BLEU: 6.8, chr-F: 0.313 testset: URL, BLEU: 0.2, chr-F: 0.004 testset: URL, BLEU: 3.6, chr-F: 0.112 testset: URL, BLEU: 78.3, chr-F: 0.917 testset: URL, BLEU: 0.1, chr-F: 0.084 testset: URL, BLEU: 0.3, chr-F: 0.117 testset: URL, BLEU: 22.4, chr-F: 0.468 testset: URL, BLEU: 33.0, chr-F: 0.559 testset: URL, BLEU: 0.6, chr-F: 0.084 testset: URL, BLEU: 5.9, chr-F: 0.278 testset: URL, BLEU: 4.2, chr-F: 0.257 testset: URL, BLEU: 29.7, chr-F: 0.531 testset: URL, BLEU: 28.8, chr-F: 0.498 testset: URL, BLEU: 0.4, chr-F: 0.056 testset: URL, BLEU: 1.7, chr-F: 0.222 testset: URL, BLEU: 2.4, chr-F: 0.207 testset: URL, BLEU: 38.6, chr-F: 0.598 testset: URL, BLEU: 23.9, chr-F: 0.455 testset: URL, BLEU: 1.2, chr-F: 0.159 testset: URL, BLEU: 44.2, chr-F: 0.609 testset: URL, BLEU: 2.4, chr-F: 0.123 testset: URL, BLEU: 2.8, chr-F: 0.244 testset: URL, BLEU: 0.5, chr-F: 0.034 testset: URL, BLEU: 26.7, chr-F: 0.474 testset: URL, BLEU: 2.3, chr-F: 0.333 testset: URL, BLEU: 0.6, chr-F: 0.088 testset: URL, BLEU: 5.3, chr-F: 0.178 testset: URL, BLEU: 8.7, chr-F: 0.271 testset: URL, BLEU: 19.2, chr-F: 0.394 testset: URL, BLEU: 12.3, chr-F: 0.482 testset: URL, BLEU: 8.3, chr-F: 0.286 testset: URL, BLEU: 6.1, chr-F: 0.181 testset: URL, BLEU: 12.7, chr-F: 0.535 testset: URL, BLEU: 4.1, chr-F: 0.144 testset: URL, BLEU: 0.5, chr-F: 0.033 testset: URL, BLEU: 12.4, chr-F: 0.127 testset: URL, BLEU: 6.9, chr-F: 0.233 testset: URL, BLEU: 0.5, chr-F: 0.045 testset: URL, BLEU: 0.0, chr-F: 0.244 testset: URL, BLEU: 4.2, chr-F: 0.280 testset: URL, BLEU: 21.7, chr-F: 0.448 testset: URL, BLEU: 22.9, chr-F: 0.431 testset: URL, BLEU: 10.7, chr-F: 0.140 testset: URL, BLEU: 31.8, chr-F: 0.455 testset: URL, BLEU: 0.5, chr-F: 0.040 testset: URL, BLEU: 0.7, chr-F: 0.204 testset: URL, BLEU: 34.8, chr-F: 0.528 testset: URL, BLEU: 8.1, chr-F: 0.318 testset: URL, BLEU: 21.4, chr-F: 0.324 testset: URL, BLEU: 0.1, chr-F: 0.000 testset: URL, BLEU: 6.6, chr-F: 0.127 testset: URL, BLEU: 35.7, chr-F: 0.576 testset: URL, BLEU: 32.6, chr-F: 0.511 testset: URL, BLEU: 17.7, chr-F: 0.342 testset: URL, BLEU: 12.1, chr-F: 0.304 testset: URL, BLEU: 31.7, chr-F: 0.438 testset: URL, BLEU: 30.6, chr-F: 0.479 testset: URL, BLEU: 0.5, chr-F: 0.156 testset: URL, BLEU: 27.5, chr-F: 0.247 testset: URL, BLEU: 16.1, chr-F: 0.330 testset: URL, BLEU: 4.0, chr-F: 0.167 testset: URL, BLEU: 13.2, chr-F: 0.257 testset: URL, BLEU: 6.0, chr-F: 0.241 testset: URL, BLEU: 0.0, chr-F: 0.170 testset: URL, BLEU: 0.0, chr-F: 0.427 testset: URL, BLEU: 0.0, chr-F: 1.000 testset: URL, BLEU: 31.8, chr-F: 0.374 testset: URL, BLEU: 11.5, chr-F: 0.416 testset: URL, BLEU: 15.1, chr-F: 0.348 testset: URL, BLEU: 17.5, chr-F: 0.329 testset: URL, BLEU: 13.1, chr-F: 0.346 testset: URL, BLEU: 12.1, chr-F: 0.306 testset: URL, BLEU: 8.0, chr-F: 0.035 testset: URL, BLEU: 20.8, chr-F: 0.299 testset: URL, BLEU: 13.7, chr-F: 0.355 testset: URL, BLEU: 24.7, chr-F: 0.423 testset: URL, BLEU: 12.7, chr-F: 0.322 testset: URL, BLEU: 7.8, chr-F: 0.288 testset: URL, BLEU: 13.5, chr-F: 0.390 testset: URL, BLEU: 32.0, chr-F: 0.490 testset: URL, BLEU: 5.0, chr-F: 0.135 testset: URL, BLEU: 18.0, chr-F: 0.403 testset: URL, BLEU: 16.9, chr-F: 0.377 testset: URL, BLEU: 0.0, chr-F: 0.077 testset: URL, BLEU: 2.4, chr-F: 0.328 testset: URL, BLEU: 0.0, chr-F: 0.673 testset: URL, BLEU: 2.5, chr-F: 0.139 testset: URL, BLEU: 24.5, chr-F: 0.458 testset: URL, BLEU: 13.3, chr-F: 0.324 testset: URL, BLEU: 30.4, chr-F: 0.539 testset: URL, BLEU: 30.2, chr-F: 0.448 testset: URL, BLEU: 37.9, chr-F: 0.571 testset: URL, BLEU: 45.8, chr-F: 0.627 testset: URL, BLEU: 31.1, chr-F: 0.561 testset: URL, BLEU: 36.2, chr-F: 0.573 testset: URL, BLEU: 22.7, chr-F: 0.524 testset: URL, BLEU: 47.4, chr-F: 0.674 testset: URL, BLEU: 28.4, chr-F: 0.465 testset: URL, BLEU: 53.2, chr-F: 0.704 testset: URL, BLEU: 1.4, chr-F: 0.140 testset: URL, BLEU: 3.2, chr-F: 0.104 testset: URL, BLEU: 9.9, chr-F: 0.243 testset: URL, BLEU: 6.2, chr-F: 0.269 testset: URL, BLEU: 0.0, chr-F: 0.056 testset: URL, BLEU: 6.6, chr-F: 0.107 testset: URL, BLEU: 12.0, chr-F: 0.356 testset: URL, BLEU: 15.7, chr-F: 0.384 testset: URL, BLEU: 14.8, chr-F: 0.320 testset: URL, BLEU: 4.1, chr-F: 0.292 testset: URL, BLEU: 19.0, chr-F: 0.111 testset: URL, BLEU: 8.4, chr-F: 0.321 testset: URL, BLEU: 0.9, chr-F: 0.064 testset: URL, BLEU: 13.5, chr-F: 0.361 testset: URL, BLEU: 8.2, chr-F: 0.228 testset: URL, BLEU: 31.9, chr-F: 0.610 testset: URL, BLEU: 0.0, chr-F: 0.050 testset: URL, BLEU: 0.5, chr-F: 0.010 testset: URL, BLEU: 4.5, chr-F: 0.206 testset: URL, BLEU: 4.2, chr-F: 0.220 testset: URL, BLEU: 3.9, chr-F: 0.202 testset: URL, BLEU: 16.8, chr-F: 0.389 testset: URL, BLEU: 5.2, chr-F: 0.298 testset: URL, BLEU: 24.7, chr-F: 0.406 testset: URL, BLEU: 0.4, chr-F: 0.137 testset: URL, BLEU: 16.8, chr-F: 0.310 testset: URL, BLEU: 5.4, chr-F: 0.370 testset: URL, BLEU: 4.3, chr-F: 0.170 testset: URL, BLEU: 0.6, chr-F: 0.044 testset: URL, BLEU: 0.1, chr-F: 0.050 testset: URL, BLEU: 0.2, chr-F: 0.064 testset: URL, BLEU: 3.1, chr-F: 0.013 testset: URL, BLEU: 0.2, chr-F: 0.050 testset: URL, BLEU: 2.7, chr-F: 0.155 testset: URL, BLEU: 4.7, chr-F: 0.198 testset: URL, BLEU: 1.9, chr-F: 0.146 testset: URL, BLEU: 12.8, chr-F: 0.234 testset: URL, BLEU: 0.5, chr-F: 0.114 testset: URL, BLEU: 0.8, chr-F: 0.163 testset: URL, BLEU: 2.4, chr-F: 0.141 testset: URL, BLEU: 12.6, chr-F: 0.393 testset: URL, BLEU: 15.9, chr-F: 0.322 testset: URL, BLEU: 19.0, chr-F: 0.308 testset: URL, BLEU: 15.9, chr-F: 0.301 testset: URL, BLEU: 14.7, chr-F: 0.250 testset: URL, BLEU: 38.5, chr-F: 0.522 testset: URL, BLEU: 17.6, chr-F: 0.424 testset: URL, BLEU: 32.0, chr-F: 0.472 testset: URL, BLEU: 31.2, chr-F: 0.496 testset: URL, BLEU: 40.1, chr-F: 0.579 testset: URL, BLEU: 100.0, chr-F: 1.000 testset: URL, BLEU: 27.8, chr-F: 0.543 testset: URL, BLEU: 32.9, chr-F: 0.545 testset: URL, BLEU: 38.6, chr-F: 0.563 testset: URL, BLEU: 2.3, chr-F: 0.299 testset: URL, BLEU: 33.3, chr-F: 0.548 testset: URL, BLEU: 37.9, chr-F: 0.602 testset: URL, BLEU: 9.8, chr-F: 0.289 testset: URL, BLEU: 38.0, chr-F: 0.718 testset: URL, BLEU: 31.8, chr-F: 0.528 testset: URL, BLEU: 31.7, chr-F: 0.548 testset: URL, BLEU: 28.1, chr-F: 0.484 testset: URL, BLEU: 38.9, chr-F: 0.596 testset: URL, BLEU: 38.6, chr-F: 0.589 testset: URL, BLEU: 100.0, chr-F: 1.000 testset: URL, BLEU: 36.0, chr-F: 0.557 testset: URL, BLEU: 8.1, chr-F: 0.441 testset: URL, BLEU: 8.9, chr-F: 0.439 testset: URL, BLEU: 8.8, chr-F: 0.288 testset: URL, BLEU: 26.1, chr-F: 0.414 testset: URL, BLEU: 25.5, chr-F: 0.440 testset: URL, BLEU: 30.1, chr-F: 0.449 testset: URL, BLEU: 12.6, chr-F: 0.412 testset: URL, BLEU: 9.9, chr-F: 0.416 testset: URL, BLEU: 8.4, chr-F: 0.289 testset: URL, BLEU: 21.2, chr-F: 0.395 testset: URL, BLEU: 25.9, chr-F: 0.384 testset: URL, BLEU: 100.0, chr-F: 1.000 testset: URL, BLEU: 10.4, chr-F: 0.376 testset: URL, BLEU: 18.1, chr-F: 0.373 testset: URL, BLEU: 24.4, chr-F: 0.467 testset: URL, BLEU: 42.9, chr-F: 0.583 testset: URL, BLEU: 19.5, chr-F: 0.444 testset: URL, BLEU: 11.6, chr-F: 0.323 testset: URL, BLEU: 22.1, chr-F: 0.398 testset: URL, BLEU: 32.1, chr-F: 0.386 testset: URL, BLEU: 21.9, chr-F: 0.407 testset: URL, BLEU: 29.3, chr-F: 0.476 testset: URL, BLEU: 40.5, chr-F: 0.708 testset: URL, BLEU: 0.0, chr-F: 0.034 testset: URL, BLEU: 38.1, chr-F: 0.582 testset: URL, BLEU: 31.8, chr-F: 0.511 testset: URL, BLEU: 29.8, chr-F: 0.483 testset: URL, BLEU: 39.8, chr-F: 0.336 testset: URL, BLEU: 26.3, chr-F: 0.441 testset: URL, BLEU: 27.3, chr-F: 0.469 testset: URL, BLEU: 1.9, chr-F: 0.047 testset: URL, BLEU: 28.9, chr-F: 0.501 testset: URL, BLEU: 2.6, chr-F: 0.135 testset: URL, BLEU: 59.6, chr-F: 0.740 testset: URL, BLEU: 0.1, chr-F: 0.012 testset: URL, BLEU: 40.2, chr-F: 0.566 testset: URL, BLEU: 19.7, chr-F: 0.358 testset: URL, BLEU: 17.4, chr-F: 0.465 testset: URL, BLEU: 18.0, chr-F: 0.386 testset: URL, BLEU: 30.7, chr-F: 0.496 testset: URL, BLEU: 10.7, chr-F: 0.133 testset: URL, BLEU: 38.1, chr-F: 0.539 testset: URL, BLEU: 53.2, chr-F: 0.676 testset: URL, BLEU: 3.8, chr-F: 0.125 testset: URL, BLEU: 3.4, chr-F: 0.252 testset: URL, BLEU: 24.2, chr-F: 0.460 testset: URL, BLEU: 12.1, chr-F: 0.427 testset: URL, BLEU: 4.7, chr-F: 0.287 testset: URL, BLEU: 27.8, chr-F: 0.482 testset: URL, BLEU: 40.6, chr-F: 0.608 testset: URL, BLEU: 23.1, chr-F: 0.450 testset: URL, BLEU: 0.8, chr-F: 0.060 testset: URL, BLEU: 10.1, chr-F: 0.375 testset: URL, BLEU: 38.9, chr-F: 0.577 testset: URL, BLEU: 31.7, chr-F: 0.539 testset: URL, BLEU: 0.2, chr-F: 0.061 testset: URL, BLEU: 31.5, chr-F: 0.539 testset: URL, BLEU: 47.4, chr-F: 0.633 testset: URL, BLEU: 6.4, chr-F: 0.247 testset: URL, BLEU: 4.2, chr-F: 0.236 testset: URL, BLEU: 46.6, chr-F: 0.642 testset: URL, BLEU: 20.0, chr-F: 0.409 testset: URL, BLEU: 7.8, chr-F: 0.312 testset: URL, BLEU: 36.3, chr-F: 0.577 testset: URL, BLEU: 1.1, chr-F: 0.030 testset: URL, BLEU: 39.4, chr-F: 0.595 testset: URL, BLEU: 18.5, chr-F: 0.408 testset: URL, BLEU: 1.9, chr-F: 0.160 testset: URL, BLEU: 1.0, chr-F: 0.178 testset: URL, BLEU: 7.1, chr-F: 0.320 testset: URL, BLEU: 29.0, chr-F: 0.511 testset: URL, BLEU: 0.2, chr-F: 0.107 testset: URL, BLEU: 20.7, chr-F: 0.475 testset: URL, BLEU: 20.6, chr-F: 0.373 testset: URL, BLEU: 14.3, chr-F: 0.409 testset: URL, BLEU: 13.3, chr-F: 0.378 testset: URL, BLEU: 37.8, chr-F: 0.578 testset: URL, BLEU: 35.7, chr-F: 0.578 testset: URL, BLEU: 11.0, chr-F: 0.369 testset: URL, BLEU: 1.2, chr-F: 0.010 testset: URL, BLEU: 0.2, chr-F: 0.110 testset: URL, BLEU: 25.9, chr-F: 0.507 testset: URL, BLEU: 36.8, chr-F: 0.597 testset: URL, BLEU: 34.3, chr-F: 0.574 testset: URL, BLEU: 28.5, chr-F: 0.494 testset: URL, BLEU: 11.7, chr-F: 0.364 testset: URL, BLEU: 46.3, chr-F: 0.653 testset: URL, BLEU: 21.9, chr-F: 0.418 testset: URL, BLEU: 37.7, chr-F: 0.562 testset: URL, BLEU: 33.1, chr-F: 0.538 testset: URL, BLEU: 0.8, chr-F: 0.095 testset: URL, BLEU: 10.3, chr-F: 0.280 testset: URL, BLEU: 3.9, chr-F: 0.098 testset: URL, BLEU: 5.0, chr-F: 0.217 testset: URL, BLEU: 12.2, chr-F: 0.357 testset: URL, BLEU: 4.1, chr-F: 0.237 testset: URL, BLEU: 5.3, chr-F: 0.299 testset: URL, BLEU: 15.3, chr-F: 0.322 testset: URL, BLEU: 0.0, chr-F: 0.095 testset: URL, BLEU: 11.3, chr-F: 0.272 testset: URL, BLEU: 0.0, chr-F: 0.069 testset: URL, BLEU: 35.4, chr-F: 0.540 testset: URL, BLEU: 24.3, chr-F: 0.509 testset: URL, BLEU: 12.0, chr-F: 0.226 testset: URL, BLEU: 10.0, chr-F: 0.205 testset: URL, BLEU: 5.5, chr-F: 0.048 testset: URL, BLEU: 16.5, chr-F: 0.236 testset: URL, BLEU: 7.6, chr-F: 0.081 testset: URL, BLEU: 1.6, chr-F: 0.013 testset: URL, BLEU: 11.4, chr-F: 0.362 testset: URL, BLEU: 0.2, chr-F: 0.067 testset: URL, BLEU: 6.1, chr-F: 0.240 testset: URL, BLEU: 1.9, chr-F: 0.161 testset: URL, BLEU: 3.3, chr-F: 0.155 testset: URL, BLEU: 31.9, chr-F: 0.184 testset: URL, BLEU: 5.0, chr-F: 0.230 testset: URL, BLEU: 37.0, chr-F: 0.295 testset: URL, BLEU: 1.3, chr-F: 0.184 testset: URL, BLEU: 39.1, chr-F: 0.426 testset: URL, BLEU: 4.3, chr-F: 0.206 testset: URL, BLEU: 2.1, chr-F: 0.164 testset: URL, BLEU: 1.4, chr-F: 0.046 testset: URL, BLEU: 9.7, chr-F: 0.330 testset: URL, BLEU: 35.4, chr-F: 0.529 testset: URL, BLEU: 33.1, chr-F: 0.604 testset: URL, BLEU: 15.4, chr-F: 0.325 testset: URL, BLEU: 19.3, chr-F: 0.405 testset: URL, BLEU: 23.1, chr-F: 0.421 testset: URL, BLEU: 2.2, chr-F: 0.173 testset: URL, BLEU: 5.2, chr-F: 0.194 testset: URL, BLEU: 26.3, chr-F: 0.405 testset: URL, BLEU: 0.0, chr-F: 0.170 testset: URL, BLEU: 21.4, chr-F: 0.347 testset: URL, BLEU: 1.2, chr-F: 0.058 testset: URL, BLEU: 22.7, chr-F: 0.479 testset: URL, BLEU: 2.4, chr-F: 0.190 testset: URL, BLEU: 3.4, chr-F: 0.239 testset: URL, BLEU: 45.5, chr-F: 0.580 testset: URL, BLEU: 23.0, chr-F: 0.690 testset: URL, BLEU: 33.5, chr-F: 0.449 testset: URL, BLEU: 66.9, chr-F: 0.951 testset: URL, BLEU: 0.0, chr-F: 0.076 testset: URL, BLEU: 27.5, chr-F: 0.448 testset: URL, BLEU: 78.3, chr-F: 0.693 testset: URL, BLEU: 6.5, chr-F: 0.308 testset: URL, BLEU: 0.0, chr-F: 0.179 testset: URL, BLEU: 59.5, chr-F: 0.602 testset: URL, BLEU: 37.0, chr-F: 0.553 testset: URL, BLEU: 66.9, chr-F: 0.783 testset: URL, BLEU: 8.1, chr-F: 0.282 testset: URL, BLEU: 4.8, chr-F: 0.212 testset: URL, BLEU: 5.0, chr-F: 0.237 testset: URL, BLEU: 100.0, chr-F: 1.000 testset: URL, BLEU: 0.9, chr-F: 0.068 testset: URL, BLEU: 10.6, chr-F: 0.284 testset: URL, BLEU: 27.5, chr-F: 0.481 testset: URL, BLEU: 15.6, chr-F: 0.331 testset: URL, BLEU: 2.9, chr-F: 0.203 testset: URL, BLEU: 29.4, chr-F: 0.479 testset: URL, BLEU: 19.9, chr-F: 0.391 testset: URL, BLEU: 20.5, chr-F: 0.396 testset: URL, BLEU: 1.0, chr-F: 0.082 testset: URL, BLEU: 7.9, chr-F: 0.407 testset: URL, BLEU: 9.3, chr-F: 0.286 testset: URL, BLEU: 7.1, chr-F: 0.192 testset: URL, BLEU: 3.6, chr-F: 0.150 testset: URL, BLEU: 0.2, chr-F: 0.001 testset: URL, BLEU: 15.1, chr-F: 0.322 testset: URL, BLEU: 8.3, chr-F: 0.108 testset: URL, BLEU: 20.7, chr-F: 0.415 testset: URL, BLEU: 7.9, chr-F: 0.260 testset: URL, BLEU: 0.2, chr-F: 0.087 testset: URL, BLEU: 5.6, chr-F: 0.301 testset: URL, BLEU: 10.2, chr-F: 0.352 testset: URL, BLEU: 24.3, chr-F: 0.444 testset: URL, BLEU: 14.5, chr-F: 0.338 testset: URL, BLEU: 0.1, chr-F: 0.006 testset: URL, BLEU: 21.8, chr-F: 0.412 testset: URL, BLEU: 12.2, chr-F: 0.336 testset: URL, BLEU: 12.7, chr-F: 0.343 testset: URL, BLEU: 16.6, chr-F: 0.362 testset: URL, BLEU: 3.2, chr-F: 0.215 testset: URL, BLEU: 18.9, chr-F: 0.414 testset: URL, BLEU: 53.4, chr-F: 0.708 testset: URL, BLEU: 14.0, chr-F: 0.343 testset: URL, BLEU: 2.1, chr-F: 0.182 testset: URL, BLEU: 100.0, chr-F: 1.000 testset: URL, BLEU: 34.5, chr-F: 0.540 testset: URL, BLEU: 33.6, chr-F: 0.520 testset: URL, BLEU: 40.5, chr-F: 0.598 testset: URL, BLEU: 72.7, chr-F: 0.770 testset: URL, BLEU: 30.5, chr-F: 0.570 testset: URL, BLEU: 5.7, chr-F: 0.362 testset: URL, BLEU: 23.5, chr-F: 0.504 testset: URL, BLEU: 13.7, chr-F: 0.550 testset: URL, BLEU: 37.6, chr-F: 0.551 testset: URL, BLEU: 32.5, chr-F: 0.517 testset: URL, BLEU: 8.6, chr-F: 0.483 testset: URL, BLEU: 26.6, chr-F: 0.511 testset: URL, BLEU: 95.1, chr-F: 0.958 testset: URL, BLEU: 9.0, chr-F: 0.488 testset: URL, BLEU: 6.8, chr-F: 0.251 testset: URL, BLEU: 12.2, chr-F: 0.329 testset: URL, BLEU: 10.4, chr-F: 0.366 testset: URL, BLEU: 25.7, chr-F: 0.472 testset: URL, BLEU: 37.5, chr-F: 0.551 testset: URL, BLEU: 32.1, chr-F: 0.489 testset: URL, BLEU: 22.3, chr-F: 0.460 testset: URL, BLEU: 7.4, chr-F: 0.195 testset: URL, BLEU: 22.6, chr-F: 0.378 testset: URL, BLEU: 9.7, chr-F: 0.282 testset: URL, BLEU: 7.2, chr-F: 0.374 testset: URL, BLEU: 30.9, chr-F: 0.529 testset: URL, BLEU: 25.0, chr-F: 0.439 testset: URL, BLEU: 30.6, chr-F: 0.504 testset: URL, BLEU: 8.6, chr-F: 0.331 testset: URL, BLEU: 32.9, chr-F: 0.516 testset: URL, BLEU: 19.6, chr-F: 0.371 testset: URL, BLEU: 6.5, chr-F: 0.360 testset: URL, BLEU: 13.7, chr-F: 0.310 testset: URL, BLEU: 13.1, chr-F: 0.368 testset: URL, BLEU: 3.4, chr-F: 0.064 testset: URL, BLEU: 9.3, chr-F: 0.351 testset: URL, BLEU: 22.3, chr-F: 0.323 testset: URL, BLEU: 10.9, chr-F: 0.333 testset: URL, BLEU: 49.5, chr-F: 0.589 testset: URL, BLEU: 0.0, chr-F: 0.051 testset: URL, BLEU: 9.7, chr-F: 0.353 testset: URL, BLEU: 65.1, chr-F: 0.463 testset: URL, BLEU: 35.6, chr-F: 0.533 testset: URL, BLEU: 33.7, chr-F: 0.448 testset: URL, BLEU: 24.3, chr-F: 0.451 testset: URL, BLEU: 23.4, chr-F: 0.621 testset: URL, BLEU: 0.5, chr-F: 0.104 testset: URL, BLEU: 14.2, chr-F: 0.412 testset: URL, BLEU: 7.8, chr-F: 0.179 testset: URL, BLEU: 7.6, chr-F: 0.106 testset: URL, BLEU: 32.4, chr-F: 0.488 testset: URL, BLEU: 27.8, chr-F: 0.599 testset: URL, BLEU: 12.7, chr-F: 0.319 testset: URL, BLEU: 18.0, chr-F: 0.392 testset: URL, BLEU: 15.6, chr-F: 0.458 testset: URL, BLEU: 0.6, chr-F: 0.065 testset: URL, BLEU: 32.5, chr-F: 0.403 testset: URL, BLEU: 1.4, chr-F: 0.236 testset: URL, BLEU: 49.8, chr-F: 0.429 testset: URL, BLEU: 18.6, chr-F: 0.460 testset: URL, BLEU: 5.1, chr-F: 0.230 testset: URL, BLEU: 14.2, chr-F: 0.379 testset: URL, BLEU: 20.0, chr-F: 0.422 testset: URL, BLEU: 40.7, chr-F: 0.470 testset: URL, BLEU: 7.3, chr-F: 0.407 testset: URL, BLEU: 35.4, chr-F: 0.638 testset: URL, BLEU: 49.0, chr-F: 0.615 testset: URL, BLEU: 42.7, chr-F: 0.655 testset: URL, BLEU: 9.7, chr-F: 0.362 testset: URL, BLEU: 61.6, chr-F: 0.819 testset: URL, BLEU: 15.0, chr-F: 0.506 testset: URL, BLEU: 31.0, chr-F: 0.548 testset: URL, BLEU: 35.8, chr-F: 0.524 testset: URL, BLEU: 30.2, chr-F: 0.486 testset: URL, BLEU: 32.5, chr-F: 0.589 testset: URL, BLEU: 16.6, chr-F: 0.557 testset: URL, BLEU: 11.6, chr-F: 0.395 testset: URL, BLEU: 42.7, chr-F: 0.680 testset: URL, BLEU: 53.7, chr-F: 0.833 testset: URL, BLEU: 10.1, chr-F: 0.492 testset: URL, BLEU: 9.7, chr-F: 0.196 testset: URL, BLEU: 24.7, chr-F: 0.727 testset: URL, BLEU: 43.2, chr-F: 0.601 testset: URL, BLEU: 23.6, chr-F: 0.361 testset: URL, BLEU: 42.7, chr-F: 0.864 testset: URL, BLEU: 3.4, chr-F: 0.323 testset: URL, BLEU: 17.1, chr-F: 0.418 testset: URL, BLEU: 1.8, chr-F: 0.199 testset: URL, BLEU: 11.9, chr-F: 0.258 testset: URL, BLEU: 3.4, chr-F: 0.115 testset: URL, BLEU: 0.0, chr-F: 0.000 testset: URL, BLEU: 23.5, chr-F: 0.470 testset: URL, BLEU: 19.7, chr-F: 0.490 testset: URL, BLEU: 27.8, chr-F: 0.472 testset: URL, BLEU: 2.0, chr-F: 0.232 testset: URL, BLEU: 5.9, chr-F: 0.241 testset: URL, BLEU: 25.9, chr-F: 0.465 testset: URL, BLEU: 1.7, chr-F: 0.195 testset: URL, BLEU: 3.4, chr-F: 0.228 testset: URL, BLEU: 23.4, chr-F: 0.481 testset: URL, BLEU: 11.5, chr-F: 0.304 testset: URL, BLEU: 5.8, chr-F: 0.243 testset: URL, BLEU: 20.9, chr-F: 0.442 testset: URL, BLEU: 14.8, chr-F: 0.431 testset: URL, BLEU: 83.8, chr-F: 0.946 testset: URL, BLEU: 9.1, chr-F: 0.349 testset: URL, BLEU: 15.4, chr-F: 0.385 testset: URL, BLEU: 3.4, chr-F: 0.195 testset: URL, BLEU: 18.8, chr-F: 0.401 testset: URL, BLEU: 0.0, chr-F: 0.056 testset: URL, BLEU: 22.6, chr-F: 0.451 testset: URL, BLEU: 5.7, chr-F: 0.267 testset: URL, BLEU: 8.0, chr-F: 0.102 testset: URL, BLEU: 30.8, chr-F: 0.509 testset: URL, BLEU: 22.8, chr-F: 0.416 testset: URL, BLEU: 7.0, chr-F: 0.321 testset: URL, BLEU: 35.4, chr-F: 0.561 testset: URL, BLEU: 42.7, chr-F: 0.835 testset: URL, BLEU: 38.3, chr-F: 0.491 testset: URL, BLEU: 18.5, chr-F: 0.399 testset: URL, BLEU: 32.6, chr-F: 0.552 testset: URL, BLEU: 18.1, chr-F: 0.426 testset: URL, BLEU: 28.9, chr-F: 0.480 testset: URL, BLEU: 6.9, chr-F: 0.198 testset: URL, BLEU: 6.6, chr-F: 0.187 testset: URL, BLEU: 31.9, chr-F: 0.498 testset: URL, BLEU: 0.5, chr-F: 0.000 testset: URL, BLEU: 0.0, chr-F: 0.023 testset: URL, BLEU: 1.2, chr-F: 0.148 testset: URL, BLEU: 28.5, chr-F: 0.505 testset: URL, BLEU: 7.8, chr-F: 0.164 testset: URL, BLEU: 38.2, chr-F: 0.584 testset: URL, BLEU: 42.8, chr-F: 0.612 testset: URL, BLEU: 15.3, chr-F: 0.405 testset: URL, BLEU: 26.0, chr-F: 0.447 testset: URL, BLEU: 0.0, chr-F: 0.353 testset: URL, BLEU: 24.3, chr-F: 0.440 testset: URL, BLEU: 31.7, chr-F: 0.527 testset: URL, BLEU: 0.1, chr-F: 0.080 testset: URL, BLEU: 20.1, chr-F: 0.464 testset: URL, BLEU: 42.8, chr-F: 0.365 testset: URL, BLEU: 2.1, chr-F: 0.161 testset: URL, BLEU: 50.1, chr-F: 0.670 testset: URL, BLEU: 42.7, chr-F: 0.835 testset: URL, BLEU: 17.5, chr-F: 0.410 testset: URL, BLEU: 3.2, chr-F: 0.189 testset: URL, BLEU: 28.7, chr-F: 0.468 testset: URL, BLEU: 31.9, chr-F: 0.546 testset: URL, BLEU: 24.4, chr-F: 0.504 testset: URL, BLEU: 0.6, chr-F: 0.048 testset: URL, BLEU: 49.1, chr-F: 0.660 testset: URL, BLEU: 38.3, chr-F: 0.589 testset: URL, BLEU: 0.2, chr-F: 0.084 testset: URL, BLEU: 35.3, chr-F: 0.528 testset: URL, BLEU: 42.4, chr-F: 0.602 testset: URL, BLEU: 6.1, chr-F: 0.269 testset: URL, BLEU: 18.6, chr-F: 0.459 testset: URL, BLEU: 35.7, chr-F: 0.549 testset: URL, BLEU: 2.8, chr-F: 0.099 testset: URL, BLEU: 19.2, chr-F: 0.438 testset: URL, BLEU: 35.0, chr-F: 0.576 testset: URL, BLEU: 0.5, chr-F: 0.129 testset: URL, BLEU: 26.8, chr-F: 0.418 testset: URL, BLEU: 35.3, chr-F: 0.580 testset: URL, BLEU: 4.2, chr-F: 0.147 testset: URL, BLEU: 0.7, chr-F: 0.101 testset: URL, BLEU: 6.7, chr-F: 0.314 testset: URL, BLEU: 17.6, chr-F: 0.384 testset: URL, BLEU: 0.0, chr-F: 0.238 testset: URL, BLEU: 3.6, chr-F: 0.210 testset: URL, BLEU: 15.9, chr-F: 0.405 testset: URL, BLEU: 42.4, chr-F: 0.618 testset: URL, BLEU: 9.0, chr-F: 0.306 testset: URL, BLEU: 38.9, chr-F: 0.531 testset: URL, BLEU: 25.8, chr-F: 0.498 testset: URL, BLEU: 31.7, chr-F: 0.535 testset: URL, BLEU: 26.6, chr-F: 0.495 testset: URL, BLEU: 30.0, chr-F: 0.512 testset: URL, BLEU: 4.3, chr-F: 0.299 testset: URL, BLEU: 35.0, chr-F: 0.560 testset: URL, BLEU: 1.6, chr-F: 0.201 testset: URL, BLEU: 72.2, chr-F: 0.801 testset: URL, BLEU: 5.0, chr-F: 0.129 testset: URL, BLEU: 26.2, chr-F: 0.481 testset: URL, BLEU: 3.5, chr-F: 0.133 testset: URL, BLEU: 11.5, chr-F: 0.293 testset: URL, BLEU: 30.3, chr-F: 0.471 testset: URL, BLEU: 90.1, chr-F: 0.839 testset: URL, BLEU: 50.0, chr-F: 0.638 testset: URL, BLEU: 42.2, chr-F: 0.467 testset: URL, BLEU: 3.2, chr-F: 0.188 testset: URL, BLEU: 35.4, chr-F: 0.529 testset: URL, BLEU: 38.0, chr-F: 0.627 testset: URL, BLEU: 3.2, chr-F: 0.072 testset: URL, BLEU: 14.7, chr-F: 0.465 testset: URL, BLEU: 59.0, chr-F: 0.757 testset: URL, BLEU: 32.4, chr-F: 0.560 testset: URL, BLEU: 29.9, chr-F: 0.507 testset: URL, BLEU: 40.8, chr-F: 0.585 testset: URL, BLEU: 4.2, chr-F: 0.303 testset: URL, BLEU: 10.0, chr-F: 0.345 testset: URL, BLEU: 38.4, chr-F: 0.572 testset: URL, BLEU: 18.7, chr-F: 0.375 testset: URL, BLEU: 10.7, chr-F: 0.015 testset: URL, BLEU: 21.7, chr-F: 0.465 testset: URL, BLEU: 14.8, chr-F: 0.307 testset: URL, BLEU: 23.2, chr-F: 0.445 testset: URL, BLEU: 35.2, chr-F: 0.594 testset: URL, BLEU: 10.7, chr-F: 0.037 testset: URL, BLEU: 6.6, chr-F: 0.370 testset: URL, BLEU: 3.6, chr-F: 0.261 testset: URL, BLEU: 12.2, chr-F: 0.404 testset: URL, BLEU: 8.0, chr-F: 0.442 testset: URL, BLEU: 20.3, chr-F: 0.466 testset: URL, BLEU: 39.1, chr-F: 0.598 testset: URL, BLEU: 49.0, chr-F: 0.698 testset: URL, BLEU: 26.3, chr-F: 0.515 testset: URL, BLEU: 31.0, chr-F: 0.543 testset: URL, BLEU: 28.0, chr-F: 0.475 testset: URL, BLEU: 28.1, chr-F: 0.513 testset: URL, BLEU: 1.2, chr-F: 0.193 testset: URL, BLEU: 38.2, chr-F: 0.598 testset: URL, BLEU: 58.8, chr-F: 0.741 testset: URL, BLEU: 29.1, chr-F: 0.515 testset: URL, BLEU: 42.6, chr-F: 0.473 testset: URL, BLEU: 11.2, chr-F: 0.346 testset: URL, BLEU: 13.4, chr-F: 0.331 testset: URL, BLEU: 5.3, chr-F: 0.206 testset: URL, BLEU: 19.6, chr-F: 0.423 testset: URL, BLEU: 24.5, chr-F: 0.493 testset: URL, BLEU: 22.5, chr-F: 0.408 testset: URL, BLEU: 8.8, chr-F: 0.322 testset: URL, BLEU: 16.4, chr-F: 0.387 testset: URL, BLEU: 20.4, chr-F: 0.442 testset: URL, BLEU: 66.9, chr-F: 0.968 testset: URL, BLEU: 3.9, chr-F: 0.168 testset: URL, BLEU: 9.1, chr-F: 0.175 testset: URL, BLEU: 5.8, chr-F: 0.256 testset: URL, BLEU: 8.4, chr-F: 0.243 testset: URL, BLEU: 8.9, chr-F: 0.244 testset: URL, BLEU: 8.1, chr-F: 0.297 testset: URL, BLEU: 1.2, chr-F: 0.207 testset: URL, BLEU: 11.6, chr-F: 0.338 testset: URL, BLEU: 8.2, chr-F: 0.234 testset: URL, BLEU: 7.8, chr-F: 0.331 testset: URL, BLEU: 6.4, chr-F: 0.217 testset: URL, BLEU: 5.8, chr-F: 0.230 testset: URL, BLEU: 10.8, chr-F: 0.279 testset: URL, BLEU: 6.0, chr-F: 0.225 testset: URL, BLEU: 6.1, chr-F: 0.256 testset: URL, BLEU: 0.0, chr-F: 0.626 testset: URL, BLEU: 45.7, chr-F: 0.586 testset: URL, BLEU: 43.9, chr-F: 0.589 testset: URL, BLEU: 0.0, chr-F: 0.347 testset: URL, BLEU: 41.9, chr-F: 0.587 testset: URL, BLEU: 14.4, chr-F: 0.365 testset: URL, BLEU: 5.8, chr-F: 0.274 testset: URL, BLEU: 33.0, chr-F: 0.474 testset: URL, BLEU: 36.1, chr-F: 0.479 testset: URL, BLEU: 0.7, chr-F: 0.026 testset: URL, BLEU: 13.1, chr-F: 0.310 testset: URL, BLEU: 8.8, chr-F: 0.296 testset: URL, BLEU: 13.0, chr-F: 0.309 testset: URL, BLEU: 10.0, chr-F: 0.327 testset: URL, BLEU: 15.2, chr-F: 0.304 testset: URL, BLEU: 10.4, chr-F: 0.352 testset: URL, BLEU: 40.2, chr-F: 0.589 testset: URL, BLEU: 24.8, chr-F: 0.503 testset: URL, BLEU: 29.4, chr-F: 0.508 testset: URL, BLEU: 20.3, chr-F: 0.416 testset: URL, BLEU: 28.0, chr-F: 0.489 testset: URL, BLEU: 1.3, chr-F: 0.052 testset: URL, BLEU: 7.0, chr-F: 0.347 testset: URL, BLEU: 37.0, chr-F: 0.551 testset: URL, BLEU: 29.1, chr-F: 0.508 testset: URL, BLEU: 0.8, chr-F: 0.070 testset: URL, BLEU: 32.3, chr-F: 0.519 testset: URL, BLEU: 34.1, chr-F: 0.531 testset: URL, BLEU: 1.2, chr-F: 0.234 testset: URL, BLEU: 6.5, chr-F: 0.208 testset: URL, BLEU: 30.8, chr-F: 0.510 testset: URL, BLEU: 7.2, chr-F: 0.287 testset: URL, BLEU: 14.6, chr-F: 0.301 testset: URL, BLEU: 18.4, chr-F: 0.498 testset: URL, BLEU: 31.8, chr-F: 0.546 testset: URL, BLEU: 3.5, chr-F: 0.193 testset: URL, BLEU: 11.4, chr-F: 0.336 testset: URL, BLEU: 28.5, chr-F: 0.522 testset: URL, BLEU: 2.6, chr-F: 0.134 testset: URL, BLEU: 16.0, chr-F: 0.265 testset: URL, BLEU: 7.2, chr-F: 0.311 testset: URL, BLEU: 22.9, chr-F: 0.450 testset: URL, BLEU: 21.2, chr-F: 0.493 testset: URL, BLEU: 38.0, chr-F: 0.718 testset: URL, BLEU: 2.2, chr-F: 0.173 testset: URL, BLEU: 14.4, chr-F: 0.370 testset: URL, BLEU: 30.6, chr-F: 0.501 testset: URL, BLEU: 33.3, chr-F: 0.536 testset: URL, BLEU: 4.0, chr-F: 0.282 testset: URL, BLEU: 0.4, chr-F: 0.005 testset: URL, BLEU: 1.3, chr-F: 0.032 testset: URL, BLEU: 25.9, chr-F: 0.491 testset: URL, BLEU: 0.0, chr-F: 0.083 testset: URL, BLEU: 26.5, chr-F: 0.487 testset: URL, BLEU: 34.7, chr-F: 0.550 testset: URL, BLEU: 7.4, chr-F: 0.256 testset: URL, BLEU: 30.7, chr-F: 0.516 testset: URL, BLEU: 35.0, chr-F: 0.530 testset: URL, BLEU: 32.8, chr-F: 0.538 testset: URL, BLEU: 5.6, chr-F: 0.381 testset: URL, BLEU: 4.8, chr-F: 0.146 testset: URL, BLEU: 48.1, chr-F: 0.653 testset: URL, BLEU: 8.4, chr-F: 0.213 testset: URL, BLEU: 42.7, chr-F: 0.835 testset: URL, BLEU: 9.7, chr-F: 0.539 testset: URL, BLEU: 41.5, chr-F: 0.569 testset: URL, BLEU: 36.9, chr-F: 0.612 testset: URL, BLEU: 29.0, chr-F: 0.526 testset: URL, BLEU: 0.8, chr-F: 0.049 testset: URL, BLEU: 51.4, chr-F: 0.668 testset: URL, BLEU: 30.8, chr-F: 0.532 testset: URL, BLEU: 33.8, chr-F: 0.556 testset: URL, BLEU: 44.5, chr-F: 0.622 testset: URL, BLEU: 10.7, chr-F: 0.190 testset: URL, BLEU: 4.5, chr-F: 0.273 testset: URL, BLEU: 43.0, chr-F: 0.625 testset: URL, BLEU: 8.9, chr-F: 0.365 testset: URL, BLEU: 16.0, chr-F: 0.079 testset: URL, BLEU: 12.1, chr-F: 0.315 testset: URL, BLEU: 49.2, chr-F: 0.700 testset: URL, BLEU: 0.1, chr-F: 0.004 testset: URL, BLEU: 39.2, chr-F: 0.575 testset: URL, BLEU: 15.5, chr-F: 0.387 testset: URL, BLEU: 39.9, chr-F: 0.637 testset: URL, BLEU: 3.0, chr-F: 0.133 testset: URL, BLEU: 0.6, chr-F: 0.172 testset: URL, BLEU: 5.4, chr-F: 0.325 testset: URL, BLEU: 18.8, chr-F: 0.418 testset: URL, BLEU: 16.8, chr-F: 0.569 testset: URL, BLEU: 27.3, chr-F: 0.571 testset: URL, BLEU: 7.6, chr-F: 0.327 testset: URL, BLEU: 30.5, chr-F: 0.559 testset: URL, BLEU: 14.2, chr-F: 0.370 testset: URL, BLEU: 35.6, chr-F: 0.558 testset: URL, BLEU: 38.0, chr-F: 0.587 testset: URL, BLEU: 25.5, chr-F: 0.510 testset: URL, BLEU: 5.5, chr-F: 0.058 testset: URL, BLEU: 32.0, chr-F: 0.557 testset: URL, BLEU: 26.8, chr-F: 0.493 testset: URL, BLEU: 48.7, chr-F: 0.686 testset: URL, BLEU: 43.4, chr-F: 0.612 testset: URL, BLEU: 27.5, chr-F: 0.500 testset: URL, BLEU: 9.3, chr-F: 0.293 testset: URL, BLEU: 2.2, chr-F: 0.183 testset: URL, BLEU: 1.3, chr-F: 0.179 testset: URL, BLEU: 2.3, chr-F: 0.183 testset: URL, BLEU: 0.5, chr-F: 0.173 testset: URL, BLEU: 3.4, chr-F: 0.200 testset: URL, BLEU: 1.6, chr-F: 0.166 testset: URL, BLEU: 8.3, chr-F: 0.311 testset: URL, BLEU: 9.5, chr-F: 0.361 testset: URL, BLEU: 8.8, chr-F: 0.415 testset: URL, BLEU: 21.4, chr-F: 0.347 testset: URL, BLEU: 13.3, chr-F: 0.434 testset: URL, BLEU: 2.9, chr-F: 0.204 testset: URL, BLEU: 5.3, chr-F: 0.243 testset: URL, BLEU: 6.5, chr-F: 0.194 testset: URL, BLEU: 30.2, chr-F: 0.667 testset: URL, BLEU: 35.4, chr-F: 0.493 testset: URL, BLEU: 23.6, chr-F: 0.542 testset: URL, BLEU: 10.6, chr-F: 0.344 testset: URL, BLEU: 12.7, chr-F: 0.652 testset: URL, BLEU: 32.1, chr-F: 0.524 testset: URL, BLEU: 38.4, chr-F: 0.566 testset: URL, BLEU: 5.3, chr-F: 0.351 testset: URL, BLEU: 7.3, chr-F: 0.338 testset: URL, BLEU: 38.0, chr-F: 0.571 testset: URL, BLEU: 10.7, chr-F: 0.116 testset: URL, BLEU: 36.2, chr-F: 0.587 testset: URL, BLEU: 2.4, chr-F: 0.233 testset: URL, BLEU: 6.5, chr-F: 0.368 testset: URL, BLEU: 27.5, chr-F: 0.484 testset: URL, BLEU: 0.8, chr-F: 0.082 testset: URL, BLEU: 9.7, chr-F: 0.168 testset: URL, BLEU: 32.5, chr-F: 0.522 testset: URL, BLEU: 45.2, chr-F: 0.656 testset: URL, BLEU: 32.2, chr-F: 0.554 testset: URL, BLEU: 33.6, chr-F: 0.577 testset: URL, BLEU: 33.3, chr-F: 0.536 testset: URL, BLEU: 19.0, chr-F: 0.113 testset: URL, BLEU: 40.8, chr-F: 0.605 testset: URL, BLEU: 12.7, chr-F: 0.288 testset: URL, BLEU: 19.7, chr-F: 0.285 testset: URL, BLEU: 18.7, chr-F: 0.359 testset: URL, BLEU: 30.1, chr-F: 0.455 testset: URL, BLEU: 34.7, chr-F: 0.540 testset: URL, BLEU: 0.0, chr-F: 0.042 testset: URL, BLEU: 42.7, chr-F: 0.835 testset: URL, BLEU: 35.0, chr-F: 0.587 testset: URL, BLEU: 30.8, chr-F: 0.534 testset: URL, BLEU: 27.9, chr-F: 0.512 testset: URL, BLEU: 33.8, chr-F: 0.537 testset: URL, BLEU: 0.4, chr-F: 0.038 testset: URL, BLEU: 7.6, chr-F: 0.384 testset: URL, BLEU: 37.9, chr-F: 0.559 testset: URL, BLEU: 31.3, chr-F: 0.528 testset: URL, BLEU: 16.0, chr-F: 0.060 testset: URL, BLEU: 29.0, chr-F: 0.512 testset: URL, BLEU: 37.6, chr-F: 0.553 testset: URL, BLEU: 1.6, chr-F: 0.138 testset: URL, BLEU: 4.2, chr-F: 0.278 testset: URL, BLEU: 33.0, chr-F: 0.524 testset: URL, BLEU: 16.3, chr-F: 0.308 testset: URL, BLEU: 10.7, chr-F: 0.045 testset: URL, BLEU: 22.3, chr-F: 0.427 testset: URL, BLEU: 5.9, chr-F: 0.310 testset: URL, BLEU: 20.6, chr-F: 0.459 testset: URL, BLEU: 1.5, chr-F: 0.152 testset: URL, BLEU: 31.0, chr-F: 0.546 testset: URL, BLEU: 5.5, chr-F: 0.326 testset: URL, BLEU: 12.7, chr-F: 0.365 testset: URL, BLEU: 9.0, chr-F: 0.320 testset: URL, BLEU: 26.6, chr-F: 0.495 testset: URL, BLEU: 5.6, chr-F: 0.210 testset: URL, BLEU: 1.0, chr-F: 0.169 testset: URL, BLEU: 7.9, chr-F: 0.328 testset: URL, BLEU: 31.1, chr-F: 0.519 testset: URL, BLEU: 22.0, chr-F: 0.489 testset: URL, BLEU: 19.4, chr-F: 0.263 testset: URL, BLEU: 19.0, chr-F: 0.217 testset: URL, BLEU: 38.5, chr-F: 0.662 testset: URL, BLEU: 6.6, chr-F: 0.305 testset: URL, BLEU: 11.5, chr-F: 0.350 testset: URL, BLEU: 31.1, chr-F: 0.517 testset: URL, BLEU: 31.2, chr-F: 0.528 testset: URL, BLEU: 4.9, chr-F: 0.261 testset: URL, BLEU: 7.3, chr-F: 0.325 testset: URL, BLEU: 0.0, chr-F: 0.008 testset: URL, BLEU: 4.8, chr-F: 0.198 testset: URL, BLEU: 31.3, chr-F: 0.540 testset: URL, BLEU: 24.5, chr-F: 0.476 testset: URL, BLEU: 25.7, chr-F: 0.492 testset: URL, BLEU: 20.7, chr-F: 0.400 testset: URL, BLEU: 30.9, chr-F: 0.526 testset: URL, BLEU: 32.0, chr-F: 0.507 testset: URL, BLEU: 41.1, chr-F: 0.622 testset: URL, BLEU: 7.1, chr-F: 0.367 testset: URL, BLEU: 4.7, chr-F: 0.253 testset: URL, BLEU: 2.5, chr-F: 0.167 testset: URL, BLEU: 11.7, chr-F: 0.217 testset: URL, BLEU: 3.9, chr-F: 0.224 testset: URL, BLEU: 40.7, chr-F: 0.420 testset: URL, BLEU: 2.1, chr-F: 0.134 testset: URL, BLEU: 3.4, chr-F: 0.244 testset: URL, BLEU: 17.2, chr-F: 0.310 testset: URL, BLEU: 32.8, chr-F: 0.524 testset: URL, BLEU: 5.7, chr-F: 0.254 testset: URL, BLEU: 5.3, chr-F: 0.023 testset: URL, BLEU: 3.5, chr-F: 0.237 testset: URL, BLEU: 11.9, chr-F: 0.335 testset: URL, BLEU: 23.7, chr-F: 0.300 testset: URL, BLEU: 0.0, chr-F: 0.146 testset: URL, BLEU: 14.1, chr-F: 0.313 testset: URL, BLEU: 33.2, chr-F: 0.528 testset: URL, BLEU: 33.4, chr-F: 0.518 testset: URL, BLEU: 29.9, chr-F: 0.489 testset: URL, BLEU: 19.5, chr-F: 0.405 testset: URL, BLEU: 28.6, chr-F: 0.499 testset: URL, BLEU: 5.5, chr-F: 0.296 testset: URL, BLEU: 18.0, chr-F: 0.546 testset: URL, BLEU: 18.0, chr-F: 0.452 testset: URL, BLEU: 20.3, chr-F: 0.406 testset: URL, BLEU: 33.1, chr-F: 0.541 testset: URL, BLEU: 12.4, chr-F: 0.348 testset: URL, BLEU: 33.4, chr-F: 0.519 testset: URL, BLEU: 32.9, chr-F: 0.503 testset: URL, BLEU: 14.8, chr-F: 0.095 testset: URL, BLEU: 30.1, chr-F: 0.471 testset: URL, BLEU: 12.7, chr-F: 0.377 testset: URL, BLEU: 46.9, chr-F: 0.624 testset: URL, BLEU: 1.1, chr-F: 0.143 testset: URL, BLEU: 21.6, chr-F: 0.446 testset: URL, BLEU: 28.1, chr-F: 0.526 testset: URL, BLEU: 22.8, chr-F: 0.466 testset: URL, BLEU: 16.9, chr-F: 0.442 testset: URL, BLEU: 30.8, chr-F: 0.510 testset: URL, BLEU: 49.1, chr-F: 0.696 testset: URL, BLEU: 27.2, chr-F: 0.497 testset: URL, BLEU: 0.5, chr-F: 0.049 testset: URL, BLEU: 5.3, chr-F: 0.204 testset: URL, BLEU: 22.4, chr-F: 0.476 testset: URL, BLEU: 39.3, chr-F: 0.581 testset: URL, BLEU: 30.9, chr-F: 0.531 testset: URL, BLEU: 0.7, chr-F: 0.109 testset: URL, BLEU: 0.9, chr-F: 0.060 testset: URL, BLEU: 28.9, chr-F: 0.487 testset: URL, BLEU: 41.0, chr-F: 0.595 testset: URL, BLEU: 13.9, chr-F: 0.188 testset: URL, BLEU: 7.9, chr-F: 0.244 testset: URL, BLEU: 41.4, chr-F: 0.610 testset: URL, BLEU: 15.8, chr-F: 0.397 testset: URL, BLEU: 7.0, chr-F: 0.060 testset: URL, BLEU: 7.4, chr-F: 0.303 testset: URL, BLEU: 22.2, chr-F: 0.415 testset: URL, BLEU: 48.8, chr-F: 0.683 testset: URL, BLEU: 1.7, chr-F: 0.181 testset: URL, BLEU: 0.3, chr-F: 0.010 testset: URL, BLEU: 0.1, chr-F: 0.005 testset: URL, BLEU: 5.6, chr-F: 0.051 testset: URL, BLEU: 15.0, chr-F: 0.365 testset: URL, BLEU: 19.9, chr-F: 0.409 testset: URL, BLEU: 33.2, chr-F: 0.529 testset: URL, BLEU: 16.1, chr-F: 0.331 testset: URL, BLEU: 5.1, chr-F: 0.240 testset: URL, BLEU: 13.5, chr-F: 0.357 testset: URL, BLEU: 18.0, chr-F: 0.410 testset: URL, BLEU: 42.7, chr-F: 0.646 testset: URL, BLEU: 0.4, chr-F: 0.088 testset: URL, BLEU: 5.6, chr-F: 0.237 testset: URL, BLEU: 0.9, chr-F: 0.157 testset: URL, BLEU: 9.0, chr-F: 0.382 testset: URL, BLEU: 23.7, chr-F: 0.510 testset: URL, BLEU: 22.4, chr-F: 0.477 testset: URL, BLEU: 0.4, chr-F: 0.119 testset: URL, BLEU: 34.1, chr-F: 0.531 testset: URL, BLEU: 29.4, chr-F: 0.416 testset: URL, BLEU: 37.1, chr-F: 0.568 testset: URL, BLEU: 14.0, chr-F: 0.405 testset: URL, BLEU: 15.4, chr-F: 0.390 testset: URL, BLEU: 34.0, chr-F: 0.550 testset: URL, BLEU: 41.1, chr-F: 0.608 testset: URL, BLEU: 8.0, chr-F: 0.353 testset: URL, BLEU: 0.4, chr-F: 0.010 testset: URL, BLEU: 0.2, chr-F: 0.060 testset: URL, BLEU: 0.6, chr-F: 0.122 testset: URL, BLEU: 26.3, chr-F: 0.498 testset: URL, BLEU: 41.6, chr-F: 0.638 testset: URL, BLEU: 0.3, chr-F: 0.095 testset: URL, BLEU: 4.0, chr-F: 0.219 testset: URL, BLEU: 31.9, chr-F: 0.550 testset: URL, BLEU: 0.2, chr-F: 0.013 testset: URL, BLEU: 29.4, chr-F: 0.510 testset: URL, BLEU: 1.6, chr-F: 0.086 testset: URL, BLEU: 16.0, chr-F: 0.111 testset: URL, BLEU: 9.2, chr-F: 0.269 testset: URL, BLEU: 8.4, chr-F: 0.375 testset: URL, BLEU: 39.5, chr-F: 0.572 testset: URL, BLEU: 27.8, chr-F: 0.495 testset: URL, BLEU: 2.9, chr-F: 0.220 testset: URL, BLEU: 10.0, chr-F: 0.296 testset: URL, BLEU: 30.9, chr-F: 0.499 testset: URL, BLEU: 29.9, chr-F: 0.545 testset: URL, BLEU: 24.5, chr-F: 0.484 testset: URL, BLEU: 5.8, chr-F: 0.347 testset: URL, BLEU: 16.7, chr-F: 0.426 testset: URL, BLEU: 8.4, chr-F: 0.370 testset: URL, BLEU: 0.6, chr-F: 0.032 testset: URL, BLEU: 9.3, chr-F: 0.283 testset: URL, BLEU: 0.3, chr-F: 0.126 testset: URL, BLEU: 0.0, chr-F: 0.102 testset: URL, BLEU: 4.0, chr-F: 0.175 testset: URL, BLEU: 13.2, chr-F: 0.398 testset: URL, BLEU: 7.0, chr-F: 0.345 testset: URL, BLEU: 5.0, chr-F: 0.110 testset: URL, BLEU: 63.1, chr-F: 0.831 testset: URL, BLEU: 35.4, chr-F: 0.529 testset: URL, BLEU: 38.5, chr-F: 0.528 testset: URL, BLEU: 32.8, chr-F: 0.380 testset: URL, BLEU: 54.5, chr-F: 0.702 testset: URL, BLEU: 36.7, chr-F: 0.570 testset: URL, BLEU: 32.9, chr-F: 0.541 testset: URL, BLEU: 44.9, chr-F: 0.606 testset: URL, BLEU: 0.0, chr-F: 0.877 testset: URL, BLEU: 43.2, chr-F: 0.605 testset: URL, BLEU: 42.7, chr-F: 0.402 testset: URL, BLEU: 4.8, chr-F: 0.253 testset: URL, BLEU: 39.3, chr-F: 0.591 testset: URL, BLEU: 31.6, chr-F: 0.617 testset: URL, BLEU: 21.2, chr-F: 0.559 testset: URL, BLEU: 33.1, chr-F: 0.548 testset: URL, BLEU: 1.4, chr-F: 0.144 testset: URL, BLEU: 6.6, chr-F: 0.373 testset: URL, BLEU: 4.5, chr-F: 0.453 testset: URL, BLEU: 73.4, chr-F: 0.828 testset: URL, BLEU: 25.5, chr-F: 0.440 testset: URL, BLEU: 0.0, chr-F: 0.124 testset: URL, BLEU: 71.9, chr-F: 0.742 testset: URL, BLEU: 59.5, chr-F: 0.742 testset: URL, BLEU: 25.9, chr-F: 0.497 testset: URL, BLEU: 31.3, chr-F: 0.546 testset: URL, BLEU: 100.0, chr-F: 1.000 testset: URL, BLEU: 28.6, chr-F: 0.495 testset: URL, BLEU: 19.0, chr-F: 0.116 testset: URL, BLEU: 37.1, chr-F: 0.569 testset: URL, BLEU: 13.9, chr-F: 0.336 testset: URL, BLEU: 16.5, chr-F: 0.438 testset: URL, BLEU: 20.1, chr-F: 0.468 testset: URL, BLEU: 8.0, chr-F: 0.316 testset: URL, BLEU: 13.0, chr-F: 0.300 testset: URL, BLEU: 15.3, chr-F: 0.296 testset: URL, BLEU: 0.9, chr-F: 0.199 testset: URL, BLEU: 4.9, chr-F: 0.287 testset: URL, BLEU: 1.9, chr-F: 0.194 testset: URL, BLEU: 45.2, chr-F: 0.574 testset: URL, BLEU: 7.8, chr-F: 0.271 testset: URL, BLEU: 9.6, chr-F: 0.273 testset: URL, BLEU: 0.9, chr-F: 0.102 testset: URL, BLEU: 4.4, chr-F: 0.054 testset: URL, BLEU: 48.3, chr-F: 0.646 testset: URL, BLEU: 1.4, chr-F: 0.034 testset: URL, BLEU: 36.7, chr-F: 0.601 testset: URL, BLEU: 40.4, chr-F: 0.601 testset: URL, BLEU: 33.9, chr-F: 0.538 testset: URL, BLEU: 33.1, chr-F: 0.524 testset: URL, BLEU: 25.8, chr-F: 0.469 testset: URL, BLEU: 34.0, chr-F: 0.543 testset: URL, BLEU: 23.0, chr-F: 0.493 testset: URL, BLEU: 36.1, chr-F: 0.538 testset: URL, BLEU: 3.6, chr-F: 0.400 testset: URL, BLEU: 5.3, chr-F: 0.240 testset: URL, BLEU: 32.0, chr-F: 0.519 testset: URL, BLEU: 13.6, chr-F: 0.318 testset: URL, BLEU: 3.8, chr-F: 0.199 testset: URL, BLEU: 33.4, chr-F: 0.547 testset: URL, BLEU: 32.6, chr-F: 0.546 testset: URL, BLEU: 1.4, chr-F: 0.166 testset: URL, BLEU: 8.0, chr-F: 0.314 testset: URL, BLEU: 10.7, chr-F: 0.520 testset: URL, BLEU: 59.9, chr-F: 0.631 testset: URL, BLEU: 38.0, chr-F: 0.718 testset: URL, BLEU: 2.5, chr-F: 0.213 testset: URL, BLEU: 11.0, chr-F: 0.368 testset: URL, BLEU: 33.0, chr-F: 0.524 testset: URL, BLEU: 40.4, chr-F: 0.574 testset: URL, BLEU: 0.1, chr-F: 0.008 testset: URL, BLEU: 32.7, chr-F: 0.553 testset: URL, BLEU: 26.8, chr-F: 0.496 testset: URL, BLEU: 45.7, chr-F: 0.651 testset: URL, BLEU: 11.8, chr-F: 0.263 testset: URL, BLEU: 31.7, chr-F: 0.528 testset: URL, BLEU: 3.6, chr-F: 0.196 testset: URL, BLEU: 36.7, chr-F: 0.586 testset: URL, BLEU: 17.1, chr-F: 0.451 testset: URL, BLEU: 17.1, chr-F: 0.375 testset: URL, BLEU: 38.1, chr-F: 0.565 testset: URL, BLEU: 0.0, chr-F: 1.000 testset: URL, BLEU: 14.0, chr-F: 0.404 testset: URL, BLEU: 1.5, chr-F: 0.014 testset: URL, BLEU: 68.7, chr-F: 0.695 testset: URL, BLEU: 25.8, chr-F: 0.314 testset: URL, BLEU: 13.6, chr-F: 0.319 testset: URL, BLEU: 48.3, chr-F: 0.680 testset: URL, BLEU: 28.3, chr-F: 0.454 testset: URL, BLEU: 4.4, chr-F: 0.206 testset: URL, BLEU: 8.0, chr-F: 0.282 testset: URL, BLEU: 5.2, chr-F: 0.237 testset: URL, BLEU: 9.9, chr-F: 0.395 testset: URL, BLEU: 35.4, chr-F: 0.868 testset: URL, BLEU: 0.8, chr-F: 0.077 testset: URL, BLEU: 4.9, chr-F: 0.240 testset: URL, BLEU: 11.3, chr-F: 0.054 testset: URL, BLEU: 19.0, chr-F: 0.583 testset: URL, BLEU: 5.4, chr-F: 0.320 testset: URL, BLEU: 6.3, chr-F: 0.239 testset: URL, BLEU: 12.8, chr-F: 0.341 testset: URL, BLEU: 17.5, chr-F: 0.382 testset: URL, BLEU: 42.7, chr-F: 0.797 testset: URL, BLEU: 15.5, chr-F: 0.338 testset: URL, BLEU: 2.3, chr-F: 0.176 testset: URL, BLEU: 4.5, chr-F: 0.207 testset: URL, BLEU: 18.9, chr-F: 0.367 testset: URL, BLEU: 6.0, chr-F: 0.156 testset: URL, BLEU: 32.2, chr-F: 0.448 testset: URL, BLEU: 1.3, chr-F: 0.142 testset: URL, BLEU: 15.3, chr-F: 0.363 testset: URL, BLEU: 3.2, chr-F: 0.166 testset: URL, BLEU: 0.1, chr-F: 0.090 testset: URL, BLEU: 1.8, chr-F: 0.206 testset: URL, BLEU: 27.8, chr-F: 0.560 testset: URL, BLEU: 4.2, chr-F: 0.316 testset: URL, BLEU: 24.6, chr-F: 0.466 testset: URL, BLEU: 24.5, chr-F: 0.431 testset: URL, BLEU: 5.0, chr-F: 0.318 testset: URL, BLEU: 19.0, chr-F: 0.390 testset: URL, BLEU: 15.0, chr-F: 0.258 testset: URL, BLEU: 7.4, chr-F: 0.326 testset: URL, BLEU: 12.3, chr-F: 0.325 testset: URL, BLEU: 14.2, chr-F: 0.324 testset: URL, BLEU: 16.1, chr-F: 0.369 testset: URL, BLEU: 3.2, chr-F: 0.125 testset: URL, BLEU: 55.9, chr-F: 0.672 testset: URL, BLEU: 0.3, chr-F: 0.083 testset: URL, BLEU: 7.2, chr-F: 0.383 testset: URL, BLEU: 0.0, chr-F: 0.102 testset: URL, BLEU: 1.9, chr-F: 0.135 ### System Info: * hf\_name: ine-ine * source\_languages: ine * target\_languages: ine * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['ca', 'es', 'os', 'ro', 'fy', 'cy', 'sc', 'is', 'yi', 'lb', 'an', 'sq', 'fr', 'ht', 'rm', 'ps', 'af', 'uk', 'sl', 'lt', 'bg', 'be', 'gd', 'si', 'en', 'br', 'mk', 'or', 'mr', 'ru', 'fo', 'co', 'oc', 'pl', 'gl', 'nb', 'bn', 'id', 'hy', 'da', 'gv', 'nl', 'pt', 'hi', 'as', 'kw', 'ga', 'sv', 'gu', 'wa', 'lv', 'el', 'it', 'hr', 'ur', 'nn', 'de', 'cs', 'ine'] * src\_constituents: {'cat', 'spa', 'pap', 'mwl', 'lij', 'bos\_Latn', 'lad\_Latn', 'lat\_Latn', 'pcd', 'oss', 'ron', 'fry', 'cym', 'awa', 'swg', 'zsm\_Latn', 'srd', 'gcf\_Latn', 'isl', 'yid', 'bho', 'ltz', 'kur\_Latn', 'arg', 'pes\_Thaa', 'sqi', 'csb\_Latn', 'fra', 'hat', 'non\_Latn', 'sco', 'pnb', 'roh', 'bul\_Latn', 'pus', 'afr', 'ukr', 'slv', 'lit', 'tmw\_Latn', 'hsb', 'tly\_Latn', 'bul', 'bel', 'got\_Goth', 'lat\_Grek', 'ext', 'gla', 'mai', 'sin', 'hif\_Latn', 'eng', 'bre', 'nob\_Hebr', 'prg\_Latn', 'ang\_Latn', 'aln', 'mkd', 'ori', 'mar', 'afr\_Arab', 'san\_Deva', 'gos', 'rus', 'fao', 'orv\_Cyrl', 'bel\_Latn', 'cos', 'zza', 'grc\_Grek', 'oci', 'mfe', 'gom', 'bjn', 'sgs', 'tgk\_Cyrl', 'hye\_Latn', 'pdc', 'srp\_Cyrl', 'pol', 'ast', 'glg', 'pms', 'nob', 'ben', 'min', 'srp\_Latn', 'zlm\_Latn', 'ind', 'rom', 'hye', 'scn', 'enm\_Latn', 'lmo', 'npi', 'pes', 'dan', 'rus\_Latn', 'jdt\_Cyrl', 'gsw', 'glv', 'nld', 'snd\_Arab', 'kur\_Arab', 'por', 'hin', 'dsb', 'asm', 'lad', 'frm\_Latn', 'ksh', 'pan\_Guru', 'cor', 'gle', 'swe', 'guj', 'wln', 'lav', 'ell', 'frr', 'rue', 'ita', 'hrv', 'urd', 'stq', 'nno', 'deu', 'lld\_Latn', 'ces', 'egl', 'vec', 'max\_Latn', 'pes\_Latn', 'ltg', 'nds'} * tgt\_constituents: {'cat', 'spa', 'pap', 'mwl', 'lij', 'bos\_Latn', 'lad\_Latn', 'lat\_Latn', 'pcd', 'oss', 'ron', 'fry', 'cym', 'awa', 'swg', 'zsm\_Latn', 'srd', 'gcf\_Latn', 'isl', 'yid', 'bho', 'ltz', 'kur\_Latn', 'arg', 'pes\_Thaa', 'sqi', 'csb\_Latn', 'fra', 'hat', 'non\_Latn', 'sco', 'pnb', 'roh', 'bul\_Latn', 'pus', 'afr', 'ukr', 'slv', 'lit', 'tmw\_Latn', 'hsb', 'tly\_Latn', 'bul', 'bel', 'got\_Goth', 'lat\_Grek', 'ext', 'gla', 'mai', 'sin', 'hif\_Latn', 'eng', 'bre', 'nob\_Hebr', 'prg\_Latn', 'ang\_Latn', 'aln', 'mkd', 'ori', 'mar', 'afr\_Arab', 'san\_Deva', 'gos', 'rus', 'fao', 'orv\_Cyrl', 'bel\_Latn', 'cos', 'zza', 'grc\_Grek', 'oci', 'mfe', 'gom', 'bjn', 'sgs', 'tgk\_Cyrl', 'hye\_Latn', 'pdc', 'srp\_Cyrl', 'pol', 'ast', 'glg', 'pms', 'nob', 'ben', 'min', 'srp\_Latn', 'zlm\_Latn', 'ind', 'rom', 'hye', 'scn', 'enm\_Latn', 'lmo', 'npi', 'pes', 'dan', 'rus\_Latn', 'jdt\_Cyrl', 'gsw', 'glv', 'nld', 'snd\_Arab', 'kur\_Arab', 'por', 'hin', 'dsb', 'asm', 'lad', 'frm\_Latn', 'ksh', 'pan\_Guru', 'cor', 'gle', 'swe', 'guj', 'wln', 'lav', 'ell', 'frr', 'rue', 'ita', 'hrv', 'urd', 'stq', 'nno', 'deu', 'lld\_Latn', 'ces', 'egl', 'vec', 'max\_Latn', 'pes\_Latn', 'ltg', 'nds'} * src\_multilingual: True * tgt\_multilingual: True * prepro: normalization + SentencePiece (spm32k,spm32k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: ine * tgt\_alpha3: ine * short\_pair: ine-ine * chrF2\_score: 0.509 * bleu: 30.8 * brevity\_penalty: 0.9890000000000001 * ref\_len: 69953.0 * src\_name: Indo-European languages * tgt\_name: Indo-European languages * train\_date: 2020-07-27 * src\_alpha2: ine * tgt\_alpha2: ine * prefer\_old: False * long\_pair: ine-ine * helsinki\_git\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 * transformers\_git\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b * port\_machine: brutasse * port\_time: 2020-08-21-14:41
[ "### ine-ine\n\n\n* source group: Indo-European languages\n* target group: Indo-European languages\n* OPUS readme: ine-ine\n* model: transformer\n* source language(s): afr afr\\_Arab aln ang\\_Latn arg asm ast awa bel bel\\_Latn ben bho bjn bos\\_Latn bre bul bul\\_Latn cat ces cor cos csb\\_Latn cym dan deu dsb egl ell eng enm\\_Latn ext fao fra frm\\_Latn frr fry gcf\\_Latn gla gle glg glv gom gos got\\_Goth grc\\_Grek gsw guj hat hif\\_Latn hin hrv hsb hye hye\\_Latn ind isl ita jdt\\_Cyrl ksh kur\\_Arab kur\\_Latn lad lad\\_Latn lat\\_Grek lat\\_Latn lav lij lit lld\\_Latn lmo ltg ltz mai mar max\\_Latn mfe min mkd mwl nds nld nno nob nob\\_Hebr non\\_Latn npi oci ori orv\\_Cyrl oss pan\\_Guru pap pcd pdc pes pes\\_Latn pes\\_Thaa pms pnb pol por prg\\_Latn pus roh rom ron rue rus rus\\_Latn san\\_Deva scn sco sgs sin slv snd\\_Arab spa sqi srd srp\\_Cyrl srp\\_Latn stq swe swg tgk\\_Cyrl tly\\_Latn tmw\\_Latn ukr urd vec wln yid zlm\\_Latn zsm\\_Latn zza\n* target language(s): afr afr\\_Arab aln ang\\_Latn arg asm ast awa bel bel\\_Latn ben bho bjn bos\\_Latn bre bul bul\\_Latn cat ces cor cos csb\\_Latn cym dan deu dsb egl ell eng enm\\_Latn ext fao fra frm\\_Latn frr fry gcf\\_Latn gla gle glg glv gom gos got\\_Goth grc\\_Grek gsw guj hat hif\\_Latn hin hrv hsb hye hye\\_Latn ind isl ita jdt\\_Cyrl ksh kur\\_Arab kur\\_Latn lad lad\\_Latn lat\\_Grek lat\\_Latn lav lij lit lld\\_Latn lmo ltg ltz mai mar max\\_Latn mfe min mkd mwl nds nld nno nob nob\\_Hebr non\\_Latn npi oci ori orv\\_Cyrl oss pan\\_Guru pap pcd pdc pes pes\\_Latn pes\\_Thaa pms pnb pol por prg\\_Latn pus roh rom ron rue rus rus\\_Latn san\\_Deva scn sco sgs sin slv snd\\_Arab spa sqi srd srp\\_Cyrl srp\\_Latn stq swe swg tgk\\_Cyrl tly\\_Latn tmw\\_Latn ukr urd vec wln yid zlm\\_Latn zsm\\_Latn zza\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* a sentence initial language token is required in the form of '>>id<<' (id = valid target language ID)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: euelections\\_dev2019.URL, BLEU: 19.2, chr-F: 0.482\ntestset: euelections\\_dev2019.URL, BLEU: 15.8, chr-F: 0.470\ntestset: URL, BLEU: 4.0, chr-F: 0.245\ntestset: URL, BLEU: 6.8, chr-F: 0.301\ntestset: URL, BLEU: 17.3, chr-F: 0.470\ntestset: URL, BLEU: 26.0, chr-F: 0.534\ntestset: URL, BLEU: 12.1, chr-F: 0.416\ntestset: URL, BLEU: 15.9, chr-F: 0.443\ntestset: URL, BLEU: 2.5, chr-F: 0.200\ntestset: URL, BLEU: 7.1, chr-F: 0.302\ntestset: URL, BLEU: 10.6, chr-F: 0.407\ntestset: URL, BLEU: 14.9, chr-F: 0.428\ntestset: URL, BLEU: 22.6, chr-F: 0.507\ntestset: URL, BLEU: 23.5, chr-F: 0.495\ntestset: URL, BLEU: 25.1, chr-F: 0.528\ntestset: URL, BLEU: 26.4, chr-F: 0.517\ntestset: URL, BLEU: 13.1, chr-F: 0.432\ntestset: URL, BLEU: 18.4, chr-F: 0.463\ntestset: URL, BLEU: 15.5, chr-F: 0.452\ntestset: URL, BLEU: 14.8, chr-F: 0.458\ntestset: URL, BLEU: 18.4, chr-F: 0.462\ntestset: URL, BLEU: 10.5, chr-F: 0.381\ntestset: URL, BLEU: 19.5, chr-F: 0.467\ntestset: URL, BLEU: 16.4, chr-F: 0.459\ntestset: URL, BLEU: 15.5, chr-F: 0.456\ntestset: URL, BLEU: 18.4, chr-F: 0.466\ntestset: URL, BLEU: 11.9, chr-F: 0.394\ntestset: URL, BLEU: 13.9, chr-F: 0.446\ntestset: URL, BLEU: 20.7, chr-F: 0.502\ntestset: URL, BLEU: 21.3, chr-F: 0.516\ntestset: URL, BLEU: 22.3, chr-F: 0.506\ntestset: URL, BLEU: 11.5, chr-F: 0.390\ntestset: URL, BLEU: 13.4, chr-F: 0.437\ntestset: URL, BLEU: 22.8, chr-F: 0.499\ntestset: URL, BLEU: 22.2, chr-F: 0.533\ntestset: URL, BLEU: 26.2, chr-F: 0.539\ntestset: URL, BLEU: 12.3, chr-F: 0.397\ntestset: URL, BLEU: 13.3, chr-F: 0.436\ntestset: URL, BLEU: 24.7, chr-F: 0.517\ntestset: URL, BLEU: 24.0, chr-F: 0.528\ntestset: URL, BLEU: 26.3, chr-F: 0.537\ntestset: URL, BLEU: 12.0, chr-F: 0.400\ntestset: URL, BLEU: 13.9, chr-F: 0.440\ntestset: URL, BLEU: 22.9, chr-F: 0.509\ntestset: URL, BLEU: 24.2, chr-F: 0.538\ntestset: URL, BLEU: 24.5, chr-F: 0.547\ntestset: URL, BLEU: 12.0, chr-F: 0.422\ntestset: URL, BLEU: 15.1, chr-F: 0.444\ntestset: URL, BLEU: 16.4, chr-F: 0.451\ntestset: URL, BLEU: 9.9, chr-F: 0.369\ntestset: URL, BLEU: 18.0, chr-F: 0.456\ntestset: URL, BLEU: 16.4, chr-F: 0.453\ntestset: URL, BLEU: 17.0, chr-F: 0.452\ntestset: URL, BLEU: 10.5, chr-F: 0.375\ntestset: URL, BLEU: 14.5, chr-F: 0.439\ntestset: URL, BLEU: 18.9, chr-F: 0.481\ntestset: URL, BLEU: 20.9, chr-F: 0.491\ntestset: URL, BLEU: 10.7, chr-F: 0.380\ntestset: URL, BLEU: 13.8, chr-F: 0.435\ntestset: URL, BLEU: 19.8, chr-F: 0.479\ntestset: URL, BLEU: 24.8, chr-F: 0.522\ntestset: URL, BLEU: 11.0, chr-F: 0.380\ntestset: URL, BLEU: 14.0, chr-F: 0.433\ntestset: URL, BLEU: 20.6, chr-F: 0.488\ntestset: URL, BLEU: 23.3, chr-F: 0.518\ntestset: URL, BLEU: 12.9, chr-F: 0.427\ntestset: URL, BLEU: 17.0, chr-F: 0.456\ntestset: URL, BLEU: 15.4, chr-F: 0.447\ntestset: URL, BLEU: 14.9, chr-F: 0.454\ntestset: URL, BLEU: 17.1, chr-F: 0.458\ntestset: URL, BLEU: 10.3, chr-F: 0.370\ntestset: URL, BLEU: 17.7, chr-F: 0.458\ntestset: URL, BLEU: 15.9, chr-F: 0.447\ntestset: URL, BLEU: 14.7, chr-F: 0.446\ntestset: URL, BLEU: 17.2, chr-F: 0.453\ntestset: URL, BLEU: 11.0, chr-F: 0.387\ntestset: URL, BLEU: 13.6, chr-F: 0.440\ntestset: URL, BLEU: 20.3, chr-F: 0.496\ntestset: URL, BLEU: 20.8, chr-F: 0.509\ntestset: URL, BLEU: 21.9, chr-F: 0.503\ntestset: URL, BLEU: 11.3, chr-F: 0.385\ntestset: URL, BLEU: 14.0, chr-F: 0.436\ntestset: URL, BLEU: 21.8, chr-F: 0.496\ntestset: URL, BLEU: 22.1, chr-F: 0.526\ntestset: URL, BLEU: 24.8, chr-F: 0.525\ntestset: URL, BLEU: 11.5, chr-F: 0.382\ntestset: URL, BLEU: 13.3, chr-F: 0.430\ntestset: URL, BLEU: 23.6, chr-F: 0.508\ntestset: URL, BLEU: 22.9, chr-F: 0.516\ntestset: URL, BLEU: 25.4, chr-F: 0.529\ntestset: URL, BLEU: 11.3, chr-F: 0.386\ntestset: URL, BLEU: 13.5, chr-F: 0.434\ntestset: URL, BLEU: 22.4, chr-F: 0.500\ntestset: URL, BLEU: 23.2, chr-F: 0.520\ntestset: URL, BLEU: 24.0, chr-F: 0.538\ntestset: URL, BLEU: 13.1, chr-F: 0.431\ntestset: URL, BLEU: 16.9, chr-F: 0.459\ntestset: URL, BLEU: 15.6, chr-F: 0.450\ntestset: URL, BLEU: 18.5, chr-F: 0.467\ntestset: URL, BLEU: 11.4, chr-F: 0.387\ntestset: URL, BLEU: 19.6, chr-F: 0.481\ntestset: URL, BLEU: 17.7, chr-F: 0.471\ntestset: URL, BLEU: 20.0, chr-F: 0.478\ntestset: URL, BLEU: 11.4, chr-F: 0.393\ntestset: URL, BLEU: 15.1, chr-F: 0.448\ntestset: URL, BLEU: 21.4, chr-F: 0.506\ntestset: URL, BLEU: 25.0, chr-F: 0.525\ntestset: URL, BLEU: 11.1, chr-F: 0.386\ntestset: URL, BLEU: 14.2, chr-F: 0.442\ntestset: URL, BLEU: 22.6, chr-F: 0.507\ntestset: URL, BLEU: 26.6, chr-F: 0.542\ntestset: URL, BLEU: 12.2, chr-F: 0.396\ntestset: URL, BLEU: 15.1, chr-F: 0.445\ntestset: URL, BLEU: 24.3, chr-F: 0.521\ntestset: URL, BLEU: 24.8, chr-F: 0.536\ntestset: URL, BLEU: 13.1, chr-F: 0.423\ntestset: URL, BLEU: 18.2, chr-F: 0.463\ntestset: URL, BLEU: 17.4, chr-F: 0.458\ntestset: URL, BLEU: 18.9, chr-F: 0.464\ntestset: URL, BLEU: 11.2, chr-F: 0.376\ntestset: URL, BLEU: 18.3, chr-F: 0.464\ntestset: URL, BLEU: 17.0, chr-F: 0.457\ntestset: URL, BLEU: 19.2, chr-F: 0.464\ntestset: URL, BLEU: 12.4, chr-F: 0.395\ntestset: URL, BLEU: 14.5, chr-F: 0.437\ntestset: URL, BLEU: 23.6, chr-F: 0.522\ntestset: URL, BLEU: 26.6, chr-F: 0.530\ntestset: URL, BLEU: 12.5, chr-F: 0.394\ntestset: URL, BLEU: 14.2, chr-F: 0.433\ntestset: URL, BLEU: 24.3, chr-F: 0.521\ntestset: URL, BLEU: 29.1, chr-F: 0.551\ntestset: URL, BLEU: 12.3, chr-F: 0.390\ntestset: URL, BLEU: 14.4, chr-F: 0.435\ntestset: URL, BLEU: 25.0, chr-F: 0.521\ntestset: URL, BLEU: 25.6, chr-F: 0.537\ntestset: URL, BLEU: 13.1, chr-F: 0.420\ntestset: URL, BLEU: 17.5, chr-F: 0.457\ntestset: URL, BLEU: 16.8, chr-F: 0.452\ntestset: URL, BLEU: 11.2, chr-F: 0.379\ntestset: URL, BLEU: 18.1, chr-F: 0.457\ntestset: URL, BLEU: 11.2, chr-F: 0.368\ntestset: URL, BLEU: 19.4, chr-F: 0.472\ntestset: URL, BLEU: 17.7, chr-F: 0.464\ntestset: URL, BLEU: 10.3, chr-F: 0.370\ntestset: URL, BLEU: 19.6, chr-F: 0.467\ntestset: URL, BLEU: 11.1, chr-F: 0.375\ntestset: URL, BLEU: 14.6, chr-F: 0.440\ntestset: URL, BLEU: 22.4, chr-F: 0.512\ntestset: URL, BLEU: 17.6, chr-F: 0.452\ntestset: URL, BLEU: 26.5, chr-F: 0.527\ntestset: URL, BLEU: 11.9, chr-F: 0.383\ntestset: URL, BLEU: 14.6, chr-F: 0.437\ntestset: URL, BLEU: 24.3, chr-F: 0.516\ntestset: URL, BLEU: 11.9, chr-F: 0.393\ntestset: URL, BLEU: 28.3, chr-F: 0.545\ntestset: URL, BLEU: 9.0, chr-F: 0.340\ntestset: URL, BLEU: 10.0, chr-F: 0.383\ntestset: URL, BLEU: 22.4, chr-F: 0.492\ntestset: URL, BLEU: 13.3, chr-F: 0.427\ntestset: URL, BLEU: 16.6, chr-F: 0.437\ntestset: URL, BLEU: 11.9, chr-F: 0.381\ntestset: URL, BLEU: 14.8, chr-F: 0.440\ntestset: URL, BLEU: 26.5, chr-F: 0.534\ntestset: URL, BLEU: 25.0, chr-F: 0.539\ntestset: URL, BLEU: 12.4, chr-F: 0.401\ntestset: URL, BLEU: 14.3, chr-F: 0.434\ntestset: URL, BLEU: 18.5, chr-F: 0.463\ntestset: URL, BLEU: 16.6, chr-F: 0.444\ntestset: URL, BLEU: 13.6, chr-F: 0.406\ntestset: URL, BLEU: 18.2, chr-F: 0.455\ntestset: URL, BLEU: 11.7, chr-F: 0.380\ntestset: URL, BLEU: 20.9, chr-F: 0.481\ntestset: URL, BLEU: 18.1, chr-F: 0.460\ntestset: URL, BLEU: 11.7, chr-F: 0.384\ntestset: URL, BLEU: 19.4, chr-F: 0.463\ntestset: URL, BLEU: 12.7, chr-F: 0.394\ntestset: URL, BLEU: 16.7, chr-F: 0.455\ntestset: URL, BLEU: 22.7, chr-F: 0.499\ntestset: URL, BLEU: 13.3, chr-F: 0.408\ntestset: URL, BLEU: 23.6, chr-F: 0.506\ntestset: URL, BLEU: 11.8, chr-F: 0.379\ntestset: URL, BLEU: 15.6, chr-F: 0.446\ntestset: URL, BLEU: 23.6, chr-F: 0.506\ntestset: URL, BLEU: 12.9, chr-F: 0.399\ntestset: URL, BLEU: 25.3, chr-F: 0.519\ntestset: URL, BLEU: 11.6, chr-F: 0.376\ntestset: URL, BLEU: 12.4, chr-F: 0.410\ntestset: URL, BLEU: 17.8, chr-F: 0.448\ntestset: URL, BLEU: 14.8, chr-F: 0.434\ntestset: URL, BLEU: 17.9, chr-F: 0.446\ntestset: URL, BLEU: 12.5, chr-F: 0.391\ntestset: URL, BLEU: 15.9, chr-F: 0.449\ntestset: URL, BLEU: 24.0, chr-F: 0.518\ntestset: URL, BLEU: 24.3, chr-F: 0.522\ntestset: URL, BLEU: 13.9, chr-F: 0.411\ntestset: URL, BLEU: 19.0, chr-F: 0.475\ntestset: URL, BLEU: 19.2, chr-F: 0.468\ntestset: URL, BLEU: 23.9, chr-F: 0.521\ntestset: URL, BLEU: 5.9, chr-F: 0.268\ntestset: URL, BLEU: 8.8, chr-F: 0.348\ntestset: URL, BLEU: 19.1, chr-F: 0.475\ntestset: URL, BLEU: 17.9, chr-F: 0.450\ntestset: URL, BLEU: 12.1, chr-F: 0.392\ntestset: URL, BLEU: 21.1, chr-F: 0.480\ntestset: URL, BLEU: 18.7, chr-F: 0.475\ntestset: URL, BLEU: 15.4, chr-F: 0.431\ntestset: URL, BLEU: 18.1, chr-F: 0.454\ntestset: URL, BLEU: 18.6, chr-F: 0.465\ntestset: URL, BLEU: 13.3, chr-F: 0.403\ntestset: URL, BLEU: 24.0, chr-F: 0.508\ntestset: URL, BLEU: 21.4, chr-F: 0.494\ntestset: URL, BLEU: 16.8, chr-F: 0.457\ntestset: URL, BLEU: 24.9, chr-F: 0.522\ntestset: URL, BLEU: 13.7, chr-F: 0.417\ntestset: URL, BLEU: 17.3, chr-F: 0.453\ntestset: URL, BLEU: 16.7, chr-F: 0.444\ntestset: URL, BLEU: 10.9, chr-F: 0.375\ntestset: URL, BLEU: 21.5, chr-F: 0.484\ntestset: URL, BLEU: 17.5, chr-F: 0.464\ntestset: URL, BLEU: 9.1, chr-F: 0.388\ntestset: URL, BLEU: 11.5, chr-F: 0.404\ntestset: URL, BLEU: 14.8, chr-F: 0.432\ntestset: URL, BLEU: 19.3, chr-F: 0.467\ntestset: URL, BLEU: 17.1, chr-F: 0.450\ntestset: URL, BLEU: 10.9, chr-F: 0.380\ntestset: URL, BLEU: 26.0, chr-F: 0.518\ntestset: URL, BLEU: 24.3, chr-F: 0.514\ntestset: URL, BLEU: 12.5, chr-F: 0.417\ntestset: URL, BLEU: 16.4, chr-F: 0.443\ntestset: URL, BLEU: 13.9, chr-F: 0.432\ntestset: URL, BLEU: 11.7, chr-F: 0.383\ntestset: URL, BLEU: 22.2, chr-F: 0.483\ntestset: URL, BLEU: 20.1, chr-F: 0.496\ntestset: URL, BLEU: 12.3, chr-F: 0.389\ntestset: URL, BLEU: 22.0, chr-F: 0.497\ntestset: URL, BLEU: 3.1, chr-F: 0.208\ntestset: URL, BLEU: 7.8, chr-F: 0.369\ntestset: URL, BLEU: 14.6, chr-F: 0.408\ntestset: URL, BLEU: 16.4, chr-F: 0.483\ntestset: URL, BLEU: 6.1, chr-F: 0.288\ntestset: URL, BLEU: 16.9, chr-F: 0.456\ntestset: URL, BLEU: 20.2, chr-F: 0.468\ntestset: URL, BLEU: 16.0, chr-F: 0.152\ntestset: URL, BLEU: 10.2, chr-F: 0.333\ntestset: URL, BLEU: 32.6, chr-F: 0.651\ntestset: URL, BLEU: 34.5, chr-F: 0.556\ntestset: URL, BLEU: 48.1, chr-F: 0.638\ntestset: URL, BLEU: 10.2, chr-F: 0.416\ntestset: URL, BLEU: 41.9, chr-F: 0.612\ntestset: URL, BLEU: 0.0, chr-F: 0.112\ntestset: URL, BLEU: 0.3, chr-F: 0.068\ntestset: URL, BLEU: 12.2, chr-F: 0.419\ntestset: URL, BLEU: 48.7, chr-F: 0.637\ntestset: URL, BLEU: 8.4, chr-F: 0.407\ntestset: URL, BLEU: 19.0, chr-F: 0.357\ntestset: URL, BLEU: 0.0, chr-F: 0.238\ntestset: URL, BLEU: 1.4, chr-F: 0.080\ntestset: URL, BLEU: 45.7, chr-F: 0.643\ntestset: URL, BLEU: 55.3, chr-F: 0.687\ntestset: URL, BLEU: 39.3, chr-F: 0.563\ntestset: URL, BLEU: 33.9, chr-F: 0.586\ntestset: URL, BLEU: 22.6, chr-F: 0.475\ntestset: URL, BLEU: 32.1, chr-F: 0.525\ntestset: URL, BLEU: 44.1, chr-F: 0.611\ntestset: URL, BLEU: 71.6, chr-F: 0.814\ntestset: URL, BLEU: 31.0, chr-F: 0.481\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 0.0, chr-F: 0.133\ntestset: URL, BLEU: 5.5, chr-F: 0.129\ntestset: URL, BLEU: 22.2, chr-F: 0.345\ntestset: URL, BLEU: 6.3, chr-F: 0.251\ntestset: URL, BLEU: 7.9, chr-F: 0.255\ntestset: URL, BLEU: 0.8, chr-F: 0.133\ntestset: URL, BLEU: 16.0, chr-F: 0.086\ntestset: URL, BLEU: 6.0, chr-F: 0.185\ntestset: URL, BLEU: 0.6, chr-F: 0.000\ntestset: URL, BLEU: 16.0, chr-F: 0.102\ntestset: URL, BLEU: 13.2, chr-F: 0.301\ntestset: URL, BLEU: 7.6, chr-F: 0.062\ntestset: URL, BLEU: 0.2, chr-F: 0.025\ntestset: URL, BLEU: 6.6, chr-F: 0.198\ntestset: URL, BLEU: 5.5, chr-F: 0.121\ntestset: URL, BLEU: 11.4, chr-F: 0.498\ntestset: URL, BLEU: 2.4, chr-F: 0.103\ntestset: URL, BLEU: 8.1, chr-F: 0.249\ntestset: URL, BLEU: 16.4, chr-F: 0.195\ntestset: URL, BLEU: 1.1, chr-F: 0.117\ntestset: URL, BLEU: 28.2, chr-F: 0.394\ntestset: URL, BLEU: 39.8, chr-F: 0.445\ntestset: URL, BLEU: 52.3, chr-F: 0.608\ntestset: URL, BLEU: 8.6, chr-F: 0.261\ntestset: URL, BLEU: 19.2, chr-F: 0.629\ntestset: URL, BLEU: 18.2, chr-F: 0.369\ntestset: URL, BLEU: 4.3, chr-F: 0.145\ntestset: URL, BLEU: 4.5, chr-F: 0.366\ntestset: URL, BLEU: 12.1, chr-F: 0.310\ntestset: URL, BLEU: 8.1, chr-F: 0.050\ntestset: URL, BLEU: 30.1, chr-F: 0.463\ntestset: URL, BLEU: 27.6, chr-F: 0.441\ntestset: URL, BLEU: 29.4, chr-F: 0.501\ntestset: URL, BLEU: 2.6, chr-F: 0.030\ntestset: URL, BLEU: 10.0, chr-F: 0.280\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 35.9, chr-F: 0.682\ntestset: URL, BLEU: 41.7, chr-F: 0.601\ntestset: URL, BLEU: 2.4, chr-F: 0.201\ntestset: URL, BLEU: 53.7, chr-F: 0.808\ntestset: URL, BLEU: 27.6, chr-F: 0.483\ntestset: URL, BLEU: 32.6, chr-F: 0.449\ntestset: URL, BLEU: 29.1, chr-F: 0.506\ntestset: URL, BLEU: 29.5, chr-F: 0.522\ntestset: URL, BLEU: 31.8, chr-F: 0.512\ntestset: URL, BLEU: 30.9, chr-F: 0.527\ntestset: URL, BLEU: 39.3, chr-F: 0.608\ntestset: URL, BLEU: 32.8, chr-F: 0.540\ntestset: URL, BLEU: 12.7, chr-F: 0.178\ntestset: URL, BLEU: 4.5, chr-F: 0.185\ntestset: URL, BLEU: 3.7, chr-F: 0.251\ntestset: URL, BLEU: 19.3, chr-F: 0.531\ntestset: URL, BLEU: 1.0, chr-F: 0.147\ntestset: URL, BLEU: 27.1, chr-F: 0.481\ntestset: URL, BLEU: 37.0, chr-F: 0.494\ntestset: URL, BLEU: 34.8, chr-F: 0.565\ntestset: URL, BLEU: 21.7, chr-F: 0.401\ntestset: URL, BLEU: 42.3, chr-F: 0.643\ntestset: URL, BLEU: 28.2, chr-F: 0.534\ntestset: URL, BLEU: 41.6, chr-F: 0.643\ntestset: URL, BLEU: 2.9, chr-F: 0.254\ntestset: URL, BLEU: 34.6, chr-F: 0.408\ntestset: URL, BLEU: 26.5, chr-F: 0.430\ntestset: URL, BLEU: 21.6, chr-F: 0.466\ntestset: URL, BLEU: 26.8, chr-F: 0.424\ntestset: URL, BLEU: 28.9, chr-F: 0.473\ntestset: URL, BLEU: 21.0, chr-F: 0.384\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 2.2, chr-F: 0.178\ntestset: URL, BLEU: 7.7, chr-F: 0.296\ntestset: URL, BLEU: 13.6, chr-F: 0.309\ntestset: URL, BLEU: 8.6, chr-F: 0.251\ntestset: URL, BLEU: 12.2, chr-F: 0.272\ntestset: URL, BLEU: 0.9, chr-F: 0.081\ntestset: URL, BLEU: 3.0, chr-F: 0.217\ntestset: URL, BLEU: 1.4, chr-F: 0.158\ntestset: URL, BLEU: 14.1, chr-F: 0.582\ntestset: URL, BLEU: 52.8, chr-F: 0.725\ntestset: URL, BLEU: 66.9, chr-F: 0.951\ntestset: URL, BLEU: 31.2, chr-F: 0.530\ntestset: URL, BLEU: 29.1, chr-F: 0.497\ntestset: URL, BLEU: 36.5, chr-F: 0.547\ntestset: URL, BLEU: 5.3, chr-F: 0.299\ntestset: URL, BLEU: 8.9, chr-F: 0.511\ntestset: URL, BLEU: 36.1, chr-F: 0.558\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 24.5, chr-F: 0.479\ntestset: URL, BLEU: 8.1, chr-F: 0.302\ntestset: URL, BLEU: 13.4, chr-F: 0.337\ntestset: URL, BLEU: 38.2, chr-F: 0.811\ntestset: URL, BLEU: 15.0, chr-F: 0.431\ntestset: URL, BLEU: 31.8, chr-F: 0.505\ntestset: URL, BLEU: 66.9, chr-F: 0.951\ntestset: URL, BLEU: 24.4, chr-F: 0.461\ntestset: URL, BLEU: 29.2, chr-F: 0.484\ntestset: URL, BLEU: 42.7, chr-F: 0.776\ntestset: URL, BLEU: 28.7, chr-F: 0.522\ntestset: URL, BLEU: 32.1, chr-F: 0.520\ntestset: URL, BLEU: 66.9, chr-F: 0.611\ntestset: URL, BLEU: 34.3, chr-F: 0.567\ntestset: URL, BLEU: 13.7, chr-F: 0.163\ntestset: URL, BLEU: 31.0, chr-F: 0.523\ntestset: URL, BLEU: 17.0, chr-F: 0.423\ntestset: URL, BLEU: 39.4, chr-F: 0.582\ntestset: URL, BLEU: 5.3, chr-F: 0.370\ntestset: URL, BLEU: 16.0, chr-F: 0.301\ntestset: URL, BLEU: 41.0, chr-F: 0.606\ntestset: URL, BLEU: 39.8, chr-F: 0.626\ntestset: URL, BLEU: 35.9, chr-F: 0.555\ntestset: URL, BLEU: 23.0, chr-F: 0.456\ntestset: URL, BLEU: 38.9, chr-F: 0.618\ntestset: URL, BLEU: 16.0, chr-F: 0.311\ntestset: URL, BLEU: 28.8, chr-F: 0.507\ntestset: URL, BLEU: 55.2, chr-F: 0.731\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 30.8, chr-F: 0.512\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 17.0, chr-F: 0.426\ntestset: URL, BLEU: 3.3, chr-F: 0.165\ntestset: URL, BLEU: 23.3, chr-F: 0.466\ntestset: URL, BLEU: 0.7, chr-F: 0.126\ntestset: URL, BLEU: 45.2, chr-F: 0.690\ntestset: URL, BLEU: 3.4, chr-F: 0.072\ntestset: URL, BLEU: 12.7, chr-F: 0.706\ntestset: URL, BLEU: 32.2, chr-F: 0.526\ntestset: URL, BLEU: 24.4, chr-F: 0.422\ntestset: URL, BLEU: 33.8, chr-F: 0.529\ntestset: URL, BLEU: 1.7, chr-F: 0.157\ntestset: URL, BLEU: 3.7, chr-F: 0.252\ntestset: URL, BLEU: 20.1, chr-F: 0.229\ntestset: URL, BLEU: 36.9, chr-F: 0.564\ntestset: URL, BLEU: 7.7, chr-F: 0.338\ntestset: URL, BLEU: 0.6, chr-F: 0.011\ntestset: URL, BLEU: 39.7, chr-F: 0.580\ntestset: URL, BLEU: 7.0, chr-F: 0.230\ntestset: URL, BLEU: 28.2, chr-F: 0.516\ntestset: URL, BLEU: 1.7, chr-F: 0.303\ntestset: URL, BLEU: 6.5, chr-F: 0.304\ntestset: URL, BLEU: 6.6, chr-F: 0.202\ntestset: URL, BLEU: 31.4, chr-F: 0.586\ntestset: URL, BLEU: 6.4, chr-F: 0.312\ntestset: URL, BLEU: 19.9, chr-F: 0.468\ntestset: URL, BLEU: 35.1, chr-F: 0.535\ntestset: URL, BLEU: 41.7, chr-F: 0.610\ntestset: URL, BLEU: 30.5, chr-F: 0.530\ntestset: URL, BLEU: 33.0, chr-F: 0.533\ntestset: URL, BLEU: 9.9, chr-F: 0.406\ntestset: URL, BLEU: 36.9, chr-F: 0.564\ntestset: URL, BLEU: 4.1, chr-F: 0.236\ntestset: URL, BLEU: 33.3, chr-F: 0.531\ntestset: URL, BLEU: 51.4, chr-F: 0.586\ntestset: URL, BLEU: 4.8, chr-F: 0.118\ntestset: URL, BLEU: 34.6, chr-F: 0.522\ntestset: URL, BLEU: 2.1, chr-F: 0.252\ntestset: URL, BLEU: 8.9, chr-F: 0.233\ntestset: URL, BLEU: 6.7, chr-F: 0.205\ntestset: URL, BLEU: 4.8, chr-F: 0.211\ntestset: URL, BLEU: 3.4, chr-F: 0.182\ntestset: URL, BLEU: 4.4, chr-F: 0.193\ntestset: URL, BLEU: 5.0, chr-F: 0.221\ntestset: URL, BLEU: 6.6, chr-F: 0.211\ntestset: URL, BLEU: 9.3, chr-F: 0.221\ntestset: URL, BLEU: 19.6, chr-F: 0.282\ntestset: URL, BLEU: 2.9, chr-F: 0.171\ntestset: URL, BLEU: 4.3, chr-F: 0.187\ntestset: URL, BLEU: 2.4, chr-F: 0.154\ntestset: URL, BLEU: 3.6, chr-F: 0.187\ntestset: URL, BLEU: 0.0, chr-F: 0.877\ntestset: URL, BLEU: 39.2, chr-F: 0.473\ntestset: URL, BLEU: 19.0, chr-F: 0.352\ntestset: URL, BLEU: 1.6, chr-F: 0.066\ntestset: URL, BLEU: 17.5, chr-F: 0.336\ntestset: URL, BLEU: 14.0, chr-F: 0.347\ntestset: URL, BLEU: 3.8, chr-F: 0.278\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 0.0, chr-F: 0.014\ntestset: URL, BLEU: 32.6, chr-F: 0.507\ntestset: URL, BLEU: 33.1, chr-F: 0.496\ntestset: URL, BLEU: 27.0, chr-F: 0.447\ntestset: URL, BLEU: 5.7, chr-F: 0.223\ntestset: URL, BLEU: 13.1, chr-F: 0.380\ntestset: URL, BLEU: 5.3, chr-F: 0.186\ntestset: URL, BLEU: 28.3, chr-F: 0.498\ntestset: URL, BLEU: 3.7, chr-F: 0.185\ntestset: URL, BLEU: 8.0, chr-F: 0.067\ntestset: URL, BLEU: 37.5, chr-F: 0.603\ntestset: URL, BLEU: 37.8, chr-F: 0.488\ntestset: URL, BLEU: 32.1, chr-F: 0.480\ntestset: URL, BLEU: 31.6, chr-F: 0.523\ntestset: URL, BLEU: 4.8, chr-F: 0.072\ntestset: URL, BLEU: 40.5, chr-F: 0.774\ntestset: URL, BLEU: 1.2, chr-F: 0.066\ntestset: URL, BLEU: 13.1, chr-F: 0.156\ntestset: URL, BLEU: 27.2, chr-F: 0.746\ntestset: URL, BLEU: 35.4, chr-F: 0.529\ntestset: URL, BLEU: 19.0, chr-F: 0.349\ntestset: URL, BLEU: 35.8, chr-F: 0.582\ntestset: URL, BLEU: 19.0, chr-F: 0.337\ntestset: URL, BLEU: 43.4, chr-F: 0.609\ntestset: URL, BLEU: 18.1, chr-F: 0.515\ntestset: URL, BLEU: 9.7, chr-F: 0.162\ntestset: URL, BLEU: 14.1, chr-F: 0.410\ntestset: URL, BLEU: 47.0, chr-F: 0.640\ntestset: URL, BLEU: 2.6, chr-F: 0.195\ntestset: URL, BLEU: 12.2, chr-F: 0.344\ntestset: URL, BLEU: 36.3, chr-F: 0.589\ntestset: URL, BLEU: 3.5, chr-F: 0.270\ntestset: URL, BLEU: 0.4, chr-F: 0.096\ntestset: URL, BLEU: 3.9, chr-F: 0.376\ntestset: URL, BLEU: 68.7, chr-F: 0.786\ntestset: URL, BLEU: 71.4, chr-F: 0.554\ntestset: URL, BLEU: 3.7, chr-F: 0.220\ntestset: URL, BLEU: 4.9, chr-F: 0.219\ntestset: URL, BLEU: 47.2, chr-F: 0.650\ntestset: URL, BLEU: 58.8, chr-F: 0.749\ntestset: URL, BLEU: 27.1, chr-F: 0.527\ntestset: URL, BLEU: 41.5, chr-F: 0.616\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 30.8, chr-F: 0.518\ntestset: URL, BLEU: 36.6, chr-F: 0.578\ntestset: URL, BLEU: 53.8, chr-F: 0.696\ntestset: URL, BLEU: 4.8, chr-F: 0.184\ntestset: URL, BLEU: 15.9, chr-F: 0.489\ntestset: URL, BLEU: 21.7, chr-F: 0.544\ntestset: URL, BLEU: 13.0, chr-F: 0.252\ntestset: URL, BLEU: 37.5, chr-F: 0.566\ntestset: URL, BLEU: 0.6, chr-F: 0.131\ntestset: URL, BLEU: 20.0, chr-F: 0.580\ntestset: URL, BLEU: 16.5, chr-F: 0.389\ntestset: URL, BLEU: 19.6, chr-F: 0.450\ntestset: URL, BLEU: 34.5, chr-F: 0.319\ntestset: URL, BLEU: 3.2, chr-F: 0.196\ntestset: URL, BLEU: 32.6, chr-F: 0.517\ntestset: URL, BLEU: 28.4, chr-F: 0.503\ntestset: URL, BLEU: 24.3, chr-F: 0.465\ntestset: URL, BLEU: 0.2, chr-F: 0.043\ntestset: URL, BLEU: 2.4, chr-F: 0.020\ntestset: URL, BLEU: 4.4, chr-F: 0.178\ntestset: URL, BLEU: 11.3, chr-F: 0.378\ntestset: URL, BLEU: 37.8, chr-F: 0.579\ntestset: URL, BLEU: 0.1, chr-F: 0.082\ntestset: URL, BLEU: 3.3, chr-F: 0.050\ntestset: URL, BLEU: 27.1, chr-F: 0.485\ntestset: URL, BLEU: 34.7, chr-F: 0.539\ntestset: URL, BLEU: 6.7, chr-F: 0.331\ntestset: URL, BLEU: 4.5, chr-F: 0.235\ntestset: URL, BLEU: 31.9, chr-F: 0.527\ntestset: URL, BLEU: 0.2, chr-F: 0.101\ntestset: URL, BLEU: 13.7, chr-F: 0.358\ntestset: URL, BLEU: 7.2, chr-F: 0.304\ntestset: URL, BLEU: 8.9, chr-F: 0.349\ntestset: URL, BLEU: 28.9, chr-F: 0.513\ntestset: URL, BLEU: 0.7, chr-F: 0.157\ntestset: URL, BLEU: 0.2, chr-F: 0.010\ntestset: URL, BLEU: 0.1, chr-F: 0.005\ntestset: URL, BLEU: 0.2, chr-F: 0.073\ntestset: URL, BLEU: 23.2, chr-F: 0.470\ntestset: URL, BLEU: 12.5, chr-F: 0.367\ntestset: URL, BLEU: 5.4, chr-F: 0.249\ntestset: URL, BLEU: 12.9, chr-F: 0.263\ntestset: URL, BLEU: 16.5, chr-F: 0.395\ntestset: URL, BLEU: 29.2, chr-F: 0.536\ntestset: URL, BLEU: 0.6, chr-F: 0.092\ntestset: URL, BLEU: 11.2, chr-F: 0.183\ntestset: URL, BLEU: 0.3, chr-F: 0.112\ntestset: URL, BLEU: 6.4, chr-F: 0.301\ntestset: URL, BLEU: 29.6, chr-F: 0.502\ntestset: URL, BLEU: 17.4, chr-F: 0.445\ntestset: URL, BLEU: 18.5, chr-F: 0.380\ntestset: URL, BLEU: 7.9, chr-F: 0.245\ntestset: URL, BLEU: 21.9, chr-F: 0.449\ntestset: URL, BLEU: 21.9, chr-F: 0.478\ntestset: URL, BLEU: 13.6, chr-F: 0.391\ntestset: URL, BLEU: 37.2, chr-F: 0.574\ntestset: URL, BLEU: 34.5, chr-F: 0.562\ntestset: URL, BLEU: 4.7, chr-F: 0.261\ntestset: URL, BLEU: 0.2, chr-F: 0.006\ntestset: URL, BLEU: 0.6, chr-F: 0.064\ntestset: URL, BLEU: 0.2, chr-F: 0.064\ntestset: URL, BLEU: 23.6, chr-F: 0.477\ntestset: URL, BLEU: 25.1, chr-F: 0.480\ntestset: URL, BLEU: 0.2, chr-F: 0.070\ntestset: URL, BLEU: 0.2, chr-F: 0.059\ntestset: URL, BLEU: 5.2, chr-F: 0.179\ntestset: URL, BLEU: 25.7, chr-F: 0.484\ntestset: URL, BLEU: 27.1, chr-F: 0.494\ntestset: URL, BLEU: 1.6, chr-F: 0.076\ntestset: URL, BLEU: 10.8, chr-F: 0.281\ntestset: URL, BLEU: 8.1, chr-F: 0.251\ntestset: URL, BLEU: 31.5, chr-F: 0.534\ntestset: URL, BLEU: 0.6, chr-F: 0.144\ntestset: URL, BLEU: 39.1, chr-F: 0.572\ntestset: URL, BLEU: 0.1, chr-F: 0.088\ntestset: URL, BLEU: 13.1, chr-F: 0.406\ntestset: URL, BLEU: 27.2, chr-F: 0.489\ntestset: URL, BLEU: 13.4, chr-F: 0.350\ntestset: URL, BLEU: 6.0, chr-F: 0.262\ntestset: URL, BLEU: 14.1, chr-F: 0.366\ntestset: URL, BLEU: 19.0, chr-F: 0.424\ntestset: URL, BLEU: 15.4, chr-F: 0.342\ntestset: URL, BLEU: 15.2, chr-F: 0.315\ntestset: URL, BLEU: 35.4, chr-F: 0.394\ntestset: URL, BLEU: 12.6, chr-F: 0.401\ntestset: URL, BLEU: 2.9, chr-F: 0.168\ntestset: URL, BLEU: 5.2, chr-F: 0.207\ntestset: URL, BLEU: 6.4, chr-F: 0.215\ntestset: URL, BLEU: 1.6, chr-F: 0.180\ntestset: URL, BLEU: 3.9, chr-F: 0.199\ntestset: URL, BLEU: 26.6, chr-F: 0.483\ntestset: URL, BLEU: 20.2, chr-F: 0.398\ntestset: URL, BLEU: 12.1, chr-F: 0.380\ntestset: URL, BLEU: 0.7, chr-F: 0.039\ntestset: URL, BLEU: 53.7, chr-F: 0.513\ntestset: URL, BLEU: 30.5, chr-F: 0.503\ntestset: URL, BLEU: 43.1, chr-F: 0.589\ntestset: URL, BLEU: 12.7, chr-F: 0.541\ntestset: URL, BLEU: 5.3, chr-F: 0.210\ntestset: URL, BLEU: 39.5, chr-F: 0.563\ntestset: URL, BLEU: 11.6, chr-F: 0.343\ntestset: URL, BLEU: 30.9, chr-F: 0.524\ntestset: URL, BLEU: 57.6, chr-F: 0.572\ntestset: URL, BLEU: 4.9, chr-F: 0.244\ntestset: URL, BLEU: 38.0, chr-F: 0.562\ntestset: URL, BLEU: 40.8, chr-F: 0.615\ntestset: URL, BLEU: 72.6, chr-F: 0.846\ntestset: URL, BLEU: 26.8, chr-F: 0.514\ntestset: URL, BLEU: 27.1, chr-F: 0.493\ntestset: URL, BLEU: 30.8, chr-F: 0.512\ntestset: URL, BLEU: 30.8, chr-F: 0.475\ntestset: URL, BLEU: 36.0, chr-F: 0.521\ntestset: URL, BLEU: 12.6, chr-F: 0.364\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 46.1, chr-F: 0.633\ntestset: URL, BLEU: 5.1, chr-F: 0.136\ntestset: URL, BLEU: 5.1, chr-F: 0.199\ntestset: URL, BLEU: 0.8, chr-F: 0.208\ntestset: URL, BLEU: 16.8, chr-F: 0.380\ntestset: URL, BLEU: 0.2, chr-F: 0.002\ntestset: URL, BLEU: 16.6, chr-F: 0.415\ntestset: URL, BLEU: 7.0, chr-F: 0.321\ntestset: URL, BLEU: 0.2, chr-F: 0.003\ntestset: URL, BLEU: 6.6, chr-F: 0.251\ntestset: URL, BLEU: 31.5, chr-F: 0.513\ntestset: URL, BLEU: 33.5, chr-F: 0.550\ntestset: URL, BLEU: 25.6, chr-F: 0.466\ntestset: URL, BLEU: 0.1, chr-F: 0.035\ntestset: URL, BLEU: 0.8, chr-F: 0.135\ntestset: URL, BLEU: 1.4, chr-F: 0.194\ntestset: URL, BLEU: 18.8, chr-F: 0.422\ntestset: URL, BLEU: 41.2, chr-F: 0.591\ntestset: URL, BLEU: 27.9, chr-F: 0.503\ntestset: URL, BLEU: 0.7, chr-F: 0.125\ntestset: URL, BLEU: 0.1, chr-F: 0.062\ntestset: URL, BLEU: 30.7, chr-F: 0.540\ntestset: URL, BLEU: 4.9, chr-F: 0.283\ntestset: URL, BLEU: 3.9, chr-F: 0.217\ntestset: URL, BLEU: 5.9, chr-F: 0.276\ntestset: URL, BLEU: 4.8, chr-F: 0.239\ntestset: URL, BLEU: 34.6, chr-F: 0.551\ntestset: URL, BLEU: 0.2, chr-F: 0.099\ntestset: URL, BLEU: 5.5, chr-F: 0.040\ntestset: URL, BLEU: 13.1, chr-F: 0.357\ntestset: URL, BLEU: 0.4, chr-F: 0.085\ntestset: URL, BLEU: 7.4, chr-F: 0.293\ntestset: URL, BLEU: 20.0, chr-F: 0.415\ntestset: URL, BLEU: 29.9, chr-F: 0.528\ntestset: URL, BLEU: 5.9, chr-F: 0.220\ntestset: URL, BLEU: 0.5, chr-F: 0.137\ntestset: URL, BLEU: 0.1, chr-F: 0.009\ntestset: URL, BLEU: 0.0, chr-F: 0.005\ntestset: URL, BLEU: 0.5, chr-F: 0.103\ntestset: URL, BLEU: 6.4, chr-F: 0.241\ntestset: URL, BLEU: 28.2, chr-F: 0.460\ntestset: URL, BLEU: 26.0, chr-F: 0.485\ntestset: URL, BLEU: 0.8, chr-F: 0.228\ntestset: URL, BLEU: 11.2, chr-F: 0.364\ntestset: URL, BLEU: 10.6, chr-F: 0.277\ntestset: URL, BLEU: 10.9, chr-F: 0.307\ntestset: URL, BLEU: 13.8, chr-F: 0.368\ntestset: URL, BLEU: 33.8, chr-F: 0.571\ntestset: URL, BLEU: 3.0, chr-F: 0.007\ntestset: URL, BLEU: 4.8, chr-F: 0.005\ntestset: URL, BLEU: 0.4, chr-F: 0.092\ntestset: URL, BLEU: 9.0, chr-F: 0.174\ntestset: URL, BLEU: 0.5, chr-F: 0.144\ntestset: URL, BLEU: 0.1, chr-F: 0.000\ntestset: URL, BLEU: 7.7, chr-F: 0.333\ntestset: URL, BLEU: 25.1, chr-F: 0.480\ntestset: URL, BLEU: 0.4, chr-F: 0.101\ntestset: URL, BLEU: 21.0, chr-F: 0.492\ntestset: URL, BLEU: 0.5, chr-F: 0.143\ntestset: URL, BLEU: 0.5, chr-F: 0.135\ntestset: URL, BLEU: 15.6, chr-F: 0.345\ntestset: URL, BLEU: 9.3, chr-F: 0.251\ntestset: URL, BLEU: 9.5, chr-F: 0.326\ntestset: URL, BLEU: 54.1, chr-F: 0.747\ntestset: URL, BLEU: 29.8, chr-F: 0.503\ntestset: URL, BLEU: 20.0, chr-F: 0.449\ntestset: URL, BLEU: 9.3, chr-F: 0.231\ntestset: URL, BLEU: 12.2, chr-F: 0.357\ntestset: URL, BLEU: 0.2, chr-F: 0.003\ntestset: URL, BLEU: 37.1, chr-F: 0.570\ntestset: URL, BLEU: 0.5, chr-F: 0.078\ntestset: URL, BLEU: 38.4, chr-F: 0.575\ntestset: URL, BLEU: 4.8, chr-F: 0.249\ntestset: URL, BLEU: 2.8, chr-F: 0.185\ntestset: URL, BLEU: 0.1, chr-F: 0.011\ntestset: URL, BLEU: 2.6, chr-F: 0.166\ntestset: URL, BLEU: 2.6, chr-F: 0.214\ntestset: URL, BLEU: 39.8, chr-F: 0.566\ntestset: URL, BLEU: 1.0, chr-F: 0.131\ntestset: URL, BLEU: 0.9, chr-F: 0.124\ntestset: URL, BLEU: 26.2, chr-F: 0.500\ntestset: URL, BLEU: 31.5, chr-F: 0.545\ntestset: URL, BLEU: 0.2, chr-F: 0.088\ntestset: URL, BLEU: 0.4, chr-F: 0.108\ntestset: URL, BLEU: 1.8, chr-F: 0.192\ntestset: URL, BLEU: 7.6, chr-F: 0.313\ntestset: URL, BLEU: 27.6, chr-F: 0.508\ntestset: URL, BLEU: 0.1, chr-F: 0.011\ntestset: URL, BLEU: 28.6, chr-F: 0.496\ntestset: URL, BLEU: 2.0, chr-F: 0.098\ntestset: URL, BLEU: 0.9, chr-F: 0.080\ntestset: URL, BLEU: 24.5, chr-F: 0.501\ntestset: URL, BLEU: 1.3, chr-F: 0.105\ntestset: URL, BLEU: 3.0, chr-F: 0.178\ntestset: URL, BLEU: 12.5, chr-F: 0.298\ntestset: URL, BLEU: 1.7, chr-F: 0.214\ntestset: URL, BLEU: 36.3, chr-F: 0.575\ntestset: URL, BLEU: 22.1, chr-F: 0.459\ntestset: URL, BLEU: 5.2, chr-F: 0.316\ntestset: URL, BLEU: 42.4, chr-F: 0.591\ntestset: URL, BLEU: 0.6, chr-F: 0.145\ntestset: URL, BLEU: 1.9, chr-F: 0.255\ntestset: URL, BLEU: 0.3, chr-F: 0.054\ntestset: URL, BLEU: 27.3, chr-F: 0.478\ntestset: URL, BLEU: 7.0, chr-F: 0.310\ntestset: URL, BLEU: 0.9, chr-F: 0.116\ntestset: URL, BLEU: 4.0, chr-F: 0.164\ntestset: URL, BLEU: 5.9, chr-F: 0.260\ntestset: URL, BLEU: 0.4, chr-F: 0.071\ntestset: URL, BLEU: 20.1, chr-F: 0.420\ntestset: URL, BLEU: 0.6, chr-F: 0.057\ntestset: URL, BLEU: 22.8, chr-F: 0.278\ntestset: URL, BLEU: 9.0, chr-F: 0.360\ntestset: URL, BLEU: 19.0, chr-F: 0.324\ntestset: URL, BLEU: 35.8, chr-F: 0.523\ntestset: URL, BLEU: 35.7, chr-F: 0.495\ntestset: URL, BLEU: 42.7, chr-F: 0.644\ntestset: URL, BLEU: 22.4, chr-F: 0.477\ntestset: URL, BLEU: 4.3, chr-F: 0.141\ntestset: URL, BLEU: 9.0, chr-F: 0.345\ntestset: URL, BLEU: 16.0, chr-F: 0.289\ntestset: URL, BLEU: 4.1, chr-F: 0.143\ntestset: URL, BLEU: 3.0, chr-F: 0.247\ntestset: URL, BLEU: 11.6, chr-F: 0.294\ntestset: URL, BLEU: 19.0, chr-F: 0.220\ntestset: URL, BLEU: 4.8, chr-F: 0.188\ntestset: URL, BLEU: 6.1, chr-F: 0.136\ntestset: URL, BLEU: 16.0, chr-F: 0.054\ntestset: URL, BLEU: 0.7, chr-F: 0.124\ntestset: URL, BLEU: 5.4, chr-F: 0.238\ntestset: URL, BLEU: 10.5, chr-F: 0.155\ntestset: URL, BLEU: 18.6, chr-F: 0.427\ntestset: URL, BLEU: 38.9, chr-F: 0.611\ntestset: URL, BLEU: 6.8, chr-F: 0.276\ntestset: URL, BLEU: 10.5, chr-F: 0.138\ntestset: URL, BLEU: 12.7, chr-F: 0.088\ntestset: URL, BLEU: 7.6, chr-F: 0.109\ntestset: URL, BLEU: 18.8, chr-F: 0.254\ntestset: URL, BLEU: 21.4, chr-F: 0.339\ntestset: URL, BLEU: 4.0, chr-F: 0.440\ntestset: URL, BLEU: 5.3, chr-F: 0.231\ntestset: URL, BLEU: 24.9, chr-F: 0.420\ntestset: URL, BLEU: 0.0, chr-F: 0.056\ntestset: URL, BLEU: 16.0, chr-F: 0.171\ntestset: URL, BLEU: 2.1, chr-F: 0.258\ntestset: URL, BLEU: 43.5, chr-F: 0.557\ntestset: URL, BLEU: 21.3, chr-F: 0.402\ntestset: URL, BLEU: 3.0, chr-F: 0.164\ntestset: URL, BLEU: 12.7, chr-F: 0.142\ntestset: URL, BLEU: 10.5, chr-F: 0.131\ntestset: URL, BLEU: 0.6, chr-F: 0.087\ntestset: URL, BLEU: 26.2, chr-F: 0.443\ntestset: URL, BLEU: 3.6, chr-F: 0.176\ntestset: URL, BLEU: 0.0, chr-F: 0.632\ntestset: URL, BLEU: 5.8, chr-F: 0.163\ntestset: URL, BLEU: 14.5, chr-F: 0.104\ntestset: URL, BLEU: 53.7, chr-F: 0.504\ntestset: URL, BLEU: 8.5, chr-F: 0.311\ntestset: URL, BLEU: 8.7, chr-F: 0.259\ntestset: URL, BLEU: 10.3, chr-F: 0.303\ntestset: URL, BLEU: 1.3, chr-F: 0.006\ntestset: URL, BLEU: 8.6, chr-F: 0.331\ntestset: URL, BLEU: 7.2, chr-F: 0.301\ntestset: URL, BLEU: 0.4, chr-F: 0.074\ntestset: URL, BLEU: 14.4, chr-F: 0.256\ntestset: URL, BLEU: 9.8, chr-F: 0.325\ntestset: URL, BLEU: 6.6, chr-F: 0.127\ntestset: URL, BLEU: 50.0, chr-F: 0.657\ntestset: URL, BLEU: 4.5, chr-F: 0.223\ntestset: URL, BLEU: 8.6, chr-F: 0.316\ntestset: URL, BLEU: 19.1, chr-F: 0.445\ntestset: URL, BLEU: 9.8, chr-F: 0.313\ntestset: URL, BLEU: 9.1, chr-F: 0.318\ntestset: URL, BLEU: 4.8, chr-F: 0.213\ntestset: URL, BLEU: 2.0, chr-F: 0.138\ntestset: URL, BLEU: 49.7, chr-F: 0.630\ntestset: URL, BLEU: 1.0, chr-F: 0.105\ntestset: URL, BLEU: 0.0, chr-F: 0.011\ntestset: URL, BLEU: 4.1, chr-F: 0.194\ntestset: URL, BLEU: 23.0, chr-F: 0.410\ntestset: URL, BLEU: 22.2, chr-F: 0.448\ntestset: URL, BLEU: 6.4, chr-F: 0.341\ntestset: URL, BLEU: 1.2, chr-F: 0.035\ntestset: URL, BLEU: 3.4, chr-F: 0.204\ntestset: URL, BLEU: 31.2, chr-F: 0.528\ntestset: URL, BLEU: 33.9, chr-F: 0.570\ntestset: URL, BLEU: 26.9, chr-F: 0.490\ntestset: URL, BLEU: 0.2, chr-F: 0.039\ntestset: URL, BLEU: 0.3, chr-F: 0.061\ntestset: URL, BLEU: 17.3, chr-F: 0.455\ntestset: URL, BLEU: 47.1, chr-F: 0.634\ntestset: URL, BLEU: 31.1, chr-F: 0.530\ntestset: URL, BLEU: 0.7, chr-F: 0.061\ntestset: URL, BLEU: 32.4, chr-F: 0.544\ntestset: URL, BLEU: 40.1, chr-F: 0.583\ntestset: URL, BLEU: 5.1, chr-F: 0.207\ntestset: URL, BLEU: 1.8, chr-F: 0.304\ntestset: URL, BLEU: 5.6, chr-F: 0.233\ntestset: URL, BLEU: 0.3, chr-F: 0.149\ntestset: URL, BLEU: 6.4, chr-F: 0.412\ntestset: URL, BLEU: 11.4, chr-F: 0.357\ntestset: URL, BLEU: 0.1, chr-F: 0.067\ntestset: URL, BLEU: 9.1, chr-F: 0.316\ntestset: URL, BLEU: 16.8, chr-F: 0.416\ntestset: URL, BLEU: 34.5, chr-F: 0.562\ntestset: URL, BLEU: 5.5, chr-F: 0.204\ntestset: URL, BLEU: 0.2, chr-F: 0.001\ntestset: URL, BLEU: 0.1, chr-F: 0.006\ntestset: URL, BLEU: 20.8, chr-F: 0.424\ntestset: URL, BLEU: 28.9, chr-F: 0.511\ntestset: URL, BLEU: 5.1, chr-F: 0.336\ntestset: URL, BLEU: 11.5, chr-F: 0.401\ntestset: URL, BLEU: 17.2, chr-F: 0.362\ntestset: URL, BLEU: 37.7, chr-F: 0.606\ntestset: URL, BLEU: 2.8, chr-F: 0.148\ntestset: URL, BLEU: 14.3, chr-F: 0.188\ntestset: URL, BLEU: 0.4, chr-F: 0.129\ntestset: URL, BLEU: 2.8, chr-F: 0.258\ntestset: URL, BLEU: 30.3, chr-F: 0.490\ntestset: URL, BLEU: 0.3, chr-F: 0.099\ntestset: URL, BLEU: 18.3, chr-F: 0.461\ntestset: URL, BLEU: 0.6, chr-F: 0.185\ntestset: URL, BLEU: 1.2, chr-F: 0.163\ntestset: URL, BLEU: 15.3, chr-F: 0.385\ntestset: URL, BLEU: 45.7, chr-F: 0.393\ntestset: URL, BLEU: 29.5, chr-F: 0.498\ntestset: URL, BLEU: 19.4, chr-F: 0.456\ntestset: URL, BLEU: 12.9, chr-F: 0.356\ntestset: URL, BLEU: 33.0, chr-F: 0.532\ntestset: URL, BLEU: 1.2, chr-F: 0.072\ntestset: URL, BLEU: 35.1, chr-F: 0.553\ntestset: URL, BLEU: 6.8, chr-F: 0.313\ntestset: URL, BLEU: 0.2, chr-F: 0.004\ntestset: URL, BLEU: 3.6, chr-F: 0.112\ntestset: URL, BLEU: 78.3, chr-F: 0.917\ntestset: URL, BLEU: 0.1, chr-F: 0.084\ntestset: URL, BLEU: 0.3, chr-F: 0.117\ntestset: URL, BLEU: 22.4, chr-F: 0.468\ntestset: URL, BLEU: 33.0, chr-F: 0.559\ntestset: URL, BLEU: 0.6, chr-F: 0.084\ntestset: URL, BLEU: 5.9, chr-F: 0.278\ntestset: URL, BLEU: 4.2, chr-F: 0.257\ntestset: URL, BLEU: 29.7, chr-F: 0.531\ntestset: URL, BLEU: 28.8, chr-F: 0.498\ntestset: URL, BLEU: 0.4, chr-F: 0.056\ntestset: URL, BLEU: 1.7, chr-F: 0.222\ntestset: URL, BLEU: 2.4, chr-F: 0.207\ntestset: URL, BLEU: 38.6, chr-F: 0.598\ntestset: URL, BLEU: 23.9, chr-F: 0.455\ntestset: URL, BLEU: 1.2, chr-F: 0.159\ntestset: URL, BLEU: 44.2, chr-F: 0.609\ntestset: URL, BLEU: 2.4, chr-F: 0.123\ntestset: URL, BLEU: 2.8, chr-F: 0.244\ntestset: URL, BLEU: 0.5, chr-F: 0.034\ntestset: URL, BLEU: 26.7, chr-F: 0.474\ntestset: URL, BLEU: 2.3, chr-F: 0.333\ntestset: URL, BLEU: 0.6, chr-F: 0.088\ntestset: URL, BLEU: 5.3, chr-F: 0.178\ntestset: URL, BLEU: 8.7, chr-F: 0.271\ntestset: URL, BLEU: 19.2, chr-F: 0.394\ntestset: URL, BLEU: 12.3, chr-F: 0.482\ntestset: URL, BLEU: 8.3, chr-F: 0.286\ntestset: URL, BLEU: 6.1, chr-F: 0.181\ntestset: URL, BLEU: 12.7, chr-F: 0.535\ntestset: URL, BLEU: 4.1, chr-F: 0.144\ntestset: URL, BLEU: 0.5, chr-F: 0.033\ntestset: URL, BLEU: 12.4, chr-F: 0.127\ntestset: URL, BLEU: 6.9, chr-F: 0.233\ntestset: URL, BLEU: 0.5, chr-F: 0.045\ntestset: URL, BLEU: 0.0, chr-F: 0.244\ntestset: URL, BLEU: 4.2, chr-F: 0.280\ntestset: URL, BLEU: 21.7, chr-F: 0.448\ntestset: URL, BLEU: 22.9, chr-F: 0.431\ntestset: URL, BLEU: 10.7, chr-F: 0.140\ntestset: URL, BLEU: 31.8, chr-F: 0.455\ntestset: URL, BLEU: 0.5, chr-F: 0.040\ntestset: URL, BLEU: 0.7, chr-F: 0.204\ntestset: URL, BLEU: 34.8, chr-F: 0.528\ntestset: URL, BLEU: 8.1, chr-F: 0.318\ntestset: URL, BLEU: 21.4, chr-F: 0.324\ntestset: URL, BLEU: 0.1, chr-F: 0.000\ntestset: URL, BLEU: 6.6, chr-F: 0.127\ntestset: URL, BLEU: 35.7, chr-F: 0.576\ntestset: URL, BLEU: 32.6, chr-F: 0.511\ntestset: URL, BLEU: 17.7, chr-F: 0.342\ntestset: URL, BLEU: 12.1, chr-F: 0.304\ntestset: URL, BLEU: 31.7, chr-F: 0.438\ntestset: URL, BLEU: 30.6, chr-F: 0.479\ntestset: URL, BLEU: 0.5, chr-F: 0.156\ntestset: URL, BLEU: 27.5, chr-F: 0.247\ntestset: URL, BLEU: 16.1, chr-F: 0.330\ntestset: URL, BLEU: 4.0, chr-F: 0.167\ntestset: URL, BLEU: 13.2, chr-F: 0.257\ntestset: URL, BLEU: 6.0, chr-F: 0.241\ntestset: URL, BLEU: 0.0, chr-F: 0.170\ntestset: URL, BLEU: 0.0, chr-F: 0.427\ntestset: URL, BLEU: 0.0, chr-F: 1.000\ntestset: URL, BLEU: 31.8, chr-F: 0.374\ntestset: URL, BLEU: 11.5, chr-F: 0.416\ntestset: URL, BLEU: 15.1, chr-F: 0.348\ntestset: URL, BLEU: 17.5, chr-F: 0.329\ntestset: URL, BLEU: 13.1, chr-F: 0.346\ntestset: URL, BLEU: 12.1, chr-F: 0.306\ntestset: URL, BLEU: 8.0, chr-F: 0.035\ntestset: URL, BLEU: 20.8, chr-F: 0.299\ntestset: URL, BLEU: 13.7, chr-F: 0.355\ntestset: URL, BLEU: 24.7, chr-F: 0.423\ntestset: URL, BLEU: 12.7, chr-F: 0.322\ntestset: URL, BLEU: 7.8, chr-F: 0.288\ntestset: URL, BLEU: 13.5, chr-F: 0.390\ntestset: URL, BLEU: 32.0, chr-F: 0.490\ntestset: URL, BLEU: 5.0, chr-F: 0.135\ntestset: URL, BLEU: 18.0, chr-F: 0.403\ntestset: URL, BLEU: 16.9, chr-F: 0.377\ntestset: URL, BLEU: 0.0, chr-F: 0.077\ntestset: URL, BLEU: 2.4, chr-F: 0.328\ntestset: URL, BLEU: 0.0, chr-F: 0.673\ntestset: URL, BLEU: 2.5, chr-F: 0.139\ntestset: URL, BLEU: 24.5, chr-F: 0.458\ntestset: URL, BLEU: 13.3, chr-F: 0.324\ntestset: URL, BLEU: 30.4, chr-F: 0.539\ntestset: URL, BLEU: 30.2, chr-F: 0.448\ntestset: URL, BLEU: 37.9, chr-F: 0.571\ntestset: URL, BLEU: 45.8, chr-F: 0.627\ntestset: URL, BLEU: 31.1, chr-F: 0.561\ntestset: URL, BLEU: 36.2, chr-F: 0.573\ntestset: URL, BLEU: 22.7, chr-F: 0.524\ntestset: URL, BLEU: 47.4, chr-F: 0.674\ntestset: URL, BLEU: 28.4, chr-F: 0.465\ntestset: URL, BLEU: 53.2, chr-F: 0.704\ntestset: URL, BLEU: 1.4, chr-F: 0.140\ntestset: URL, BLEU: 3.2, chr-F: 0.104\ntestset: URL, BLEU: 9.9, chr-F: 0.243\ntestset: URL, BLEU: 6.2, chr-F: 0.269\ntestset: URL, BLEU: 0.0, chr-F: 0.056\ntestset: URL, BLEU: 6.6, chr-F: 0.107\ntestset: URL, BLEU: 12.0, chr-F: 0.356\ntestset: URL, BLEU: 15.7, chr-F: 0.384\ntestset: URL, BLEU: 14.8, chr-F: 0.320\ntestset: URL, BLEU: 4.1, chr-F: 0.292\ntestset: URL, BLEU: 19.0, chr-F: 0.111\ntestset: URL, BLEU: 8.4, chr-F: 0.321\ntestset: URL, BLEU: 0.9, chr-F: 0.064\ntestset: URL, BLEU: 13.5, chr-F: 0.361\ntestset: URL, BLEU: 8.2, chr-F: 0.228\ntestset: URL, BLEU: 31.9, chr-F: 0.610\ntestset: URL, BLEU: 0.0, chr-F: 0.050\ntestset: URL, BLEU: 0.5, chr-F: 0.010\ntestset: URL, BLEU: 4.5, chr-F: 0.206\ntestset: URL, BLEU: 4.2, chr-F: 0.220\ntestset: URL, BLEU: 3.9, chr-F: 0.202\ntestset: URL, BLEU: 16.8, chr-F: 0.389\ntestset: URL, BLEU: 5.2, chr-F: 0.298\ntestset: URL, BLEU: 24.7, chr-F: 0.406\ntestset: URL, BLEU: 0.4, chr-F: 0.137\ntestset: URL, BLEU: 16.8, chr-F: 0.310\ntestset: URL, BLEU: 5.4, chr-F: 0.370\ntestset: URL, BLEU: 4.3, chr-F: 0.170\ntestset: URL, BLEU: 0.6, chr-F: 0.044\ntestset: URL, BLEU: 0.1, chr-F: 0.050\ntestset: URL, BLEU: 0.2, chr-F: 0.064\ntestset: URL, BLEU: 3.1, chr-F: 0.013\ntestset: URL, BLEU: 0.2, chr-F: 0.050\ntestset: URL, BLEU: 2.7, chr-F: 0.155\ntestset: URL, BLEU: 4.7, chr-F: 0.198\ntestset: URL, BLEU: 1.9, chr-F: 0.146\ntestset: URL, BLEU: 12.8, chr-F: 0.234\ntestset: URL, BLEU: 0.5, chr-F: 0.114\ntestset: URL, BLEU: 0.8, chr-F: 0.163\ntestset: URL, BLEU: 2.4, chr-F: 0.141\ntestset: URL, BLEU: 12.6, chr-F: 0.393\ntestset: URL, BLEU: 15.9, chr-F: 0.322\ntestset: URL, BLEU: 19.0, chr-F: 0.308\ntestset: URL, BLEU: 15.9, chr-F: 0.301\ntestset: URL, BLEU: 14.7, chr-F: 0.250\ntestset: URL, BLEU: 38.5, chr-F: 0.522\ntestset: URL, BLEU: 17.6, chr-F: 0.424\ntestset: URL, BLEU: 32.0, chr-F: 0.472\ntestset: URL, BLEU: 31.2, chr-F: 0.496\ntestset: URL, BLEU: 40.1, chr-F: 0.579\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 27.8, chr-F: 0.543\ntestset: URL, BLEU: 32.9, chr-F: 0.545\ntestset: URL, BLEU: 38.6, chr-F: 0.563\ntestset: URL, BLEU: 2.3, chr-F: 0.299\ntestset: URL, BLEU: 33.3, chr-F: 0.548\ntestset: URL, BLEU: 37.9, chr-F: 0.602\ntestset: URL, BLEU: 9.8, chr-F: 0.289\ntestset: URL, BLEU: 38.0, chr-F: 0.718\ntestset: URL, BLEU: 31.8, chr-F: 0.528\ntestset: URL, BLEU: 31.7, chr-F: 0.548\ntestset: URL, BLEU: 28.1, chr-F: 0.484\ntestset: URL, BLEU: 38.9, chr-F: 0.596\ntestset: URL, BLEU: 38.6, chr-F: 0.589\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 36.0, chr-F: 0.557\ntestset: URL, BLEU: 8.1, chr-F: 0.441\ntestset: URL, BLEU: 8.9, chr-F: 0.439\ntestset: URL, BLEU: 8.8, chr-F: 0.288\ntestset: URL, BLEU: 26.1, chr-F: 0.414\ntestset: URL, BLEU: 25.5, chr-F: 0.440\ntestset: URL, BLEU: 30.1, chr-F: 0.449\ntestset: URL, BLEU: 12.6, chr-F: 0.412\ntestset: URL, BLEU: 9.9, chr-F: 0.416\ntestset: URL, BLEU: 8.4, chr-F: 0.289\ntestset: URL, BLEU: 21.2, chr-F: 0.395\ntestset: URL, BLEU: 25.9, chr-F: 0.384\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 10.4, chr-F: 0.376\ntestset: URL, BLEU: 18.1, chr-F: 0.373\ntestset: URL, BLEU: 24.4, chr-F: 0.467\ntestset: URL, BLEU: 42.9, chr-F: 0.583\ntestset: URL, BLEU: 19.5, chr-F: 0.444\ntestset: URL, BLEU: 11.6, chr-F: 0.323\ntestset: URL, BLEU: 22.1, chr-F: 0.398\ntestset: URL, BLEU: 32.1, chr-F: 0.386\ntestset: URL, BLEU: 21.9, chr-F: 0.407\ntestset: URL, BLEU: 29.3, chr-F: 0.476\ntestset: URL, BLEU: 40.5, chr-F: 0.708\ntestset: URL, BLEU: 0.0, chr-F: 0.034\ntestset: URL, BLEU: 38.1, chr-F: 0.582\ntestset: URL, BLEU: 31.8, chr-F: 0.511\ntestset: URL, BLEU: 29.8, chr-F: 0.483\ntestset: URL, BLEU: 39.8, chr-F: 0.336\ntestset: URL, BLEU: 26.3, chr-F: 0.441\ntestset: URL, BLEU: 27.3, chr-F: 0.469\ntestset: URL, BLEU: 1.9, chr-F: 0.047\ntestset: URL, BLEU: 28.9, chr-F: 0.501\ntestset: URL, BLEU: 2.6, chr-F: 0.135\ntestset: URL, BLEU: 59.6, chr-F: 0.740\ntestset: URL, BLEU: 0.1, chr-F: 0.012\ntestset: URL, BLEU: 40.2, chr-F: 0.566\ntestset: URL, BLEU: 19.7, chr-F: 0.358\ntestset: URL, BLEU: 17.4, chr-F: 0.465\ntestset: URL, BLEU: 18.0, chr-F: 0.386\ntestset: URL, BLEU: 30.7, chr-F: 0.496\ntestset: URL, BLEU: 10.7, chr-F: 0.133\ntestset: URL, BLEU: 38.1, chr-F: 0.539\ntestset: URL, BLEU: 53.2, chr-F: 0.676\ntestset: URL, BLEU: 3.8, chr-F: 0.125\ntestset: URL, BLEU: 3.4, chr-F: 0.252\ntestset: URL, BLEU: 24.2, chr-F: 0.460\ntestset: URL, BLEU: 12.1, chr-F: 0.427\ntestset: URL, BLEU: 4.7, chr-F: 0.287\ntestset: URL, BLEU: 27.8, chr-F: 0.482\ntestset: URL, BLEU: 40.6, chr-F: 0.608\ntestset: URL, BLEU: 23.1, chr-F: 0.450\ntestset: URL, BLEU: 0.8, chr-F: 0.060\ntestset: URL, BLEU: 10.1, chr-F: 0.375\ntestset: URL, BLEU: 38.9, chr-F: 0.577\ntestset: URL, BLEU: 31.7, chr-F: 0.539\ntestset: URL, BLEU: 0.2, chr-F: 0.061\ntestset: URL, BLEU: 31.5, chr-F: 0.539\ntestset: URL, BLEU: 47.4, chr-F: 0.633\ntestset: URL, BLEU: 6.4, chr-F: 0.247\ntestset: URL, BLEU: 4.2, chr-F: 0.236\ntestset: URL, BLEU: 46.6, chr-F: 0.642\ntestset: URL, BLEU: 20.0, chr-F: 0.409\ntestset: URL, BLEU: 7.8, chr-F: 0.312\ntestset: URL, BLEU: 36.3, chr-F: 0.577\ntestset: URL, BLEU: 1.1, chr-F: 0.030\ntestset: URL, BLEU: 39.4, chr-F: 0.595\ntestset: URL, BLEU: 18.5, chr-F: 0.408\ntestset: URL, BLEU: 1.9, chr-F: 0.160\ntestset: URL, BLEU: 1.0, chr-F: 0.178\ntestset: URL, BLEU: 7.1, chr-F: 0.320\ntestset: URL, BLEU: 29.0, chr-F: 0.511\ntestset: URL, BLEU: 0.2, chr-F: 0.107\ntestset: URL, BLEU: 20.7, chr-F: 0.475\ntestset: URL, BLEU: 20.6, chr-F: 0.373\ntestset: URL, BLEU: 14.3, chr-F: 0.409\ntestset: URL, BLEU: 13.3, chr-F: 0.378\ntestset: URL, BLEU: 37.8, chr-F: 0.578\ntestset: URL, BLEU: 35.7, chr-F: 0.578\ntestset: URL, BLEU: 11.0, chr-F: 0.369\ntestset: URL, BLEU: 1.2, chr-F: 0.010\ntestset: URL, BLEU: 0.2, chr-F: 0.110\ntestset: URL, BLEU: 25.9, chr-F: 0.507\ntestset: URL, BLEU: 36.8, chr-F: 0.597\ntestset: URL, BLEU: 34.3, chr-F: 0.574\ntestset: URL, BLEU: 28.5, chr-F: 0.494\ntestset: URL, BLEU: 11.7, chr-F: 0.364\ntestset: URL, BLEU: 46.3, chr-F: 0.653\ntestset: URL, BLEU: 21.9, chr-F: 0.418\ntestset: URL, BLEU: 37.7, chr-F: 0.562\ntestset: URL, BLEU: 33.1, chr-F: 0.538\ntestset: URL, BLEU: 0.8, chr-F: 0.095\ntestset: URL, BLEU: 10.3, chr-F: 0.280\ntestset: URL, BLEU: 3.9, chr-F: 0.098\ntestset: URL, BLEU: 5.0, chr-F: 0.217\ntestset: URL, BLEU: 12.2, chr-F: 0.357\ntestset: URL, BLEU: 4.1, chr-F: 0.237\ntestset: URL, BLEU: 5.3, chr-F: 0.299\ntestset: URL, BLEU: 15.3, chr-F: 0.322\ntestset: URL, BLEU: 0.0, chr-F: 0.095\ntestset: URL, BLEU: 11.3, chr-F: 0.272\ntestset: URL, BLEU: 0.0, chr-F: 0.069\ntestset: URL, BLEU: 35.4, chr-F: 0.540\ntestset: URL, BLEU: 24.3, chr-F: 0.509\ntestset: URL, BLEU: 12.0, chr-F: 0.226\ntestset: URL, BLEU: 10.0, chr-F: 0.205\ntestset: URL, BLEU: 5.5, chr-F: 0.048\ntestset: URL, BLEU: 16.5, chr-F: 0.236\ntestset: URL, BLEU: 7.6, chr-F: 0.081\ntestset: URL, BLEU: 1.6, chr-F: 0.013\ntestset: URL, BLEU: 11.4, chr-F: 0.362\ntestset: URL, BLEU: 0.2, chr-F: 0.067\ntestset: URL, BLEU: 6.1, chr-F: 0.240\ntestset: URL, BLEU: 1.9, chr-F: 0.161\ntestset: URL, BLEU: 3.3, chr-F: 0.155\ntestset: URL, BLEU: 31.9, chr-F: 0.184\ntestset: URL, BLEU: 5.0, chr-F: 0.230\ntestset: URL, BLEU: 37.0, chr-F: 0.295\ntestset: URL, BLEU: 1.3, chr-F: 0.184\ntestset: URL, BLEU: 39.1, chr-F: 0.426\ntestset: URL, BLEU: 4.3, chr-F: 0.206\ntestset: URL, BLEU: 2.1, chr-F: 0.164\ntestset: URL, BLEU: 1.4, chr-F: 0.046\ntestset: URL, BLEU: 9.7, chr-F: 0.330\ntestset: URL, BLEU: 35.4, chr-F: 0.529\ntestset: URL, BLEU: 33.1, chr-F: 0.604\ntestset: URL, BLEU: 15.4, chr-F: 0.325\ntestset: URL, BLEU: 19.3, chr-F: 0.405\ntestset: URL, BLEU: 23.1, chr-F: 0.421\ntestset: URL, BLEU: 2.2, chr-F: 0.173\ntestset: URL, BLEU: 5.2, chr-F: 0.194\ntestset: URL, BLEU: 26.3, chr-F: 0.405\ntestset: URL, BLEU: 0.0, chr-F: 0.170\ntestset: URL, BLEU: 21.4, chr-F: 0.347\ntestset: URL, BLEU: 1.2, chr-F: 0.058\ntestset: URL, BLEU: 22.7, chr-F: 0.479\ntestset: URL, BLEU: 2.4, chr-F: 0.190\ntestset: URL, BLEU: 3.4, chr-F: 0.239\ntestset: URL, BLEU: 45.5, chr-F: 0.580\ntestset: URL, BLEU: 23.0, chr-F: 0.690\ntestset: URL, BLEU: 33.5, chr-F: 0.449\ntestset: URL, BLEU: 66.9, chr-F: 0.951\ntestset: URL, BLEU: 0.0, chr-F: 0.076\ntestset: URL, BLEU: 27.5, chr-F: 0.448\ntestset: URL, BLEU: 78.3, chr-F: 0.693\ntestset: URL, BLEU: 6.5, chr-F: 0.308\ntestset: URL, BLEU: 0.0, chr-F: 0.179\ntestset: URL, BLEU: 59.5, chr-F: 0.602\ntestset: URL, BLEU: 37.0, chr-F: 0.553\ntestset: URL, BLEU: 66.9, chr-F: 0.783\ntestset: URL, BLEU: 8.1, chr-F: 0.282\ntestset: URL, BLEU: 4.8, chr-F: 0.212\ntestset: URL, BLEU: 5.0, chr-F: 0.237\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 0.9, chr-F: 0.068\ntestset: URL, BLEU: 10.6, chr-F: 0.284\ntestset: URL, BLEU: 27.5, chr-F: 0.481\ntestset: URL, BLEU: 15.6, chr-F: 0.331\ntestset: URL, BLEU: 2.9, chr-F: 0.203\ntestset: URL, BLEU: 29.4, chr-F: 0.479\ntestset: URL, BLEU: 19.9, chr-F: 0.391\ntestset: URL, BLEU: 20.5, chr-F: 0.396\ntestset: URL, BLEU: 1.0, chr-F: 0.082\ntestset: URL, BLEU: 7.9, chr-F: 0.407\ntestset: URL, BLEU: 9.3, chr-F: 0.286\ntestset: URL, BLEU: 7.1, chr-F: 0.192\ntestset: URL, BLEU: 3.6, chr-F: 0.150\ntestset: URL, BLEU: 0.2, chr-F: 0.001\ntestset: URL, BLEU: 15.1, chr-F: 0.322\ntestset: URL, BLEU: 8.3, chr-F: 0.108\ntestset: URL, BLEU: 20.7, chr-F: 0.415\ntestset: URL, BLEU: 7.9, chr-F: 0.260\ntestset: URL, BLEU: 0.2, chr-F: 0.087\ntestset: URL, BLEU: 5.6, chr-F: 0.301\ntestset: URL, BLEU: 10.2, chr-F: 0.352\ntestset: URL, BLEU: 24.3, chr-F: 0.444\ntestset: URL, BLEU: 14.5, chr-F: 0.338\ntestset: URL, BLEU: 0.1, chr-F: 0.006\ntestset: URL, BLEU: 21.8, chr-F: 0.412\ntestset: URL, BLEU: 12.2, chr-F: 0.336\ntestset: URL, BLEU: 12.7, chr-F: 0.343\ntestset: URL, BLEU: 16.6, chr-F: 0.362\ntestset: URL, BLEU: 3.2, chr-F: 0.215\ntestset: URL, BLEU: 18.9, chr-F: 0.414\ntestset: URL, BLEU: 53.4, chr-F: 0.708\ntestset: URL, BLEU: 14.0, chr-F: 0.343\ntestset: URL, BLEU: 2.1, chr-F: 0.182\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 34.5, chr-F: 0.540\ntestset: URL, BLEU: 33.6, chr-F: 0.520\ntestset: URL, BLEU: 40.5, chr-F: 0.598\ntestset: URL, BLEU: 72.7, chr-F: 0.770\ntestset: URL, BLEU: 30.5, chr-F: 0.570\ntestset: URL, BLEU: 5.7, chr-F: 0.362\ntestset: URL, BLEU: 23.5, chr-F: 0.504\ntestset: URL, BLEU: 13.7, chr-F: 0.550\ntestset: URL, BLEU: 37.6, chr-F: 0.551\ntestset: URL, BLEU: 32.5, chr-F: 0.517\ntestset: URL, BLEU: 8.6, chr-F: 0.483\ntestset: URL, BLEU: 26.6, chr-F: 0.511\ntestset: URL, BLEU: 95.1, chr-F: 0.958\ntestset: URL, BLEU: 9.0, chr-F: 0.488\ntestset: URL, BLEU: 6.8, chr-F: 0.251\ntestset: URL, BLEU: 12.2, chr-F: 0.329\ntestset: URL, BLEU: 10.4, chr-F: 0.366\ntestset: URL, BLEU: 25.7, chr-F: 0.472\ntestset: URL, BLEU: 37.5, chr-F: 0.551\ntestset: URL, BLEU: 32.1, chr-F: 0.489\ntestset: URL, BLEU: 22.3, chr-F: 0.460\ntestset: URL, BLEU: 7.4, chr-F: 0.195\ntestset: URL, BLEU: 22.6, chr-F: 0.378\ntestset: URL, BLEU: 9.7, chr-F: 0.282\ntestset: URL, BLEU: 7.2, chr-F: 0.374\ntestset: URL, BLEU: 30.9, chr-F: 0.529\ntestset: URL, BLEU: 25.0, chr-F: 0.439\ntestset: URL, BLEU: 30.6, chr-F: 0.504\ntestset: URL, BLEU: 8.6, chr-F: 0.331\ntestset: URL, BLEU: 32.9, chr-F: 0.516\ntestset: URL, BLEU: 19.6, chr-F: 0.371\ntestset: URL, BLEU: 6.5, chr-F: 0.360\ntestset: URL, BLEU: 13.7, chr-F: 0.310\ntestset: URL, BLEU: 13.1, chr-F: 0.368\ntestset: URL, BLEU: 3.4, chr-F: 0.064\ntestset: URL, BLEU: 9.3, chr-F: 0.351\ntestset: URL, BLEU: 22.3, chr-F: 0.323\ntestset: URL, BLEU: 10.9, chr-F: 0.333\ntestset: URL, BLEU: 49.5, chr-F: 0.589\ntestset: URL, BLEU: 0.0, chr-F: 0.051\ntestset: URL, BLEU: 9.7, chr-F: 0.353\ntestset: URL, BLEU: 65.1, chr-F: 0.463\ntestset: URL, BLEU: 35.6, chr-F: 0.533\ntestset: URL, BLEU: 33.7, chr-F: 0.448\ntestset: URL, BLEU: 24.3, chr-F: 0.451\ntestset: URL, BLEU: 23.4, chr-F: 0.621\ntestset: URL, BLEU: 0.5, chr-F: 0.104\ntestset: URL, BLEU: 14.2, chr-F: 0.412\ntestset: URL, BLEU: 7.8, chr-F: 0.179\ntestset: URL, BLEU: 7.6, chr-F: 0.106\ntestset: URL, BLEU: 32.4, chr-F: 0.488\ntestset: URL, BLEU: 27.8, chr-F: 0.599\ntestset: URL, BLEU: 12.7, chr-F: 0.319\ntestset: URL, BLEU: 18.0, chr-F: 0.392\ntestset: URL, BLEU: 15.6, chr-F: 0.458\ntestset: URL, BLEU: 0.6, chr-F: 0.065\ntestset: URL, BLEU: 32.5, chr-F: 0.403\ntestset: URL, BLEU: 1.4, chr-F: 0.236\ntestset: URL, BLEU: 49.8, chr-F: 0.429\ntestset: URL, BLEU: 18.6, chr-F: 0.460\ntestset: URL, BLEU: 5.1, chr-F: 0.230\ntestset: URL, BLEU: 14.2, chr-F: 0.379\ntestset: URL, BLEU: 20.0, chr-F: 0.422\ntestset: URL, BLEU: 40.7, chr-F: 0.470\ntestset: URL, BLEU: 7.3, chr-F: 0.407\ntestset: URL, BLEU: 35.4, chr-F: 0.638\ntestset: URL, BLEU: 49.0, chr-F: 0.615\ntestset: URL, BLEU: 42.7, chr-F: 0.655\ntestset: URL, BLEU: 9.7, chr-F: 0.362\ntestset: URL, BLEU: 61.6, chr-F: 0.819\ntestset: URL, BLEU: 15.0, chr-F: 0.506\ntestset: URL, BLEU: 31.0, chr-F: 0.548\ntestset: URL, BLEU: 35.8, chr-F: 0.524\ntestset: URL, BLEU: 30.2, chr-F: 0.486\ntestset: URL, BLEU: 32.5, chr-F: 0.589\ntestset: URL, BLEU: 16.6, chr-F: 0.557\ntestset: URL, BLEU: 11.6, chr-F: 0.395\ntestset: URL, BLEU: 42.7, chr-F: 0.680\ntestset: URL, BLEU: 53.7, chr-F: 0.833\ntestset: URL, BLEU: 10.1, chr-F: 0.492\ntestset: URL, BLEU: 9.7, chr-F: 0.196\ntestset: URL, BLEU: 24.7, chr-F: 0.727\ntestset: URL, BLEU: 43.2, chr-F: 0.601\ntestset: URL, BLEU: 23.6, chr-F: 0.361\ntestset: URL, BLEU: 42.7, chr-F: 0.864\ntestset: URL, BLEU: 3.4, chr-F: 0.323\ntestset: URL, BLEU: 17.1, chr-F: 0.418\ntestset: URL, BLEU: 1.8, chr-F: 0.199\ntestset: URL, BLEU: 11.9, chr-F: 0.258\ntestset: URL, BLEU: 3.4, chr-F: 0.115\ntestset: URL, BLEU: 0.0, chr-F: 0.000\ntestset: URL, BLEU: 23.5, chr-F: 0.470\ntestset: URL, BLEU: 19.7, chr-F: 0.490\ntestset: URL, BLEU: 27.8, chr-F: 0.472\ntestset: URL, BLEU: 2.0, chr-F: 0.232\ntestset: URL, BLEU: 5.9, chr-F: 0.241\ntestset: URL, BLEU: 25.9, chr-F: 0.465\ntestset: URL, BLEU: 1.7, chr-F: 0.195\ntestset: URL, BLEU: 3.4, chr-F: 0.228\ntestset: URL, BLEU: 23.4, chr-F: 0.481\ntestset: URL, BLEU: 11.5, chr-F: 0.304\ntestset: URL, BLEU: 5.8, chr-F: 0.243\ntestset: URL, BLEU: 20.9, chr-F: 0.442\ntestset: URL, BLEU: 14.8, chr-F: 0.431\ntestset: URL, BLEU: 83.8, chr-F: 0.946\ntestset: URL, BLEU: 9.1, chr-F: 0.349\ntestset: URL, BLEU: 15.4, chr-F: 0.385\ntestset: URL, BLEU: 3.4, chr-F: 0.195\ntestset: URL, BLEU: 18.8, chr-F: 0.401\ntestset: URL, BLEU: 0.0, chr-F: 0.056\ntestset: URL, BLEU: 22.6, chr-F: 0.451\ntestset: URL, BLEU: 5.7, chr-F: 0.267\ntestset: URL, BLEU: 8.0, chr-F: 0.102\ntestset: URL, BLEU: 30.8, chr-F: 0.509\ntestset: URL, BLEU: 22.8, chr-F: 0.416\ntestset: URL, BLEU: 7.0, chr-F: 0.321\ntestset: URL, BLEU: 35.4, chr-F: 0.561\ntestset: URL, BLEU: 42.7, chr-F: 0.835\ntestset: URL, BLEU: 38.3, chr-F: 0.491\ntestset: URL, BLEU: 18.5, chr-F: 0.399\ntestset: URL, BLEU: 32.6, chr-F: 0.552\ntestset: URL, BLEU: 18.1, chr-F: 0.426\ntestset: URL, BLEU: 28.9, chr-F: 0.480\ntestset: URL, BLEU: 6.9, chr-F: 0.198\ntestset: URL, BLEU: 6.6, chr-F: 0.187\ntestset: URL, BLEU: 31.9, chr-F: 0.498\ntestset: URL, BLEU: 0.5, chr-F: 0.000\ntestset: URL, BLEU: 0.0, chr-F: 0.023\ntestset: URL, BLEU: 1.2, chr-F: 0.148\ntestset: URL, BLEU: 28.5, chr-F: 0.505\ntestset: URL, BLEU: 7.8, chr-F: 0.164\ntestset: URL, BLEU: 38.2, chr-F: 0.584\ntestset: URL, BLEU: 42.8, chr-F: 0.612\ntestset: URL, BLEU: 15.3, chr-F: 0.405\ntestset: URL, BLEU: 26.0, chr-F: 0.447\ntestset: URL, BLEU: 0.0, chr-F: 0.353\ntestset: URL, BLEU: 24.3, chr-F: 0.440\ntestset: URL, BLEU: 31.7, chr-F: 0.527\ntestset: URL, BLEU: 0.1, chr-F: 0.080\ntestset: URL, BLEU: 20.1, chr-F: 0.464\ntestset: URL, BLEU: 42.8, chr-F: 0.365\ntestset: URL, BLEU: 2.1, chr-F: 0.161\ntestset: URL, BLEU: 50.1, chr-F: 0.670\ntestset: URL, BLEU: 42.7, chr-F: 0.835\ntestset: URL, BLEU: 17.5, chr-F: 0.410\ntestset: URL, BLEU: 3.2, chr-F: 0.189\ntestset: URL, BLEU: 28.7, chr-F: 0.468\ntestset: URL, BLEU: 31.9, chr-F: 0.546\ntestset: URL, BLEU: 24.4, chr-F: 0.504\ntestset: URL, BLEU: 0.6, chr-F: 0.048\ntestset: URL, BLEU: 49.1, chr-F: 0.660\ntestset: URL, BLEU: 38.3, chr-F: 0.589\ntestset: URL, BLEU: 0.2, chr-F: 0.084\ntestset: URL, BLEU: 35.3, chr-F: 0.528\ntestset: URL, BLEU: 42.4, chr-F: 0.602\ntestset: URL, BLEU: 6.1, chr-F: 0.269\ntestset: URL, BLEU: 18.6, chr-F: 0.459\ntestset: URL, BLEU: 35.7, chr-F: 0.549\ntestset: URL, BLEU: 2.8, chr-F: 0.099\ntestset: URL, BLEU: 19.2, chr-F: 0.438\ntestset: URL, BLEU: 35.0, chr-F: 0.576\ntestset: URL, BLEU: 0.5, chr-F: 0.129\ntestset: URL, BLEU: 26.8, chr-F: 0.418\ntestset: URL, BLEU: 35.3, chr-F: 0.580\ntestset: URL, BLEU: 4.2, chr-F: 0.147\ntestset: URL, BLEU: 0.7, chr-F: 0.101\ntestset: URL, BLEU: 6.7, chr-F: 0.314\ntestset: URL, BLEU: 17.6, chr-F: 0.384\ntestset: URL, BLEU: 0.0, chr-F: 0.238\ntestset: URL, BLEU: 3.6, chr-F: 0.210\ntestset: URL, BLEU: 15.9, chr-F: 0.405\ntestset: URL, BLEU: 42.4, chr-F: 0.618\ntestset: URL, BLEU: 9.0, chr-F: 0.306\ntestset: URL, BLEU: 38.9, chr-F: 0.531\ntestset: URL, BLEU: 25.8, chr-F: 0.498\ntestset: URL, BLEU: 31.7, chr-F: 0.535\ntestset: URL, BLEU: 26.6, chr-F: 0.495\ntestset: URL, BLEU: 30.0, chr-F: 0.512\ntestset: URL, BLEU: 4.3, chr-F: 0.299\ntestset: URL, BLEU: 35.0, chr-F: 0.560\ntestset: URL, BLEU: 1.6, chr-F: 0.201\ntestset: URL, BLEU: 72.2, chr-F: 0.801\ntestset: URL, BLEU: 5.0, chr-F: 0.129\ntestset: URL, BLEU: 26.2, chr-F: 0.481\ntestset: URL, BLEU: 3.5, chr-F: 0.133\ntestset: URL, BLEU: 11.5, chr-F: 0.293\ntestset: URL, BLEU: 30.3, chr-F: 0.471\ntestset: URL, BLEU: 90.1, chr-F: 0.839\ntestset: URL, BLEU: 50.0, chr-F: 0.638\ntestset: URL, BLEU: 42.2, chr-F: 0.467\ntestset: URL, BLEU: 3.2, chr-F: 0.188\ntestset: URL, BLEU: 35.4, chr-F: 0.529\ntestset: URL, BLEU: 38.0, chr-F: 0.627\ntestset: URL, BLEU: 3.2, chr-F: 0.072\ntestset: URL, BLEU: 14.7, chr-F: 0.465\ntestset: URL, BLEU: 59.0, chr-F: 0.757\ntestset: URL, BLEU: 32.4, chr-F: 0.560\ntestset: URL, BLEU: 29.9, chr-F: 0.507\ntestset: URL, BLEU: 40.8, chr-F: 0.585\ntestset: URL, BLEU: 4.2, chr-F: 0.303\ntestset: URL, BLEU: 10.0, chr-F: 0.345\ntestset: URL, BLEU: 38.4, chr-F: 0.572\ntestset: URL, BLEU: 18.7, chr-F: 0.375\ntestset: URL, BLEU: 10.7, chr-F: 0.015\ntestset: URL, BLEU: 21.7, chr-F: 0.465\ntestset: URL, BLEU: 14.8, chr-F: 0.307\ntestset: URL, BLEU: 23.2, chr-F: 0.445\ntestset: URL, BLEU: 35.2, chr-F: 0.594\ntestset: URL, BLEU: 10.7, chr-F: 0.037\ntestset: URL, BLEU: 6.6, chr-F: 0.370\ntestset: URL, BLEU: 3.6, chr-F: 0.261\ntestset: URL, BLEU: 12.2, chr-F: 0.404\ntestset: URL, BLEU: 8.0, chr-F: 0.442\ntestset: URL, BLEU: 20.3, chr-F: 0.466\ntestset: URL, BLEU: 39.1, chr-F: 0.598\ntestset: URL, BLEU: 49.0, chr-F: 0.698\ntestset: URL, BLEU: 26.3, chr-F: 0.515\ntestset: URL, BLEU: 31.0, chr-F: 0.543\ntestset: URL, BLEU: 28.0, chr-F: 0.475\ntestset: URL, BLEU: 28.1, chr-F: 0.513\ntestset: URL, BLEU: 1.2, chr-F: 0.193\ntestset: URL, BLEU: 38.2, chr-F: 0.598\ntestset: URL, BLEU: 58.8, chr-F: 0.741\ntestset: URL, BLEU: 29.1, chr-F: 0.515\ntestset: URL, BLEU: 42.6, chr-F: 0.473\ntestset: URL, BLEU: 11.2, chr-F: 0.346\ntestset: URL, BLEU: 13.4, chr-F: 0.331\ntestset: URL, BLEU: 5.3, chr-F: 0.206\ntestset: URL, BLEU: 19.6, chr-F: 0.423\ntestset: URL, BLEU: 24.5, chr-F: 0.493\ntestset: URL, BLEU: 22.5, chr-F: 0.408\ntestset: URL, BLEU: 8.8, chr-F: 0.322\ntestset: URL, BLEU: 16.4, chr-F: 0.387\ntestset: URL, BLEU: 20.4, chr-F: 0.442\ntestset: URL, BLEU: 66.9, chr-F: 0.968\ntestset: URL, BLEU: 3.9, chr-F: 0.168\ntestset: URL, BLEU: 9.1, chr-F: 0.175\ntestset: URL, BLEU: 5.8, chr-F: 0.256\ntestset: URL, BLEU: 8.4, chr-F: 0.243\ntestset: URL, BLEU: 8.9, chr-F: 0.244\ntestset: URL, BLEU: 8.1, chr-F: 0.297\ntestset: URL, BLEU: 1.2, chr-F: 0.207\ntestset: URL, BLEU: 11.6, chr-F: 0.338\ntestset: URL, BLEU: 8.2, chr-F: 0.234\ntestset: URL, BLEU: 7.8, chr-F: 0.331\ntestset: URL, BLEU: 6.4, chr-F: 0.217\ntestset: URL, BLEU: 5.8, chr-F: 0.230\ntestset: URL, BLEU: 10.8, chr-F: 0.279\ntestset: URL, BLEU: 6.0, chr-F: 0.225\ntestset: URL, BLEU: 6.1, chr-F: 0.256\ntestset: URL, BLEU: 0.0, chr-F: 0.626\ntestset: URL, BLEU: 45.7, chr-F: 0.586\ntestset: URL, BLEU: 43.9, chr-F: 0.589\ntestset: URL, BLEU: 0.0, chr-F: 0.347\ntestset: URL, BLEU: 41.9, chr-F: 0.587\ntestset: URL, BLEU: 14.4, chr-F: 0.365\ntestset: URL, BLEU: 5.8, chr-F: 0.274\ntestset: URL, BLEU: 33.0, chr-F: 0.474\ntestset: URL, BLEU: 36.1, chr-F: 0.479\ntestset: URL, BLEU: 0.7, chr-F: 0.026\ntestset: URL, BLEU: 13.1, chr-F: 0.310\ntestset: URL, BLEU: 8.8, chr-F: 0.296\ntestset: URL, BLEU: 13.0, chr-F: 0.309\ntestset: URL, BLEU: 10.0, chr-F: 0.327\ntestset: URL, BLEU: 15.2, chr-F: 0.304\ntestset: URL, BLEU: 10.4, chr-F: 0.352\ntestset: URL, BLEU: 40.2, chr-F: 0.589\ntestset: URL, BLEU: 24.8, chr-F: 0.503\ntestset: URL, BLEU: 29.4, chr-F: 0.508\ntestset: URL, BLEU: 20.3, chr-F: 0.416\ntestset: URL, BLEU: 28.0, chr-F: 0.489\ntestset: URL, BLEU: 1.3, chr-F: 0.052\ntestset: URL, BLEU: 7.0, chr-F: 0.347\ntestset: URL, BLEU: 37.0, chr-F: 0.551\ntestset: URL, BLEU: 29.1, chr-F: 0.508\ntestset: URL, BLEU: 0.8, chr-F: 0.070\ntestset: URL, BLEU: 32.3, chr-F: 0.519\ntestset: URL, BLEU: 34.1, chr-F: 0.531\ntestset: URL, BLEU: 1.2, chr-F: 0.234\ntestset: URL, BLEU: 6.5, chr-F: 0.208\ntestset: URL, BLEU: 30.8, chr-F: 0.510\ntestset: URL, BLEU: 7.2, chr-F: 0.287\ntestset: URL, BLEU: 14.6, chr-F: 0.301\ntestset: URL, BLEU: 18.4, chr-F: 0.498\ntestset: URL, BLEU: 31.8, chr-F: 0.546\ntestset: URL, BLEU: 3.5, chr-F: 0.193\ntestset: URL, BLEU: 11.4, chr-F: 0.336\ntestset: URL, BLEU: 28.5, chr-F: 0.522\ntestset: URL, BLEU: 2.6, chr-F: 0.134\ntestset: URL, BLEU: 16.0, chr-F: 0.265\ntestset: URL, BLEU: 7.2, chr-F: 0.311\ntestset: URL, BLEU: 22.9, chr-F: 0.450\ntestset: URL, BLEU: 21.2, chr-F: 0.493\ntestset: URL, BLEU: 38.0, chr-F: 0.718\ntestset: URL, BLEU: 2.2, chr-F: 0.173\ntestset: URL, BLEU: 14.4, chr-F: 0.370\ntestset: URL, BLEU: 30.6, chr-F: 0.501\ntestset: URL, BLEU: 33.3, chr-F: 0.536\ntestset: URL, BLEU: 4.0, chr-F: 0.282\ntestset: URL, BLEU: 0.4, chr-F: 0.005\ntestset: URL, BLEU: 1.3, chr-F: 0.032\ntestset: URL, BLEU: 25.9, chr-F: 0.491\ntestset: URL, BLEU: 0.0, chr-F: 0.083\ntestset: URL, BLEU: 26.5, chr-F: 0.487\ntestset: URL, BLEU: 34.7, chr-F: 0.550\ntestset: URL, BLEU: 7.4, chr-F: 0.256\ntestset: URL, BLEU: 30.7, chr-F: 0.516\ntestset: URL, BLEU: 35.0, chr-F: 0.530\ntestset: URL, BLEU: 32.8, chr-F: 0.538\ntestset: URL, BLEU: 5.6, chr-F: 0.381\ntestset: URL, BLEU: 4.8, chr-F: 0.146\ntestset: URL, BLEU: 48.1, chr-F: 0.653\ntestset: URL, BLEU: 8.4, chr-F: 0.213\ntestset: URL, BLEU: 42.7, chr-F: 0.835\ntestset: URL, BLEU: 9.7, chr-F: 0.539\ntestset: URL, BLEU: 41.5, chr-F: 0.569\ntestset: URL, BLEU: 36.9, chr-F: 0.612\ntestset: URL, BLEU: 29.0, chr-F: 0.526\ntestset: URL, BLEU: 0.8, chr-F: 0.049\ntestset: URL, BLEU: 51.4, chr-F: 0.668\ntestset: URL, BLEU: 30.8, chr-F: 0.532\ntestset: URL, BLEU: 33.8, chr-F: 0.556\ntestset: URL, BLEU: 44.5, chr-F: 0.622\ntestset: URL, BLEU: 10.7, chr-F: 0.190\ntestset: URL, BLEU: 4.5, chr-F: 0.273\ntestset: URL, BLEU: 43.0, chr-F: 0.625\ntestset: URL, BLEU: 8.9, chr-F: 0.365\ntestset: URL, BLEU: 16.0, chr-F: 0.079\ntestset: URL, BLEU: 12.1, chr-F: 0.315\ntestset: URL, BLEU: 49.2, chr-F: 0.700\ntestset: URL, BLEU: 0.1, chr-F: 0.004\ntestset: URL, BLEU: 39.2, chr-F: 0.575\ntestset: URL, BLEU: 15.5, chr-F: 0.387\ntestset: URL, BLEU: 39.9, chr-F: 0.637\ntestset: URL, BLEU: 3.0, chr-F: 0.133\ntestset: URL, BLEU: 0.6, chr-F: 0.172\ntestset: URL, BLEU: 5.4, chr-F: 0.325\ntestset: URL, BLEU: 18.8, chr-F: 0.418\ntestset: URL, BLEU: 16.8, chr-F: 0.569\ntestset: URL, BLEU: 27.3, chr-F: 0.571\ntestset: URL, BLEU: 7.6, chr-F: 0.327\ntestset: URL, BLEU: 30.5, chr-F: 0.559\ntestset: URL, BLEU: 14.2, chr-F: 0.370\ntestset: URL, BLEU: 35.6, chr-F: 0.558\ntestset: URL, BLEU: 38.0, chr-F: 0.587\ntestset: URL, BLEU: 25.5, chr-F: 0.510\ntestset: URL, BLEU: 5.5, chr-F: 0.058\ntestset: URL, BLEU: 32.0, chr-F: 0.557\ntestset: URL, BLEU: 26.8, chr-F: 0.493\ntestset: URL, BLEU: 48.7, chr-F: 0.686\ntestset: URL, BLEU: 43.4, chr-F: 0.612\ntestset: URL, BLEU: 27.5, chr-F: 0.500\ntestset: URL, BLEU: 9.3, chr-F: 0.293\ntestset: URL, BLEU: 2.2, chr-F: 0.183\ntestset: URL, BLEU: 1.3, chr-F: 0.179\ntestset: URL, BLEU: 2.3, chr-F: 0.183\ntestset: URL, BLEU: 0.5, chr-F: 0.173\ntestset: URL, BLEU: 3.4, chr-F: 0.200\ntestset: URL, BLEU: 1.6, chr-F: 0.166\ntestset: URL, BLEU: 8.3, chr-F: 0.311\ntestset: URL, BLEU: 9.5, chr-F: 0.361\ntestset: URL, BLEU: 8.8, chr-F: 0.415\ntestset: URL, BLEU: 21.4, chr-F: 0.347\ntestset: URL, BLEU: 13.3, chr-F: 0.434\ntestset: URL, BLEU: 2.9, chr-F: 0.204\ntestset: URL, BLEU: 5.3, chr-F: 0.243\ntestset: URL, BLEU: 6.5, chr-F: 0.194\ntestset: URL, BLEU: 30.2, chr-F: 0.667\ntestset: URL, BLEU: 35.4, chr-F: 0.493\ntestset: URL, BLEU: 23.6, chr-F: 0.542\ntestset: URL, BLEU: 10.6, chr-F: 0.344\ntestset: URL, BLEU: 12.7, chr-F: 0.652\ntestset: URL, BLEU: 32.1, chr-F: 0.524\ntestset: URL, BLEU: 38.4, chr-F: 0.566\ntestset: URL, BLEU: 5.3, chr-F: 0.351\ntestset: URL, BLEU: 7.3, chr-F: 0.338\ntestset: URL, BLEU: 38.0, chr-F: 0.571\ntestset: URL, BLEU: 10.7, chr-F: 0.116\ntestset: URL, BLEU: 36.2, chr-F: 0.587\ntestset: URL, BLEU: 2.4, chr-F: 0.233\ntestset: URL, BLEU: 6.5, chr-F: 0.368\ntestset: URL, BLEU: 27.5, chr-F: 0.484\ntestset: URL, BLEU: 0.8, chr-F: 0.082\ntestset: URL, BLEU: 9.7, chr-F: 0.168\ntestset: URL, BLEU: 32.5, chr-F: 0.522\ntestset: URL, BLEU: 45.2, chr-F: 0.656\ntestset: URL, BLEU: 32.2, chr-F: 0.554\ntestset: URL, BLEU: 33.6, chr-F: 0.577\ntestset: URL, BLEU: 33.3, chr-F: 0.536\ntestset: URL, BLEU: 19.0, chr-F: 0.113\ntestset: URL, BLEU: 40.8, chr-F: 0.605\ntestset: URL, BLEU: 12.7, chr-F: 0.288\ntestset: URL, BLEU: 19.7, chr-F: 0.285\ntestset: URL, BLEU: 18.7, chr-F: 0.359\ntestset: URL, BLEU: 30.1, chr-F: 0.455\ntestset: URL, BLEU: 34.7, chr-F: 0.540\ntestset: URL, BLEU: 0.0, chr-F: 0.042\ntestset: URL, BLEU: 42.7, chr-F: 0.835\ntestset: URL, BLEU: 35.0, chr-F: 0.587\ntestset: URL, BLEU: 30.8, chr-F: 0.534\ntestset: URL, BLEU: 27.9, chr-F: 0.512\ntestset: URL, BLEU: 33.8, chr-F: 0.537\ntestset: URL, BLEU: 0.4, chr-F: 0.038\ntestset: URL, BLEU: 7.6, chr-F: 0.384\ntestset: URL, BLEU: 37.9, chr-F: 0.559\ntestset: URL, BLEU: 31.3, chr-F: 0.528\ntestset: URL, BLEU: 16.0, chr-F: 0.060\ntestset: URL, BLEU: 29.0, chr-F: 0.512\ntestset: URL, BLEU: 37.6, chr-F: 0.553\ntestset: URL, BLEU: 1.6, chr-F: 0.138\ntestset: URL, BLEU: 4.2, chr-F: 0.278\ntestset: URL, BLEU: 33.0, chr-F: 0.524\ntestset: URL, BLEU: 16.3, chr-F: 0.308\ntestset: URL, BLEU: 10.7, chr-F: 0.045\ntestset: URL, BLEU: 22.3, chr-F: 0.427\ntestset: URL, BLEU: 5.9, chr-F: 0.310\ntestset: URL, BLEU: 20.6, chr-F: 0.459\ntestset: URL, BLEU: 1.5, chr-F: 0.152\ntestset: URL, BLEU: 31.0, chr-F: 0.546\ntestset: URL, BLEU: 5.5, chr-F: 0.326\ntestset: URL, BLEU: 12.7, chr-F: 0.365\ntestset: URL, BLEU: 9.0, chr-F: 0.320\ntestset: URL, BLEU: 26.6, chr-F: 0.495\ntestset: URL, BLEU: 5.6, chr-F: 0.210\ntestset: URL, BLEU: 1.0, chr-F: 0.169\ntestset: URL, BLEU: 7.9, chr-F: 0.328\ntestset: URL, BLEU: 31.1, chr-F: 0.519\ntestset: URL, BLEU: 22.0, chr-F: 0.489\ntestset: URL, BLEU: 19.4, chr-F: 0.263\ntestset: URL, BLEU: 19.0, chr-F: 0.217\ntestset: URL, BLEU: 38.5, chr-F: 0.662\ntestset: URL, BLEU: 6.6, chr-F: 0.305\ntestset: URL, BLEU: 11.5, chr-F: 0.350\ntestset: URL, BLEU: 31.1, chr-F: 0.517\ntestset: URL, BLEU: 31.2, chr-F: 0.528\ntestset: URL, BLEU: 4.9, chr-F: 0.261\ntestset: URL, BLEU: 7.3, chr-F: 0.325\ntestset: URL, BLEU: 0.0, chr-F: 0.008\ntestset: URL, BLEU: 4.8, chr-F: 0.198\ntestset: URL, BLEU: 31.3, chr-F: 0.540\ntestset: URL, BLEU: 24.5, chr-F: 0.476\ntestset: URL, BLEU: 25.7, chr-F: 0.492\ntestset: URL, BLEU: 20.7, chr-F: 0.400\ntestset: URL, BLEU: 30.9, chr-F: 0.526\ntestset: URL, BLEU: 32.0, chr-F: 0.507\ntestset: URL, BLEU: 41.1, chr-F: 0.622\ntestset: URL, BLEU: 7.1, chr-F: 0.367\ntestset: URL, BLEU: 4.7, chr-F: 0.253\ntestset: URL, BLEU: 2.5, chr-F: 0.167\ntestset: URL, BLEU: 11.7, chr-F: 0.217\ntestset: URL, BLEU: 3.9, chr-F: 0.224\ntestset: URL, BLEU: 40.7, chr-F: 0.420\ntestset: URL, BLEU: 2.1, chr-F: 0.134\ntestset: URL, BLEU: 3.4, chr-F: 0.244\ntestset: URL, BLEU: 17.2, chr-F: 0.310\ntestset: URL, BLEU: 32.8, chr-F: 0.524\ntestset: URL, BLEU: 5.7, chr-F: 0.254\ntestset: URL, BLEU: 5.3, chr-F: 0.023\ntestset: URL, BLEU: 3.5, chr-F: 0.237\ntestset: URL, BLEU: 11.9, chr-F: 0.335\ntestset: URL, BLEU: 23.7, chr-F: 0.300\ntestset: URL, BLEU: 0.0, chr-F: 0.146\ntestset: URL, BLEU: 14.1, chr-F: 0.313\ntestset: URL, BLEU: 33.2, chr-F: 0.528\ntestset: URL, BLEU: 33.4, chr-F: 0.518\ntestset: URL, BLEU: 29.9, chr-F: 0.489\ntestset: URL, BLEU: 19.5, chr-F: 0.405\ntestset: URL, BLEU: 28.6, chr-F: 0.499\ntestset: URL, BLEU: 5.5, chr-F: 0.296\ntestset: URL, BLEU: 18.0, chr-F: 0.546\ntestset: URL, BLEU: 18.0, chr-F: 0.452\ntestset: URL, BLEU: 20.3, chr-F: 0.406\ntestset: URL, BLEU: 33.1, chr-F: 0.541\ntestset: URL, BLEU: 12.4, chr-F: 0.348\ntestset: URL, BLEU: 33.4, chr-F: 0.519\ntestset: URL, BLEU: 32.9, chr-F: 0.503\ntestset: URL, BLEU: 14.8, chr-F: 0.095\ntestset: URL, BLEU: 30.1, chr-F: 0.471\ntestset: URL, BLEU: 12.7, chr-F: 0.377\ntestset: URL, BLEU: 46.9, chr-F: 0.624\ntestset: URL, BLEU: 1.1, chr-F: 0.143\ntestset: URL, BLEU: 21.6, chr-F: 0.446\ntestset: URL, BLEU: 28.1, chr-F: 0.526\ntestset: URL, BLEU: 22.8, chr-F: 0.466\ntestset: URL, BLEU: 16.9, chr-F: 0.442\ntestset: URL, BLEU: 30.8, chr-F: 0.510\ntestset: URL, BLEU: 49.1, chr-F: 0.696\ntestset: URL, BLEU: 27.2, chr-F: 0.497\ntestset: URL, BLEU: 0.5, chr-F: 0.049\ntestset: URL, BLEU: 5.3, chr-F: 0.204\ntestset: URL, BLEU: 22.4, chr-F: 0.476\ntestset: URL, BLEU: 39.3, chr-F: 0.581\ntestset: URL, BLEU: 30.9, chr-F: 0.531\ntestset: URL, BLEU: 0.7, chr-F: 0.109\ntestset: URL, BLEU: 0.9, chr-F: 0.060\ntestset: URL, BLEU: 28.9, chr-F: 0.487\ntestset: URL, BLEU: 41.0, chr-F: 0.595\ntestset: URL, BLEU: 13.9, chr-F: 0.188\ntestset: URL, BLEU: 7.9, chr-F: 0.244\ntestset: URL, BLEU: 41.4, chr-F: 0.610\ntestset: URL, BLEU: 15.8, chr-F: 0.397\ntestset: URL, BLEU: 7.0, chr-F: 0.060\ntestset: URL, BLEU: 7.4, chr-F: 0.303\ntestset: URL, BLEU: 22.2, chr-F: 0.415\ntestset: URL, BLEU: 48.8, chr-F: 0.683\ntestset: URL, BLEU: 1.7, chr-F: 0.181\ntestset: URL, BLEU: 0.3, chr-F: 0.010\ntestset: URL, BLEU: 0.1, chr-F: 0.005\ntestset: URL, BLEU: 5.6, chr-F: 0.051\ntestset: URL, BLEU: 15.0, chr-F: 0.365\ntestset: URL, BLEU: 19.9, chr-F: 0.409\ntestset: URL, BLEU: 33.2, chr-F: 0.529\ntestset: URL, BLEU: 16.1, chr-F: 0.331\ntestset: URL, BLEU: 5.1, chr-F: 0.240\ntestset: URL, BLEU: 13.5, chr-F: 0.357\ntestset: URL, BLEU: 18.0, chr-F: 0.410\ntestset: URL, BLEU: 42.7, chr-F: 0.646\ntestset: URL, BLEU: 0.4, chr-F: 0.088\ntestset: URL, BLEU: 5.6, chr-F: 0.237\ntestset: URL, BLEU: 0.9, chr-F: 0.157\ntestset: URL, BLEU: 9.0, chr-F: 0.382\ntestset: URL, BLEU: 23.7, chr-F: 0.510\ntestset: URL, BLEU: 22.4, chr-F: 0.477\ntestset: URL, BLEU: 0.4, chr-F: 0.119\ntestset: URL, BLEU: 34.1, chr-F: 0.531\ntestset: URL, BLEU: 29.4, chr-F: 0.416\ntestset: URL, BLEU: 37.1, chr-F: 0.568\ntestset: URL, BLEU: 14.0, chr-F: 0.405\ntestset: URL, BLEU: 15.4, chr-F: 0.390\ntestset: URL, BLEU: 34.0, chr-F: 0.550\ntestset: URL, BLEU: 41.1, chr-F: 0.608\ntestset: URL, BLEU: 8.0, chr-F: 0.353\ntestset: URL, BLEU: 0.4, chr-F: 0.010\ntestset: URL, BLEU: 0.2, chr-F: 0.060\ntestset: URL, BLEU: 0.6, chr-F: 0.122\ntestset: URL, BLEU: 26.3, chr-F: 0.498\ntestset: URL, BLEU: 41.6, chr-F: 0.638\ntestset: URL, BLEU: 0.3, chr-F: 0.095\ntestset: URL, BLEU: 4.0, chr-F: 0.219\ntestset: URL, BLEU: 31.9, chr-F: 0.550\ntestset: URL, BLEU: 0.2, chr-F: 0.013\ntestset: URL, BLEU: 29.4, chr-F: 0.510\ntestset: URL, BLEU: 1.6, chr-F: 0.086\ntestset: URL, BLEU: 16.0, chr-F: 0.111\ntestset: URL, BLEU: 9.2, chr-F: 0.269\ntestset: URL, BLEU: 8.4, chr-F: 0.375\ntestset: URL, BLEU: 39.5, chr-F: 0.572\ntestset: URL, BLEU: 27.8, chr-F: 0.495\ntestset: URL, BLEU: 2.9, chr-F: 0.220\ntestset: URL, BLEU: 10.0, chr-F: 0.296\ntestset: URL, BLEU: 30.9, chr-F: 0.499\ntestset: URL, BLEU: 29.9, chr-F: 0.545\ntestset: URL, BLEU: 24.5, chr-F: 0.484\ntestset: URL, BLEU: 5.8, chr-F: 0.347\ntestset: URL, BLEU: 16.7, chr-F: 0.426\ntestset: URL, BLEU: 8.4, chr-F: 0.370\ntestset: URL, BLEU: 0.6, chr-F: 0.032\ntestset: URL, BLEU: 9.3, chr-F: 0.283\ntestset: URL, BLEU: 0.3, chr-F: 0.126\ntestset: URL, BLEU: 0.0, chr-F: 0.102\ntestset: URL, BLEU: 4.0, chr-F: 0.175\ntestset: URL, BLEU: 13.2, chr-F: 0.398\ntestset: URL, BLEU: 7.0, chr-F: 0.345\ntestset: URL, BLEU: 5.0, chr-F: 0.110\ntestset: URL, BLEU: 63.1, chr-F: 0.831\ntestset: URL, BLEU: 35.4, chr-F: 0.529\ntestset: URL, BLEU: 38.5, chr-F: 0.528\ntestset: URL, BLEU: 32.8, chr-F: 0.380\ntestset: URL, BLEU: 54.5, chr-F: 0.702\ntestset: URL, BLEU: 36.7, chr-F: 0.570\ntestset: URL, BLEU: 32.9, chr-F: 0.541\ntestset: URL, BLEU: 44.9, chr-F: 0.606\ntestset: URL, BLEU: 0.0, chr-F: 0.877\ntestset: URL, BLEU: 43.2, chr-F: 0.605\ntestset: URL, BLEU: 42.7, chr-F: 0.402\ntestset: URL, BLEU: 4.8, chr-F: 0.253\ntestset: URL, BLEU: 39.3, chr-F: 0.591\ntestset: URL, BLEU: 31.6, chr-F: 0.617\ntestset: URL, BLEU: 21.2, chr-F: 0.559\ntestset: URL, BLEU: 33.1, chr-F: 0.548\ntestset: URL, BLEU: 1.4, chr-F: 0.144\ntestset: URL, BLEU: 6.6, chr-F: 0.373\ntestset: URL, BLEU: 4.5, chr-F: 0.453\ntestset: URL, BLEU: 73.4, chr-F: 0.828\ntestset: URL, BLEU: 25.5, chr-F: 0.440\ntestset: URL, BLEU: 0.0, chr-F: 0.124\ntestset: URL, BLEU: 71.9, chr-F: 0.742\ntestset: URL, BLEU: 59.5, chr-F: 0.742\ntestset: URL, BLEU: 25.9, chr-F: 0.497\ntestset: URL, BLEU: 31.3, chr-F: 0.546\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 28.6, chr-F: 0.495\ntestset: URL, BLEU: 19.0, chr-F: 0.116\ntestset: URL, BLEU: 37.1, chr-F: 0.569\ntestset: URL, BLEU: 13.9, chr-F: 0.336\ntestset: URL, BLEU: 16.5, chr-F: 0.438\ntestset: URL, BLEU: 20.1, chr-F: 0.468\ntestset: URL, BLEU: 8.0, chr-F: 0.316\ntestset: URL, BLEU: 13.0, chr-F: 0.300\ntestset: URL, BLEU: 15.3, chr-F: 0.296\ntestset: URL, BLEU: 0.9, chr-F: 0.199\ntestset: URL, BLEU: 4.9, chr-F: 0.287\ntestset: URL, BLEU: 1.9, chr-F: 0.194\ntestset: URL, BLEU: 45.2, chr-F: 0.574\ntestset: URL, BLEU: 7.8, chr-F: 0.271\ntestset: URL, BLEU: 9.6, chr-F: 0.273\ntestset: URL, BLEU: 0.9, chr-F: 0.102\ntestset: URL, BLEU: 4.4, chr-F: 0.054\ntestset: URL, BLEU: 48.3, chr-F: 0.646\ntestset: URL, BLEU: 1.4, chr-F: 0.034\ntestset: URL, BLEU: 36.7, chr-F: 0.601\ntestset: URL, BLEU: 40.4, chr-F: 0.601\ntestset: URL, BLEU: 33.9, chr-F: 0.538\ntestset: URL, BLEU: 33.1, chr-F: 0.524\ntestset: URL, BLEU: 25.8, chr-F: 0.469\ntestset: URL, BLEU: 34.0, chr-F: 0.543\ntestset: URL, BLEU: 23.0, chr-F: 0.493\ntestset: URL, BLEU: 36.1, chr-F: 0.538\ntestset: URL, BLEU: 3.6, chr-F: 0.400\ntestset: URL, BLEU: 5.3, chr-F: 0.240\ntestset: URL, BLEU: 32.0, chr-F: 0.519\ntestset: URL, BLEU: 13.6, chr-F: 0.318\ntestset: URL, BLEU: 3.8, chr-F: 0.199\ntestset: URL, BLEU: 33.4, chr-F: 0.547\ntestset: URL, BLEU: 32.6, chr-F: 0.546\ntestset: URL, BLEU: 1.4, chr-F: 0.166\ntestset: URL, BLEU: 8.0, chr-F: 0.314\ntestset: URL, BLEU: 10.7, chr-F: 0.520\ntestset: URL, BLEU: 59.9, chr-F: 0.631\ntestset: URL, BLEU: 38.0, chr-F: 0.718\ntestset: URL, BLEU: 2.5, chr-F: 0.213\ntestset: URL, BLEU: 11.0, chr-F: 0.368\ntestset: URL, BLEU: 33.0, chr-F: 0.524\ntestset: URL, BLEU: 40.4, chr-F: 0.574\ntestset: URL, BLEU: 0.1, chr-F: 0.008\ntestset: URL, BLEU: 32.7, chr-F: 0.553\ntestset: URL, BLEU: 26.8, chr-F: 0.496\ntestset: URL, BLEU: 45.7, chr-F: 0.651\ntestset: URL, BLEU: 11.8, chr-F: 0.263\ntestset: URL, BLEU: 31.7, chr-F: 0.528\ntestset: URL, BLEU: 3.6, chr-F: 0.196\ntestset: URL, BLEU: 36.7, chr-F: 0.586\ntestset: URL, BLEU: 17.1, chr-F: 0.451\ntestset: URL, BLEU: 17.1, chr-F: 0.375\ntestset: URL, BLEU: 38.1, chr-F: 0.565\ntestset: URL, BLEU: 0.0, chr-F: 1.000\ntestset: URL, BLEU: 14.0, chr-F: 0.404\ntestset: URL, BLEU: 1.5, chr-F: 0.014\ntestset: URL, BLEU: 68.7, chr-F: 0.695\ntestset: URL, BLEU: 25.8, chr-F: 0.314\ntestset: URL, BLEU: 13.6, chr-F: 0.319\ntestset: URL, BLEU: 48.3, chr-F: 0.680\ntestset: URL, BLEU: 28.3, chr-F: 0.454\ntestset: URL, BLEU: 4.4, chr-F: 0.206\ntestset: URL, BLEU: 8.0, chr-F: 0.282\ntestset: URL, BLEU: 5.2, chr-F: 0.237\ntestset: URL, BLEU: 9.9, chr-F: 0.395\ntestset: URL, BLEU: 35.4, chr-F: 0.868\ntestset: URL, BLEU: 0.8, chr-F: 0.077\ntestset: URL, BLEU: 4.9, chr-F: 0.240\ntestset: URL, BLEU: 11.3, chr-F: 0.054\ntestset: URL, BLEU: 19.0, chr-F: 0.583\ntestset: URL, BLEU: 5.4, chr-F: 0.320\ntestset: URL, BLEU: 6.3, chr-F: 0.239\ntestset: URL, BLEU: 12.8, chr-F: 0.341\ntestset: URL, BLEU: 17.5, chr-F: 0.382\ntestset: URL, BLEU: 42.7, chr-F: 0.797\ntestset: URL, BLEU: 15.5, chr-F: 0.338\ntestset: URL, BLEU: 2.3, chr-F: 0.176\ntestset: URL, BLEU: 4.5, chr-F: 0.207\ntestset: URL, BLEU: 18.9, chr-F: 0.367\ntestset: URL, BLEU: 6.0, chr-F: 0.156\ntestset: URL, BLEU: 32.2, chr-F: 0.448\ntestset: URL, BLEU: 1.3, chr-F: 0.142\ntestset: URL, BLEU: 15.3, chr-F: 0.363\ntestset: URL, BLEU: 3.2, chr-F: 0.166\ntestset: URL, BLEU: 0.1, chr-F: 0.090\ntestset: URL, BLEU: 1.8, chr-F: 0.206\ntestset: URL, BLEU: 27.8, chr-F: 0.560\ntestset: URL, BLEU: 4.2, chr-F: 0.316\ntestset: URL, BLEU: 24.6, chr-F: 0.466\ntestset: URL, BLEU: 24.5, chr-F: 0.431\ntestset: URL, BLEU: 5.0, chr-F: 0.318\ntestset: URL, BLEU: 19.0, chr-F: 0.390\ntestset: URL, BLEU: 15.0, chr-F: 0.258\ntestset: URL, BLEU: 7.4, chr-F: 0.326\ntestset: URL, BLEU: 12.3, chr-F: 0.325\ntestset: URL, BLEU: 14.2, chr-F: 0.324\ntestset: URL, BLEU: 16.1, chr-F: 0.369\ntestset: URL, BLEU: 3.2, chr-F: 0.125\ntestset: URL, BLEU: 55.9, chr-F: 0.672\ntestset: URL, BLEU: 0.3, chr-F: 0.083\ntestset: URL, BLEU: 7.2, chr-F: 0.383\ntestset: URL, BLEU: 0.0, chr-F: 0.102\ntestset: URL, BLEU: 1.9, chr-F: 0.135", "### System Info:\n\n\n* hf\\_name: ine-ine\n* source\\_languages: ine\n* target\\_languages: ine\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['ca', 'es', 'os', 'ro', 'fy', 'cy', 'sc', 'is', 'yi', 'lb', 'an', 'sq', 'fr', 'ht', 'rm', 'ps', 'af', 'uk', 'sl', 'lt', 'bg', 'be', 'gd', 'si', 'en', 'br', 'mk', 'or', 'mr', 'ru', 'fo', 'co', 'oc', 'pl', 'gl', 'nb', 'bn', 'id', 'hy', 'da', 'gv', 'nl', 'pt', 'hi', 'as', 'kw', 'ga', 'sv', 'gu', 'wa', 'lv', 'el', 'it', 'hr', 'ur', 'nn', 'de', 'cs', 'ine']\n* src\\_constituents: {'cat', 'spa', 'pap', 'mwl', 'lij', 'bos\\_Latn', 'lad\\_Latn', 'lat\\_Latn', 'pcd', 'oss', 'ron', 'fry', 'cym', 'awa', 'swg', 'zsm\\_Latn', 'srd', 'gcf\\_Latn', 'isl', 'yid', 'bho', 'ltz', 'kur\\_Latn', 'arg', 'pes\\_Thaa', 'sqi', 'csb\\_Latn', 'fra', 'hat', 'non\\_Latn', 'sco', 'pnb', 'roh', 'bul\\_Latn', 'pus', 'afr', 'ukr', 'slv', 'lit', 'tmw\\_Latn', 'hsb', 'tly\\_Latn', 'bul', 'bel', 'got\\_Goth', 'lat\\_Grek', 'ext', 'gla', 'mai', 'sin', 'hif\\_Latn', 'eng', 'bre', 'nob\\_Hebr', 'prg\\_Latn', 'ang\\_Latn', 'aln', 'mkd', 'ori', 'mar', 'afr\\_Arab', 'san\\_Deva', 'gos', 'rus', 'fao', 'orv\\_Cyrl', 'bel\\_Latn', 'cos', 'zza', 'grc\\_Grek', 'oci', 'mfe', 'gom', 'bjn', 'sgs', 'tgk\\_Cyrl', 'hye\\_Latn', 'pdc', 'srp\\_Cyrl', 'pol', 'ast', 'glg', 'pms', 'nob', 'ben', 'min', 'srp\\_Latn', 'zlm\\_Latn', 'ind', 'rom', 'hye', 'scn', 'enm\\_Latn', 'lmo', 'npi', 'pes', 'dan', 'rus\\_Latn', 'jdt\\_Cyrl', 'gsw', 'glv', 'nld', 'snd\\_Arab', 'kur\\_Arab', 'por', 'hin', 'dsb', 'asm', 'lad', 'frm\\_Latn', 'ksh', 'pan\\_Guru', 'cor', 'gle', 'swe', 'guj', 'wln', 'lav', 'ell', 'frr', 'rue', 'ita', 'hrv', 'urd', 'stq', 'nno', 'deu', 'lld\\_Latn', 'ces', 'egl', 'vec', 'max\\_Latn', 'pes\\_Latn', 'ltg', 'nds'}\n* tgt\\_constituents: {'cat', 'spa', 'pap', 'mwl', 'lij', 'bos\\_Latn', 'lad\\_Latn', 'lat\\_Latn', 'pcd', 'oss', 'ron', 'fry', 'cym', 'awa', 'swg', 'zsm\\_Latn', 'srd', 'gcf\\_Latn', 'isl', 'yid', 'bho', 'ltz', 'kur\\_Latn', 'arg', 'pes\\_Thaa', 'sqi', 'csb\\_Latn', 'fra', 'hat', 'non\\_Latn', 'sco', 'pnb', 'roh', 'bul\\_Latn', 'pus', 'afr', 'ukr', 'slv', 'lit', 'tmw\\_Latn', 'hsb', 'tly\\_Latn', 'bul', 'bel', 'got\\_Goth', 'lat\\_Grek', 'ext', 'gla', 'mai', 'sin', 'hif\\_Latn', 'eng', 'bre', 'nob\\_Hebr', 'prg\\_Latn', 'ang\\_Latn', 'aln', 'mkd', 'ori', 'mar', 'afr\\_Arab', 'san\\_Deva', 'gos', 'rus', 'fao', 'orv\\_Cyrl', 'bel\\_Latn', 'cos', 'zza', 'grc\\_Grek', 'oci', 'mfe', 'gom', 'bjn', 'sgs', 'tgk\\_Cyrl', 'hye\\_Latn', 'pdc', 'srp\\_Cyrl', 'pol', 'ast', 'glg', 'pms', 'nob', 'ben', 'min', 'srp\\_Latn', 'zlm\\_Latn', 'ind', 'rom', 'hye', 'scn', 'enm\\_Latn', 'lmo', 'npi', 'pes', 'dan', 'rus\\_Latn', 'jdt\\_Cyrl', 'gsw', 'glv', 'nld', 'snd\\_Arab', 'kur\\_Arab', 'por', 'hin', 'dsb', 'asm', 'lad', 'frm\\_Latn', 'ksh', 'pan\\_Guru', 'cor', 'gle', 'swe', 'guj', 'wln', 'lav', 'ell', 'frr', 'rue', 'ita', 'hrv', 'urd', 'stq', 'nno', 'deu', 'lld\\_Latn', 'ces', 'egl', 'vec', 'max\\_Latn', 'pes\\_Latn', 'ltg', 'nds'}\n* src\\_multilingual: True\n* tgt\\_multilingual: True\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: ine\n* tgt\\_alpha3: ine\n* short\\_pair: ine-ine\n* chrF2\\_score: 0.509\n* bleu: 30.8\n* brevity\\_penalty: 0.9890000000000001\n* ref\\_len: 69953.0\n* src\\_name: Indo-European languages\n* tgt\\_name: Indo-European languages\n* train\\_date: 2020-07-27\n* src\\_alpha2: ine\n* tgt\\_alpha2: ine\n* prefer\\_old: False\n* long\\_pair: ine-ine\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ca #es #os #ro #fy #cy #sc #is #yi #lb #an #sq #fr #ht #rm #ps #af #uk #sl #lt #bg #be #gd #si #en #br #mk #or #mr #ru #fo #co #oc #pl #gl #nb #bn #id #hy #da #gv #nl #pt #hi #as #kw #ga #sv #gu #wa #lv #el #it #hr #ur #nn #de #cs #ine #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### ine-ine\n\n\n* source group: Indo-European languages\n* target group: Indo-European languages\n* OPUS readme: ine-ine\n* model: transformer\n* source language(s): afr afr\\_Arab aln ang\\_Latn arg asm ast awa bel bel\\_Latn ben bho bjn bos\\_Latn bre bul bul\\_Latn cat ces cor cos csb\\_Latn cym dan deu dsb egl ell eng enm\\_Latn ext fao fra frm\\_Latn frr fry gcf\\_Latn gla gle glg glv gom gos got\\_Goth grc\\_Grek gsw guj hat hif\\_Latn hin hrv hsb hye hye\\_Latn ind isl ita jdt\\_Cyrl ksh kur\\_Arab kur\\_Latn lad lad\\_Latn lat\\_Grek lat\\_Latn lav lij lit lld\\_Latn lmo ltg ltz mai mar max\\_Latn mfe min mkd mwl nds nld nno nob nob\\_Hebr non\\_Latn npi oci ori orv\\_Cyrl oss pan\\_Guru pap pcd pdc pes pes\\_Latn pes\\_Thaa pms pnb pol por prg\\_Latn pus roh rom ron rue rus rus\\_Latn san\\_Deva scn sco sgs sin slv snd\\_Arab spa sqi srd srp\\_Cyrl srp\\_Latn stq swe swg tgk\\_Cyrl tly\\_Latn tmw\\_Latn ukr urd vec wln yid zlm\\_Latn zsm\\_Latn zza\n* target language(s): afr afr\\_Arab aln ang\\_Latn arg asm ast awa bel bel\\_Latn ben bho bjn bos\\_Latn bre bul bul\\_Latn cat ces cor cos csb\\_Latn cym dan deu dsb egl ell eng enm\\_Latn ext fao fra frm\\_Latn frr fry gcf\\_Latn gla gle glg glv gom gos got\\_Goth grc\\_Grek gsw guj hat hif\\_Latn hin hrv hsb hye hye\\_Latn ind isl ita jdt\\_Cyrl ksh kur\\_Arab kur\\_Latn lad lad\\_Latn lat\\_Grek lat\\_Latn lav lij lit lld\\_Latn lmo ltg ltz mai mar max\\_Latn mfe min mkd mwl nds nld nno nob nob\\_Hebr non\\_Latn npi oci ori orv\\_Cyrl oss pan\\_Guru pap pcd pdc pes pes\\_Latn pes\\_Thaa pms pnb pol por prg\\_Latn pus roh rom ron rue rus rus\\_Latn san\\_Deva scn sco sgs sin slv snd\\_Arab spa sqi srd srp\\_Cyrl srp\\_Latn stq swe swg tgk\\_Cyrl tly\\_Latn tmw\\_Latn ukr urd vec wln yid zlm\\_Latn zsm\\_Latn zza\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* a sentence initial language token is required in the form of '>>id<<' (id = valid target language ID)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: euelections\\_dev2019.URL, BLEU: 19.2, chr-F: 0.482\ntestset: euelections\\_dev2019.URL, BLEU: 15.8, chr-F: 0.470\ntestset: URL, BLEU: 4.0, chr-F: 0.245\ntestset: URL, BLEU: 6.8, chr-F: 0.301\ntestset: URL, BLEU: 17.3, chr-F: 0.470\ntestset: URL, BLEU: 26.0, chr-F: 0.534\ntestset: URL, BLEU: 12.1, chr-F: 0.416\ntestset: URL, BLEU: 15.9, chr-F: 0.443\ntestset: URL, BLEU: 2.5, chr-F: 0.200\ntestset: URL, BLEU: 7.1, chr-F: 0.302\ntestset: URL, BLEU: 10.6, chr-F: 0.407\ntestset: URL, BLEU: 14.9, chr-F: 0.428\ntestset: URL, BLEU: 22.6, chr-F: 0.507\ntestset: URL, BLEU: 23.5, chr-F: 0.495\ntestset: URL, BLEU: 25.1, chr-F: 0.528\ntestset: URL, BLEU: 26.4, chr-F: 0.517\ntestset: URL, BLEU: 13.1, chr-F: 0.432\ntestset: URL, BLEU: 18.4, chr-F: 0.463\ntestset: URL, BLEU: 15.5, chr-F: 0.452\ntestset: URL, BLEU: 14.8, chr-F: 0.458\ntestset: URL, BLEU: 18.4, chr-F: 0.462\ntestset: URL, BLEU: 10.5, chr-F: 0.381\ntestset: URL, BLEU: 19.5, chr-F: 0.467\ntestset: URL, BLEU: 16.4, chr-F: 0.459\ntestset: URL, BLEU: 15.5, chr-F: 0.456\ntestset: URL, BLEU: 18.4, chr-F: 0.466\ntestset: URL, BLEU: 11.9, chr-F: 0.394\ntestset: URL, BLEU: 13.9, chr-F: 0.446\ntestset: URL, BLEU: 20.7, chr-F: 0.502\ntestset: URL, BLEU: 21.3, chr-F: 0.516\ntestset: URL, BLEU: 22.3, chr-F: 0.506\ntestset: URL, BLEU: 11.5, chr-F: 0.390\ntestset: URL, BLEU: 13.4, chr-F: 0.437\ntestset: URL, BLEU: 22.8, chr-F: 0.499\ntestset: URL, BLEU: 22.2, chr-F: 0.533\ntestset: URL, BLEU: 26.2, chr-F: 0.539\ntestset: URL, BLEU: 12.3, chr-F: 0.397\ntestset: URL, BLEU: 13.3, chr-F: 0.436\ntestset: URL, BLEU: 24.7, chr-F: 0.517\ntestset: URL, BLEU: 24.0, chr-F: 0.528\ntestset: URL, BLEU: 26.3, chr-F: 0.537\ntestset: URL, BLEU: 12.0, chr-F: 0.400\ntestset: URL, BLEU: 13.9, chr-F: 0.440\ntestset: URL, BLEU: 22.9, chr-F: 0.509\ntestset: URL, BLEU: 24.2, chr-F: 0.538\ntestset: URL, BLEU: 24.5, chr-F: 0.547\ntestset: URL, BLEU: 12.0, chr-F: 0.422\ntestset: URL, BLEU: 15.1, chr-F: 0.444\ntestset: URL, BLEU: 16.4, chr-F: 0.451\ntestset: URL, BLEU: 9.9, chr-F: 0.369\ntestset: URL, BLEU: 18.0, chr-F: 0.456\ntestset: URL, BLEU: 16.4, chr-F: 0.453\ntestset: URL, BLEU: 17.0, chr-F: 0.452\ntestset: URL, BLEU: 10.5, chr-F: 0.375\ntestset: URL, BLEU: 14.5, chr-F: 0.439\ntestset: URL, BLEU: 18.9, chr-F: 0.481\ntestset: URL, BLEU: 20.9, chr-F: 0.491\ntestset: URL, BLEU: 10.7, chr-F: 0.380\ntestset: URL, BLEU: 13.8, chr-F: 0.435\ntestset: URL, BLEU: 19.8, chr-F: 0.479\ntestset: URL, BLEU: 24.8, chr-F: 0.522\ntestset: URL, BLEU: 11.0, chr-F: 0.380\ntestset: URL, BLEU: 14.0, chr-F: 0.433\ntestset: URL, BLEU: 20.6, chr-F: 0.488\ntestset: URL, BLEU: 23.3, chr-F: 0.518\ntestset: URL, BLEU: 12.9, chr-F: 0.427\ntestset: URL, BLEU: 17.0, chr-F: 0.456\ntestset: URL, BLEU: 15.4, chr-F: 0.447\ntestset: URL, BLEU: 14.9, chr-F: 0.454\ntestset: URL, BLEU: 17.1, chr-F: 0.458\ntestset: URL, BLEU: 10.3, chr-F: 0.370\ntestset: URL, BLEU: 17.7, chr-F: 0.458\ntestset: URL, BLEU: 15.9, chr-F: 0.447\ntestset: URL, BLEU: 14.7, chr-F: 0.446\ntestset: URL, BLEU: 17.2, chr-F: 0.453\ntestset: URL, BLEU: 11.0, chr-F: 0.387\ntestset: URL, BLEU: 13.6, chr-F: 0.440\ntestset: URL, BLEU: 20.3, chr-F: 0.496\ntestset: URL, BLEU: 20.8, chr-F: 0.509\ntestset: URL, BLEU: 21.9, chr-F: 0.503\ntestset: URL, BLEU: 11.3, chr-F: 0.385\ntestset: URL, BLEU: 14.0, chr-F: 0.436\ntestset: URL, BLEU: 21.8, chr-F: 0.496\ntestset: URL, BLEU: 22.1, chr-F: 0.526\ntestset: URL, BLEU: 24.8, chr-F: 0.525\ntestset: URL, BLEU: 11.5, chr-F: 0.382\ntestset: URL, BLEU: 13.3, chr-F: 0.430\ntestset: URL, BLEU: 23.6, chr-F: 0.508\ntestset: URL, BLEU: 22.9, chr-F: 0.516\ntestset: URL, BLEU: 25.4, chr-F: 0.529\ntestset: URL, BLEU: 11.3, chr-F: 0.386\ntestset: URL, BLEU: 13.5, chr-F: 0.434\ntestset: URL, BLEU: 22.4, chr-F: 0.500\ntestset: URL, BLEU: 23.2, chr-F: 0.520\ntestset: URL, BLEU: 24.0, chr-F: 0.538\ntestset: URL, BLEU: 13.1, chr-F: 0.431\ntestset: URL, BLEU: 16.9, chr-F: 0.459\ntestset: URL, BLEU: 15.6, chr-F: 0.450\ntestset: URL, BLEU: 18.5, chr-F: 0.467\ntestset: URL, BLEU: 11.4, chr-F: 0.387\ntestset: URL, BLEU: 19.6, chr-F: 0.481\ntestset: URL, BLEU: 17.7, chr-F: 0.471\ntestset: URL, BLEU: 20.0, chr-F: 0.478\ntestset: URL, BLEU: 11.4, chr-F: 0.393\ntestset: URL, BLEU: 15.1, chr-F: 0.448\ntestset: URL, BLEU: 21.4, chr-F: 0.506\ntestset: URL, BLEU: 25.0, chr-F: 0.525\ntestset: URL, BLEU: 11.1, chr-F: 0.386\ntestset: URL, BLEU: 14.2, chr-F: 0.442\ntestset: URL, BLEU: 22.6, chr-F: 0.507\ntestset: URL, BLEU: 26.6, chr-F: 0.542\ntestset: URL, BLEU: 12.2, chr-F: 0.396\ntestset: URL, BLEU: 15.1, chr-F: 0.445\ntestset: URL, BLEU: 24.3, chr-F: 0.521\ntestset: URL, BLEU: 24.8, chr-F: 0.536\ntestset: URL, BLEU: 13.1, chr-F: 0.423\ntestset: URL, BLEU: 18.2, chr-F: 0.463\ntestset: URL, BLEU: 17.4, chr-F: 0.458\ntestset: URL, BLEU: 18.9, chr-F: 0.464\ntestset: URL, BLEU: 11.2, chr-F: 0.376\ntestset: URL, BLEU: 18.3, chr-F: 0.464\ntestset: URL, BLEU: 17.0, chr-F: 0.457\ntestset: URL, BLEU: 19.2, chr-F: 0.464\ntestset: URL, BLEU: 12.4, chr-F: 0.395\ntestset: URL, BLEU: 14.5, chr-F: 0.437\ntestset: URL, BLEU: 23.6, chr-F: 0.522\ntestset: URL, BLEU: 26.6, chr-F: 0.530\ntestset: URL, BLEU: 12.5, chr-F: 0.394\ntestset: URL, BLEU: 14.2, chr-F: 0.433\ntestset: URL, BLEU: 24.3, chr-F: 0.521\ntestset: URL, BLEU: 29.1, chr-F: 0.551\ntestset: URL, BLEU: 12.3, chr-F: 0.390\ntestset: URL, BLEU: 14.4, chr-F: 0.435\ntestset: URL, BLEU: 25.0, chr-F: 0.521\ntestset: URL, BLEU: 25.6, chr-F: 0.537\ntestset: URL, BLEU: 13.1, chr-F: 0.420\ntestset: URL, BLEU: 17.5, chr-F: 0.457\ntestset: URL, BLEU: 16.8, chr-F: 0.452\ntestset: URL, BLEU: 11.2, chr-F: 0.379\ntestset: URL, BLEU: 18.1, chr-F: 0.457\ntestset: URL, BLEU: 11.2, chr-F: 0.368\ntestset: URL, BLEU: 19.4, chr-F: 0.472\ntestset: URL, BLEU: 17.7, chr-F: 0.464\ntestset: URL, BLEU: 10.3, chr-F: 0.370\ntestset: URL, BLEU: 19.6, chr-F: 0.467\ntestset: URL, BLEU: 11.1, chr-F: 0.375\ntestset: URL, BLEU: 14.6, chr-F: 0.440\ntestset: URL, BLEU: 22.4, chr-F: 0.512\ntestset: URL, BLEU: 17.6, chr-F: 0.452\ntestset: URL, BLEU: 26.5, chr-F: 0.527\ntestset: URL, BLEU: 11.9, chr-F: 0.383\ntestset: URL, BLEU: 14.6, chr-F: 0.437\ntestset: URL, BLEU: 24.3, chr-F: 0.516\ntestset: URL, BLEU: 11.9, chr-F: 0.393\ntestset: URL, BLEU: 28.3, chr-F: 0.545\ntestset: URL, BLEU: 9.0, chr-F: 0.340\ntestset: URL, BLEU: 10.0, chr-F: 0.383\ntestset: URL, BLEU: 22.4, chr-F: 0.492\ntestset: URL, BLEU: 13.3, chr-F: 0.427\ntestset: URL, BLEU: 16.6, chr-F: 0.437\ntestset: URL, BLEU: 11.9, chr-F: 0.381\ntestset: URL, BLEU: 14.8, chr-F: 0.440\ntestset: URL, BLEU: 26.5, chr-F: 0.534\ntestset: URL, BLEU: 25.0, chr-F: 0.539\ntestset: URL, BLEU: 12.4, chr-F: 0.401\ntestset: URL, BLEU: 14.3, chr-F: 0.434\ntestset: URL, BLEU: 18.5, chr-F: 0.463\ntestset: URL, BLEU: 16.6, chr-F: 0.444\ntestset: URL, BLEU: 13.6, chr-F: 0.406\ntestset: URL, BLEU: 18.2, chr-F: 0.455\ntestset: URL, BLEU: 11.7, chr-F: 0.380\ntestset: URL, BLEU: 20.9, chr-F: 0.481\ntestset: URL, BLEU: 18.1, chr-F: 0.460\ntestset: URL, BLEU: 11.7, chr-F: 0.384\ntestset: URL, BLEU: 19.4, chr-F: 0.463\ntestset: URL, BLEU: 12.7, chr-F: 0.394\ntestset: URL, BLEU: 16.7, chr-F: 0.455\ntestset: URL, BLEU: 22.7, chr-F: 0.499\ntestset: URL, BLEU: 13.3, chr-F: 0.408\ntestset: URL, BLEU: 23.6, chr-F: 0.506\ntestset: URL, BLEU: 11.8, chr-F: 0.379\ntestset: URL, BLEU: 15.6, chr-F: 0.446\ntestset: URL, BLEU: 23.6, chr-F: 0.506\ntestset: URL, BLEU: 12.9, chr-F: 0.399\ntestset: URL, BLEU: 25.3, chr-F: 0.519\ntestset: URL, BLEU: 11.6, chr-F: 0.376\ntestset: URL, BLEU: 12.4, chr-F: 0.410\ntestset: URL, BLEU: 17.8, chr-F: 0.448\ntestset: URL, BLEU: 14.8, chr-F: 0.434\ntestset: URL, BLEU: 17.9, chr-F: 0.446\ntestset: URL, BLEU: 12.5, chr-F: 0.391\ntestset: URL, BLEU: 15.9, chr-F: 0.449\ntestset: URL, BLEU: 24.0, chr-F: 0.518\ntestset: URL, BLEU: 24.3, chr-F: 0.522\ntestset: URL, BLEU: 13.9, chr-F: 0.411\ntestset: URL, BLEU: 19.0, chr-F: 0.475\ntestset: URL, BLEU: 19.2, chr-F: 0.468\ntestset: URL, BLEU: 23.9, chr-F: 0.521\ntestset: URL, BLEU: 5.9, chr-F: 0.268\ntestset: URL, BLEU: 8.8, chr-F: 0.348\ntestset: URL, BLEU: 19.1, chr-F: 0.475\ntestset: URL, BLEU: 17.9, chr-F: 0.450\ntestset: URL, BLEU: 12.1, chr-F: 0.392\ntestset: URL, BLEU: 21.1, chr-F: 0.480\ntestset: URL, BLEU: 18.7, chr-F: 0.475\ntestset: URL, BLEU: 15.4, chr-F: 0.431\ntestset: URL, BLEU: 18.1, chr-F: 0.454\ntestset: URL, BLEU: 18.6, chr-F: 0.465\ntestset: URL, BLEU: 13.3, chr-F: 0.403\ntestset: URL, BLEU: 24.0, chr-F: 0.508\ntestset: URL, BLEU: 21.4, chr-F: 0.494\ntestset: URL, BLEU: 16.8, chr-F: 0.457\ntestset: URL, BLEU: 24.9, chr-F: 0.522\ntestset: URL, BLEU: 13.7, chr-F: 0.417\ntestset: URL, BLEU: 17.3, chr-F: 0.453\ntestset: URL, BLEU: 16.7, chr-F: 0.444\ntestset: URL, BLEU: 10.9, chr-F: 0.375\ntestset: URL, BLEU: 21.5, chr-F: 0.484\ntestset: URL, BLEU: 17.5, chr-F: 0.464\ntestset: URL, BLEU: 9.1, chr-F: 0.388\ntestset: URL, BLEU: 11.5, chr-F: 0.404\ntestset: URL, BLEU: 14.8, chr-F: 0.432\ntestset: URL, BLEU: 19.3, chr-F: 0.467\ntestset: URL, BLEU: 17.1, chr-F: 0.450\ntestset: URL, BLEU: 10.9, chr-F: 0.380\ntestset: URL, BLEU: 26.0, chr-F: 0.518\ntestset: URL, BLEU: 24.3, chr-F: 0.514\ntestset: URL, BLEU: 12.5, chr-F: 0.417\ntestset: URL, BLEU: 16.4, chr-F: 0.443\ntestset: URL, BLEU: 13.9, chr-F: 0.432\ntestset: URL, BLEU: 11.7, chr-F: 0.383\ntestset: URL, BLEU: 22.2, chr-F: 0.483\ntestset: URL, BLEU: 20.1, chr-F: 0.496\ntestset: URL, BLEU: 12.3, chr-F: 0.389\ntestset: URL, BLEU: 22.0, chr-F: 0.497\ntestset: URL, BLEU: 3.1, chr-F: 0.208\ntestset: URL, BLEU: 7.8, chr-F: 0.369\ntestset: URL, BLEU: 14.6, chr-F: 0.408\ntestset: URL, BLEU: 16.4, chr-F: 0.483\ntestset: URL, BLEU: 6.1, chr-F: 0.288\ntestset: URL, BLEU: 16.9, chr-F: 0.456\ntestset: URL, BLEU: 20.2, chr-F: 0.468\ntestset: URL, BLEU: 16.0, chr-F: 0.152\ntestset: URL, BLEU: 10.2, chr-F: 0.333\ntestset: URL, BLEU: 32.6, chr-F: 0.651\ntestset: URL, BLEU: 34.5, chr-F: 0.556\ntestset: URL, BLEU: 48.1, chr-F: 0.638\ntestset: URL, BLEU: 10.2, chr-F: 0.416\ntestset: URL, BLEU: 41.9, chr-F: 0.612\ntestset: URL, BLEU: 0.0, chr-F: 0.112\ntestset: URL, BLEU: 0.3, chr-F: 0.068\ntestset: URL, BLEU: 12.2, chr-F: 0.419\ntestset: URL, BLEU: 48.7, chr-F: 0.637\ntestset: URL, BLEU: 8.4, chr-F: 0.407\ntestset: URL, BLEU: 19.0, chr-F: 0.357\ntestset: URL, BLEU: 0.0, chr-F: 0.238\ntestset: URL, BLEU: 1.4, chr-F: 0.080\ntestset: URL, BLEU: 45.7, chr-F: 0.643\ntestset: URL, BLEU: 55.3, chr-F: 0.687\ntestset: URL, BLEU: 39.3, chr-F: 0.563\ntestset: URL, BLEU: 33.9, chr-F: 0.586\ntestset: URL, BLEU: 22.6, chr-F: 0.475\ntestset: URL, BLEU: 32.1, chr-F: 0.525\ntestset: URL, BLEU: 44.1, chr-F: 0.611\ntestset: URL, BLEU: 71.6, chr-F: 0.814\ntestset: URL, BLEU: 31.0, chr-F: 0.481\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 0.0, chr-F: 0.133\ntestset: URL, BLEU: 5.5, chr-F: 0.129\ntestset: URL, BLEU: 22.2, chr-F: 0.345\ntestset: URL, BLEU: 6.3, chr-F: 0.251\ntestset: URL, BLEU: 7.9, chr-F: 0.255\ntestset: URL, BLEU: 0.8, chr-F: 0.133\ntestset: URL, BLEU: 16.0, chr-F: 0.086\ntestset: URL, BLEU: 6.0, chr-F: 0.185\ntestset: URL, BLEU: 0.6, chr-F: 0.000\ntestset: URL, BLEU: 16.0, chr-F: 0.102\ntestset: URL, BLEU: 13.2, chr-F: 0.301\ntestset: URL, BLEU: 7.6, chr-F: 0.062\ntestset: URL, BLEU: 0.2, chr-F: 0.025\ntestset: URL, BLEU: 6.6, chr-F: 0.198\ntestset: URL, BLEU: 5.5, chr-F: 0.121\ntestset: URL, BLEU: 11.4, chr-F: 0.498\ntestset: URL, BLEU: 2.4, chr-F: 0.103\ntestset: URL, BLEU: 8.1, chr-F: 0.249\ntestset: URL, BLEU: 16.4, chr-F: 0.195\ntestset: URL, BLEU: 1.1, chr-F: 0.117\ntestset: URL, BLEU: 28.2, chr-F: 0.394\ntestset: URL, BLEU: 39.8, chr-F: 0.445\ntestset: URL, BLEU: 52.3, chr-F: 0.608\ntestset: URL, BLEU: 8.6, chr-F: 0.261\ntestset: URL, BLEU: 19.2, chr-F: 0.629\ntestset: URL, BLEU: 18.2, chr-F: 0.369\ntestset: URL, BLEU: 4.3, chr-F: 0.145\ntestset: URL, BLEU: 4.5, chr-F: 0.366\ntestset: URL, BLEU: 12.1, chr-F: 0.310\ntestset: URL, BLEU: 8.1, chr-F: 0.050\ntestset: URL, BLEU: 30.1, chr-F: 0.463\ntestset: URL, BLEU: 27.6, chr-F: 0.441\ntestset: URL, BLEU: 29.4, chr-F: 0.501\ntestset: URL, BLEU: 2.6, chr-F: 0.030\ntestset: URL, BLEU: 10.0, chr-F: 0.280\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 35.9, chr-F: 0.682\ntestset: URL, BLEU: 41.7, chr-F: 0.601\ntestset: URL, BLEU: 2.4, chr-F: 0.201\ntestset: URL, BLEU: 53.7, chr-F: 0.808\ntestset: URL, BLEU: 27.6, chr-F: 0.483\ntestset: URL, BLEU: 32.6, chr-F: 0.449\ntestset: URL, BLEU: 29.1, chr-F: 0.506\ntestset: URL, BLEU: 29.5, chr-F: 0.522\ntestset: URL, BLEU: 31.8, chr-F: 0.512\ntestset: URL, BLEU: 30.9, chr-F: 0.527\ntestset: URL, BLEU: 39.3, chr-F: 0.608\ntestset: URL, BLEU: 32.8, chr-F: 0.540\ntestset: URL, BLEU: 12.7, chr-F: 0.178\ntestset: URL, BLEU: 4.5, chr-F: 0.185\ntestset: URL, BLEU: 3.7, chr-F: 0.251\ntestset: URL, BLEU: 19.3, chr-F: 0.531\ntestset: URL, BLEU: 1.0, chr-F: 0.147\ntestset: URL, BLEU: 27.1, chr-F: 0.481\ntestset: URL, BLEU: 37.0, chr-F: 0.494\ntestset: URL, BLEU: 34.8, chr-F: 0.565\ntestset: URL, BLEU: 21.7, chr-F: 0.401\ntestset: URL, BLEU: 42.3, chr-F: 0.643\ntestset: URL, BLEU: 28.2, chr-F: 0.534\ntestset: URL, BLEU: 41.6, chr-F: 0.643\ntestset: URL, BLEU: 2.9, chr-F: 0.254\ntestset: URL, BLEU: 34.6, chr-F: 0.408\ntestset: URL, BLEU: 26.5, chr-F: 0.430\ntestset: URL, BLEU: 21.6, chr-F: 0.466\ntestset: URL, BLEU: 26.8, chr-F: 0.424\ntestset: URL, BLEU: 28.9, chr-F: 0.473\ntestset: URL, BLEU: 21.0, chr-F: 0.384\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 2.2, chr-F: 0.178\ntestset: URL, BLEU: 7.7, chr-F: 0.296\ntestset: URL, BLEU: 13.6, chr-F: 0.309\ntestset: URL, BLEU: 8.6, chr-F: 0.251\ntestset: URL, BLEU: 12.2, chr-F: 0.272\ntestset: URL, BLEU: 0.9, chr-F: 0.081\ntestset: URL, BLEU: 3.0, chr-F: 0.217\ntestset: URL, BLEU: 1.4, chr-F: 0.158\ntestset: URL, BLEU: 14.1, chr-F: 0.582\ntestset: URL, BLEU: 52.8, chr-F: 0.725\ntestset: URL, BLEU: 66.9, chr-F: 0.951\ntestset: URL, BLEU: 31.2, chr-F: 0.530\ntestset: URL, BLEU: 29.1, chr-F: 0.497\ntestset: URL, BLEU: 36.5, chr-F: 0.547\ntestset: URL, BLEU: 5.3, chr-F: 0.299\ntestset: URL, BLEU: 8.9, chr-F: 0.511\ntestset: URL, BLEU: 36.1, chr-F: 0.558\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 24.5, chr-F: 0.479\ntestset: URL, BLEU: 8.1, chr-F: 0.302\ntestset: URL, BLEU: 13.4, chr-F: 0.337\ntestset: URL, BLEU: 38.2, chr-F: 0.811\ntestset: URL, BLEU: 15.0, chr-F: 0.431\ntestset: URL, BLEU: 31.8, chr-F: 0.505\ntestset: URL, BLEU: 66.9, chr-F: 0.951\ntestset: URL, BLEU: 24.4, chr-F: 0.461\ntestset: URL, BLEU: 29.2, chr-F: 0.484\ntestset: URL, BLEU: 42.7, chr-F: 0.776\ntestset: URL, BLEU: 28.7, chr-F: 0.522\ntestset: URL, BLEU: 32.1, chr-F: 0.520\ntestset: URL, BLEU: 66.9, chr-F: 0.611\ntestset: URL, BLEU: 34.3, chr-F: 0.567\ntestset: URL, BLEU: 13.7, chr-F: 0.163\ntestset: URL, BLEU: 31.0, chr-F: 0.523\ntestset: URL, BLEU: 17.0, chr-F: 0.423\ntestset: URL, BLEU: 39.4, chr-F: 0.582\ntestset: URL, BLEU: 5.3, chr-F: 0.370\ntestset: URL, BLEU: 16.0, chr-F: 0.301\ntestset: URL, BLEU: 41.0, chr-F: 0.606\ntestset: URL, BLEU: 39.8, chr-F: 0.626\ntestset: URL, BLEU: 35.9, chr-F: 0.555\ntestset: URL, BLEU: 23.0, chr-F: 0.456\ntestset: URL, BLEU: 38.9, chr-F: 0.618\ntestset: URL, BLEU: 16.0, chr-F: 0.311\ntestset: URL, BLEU: 28.8, chr-F: 0.507\ntestset: URL, BLEU: 55.2, chr-F: 0.731\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 30.8, chr-F: 0.512\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 17.0, chr-F: 0.426\ntestset: URL, BLEU: 3.3, chr-F: 0.165\ntestset: URL, BLEU: 23.3, chr-F: 0.466\ntestset: URL, BLEU: 0.7, chr-F: 0.126\ntestset: URL, BLEU: 45.2, chr-F: 0.690\ntestset: URL, BLEU: 3.4, chr-F: 0.072\ntestset: URL, BLEU: 12.7, chr-F: 0.706\ntestset: URL, BLEU: 32.2, chr-F: 0.526\ntestset: URL, BLEU: 24.4, chr-F: 0.422\ntestset: URL, BLEU: 33.8, chr-F: 0.529\ntestset: URL, BLEU: 1.7, chr-F: 0.157\ntestset: URL, BLEU: 3.7, chr-F: 0.252\ntestset: URL, BLEU: 20.1, chr-F: 0.229\ntestset: URL, BLEU: 36.9, chr-F: 0.564\ntestset: URL, BLEU: 7.7, chr-F: 0.338\ntestset: URL, BLEU: 0.6, chr-F: 0.011\ntestset: URL, BLEU: 39.7, chr-F: 0.580\ntestset: URL, BLEU: 7.0, chr-F: 0.230\ntestset: URL, BLEU: 28.2, chr-F: 0.516\ntestset: URL, BLEU: 1.7, chr-F: 0.303\ntestset: URL, BLEU: 6.5, chr-F: 0.304\ntestset: URL, BLEU: 6.6, chr-F: 0.202\ntestset: URL, BLEU: 31.4, chr-F: 0.586\ntestset: URL, BLEU: 6.4, chr-F: 0.312\ntestset: URL, BLEU: 19.9, chr-F: 0.468\ntestset: URL, BLEU: 35.1, chr-F: 0.535\ntestset: URL, BLEU: 41.7, chr-F: 0.610\ntestset: URL, BLEU: 30.5, chr-F: 0.530\ntestset: URL, BLEU: 33.0, chr-F: 0.533\ntestset: URL, BLEU: 9.9, chr-F: 0.406\ntestset: URL, BLEU: 36.9, chr-F: 0.564\ntestset: URL, BLEU: 4.1, chr-F: 0.236\ntestset: URL, BLEU: 33.3, chr-F: 0.531\ntestset: URL, BLEU: 51.4, chr-F: 0.586\ntestset: URL, BLEU: 4.8, chr-F: 0.118\ntestset: URL, BLEU: 34.6, chr-F: 0.522\ntestset: URL, BLEU: 2.1, chr-F: 0.252\ntestset: URL, BLEU: 8.9, chr-F: 0.233\ntestset: URL, BLEU: 6.7, chr-F: 0.205\ntestset: URL, BLEU: 4.8, chr-F: 0.211\ntestset: URL, BLEU: 3.4, chr-F: 0.182\ntestset: URL, BLEU: 4.4, chr-F: 0.193\ntestset: URL, BLEU: 5.0, chr-F: 0.221\ntestset: URL, BLEU: 6.6, chr-F: 0.211\ntestset: URL, BLEU: 9.3, chr-F: 0.221\ntestset: URL, BLEU: 19.6, chr-F: 0.282\ntestset: URL, BLEU: 2.9, chr-F: 0.171\ntestset: URL, BLEU: 4.3, chr-F: 0.187\ntestset: URL, BLEU: 2.4, chr-F: 0.154\ntestset: URL, BLEU: 3.6, chr-F: 0.187\ntestset: URL, BLEU: 0.0, chr-F: 0.877\ntestset: URL, BLEU: 39.2, chr-F: 0.473\ntestset: URL, BLEU: 19.0, chr-F: 0.352\ntestset: URL, BLEU: 1.6, chr-F: 0.066\ntestset: URL, BLEU: 17.5, chr-F: 0.336\ntestset: URL, BLEU: 14.0, chr-F: 0.347\ntestset: URL, BLEU: 3.8, chr-F: 0.278\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 0.0, chr-F: 0.014\ntestset: URL, BLEU: 32.6, chr-F: 0.507\ntestset: URL, BLEU: 33.1, chr-F: 0.496\ntestset: URL, BLEU: 27.0, chr-F: 0.447\ntestset: URL, BLEU: 5.7, chr-F: 0.223\ntestset: URL, BLEU: 13.1, chr-F: 0.380\ntestset: URL, BLEU: 5.3, chr-F: 0.186\ntestset: URL, BLEU: 28.3, chr-F: 0.498\ntestset: URL, BLEU: 3.7, chr-F: 0.185\ntestset: URL, BLEU: 8.0, chr-F: 0.067\ntestset: URL, BLEU: 37.5, chr-F: 0.603\ntestset: URL, BLEU: 37.8, chr-F: 0.488\ntestset: URL, BLEU: 32.1, chr-F: 0.480\ntestset: URL, BLEU: 31.6, chr-F: 0.523\ntestset: URL, BLEU: 4.8, chr-F: 0.072\ntestset: URL, BLEU: 40.5, chr-F: 0.774\ntestset: URL, BLEU: 1.2, chr-F: 0.066\ntestset: URL, BLEU: 13.1, chr-F: 0.156\ntestset: URL, BLEU: 27.2, chr-F: 0.746\ntestset: URL, BLEU: 35.4, chr-F: 0.529\ntestset: URL, BLEU: 19.0, chr-F: 0.349\ntestset: URL, BLEU: 35.8, chr-F: 0.582\ntestset: URL, BLEU: 19.0, chr-F: 0.337\ntestset: URL, BLEU: 43.4, chr-F: 0.609\ntestset: URL, BLEU: 18.1, chr-F: 0.515\ntestset: URL, BLEU: 9.7, chr-F: 0.162\ntestset: URL, BLEU: 14.1, chr-F: 0.410\ntestset: URL, BLEU: 47.0, chr-F: 0.640\ntestset: URL, BLEU: 2.6, chr-F: 0.195\ntestset: URL, BLEU: 12.2, chr-F: 0.344\ntestset: URL, BLEU: 36.3, chr-F: 0.589\ntestset: URL, BLEU: 3.5, chr-F: 0.270\ntestset: URL, BLEU: 0.4, chr-F: 0.096\ntestset: URL, BLEU: 3.9, chr-F: 0.376\ntestset: URL, BLEU: 68.7, chr-F: 0.786\ntestset: URL, BLEU: 71.4, chr-F: 0.554\ntestset: URL, BLEU: 3.7, chr-F: 0.220\ntestset: URL, BLEU: 4.9, chr-F: 0.219\ntestset: URL, BLEU: 47.2, chr-F: 0.650\ntestset: URL, BLEU: 58.8, chr-F: 0.749\ntestset: URL, BLEU: 27.1, chr-F: 0.527\ntestset: URL, BLEU: 41.5, chr-F: 0.616\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 30.8, chr-F: 0.518\ntestset: URL, BLEU: 36.6, chr-F: 0.578\ntestset: URL, BLEU: 53.8, chr-F: 0.696\ntestset: URL, BLEU: 4.8, chr-F: 0.184\ntestset: URL, BLEU: 15.9, chr-F: 0.489\ntestset: URL, BLEU: 21.7, chr-F: 0.544\ntestset: URL, BLEU: 13.0, chr-F: 0.252\ntestset: URL, BLEU: 37.5, chr-F: 0.566\ntestset: URL, BLEU: 0.6, chr-F: 0.131\ntestset: URL, BLEU: 20.0, chr-F: 0.580\ntestset: URL, BLEU: 16.5, chr-F: 0.389\ntestset: URL, BLEU: 19.6, chr-F: 0.450\ntestset: URL, BLEU: 34.5, chr-F: 0.319\ntestset: URL, BLEU: 3.2, chr-F: 0.196\ntestset: URL, BLEU: 32.6, chr-F: 0.517\ntestset: URL, BLEU: 28.4, chr-F: 0.503\ntestset: URL, BLEU: 24.3, chr-F: 0.465\ntestset: URL, BLEU: 0.2, chr-F: 0.043\ntestset: URL, BLEU: 2.4, chr-F: 0.020\ntestset: URL, BLEU: 4.4, chr-F: 0.178\ntestset: URL, BLEU: 11.3, chr-F: 0.378\ntestset: URL, BLEU: 37.8, chr-F: 0.579\ntestset: URL, BLEU: 0.1, chr-F: 0.082\ntestset: URL, BLEU: 3.3, chr-F: 0.050\ntestset: URL, BLEU: 27.1, chr-F: 0.485\ntestset: URL, BLEU: 34.7, chr-F: 0.539\ntestset: URL, BLEU: 6.7, chr-F: 0.331\ntestset: URL, BLEU: 4.5, chr-F: 0.235\ntestset: URL, BLEU: 31.9, chr-F: 0.527\ntestset: URL, BLEU: 0.2, chr-F: 0.101\ntestset: URL, BLEU: 13.7, chr-F: 0.358\ntestset: URL, BLEU: 7.2, chr-F: 0.304\ntestset: URL, BLEU: 8.9, chr-F: 0.349\ntestset: URL, BLEU: 28.9, chr-F: 0.513\ntestset: URL, BLEU: 0.7, chr-F: 0.157\ntestset: URL, BLEU: 0.2, chr-F: 0.010\ntestset: URL, BLEU: 0.1, chr-F: 0.005\ntestset: URL, BLEU: 0.2, chr-F: 0.073\ntestset: URL, BLEU: 23.2, chr-F: 0.470\ntestset: URL, BLEU: 12.5, chr-F: 0.367\ntestset: URL, BLEU: 5.4, chr-F: 0.249\ntestset: URL, BLEU: 12.9, chr-F: 0.263\ntestset: URL, BLEU: 16.5, chr-F: 0.395\ntestset: URL, BLEU: 29.2, chr-F: 0.536\ntestset: URL, BLEU: 0.6, chr-F: 0.092\ntestset: URL, BLEU: 11.2, chr-F: 0.183\ntestset: URL, BLEU: 0.3, chr-F: 0.112\ntestset: URL, BLEU: 6.4, chr-F: 0.301\ntestset: URL, BLEU: 29.6, chr-F: 0.502\ntestset: URL, BLEU: 17.4, chr-F: 0.445\ntestset: URL, BLEU: 18.5, chr-F: 0.380\ntestset: URL, BLEU: 7.9, chr-F: 0.245\ntestset: URL, BLEU: 21.9, chr-F: 0.449\ntestset: URL, BLEU: 21.9, chr-F: 0.478\ntestset: URL, BLEU: 13.6, chr-F: 0.391\ntestset: URL, BLEU: 37.2, chr-F: 0.574\ntestset: URL, BLEU: 34.5, chr-F: 0.562\ntestset: URL, BLEU: 4.7, chr-F: 0.261\ntestset: URL, BLEU: 0.2, chr-F: 0.006\ntestset: URL, BLEU: 0.6, chr-F: 0.064\ntestset: URL, BLEU: 0.2, chr-F: 0.064\ntestset: URL, BLEU: 23.6, chr-F: 0.477\ntestset: URL, BLEU: 25.1, chr-F: 0.480\ntestset: URL, BLEU: 0.2, chr-F: 0.070\ntestset: URL, BLEU: 0.2, chr-F: 0.059\ntestset: URL, BLEU: 5.2, chr-F: 0.179\ntestset: URL, BLEU: 25.7, chr-F: 0.484\ntestset: URL, BLEU: 27.1, chr-F: 0.494\ntestset: URL, BLEU: 1.6, chr-F: 0.076\ntestset: URL, BLEU: 10.8, chr-F: 0.281\ntestset: URL, BLEU: 8.1, chr-F: 0.251\ntestset: URL, BLEU: 31.5, chr-F: 0.534\ntestset: URL, BLEU: 0.6, chr-F: 0.144\ntestset: URL, BLEU: 39.1, chr-F: 0.572\ntestset: URL, BLEU: 0.1, chr-F: 0.088\ntestset: URL, BLEU: 13.1, chr-F: 0.406\ntestset: URL, BLEU: 27.2, chr-F: 0.489\ntestset: URL, BLEU: 13.4, chr-F: 0.350\ntestset: URL, BLEU: 6.0, chr-F: 0.262\ntestset: URL, BLEU: 14.1, chr-F: 0.366\ntestset: URL, BLEU: 19.0, chr-F: 0.424\ntestset: URL, BLEU: 15.4, chr-F: 0.342\ntestset: URL, BLEU: 15.2, chr-F: 0.315\ntestset: URL, BLEU: 35.4, chr-F: 0.394\ntestset: URL, BLEU: 12.6, chr-F: 0.401\ntestset: URL, BLEU: 2.9, chr-F: 0.168\ntestset: URL, BLEU: 5.2, chr-F: 0.207\ntestset: URL, BLEU: 6.4, chr-F: 0.215\ntestset: URL, BLEU: 1.6, chr-F: 0.180\ntestset: URL, BLEU: 3.9, chr-F: 0.199\ntestset: URL, BLEU: 26.6, chr-F: 0.483\ntestset: URL, BLEU: 20.2, chr-F: 0.398\ntestset: URL, BLEU: 12.1, chr-F: 0.380\ntestset: URL, BLEU: 0.7, chr-F: 0.039\ntestset: URL, BLEU: 53.7, chr-F: 0.513\ntestset: URL, BLEU: 30.5, chr-F: 0.503\ntestset: URL, BLEU: 43.1, chr-F: 0.589\ntestset: URL, BLEU: 12.7, chr-F: 0.541\ntestset: URL, BLEU: 5.3, chr-F: 0.210\ntestset: URL, BLEU: 39.5, chr-F: 0.563\ntestset: URL, BLEU: 11.6, chr-F: 0.343\ntestset: URL, BLEU: 30.9, chr-F: 0.524\ntestset: URL, BLEU: 57.6, chr-F: 0.572\ntestset: URL, BLEU: 4.9, chr-F: 0.244\ntestset: URL, BLEU: 38.0, chr-F: 0.562\ntestset: URL, BLEU: 40.8, chr-F: 0.615\ntestset: URL, BLEU: 72.6, chr-F: 0.846\ntestset: URL, BLEU: 26.8, chr-F: 0.514\ntestset: URL, BLEU: 27.1, chr-F: 0.493\ntestset: URL, BLEU: 30.8, chr-F: 0.512\ntestset: URL, BLEU: 30.8, chr-F: 0.475\ntestset: URL, BLEU: 36.0, chr-F: 0.521\ntestset: URL, BLEU: 12.6, chr-F: 0.364\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 46.1, chr-F: 0.633\ntestset: URL, BLEU: 5.1, chr-F: 0.136\ntestset: URL, BLEU: 5.1, chr-F: 0.199\ntestset: URL, BLEU: 0.8, chr-F: 0.208\ntestset: URL, BLEU: 16.8, chr-F: 0.380\ntestset: URL, BLEU: 0.2, chr-F: 0.002\ntestset: URL, BLEU: 16.6, chr-F: 0.415\ntestset: URL, BLEU: 7.0, chr-F: 0.321\ntestset: URL, BLEU: 0.2, chr-F: 0.003\ntestset: URL, BLEU: 6.6, chr-F: 0.251\ntestset: URL, BLEU: 31.5, chr-F: 0.513\ntestset: URL, BLEU: 33.5, chr-F: 0.550\ntestset: URL, BLEU: 25.6, chr-F: 0.466\ntestset: URL, BLEU: 0.1, chr-F: 0.035\ntestset: URL, BLEU: 0.8, chr-F: 0.135\ntestset: URL, BLEU: 1.4, chr-F: 0.194\ntestset: URL, BLEU: 18.8, chr-F: 0.422\ntestset: URL, BLEU: 41.2, chr-F: 0.591\ntestset: URL, BLEU: 27.9, chr-F: 0.503\ntestset: URL, BLEU: 0.7, chr-F: 0.125\ntestset: URL, BLEU: 0.1, chr-F: 0.062\ntestset: URL, BLEU: 30.7, chr-F: 0.540\ntestset: URL, BLEU: 4.9, chr-F: 0.283\ntestset: URL, BLEU: 3.9, chr-F: 0.217\ntestset: URL, BLEU: 5.9, chr-F: 0.276\ntestset: URL, BLEU: 4.8, chr-F: 0.239\ntestset: URL, BLEU: 34.6, chr-F: 0.551\ntestset: URL, BLEU: 0.2, chr-F: 0.099\ntestset: URL, BLEU: 5.5, chr-F: 0.040\ntestset: URL, BLEU: 13.1, chr-F: 0.357\ntestset: URL, BLEU: 0.4, chr-F: 0.085\ntestset: URL, BLEU: 7.4, chr-F: 0.293\ntestset: URL, BLEU: 20.0, chr-F: 0.415\ntestset: URL, BLEU: 29.9, chr-F: 0.528\ntestset: URL, BLEU: 5.9, chr-F: 0.220\ntestset: URL, BLEU: 0.5, chr-F: 0.137\ntestset: URL, BLEU: 0.1, chr-F: 0.009\ntestset: URL, BLEU: 0.0, chr-F: 0.005\ntestset: URL, BLEU: 0.5, chr-F: 0.103\ntestset: URL, BLEU: 6.4, chr-F: 0.241\ntestset: URL, BLEU: 28.2, chr-F: 0.460\ntestset: URL, BLEU: 26.0, chr-F: 0.485\ntestset: URL, BLEU: 0.8, chr-F: 0.228\ntestset: URL, BLEU: 11.2, chr-F: 0.364\ntestset: URL, BLEU: 10.6, chr-F: 0.277\ntestset: URL, BLEU: 10.9, chr-F: 0.307\ntestset: URL, BLEU: 13.8, chr-F: 0.368\ntestset: URL, BLEU: 33.8, chr-F: 0.571\ntestset: URL, BLEU: 3.0, chr-F: 0.007\ntestset: URL, BLEU: 4.8, chr-F: 0.005\ntestset: URL, BLEU: 0.4, chr-F: 0.092\ntestset: URL, BLEU: 9.0, chr-F: 0.174\ntestset: URL, BLEU: 0.5, chr-F: 0.144\ntestset: URL, BLEU: 0.1, chr-F: 0.000\ntestset: URL, BLEU: 7.7, chr-F: 0.333\ntestset: URL, BLEU: 25.1, chr-F: 0.480\ntestset: URL, BLEU: 0.4, chr-F: 0.101\ntestset: URL, BLEU: 21.0, chr-F: 0.492\ntestset: URL, BLEU: 0.5, chr-F: 0.143\ntestset: URL, BLEU: 0.5, chr-F: 0.135\ntestset: URL, BLEU: 15.6, chr-F: 0.345\ntestset: URL, BLEU: 9.3, chr-F: 0.251\ntestset: URL, BLEU: 9.5, chr-F: 0.326\ntestset: URL, BLEU: 54.1, chr-F: 0.747\ntestset: URL, BLEU: 29.8, chr-F: 0.503\ntestset: URL, BLEU: 20.0, chr-F: 0.449\ntestset: URL, BLEU: 9.3, chr-F: 0.231\ntestset: URL, BLEU: 12.2, chr-F: 0.357\ntestset: URL, BLEU: 0.2, chr-F: 0.003\ntestset: URL, BLEU: 37.1, chr-F: 0.570\ntestset: URL, BLEU: 0.5, chr-F: 0.078\ntestset: URL, BLEU: 38.4, chr-F: 0.575\ntestset: URL, BLEU: 4.8, chr-F: 0.249\ntestset: URL, BLEU: 2.8, chr-F: 0.185\ntestset: URL, BLEU: 0.1, chr-F: 0.011\ntestset: URL, BLEU: 2.6, chr-F: 0.166\ntestset: URL, BLEU: 2.6, chr-F: 0.214\ntestset: URL, BLEU: 39.8, chr-F: 0.566\ntestset: URL, BLEU: 1.0, chr-F: 0.131\ntestset: URL, BLEU: 0.9, chr-F: 0.124\ntestset: URL, BLEU: 26.2, chr-F: 0.500\ntestset: URL, BLEU: 31.5, chr-F: 0.545\ntestset: URL, BLEU: 0.2, chr-F: 0.088\ntestset: URL, BLEU: 0.4, chr-F: 0.108\ntestset: URL, BLEU: 1.8, chr-F: 0.192\ntestset: URL, BLEU: 7.6, chr-F: 0.313\ntestset: URL, BLEU: 27.6, chr-F: 0.508\ntestset: URL, BLEU: 0.1, chr-F: 0.011\ntestset: URL, BLEU: 28.6, chr-F: 0.496\ntestset: URL, BLEU: 2.0, chr-F: 0.098\ntestset: URL, BLEU: 0.9, chr-F: 0.080\ntestset: URL, BLEU: 24.5, chr-F: 0.501\ntestset: URL, BLEU: 1.3, chr-F: 0.105\ntestset: URL, BLEU: 3.0, chr-F: 0.178\ntestset: URL, BLEU: 12.5, chr-F: 0.298\ntestset: URL, BLEU: 1.7, chr-F: 0.214\ntestset: URL, BLEU: 36.3, chr-F: 0.575\ntestset: URL, BLEU: 22.1, chr-F: 0.459\ntestset: URL, BLEU: 5.2, chr-F: 0.316\ntestset: URL, BLEU: 42.4, chr-F: 0.591\ntestset: URL, BLEU: 0.6, chr-F: 0.145\ntestset: URL, BLEU: 1.9, chr-F: 0.255\ntestset: URL, BLEU: 0.3, chr-F: 0.054\ntestset: URL, BLEU: 27.3, chr-F: 0.478\ntestset: URL, BLEU: 7.0, chr-F: 0.310\ntestset: URL, BLEU: 0.9, chr-F: 0.116\ntestset: URL, BLEU: 4.0, chr-F: 0.164\ntestset: URL, BLEU: 5.9, chr-F: 0.260\ntestset: URL, BLEU: 0.4, chr-F: 0.071\ntestset: URL, BLEU: 20.1, chr-F: 0.420\ntestset: URL, BLEU: 0.6, chr-F: 0.057\ntestset: URL, BLEU: 22.8, chr-F: 0.278\ntestset: URL, BLEU: 9.0, chr-F: 0.360\ntestset: URL, BLEU: 19.0, chr-F: 0.324\ntestset: URL, BLEU: 35.8, chr-F: 0.523\ntestset: URL, BLEU: 35.7, chr-F: 0.495\ntestset: URL, BLEU: 42.7, chr-F: 0.644\ntestset: URL, BLEU: 22.4, chr-F: 0.477\ntestset: URL, BLEU: 4.3, chr-F: 0.141\ntestset: URL, BLEU: 9.0, chr-F: 0.345\ntestset: URL, BLEU: 16.0, chr-F: 0.289\ntestset: URL, BLEU: 4.1, chr-F: 0.143\ntestset: URL, BLEU: 3.0, chr-F: 0.247\ntestset: URL, BLEU: 11.6, chr-F: 0.294\ntestset: URL, BLEU: 19.0, chr-F: 0.220\ntestset: URL, BLEU: 4.8, chr-F: 0.188\ntestset: URL, BLEU: 6.1, chr-F: 0.136\ntestset: URL, BLEU: 16.0, chr-F: 0.054\ntestset: URL, BLEU: 0.7, chr-F: 0.124\ntestset: URL, BLEU: 5.4, chr-F: 0.238\ntestset: URL, BLEU: 10.5, chr-F: 0.155\ntestset: URL, BLEU: 18.6, chr-F: 0.427\ntestset: URL, BLEU: 38.9, chr-F: 0.611\ntestset: URL, BLEU: 6.8, chr-F: 0.276\ntestset: URL, BLEU: 10.5, chr-F: 0.138\ntestset: URL, BLEU: 12.7, chr-F: 0.088\ntestset: URL, BLEU: 7.6, chr-F: 0.109\ntestset: URL, BLEU: 18.8, chr-F: 0.254\ntestset: URL, BLEU: 21.4, chr-F: 0.339\ntestset: URL, BLEU: 4.0, chr-F: 0.440\ntestset: URL, BLEU: 5.3, chr-F: 0.231\ntestset: URL, BLEU: 24.9, chr-F: 0.420\ntestset: URL, BLEU: 0.0, chr-F: 0.056\ntestset: URL, BLEU: 16.0, chr-F: 0.171\ntestset: URL, BLEU: 2.1, chr-F: 0.258\ntestset: URL, BLEU: 43.5, chr-F: 0.557\ntestset: URL, BLEU: 21.3, chr-F: 0.402\ntestset: URL, BLEU: 3.0, chr-F: 0.164\ntestset: URL, BLEU: 12.7, chr-F: 0.142\ntestset: URL, BLEU: 10.5, chr-F: 0.131\ntestset: URL, BLEU: 0.6, chr-F: 0.087\ntestset: URL, BLEU: 26.2, chr-F: 0.443\ntestset: URL, BLEU: 3.6, chr-F: 0.176\ntestset: URL, BLEU: 0.0, chr-F: 0.632\ntestset: URL, BLEU: 5.8, chr-F: 0.163\ntestset: URL, BLEU: 14.5, chr-F: 0.104\ntestset: URL, BLEU: 53.7, chr-F: 0.504\ntestset: URL, BLEU: 8.5, chr-F: 0.311\ntestset: URL, BLEU: 8.7, chr-F: 0.259\ntestset: URL, BLEU: 10.3, chr-F: 0.303\ntestset: URL, BLEU: 1.3, chr-F: 0.006\ntestset: URL, BLEU: 8.6, chr-F: 0.331\ntestset: URL, BLEU: 7.2, chr-F: 0.301\ntestset: URL, BLEU: 0.4, chr-F: 0.074\ntestset: URL, BLEU: 14.4, chr-F: 0.256\ntestset: URL, BLEU: 9.8, chr-F: 0.325\ntestset: URL, BLEU: 6.6, chr-F: 0.127\ntestset: URL, BLEU: 50.0, chr-F: 0.657\ntestset: URL, BLEU: 4.5, chr-F: 0.223\ntestset: URL, BLEU: 8.6, chr-F: 0.316\ntestset: URL, BLEU: 19.1, chr-F: 0.445\ntestset: URL, BLEU: 9.8, chr-F: 0.313\ntestset: URL, BLEU: 9.1, chr-F: 0.318\ntestset: URL, BLEU: 4.8, chr-F: 0.213\ntestset: URL, BLEU: 2.0, chr-F: 0.138\ntestset: URL, BLEU: 49.7, chr-F: 0.630\ntestset: URL, BLEU: 1.0, chr-F: 0.105\ntestset: URL, BLEU: 0.0, chr-F: 0.011\ntestset: URL, BLEU: 4.1, chr-F: 0.194\ntestset: URL, BLEU: 23.0, chr-F: 0.410\ntestset: URL, BLEU: 22.2, chr-F: 0.448\ntestset: URL, BLEU: 6.4, chr-F: 0.341\ntestset: URL, BLEU: 1.2, chr-F: 0.035\ntestset: URL, BLEU: 3.4, chr-F: 0.204\ntestset: URL, BLEU: 31.2, chr-F: 0.528\ntestset: URL, BLEU: 33.9, chr-F: 0.570\ntestset: URL, BLEU: 26.9, chr-F: 0.490\ntestset: URL, BLEU: 0.2, chr-F: 0.039\ntestset: URL, BLEU: 0.3, chr-F: 0.061\ntestset: URL, BLEU: 17.3, chr-F: 0.455\ntestset: URL, BLEU: 47.1, chr-F: 0.634\ntestset: URL, BLEU: 31.1, chr-F: 0.530\ntestset: URL, BLEU: 0.7, chr-F: 0.061\ntestset: URL, BLEU: 32.4, chr-F: 0.544\ntestset: URL, BLEU: 40.1, chr-F: 0.583\ntestset: URL, BLEU: 5.1, chr-F: 0.207\ntestset: URL, BLEU: 1.8, chr-F: 0.304\ntestset: URL, BLEU: 5.6, chr-F: 0.233\ntestset: URL, BLEU: 0.3, chr-F: 0.149\ntestset: URL, BLEU: 6.4, chr-F: 0.412\ntestset: URL, BLEU: 11.4, chr-F: 0.357\ntestset: URL, BLEU: 0.1, chr-F: 0.067\ntestset: URL, BLEU: 9.1, chr-F: 0.316\ntestset: URL, BLEU: 16.8, chr-F: 0.416\ntestset: URL, BLEU: 34.5, chr-F: 0.562\ntestset: URL, BLEU: 5.5, chr-F: 0.204\ntestset: URL, BLEU: 0.2, chr-F: 0.001\ntestset: URL, BLEU: 0.1, chr-F: 0.006\ntestset: URL, BLEU: 20.8, chr-F: 0.424\ntestset: URL, BLEU: 28.9, chr-F: 0.511\ntestset: URL, BLEU: 5.1, chr-F: 0.336\ntestset: URL, BLEU: 11.5, chr-F: 0.401\ntestset: URL, BLEU: 17.2, chr-F: 0.362\ntestset: URL, BLEU: 37.7, chr-F: 0.606\ntestset: URL, BLEU: 2.8, chr-F: 0.148\ntestset: URL, BLEU: 14.3, chr-F: 0.188\ntestset: URL, BLEU: 0.4, chr-F: 0.129\ntestset: URL, BLEU: 2.8, chr-F: 0.258\ntestset: URL, BLEU: 30.3, chr-F: 0.490\ntestset: URL, BLEU: 0.3, chr-F: 0.099\ntestset: URL, BLEU: 18.3, chr-F: 0.461\ntestset: URL, BLEU: 0.6, chr-F: 0.185\ntestset: URL, BLEU: 1.2, chr-F: 0.163\ntestset: URL, BLEU: 15.3, chr-F: 0.385\ntestset: URL, BLEU: 45.7, chr-F: 0.393\ntestset: URL, BLEU: 29.5, chr-F: 0.498\ntestset: URL, BLEU: 19.4, chr-F: 0.456\ntestset: URL, BLEU: 12.9, chr-F: 0.356\ntestset: URL, BLEU: 33.0, chr-F: 0.532\ntestset: URL, BLEU: 1.2, chr-F: 0.072\ntestset: URL, BLEU: 35.1, chr-F: 0.553\ntestset: URL, BLEU: 6.8, chr-F: 0.313\ntestset: URL, BLEU: 0.2, chr-F: 0.004\ntestset: URL, BLEU: 3.6, chr-F: 0.112\ntestset: URL, BLEU: 78.3, chr-F: 0.917\ntestset: URL, BLEU: 0.1, chr-F: 0.084\ntestset: URL, BLEU: 0.3, chr-F: 0.117\ntestset: URL, BLEU: 22.4, chr-F: 0.468\ntestset: URL, BLEU: 33.0, chr-F: 0.559\ntestset: URL, BLEU: 0.6, chr-F: 0.084\ntestset: URL, BLEU: 5.9, chr-F: 0.278\ntestset: URL, BLEU: 4.2, chr-F: 0.257\ntestset: URL, BLEU: 29.7, chr-F: 0.531\ntestset: URL, BLEU: 28.8, chr-F: 0.498\ntestset: URL, BLEU: 0.4, chr-F: 0.056\ntestset: URL, BLEU: 1.7, chr-F: 0.222\ntestset: URL, BLEU: 2.4, chr-F: 0.207\ntestset: URL, BLEU: 38.6, chr-F: 0.598\ntestset: URL, BLEU: 23.9, chr-F: 0.455\ntestset: URL, BLEU: 1.2, chr-F: 0.159\ntestset: URL, BLEU: 44.2, chr-F: 0.609\ntestset: URL, BLEU: 2.4, chr-F: 0.123\ntestset: URL, BLEU: 2.8, chr-F: 0.244\ntestset: URL, BLEU: 0.5, chr-F: 0.034\ntestset: URL, BLEU: 26.7, chr-F: 0.474\ntestset: URL, BLEU: 2.3, chr-F: 0.333\ntestset: URL, BLEU: 0.6, chr-F: 0.088\ntestset: URL, BLEU: 5.3, chr-F: 0.178\ntestset: URL, BLEU: 8.7, chr-F: 0.271\ntestset: URL, BLEU: 19.2, chr-F: 0.394\ntestset: URL, BLEU: 12.3, chr-F: 0.482\ntestset: URL, BLEU: 8.3, chr-F: 0.286\ntestset: URL, BLEU: 6.1, chr-F: 0.181\ntestset: URL, BLEU: 12.7, chr-F: 0.535\ntestset: URL, BLEU: 4.1, chr-F: 0.144\ntestset: URL, BLEU: 0.5, chr-F: 0.033\ntestset: URL, BLEU: 12.4, chr-F: 0.127\ntestset: URL, BLEU: 6.9, chr-F: 0.233\ntestset: URL, BLEU: 0.5, chr-F: 0.045\ntestset: URL, BLEU: 0.0, chr-F: 0.244\ntestset: URL, BLEU: 4.2, chr-F: 0.280\ntestset: URL, BLEU: 21.7, chr-F: 0.448\ntestset: URL, BLEU: 22.9, chr-F: 0.431\ntestset: URL, BLEU: 10.7, chr-F: 0.140\ntestset: URL, BLEU: 31.8, chr-F: 0.455\ntestset: URL, BLEU: 0.5, chr-F: 0.040\ntestset: URL, BLEU: 0.7, chr-F: 0.204\ntestset: URL, BLEU: 34.8, chr-F: 0.528\ntestset: URL, BLEU: 8.1, chr-F: 0.318\ntestset: URL, BLEU: 21.4, chr-F: 0.324\ntestset: URL, BLEU: 0.1, chr-F: 0.000\ntestset: URL, BLEU: 6.6, chr-F: 0.127\ntestset: URL, BLEU: 35.7, chr-F: 0.576\ntestset: URL, BLEU: 32.6, chr-F: 0.511\ntestset: URL, BLEU: 17.7, chr-F: 0.342\ntestset: URL, BLEU: 12.1, chr-F: 0.304\ntestset: URL, BLEU: 31.7, chr-F: 0.438\ntestset: URL, BLEU: 30.6, chr-F: 0.479\ntestset: URL, BLEU: 0.5, chr-F: 0.156\ntestset: URL, BLEU: 27.5, chr-F: 0.247\ntestset: URL, BLEU: 16.1, chr-F: 0.330\ntestset: URL, BLEU: 4.0, chr-F: 0.167\ntestset: URL, BLEU: 13.2, chr-F: 0.257\ntestset: URL, BLEU: 6.0, chr-F: 0.241\ntestset: URL, BLEU: 0.0, chr-F: 0.170\ntestset: URL, BLEU: 0.0, chr-F: 0.427\ntestset: URL, BLEU: 0.0, chr-F: 1.000\ntestset: URL, BLEU: 31.8, chr-F: 0.374\ntestset: URL, BLEU: 11.5, chr-F: 0.416\ntestset: URL, BLEU: 15.1, chr-F: 0.348\ntestset: URL, BLEU: 17.5, chr-F: 0.329\ntestset: URL, BLEU: 13.1, chr-F: 0.346\ntestset: URL, BLEU: 12.1, chr-F: 0.306\ntestset: URL, BLEU: 8.0, chr-F: 0.035\ntestset: URL, BLEU: 20.8, chr-F: 0.299\ntestset: URL, BLEU: 13.7, chr-F: 0.355\ntestset: URL, BLEU: 24.7, chr-F: 0.423\ntestset: URL, BLEU: 12.7, chr-F: 0.322\ntestset: URL, BLEU: 7.8, chr-F: 0.288\ntestset: URL, BLEU: 13.5, chr-F: 0.390\ntestset: URL, BLEU: 32.0, chr-F: 0.490\ntestset: URL, BLEU: 5.0, chr-F: 0.135\ntestset: URL, BLEU: 18.0, chr-F: 0.403\ntestset: URL, BLEU: 16.9, chr-F: 0.377\ntestset: URL, BLEU: 0.0, chr-F: 0.077\ntestset: URL, BLEU: 2.4, chr-F: 0.328\ntestset: URL, BLEU: 0.0, chr-F: 0.673\ntestset: URL, BLEU: 2.5, chr-F: 0.139\ntestset: URL, BLEU: 24.5, chr-F: 0.458\ntestset: URL, BLEU: 13.3, chr-F: 0.324\ntestset: URL, BLEU: 30.4, chr-F: 0.539\ntestset: URL, BLEU: 30.2, chr-F: 0.448\ntestset: URL, BLEU: 37.9, chr-F: 0.571\ntestset: URL, BLEU: 45.8, chr-F: 0.627\ntestset: URL, BLEU: 31.1, chr-F: 0.561\ntestset: URL, BLEU: 36.2, chr-F: 0.573\ntestset: URL, BLEU: 22.7, chr-F: 0.524\ntestset: URL, BLEU: 47.4, chr-F: 0.674\ntestset: URL, BLEU: 28.4, chr-F: 0.465\ntestset: URL, BLEU: 53.2, chr-F: 0.704\ntestset: URL, BLEU: 1.4, chr-F: 0.140\ntestset: URL, BLEU: 3.2, chr-F: 0.104\ntestset: URL, BLEU: 9.9, chr-F: 0.243\ntestset: URL, BLEU: 6.2, chr-F: 0.269\ntestset: URL, BLEU: 0.0, chr-F: 0.056\ntestset: URL, BLEU: 6.6, chr-F: 0.107\ntestset: URL, BLEU: 12.0, chr-F: 0.356\ntestset: URL, BLEU: 15.7, chr-F: 0.384\ntestset: URL, BLEU: 14.8, chr-F: 0.320\ntestset: URL, BLEU: 4.1, chr-F: 0.292\ntestset: URL, BLEU: 19.0, chr-F: 0.111\ntestset: URL, BLEU: 8.4, chr-F: 0.321\ntestset: URL, BLEU: 0.9, chr-F: 0.064\ntestset: URL, BLEU: 13.5, chr-F: 0.361\ntestset: URL, BLEU: 8.2, chr-F: 0.228\ntestset: URL, BLEU: 31.9, chr-F: 0.610\ntestset: URL, BLEU: 0.0, chr-F: 0.050\ntestset: URL, BLEU: 0.5, chr-F: 0.010\ntestset: URL, BLEU: 4.5, chr-F: 0.206\ntestset: URL, BLEU: 4.2, chr-F: 0.220\ntestset: URL, BLEU: 3.9, chr-F: 0.202\ntestset: URL, BLEU: 16.8, chr-F: 0.389\ntestset: URL, BLEU: 5.2, chr-F: 0.298\ntestset: URL, BLEU: 24.7, chr-F: 0.406\ntestset: URL, BLEU: 0.4, chr-F: 0.137\ntestset: URL, BLEU: 16.8, chr-F: 0.310\ntestset: URL, BLEU: 5.4, chr-F: 0.370\ntestset: URL, BLEU: 4.3, chr-F: 0.170\ntestset: URL, BLEU: 0.6, chr-F: 0.044\ntestset: URL, BLEU: 0.1, chr-F: 0.050\ntestset: URL, BLEU: 0.2, chr-F: 0.064\ntestset: URL, BLEU: 3.1, chr-F: 0.013\ntestset: URL, BLEU: 0.2, chr-F: 0.050\ntestset: URL, BLEU: 2.7, chr-F: 0.155\ntestset: URL, BLEU: 4.7, chr-F: 0.198\ntestset: URL, BLEU: 1.9, chr-F: 0.146\ntestset: URL, BLEU: 12.8, chr-F: 0.234\ntestset: URL, BLEU: 0.5, chr-F: 0.114\ntestset: URL, BLEU: 0.8, chr-F: 0.163\ntestset: URL, BLEU: 2.4, chr-F: 0.141\ntestset: URL, BLEU: 12.6, chr-F: 0.393\ntestset: URL, BLEU: 15.9, chr-F: 0.322\ntestset: URL, BLEU: 19.0, chr-F: 0.308\ntestset: URL, BLEU: 15.9, chr-F: 0.301\ntestset: URL, BLEU: 14.7, chr-F: 0.250\ntestset: URL, BLEU: 38.5, chr-F: 0.522\ntestset: URL, BLEU: 17.6, chr-F: 0.424\ntestset: URL, BLEU: 32.0, chr-F: 0.472\ntestset: URL, BLEU: 31.2, chr-F: 0.496\ntestset: URL, BLEU: 40.1, chr-F: 0.579\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 27.8, chr-F: 0.543\ntestset: URL, BLEU: 32.9, chr-F: 0.545\ntestset: URL, BLEU: 38.6, chr-F: 0.563\ntestset: URL, BLEU: 2.3, chr-F: 0.299\ntestset: URL, BLEU: 33.3, chr-F: 0.548\ntestset: URL, BLEU: 37.9, chr-F: 0.602\ntestset: URL, BLEU: 9.8, chr-F: 0.289\ntestset: URL, BLEU: 38.0, chr-F: 0.718\ntestset: URL, BLEU: 31.8, chr-F: 0.528\ntestset: URL, BLEU: 31.7, chr-F: 0.548\ntestset: URL, BLEU: 28.1, chr-F: 0.484\ntestset: URL, BLEU: 38.9, chr-F: 0.596\ntestset: URL, BLEU: 38.6, chr-F: 0.589\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 36.0, chr-F: 0.557\ntestset: URL, BLEU: 8.1, chr-F: 0.441\ntestset: URL, BLEU: 8.9, chr-F: 0.439\ntestset: URL, BLEU: 8.8, chr-F: 0.288\ntestset: URL, BLEU: 26.1, chr-F: 0.414\ntestset: URL, BLEU: 25.5, chr-F: 0.440\ntestset: URL, BLEU: 30.1, chr-F: 0.449\ntestset: URL, BLEU: 12.6, chr-F: 0.412\ntestset: URL, BLEU: 9.9, chr-F: 0.416\ntestset: URL, BLEU: 8.4, chr-F: 0.289\ntestset: URL, BLEU: 21.2, chr-F: 0.395\ntestset: URL, BLEU: 25.9, chr-F: 0.384\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 10.4, chr-F: 0.376\ntestset: URL, BLEU: 18.1, chr-F: 0.373\ntestset: URL, BLEU: 24.4, chr-F: 0.467\ntestset: URL, BLEU: 42.9, chr-F: 0.583\ntestset: URL, BLEU: 19.5, chr-F: 0.444\ntestset: URL, BLEU: 11.6, chr-F: 0.323\ntestset: URL, BLEU: 22.1, chr-F: 0.398\ntestset: URL, BLEU: 32.1, chr-F: 0.386\ntestset: URL, BLEU: 21.9, chr-F: 0.407\ntestset: URL, BLEU: 29.3, chr-F: 0.476\ntestset: URL, BLEU: 40.5, chr-F: 0.708\ntestset: URL, BLEU: 0.0, chr-F: 0.034\ntestset: URL, BLEU: 38.1, chr-F: 0.582\ntestset: URL, BLEU: 31.8, chr-F: 0.511\ntestset: URL, BLEU: 29.8, chr-F: 0.483\ntestset: URL, BLEU: 39.8, chr-F: 0.336\ntestset: URL, BLEU: 26.3, chr-F: 0.441\ntestset: URL, BLEU: 27.3, chr-F: 0.469\ntestset: URL, BLEU: 1.9, chr-F: 0.047\ntestset: URL, BLEU: 28.9, chr-F: 0.501\ntestset: URL, BLEU: 2.6, chr-F: 0.135\ntestset: URL, BLEU: 59.6, chr-F: 0.740\ntestset: URL, BLEU: 0.1, chr-F: 0.012\ntestset: URL, BLEU: 40.2, chr-F: 0.566\ntestset: URL, BLEU: 19.7, chr-F: 0.358\ntestset: URL, BLEU: 17.4, chr-F: 0.465\ntestset: URL, BLEU: 18.0, chr-F: 0.386\ntestset: URL, BLEU: 30.7, chr-F: 0.496\ntestset: URL, BLEU: 10.7, chr-F: 0.133\ntestset: URL, BLEU: 38.1, chr-F: 0.539\ntestset: URL, BLEU: 53.2, chr-F: 0.676\ntestset: URL, BLEU: 3.8, chr-F: 0.125\ntestset: URL, BLEU: 3.4, chr-F: 0.252\ntestset: URL, BLEU: 24.2, chr-F: 0.460\ntestset: URL, BLEU: 12.1, chr-F: 0.427\ntestset: URL, BLEU: 4.7, chr-F: 0.287\ntestset: URL, BLEU: 27.8, chr-F: 0.482\ntestset: URL, BLEU: 40.6, chr-F: 0.608\ntestset: URL, BLEU: 23.1, chr-F: 0.450\ntestset: URL, BLEU: 0.8, chr-F: 0.060\ntestset: URL, BLEU: 10.1, chr-F: 0.375\ntestset: URL, BLEU: 38.9, chr-F: 0.577\ntestset: URL, BLEU: 31.7, chr-F: 0.539\ntestset: URL, BLEU: 0.2, chr-F: 0.061\ntestset: URL, BLEU: 31.5, chr-F: 0.539\ntestset: URL, BLEU: 47.4, chr-F: 0.633\ntestset: URL, BLEU: 6.4, chr-F: 0.247\ntestset: URL, BLEU: 4.2, chr-F: 0.236\ntestset: URL, BLEU: 46.6, chr-F: 0.642\ntestset: URL, BLEU: 20.0, chr-F: 0.409\ntestset: URL, BLEU: 7.8, chr-F: 0.312\ntestset: URL, BLEU: 36.3, chr-F: 0.577\ntestset: URL, BLEU: 1.1, chr-F: 0.030\ntestset: URL, BLEU: 39.4, chr-F: 0.595\ntestset: URL, BLEU: 18.5, chr-F: 0.408\ntestset: URL, BLEU: 1.9, chr-F: 0.160\ntestset: URL, BLEU: 1.0, chr-F: 0.178\ntestset: URL, BLEU: 7.1, chr-F: 0.320\ntestset: URL, BLEU: 29.0, chr-F: 0.511\ntestset: URL, BLEU: 0.2, chr-F: 0.107\ntestset: URL, BLEU: 20.7, chr-F: 0.475\ntestset: URL, BLEU: 20.6, chr-F: 0.373\ntestset: URL, BLEU: 14.3, chr-F: 0.409\ntestset: URL, BLEU: 13.3, chr-F: 0.378\ntestset: URL, BLEU: 37.8, chr-F: 0.578\ntestset: URL, BLEU: 35.7, chr-F: 0.578\ntestset: URL, BLEU: 11.0, chr-F: 0.369\ntestset: URL, BLEU: 1.2, chr-F: 0.010\ntestset: URL, BLEU: 0.2, chr-F: 0.110\ntestset: URL, BLEU: 25.9, chr-F: 0.507\ntestset: URL, BLEU: 36.8, chr-F: 0.597\ntestset: URL, BLEU: 34.3, chr-F: 0.574\ntestset: URL, BLEU: 28.5, chr-F: 0.494\ntestset: URL, BLEU: 11.7, chr-F: 0.364\ntestset: URL, BLEU: 46.3, chr-F: 0.653\ntestset: URL, BLEU: 21.9, chr-F: 0.418\ntestset: URL, BLEU: 37.7, chr-F: 0.562\ntestset: URL, BLEU: 33.1, chr-F: 0.538\ntestset: URL, BLEU: 0.8, chr-F: 0.095\ntestset: URL, BLEU: 10.3, chr-F: 0.280\ntestset: URL, BLEU: 3.9, chr-F: 0.098\ntestset: URL, BLEU: 5.0, chr-F: 0.217\ntestset: URL, BLEU: 12.2, chr-F: 0.357\ntestset: URL, BLEU: 4.1, chr-F: 0.237\ntestset: URL, BLEU: 5.3, chr-F: 0.299\ntestset: URL, BLEU: 15.3, chr-F: 0.322\ntestset: URL, BLEU: 0.0, chr-F: 0.095\ntestset: URL, BLEU: 11.3, chr-F: 0.272\ntestset: URL, BLEU: 0.0, chr-F: 0.069\ntestset: URL, BLEU: 35.4, chr-F: 0.540\ntestset: URL, BLEU: 24.3, chr-F: 0.509\ntestset: URL, BLEU: 12.0, chr-F: 0.226\ntestset: URL, BLEU: 10.0, chr-F: 0.205\ntestset: URL, BLEU: 5.5, chr-F: 0.048\ntestset: URL, BLEU: 16.5, chr-F: 0.236\ntestset: URL, BLEU: 7.6, chr-F: 0.081\ntestset: URL, BLEU: 1.6, chr-F: 0.013\ntestset: URL, BLEU: 11.4, chr-F: 0.362\ntestset: URL, BLEU: 0.2, chr-F: 0.067\ntestset: URL, BLEU: 6.1, chr-F: 0.240\ntestset: URL, BLEU: 1.9, chr-F: 0.161\ntestset: URL, BLEU: 3.3, chr-F: 0.155\ntestset: URL, BLEU: 31.9, chr-F: 0.184\ntestset: URL, BLEU: 5.0, chr-F: 0.230\ntestset: URL, BLEU: 37.0, chr-F: 0.295\ntestset: URL, BLEU: 1.3, chr-F: 0.184\ntestset: URL, BLEU: 39.1, chr-F: 0.426\ntestset: URL, BLEU: 4.3, chr-F: 0.206\ntestset: URL, BLEU: 2.1, chr-F: 0.164\ntestset: URL, BLEU: 1.4, chr-F: 0.046\ntestset: URL, BLEU: 9.7, chr-F: 0.330\ntestset: URL, BLEU: 35.4, chr-F: 0.529\ntestset: URL, BLEU: 33.1, chr-F: 0.604\ntestset: URL, BLEU: 15.4, chr-F: 0.325\ntestset: URL, BLEU: 19.3, chr-F: 0.405\ntestset: URL, BLEU: 23.1, chr-F: 0.421\ntestset: URL, BLEU: 2.2, chr-F: 0.173\ntestset: URL, BLEU: 5.2, chr-F: 0.194\ntestset: URL, BLEU: 26.3, chr-F: 0.405\ntestset: URL, BLEU: 0.0, chr-F: 0.170\ntestset: URL, BLEU: 21.4, chr-F: 0.347\ntestset: URL, BLEU: 1.2, chr-F: 0.058\ntestset: URL, BLEU: 22.7, chr-F: 0.479\ntestset: URL, BLEU: 2.4, chr-F: 0.190\ntestset: URL, BLEU: 3.4, chr-F: 0.239\ntestset: URL, BLEU: 45.5, chr-F: 0.580\ntestset: URL, BLEU: 23.0, chr-F: 0.690\ntestset: URL, BLEU: 33.5, chr-F: 0.449\ntestset: URL, BLEU: 66.9, chr-F: 0.951\ntestset: URL, BLEU: 0.0, chr-F: 0.076\ntestset: URL, BLEU: 27.5, chr-F: 0.448\ntestset: URL, BLEU: 78.3, chr-F: 0.693\ntestset: URL, BLEU: 6.5, chr-F: 0.308\ntestset: URL, BLEU: 0.0, chr-F: 0.179\ntestset: URL, BLEU: 59.5, chr-F: 0.602\ntestset: URL, BLEU: 37.0, chr-F: 0.553\ntestset: URL, BLEU: 66.9, chr-F: 0.783\ntestset: URL, BLEU: 8.1, chr-F: 0.282\ntestset: URL, BLEU: 4.8, chr-F: 0.212\ntestset: URL, BLEU: 5.0, chr-F: 0.237\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 0.9, chr-F: 0.068\ntestset: URL, BLEU: 10.6, chr-F: 0.284\ntestset: URL, BLEU: 27.5, chr-F: 0.481\ntestset: URL, BLEU: 15.6, chr-F: 0.331\ntestset: URL, BLEU: 2.9, chr-F: 0.203\ntestset: URL, BLEU: 29.4, chr-F: 0.479\ntestset: URL, BLEU: 19.9, chr-F: 0.391\ntestset: URL, BLEU: 20.5, chr-F: 0.396\ntestset: URL, BLEU: 1.0, chr-F: 0.082\ntestset: URL, BLEU: 7.9, chr-F: 0.407\ntestset: URL, BLEU: 9.3, chr-F: 0.286\ntestset: URL, BLEU: 7.1, chr-F: 0.192\ntestset: URL, BLEU: 3.6, chr-F: 0.150\ntestset: URL, BLEU: 0.2, chr-F: 0.001\ntestset: URL, BLEU: 15.1, chr-F: 0.322\ntestset: URL, BLEU: 8.3, chr-F: 0.108\ntestset: URL, BLEU: 20.7, chr-F: 0.415\ntestset: URL, BLEU: 7.9, chr-F: 0.260\ntestset: URL, BLEU: 0.2, chr-F: 0.087\ntestset: URL, BLEU: 5.6, chr-F: 0.301\ntestset: URL, BLEU: 10.2, chr-F: 0.352\ntestset: URL, BLEU: 24.3, chr-F: 0.444\ntestset: URL, BLEU: 14.5, chr-F: 0.338\ntestset: URL, BLEU: 0.1, chr-F: 0.006\ntestset: URL, BLEU: 21.8, chr-F: 0.412\ntestset: URL, BLEU: 12.2, chr-F: 0.336\ntestset: URL, BLEU: 12.7, chr-F: 0.343\ntestset: URL, BLEU: 16.6, chr-F: 0.362\ntestset: URL, BLEU: 3.2, chr-F: 0.215\ntestset: URL, BLEU: 18.9, chr-F: 0.414\ntestset: URL, BLEU: 53.4, chr-F: 0.708\ntestset: URL, BLEU: 14.0, chr-F: 0.343\ntestset: URL, BLEU: 2.1, chr-F: 0.182\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 34.5, chr-F: 0.540\ntestset: URL, BLEU: 33.6, chr-F: 0.520\ntestset: URL, BLEU: 40.5, chr-F: 0.598\ntestset: URL, BLEU: 72.7, chr-F: 0.770\ntestset: URL, BLEU: 30.5, chr-F: 0.570\ntestset: URL, BLEU: 5.7, chr-F: 0.362\ntestset: URL, BLEU: 23.5, chr-F: 0.504\ntestset: URL, BLEU: 13.7, chr-F: 0.550\ntestset: URL, BLEU: 37.6, chr-F: 0.551\ntestset: URL, BLEU: 32.5, chr-F: 0.517\ntestset: URL, BLEU: 8.6, chr-F: 0.483\ntestset: URL, BLEU: 26.6, chr-F: 0.511\ntestset: URL, BLEU: 95.1, chr-F: 0.958\ntestset: URL, BLEU: 9.0, chr-F: 0.488\ntestset: URL, BLEU: 6.8, chr-F: 0.251\ntestset: URL, BLEU: 12.2, chr-F: 0.329\ntestset: URL, BLEU: 10.4, chr-F: 0.366\ntestset: URL, BLEU: 25.7, chr-F: 0.472\ntestset: URL, BLEU: 37.5, chr-F: 0.551\ntestset: URL, BLEU: 32.1, chr-F: 0.489\ntestset: URL, BLEU: 22.3, chr-F: 0.460\ntestset: URL, BLEU: 7.4, chr-F: 0.195\ntestset: URL, BLEU: 22.6, chr-F: 0.378\ntestset: URL, BLEU: 9.7, chr-F: 0.282\ntestset: URL, BLEU: 7.2, chr-F: 0.374\ntestset: URL, BLEU: 30.9, chr-F: 0.529\ntestset: URL, BLEU: 25.0, chr-F: 0.439\ntestset: URL, BLEU: 30.6, chr-F: 0.504\ntestset: URL, BLEU: 8.6, chr-F: 0.331\ntestset: URL, BLEU: 32.9, chr-F: 0.516\ntestset: URL, BLEU: 19.6, chr-F: 0.371\ntestset: URL, BLEU: 6.5, chr-F: 0.360\ntestset: URL, BLEU: 13.7, chr-F: 0.310\ntestset: URL, BLEU: 13.1, chr-F: 0.368\ntestset: URL, BLEU: 3.4, chr-F: 0.064\ntestset: URL, BLEU: 9.3, chr-F: 0.351\ntestset: URL, BLEU: 22.3, chr-F: 0.323\ntestset: URL, BLEU: 10.9, chr-F: 0.333\ntestset: URL, BLEU: 49.5, chr-F: 0.589\ntestset: URL, BLEU: 0.0, chr-F: 0.051\ntestset: URL, BLEU: 9.7, chr-F: 0.353\ntestset: URL, BLEU: 65.1, chr-F: 0.463\ntestset: URL, BLEU: 35.6, chr-F: 0.533\ntestset: URL, BLEU: 33.7, chr-F: 0.448\ntestset: URL, BLEU: 24.3, chr-F: 0.451\ntestset: URL, BLEU: 23.4, chr-F: 0.621\ntestset: URL, BLEU: 0.5, chr-F: 0.104\ntestset: URL, BLEU: 14.2, chr-F: 0.412\ntestset: URL, BLEU: 7.8, chr-F: 0.179\ntestset: URL, BLEU: 7.6, chr-F: 0.106\ntestset: URL, BLEU: 32.4, chr-F: 0.488\ntestset: URL, BLEU: 27.8, chr-F: 0.599\ntestset: URL, BLEU: 12.7, chr-F: 0.319\ntestset: URL, BLEU: 18.0, chr-F: 0.392\ntestset: URL, BLEU: 15.6, chr-F: 0.458\ntestset: URL, BLEU: 0.6, chr-F: 0.065\ntestset: URL, BLEU: 32.5, chr-F: 0.403\ntestset: URL, BLEU: 1.4, chr-F: 0.236\ntestset: URL, BLEU: 49.8, chr-F: 0.429\ntestset: URL, BLEU: 18.6, chr-F: 0.460\ntestset: URL, BLEU: 5.1, chr-F: 0.230\ntestset: URL, BLEU: 14.2, chr-F: 0.379\ntestset: URL, BLEU: 20.0, chr-F: 0.422\ntestset: URL, BLEU: 40.7, chr-F: 0.470\ntestset: URL, BLEU: 7.3, chr-F: 0.407\ntestset: URL, BLEU: 35.4, chr-F: 0.638\ntestset: URL, BLEU: 49.0, chr-F: 0.615\ntestset: URL, BLEU: 42.7, chr-F: 0.655\ntestset: URL, BLEU: 9.7, chr-F: 0.362\ntestset: URL, BLEU: 61.6, chr-F: 0.819\ntestset: URL, BLEU: 15.0, chr-F: 0.506\ntestset: URL, BLEU: 31.0, chr-F: 0.548\ntestset: URL, BLEU: 35.8, chr-F: 0.524\ntestset: URL, BLEU: 30.2, chr-F: 0.486\ntestset: URL, BLEU: 32.5, chr-F: 0.589\ntestset: URL, BLEU: 16.6, chr-F: 0.557\ntestset: URL, BLEU: 11.6, chr-F: 0.395\ntestset: URL, BLEU: 42.7, chr-F: 0.680\ntestset: URL, BLEU: 53.7, chr-F: 0.833\ntestset: URL, BLEU: 10.1, chr-F: 0.492\ntestset: URL, BLEU: 9.7, chr-F: 0.196\ntestset: URL, BLEU: 24.7, chr-F: 0.727\ntestset: URL, BLEU: 43.2, chr-F: 0.601\ntestset: URL, BLEU: 23.6, chr-F: 0.361\ntestset: URL, BLEU: 42.7, chr-F: 0.864\ntestset: URL, BLEU: 3.4, chr-F: 0.323\ntestset: URL, BLEU: 17.1, chr-F: 0.418\ntestset: URL, BLEU: 1.8, chr-F: 0.199\ntestset: URL, BLEU: 11.9, chr-F: 0.258\ntestset: URL, BLEU: 3.4, chr-F: 0.115\ntestset: URL, BLEU: 0.0, chr-F: 0.000\ntestset: URL, BLEU: 23.5, chr-F: 0.470\ntestset: URL, BLEU: 19.7, chr-F: 0.490\ntestset: URL, BLEU: 27.8, chr-F: 0.472\ntestset: URL, BLEU: 2.0, chr-F: 0.232\ntestset: URL, BLEU: 5.9, chr-F: 0.241\ntestset: URL, BLEU: 25.9, chr-F: 0.465\ntestset: URL, BLEU: 1.7, chr-F: 0.195\ntestset: URL, BLEU: 3.4, chr-F: 0.228\ntestset: URL, BLEU: 23.4, chr-F: 0.481\ntestset: URL, BLEU: 11.5, chr-F: 0.304\ntestset: URL, BLEU: 5.8, chr-F: 0.243\ntestset: URL, BLEU: 20.9, chr-F: 0.442\ntestset: URL, BLEU: 14.8, chr-F: 0.431\ntestset: URL, BLEU: 83.8, chr-F: 0.946\ntestset: URL, BLEU: 9.1, chr-F: 0.349\ntestset: URL, BLEU: 15.4, chr-F: 0.385\ntestset: URL, BLEU: 3.4, chr-F: 0.195\ntestset: URL, BLEU: 18.8, chr-F: 0.401\ntestset: URL, BLEU: 0.0, chr-F: 0.056\ntestset: URL, BLEU: 22.6, chr-F: 0.451\ntestset: URL, BLEU: 5.7, chr-F: 0.267\ntestset: URL, BLEU: 8.0, chr-F: 0.102\ntestset: URL, BLEU: 30.8, chr-F: 0.509\ntestset: URL, BLEU: 22.8, chr-F: 0.416\ntestset: URL, BLEU: 7.0, chr-F: 0.321\ntestset: URL, BLEU: 35.4, chr-F: 0.561\ntestset: URL, BLEU: 42.7, chr-F: 0.835\ntestset: URL, BLEU: 38.3, chr-F: 0.491\ntestset: URL, BLEU: 18.5, chr-F: 0.399\ntestset: URL, BLEU: 32.6, chr-F: 0.552\ntestset: URL, BLEU: 18.1, chr-F: 0.426\ntestset: URL, BLEU: 28.9, chr-F: 0.480\ntestset: URL, BLEU: 6.9, chr-F: 0.198\ntestset: URL, BLEU: 6.6, chr-F: 0.187\ntestset: URL, BLEU: 31.9, chr-F: 0.498\ntestset: URL, BLEU: 0.5, chr-F: 0.000\ntestset: URL, BLEU: 0.0, chr-F: 0.023\ntestset: URL, BLEU: 1.2, chr-F: 0.148\ntestset: URL, BLEU: 28.5, chr-F: 0.505\ntestset: URL, BLEU: 7.8, chr-F: 0.164\ntestset: URL, BLEU: 38.2, chr-F: 0.584\ntestset: URL, BLEU: 42.8, chr-F: 0.612\ntestset: URL, BLEU: 15.3, chr-F: 0.405\ntestset: URL, BLEU: 26.0, chr-F: 0.447\ntestset: URL, BLEU: 0.0, chr-F: 0.353\ntestset: URL, BLEU: 24.3, chr-F: 0.440\ntestset: URL, BLEU: 31.7, chr-F: 0.527\ntestset: URL, BLEU: 0.1, chr-F: 0.080\ntestset: URL, BLEU: 20.1, chr-F: 0.464\ntestset: URL, BLEU: 42.8, chr-F: 0.365\ntestset: URL, BLEU: 2.1, chr-F: 0.161\ntestset: URL, BLEU: 50.1, chr-F: 0.670\ntestset: URL, BLEU: 42.7, chr-F: 0.835\ntestset: URL, BLEU: 17.5, chr-F: 0.410\ntestset: URL, BLEU: 3.2, chr-F: 0.189\ntestset: URL, BLEU: 28.7, chr-F: 0.468\ntestset: URL, BLEU: 31.9, chr-F: 0.546\ntestset: URL, BLEU: 24.4, chr-F: 0.504\ntestset: URL, BLEU: 0.6, chr-F: 0.048\ntestset: URL, BLEU: 49.1, chr-F: 0.660\ntestset: URL, BLEU: 38.3, chr-F: 0.589\ntestset: URL, BLEU: 0.2, chr-F: 0.084\ntestset: URL, BLEU: 35.3, chr-F: 0.528\ntestset: URL, BLEU: 42.4, chr-F: 0.602\ntestset: URL, BLEU: 6.1, chr-F: 0.269\ntestset: URL, BLEU: 18.6, chr-F: 0.459\ntestset: URL, BLEU: 35.7, chr-F: 0.549\ntestset: URL, BLEU: 2.8, chr-F: 0.099\ntestset: URL, BLEU: 19.2, chr-F: 0.438\ntestset: URL, BLEU: 35.0, chr-F: 0.576\ntestset: URL, BLEU: 0.5, chr-F: 0.129\ntestset: URL, BLEU: 26.8, chr-F: 0.418\ntestset: URL, BLEU: 35.3, chr-F: 0.580\ntestset: URL, BLEU: 4.2, chr-F: 0.147\ntestset: URL, BLEU: 0.7, chr-F: 0.101\ntestset: URL, BLEU: 6.7, chr-F: 0.314\ntestset: URL, BLEU: 17.6, chr-F: 0.384\ntestset: URL, BLEU: 0.0, chr-F: 0.238\ntestset: URL, BLEU: 3.6, chr-F: 0.210\ntestset: URL, BLEU: 15.9, chr-F: 0.405\ntestset: URL, BLEU: 42.4, chr-F: 0.618\ntestset: URL, BLEU: 9.0, chr-F: 0.306\ntestset: URL, BLEU: 38.9, chr-F: 0.531\ntestset: URL, BLEU: 25.8, chr-F: 0.498\ntestset: URL, BLEU: 31.7, chr-F: 0.535\ntestset: URL, BLEU: 26.6, chr-F: 0.495\ntestset: URL, BLEU: 30.0, chr-F: 0.512\ntestset: URL, BLEU: 4.3, chr-F: 0.299\ntestset: URL, BLEU: 35.0, chr-F: 0.560\ntestset: URL, BLEU: 1.6, chr-F: 0.201\ntestset: URL, BLEU: 72.2, chr-F: 0.801\ntestset: URL, BLEU: 5.0, chr-F: 0.129\ntestset: URL, BLEU: 26.2, chr-F: 0.481\ntestset: URL, BLEU: 3.5, chr-F: 0.133\ntestset: URL, BLEU: 11.5, chr-F: 0.293\ntestset: URL, BLEU: 30.3, chr-F: 0.471\ntestset: URL, BLEU: 90.1, chr-F: 0.839\ntestset: URL, BLEU: 50.0, chr-F: 0.638\ntestset: URL, BLEU: 42.2, chr-F: 0.467\ntestset: URL, BLEU: 3.2, chr-F: 0.188\ntestset: URL, BLEU: 35.4, chr-F: 0.529\ntestset: URL, BLEU: 38.0, chr-F: 0.627\ntestset: URL, BLEU: 3.2, chr-F: 0.072\ntestset: URL, BLEU: 14.7, chr-F: 0.465\ntestset: URL, BLEU: 59.0, chr-F: 0.757\ntestset: URL, BLEU: 32.4, chr-F: 0.560\ntestset: URL, BLEU: 29.9, chr-F: 0.507\ntestset: URL, BLEU: 40.8, chr-F: 0.585\ntestset: URL, BLEU: 4.2, chr-F: 0.303\ntestset: URL, BLEU: 10.0, chr-F: 0.345\ntestset: URL, BLEU: 38.4, chr-F: 0.572\ntestset: URL, BLEU: 18.7, chr-F: 0.375\ntestset: URL, BLEU: 10.7, chr-F: 0.015\ntestset: URL, BLEU: 21.7, chr-F: 0.465\ntestset: URL, BLEU: 14.8, chr-F: 0.307\ntestset: URL, BLEU: 23.2, chr-F: 0.445\ntestset: URL, BLEU: 35.2, chr-F: 0.594\ntestset: URL, BLEU: 10.7, chr-F: 0.037\ntestset: URL, BLEU: 6.6, chr-F: 0.370\ntestset: URL, BLEU: 3.6, chr-F: 0.261\ntestset: URL, BLEU: 12.2, chr-F: 0.404\ntestset: URL, BLEU: 8.0, chr-F: 0.442\ntestset: URL, BLEU: 20.3, chr-F: 0.466\ntestset: URL, BLEU: 39.1, chr-F: 0.598\ntestset: URL, BLEU: 49.0, chr-F: 0.698\ntestset: URL, BLEU: 26.3, chr-F: 0.515\ntestset: URL, BLEU: 31.0, chr-F: 0.543\ntestset: URL, BLEU: 28.0, chr-F: 0.475\ntestset: URL, BLEU: 28.1, chr-F: 0.513\ntestset: URL, BLEU: 1.2, chr-F: 0.193\ntestset: URL, BLEU: 38.2, chr-F: 0.598\ntestset: URL, BLEU: 58.8, chr-F: 0.741\ntestset: URL, BLEU: 29.1, chr-F: 0.515\ntestset: URL, BLEU: 42.6, chr-F: 0.473\ntestset: URL, BLEU: 11.2, chr-F: 0.346\ntestset: URL, BLEU: 13.4, chr-F: 0.331\ntestset: URL, BLEU: 5.3, chr-F: 0.206\ntestset: URL, BLEU: 19.6, chr-F: 0.423\ntestset: URL, BLEU: 24.5, chr-F: 0.493\ntestset: URL, BLEU: 22.5, chr-F: 0.408\ntestset: URL, BLEU: 8.8, chr-F: 0.322\ntestset: URL, BLEU: 16.4, chr-F: 0.387\ntestset: URL, BLEU: 20.4, chr-F: 0.442\ntestset: URL, BLEU: 66.9, chr-F: 0.968\ntestset: URL, BLEU: 3.9, chr-F: 0.168\ntestset: URL, BLEU: 9.1, chr-F: 0.175\ntestset: URL, BLEU: 5.8, chr-F: 0.256\ntestset: URL, BLEU: 8.4, chr-F: 0.243\ntestset: URL, BLEU: 8.9, chr-F: 0.244\ntestset: URL, BLEU: 8.1, chr-F: 0.297\ntestset: URL, BLEU: 1.2, chr-F: 0.207\ntestset: URL, BLEU: 11.6, chr-F: 0.338\ntestset: URL, BLEU: 8.2, chr-F: 0.234\ntestset: URL, BLEU: 7.8, chr-F: 0.331\ntestset: URL, BLEU: 6.4, chr-F: 0.217\ntestset: URL, BLEU: 5.8, chr-F: 0.230\ntestset: URL, BLEU: 10.8, chr-F: 0.279\ntestset: URL, BLEU: 6.0, chr-F: 0.225\ntestset: URL, BLEU: 6.1, chr-F: 0.256\ntestset: URL, BLEU: 0.0, chr-F: 0.626\ntestset: URL, BLEU: 45.7, chr-F: 0.586\ntestset: URL, BLEU: 43.9, chr-F: 0.589\ntestset: URL, BLEU: 0.0, chr-F: 0.347\ntestset: URL, BLEU: 41.9, chr-F: 0.587\ntestset: URL, BLEU: 14.4, chr-F: 0.365\ntestset: URL, BLEU: 5.8, chr-F: 0.274\ntestset: URL, BLEU: 33.0, chr-F: 0.474\ntestset: URL, BLEU: 36.1, chr-F: 0.479\ntestset: URL, BLEU: 0.7, chr-F: 0.026\ntestset: URL, BLEU: 13.1, chr-F: 0.310\ntestset: URL, BLEU: 8.8, chr-F: 0.296\ntestset: URL, BLEU: 13.0, chr-F: 0.309\ntestset: URL, BLEU: 10.0, chr-F: 0.327\ntestset: URL, BLEU: 15.2, chr-F: 0.304\ntestset: URL, BLEU: 10.4, chr-F: 0.352\ntestset: URL, BLEU: 40.2, chr-F: 0.589\ntestset: URL, BLEU: 24.8, chr-F: 0.503\ntestset: URL, BLEU: 29.4, chr-F: 0.508\ntestset: URL, BLEU: 20.3, chr-F: 0.416\ntestset: URL, BLEU: 28.0, chr-F: 0.489\ntestset: URL, BLEU: 1.3, chr-F: 0.052\ntestset: URL, BLEU: 7.0, chr-F: 0.347\ntestset: URL, BLEU: 37.0, chr-F: 0.551\ntestset: URL, BLEU: 29.1, chr-F: 0.508\ntestset: URL, BLEU: 0.8, chr-F: 0.070\ntestset: URL, BLEU: 32.3, chr-F: 0.519\ntestset: URL, BLEU: 34.1, chr-F: 0.531\ntestset: URL, BLEU: 1.2, chr-F: 0.234\ntestset: URL, BLEU: 6.5, chr-F: 0.208\ntestset: URL, BLEU: 30.8, chr-F: 0.510\ntestset: URL, BLEU: 7.2, chr-F: 0.287\ntestset: URL, BLEU: 14.6, chr-F: 0.301\ntestset: URL, BLEU: 18.4, chr-F: 0.498\ntestset: URL, BLEU: 31.8, chr-F: 0.546\ntestset: URL, BLEU: 3.5, chr-F: 0.193\ntestset: URL, BLEU: 11.4, chr-F: 0.336\ntestset: URL, BLEU: 28.5, chr-F: 0.522\ntestset: URL, BLEU: 2.6, chr-F: 0.134\ntestset: URL, BLEU: 16.0, chr-F: 0.265\ntestset: URL, BLEU: 7.2, chr-F: 0.311\ntestset: URL, BLEU: 22.9, chr-F: 0.450\ntestset: URL, BLEU: 21.2, chr-F: 0.493\ntestset: URL, BLEU: 38.0, chr-F: 0.718\ntestset: URL, BLEU: 2.2, chr-F: 0.173\ntestset: URL, BLEU: 14.4, chr-F: 0.370\ntestset: URL, BLEU: 30.6, chr-F: 0.501\ntestset: URL, BLEU: 33.3, chr-F: 0.536\ntestset: URL, BLEU: 4.0, chr-F: 0.282\ntestset: URL, BLEU: 0.4, chr-F: 0.005\ntestset: URL, BLEU: 1.3, chr-F: 0.032\ntestset: URL, BLEU: 25.9, chr-F: 0.491\ntestset: URL, BLEU: 0.0, chr-F: 0.083\ntestset: URL, BLEU: 26.5, chr-F: 0.487\ntestset: URL, BLEU: 34.7, chr-F: 0.550\ntestset: URL, BLEU: 7.4, chr-F: 0.256\ntestset: URL, BLEU: 30.7, chr-F: 0.516\ntestset: URL, BLEU: 35.0, chr-F: 0.530\ntestset: URL, BLEU: 32.8, chr-F: 0.538\ntestset: URL, BLEU: 5.6, chr-F: 0.381\ntestset: URL, BLEU: 4.8, chr-F: 0.146\ntestset: URL, BLEU: 48.1, chr-F: 0.653\ntestset: URL, BLEU: 8.4, chr-F: 0.213\ntestset: URL, BLEU: 42.7, chr-F: 0.835\ntestset: URL, BLEU: 9.7, chr-F: 0.539\ntestset: URL, BLEU: 41.5, chr-F: 0.569\ntestset: URL, BLEU: 36.9, chr-F: 0.612\ntestset: URL, BLEU: 29.0, chr-F: 0.526\ntestset: URL, BLEU: 0.8, chr-F: 0.049\ntestset: URL, BLEU: 51.4, chr-F: 0.668\ntestset: URL, BLEU: 30.8, chr-F: 0.532\ntestset: URL, BLEU: 33.8, chr-F: 0.556\ntestset: URL, BLEU: 44.5, chr-F: 0.622\ntestset: URL, BLEU: 10.7, chr-F: 0.190\ntestset: URL, BLEU: 4.5, chr-F: 0.273\ntestset: URL, BLEU: 43.0, chr-F: 0.625\ntestset: URL, BLEU: 8.9, chr-F: 0.365\ntestset: URL, BLEU: 16.0, chr-F: 0.079\ntestset: URL, BLEU: 12.1, chr-F: 0.315\ntestset: URL, BLEU: 49.2, chr-F: 0.700\ntestset: URL, BLEU: 0.1, chr-F: 0.004\ntestset: URL, BLEU: 39.2, chr-F: 0.575\ntestset: URL, BLEU: 15.5, chr-F: 0.387\ntestset: URL, BLEU: 39.9, chr-F: 0.637\ntestset: URL, BLEU: 3.0, chr-F: 0.133\ntestset: URL, BLEU: 0.6, chr-F: 0.172\ntestset: URL, BLEU: 5.4, chr-F: 0.325\ntestset: URL, BLEU: 18.8, chr-F: 0.418\ntestset: URL, BLEU: 16.8, chr-F: 0.569\ntestset: URL, BLEU: 27.3, chr-F: 0.571\ntestset: URL, BLEU: 7.6, chr-F: 0.327\ntestset: URL, BLEU: 30.5, chr-F: 0.559\ntestset: URL, BLEU: 14.2, chr-F: 0.370\ntestset: URL, BLEU: 35.6, chr-F: 0.558\ntestset: URL, BLEU: 38.0, chr-F: 0.587\ntestset: URL, BLEU: 25.5, chr-F: 0.510\ntestset: URL, BLEU: 5.5, chr-F: 0.058\ntestset: URL, BLEU: 32.0, chr-F: 0.557\ntestset: URL, BLEU: 26.8, chr-F: 0.493\ntestset: URL, BLEU: 48.7, chr-F: 0.686\ntestset: URL, BLEU: 43.4, chr-F: 0.612\ntestset: URL, BLEU: 27.5, chr-F: 0.500\ntestset: URL, BLEU: 9.3, chr-F: 0.293\ntestset: URL, BLEU: 2.2, chr-F: 0.183\ntestset: URL, BLEU: 1.3, chr-F: 0.179\ntestset: URL, BLEU: 2.3, chr-F: 0.183\ntestset: URL, BLEU: 0.5, chr-F: 0.173\ntestset: URL, BLEU: 3.4, chr-F: 0.200\ntestset: URL, BLEU: 1.6, chr-F: 0.166\ntestset: URL, BLEU: 8.3, chr-F: 0.311\ntestset: URL, BLEU: 9.5, chr-F: 0.361\ntestset: URL, BLEU: 8.8, chr-F: 0.415\ntestset: URL, BLEU: 21.4, chr-F: 0.347\ntestset: URL, BLEU: 13.3, chr-F: 0.434\ntestset: URL, BLEU: 2.9, chr-F: 0.204\ntestset: URL, BLEU: 5.3, chr-F: 0.243\ntestset: URL, BLEU: 6.5, chr-F: 0.194\ntestset: URL, BLEU: 30.2, chr-F: 0.667\ntestset: URL, BLEU: 35.4, chr-F: 0.493\ntestset: URL, BLEU: 23.6, chr-F: 0.542\ntestset: URL, BLEU: 10.6, chr-F: 0.344\ntestset: URL, BLEU: 12.7, chr-F: 0.652\ntestset: URL, BLEU: 32.1, chr-F: 0.524\ntestset: URL, BLEU: 38.4, chr-F: 0.566\ntestset: URL, BLEU: 5.3, chr-F: 0.351\ntestset: URL, BLEU: 7.3, chr-F: 0.338\ntestset: URL, BLEU: 38.0, chr-F: 0.571\ntestset: URL, BLEU: 10.7, chr-F: 0.116\ntestset: URL, BLEU: 36.2, chr-F: 0.587\ntestset: URL, BLEU: 2.4, chr-F: 0.233\ntestset: URL, BLEU: 6.5, chr-F: 0.368\ntestset: URL, BLEU: 27.5, chr-F: 0.484\ntestset: URL, BLEU: 0.8, chr-F: 0.082\ntestset: URL, BLEU: 9.7, chr-F: 0.168\ntestset: URL, BLEU: 32.5, chr-F: 0.522\ntestset: URL, BLEU: 45.2, chr-F: 0.656\ntestset: URL, BLEU: 32.2, chr-F: 0.554\ntestset: URL, BLEU: 33.6, chr-F: 0.577\ntestset: URL, BLEU: 33.3, chr-F: 0.536\ntestset: URL, BLEU: 19.0, chr-F: 0.113\ntestset: URL, BLEU: 40.8, chr-F: 0.605\ntestset: URL, BLEU: 12.7, chr-F: 0.288\ntestset: URL, BLEU: 19.7, chr-F: 0.285\ntestset: URL, BLEU: 18.7, chr-F: 0.359\ntestset: URL, BLEU: 30.1, chr-F: 0.455\ntestset: URL, BLEU: 34.7, chr-F: 0.540\ntestset: URL, BLEU: 0.0, chr-F: 0.042\ntestset: URL, BLEU: 42.7, chr-F: 0.835\ntestset: URL, BLEU: 35.0, chr-F: 0.587\ntestset: URL, BLEU: 30.8, chr-F: 0.534\ntestset: URL, BLEU: 27.9, chr-F: 0.512\ntestset: URL, BLEU: 33.8, chr-F: 0.537\ntestset: URL, BLEU: 0.4, chr-F: 0.038\ntestset: URL, BLEU: 7.6, chr-F: 0.384\ntestset: URL, BLEU: 37.9, chr-F: 0.559\ntestset: URL, BLEU: 31.3, chr-F: 0.528\ntestset: URL, BLEU: 16.0, chr-F: 0.060\ntestset: URL, BLEU: 29.0, chr-F: 0.512\ntestset: URL, BLEU: 37.6, chr-F: 0.553\ntestset: URL, BLEU: 1.6, chr-F: 0.138\ntestset: URL, BLEU: 4.2, chr-F: 0.278\ntestset: URL, BLEU: 33.0, chr-F: 0.524\ntestset: URL, BLEU: 16.3, chr-F: 0.308\ntestset: URL, BLEU: 10.7, chr-F: 0.045\ntestset: URL, BLEU: 22.3, chr-F: 0.427\ntestset: URL, BLEU: 5.9, chr-F: 0.310\ntestset: URL, BLEU: 20.6, chr-F: 0.459\ntestset: URL, BLEU: 1.5, chr-F: 0.152\ntestset: URL, BLEU: 31.0, chr-F: 0.546\ntestset: URL, BLEU: 5.5, chr-F: 0.326\ntestset: URL, BLEU: 12.7, chr-F: 0.365\ntestset: URL, BLEU: 9.0, chr-F: 0.320\ntestset: URL, BLEU: 26.6, chr-F: 0.495\ntestset: URL, BLEU: 5.6, chr-F: 0.210\ntestset: URL, BLEU: 1.0, chr-F: 0.169\ntestset: URL, BLEU: 7.9, chr-F: 0.328\ntestset: URL, BLEU: 31.1, chr-F: 0.519\ntestset: URL, BLEU: 22.0, chr-F: 0.489\ntestset: URL, BLEU: 19.4, chr-F: 0.263\ntestset: URL, BLEU: 19.0, chr-F: 0.217\ntestset: URL, BLEU: 38.5, chr-F: 0.662\ntestset: URL, BLEU: 6.6, chr-F: 0.305\ntestset: URL, BLEU: 11.5, chr-F: 0.350\ntestset: URL, BLEU: 31.1, chr-F: 0.517\ntestset: URL, BLEU: 31.2, chr-F: 0.528\ntestset: URL, BLEU: 4.9, chr-F: 0.261\ntestset: URL, BLEU: 7.3, chr-F: 0.325\ntestset: URL, BLEU: 0.0, chr-F: 0.008\ntestset: URL, BLEU: 4.8, chr-F: 0.198\ntestset: URL, BLEU: 31.3, chr-F: 0.540\ntestset: URL, BLEU: 24.5, chr-F: 0.476\ntestset: URL, BLEU: 25.7, chr-F: 0.492\ntestset: URL, BLEU: 20.7, chr-F: 0.400\ntestset: URL, BLEU: 30.9, chr-F: 0.526\ntestset: URL, BLEU: 32.0, chr-F: 0.507\ntestset: URL, BLEU: 41.1, chr-F: 0.622\ntestset: URL, BLEU: 7.1, chr-F: 0.367\ntestset: URL, BLEU: 4.7, chr-F: 0.253\ntestset: URL, BLEU: 2.5, chr-F: 0.167\ntestset: URL, BLEU: 11.7, chr-F: 0.217\ntestset: URL, BLEU: 3.9, chr-F: 0.224\ntestset: URL, BLEU: 40.7, chr-F: 0.420\ntestset: URL, BLEU: 2.1, chr-F: 0.134\ntestset: URL, BLEU: 3.4, chr-F: 0.244\ntestset: URL, BLEU: 17.2, chr-F: 0.310\ntestset: URL, BLEU: 32.8, chr-F: 0.524\ntestset: URL, BLEU: 5.7, chr-F: 0.254\ntestset: URL, BLEU: 5.3, chr-F: 0.023\ntestset: URL, BLEU: 3.5, chr-F: 0.237\ntestset: URL, BLEU: 11.9, chr-F: 0.335\ntestset: URL, BLEU: 23.7, chr-F: 0.300\ntestset: URL, BLEU: 0.0, chr-F: 0.146\ntestset: URL, BLEU: 14.1, chr-F: 0.313\ntestset: URL, BLEU: 33.2, chr-F: 0.528\ntestset: URL, BLEU: 33.4, chr-F: 0.518\ntestset: URL, BLEU: 29.9, chr-F: 0.489\ntestset: URL, BLEU: 19.5, chr-F: 0.405\ntestset: URL, BLEU: 28.6, chr-F: 0.499\ntestset: URL, BLEU: 5.5, chr-F: 0.296\ntestset: URL, BLEU: 18.0, chr-F: 0.546\ntestset: URL, BLEU: 18.0, chr-F: 0.452\ntestset: URL, BLEU: 20.3, chr-F: 0.406\ntestset: URL, BLEU: 33.1, chr-F: 0.541\ntestset: URL, BLEU: 12.4, chr-F: 0.348\ntestset: URL, BLEU: 33.4, chr-F: 0.519\ntestset: URL, BLEU: 32.9, chr-F: 0.503\ntestset: URL, BLEU: 14.8, chr-F: 0.095\ntestset: URL, BLEU: 30.1, chr-F: 0.471\ntestset: URL, BLEU: 12.7, chr-F: 0.377\ntestset: URL, BLEU: 46.9, chr-F: 0.624\ntestset: URL, BLEU: 1.1, chr-F: 0.143\ntestset: URL, BLEU: 21.6, chr-F: 0.446\ntestset: URL, BLEU: 28.1, chr-F: 0.526\ntestset: URL, BLEU: 22.8, chr-F: 0.466\ntestset: URL, BLEU: 16.9, chr-F: 0.442\ntestset: URL, BLEU: 30.8, chr-F: 0.510\ntestset: URL, BLEU: 49.1, chr-F: 0.696\ntestset: URL, BLEU: 27.2, chr-F: 0.497\ntestset: URL, BLEU: 0.5, chr-F: 0.049\ntestset: URL, BLEU: 5.3, chr-F: 0.204\ntestset: URL, BLEU: 22.4, chr-F: 0.476\ntestset: URL, BLEU: 39.3, chr-F: 0.581\ntestset: URL, BLEU: 30.9, chr-F: 0.531\ntestset: URL, BLEU: 0.7, chr-F: 0.109\ntestset: URL, BLEU: 0.9, chr-F: 0.060\ntestset: URL, BLEU: 28.9, chr-F: 0.487\ntestset: URL, BLEU: 41.0, chr-F: 0.595\ntestset: URL, BLEU: 13.9, chr-F: 0.188\ntestset: URL, BLEU: 7.9, chr-F: 0.244\ntestset: URL, BLEU: 41.4, chr-F: 0.610\ntestset: URL, BLEU: 15.8, chr-F: 0.397\ntestset: URL, BLEU: 7.0, chr-F: 0.060\ntestset: URL, BLEU: 7.4, chr-F: 0.303\ntestset: URL, BLEU: 22.2, chr-F: 0.415\ntestset: URL, BLEU: 48.8, chr-F: 0.683\ntestset: URL, BLEU: 1.7, chr-F: 0.181\ntestset: URL, BLEU: 0.3, chr-F: 0.010\ntestset: URL, BLEU: 0.1, chr-F: 0.005\ntestset: URL, BLEU: 5.6, chr-F: 0.051\ntestset: URL, BLEU: 15.0, chr-F: 0.365\ntestset: URL, BLEU: 19.9, chr-F: 0.409\ntestset: URL, BLEU: 33.2, chr-F: 0.529\ntestset: URL, BLEU: 16.1, chr-F: 0.331\ntestset: URL, BLEU: 5.1, chr-F: 0.240\ntestset: URL, BLEU: 13.5, chr-F: 0.357\ntestset: URL, BLEU: 18.0, chr-F: 0.410\ntestset: URL, BLEU: 42.7, chr-F: 0.646\ntestset: URL, BLEU: 0.4, chr-F: 0.088\ntestset: URL, BLEU: 5.6, chr-F: 0.237\ntestset: URL, BLEU: 0.9, chr-F: 0.157\ntestset: URL, BLEU: 9.0, chr-F: 0.382\ntestset: URL, BLEU: 23.7, chr-F: 0.510\ntestset: URL, BLEU: 22.4, chr-F: 0.477\ntestset: URL, BLEU: 0.4, chr-F: 0.119\ntestset: URL, BLEU: 34.1, chr-F: 0.531\ntestset: URL, BLEU: 29.4, chr-F: 0.416\ntestset: URL, BLEU: 37.1, chr-F: 0.568\ntestset: URL, BLEU: 14.0, chr-F: 0.405\ntestset: URL, BLEU: 15.4, chr-F: 0.390\ntestset: URL, BLEU: 34.0, chr-F: 0.550\ntestset: URL, BLEU: 41.1, chr-F: 0.608\ntestset: URL, BLEU: 8.0, chr-F: 0.353\ntestset: URL, BLEU: 0.4, chr-F: 0.010\ntestset: URL, BLEU: 0.2, chr-F: 0.060\ntestset: URL, BLEU: 0.6, chr-F: 0.122\ntestset: URL, BLEU: 26.3, chr-F: 0.498\ntestset: URL, BLEU: 41.6, chr-F: 0.638\ntestset: URL, BLEU: 0.3, chr-F: 0.095\ntestset: URL, BLEU: 4.0, chr-F: 0.219\ntestset: URL, BLEU: 31.9, chr-F: 0.550\ntestset: URL, BLEU: 0.2, chr-F: 0.013\ntestset: URL, BLEU: 29.4, chr-F: 0.510\ntestset: URL, BLEU: 1.6, chr-F: 0.086\ntestset: URL, BLEU: 16.0, chr-F: 0.111\ntestset: URL, BLEU: 9.2, chr-F: 0.269\ntestset: URL, BLEU: 8.4, chr-F: 0.375\ntestset: URL, BLEU: 39.5, chr-F: 0.572\ntestset: URL, BLEU: 27.8, chr-F: 0.495\ntestset: URL, BLEU: 2.9, chr-F: 0.220\ntestset: URL, BLEU: 10.0, chr-F: 0.296\ntestset: URL, BLEU: 30.9, chr-F: 0.499\ntestset: URL, BLEU: 29.9, chr-F: 0.545\ntestset: URL, BLEU: 24.5, chr-F: 0.484\ntestset: URL, BLEU: 5.8, chr-F: 0.347\ntestset: URL, BLEU: 16.7, chr-F: 0.426\ntestset: URL, BLEU: 8.4, chr-F: 0.370\ntestset: URL, BLEU: 0.6, chr-F: 0.032\ntestset: URL, BLEU: 9.3, chr-F: 0.283\ntestset: URL, BLEU: 0.3, chr-F: 0.126\ntestset: URL, BLEU: 0.0, chr-F: 0.102\ntestset: URL, BLEU: 4.0, chr-F: 0.175\ntestset: URL, BLEU: 13.2, chr-F: 0.398\ntestset: URL, BLEU: 7.0, chr-F: 0.345\ntestset: URL, BLEU: 5.0, chr-F: 0.110\ntestset: URL, BLEU: 63.1, chr-F: 0.831\ntestset: URL, BLEU: 35.4, chr-F: 0.529\ntestset: URL, BLEU: 38.5, chr-F: 0.528\ntestset: URL, BLEU: 32.8, chr-F: 0.380\ntestset: URL, BLEU: 54.5, chr-F: 0.702\ntestset: URL, BLEU: 36.7, chr-F: 0.570\ntestset: URL, BLEU: 32.9, chr-F: 0.541\ntestset: URL, BLEU: 44.9, chr-F: 0.606\ntestset: URL, BLEU: 0.0, chr-F: 0.877\ntestset: URL, BLEU: 43.2, chr-F: 0.605\ntestset: URL, BLEU: 42.7, chr-F: 0.402\ntestset: URL, BLEU: 4.8, chr-F: 0.253\ntestset: URL, BLEU: 39.3, chr-F: 0.591\ntestset: URL, BLEU: 31.6, chr-F: 0.617\ntestset: URL, BLEU: 21.2, chr-F: 0.559\ntestset: URL, BLEU: 33.1, chr-F: 0.548\ntestset: URL, BLEU: 1.4, chr-F: 0.144\ntestset: URL, BLEU: 6.6, chr-F: 0.373\ntestset: URL, BLEU: 4.5, chr-F: 0.453\ntestset: URL, BLEU: 73.4, chr-F: 0.828\ntestset: URL, BLEU: 25.5, chr-F: 0.440\ntestset: URL, BLEU: 0.0, chr-F: 0.124\ntestset: URL, BLEU: 71.9, chr-F: 0.742\ntestset: URL, BLEU: 59.5, chr-F: 0.742\ntestset: URL, BLEU: 25.9, chr-F: 0.497\ntestset: URL, BLEU: 31.3, chr-F: 0.546\ntestset: URL, BLEU: 100.0, chr-F: 1.000\ntestset: URL, BLEU: 28.6, chr-F: 0.495\ntestset: URL, BLEU: 19.0, chr-F: 0.116\ntestset: URL, BLEU: 37.1, chr-F: 0.569\ntestset: URL, BLEU: 13.9, chr-F: 0.336\ntestset: URL, BLEU: 16.5, chr-F: 0.438\ntestset: URL, BLEU: 20.1, chr-F: 0.468\ntestset: URL, BLEU: 8.0, chr-F: 0.316\ntestset: URL, BLEU: 13.0, chr-F: 0.300\ntestset: URL, BLEU: 15.3, chr-F: 0.296\ntestset: URL, BLEU: 0.9, chr-F: 0.199\ntestset: URL, BLEU: 4.9, chr-F: 0.287\ntestset: URL, BLEU: 1.9, chr-F: 0.194\ntestset: URL, BLEU: 45.2, chr-F: 0.574\ntestset: URL, BLEU: 7.8, chr-F: 0.271\ntestset: URL, BLEU: 9.6, chr-F: 0.273\ntestset: URL, BLEU: 0.9, chr-F: 0.102\ntestset: URL, BLEU: 4.4, chr-F: 0.054\ntestset: URL, BLEU: 48.3, chr-F: 0.646\ntestset: URL, BLEU: 1.4, chr-F: 0.034\ntestset: URL, BLEU: 36.7, chr-F: 0.601\ntestset: URL, BLEU: 40.4, chr-F: 0.601\ntestset: URL, BLEU: 33.9, chr-F: 0.538\ntestset: URL, BLEU: 33.1, chr-F: 0.524\ntestset: URL, BLEU: 25.8, chr-F: 0.469\ntestset: URL, BLEU: 34.0, chr-F: 0.543\ntestset: URL, BLEU: 23.0, chr-F: 0.493\ntestset: URL, BLEU: 36.1, chr-F: 0.538\ntestset: URL, BLEU: 3.6, chr-F: 0.400\ntestset: URL, BLEU: 5.3, chr-F: 0.240\ntestset: URL, BLEU: 32.0, chr-F: 0.519\ntestset: URL, BLEU: 13.6, chr-F: 0.318\ntestset: URL, BLEU: 3.8, chr-F: 0.199\ntestset: URL, BLEU: 33.4, chr-F: 0.547\ntestset: URL, BLEU: 32.6, chr-F: 0.546\ntestset: URL, BLEU: 1.4, chr-F: 0.166\ntestset: URL, BLEU: 8.0, chr-F: 0.314\ntestset: URL, BLEU: 10.7, chr-F: 0.520\ntestset: URL, BLEU: 59.9, chr-F: 0.631\ntestset: URL, BLEU: 38.0, chr-F: 0.718\ntestset: URL, BLEU: 2.5, chr-F: 0.213\ntestset: URL, BLEU: 11.0, chr-F: 0.368\ntestset: URL, BLEU: 33.0, chr-F: 0.524\ntestset: URL, BLEU: 40.4, chr-F: 0.574\ntestset: URL, BLEU: 0.1, chr-F: 0.008\ntestset: URL, BLEU: 32.7, chr-F: 0.553\ntestset: URL, BLEU: 26.8, chr-F: 0.496\ntestset: URL, BLEU: 45.7, chr-F: 0.651\ntestset: URL, BLEU: 11.8, chr-F: 0.263\ntestset: URL, BLEU: 31.7, chr-F: 0.528\ntestset: URL, BLEU: 3.6, chr-F: 0.196\ntestset: URL, BLEU: 36.7, chr-F: 0.586\ntestset: URL, BLEU: 17.1, chr-F: 0.451\ntestset: URL, BLEU: 17.1, chr-F: 0.375\ntestset: URL, BLEU: 38.1, chr-F: 0.565\ntestset: URL, BLEU: 0.0, chr-F: 1.000\ntestset: URL, BLEU: 14.0, chr-F: 0.404\ntestset: URL, BLEU: 1.5, chr-F: 0.014\ntestset: URL, BLEU: 68.7, chr-F: 0.695\ntestset: URL, BLEU: 25.8, chr-F: 0.314\ntestset: URL, BLEU: 13.6, chr-F: 0.319\ntestset: URL, BLEU: 48.3, chr-F: 0.680\ntestset: URL, BLEU: 28.3, chr-F: 0.454\ntestset: URL, BLEU: 4.4, chr-F: 0.206\ntestset: URL, BLEU: 8.0, chr-F: 0.282\ntestset: URL, BLEU: 5.2, chr-F: 0.237\ntestset: URL, BLEU: 9.9, chr-F: 0.395\ntestset: URL, BLEU: 35.4, chr-F: 0.868\ntestset: URL, BLEU: 0.8, chr-F: 0.077\ntestset: URL, BLEU: 4.9, chr-F: 0.240\ntestset: URL, BLEU: 11.3, chr-F: 0.054\ntestset: URL, BLEU: 19.0, chr-F: 0.583\ntestset: URL, BLEU: 5.4, chr-F: 0.320\ntestset: URL, BLEU: 6.3, chr-F: 0.239\ntestset: URL, BLEU: 12.8, chr-F: 0.341\ntestset: URL, BLEU: 17.5, chr-F: 0.382\ntestset: URL, BLEU: 42.7, chr-F: 0.797\ntestset: URL, BLEU: 15.5, chr-F: 0.338\ntestset: URL, BLEU: 2.3, chr-F: 0.176\ntestset: URL, BLEU: 4.5, chr-F: 0.207\ntestset: URL, BLEU: 18.9, chr-F: 0.367\ntestset: URL, BLEU: 6.0, chr-F: 0.156\ntestset: URL, BLEU: 32.2, chr-F: 0.448\ntestset: URL, BLEU: 1.3, chr-F: 0.142\ntestset: URL, BLEU: 15.3, chr-F: 0.363\ntestset: URL, BLEU: 3.2, chr-F: 0.166\ntestset: URL, BLEU: 0.1, chr-F: 0.090\ntestset: URL, BLEU: 1.8, chr-F: 0.206\ntestset: URL, BLEU: 27.8, chr-F: 0.560\ntestset: URL, BLEU: 4.2, chr-F: 0.316\ntestset: URL, BLEU: 24.6, chr-F: 0.466\ntestset: URL, BLEU: 24.5, chr-F: 0.431\ntestset: URL, BLEU: 5.0, chr-F: 0.318\ntestset: URL, BLEU: 19.0, chr-F: 0.390\ntestset: URL, BLEU: 15.0, chr-F: 0.258\ntestset: URL, BLEU: 7.4, chr-F: 0.326\ntestset: URL, BLEU: 12.3, chr-F: 0.325\ntestset: URL, BLEU: 14.2, chr-F: 0.324\ntestset: URL, BLEU: 16.1, chr-F: 0.369\ntestset: URL, BLEU: 3.2, chr-F: 0.125\ntestset: URL, BLEU: 55.9, chr-F: 0.672\ntestset: URL, BLEU: 0.3, chr-F: 0.083\ntestset: URL, BLEU: 7.2, chr-F: 0.383\ntestset: URL, BLEU: 0.0, chr-F: 0.102\ntestset: URL, BLEU: 1.9, chr-F: 0.135", "### System Info:\n\n\n* hf\\_name: ine-ine\n* source\\_languages: ine\n* target\\_languages: ine\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['ca', 'es', 'os', 'ro', 'fy', 'cy', 'sc', 'is', 'yi', 'lb', 'an', 'sq', 'fr', 'ht', 'rm', 'ps', 'af', 'uk', 'sl', 'lt', 'bg', 'be', 'gd', 'si', 'en', 'br', 'mk', 'or', 'mr', 'ru', 'fo', 'co', 'oc', 'pl', 'gl', 'nb', 'bn', 'id', 'hy', 'da', 'gv', 'nl', 'pt', 'hi', 'as', 'kw', 'ga', 'sv', 'gu', 'wa', 'lv', 'el', 'it', 'hr', 'ur', 'nn', 'de', 'cs', 'ine']\n* src\\_constituents: {'cat', 'spa', 'pap', 'mwl', 'lij', 'bos\\_Latn', 'lad\\_Latn', 'lat\\_Latn', 'pcd', 'oss', 'ron', 'fry', 'cym', 'awa', 'swg', 'zsm\\_Latn', 'srd', 'gcf\\_Latn', 'isl', 'yid', 'bho', 'ltz', 'kur\\_Latn', 'arg', 'pes\\_Thaa', 'sqi', 'csb\\_Latn', 'fra', 'hat', 'non\\_Latn', 'sco', 'pnb', 'roh', 'bul\\_Latn', 'pus', 'afr', 'ukr', 'slv', 'lit', 'tmw\\_Latn', 'hsb', 'tly\\_Latn', 'bul', 'bel', 'got\\_Goth', 'lat\\_Grek', 'ext', 'gla', 'mai', 'sin', 'hif\\_Latn', 'eng', 'bre', 'nob\\_Hebr', 'prg\\_Latn', 'ang\\_Latn', 'aln', 'mkd', 'ori', 'mar', 'afr\\_Arab', 'san\\_Deva', 'gos', 'rus', 'fao', 'orv\\_Cyrl', 'bel\\_Latn', 'cos', 'zza', 'grc\\_Grek', 'oci', 'mfe', 'gom', 'bjn', 'sgs', 'tgk\\_Cyrl', 'hye\\_Latn', 'pdc', 'srp\\_Cyrl', 'pol', 'ast', 'glg', 'pms', 'nob', 'ben', 'min', 'srp\\_Latn', 'zlm\\_Latn', 'ind', 'rom', 'hye', 'scn', 'enm\\_Latn', 'lmo', 'npi', 'pes', 'dan', 'rus\\_Latn', 'jdt\\_Cyrl', 'gsw', 'glv', 'nld', 'snd\\_Arab', 'kur\\_Arab', 'por', 'hin', 'dsb', 'asm', 'lad', 'frm\\_Latn', 'ksh', 'pan\\_Guru', 'cor', 'gle', 'swe', 'guj', 'wln', 'lav', 'ell', 'frr', 'rue', 'ita', 'hrv', 'urd', 'stq', 'nno', 'deu', 'lld\\_Latn', 'ces', 'egl', 'vec', 'max\\_Latn', 'pes\\_Latn', 'ltg', 'nds'}\n* tgt\\_constituents: {'cat', 'spa', 'pap', 'mwl', 'lij', 'bos\\_Latn', 'lad\\_Latn', 'lat\\_Latn', 'pcd', 'oss', 'ron', 'fry', 'cym', 'awa', 'swg', 'zsm\\_Latn', 'srd', 'gcf\\_Latn', 'isl', 'yid', 'bho', 'ltz', 'kur\\_Latn', 'arg', 'pes\\_Thaa', 'sqi', 'csb\\_Latn', 'fra', 'hat', 'non\\_Latn', 'sco', 'pnb', 'roh', 'bul\\_Latn', 'pus', 'afr', 'ukr', 'slv', 'lit', 'tmw\\_Latn', 'hsb', 'tly\\_Latn', 'bul', 'bel', 'got\\_Goth', 'lat\\_Grek', 'ext', 'gla', 'mai', 'sin', 'hif\\_Latn', 'eng', 'bre', 'nob\\_Hebr', 'prg\\_Latn', 'ang\\_Latn', 'aln', 'mkd', 'ori', 'mar', 'afr\\_Arab', 'san\\_Deva', 'gos', 'rus', 'fao', 'orv\\_Cyrl', 'bel\\_Latn', 'cos', 'zza', 'grc\\_Grek', 'oci', 'mfe', 'gom', 'bjn', 'sgs', 'tgk\\_Cyrl', 'hye\\_Latn', 'pdc', 'srp\\_Cyrl', 'pol', 'ast', 'glg', 'pms', 'nob', 'ben', 'min', 'srp\\_Latn', 'zlm\\_Latn', 'ind', 'rom', 'hye', 'scn', 'enm\\_Latn', 'lmo', 'npi', 'pes', 'dan', 'rus\\_Latn', 'jdt\\_Cyrl', 'gsw', 'glv', 'nld', 'snd\\_Arab', 'kur\\_Arab', 'por', 'hin', 'dsb', 'asm', 'lad', 'frm\\_Latn', 'ksh', 'pan\\_Guru', 'cor', 'gle', 'swe', 'guj', 'wln', 'lav', 'ell', 'frr', 'rue', 'ita', 'hrv', 'urd', 'stq', 'nno', 'deu', 'lld\\_Latn', 'ces', 'egl', 'vec', 'max\\_Latn', 'pes\\_Latn', 'ltg', 'nds'}\n* src\\_multilingual: True\n* tgt\\_multilingual: True\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: ine\n* tgt\\_alpha3: ine\n* short\\_pair: ine-ine\n* chrF2\\_score: 0.509\n* bleu: 30.8\n* brevity\\_penalty: 0.9890000000000001\n* ref\\_len: 69953.0\n* src\\_name: Indo-European languages\n* tgt\\_name: Indo-European languages\n* train\\_date: 2020-07-27\n* src\\_alpha2: ine\n* tgt\\_alpha2: ine\n* prefer\\_old: False\n* long\\_pair: ine-ine\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ 178, 43310, 2289 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #ca #es #os #ro #fy #cy #sc #is #yi #lb #an #sq #fr #ht #rm #ps #af #uk #sl #lt #bg #be #gd #si #en #br #mk #or #mr #ru #fo #co #oc #pl #gl #nb #bn #id #hy #da #gv #nl #pt #hi #as #kw #ga #sv #gu #wa #lv #el #it #hr #ur #nn #de #cs #ine #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n" ]
translation
transformers
### isl-deu * source group: Icelandic * target group: German * OPUS readme: [isl-deu](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/isl-deu/README.md) * model: transformer-align * source language(s): isl * target language(s): deu * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/isl-deu/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/isl-deu/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/isl-deu/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.isl.deu | 49.2 | 0.661 | ### System Info: - hf_name: isl-deu - source_languages: isl - target_languages: deu - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/isl-deu/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['is', 'de'] - src_constituents: {'isl'} - tgt_constituents: {'deu'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/isl-deu/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/isl-deu/opus-2020-06-17.test.txt - src_alpha3: isl - tgt_alpha3: deu - short_pair: is-de - chrF2_score: 0.6609999999999999 - bleu: 49.2 - brevity_penalty: 0.998 - ref_len: 6265.0 - src_name: Icelandic - tgt_name: German - train_date: 2020-06-17 - src_alpha2: is - tgt_alpha2: de - prefer_old: False - long_pair: isl-deu - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["is", "de"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-is-de
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "is", "de", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "is", "de" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #is #de #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### isl-deu * source group: Icelandic * target group: German * OPUS readme: isl-deu * model: transformer-align * source language(s): isl * target language(s): deu * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 49.2, chr-F: 0.661 ### System Info: * hf\_name: isl-deu * source\_languages: isl * target\_languages: deu * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['is', 'de'] * src\_constituents: {'isl'} * tgt\_constituents: {'deu'} * src\_multilingual: False * tgt\_multilingual: False * prepro: normalization + SentencePiece (spm32k,spm32k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: isl * tgt\_alpha3: deu * short\_pair: is-de * chrF2\_score: 0.6609999999999999 * bleu: 49.2 * brevity\_penalty: 0.998 * ref\_len: 6265.0 * src\_name: Icelandic * tgt\_name: German * train\_date: 2020-06-17 * src\_alpha2: is * tgt\_alpha2: de * prefer\_old: False * long\_pair: isl-deu * helsinki\_git\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 * transformers\_git\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b * port\_machine: brutasse * port\_time: 2020-08-21-14:41
[ "### isl-deu\n\n\n* source group: Icelandic\n* target group: German\n* OPUS readme: isl-deu\n* model: transformer-align\n* source language(s): isl\n* target language(s): deu\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 49.2, chr-F: 0.661", "### System Info:\n\n\n* hf\\_name: isl-deu\n* source\\_languages: isl\n* target\\_languages: deu\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['is', 'de']\n* src\\_constituents: {'isl'}\n* tgt\\_constituents: {'deu'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: isl\n* tgt\\_alpha3: deu\n* short\\_pair: is-de\n* chrF2\\_score: 0.6609999999999999\n* bleu: 49.2\n* brevity\\_penalty: 0.998\n* ref\\_len: 6265.0\n* src\\_name: Icelandic\n* tgt\\_name: German\n* train\\_date: 2020-06-17\n* src\\_alpha2: is\n* tgt\\_alpha2: de\n* prefer\\_old: False\n* long\\_pair: isl-deu\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #is #de #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### isl-deu\n\n\n* source group: Icelandic\n* target group: German\n* OPUS readme: isl-deu\n* model: transformer-align\n* source language(s): isl\n* target language(s): deu\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 49.2, chr-F: 0.661", "### System Info:\n\n\n* hf\\_name: isl-deu\n* source\\_languages: isl\n* target\\_languages: deu\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['is', 'de']\n* src\\_constituents: {'isl'}\n* tgt\\_constituents: {'deu'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: isl\n* tgt\\_alpha3: deu\n* short\\_pair: is-de\n* chrF2\\_score: 0.6609999999999999\n* bleu: 49.2\n* brevity\\_penalty: 0.998\n* ref\\_len: 6265.0\n* src\\_name: Icelandic\n* tgt\\_name: German\n* train\\_date: 2020-06-17\n* src\\_alpha2: is\n* tgt\\_alpha2: de\n* prefer\\_old: False\n* long\\_pair: isl-deu\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ 51, 137, 413 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #is #de #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### isl-deu\n\n\n* source group: Icelandic\n* target group: German\n* OPUS readme: isl-deu\n* model: transformer-align\n* source language(s): isl\n* target language(s): deu\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 49.2, chr-F: 0.661### System Info:\n\n\n* hf\\_name: isl-deu\n* source\\_languages: isl\n* target\\_languages: deu\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['is', 'de']\n* src\\_constituents: {'isl'}\n* tgt\\_constituents: {'deu'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: isl\n* tgt\\_alpha3: deu\n* short\\_pair: is-de\n* chrF2\\_score: 0.6609999999999999\n* bleu: 49.2\n* brevity\\_penalty: 0.998\n* ref\\_len: 6265.0\n* src\\_name: Icelandic\n* tgt\\_name: German\n* train\\_date: 2020-06-17\n* src\\_alpha2: is\n* tgt\\_alpha2: de\n* prefer\\_old: False\n* long\\_pair: isl-deu\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
translation
transformers
### opus-mt-is-en * source languages: is * target languages: en * OPUS readme: [is-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/is-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/is-en/opus-2019-12-18.zip) * test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/is-en/opus-2019-12-18.test.txt) * test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/is-en/opus-2019-12-18.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.is.en | 51.4 | 0.672 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-is-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "is", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #is #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-is-en * source languages: is * target languages: en * OPUS readme: is-en * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 51.4, chr-F: 0.672
[ "### opus-mt-is-en\n\n\n* source languages: is\n* target languages: en\n* OPUS readme: is-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 51.4, chr-F: 0.672" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #is #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-is-en\n\n\n* source languages: is\n* target languages: en\n* OPUS readme: is-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 51.4, chr-F: 0.672" ]
[ 51, 106 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #is #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-is-en\n\n\n* source languages: is\n* target languages: en\n* OPUS readme: is-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 51.4, chr-F: 0.672" ]
translation
transformers
### isl-epo * source group: Icelandic * target group: Esperanto * OPUS readme: [isl-epo](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/isl-epo/README.md) * model: transformer-align * source language(s): isl * target language(s): epo * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/isl-epo/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/isl-epo/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/isl-epo/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.isl.epo | 11.8 | 0.314 | ### System Info: - hf_name: isl-epo - source_languages: isl - target_languages: epo - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/isl-epo/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['is', 'eo'] - src_constituents: {'isl'} - tgt_constituents: {'epo'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/isl-epo/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/isl-epo/opus-2020-06-16.test.txt - src_alpha3: isl - tgt_alpha3: epo - short_pair: is-eo - chrF2_score: 0.314 - bleu: 11.8 - brevity_penalty: 1.0 - ref_len: 1528.0 - src_name: Icelandic - tgt_name: Esperanto - train_date: 2020-06-16 - src_alpha2: is - tgt_alpha2: eo - prefer_old: False - long_pair: isl-epo - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["is", "eo"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-is-eo
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "is", "eo", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "is", "eo" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #is #eo #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### isl-epo * source group: Icelandic * target group: Esperanto * OPUS readme: isl-epo * model: transformer-align * source language(s): isl * target language(s): epo * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 11.8, chr-F: 0.314 ### System Info: * hf\_name: isl-epo * source\_languages: isl * target\_languages: epo * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['is', 'eo'] * src\_constituents: {'isl'} * tgt\_constituents: {'epo'} * src\_multilingual: False * tgt\_multilingual: False * prepro: normalization + SentencePiece (spm4k,spm4k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: isl * tgt\_alpha3: epo * short\_pair: is-eo * chrF2\_score: 0.314 * bleu: 11.8 * brevity\_penalty: 1.0 * ref\_len: 1528.0 * src\_name: Icelandic * tgt\_name: Esperanto * train\_date: 2020-06-16 * src\_alpha2: is * tgt\_alpha2: eo * prefer\_old: False * long\_pair: isl-epo * helsinki\_git\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 * transformers\_git\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b * port\_machine: brutasse * port\_time: 2020-08-21-14:41
[ "### isl-epo\n\n\n* source group: Icelandic\n* target group: Esperanto\n* OPUS readme: isl-epo\n* model: transformer-align\n* source language(s): isl\n* target language(s): epo\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm4k,spm4k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 11.8, chr-F: 0.314", "### System Info:\n\n\n* hf\\_name: isl-epo\n* source\\_languages: isl\n* target\\_languages: epo\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['is', 'eo']\n* src\\_constituents: {'isl'}\n* tgt\\_constituents: {'epo'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm4k,spm4k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: isl\n* tgt\\_alpha3: epo\n* short\\_pair: is-eo\n* chrF2\\_score: 0.314\n* bleu: 11.8\n* brevity\\_penalty: 1.0\n* ref\\_len: 1528.0\n* src\\_name: Icelandic\n* tgt\\_name: Esperanto\n* train\\_date: 2020-06-16\n* src\\_alpha2: is\n* tgt\\_alpha2: eo\n* prefer\\_old: False\n* long\\_pair: isl-epo\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #is #eo #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### isl-epo\n\n\n* source group: Icelandic\n* target group: Esperanto\n* OPUS readme: isl-epo\n* model: transformer-align\n* source language(s): isl\n* target language(s): epo\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm4k,spm4k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 11.8, chr-F: 0.314", "### System Info:\n\n\n* hf\\_name: isl-epo\n* source\\_languages: isl\n* target\\_languages: epo\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['is', 'eo']\n* src\\_constituents: {'isl'}\n* tgt\\_constituents: {'epo'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm4k,spm4k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: isl\n* tgt\\_alpha3: epo\n* short\\_pair: is-eo\n* chrF2\\_score: 0.314\n* bleu: 11.8\n* brevity\\_penalty: 1.0\n* ref\\_len: 1528.0\n* src\\_name: Icelandic\n* tgt\\_name: Esperanto\n* train\\_date: 2020-06-16\n* src\\_alpha2: is\n* tgt\\_alpha2: eo\n* prefer\\_old: False\n* long\\_pair: isl-epo\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ 52, 138, 404 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #is #eo #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### isl-epo\n\n\n* source group: Icelandic\n* target group: Esperanto\n* OPUS readme: isl-epo\n* model: transformer-align\n* source language(s): isl\n* target language(s): epo\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm4k,spm4k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 11.8, chr-F: 0.314### System Info:\n\n\n* hf\\_name: isl-epo\n* source\\_languages: isl\n* target\\_languages: epo\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['is', 'eo']\n* src\\_constituents: {'isl'}\n* tgt\\_constituents: {'epo'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm4k,spm4k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: isl\n* tgt\\_alpha3: epo\n* short\\_pair: is-eo\n* chrF2\\_score: 0.314\n* bleu: 11.8\n* brevity\\_penalty: 1.0\n* ref\\_len: 1528.0\n* src\\_name: Icelandic\n* tgt\\_name: Esperanto\n* train\\_date: 2020-06-16\n* src\\_alpha2: is\n* tgt\\_alpha2: eo\n* prefer\\_old: False\n* long\\_pair: isl-epo\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
translation
transformers
### isl-spa * source group: Icelandic * target group: Spanish * OPUS readme: [isl-spa](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/isl-spa/README.md) * model: transformer-align * source language(s): isl * target language(s): spa * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/isl-spa/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/isl-spa/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/isl-spa/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.isl.spa | 51.2 | 0.665 | ### System Info: - hf_name: isl-spa - source_languages: isl - target_languages: spa - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/isl-spa/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['is', 'es'] - src_constituents: {'isl'} - tgt_constituents: {'spa'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/isl-spa/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/isl-spa/opus-2020-06-17.test.txt - src_alpha3: isl - tgt_alpha3: spa - short_pair: is-es - chrF2_score: 0.665 - bleu: 51.2 - brevity_penalty: 0.985 - ref_len: 1229.0 - src_name: Icelandic - tgt_name: Spanish - train_date: 2020-06-17 - src_alpha2: is - tgt_alpha2: es - prefer_old: False - long_pair: isl-spa - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["is", "es"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-is-es
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "is", "es", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "is", "es" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #is #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### isl-spa * source group: Icelandic * target group: Spanish * OPUS readme: isl-spa * model: transformer-align * source language(s): isl * target language(s): spa * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 51.2, chr-F: 0.665 ### System Info: * hf\_name: isl-spa * source\_languages: isl * target\_languages: spa * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['is', 'es'] * src\_constituents: {'isl'} * tgt\_constituents: {'spa'} * src\_multilingual: False * tgt\_multilingual: False * prepro: normalization + SentencePiece (spm32k,spm32k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: isl * tgt\_alpha3: spa * short\_pair: is-es * chrF2\_score: 0.665 * bleu: 51.2 * brevity\_penalty: 0.985 * ref\_len: 1229.0 * src\_name: Icelandic * tgt\_name: Spanish * train\_date: 2020-06-17 * src\_alpha2: is * tgt\_alpha2: es * prefer\_old: False * long\_pair: isl-spa * helsinki\_git\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 * transformers\_git\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b * port\_machine: brutasse * port\_time: 2020-08-21-14:41
[ "### isl-spa\n\n\n* source group: Icelandic\n* target group: Spanish\n* OPUS readme: isl-spa\n* model: transformer-align\n* source language(s): isl\n* target language(s): spa\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 51.2, chr-F: 0.665", "### System Info:\n\n\n* hf\\_name: isl-spa\n* source\\_languages: isl\n* target\\_languages: spa\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['is', 'es']\n* src\\_constituents: {'isl'}\n* tgt\\_constituents: {'spa'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: isl\n* tgt\\_alpha3: spa\n* short\\_pair: is-es\n* chrF2\\_score: 0.665\n* bleu: 51.2\n* brevity\\_penalty: 0.985\n* ref\\_len: 1229.0\n* src\\_name: Icelandic\n* tgt\\_name: Spanish\n* train\\_date: 2020-06-17\n* src\\_alpha2: is\n* tgt\\_alpha2: es\n* prefer\\_old: False\n* long\\_pair: isl-spa\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #is #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### isl-spa\n\n\n* source group: Icelandic\n* target group: Spanish\n* OPUS readme: isl-spa\n* model: transformer-align\n* source language(s): isl\n* target language(s): spa\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 51.2, chr-F: 0.665", "### System Info:\n\n\n* hf\\_name: isl-spa\n* source\\_languages: isl\n* target\\_languages: spa\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['is', 'es']\n* src\\_constituents: {'isl'}\n* tgt\\_constituents: {'spa'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: isl\n* tgt\\_alpha3: spa\n* short\\_pair: is-es\n* chrF2\\_score: 0.665\n* bleu: 51.2\n* brevity\\_penalty: 0.985\n* ref\\_len: 1229.0\n* src\\_name: Icelandic\n* tgt\\_name: Spanish\n* train\\_date: 2020-06-17\n* src\\_alpha2: is\n* tgt\\_alpha2: es\n* prefer\\_old: False\n* long\\_pair: isl-spa\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ 51, 134, 396 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #is #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### isl-spa\n\n\n* source group: Icelandic\n* target group: Spanish\n* OPUS readme: isl-spa\n* model: transformer-align\n* source language(s): isl\n* target language(s): spa\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 51.2, chr-F: 0.665### System Info:\n\n\n* hf\\_name: isl-spa\n* source\\_languages: isl\n* target\\_languages: spa\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['is', 'es']\n* src\\_constituents: {'isl'}\n* tgt\\_constituents: {'spa'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: isl\n* tgt\\_alpha3: spa\n* short\\_pair: is-es\n* chrF2\\_score: 0.665\n* bleu: 51.2\n* brevity\\_penalty: 0.985\n* ref\\_len: 1229.0\n* src\\_name: Icelandic\n* tgt\\_name: Spanish\n* train\\_date: 2020-06-17\n* src\\_alpha2: is\n* tgt\\_alpha2: es\n* prefer\\_old: False\n* long\\_pair: isl-spa\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
translation
transformers
### opus-mt-is-fi * source languages: is * target languages: fi * OPUS readme: [is-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/is-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/is-fi/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/is-fi/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/is-fi/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.is.fi | 25.0 | 0.489 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-is-fi
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "is", "fi", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #is #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-is-fi * source languages: is * target languages: fi * OPUS readme: is-fi * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 25.0, chr-F: 0.489
[ "### opus-mt-is-fi\n\n\n* source languages: is\n* target languages: fi\n* OPUS readme: is-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 25.0, chr-F: 0.489" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #is #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-is-fi\n\n\n* source languages: is\n* target languages: fi\n* OPUS readme: is-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 25.0, chr-F: 0.489" ]
[ 51, 106 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #is #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-is-fi\n\n\n* source languages: is\n* target languages: fi\n* OPUS readme: is-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 25.0, chr-F: 0.489" ]
translation
transformers
### opus-mt-is-fr * source languages: is * target languages: fr * OPUS readme: [is-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/is-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/is-fr/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/is-fr/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/is-fr/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.is.fr | 25.0 | 0.437 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-is-fr
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "is", "fr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #is #fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-is-fr * source languages: is * target languages: fr * OPUS readme: is-fr * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 25.0, chr-F: 0.437
[ "### opus-mt-is-fr\n\n\n* source languages: is\n* target languages: fr\n* OPUS readme: is-fr\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 25.0, chr-F: 0.437" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #is #fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-is-fr\n\n\n* source languages: is\n* target languages: fr\n* OPUS readme: is-fr\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 25.0, chr-F: 0.437" ]
[ 51, 106 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #is #fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-is-fr\n\n\n* source languages: is\n* target languages: fr\n* OPUS readme: is-fr\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 25.0, chr-F: 0.437" ]
translation
transformers
### isl-ita * source group: Icelandic * target group: Italian * OPUS readme: [isl-ita](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/isl-ita/README.md) * model: transformer-align * source language(s): isl * target language(s): ita * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/isl-ita/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/isl-ita/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/isl-ita/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.isl.ita | 46.7 | 0.662 | ### System Info: - hf_name: isl-ita - source_languages: isl - target_languages: ita - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/isl-ita/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['is', 'it'] - src_constituents: {'isl'} - tgt_constituents: {'ita'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/isl-ita/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/isl-ita/opus-2020-06-17.test.txt - src_alpha3: isl - tgt_alpha3: ita - short_pair: is-it - chrF2_score: 0.662 - bleu: 46.7 - brevity_penalty: 0.977 - ref_len: 1450.0 - src_name: Icelandic - tgt_name: Italian - train_date: 2020-06-17 - src_alpha2: is - tgt_alpha2: it - prefer_old: False - long_pair: isl-ita - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["is", "it"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-is-it
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "is", "it", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "is", "it" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #is #it #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### isl-ita * source group: Icelandic * target group: Italian * OPUS readme: isl-ita * model: transformer-align * source language(s): isl * target language(s): ita * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 46.7, chr-F: 0.662 ### System Info: * hf\_name: isl-ita * source\_languages: isl * target\_languages: ita * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['is', 'it'] * src\_constituents: {'isl'} * tgt\_constituents: {'ita'} * src\_multilingual: False * tgt\_multilingual: False * prepro: normalization + SentencePiece (spm32k,spm32k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: isl * tgt\_alpha3: ita * short\_pair: is-it * chrF2\_score: 0.662 * bleu: 46.7 * brevity\_penalty: 0.977 * ref\_len: 1450.0 * src\_name: Icelandic * tgt\_name: Italian * train\_date: 2020-06-17 * src\_alpha2: is * tgt\_alpha2: it * prefer\_old: False * long\_pair: isl-ita * helsinki\_git\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 * transformers\_git\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b * port\_machine: brutasse * port\_time: 2020-08-21-14:41
[ "### isl-ita\n\n\n* source group: Icelandic\n* target group: Italian\n* OPUS readme: isl-ita\n* model: transformer-align\n* source language(s): isl\n* target language(s): ita\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 46.7, chr-F: 0.662", "### System Info:\n\n\n* hf\\_name: isl-ita\n* source\\_languages: isl\n* target\\_languages: ita\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['is', 'it']\n* src\\_constituents: {'isl'}\n* tgt\\_constituents: {'ita'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: isl\n* tgt\\_alpha3: ita\n* short\\_pair: is-it\n* chrF2\\_score: 0.662\n* bleu: 46.7\n* brevity\\_penalty: 0.977\n* ref\\_len: 1450.0\n* src\\_name: Icelandic\n* tgt\\_name: Italian\n* train\\_date: 2020-06-17\n* src\\_alpha2: is\n* tgt\\_alpha2: it\n* prefer\\_old: False\n* long\\_pair: isl-ita\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #is #it #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### isl-ita\n\n\n* source group: Icelandic\n* target group: Italian\n* OPUS readme: isl-ita\n* model: transformer-align\n* source language(s): isl\n* target language(s): ita\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 46.7, chr-F: 0.662", "### System Info:\n\n\n* hf\\_name: isl-ita\n* source\\_languages: isl\n* target\\_languages: ita\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['is', 'it']\n* src\\_constituents: {'isl'}\n* tgt\\_constituents: {'ita'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: isl\n* tgt\\_alpha3: ita\n* short\\_pair: is-it\n* chrF2\\_score: 0.662\n* bleu: 46.7\n* brevity\\_penalty: 0.977\n* ref\\_len: 1450.0\n* src\\_name: Icelandic\n* tgt\\_name: Italian\n* train\\_date: 2020-06-17\n* src\\_alpha2: is\n* tgt\\_alpha2: it\n* prefer\\_old: False\n* long\\_pair: isl-ita\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ 51, 137, 401 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #is #it #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### isl-ita\n\n\n* source group: Icelandic\n* target group: Italian\n* OPUS readme: isl-ita\n* model: transformer-align\n* source language(s): isl\n* target language(s): ita\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 46.7, chr-F: 0.662### System Info:\n\n\n* hf\\_name: isl-ita\n* source\\_languages: isl\n* target\\_languages: ita\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['is', 'it']\n* src\\_constituents: {'isl'}\n* tgt\\_constituents: {'ita'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: isl\n* tgt\\_alpha3: ita\n* short\\_pair: is-it\n* chrF2\\_score: 0.662\n* bleu: 46.7\n* brevity\\_penalty: 0.977\n* ref\\_len: 1450.0\n* src\\_name: Icelandic\n* tgt\\_name: Italian\n* train\\_date: 2020-06-17\n* src\\_alpha2: is\n* tgt\\_alpha2: it\n* prefer\\_old: False\n* long\\_pair: isl-ita\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
translation
transformers
### opus-mt-is-sv * source languages: is * target languages: sv * OPUS readme: [is-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/is-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/is-sv/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/is-sv/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/is-sv/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.is.sv | 30.4 | 0.495 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-is-sv
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "is", "sv", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #is #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-is-sv * source languages: is * target languages: sv * OPUS readme: is-sv * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 30.4, chr-F: 0.495
[ "### opus-mt-is-sv\n\n\n* source languages: is\n* target languages: sv\n* OPUS readme: is-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 30.4, chr-F: 0.495" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #is #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-is-sv\n\n\n* source languages: is\n* target languages: sv\n* OPUS readme: is-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 30.4, chr-F: 0.495" ]
[ 51, 105 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #is #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-is-sv\n\n\n* source languages: is\n* target languages: sv\n* OPUS readme: is-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 30.4, chr-F: 0.495" ]
translation
transformers
### opus-mt-iso-en * source languages: iso * target languages: en * OPUS readme: [iso-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/iso-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/iso-en/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/iso-en/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/iso-en/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.iso.en | 35.5 | 0.506 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-iso-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "iso", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #iso #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-iso-en * source languages: iso * target languages: en * OPUS readme: iso-en * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 35.5, chr-F: 0.506
[ "### opus-mt-iso-en\n\n\n* source languages: iso\n* target languages: en\n* OPUS readme: iso-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 35.5, chr-F: 0.506" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #iso #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-iso-en\n\n\n* source languages: iso\n* target languages: en\n* OPUS readme: iso-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 35.5, chr-F: 0.506" ]
[ 51, 106 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #iso #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-iso-en\n\n\n* source languages: iso\n* target languages: en\n* OPUS readme: iso-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 35.5, chr-F: 0.506" ]
translation
transformers
### opus-mt-iso-es * source languages: iso * target languages: es * OPUS readme: [iso-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/iso-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/iso-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/iso-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/iso-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.iso.es | 22.4 | 0.394 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-iso-es
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "iso", "es", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #iso #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-iso-es * source languages: iso * target languages: es * OPUS readme: iso-es * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 22.4, chr-F: 0.394
[ "### opus-mt-iso-es\n\n\n* source languages: iso\n* target languages: es\n* OPUS readme: iso-es\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 22.4, chr-F: 0.394" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #iso #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-iso-es\n\n\n* source languages: iso\n* target languages: es\n* OPUS readme: iso-es\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 22.4, chr-F: 0.394" ]
[ 51, 106 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #iso #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-iso-es\n\n\n* source languages: iso\n* target languages: es\n* OPUS readme: iso-es\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 22.4, chr-F: 0.394" ]
translation
transformers
### opus-mt-iso-fi * source languages: iso * target languages: fi * OPUS readme: [iso-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/iso-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/iso-fi/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/iso-fi/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/iso-fi/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.iso.fi | 23.0 | 0.443 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-iso-fi
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "iso", "fi", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #iso #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-iso-fi * source languages: iso * target languages: fi * OPUS readme: iso-fi * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 23.0, chr-F: 0.443
[ "### opus-mt-iso-fi\n\n\n* source languages: iso\n* target languages: fi\n* OPUS readme: iso-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 23.0, chr-F: 0.443" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #iso #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-iso-fi\n\n\n* source languages: iso\n* target languages: fi\n* OPUS readme: iso-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 23.0, chr-F: 0.443" ]
[ 51, 106 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #iso #fi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-iso-fi\n\n\n* source languages: iso\n* target languages: fi\n* OPUS readme: iso-fi\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 23.0, chr-F: 0.443" ]
translation
transformers
### opus-mt-iso-fr * source languages: iso * target languages: fr * OPUS readme: [iso-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/iso-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/iso-fr/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/iso-fr/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/iso-fr/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.iso.fr | 25.6 | 0.422 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-iso-fr
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "iso", "fr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #iso #fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-iso-fr * source languages: iso * target languages: fr * OPUS readme: iso-fr * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 25.6, chr-F: 0.422
[ "### opus-mt-iso-fr\n\n\n* source languages: iso\n* target languages: fr\n* OPUS readme: iso-fr\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 25.6, chr-F: 0.422" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #iso #fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-iso-fr\n\n\n* source languages: iso\n* target languages: fr\n* OPUS readme: iso-fr\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 25.6, chr-F: 0.422" ]
[ 51, 105 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #iso #fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-iso-fr\n\n\n* source languages: iso\n* target languages: fr\n* OPUS readme: iso-fr\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 25.6, chr-F: 0.422" ]
translation
transformers
### opus-mt-iso-sv * source languages: iso * target languages: sv * OPUS readme: [iso-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/iso-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/iso-sv/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/iso-sv/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/iso-sv/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.iso.sv | 25.0 | 0.430 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-iso-sv
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "iso", "sv", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #iso #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-iso-sv * source languages: iso * target languages: sv * OPUS readme: iso-sv * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 25.0, chr-F: 0.430
[ "### opus-mt-iso-sv\n\n\n* source languages: iso\n* target languages: sv\n* OPUS readme: iso-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 25.0, chr-F: 0.430" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #iso #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-iso-sv\n\n\n* source languages: iso\n* target languages: sv\n* OPUS readme: iso-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 25.0, chr-F: 0.430" ]
[ 51, 105 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #iso #sv #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-iso-sv\n\n\n* source languages: iso\n* target languages: sv\n* OPUS readme: iso-sv\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 25.0, chr-F: 0.430" ]
translation
transformers
### ita-ara * source group: Italian * target group: Arabic * OPUS readme: [ita-ara](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ita-ara/README.md) * model: transformer * source language(s): ita * target language(s): ara * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-07-03.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-ara/opus-2020-07-03.zip) * test set translations: [opus-2020-07-03.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-ara/opus-2020-07-03.test.txt) * test set scores: [opus-2020-07-03.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-ara/opus-2020-07-03.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.ita.ara | 21.9 | 0.517 | ### System Info: - hf_name: ita-ara - source_languages: ita - target_languages: ara - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ita-ara/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['it', 'ar'] - src_constituents: {'ita'} - tgt_constituents: {'apc', 'ara', 'arq_Latn', 'arq', 'afb', 'ara_Latn', 'apc_Latn', 'arz'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ita-ara/opus-2020-07-03.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ita-ara/opus-2020-07-03.test.txt - src_alpha3: ita - tgt_alpha3: ara - short_pair: it-ar - chrF2_score: 0.517 - bleu: 21.9 - brevity_penalty: 0.95 - ref_len: 1161.0 - src_name: Italian - tgt_name: Arabic - train_date: 2020-07-03 - src_alpha2: it - tgt_alpha2: ar - prefer_old: False - long_pair: ita-ara - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["it", "ar"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-it-ar
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "it", "ar", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "it", "ar" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #it #ar #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### ita-ara * source group: Italian * target group: Arabic * OPUS readme: ita-ara * model: transformer * source language(s): ita * target language(s): ara * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 21.9, chr-F: 0.517 ### System Info: * hf\_name: ita-ara * source\_languages: ita * target\_languages: ara * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['it', 'ar'] * src\_constituents: {'ita'} * tgt\_constituents: {'apc', 'ara', 'arq\_Latn', 'arq', 'afb', 'ara\_Latn', 'apc\_Latn', 'arz'} * src\_multilingual: False * tgt\_multilingual: False * prepro: normalization + SentencePiece (spm32k,spm32k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: ita * tgt\_alpha3: ara * short\_pair: it-ar * chrF2\_score: 0.517 * bleu: 21.9 * brevity\_penalty: 0.95 * ref\_len: 1161.0 * src\_name: Italian * tgt\_name: Arabic * train\_date: 2020-07-03 * src\_alpha2: it * tgt\_alpha2: ar * prefer\_old: False * long\_pair: ita-ara * helsinki\_git\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 * transformers\_git\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b * port\_machine: brutasse * port\_time: 2020-08-21-14:41
[ "### ita-ara\n\n\n* source group: Italian\n* target group: Arabic\n* OPUS readme: ita-ara\n* model: transformer\n* source language(s): ita\n* target language(s): ara\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 21.9, chr-F: 0.517", "### System Info:\n\n\n* hf\\_name: ita-ara\n* source\\_languages: ita\n* target\\_languages: ara\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['it', 'ar']\n* src\\_constituents: {'ita'}\n* tgt\\_constituents: {'apc', 'ara', 'arq\\_Latn', 'arq', 'afb', 'ara\\_Latn', 'apc\\_Latn', 'arz'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: ita\n* tgt\\_alpha3: ara\n* short\\_pair: it-ar\n* chrF2\\_score: 0.517\n* bleu: 21.9\n* brevity\\_penalty: 0.95\n* ref\\_len: 1161.0\n* src\\_name: Italian\n* tgt\\_name: Arabic\n* train\\_date: 2020-07-03\n* src\\_alpha2: it\n* tgt\\_alpha2: ar\n* prefer\\_old: False\n* long\\_pair: ita-ara\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #it #ar #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### ita-ara\n\n\n* source group: Italian\n* target group: Arabic\n* OPUS readme: ita-ara\n* model: transformer\n* source language(s): ita\n* target language(s): ara\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 21.9, chr-F: 0.517", "### System Info:\n\n\n* hf\\_name: ita-ara\n* source\\_languages: ita\n* target\\_languages: ara\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['it', 'ar']\n* src\\_constituents: {'ita'}\n* tgt\\_constituents: {'apc', 'ara', 'arq\\_Latn', 'arq', 'afb', 'ara\\_Latn', 'apc\\_Latn', 'arz'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: ita\n* tgt\\_alpha3: ara\n* short\\_pair: it-ar\n* chrF2\\_score: 0.517\n* bleu: 21.9\n* brevity\\_penalty: 0.95\n* ref\\_len: 1161.0\n* src\\_name: Italian\n* tgt\\_name: Arabic\n* train\\_date: 2020-07-03\n* src\\_alpha2: it\n* tgt\\_alpha2: ar\n* prefer\\_old: False\n* long\\_pair: ita-ara\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ 51, 130, 443 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #it #ar #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### ita-ara\n\n\n* source group: Italian\n* target group: Arabic\n* OPUS readme: ita-ara\n* model: transformer\n* source language(s): ita\n* target language(s): ara\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 21.9, chr-F: 0.517### System Info:\n\n\n* hf\\_name: ita-ara\n* source\\_languages: ita\n* target\\_languages: ara\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['it', 'ar']\n* src\\_constituents: {'ita'}\n* tgt\\_constituents: {'apc', 'ara', 'arq\\_Latn', 'arq', 'afb', 'ara\\_Latn', 'apc\\_Latn', 'arz'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: ita\n* tgt\\_alpha3: ara\n* short\\_pair: it-ar\n* chrF2\\_score: 0.517\n* bleu: 21.9\n* brevity\\_penalty: 0.95\n* ref\\_len: 1161.0\n* src\\_name: Italian\n* tgt\\_name: Arabic\n* train\\_date: 2020-07-03\n* src\\_alpha2: it\n* tgt\\_alpha2: ar\n* prefer\\_old: False\n* long\\_pair: ita-ara\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
translation
transformers
### ita-bul * source group: Italian * target group: Bulgarian * OPUS readme: [ita-bul](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ita-bul/README.md) * model: transformer * source language(s): ita * target language(s): bul * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-07-03.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-bul/opus-2020-07-03.zip) * test set translations: [opus-2020-07-03.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-bul/opus-2020-07-03.test.txt) * test set scores: [opus-2020-07-03.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-bul/opus-2020-07-03.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.ita.bul | 47.9 | 0.664 | ### System Info: - hf_name: ita-bul - source_languages: ita - target_languages: bul - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ita-bul/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['it', 'bg'] - src_constituents: {'ita'} - tgt_constituents: {'bul', 'bul_Latn'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ita-bul/opus-2020-07-03.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ita-bul/opus-2020-07-03.test.txt - src_alpha3: ita - tgt_alpha3: bul - short_pair: it-bg - chrF2_score: 0.664 - bleu: 47.9 - brevity_penalty: 0.961 - ref_len: 16512.0 - src_name: Italian - tgt_name: Bulgarian - train_date: 2020-07-03 - src_alpha2: it - tgt_alpha2: bg - prefer_old: False - long_pair: ita-bul - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["it", "bg"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-it-bg
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "it", "bg", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "it", "bg" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #it #bg #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### ita-bul * source group: Italian * target group: Bulgarian * OPUS readme: ita-bul * model: transformer * source language(s): ita * target language(s): bul * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 47.9, chr-F: 0.664 ### System Info: * hf\_name: ita-bul * source\_languages: ita * target\_languages: bul * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['it', 'bg'] * src\_constituents: {'ita'} * tgt\_constituents: {'bul', 'bul\_Latn'} * src\_multilingual: False * tgt\_multilingual: False * prepro: normalization + SentencePiece (spm32k,spm32k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: ita * tgt\_alpha3: bul * short\_pair: it-bg * chrF2\_score: 0.664 * bleu: 47.9 * brevity\_penalty: 0.961 * ref\_len: 16512.0 * src\_name: Italian * tgt\_name: Bulgarian * train\_date: 2020-07-03 * src\_alpha2: it * tgt\_alpha2: bg * prefer\_old: False * long\_pair: ita-bul * helsinki\_git\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 * transformers\_git\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b * port\_machine: brutasse * port\_time: 2020-08-21-14:41
[ "### ita-bul\n\n\n* source group: Italian\n* target group: Bulgarian\n* OPUS readme: ita-bul\n* model: transformer\n* source language(s): ita\n* target language(s): bul\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 47.9, chr-F: 0.664", "### System Info:\n\n\n* hf\\_name: ita-bul\n* source\\_languages: ita\n* target\\_languages: bul\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['it', 'bg']\n* src\\_constituents: {'ita'}\n* tgt\\_constituents: {'bul', 'bul\\_Latn'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: ita\n* tgt\\_alpha3: bul\n* short\\_pair: it-bg\n* chrF2\\_score: 0.664\n* bleu: 47.9\n* brevity\\_penalty: 0.961\n* ref\\_len: 16512.0\n* src\\_name: Italian\n* tgt\\_name: Bulgarian\n* train\\_date: 2020-07-03\n* src\\_alpha2: it\n* tgt\\_alpha2: bg\n* prefer\\_old: False\n* long\\_pair: ita-bul\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #it #bg #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### ita-bul\n\n\n* source group: Italian\n* target group: Bulgarian\n* OPUS readme: ita-bul\n* model: transformer\n* source language(s): ita\n* target language(s): bul\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 47.9, chr-F: 0.664", "### System Info:\n\n\n* hf\\_name: ita-bul\n* source\\_languages: ita\n* target\\_languages: bul\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['it', 'bg']\n* src\\_constituents: {'ita'}\n* tgt\\_constituents: {'bul', 'bul\\_Latn'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: ita\n* tgt\\_alpha3: bul\n* short\\_pair: it-bg\n* chrF2\\_score: 0.664\n* bleu: 47.9\n* brevity\\_penalty: 0.961\n* ref\\_len: 16512.0\n* src\\_name: Italian\n* tgt\\_name: Bulgarian\n* train\\_date: 2020-07-03\n* src\\_alpha2: it\n* tgt\\_alpha2: bg\n* prefer\\_old: False\n* long\\_pair: ita-bul\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ 52, 133, 414 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #it #bg #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### ita-bul\n\n\n* source group: Italian\n* target group: Bulgarian\n* OPUS readme: ita-bul\n* model: transformer\n* source language(s): ita\n* target language(s): bul\n* model: transformer\n* pre-processing: normalization + SentencePiece (spm32k,spm32k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 47.9, chr-F: 0.664### System Info:\n\n\n* hf\\_name: ita-bul\n* source\\_languages: ita\n* target\\_languages: bul\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['it', 'bg']\n* src\\_constituents: {'ita'}\n* tgt\\_constituents: {'bul', 'bul\\_Latn'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm32k,spm32k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: ita\n* tgt\\_alpha3: bul\n* short\\_pair: it-bg\n* chrF2\\_score: 0.664\n* bleu: 47.9\n* brevity\\_penalty: 0.961\n* ref\\_len: 16512.0\n* src\\_name: Italian\n* tgt\\_name: Bulgarian\n* train\\_date: 2020-07-03\n* src\\_alpha2: it\n* tgt\\_alpha2: bg\n* prefer\\_old: False\n* long\\_pair: ita-bul\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
translation
transformers
### ita-cat * source group: Italian * target group: Catalan * OPUS readme: [ita-cat](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ita-cat/README.md) * model: transformer-align * source language(s): ita * target language(s): cat * model: transformer-align * pre-processing: normalization + SentencePiece (spm12k,spm12k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-cat/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-cat/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-cat/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.ita.cat | 52.5 | 0.706 | ### System Info: - hf_name: ita-cat - source_languages: ita - target_languages: cat - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ita-cat/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['it', 'ca'] - src_constituents: {'ita'} - tgt_constituents: {'cat'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm12k,spm12k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ita-cat/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ita-cat/opus-2020-06-16.test.txt - src_alpha3: ita - tgt_alpha3: cat - short_pair: it-ca - chrF2_score: 0.706 - bleu: 52.5 - brevity_penalty: 0.993 - ref_len: 2074.0 - src_name: Italian - tgt_name: Catalan - train_date: 2020-06-16 - src_alpha2: it - tgt_alpha2: ca - prefer_old: False - long_pair: ita-cat - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["it", "ca"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-it-ca
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "it", "ca", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "it", "ca" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #it #ca #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### ita-cat * source group: Italian * target group: Catalan * OPUS readme: ita-cat * model: transformer-align * source language(s): ita * target language(s): cat * model: transformer-align * pre-processing: normalization + SentencePiece (spm12k,spm12k) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 52.5, chr-F: 0.706 ### System Info: * hf\_name: ita-cat * source\_languages: ita * target\_languages: cat * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['it', 'ca'] * src\_constituents: {'ita'} * tgt\_constituents: {'cat'} * src\_multilingual: False * tgt\_multilingual: False * prepro: normalization + SentencePiece (spm12k,spm12k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: ita * tgt\_alpha3: cat * short\_pair: it-ca * chrF2\_score: 0.706 * bleu: 52.5 * brevity\_penalty: 0.993 * ref\_len: 2074.0 * src\_name: Italian * tgt\_name: Catalan * train\_date: 2020-06-16 * src\_alpha2: it * tgt\_alpha2: ca * prefer\_old: False * long\_pair: ita-cat * helsinki\_git\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 * transformers\_git\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b * port\_machine: brutasse * port\_time: 2020-08-21-14:41
[ "### ita-cat\n\n\n* source group: Italian\n* target group: Catalan\n* OPUS readme: ita-cat\n* model: transformer-align\n* source language(s): ita\n* target language(s): cat\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm12k,spm12k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 52.5, chr-F: 0.706", "### System Info:\n\n\n* hf\\_name: ita-cat\n* source\\_languages: ita\n* target\\_languages: cat\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['it', 'ca']\n* src\\_constituents: {'ita'}\n* tgt\\_constituents: {'cat'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm12k,spm12k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: ita\n* tgt\\_alpha3: cat\n* short\\_pair: it-ca\n* chrF2\\_score: 0.706\n* bleu: 52.5\n* brevity\\_penalty: 0.993\n* ref\\_len: 2074.0\n* src\\_name: Italian\n* tgt\\_name: Catalan\n* train\\_date: 2020-06-16\n* src\\_alpha2: it\n* tgt\\_alpha2: ca\n* prefer\\_old: False\n* long\\_pair: ita-cat\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #it #ca #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### ita-cat\n\n\n* source group: Italian\n* target group: Catalan\n* OPUS readme: ita-cat\n* model: transformer-align\n* source language(s): ita\n* target language(s): cat\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm12k,spm12k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 52.5, chr-F: 0.706", "### System Info:\n\n\n* hf\\_name: ita-cat\n* source\\_languages: ita\n* target\\_languages: cat\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['it', 'ca']\n* src\\_constituents: {'ita'}\n* tgt\\_constituents: {'cat'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm12k,spm12k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: ita\n* tgt\\_alpha3: cat\n* short\\_pair: it-ca\n* chrF2\\_score: 0.706\n* bleu: 52.5\n* brevity\\_penalty: 0.993\n* ref\\_len: 2074.0\n* src\\_name: Italian\n* tgt\\_name: Catalan\n* train\\_date: 2020-06-16\n* src\\_alpha2: it\n* tgt\\_alpha2: ca\n* prefer\\_old: False\n* long\\_pair: ita-cat\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ 51, 134, 396 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #it #ca #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### ita-cat\n\n\n* source group: Italian\n* target group: Catalan\n* OPUS readme: ita-cat\n* model: transformer-align\n* source language(s): ita\n* target language(s): cat\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm12k,spm12k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 52.5, chr-F: 0.706### System Info:\n\n\n* hf\\_name: ita-cat\n* source\\_languages: ita\n* target\\_languages: cat\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['it', 'ca']\n* src\\_constituents: {'ita'}\n* tgt\\_constituents: {'cat'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm12k,spm12k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: ita\n* tgt\\_alpha3: cat\n* short\\_pair: it-ca\n* chrF2\\_score: 0.706\n* bleu: 52.5\n* brevity\\_penalty: 0.993\n* ref\\_len: 2074.0\n* src\\_name: Italian\n* tgt\\_name: Catalan\n* train\\_date: 2020-06-16\n* src\\_alpha2: it\n* tgt\\_alpha2: ca\n* prefer\\_old: False\n* long\\_pair: ita-cat\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
translation
transformers
### opus-mt-it-de * source languages: it * target languages: de * OPUS readme: [it-de](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/it-de/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-20.zip](https://object.pouta.csc.fi/OPUS-MT-models/it-de/opus-2020-01-20.zip) * test set translations: [opus-2020-01-20.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/it-de/opus-2020-01-20.test.txt) * test set scores: [opus-2020-01-20.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/it-de/opus-2020-01-20.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.it.de | 49.4 | 0.678 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-it-de
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "it", "de", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #it #de #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-it-de * source languages: it * target languages: de * OPUS readme: it-de * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 49.4, chr-F: 0.678
[ "### opus-mt-it-de\n\n\n* source languages: it\n* target languages: de\n* OPUS readme: it-de\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 49.4, chr-F: 0.678" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #it #de #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-it-de\n\n\n* source languages: it\n* target languages: de\n* OPUS readme: it-de\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 49.4, chr-F: 0.678" ]
[ 51, 106 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #it #de #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-it-de\n\n\n* source languages: it\n* target languages: de\n* OPUS readme: it-de\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 49.4, chr-F: 0.678" ]
translation
transformers
### opus-mt-it-en * source languages: it * target languages: en * OPUS readme: [it-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/it-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/it-en/opus-2019-12-18.zip) * test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/it-en/opus-2019-12-18.test.txt) * test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/it-en/opus-2019-12-18.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newssyscomb2009.it.en | 35.3 | 0.600 | | newstest2009.it.en | 34.0 | 0.594 | | Tatoeba.it.en | 70.9 | 0.808 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-it-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "it", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #it #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-it-en * source languages: it * target languages: en * OPUS readme: it-en * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 35.3, chr-F: 0.600 testset: URL, BLEU: 34.0, chr-F: 0.594 testset: URL, BLEU: 70.9, chr-F: 0.808
[ "### opus-mt-it-en\n\n\n* source languages: it\n* target languages: en\n* OPUS readme: it-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 35.3, chr-F: 0.600\ntestset: URL, BLEU: 34.0, chr-F: 0.594\ntestset: URL, BLEU: 70.9, chr-F: 0.808" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #it #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-it-en\n\n\n* source languages: it\n* target languages: en\n* OPUS readme: it-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 35.3, chr-F: 0.600\ntestset: URL, BLEU: 34.0, chr-F: 0.594\ntestset: URL, BLEU: 70.9, chr-F: 0.808" ]
[ 51, 151 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #it #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-it-en\n\n\n* source languages: it\n* target languages: en\n* OPUS readme: it-en\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 35.3, chr-F: 0.600\ntestset: URL, BLEU: 34.0, chr-F: 0.594\ntestset: URL, BLEU: 70.9, chr-F: 0.808" ]
translation
transformers
### ita-epo * source group: Italian * target group: Esperanto * OPUS readme: [ita-epo](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ita-epo/README.md) * model: transformer-align * source language(s): ita * target language(s): epo * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-epo/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-epo/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-epo/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.ita.epo | 28.2 | 0.500 | ### System Info: - hf_name: ita-epo - source_languages: ita - target_languages: epo - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ita-epo/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['it', 'eo'] - src_constituents: {'ita'} - tgt_constituents: {'epo'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ita-epo/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ita-epo/opus-2020-06-16.test.txt - src_alpha3: ita - tgt_alpha3: epo - short_pair: it-eo - chrF2_score: 0.5 - bleu: 28.2 - brevity_penalty: 0.9570000000000001 - ref_len: 67846.0 - src_name: Italian - tgt_name: Esperanto - train_date: 2020-06-16 - src_alpha2: it - tgt_alpha2: eo - prefer_old: False - long_pair: ita-epo - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["it", "eo"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-it-eo
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "it", "eo", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "it", "eo" ]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #it #eo #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### ita-epo * source group: Italian * target group: Esperanto * OPUS readme: ita-epo * model: transformer-align * source language(s): ita * target language(s): epo * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 28.2, chr-F: 0.500 ### System Info: * hf\_name: ita-epo * source\_languages: ita * target\_languages: epo * opus\_readme\_url: URL * original\_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['it', 'eo'] * src\_constituents: {'ita'} * tgt\_constituents: {'epo'} * src\_multilingual: False * tgt\_multilingual: False * prepro: normalization + SentencePiece (spm4k,spm4k) * url\_model: URL * url\_test\_set: URL * src\_alpha3: ita * tgt\_alpha3: epo * short\_pair: it-eo * chrF2\_score: 0.5 * bleu: 28.2 * brevity\_penalty: 0.9570000000000001 * ref\_len: 67846.0 * src\_name: Italian * tgt\_name: Esperanto * train\_date: 2020-06-16 * src\_alpha2: it * tgt\_alpha2: eo * prefer\_old: False * long\_pair: ita-epo * helsinki\_git\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 * transformers\_git\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b * port\_machine: brutasse * port\_time: 2020-08-21-14:41
[ "### ita-epo\n\n\n* source group: Italian\n* target group: Esperanto\n* OPUS readme: ita-epo\n* model: transformer-align\n* source language(s): ita\n* target language(s): epo\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm4k,spm4k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 28.2, chr-F: 0.500", "### System Info:\n\n\n* hf\\_name: ita-epo\n* source\\_languages: ita\n* target\\_languages: epo\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['it', 'eo']\n* src\\_constituents: {'ita'}\n* tgt\\_constituents: {'epo'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm4k,spm4k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: ita\n* tgt\\_alpha3: epo\n* short\\_pair: it-eo\n* chrF2\\_score: 0.5\n* bleu: 28.2\n* brevity\\_penalty: 0.9570000000000001\n* ref\\_len: 67846.0\n* src\\_name: Italian\n* tgt\\_name: Esperanto\n* train\\_date: 2020-06-16\n* src\\_alpha2: it\n* tgt\\_alpha2: eo\n* prefer\\_old: False\n* long\\_pair: ita-epo\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #it #eo #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### ita-epo\n\n\n* source group: Italian\n* target group: Esperanto\n* OPUS readme: ita-epo\n* model: transformer-align\n* source language(s): ita\n* target language(s): epo\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm4k,spm4k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 28.2, chr-F: 0.500", "### System Info:\n\n\n* hf\\_name: ita-epo\n* source\\_languages: ita\n* target\\_languages: epo\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['it', 'eo']\n* src\\_constituents: {'ita'}\n* tgt\\_constituents: {'epo'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm4k,spm4k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: ita\n* tgt\\_alpha3: epo\n* short\\_pair: it-eo\n* chrF2\\_score: 0.5\n* bleu: 28.2\n* brevity\\_penalty: 0.9570000000000001\n* ref\\_len: 67846.0\n* src\\_name: Italian\n* tgt\\_name: Esperanto\n* train\\_date: 2020-06-16\n* src\\_alpha2: it\n* tgt\\_alpha2: eo\n* prefer\\_old: False\n* long\\_pair: ita-epo\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
[ 52, 138, 412 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #it #eo #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### ita-epo\n\n\n* source group: Italian\n* target group: Esperanto\n* OPUS readme: ita-epo\n* model: transformer-align\n* source language(s): ita\n* target language(s): epo\n* model: transformer-align\n* pre-processing: normalization + SentencePiece (spm4k,spm4k)\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 28.2, chr-F: 0.500### System Info:\n\n\n* hf\\_name: ita-epo\n* source\\_languages: ita\n* target\\_languages: epo\n* opus\\_readme\\_url: URL\n* original\\_repo: Tatoeba-Challenge\n* tags: ['translation']\n* languages: ['it', 'eo']\n* src\\_constituents: {'ita'}\n* tgt\\_constituents: {'epo'}\n* src\\_multilingual: False\n* tgt\\_multilingual: False\n* prepro: normalization + SentencePiece (spm4k,spm4k)\n* url\\_model: URL\n* url\\_test\\_set: URL\n* src\\_alpha3: ita\n* tgt\\_alpha3: epo\n* short\\_pair: it-eo\n* chrF2\\_score: 0.5\n* bleu: 28.2\n* brevity\\_penalty: 0.9570000000000001\n* ref\\_len: 67846.0\n* src\\_name: Italian\n* tgt\\_name: Esperanto\n* train\\_date: 2020-06-16\n* src\\_alpha2: it\n* tgt\\_alpha2: eo\n* prefer\\_old: False\n* long\\_pair: ita-epo\n* helsinki\\_git\\_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535\n* transformers\\_git\\_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b\n* port\\_machine: brutasse\n* port\\_time: 2020-08-21-14:41" ]
translation
transformers
### opus-mt-it-es * source languages: it * target languages: es * OPUS readme: [it-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/it-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-26.zip](https://object.pouta.csc.fi/OPUS-MT-models/it-es/opus-2020-01-26.zip) * test set translations: [opus-2020-01-26.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/it-es/opus-2020-01-26.test.txt) * test set scores: [opus-2020-01-26.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/it-es/opus-2020-01-26.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.it.es | 61.2 | 0.761 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-it-es
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "it", "es", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tf #marian #text2text-generation #translation #it #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
### opus-mt-it-es * source languages: it * target languages: es * OPUS readme: it-es * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: URL * test set translations: URL * test set scores: URL Benchmarks ---------- testset: URL, BLEU: 61.2, chr-F: 0.761
[ "### opus-mt-it-es\n\n\n* source languages: it\n* target languages: es\n* OPUS readme: it-es\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 61.2, chr-F: 0.761" ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #it #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### opus-mt-it-es\n\n\n* source languages: it\n* target languages: es\n* OPUS readme: it-es\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 61.2, chr-F: 0.761" ]
[ 51, 106 ]
[ "TAGS\n#transformers #pytorch #tf #marian #text2text-generation #translation #it #es #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n### opus-mt-it-es\n\n\n* source languages: it\n* target languages: es\n* OPUS readme: it-es\n* dataset: opus\n* model: transformer-align\n* pre-processing: normalization + SentencePiece\n* download original weights: URL\n* test set translations: URL\n* test set scores: URL\n\n\nBenchmarks\n----------\n\n\ntestset: URL, BLEU: 61.2, chr-F: 0.761" ]