sha
stringlengths
40
40
text
stringlengths
1
13.4M
id
stringlengths
2
117
tags
sequencelengths
1
7.91k
created_at
stringlengths
25
25
metadata
stringlengths
2
875k
last_modified
stringlengths
25
25
arxiv
sequencelengths
0
25
languages
sequencelengths
0
7.91k
tags_str
stringlengths
17
159k
text_str
stringlengths
1
447k
text_lists
sequencelengths
0
352
processed_texts
sequencelengths
1
353
3a55dd1ee9f3bf5254cdf62280c52e43b2ef7d06
# Gnosis This dataset was provided by jeiku
Epiculous/Gnosis
[ "language:en", "license:agpl-3.0", "region:us" ]
2024-01-21T21:53:16+00:00
{"language": ["en"], "license": "agpl-3.0"}
2024-02-04T17:31:35+00:00
[]
[ "en" ]
TAGS #language-English #license-agpl-3.0 #region-us
# Gnosis This dataset was provided by jeiku
[ "# Gnosis\n\nThis dataset was provided by jeiku" ]
[ "TAGS\n#language-English #license-agpl-3.0 #region-us \n", "# Gnosis\n\nThis dataset was provided by jeiku" ]
67b329efa1185ec85ba0bc07301302999450bce8
# Dataset of sarya (Granblue Fantasy) This is the dataset of sarya (Granblue Fantasy), containing 47 images and their tags. The core tags of this character are `long_hair, horns, pointy_ears, breasts, glasses, ponytail, large_breasts, blonde_hair, green_eyes, ribbon, hair_ribbon, bow, brown_hair`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:-----------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 47 | 36.57 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sarya_granbluefantasy/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 47 | 27.90 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sarya_granbluefantasy/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 100 | 55.28 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sarya_granbluefantasy/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 47 | 34.83 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sarya_granbluefantasy/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 100 | 64.64 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sarya_granbluefantasy/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/sarya_granbluefantasy', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 47 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, draph, solo, looking_at_viewer, blush, smile, white_gloves, simple_background, necktie, short_sleeves, white_background, open_mouth, plaid_skirt, shirt | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | draph | solo | looking_at_viewer | blush | smile | white_gloves | simple_background | necktie | short_sleeves | white_background | open_mouth | plaid_skirt | shirt | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------|:-------|:--------------------|:--------|:--------|:---------------|:--------------------|:----------|:----------------|:-------------------|:-------------|:--------------|:--------| | 0 | 47 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/sarya_granbluefantasy
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-21T22:03:24+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-21T22:12:22+00:00
[]
[]
TAGS #task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
Dataset of sarya (Granblue Fantasy) =================================== This is the dataset of sarya (Granblue Fantasy), containing 47 images and their tags. The core tags of this character are 'long\_hair, horns, pointy\_ears, breasts, glasses, ponytail, large\_breasts, blonde\_hair, green\_eyes, ribbon, hair\_ribbon, bow, brown\_hair', which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization). List of Packages ---------------- ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code List of Clusters ---------------- List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version ### Table Version
[ "### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.", "### Raw Text Version", "### Table Version" ]
[ "TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n", "### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.", "### Raw Text Version", "### Table Version" ]
98211953a6d65499ef8b2aa6ca745c860987ea90
# Dataset of erin (Granblue Fantasy) This is the dataset of erin (Granblue Fantasy), containing 25 images and their tags. The core tags of this character are `long_hair, pointy_ears, blue_eyes, hair_ornament, bangs, blue_hair, breasts, very_long_hair`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:----------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 25 | 32.17 MiB | [Download](https://huggingface.co/datasets/CyberHarem/erin_granbluefantasy/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 25 | 22.12 MiB | [Download](https://huggingface.co/datasets/CyberHarem/erin_granbluefantasy/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 57 | 42.51 MiB | [Download](https://huggingface.co/datasets/CyberHarem/erin_granbluefantasy/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 25 | 30.85 MiB | [Download](https://huggingface.co/datasets/CyberHarem/erin_granbluefantasy/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 57 | 55.09 MiB | [Download](https://huggingface.co/datasets/CyberHarem/erin_granbluefantasy/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/erin_granbluefantasy', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 5 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, boots, crystal, looking_at_viewer, solo, detached_sleeves, sitting, bare_shoulders, black_footwear, blue_thighhighs, blush, ice, knees_up, open_mouth, see-through, simple_background, sleeveless_dress, white_background | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | boots | crystal | looking_at_viewer | solo | detached_sleeves | sitting | bare_shoulders | black_footwear | blue_thighhighs | blush | ice | knees_up | open_mouth | see-through | simple_background | sleeveless_dress | white_background | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------|:----------|:--------------------|:-------|:-------------------|:----------|:-----------------|:-----------------|:------------------|:--------|:------|:-----------|:-------------|:--------------|:--------------------|:-------------------|:-------------------| | 0 | 5 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/erin_granbluefantasy
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-21T22:03:26+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-21T22:08:15+00:00
[]
[]
TAGS #task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
Dataset of erin (Granblue Fantasy) ================================== This is the dataset of erin (Granblue Fantasy), containing 25 images and their tags. The core tags of this character are 'long\_hair, pointy\_ears, blue\_eyes, hair\_ornament, bangs, blue\_hair, breasts, very\_long\_hair', which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization). List of Packages ---------------- ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code List of Clusters ---------------- List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version ### Table Version
[ "### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.", "### Raw Text Version", "### Table Version" ]
[ "TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n", "### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.", "### Raw Text Version", "### Table Version" ]
27869811a6af04569e955665365c52f7dcaf3528
# lilac/lmsys-chat-1m This dataset is a [Lilac](http://lilacml.com) processed dataset. Original dataset: [https://huggingface.co/datasets/lmsys/lmsys-chat-1m](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) To download the dataset to a local directory: ```bash lilac download lilacai/lilac-lmsys-chat-1m ``` or from python with: ```py ll.download("lilacai/lilac-lmsys-chat-1m") ```
lilacai/lilac-lmsys-chat-1m
[ "Lilac", "region:us" ]
2024-01-21T22:11:24+00:00
{"tags": ["Lilac"]}
2024-01-29T16:09:29+00:00
[]
[]
TAGS #Lilac #region-us
# lilac/lmsys-chat-1m This dataset is a Lilac processed dataset. Original dataset: URL To download the dataset to a local directory: or from python with:
[ "# lilac/lmsys-chat-1m\nThis dataset is a Lilac processed dataset. Original dataset: URL\n\nTo download the dataset to a local directory:\n\n\n\nor from python with:" ]
[ "TAGS\n#Lilac #region-us \n", "# lilac/lmsys-chat-1m\nThis dataset is a Lilac processed dataset. Original dataset: URL\n\nTo download the dataset to a local directory:\n\n\n\nor from python with:" ]
42c6d7830d5c28c41905cca51994f54891418a59
# Dataset Card for Evaluation run of chargoddard/internlm2-base-7b-llama <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [chargoddard/internlm2-base-7b-llama](https://huggingface.co/chargoddard/internlm2-base-7b-llama) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_chargoddard__internlm2-base-7b-llama", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-21T22:11:28.111983](https://huggingface.co/datasets/open-llm-leaderboard/details_chargoddard__internlm2-base-7b-llama/blob/main/results_2024-01-21T22-11-28.111983.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.5380339332515804, "acc_stderr": 0.03359422386201474, "acc_norm": 0.5448214536703925, "acc_norm_stderr": 0.03431835769902873, "mc1": 0.26805385556915545, "mc1_stderr": 0.015506204722834569, "mc2": 0.43232098792021034, "mc2_stderr": 0.014402330839994766 }, "harness|arc:challenge|25": { "acc": 0.5170648464163823, "acc_stderr": 0.014602878388536593, "acc_norm": 0.5435153583617748, "acc_norm_stderr": 0.01455594976049644 }, "harness|hellaswag|10": { "acc": 0.59061939852619, "acc_stderr": 0.004907146229347549, "acc_norm": 0.7946624178450508, "acc_norm_stderr": 0.004031225342516808 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.26, "acc_stderr": 0.04408440022768078, "acc_norm": 0.26, "acc_norm_stderr": 0.04408440022768078 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.5111111111111111, "acc_stderr": 0.04318275491977976, "acc_norm": 0.5111111111111111, "acc_norm_stderr": 0.04318275491977976 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.506578947368421, "acc_stderr": 0.040685900502249704, "acc_norm": 0.506578947368421, "acc_norm_stderr": 0.040685900502249704 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.56, "acc_stderr": 0.04988876515698589, "acc_norm": 0.56, "acc_norm_stderr": 0.04988876515698589 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.5735849056603773, "acc_stderr": 0.03043779434298305, "acc_norm": 0.5735849056603773, "acc_norm_stderr": 0.03043779434298305 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.6041666666666666, "acc_stderr": 0.04089465449325582, "acc_norm": 0.6041666666666666, "acc_norm_stderr": 0.04089465449325582 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.39, "acc_stderr": 0.04902071300001975, "acc_norm": 0.39, "acc_norm_stderr": 0.04902071300001975 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.38, "acc_stderr": 0.04878317312145633, "acc_norm": 0.38, "acc_norm_stderr": 0.04878317312145633 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.28, "acc_stderr": 0.04512608598542127, "acc_norm": 0.28, "acc_norm_stderr": 0.04512608598542127 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.5664739884393064, "acc_stderr": 0.03778621079092055, "acc_norm": 0.5664739884393064, "acc_norm_stderr": 0.03778621079092055 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.3235294117647059, "acc_stderr": 0.046550104113196156, "acc_norm": 0.3235294117647059, "acc_norm_stderr": 0.046550104113196156 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.68, "acc_stderr": 0.046882617226215034, "acc_norm": 0.68, "acc_norm_stderr": 0.046882617226215034 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.451063829787234, "acc_stderr": 0.032529096196131965, "acc_norm": 0.451063829787234, "acc_norm_stderr": 0.032529096196131965 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.35964912280701755, "acc_stderr": 0.04514496132873633, "acc_norm": 0.35964912280701755, "acc_norm_stderr": 0.04514496132873633 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.42758620689655175, "acc_stderr": 0.041227371113703316, "acc_norm": 0.42758620689655175, "acc_norm_stderr": 0.041227371113703316 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.3148148148148148, "acc_stderr": 0.023919984164047732, "acc_norm": 0.3148148148148148, "acc_norm_stderr": 0.023919984164047732 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.40476190476190477, "acc_stderr": 0.04390259265377563, "acc_norm": 0.40476190476190477, "acc_norm_stderr": 0.04390259265377563 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.22, "acc_stderr": 0.04163331998932268, "acc_norm": 0.22, "acc_norm_stderr": 0.04163331998932268 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.6225806451612903, "acc_stderr": 0.027575960723278233, "acc_norm": 0.6225806451612903, "acc_norm_stderr": 0.027575960723278233 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.3399014778325123, "acc_stderr": 0.0333276906841079, "acc_norm": 0.3399014778325123, "acc_norm_stderr": 0.0333276906841079 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.6, "acc_stderr": 0.049236596391733084, "acc_norm": 0.6, "acc_norm_stderr": 0.049236596391733084 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7151515151515152, "acc_stderr": 0.03524390844511781, "acc_norm": 0.7151515151515152, "acc_norm_stderr": 0.03524390844511781 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.6767676767676768, "acc_stderr": 0.033322999210706444, "acc_norm": 0.6767676767676768, "acc_norm_stderr": 0.033322999210706444 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.7668393782383419, "acc_stderr": 0.03051611137147601, "acc_norm": 0.7668393782383419, "acc_norm_stderr": 0.03051611137147601 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.5051282051282051, "acc_stderr": 0.025349672906838653, "acc_norm": 0.5051282051282051, "acc_norm_stderr": 0.025349672906838653 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.23703703703703705, "acc_stderr": 0.025928876132766118, "acc_norm": 0.23703703703703705, "acc_norm_stderr": 0.025928876132766118 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6176470588235294, "acc_stderr": 0.031566630992154156, "acc_norm": 0.6176470588235294, "acc_norm_stderr": 0.031566630992154156 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.2185430463576159, "acc_stderr": 0.03374235550425694, "acc_norm": 0.2185430463576159, "acc_norm_stderr": 0.03374235550425694 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.7504587155963303, "acc_stderr": 0.018553897629501628, "acc_norm": 0.7504587155963303, "acc_norm_stderr": 0.018553897629501628 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.4305555555555556, "acc_stderr": 0.03376922151252336, "acc_norm": 0.4305555555555556, "acc_norm_stderr": 0.03376922151252336 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.7352941176470589, "acc_stderr": 0.030964517926923393, "acc_norm": 0.7352941176470589, "acc_norm_stderr": 0.030964517926923393 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7341772151898734, "acc_stderr": 0.02875679962965834, "acc_norm": 0.7341772151898734, "acc_norm_stderr": 0.02875679962965834 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.5964125560538116, "acc_stderr": 0.03292802819330314, "acc_norm": 0.5964125560538116, "acc_norm_stderr": 0.03292802819330314 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.6335877862595419, "acc_stderr": 0.04225875451969637, "acc_norm": 0.6335877862595419, "acc_norm_stderr": 0.04225875451969637 }, "harness|hendrycksTest-international_law|5": { "acc": 0.6198347107438017, "acc_stderr": 0.04431324501968432, "acc_norm": 0.6198347107438017, "acc_norm_stderr": 0.04431324501968432 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.6018518518518519, "acc_stderr": 0.04732332615978815, "acc_norm": 0.6018518518518519, "acc_norm_stderr": 0.04732332615978815 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.6073619631901841, "acc_stderr": 0.03836740907831029, "acc_norm": 0.6073619631901841, "acc_norm_stderr": 0.03836740907831029 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.38392857142857145, "acc_stderr": 0.04616143075028547, "acc_norm": 0.38392857142857145, "acc_norm_stderr": 0.04616143075028547 }, "harness|hendrycksTest-management|5": { "acc": 0.7184466019417476, "acc_stderr": 0.044532548363264673, "acc_norm": 0.7184466019417476, "acc_norm_stderr": 0.044532548363264673 }, "harness|hendrycksTest-marketing|5": { "acc": 0.811965811965812, "acc_stderr": 0.025598193686652258, "acc_norm": 0.811965811965812, "acc_norm_stderr": 0.025598193686652258 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.68, "acc_stderr": 0.046882617226215034, "acc_norm": 0.68, "acc_norm_stderr": 0.046882617226215034 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.7305236270753512, "acc_stderr": 0.015866243073215054, "acc_norm": 0.7305236270753512, "acc_norm_stderr": 0.015866243073215054 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.5722543352601156, "acc_stderr": 0.026636539741116082, "acc_norm": 0.5722543352601156, "acc_norm_stderr": 0.026636539741116082 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.23910614525139665, "acc_stderr": 0.014265554192331144, "acc_norm": 0.23910614525139665, "acc_norm_stderr": 0.014265554192331144 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.5816993464052288, "acc_stderr": 0.02824513402438729, "acc_norm": 0.5816993464052288, "acc_norm_stderr": 0.02824513402438729 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.617363344051447, "acc_stderr": 0.027604689028581993, "acc_norm": 0.617363344051447, "acc_norm_stderr": 0.027604689028581993 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.6450617283950617, "acc_stderr": 0.026624152478845853, "acc_norm": 0.6450617283950617, "acc_norm_stderr": 0.026624152478845853 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.34397163120567376, "acc_stderr": 0.028338017428611324, "acc_norm": 0.34397163120567376, "acc_norm_stderr": 0.028338017428611324 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.4152542372881356, "acc_stderr": 0.012585471793400662, "acc_norm": 0.4152542372881356, "acc_norm_stderr": 0.012585471793400662 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.5845588235294118, "acc_stderr": 0.02993534270787774, "acc_norm": 0.5845588235294118, "acc_norm_stderr": 0.02993534270787774 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.5751633986928104, "acc_stderr": 0.019997973035458333, "acc_norm": 0.5751633986928104, "acc_norm_stderr": 0.019997973035458333 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6181818181818182, "acc_stderr": 0.046534298079135075, "acc_norm": 0.6181818181818182, "acc_norm_stderr": 0.046534298079135075 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.6326530612244898, "acc_stderr": 0.030862144921087555, "acc_norm": 0.6326530612244898, "acc_norm_stderr": 0.030862144921087555 }, "harness|hendrycksTest-sociology|5": { "acc": 0.8258706467661692, "acc_stderr": 0.026814951200421603, "acc_norm": 0.8258706467661692, "acc_norm_stderr": 0.026814951200421603 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.76, "acc_stderr": 0.04292346959909282, "acc_norm": 0.76, "acc_norm_stderr": 0.04292346959909282 }, "harness|hendrycksTest-virology|5": { "acc": 0.4759036144578313, "acc_stderr": 0.038879718495972646, "acc_norm": 0.4759036144578313, "acc_norm_stderr": 0.038879718495972646 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.7719298245614035, "acc_stderr": 0.032180937956023566, "acc_norm": 0.7719298245614035, "acc_norm_stderr": 0.032180937956023566 }, "harness|truthfulqa:mc|0": { "mc1": 0.26805385556915545, "mc1_stderr": 0.015506204722834569, "mc2": 0.43232098792021034, "mc2_stderr": 0.014402330839994766 }, "harness|winogrande|5": { "acc": 0.7142857142857143, "acc_stderr": 0.012696531870038611 }, "harness|gsm8k|5": { "acc": 0.19181197877179681, "acc_stderr": 0.010845169955294016 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_chargoddard__internlm2-base-7b-llama
[ "region:us" ]
2024-01-21T22:13:35+00:00
{"pretty_name": "Evaluation run of chargoddard/internlm2-base-7b-llama", "dataset_summary": "Dataset automatically created during the evaluation run of model [chargoddard/internlm2-base-7b-llama](https://huggingface.co/chargoddard/internlm2-base-7b-llama) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_chargoddard__internlm2-base-7b-llama\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-21T22:11:28.111983](https://huggingface.co/datasets/open-llm-leaderboard/details_chargoddard__internlm2-base-7b-llama/blob/main/results_2024-01-21T22-11-28.111983.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.5380339332515804,\n \"acc_stderr\": 0.03359422386201474,\n \"acc_norm\": 0.5448214536703925,\n \"acc_norm_stderr\": 0.03431835769902873,\n \"mc1\": 0.26805385556915545,\n \"mc1_stderr\": 0.015506204722834569,\n \"mc2\": 0.43232098792021034,\n \"mc2_stderr\": 0.014402330839994766\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.5170648464163823,\n \"acc_stderr\": 0.014602878388536593,\n \"acc_norm\": 0.5435153583617748,\n \"acc_norm_stderr\": 0.01455594976049644\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.59061939852619,\n \"acc_stderr\": 0.004907146229347549,\n \"acc_norm\": 0.7946624178450508,\n \"acc_norm_stderr\": 0.004031225342516808\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.26,\n \"acc_stderr\": 0.04408440022768078,\n \"acc_norm\": 0.26,\n \"acc_norm_stderr\": 0.04408440022768078\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.5111111111111111,\n \"acc_stderr\": 0.04318275491977976,\n \"acc_norm\": 0.5111111111111111,\n \"acc_norm_stderr\": 0.04318275491977976\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.506578947368421,\n \"acc_stderr\": 0.040685900502249704,\n \"acc_norm\": 0.506578947368421,\n \"acc_norm_stderr\": 0.040685900502249704\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.56,\n \"acc_stderr\": 0.04988876515698589,\n \"acc_norm\": 0.56,\n \"acc_norm_stderr\": 0.04988876515698589\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.5735849056603773,\n \"acc_stderr\": 0.03043779434298305,\n \"acc_norm\": 0.5735849056603773,\n \"acc_norm_stderr\": 0.03043779434298305\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.6041666666666666,\n \"acc_stderr\": 0.04089465449325582,\n \"acc_norm\": 0.6041666666666666,\n \"acc_norm_stderr\": 0.04089465449325582\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.39,\n \"acc_stderr\": 0.04902071300001975,\n \"acc_norm\": 0.39,\n \"acc_norm_stderr\": 0.04902071300001975\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.38,\n \"acc_stderr\": 0.04878317312145633,\n \"acc_norm\": 0.38,\n \"acc_norm_stderr\": 0.04878317312145633\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.28,\n \"acc_stderr\": 0.04512608598542127,\n \"acc_norm\": 0.28,\n \"acc_norm_stderr\": 0.04512608598542127\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.5664739884393064,\n \"acc_stderr\": 0.03778621079092055,\n \"acc_norm\": 0.5664739884393064,\n \"acc_norm_stderr\": 0.03778621079092055\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.3235294117647059,\n \"acc_stderr\": 0.046550104113196156,\n \"acc_norm\": 0.3235294117647059,\n \"acc_norm_stderr\": 0.046550104113196156\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.68,\n \"acc_stderr\": 0.046882617226215034,\n \"acc_norm\": 0.68,\n \"acc_norm_stderr\": 0.046882617226215034\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.451063829787234,\n \"acc_stderr\": 0.032529096196131965,\n \"acc_norm\": 0.451063829787234,\n \"acc_norm_stderr\": 0.032529096196131965\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.35964912280701755,\n \"acc_stderr\": 0.04514496132873633,\n \"acc_norm\": 0.35964912280701755,\n \"acc_norm_stderr\": 0.04514496132873633\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.42758620689655175,\n \"acc_stderr\": 0.041227371113703316,\n \"acc_norm\": 0.42758620689655175,\n \"acc_norm_stderr\": 0.041227371113703316\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.3148148148148148,\n \"acc_stderr\": 0.023919984164047732,\n \"acc_norm\": 0.3148148148148148,\n \"acc_norm_stderr\": 0.023919984164047732\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.40476190476190477,\n \"acc_stderr\": 0.04390259265377563,\n \"acc_norm\": 0.40476190476190477,\n \"acc_norm_stderr\": 0.04390259265377563\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.22,\n \"acc_stderr\": 0.04163331998932268,\n \"acc_norm\": 0.22,\n \"acc_norm_stderr\": 0.04163331998932268\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.6225806451612903,\n \"acc_stderr\": 0.027575960723278233,\n \"acc_norm\": 0.6225806451612903,\n \"acc_norm_stderr\": 0.027575960723278233\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.3399014778325123,\n \"acc_stderr\": 0.0333276906841079,\n \"acc_norm\": 0.3399014778325123,\n \"acc_norm_stderr\": 0.0333276906841079\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.6,\n \"acc_stderr\": 0.049236596391733084,\n \"acc_norm\": 0.6,\n \"acc_norm_stderr\": 0.049236596391733084\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7151515151515152,\n \"acc_stderr\": 0.03524390844511781,\n \"acc_norm\": 0.7151515151515152,\n \"acc_norm_stderr\": 0.03524390844511781\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.6767676767676768,\n \"acc_stderr\": 0.033322999210706444,\n \"acc_norm\": 0.6767676767676768,\n \"acc_norm_stderr\": 0.033322999210706444\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.7668393782383419,\n \"acc_stderr\": 0.03051611137147601,\n \"acc_norm\": 0.7668393782383419,\n \"acc_norm_stderr\": 0.03051611137147601\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.5051282051282051,\n \"acc_stderr\": 0.025349672906838653,\n \"acc_norm\": 0.5051282051282051,\n \"acc_norm_stderr\": 0.025349672906838653\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.23703703703703705,\n \"acc_stderr\": 0.025928876132766118,\n \"acc_norm\": 0.23703703703703705,\n \"acc_norm_stderr\": 0.025928876132766118\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6176470588235294,\n \"acc_stderr\": 0.031566630992154156,\n \"acc_norm\": 0.6176470588235294,\n \"acc_norm_stderr\": 0.031566630992154156\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.2185430463576159,\n \"acc_stderr\": 0.03374235550425694,\n \"acc_norm\": 0.2185430463576159,\n \"acc_norm_stderr\": 0.03374235550425694\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.7504587155963303,\n \"acc_stderr\": 0.018553897629501628,\n \"acc_norm\": 0.7504587155963303,\n \"acc_norm_stderr\": 0.018553897629501628\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.4305555555555556,\n \"acc_stderr\": 0.03376922151252336,\n \"acc_norm\": 0.4305555555555556,\n \"acc_norm_stderr\": 0.03376922151252336\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.7352941176470589,\n \"acc_stderr\": 0.030964517926923393,\n \"acc_norm\": 0.7352941176470589,\n \"acc_norm_stderr\": 0.030964517926923393\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7341772151898734,\n \"acc_stderr\": 0.02875679962965834,\n \"acc_norm\": 0.7341772151898734,\n \"acc_norm_stderr\": 0.02875679962965834\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.5964125560538116,\n \"acc_stderr\": 0.03292802819330314,\n \"acc_norm\": 0.5964125560538116,\n \"acc_norm_stderr\": 0.03292802819330314\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.6335877862595419,\n \"acc_stderr\": 0.04225875451969637,\n \"acc_norm\": 0.6335877862595419,\n \"acc_norm_stderr\": 0.04225875451969637\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.6198347107438017,\n \"acc_stderr\": 0.04431324501968432,\n \"acc_norm\": 0.6198347107438017,\n \"acc_norm_stderr\": 0.04431324501968432\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.6018518518518519,\n \"acc_stderr\": 0.04732332615978815,\n \"acc_norm\": 0.6018518518518519,\n \"acc_norm_stderr\": 0.04732332615978815\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.6073619631901841,\n \"acc_stderr\": 0.03836740907831029,\n \"acc_norm\": 0.6073619631901841,\n \"acc_norm_stderr\": 0.03836740907831029\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.38392857142857145,\n \"acc_stderr\": 0.04616143075028547,\n \"acc_norm\": 0.38392857142857145,\n \"acc_norm_stderr\": 0.04616143075028547\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7184466019417476,\n \"acc_stderr\": 0.044532548363264673,\n \"acc_norm\": 0.7184466019417476,\n \"acc_norm_stderr\": 0.044532548363264673\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.811965811965812,\n \"acc_stderr\": 0.025598193686652258,\n \"acc_norm\": 0.811965811965812,\n \"acc_norm_stderr\": 0.025598193686652258\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.68,\n \"acc_stderr\": 0.046882617226215034,\n \"acc_norm\": 0.68,\n \"acc_norm_stderr\": 0.046882617226215034\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.7305236270753512,\n \"acc_stderr\": 0.015866243073215054,\n \"acc_norm\": 0.7305236270753512,\n \"acc_norm_stderr\": 0.015866243073215054\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.5722543352601156,\n \"acc_stderr\": 0.026636539741116082,\n \"acc_norm\": 0.5722543352601156,\n \"acc_norm_stderr\": 0.026636539741116082\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.23910614525139665,\n \"acc_stderr\": 0.014265554192331144,\n \"acc_norm\": 0.23910614525139665,\n \"acc_norm_stderr\": 0.014265554192331144\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.5816993464052288,\n \"acc_stderr\": 0.02824513402438729,\n \"acc_norm\": 0.5816993464052288,\n \"acc_norm_stderr\": 0.02824513402438729\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.617363344051447,\n \"acc_stderr\": 0.027604689028581993,\n \"acc_norm\": 0.617363344051447,\n \"acc_norm_stderr\": 0.027604689028581993\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.6450617283950617,\n \"acc_stderr\": 0.026624152478845853,\n \"acc_norm\": 0.6450617283950617,\n \"acc_norm_stderr\": 0.026624152478845853\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.34397163120567376,\n \"acc_stderr\": 0.028338017428611324,\n \"acc_norm\": 0.34397163120567376,\n \"acc_norm_stderr\": 0.028338017428611324\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.4152542372881356,\n \"acc_stderr\": 0.012585471793400662,\n \"acc_norm\": 0.4152542372881356,\n \"acc_norm_stderr\": 0.012585471793400662\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.5845588235294118,\n \"acc_stderr\": 0.02993534270787774,\n \"acc_norm\": 0.5845588235294118,\n \"acc_norm_stderr\": 0.02993534270787774\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.5751633986928104,\n \"acc_stderr\": 0.019997973035458333,\n \"acc_norm\": 0.5751633986928104,\n \"acc_norm_stderr\": 0.019997973035458333\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6181818181818182,\n \"acc_stderr\": 0.046534298079135075,\n \"acc_norm\": 0.6181818181818182,\n \"acc_norm_stderr\": 0.046534298079135075\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.6326530612244898,\n \"acc_stderr\": 0.030862144921087555,\n \"acc_norm\": 0.6326530612244898,\n \"acc_norm_stderr\": 0.030862144921087555\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8258706467661692,\n \"acc_stderr\": 0.026814951200421603,\n \"acc_norm\": 0.8258706467661692,\n \"acc_norm_stderr\": 0.026814951200421603\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.76,\n \"acc_stderr\": 0.04292346959909282,\n \"acc_norm\": 0.76,\n \"acc_norm_stderr\": 0.04292346959909282\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.4759036144578313,\n \"acc_stderr\": 0.038879718495972646,\n \"acc_norm\": 0.4759036144578313,\n \"acc_norm_stderr\": 0.038879718495972646\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.7719298245614035,\n \"acc_stderr\": 0.032180937956023566,\n \"acc_norm\": 0.7719298245614035,\n \"acc_norm_stderr\": 0.032180937956023566\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.26805385556915545,\n \"mc1_stderr\": 0.015506204722834569,\n \"mc2\": 0.43232098792021034,\n \"mc2_stderr\": 0.014402330839994766\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.7142857142857143,\n \"acc_stderr\": 0.012696531870038611\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.19181197877179681,\n \"acc_stderr\": 0.010845169955294016\n }\n}\n```", "repo_url": "https://huggingface.co/chargoddard/internlm2-base-7b-llama", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|arc:challenge|25_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|gsm8k|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hellaswag|10_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-21T22-11-28.111983.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["**/details_harness|winogrande|5_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-21T22-11-28.111983.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_21T22_11_28.111983", "path": ["results_2024-01-21T22-11-28.111983.parquet"]}, {"split": "latest", "path": ["results_2024-01-21T22-11-28.111983.parquet"]}]}]}
2024-01-21T22:13:55+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of chargoddard/internlm2-base-7b-llama Dataset automatically created during the evaluation run of model chargoddard/internlm2-base-7b-llama on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-21T22:11:28.111983(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of chargoddard/internlm2-base-7b-llama\n\n\n\nDataset automatically created during the evaluation run of model chargoddard/internlm2-base-7b-llama on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-21T22:11:28.111983(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of chargoddard/internlm2-base-7b-llama\n\n\n\nDataset automatically created during the evaluation run of model chargoddard/internlm2-base-7b-llama on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-21T22:11:28.111983(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
1fc3cf7b38e57b1207edd395f4d9edab58e3c68a
This dataset is based on the Japanese version of Wikipedia dataset and converted into a multi-turn conversation format using llama2Pro8B. Since it is a llama2 license, it can be used commercially for services. Some strange dialogue may be included as it has not been screened by humans. We generated over 80,000 conversations 22 days on an A100 80GBx7 machine and automatically screened them. # Model https://huggingface.co/spaces/TencentARC/LLaMA-Pro-8B-Instruct-Chat # Dataset https://huggingface.co/datasets/izumi-lab/wikipedia-ja-20230720 # Compute by Tsuginosuke AI SuperComputer FreeAI Ltd. https://free-ai.ltd
shi3z/ja_conv_wikipedia_llama2pro8b_30k
[ "task_categories:conversational", "size_categories:10K<n<100K", "language:ja", "license:llama2", "region:us" ]
2024-01-21T22:14:41+00:00
{"language": ["ja"], "license": "llama2", "size_categories": ["10K<n<100K"], "task_categories": ["conversational"]}
2024-01-21T22:16:01+00:00
[]
[ "ja" ]
TAGS #task_categories-conversational #size_categories-10K<n<100K #language-Japanese #license-llama2 #region-us
This dataset is based on the Japanese version of Wikipedia dataset and converted into a multi-turn conversation format using llama2Pro8B. Since it is a llama2 license, it can be used commercially for services. Some strange dialogue may be included as it has not been screened by humans. We generated over 80,000 conversations 22 days on an A100 80GBx7 machine and automatically screened them. # Model URL # Dataset URL # Compute by Tsuginosuke AI SuperComputer FreeAI Ltd. URL
[ "# Model\nURL", "# Dataset\nURL", "# Compute by\nTsuginosuke AI SuperComputer\nFreeAI Ltd.\n\nURL" ]
[ "TAGS\n#task_categories-conversational #size_categories-10K<n<100K #language-Japanese #license-llama2 #region-us \n", "# Model\nURL", "# Dataset\nURL", "# Compute by\nTsuginosuke AI SuperComputer\nFreeAI Ltd.\n\nURL" ]
7b08bf5cbbadde21cccc099f584441ae654e9b47
# Basic Math 1M A dataset of 1 million basic arithmetic problems with potential user prompts. See [the numerical version](https://huggingface.co/datasets/lmlab/basic-math-1m-numerical) for a version with only numbers. ## License Basic Math 1M is dual-licensed under the GNU GPL license and the CC-BY-SA 4.0 license, you may choose either at your choice. If you are interested in including this dataset in another differently-licensed dataset, please contact me. ## Credit Basic Math 1M was inspired by [Simple Math](https://huggingface.co/datasets/fblgit/simple-math) but was created independently.
lmlab/basic-math-1m
[ "task_categories:text-generation", "task_categories:text2text-generation", "size_categories:1M<n<10M", "language:en", "license:cc-by-sa-4.0", "license:gpl", "math", "region:us" ]
2024-01-21T22:20:56+00:00
{"language": ["en"], "license": ["cc-by-sa-4.0", "gpl"], "size_categories": ["1M<n<10M"], "task_categories": ["text-generation", "text2text-generation"], "pretty_name": "Basic Math 1M", "tags": ["math"]}
2024-01-22T21:56:33+00:00
[]
[ "en" ]
TAGS #task_categories-text-generation #task_categories-text2text-generation #size_categories-1M<n<10M #language-English #license-cc-by-sa-4.0 #license-gpl #math #region-us
# Basic Math 1M A dataset of 1 million basic arithmetic problems with potential user prompts. See the numerical version for a version with only numbers. ## License Basic Math 1M is dual-licensed under the GNU GPL license and the CC-BY-SA 4.0 license, you may choose either at your choice. If you are interested in including this dataset in another differently-licensed dataset, please contact me. ## Credit Basic Math 1M was inspired by Simple Math but was created independently.
[ "# Basic Math 1M\n\nA dataset of 1 million basic arithmetic problems with potential user prompts. See the numerical version for a version with only numbers.", "## License\n\nBasic Math 1M is dual-licensed under the GNU GPL license and the CC-BY-SA 4.0 license, you may choose either at your choice. If you are interested in including this dataset in another differently-licensed dataset, please contact me.", "## Credit\n\nBasic Math 1M was inspired by Simple Math but was created independently." ]
[ "TAGS\n#task_categories-text-generation #task_categories-text2text-generation #size_categories-1M<n<10M #language-English #license-cc-by-sa-4.0 #license-gpl #math #region-us \n", "# Basic Math 1M\n\nA dataset of 1 million basic arithmetic problems with potential user prompts. See the numerical version for a version with only numbers.", "## License\n\nBasic Math 1M is dual-licensed under the GNU GPL license and the CC-BY-SA 4.0 license, you may choose either at your choice. If you are interested in including this dataset in another differently-licensed dataset, please contact me.", "## Credit\n\nBasic Math 1M was inspired by Simple Math but was created independently." ]
06a1ee4bbf27eb7a27fb7e3efec3351cce1b2054
# Dataset of linaria (Granblue Fantasy) This is the dataset of linaria (Granblue Fantasy), containing 23 images and their tags. The core tags of this character are `bow, hair_bow, pink_hair, bangs, purple_hair, hair_bun, red_bow, sidelocks`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:-------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 23 | 20.43 MiB | [Download](https://huggingface.co/datasets/CyberHarem/linaria_granbluefantasy/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 23 | 15.65 MiB | [Download](https://huggingface.co/datasets/CyberHarem/linaria_granbluefantasy/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 39 | 26.64 MiB | [Download](https://huggingface.co/datasets/CyberHarem/linaria_granbluefantasy/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 23 | 20.16 MiB | [Download](https://huggingface.co/datasets/CyberHarem/linaria_granbluefantasy/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 39 | 33.23 MiB | [Download](https://huggingface.co/datasets/CyberHarem/linaria_granbluefantasy/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/linaria_granbluefantasy', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 23 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, open_mouth, smile, blush, solo, looking_at_viewer, heart, puffy_sleeves, skirt, short_sleeves, simple_background, white_background, flower | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | open_mouth | smile | blush | solo | looking_at_viewer | heart | puffy_sleeves | skirt | short_sleeves | simple_background | white_background | flower | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------------|:--------|:--------|:-------|:--------------------|:--------|:----------------|:--------|:----------------|:--------------------|:-------------------|:---------| | 0 | 23 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/linaria_granbluefantasy
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-21T22:26:32+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-21T22:31:41+00:00
[]
[]
TAGS #task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
Dataset of linaria (Granblue Fantasy) ===================================== This is the dataset of linaria (Granblue Fantasy), containing 23 images and their tags. The core tags of this character are 'bow, hair\_bow, pink\_hair, bangs, purple\_hair, hair\_bun, red\_bow, sidelocks', which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization). List of Packages ---------------- ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code List of Clusters ---------------- List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version ### Table Version
[ "### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.", "### Raw Text Version", "### Table Version" ]
[ "TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n", "### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.", "### Raw Text Version", "### Table Version" ]
f6136500d45b69c45fd31b6ffe7c8e8565a9e6ad
# Dataset of laguna (Granblue Fantasy) This is the dataset of laguna (Granblue Fantasy), containing 37 images and their tags. The core tags of this character are `blonde_hair, horns, pointy_ears, short_hair, breasts, hair_over_one_eye, large_breasts, blue_eyes`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 37 | 30.11 MiB | [Download](https://huggingface.co/datasets/CyberHarem/laguna_granbluefantasy/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 37 | 22.17 MiB | [Download](https://huggingface.co/datasets/CyberHarem/laguna_granbluefantasy/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 76 | 41.22 MiB | [Download](https://huggingface.co/datasets/CyberHarem/laguna_granbluefantasy/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 37 | 28.24 MiB | [Download](https://huggingface.co/datasets/CyberHarem/laguna_granbluefantasy/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 76 | 49.79 MiB | [Download](https://huggingface.co/datasets/CyberHarem/laguna_granbluefantasy/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/laguna_granbluefantasy', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 18 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, draph, solo, looking_at_viewer, simple_background, pantyhose, blue_necktie, weapon, white_background, holding, necktie_between_breasts | | 1 | 13 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, blush, draph, hetero, solo_focus, 1boy, necktie, open_mouth, penis, covered_nipples, mosaic_censoring, paizuri, bare_shoulders, cum_on_body, gloves, tears | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | draph | solo | looking_at_viewer | simple_background | pantyhose | blue_necktie | weapon | white_background | holding | necktie_between_breasts | blush | hetero | solo_focus | 1boy | necktie | open_mouth | penis | covered_nipples | mosaic_censoring | paizuri | bare_shoulders | cum_on_body | gloves | tears | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------|:-------|:--------------------|:--------------------|:------------|:---------------|:---------|:-------------------|:----------|:--------------------------|:--------|:---------|:-------------|:-------|:----------|:-------------|:--------|:------------------|:-------------------|:----------|:-----------------|:--------------|:---------|:--------| | 0 | 18 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | 1 | 13 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | X | X | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/laguna_granbluefantasy
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-21T22:26:44+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-21T22:34:21+00:00
[]
[]
TAGS #task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
Dataset of laguna (Granblue Fantasy) ==================================== This is the dataset of laguna (Granblue Fantasy), containing 37 images and their tags. The core tags of this character are 'blonde\_hair, horns, pointy\_ears, short\_hair, breasts, hair\_over\_one\_eye, large\_breasts, blue\_eyes', which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization). List of Packages ---------------- ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code List of Clusters ---------------- List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version ### Table Version
[ "### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.", "### Raw Text Version", "### Table Version" ]
[ "TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n", "### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.", "### Raw Text Version", "### Table Version" ]
73714bbab6f21677e74c1afba2673549f17cddbd
# Basic Math 1M Numerical A dataset of 1 million basic arithmetic problems with only numbers. See [the original version](https://huggingface.co/datasets/lmlab/basic-math-1m) for a version with potential prompts as well. ## License Basic Math 1M Numerical is dual-licensed under the GNU GPL license and the CC-BY-SA 4.0 license, you may choose either at your choice. If you are interested in including this dataset in another differently-licensed dataset, please contact me. ## Credit Basic Math 1M was inspired by [Simple Math](https://huggingface.co/datasets/fblgit/simple-math) but was created independently.
lmlab/basic-math-1m-numerical
[ "task_categories:text-generation", "task_categories:text2text-generation", "size_categories:1M<n<10M", "language:en", "license:cc-by-sa-4.0", "license:gpl", "math", "region:us" ]
2024-01-21T22:28:14+00:00
{"language": ["en"], "license": ["cc-by-sa-4.0", "gpl"], "size_categories": ["1M<n<10M"], "task_categories": ["text-generation", "text2text-generation"], "pretty_name": "Basic Math 1M", "tags": ["math"]}
2024-01-22T21:56:50+00:00
[]
[ "en" ]
TAGS #task_categories-text-generation #task_categories-text2text-generation #size_categories-1M<n<10M #language-English #license-cc-by-sa-4.0 #license-gpl #math #region-us
# Basic Math 1M Numerical A dataset of 1 million basic arithmetic problems with only numbers. See the original version for a version with potential prompts as well. ## License Basic Math 1M Numerical is dual-licensed under the GNU GPL license and the CC-BY-SA 4.0 license, you may choose either at your choice. If you are interested in including this dataset in another differently-licensed dataset, please contact me. ## Credit Basic Math 1M was inspired by Simple Math but was created independently.
[ "# Basic Math 1M Numerical\n\nA dataset of 1 million basic arithmetic problems with only numbers. See the original version for a version with potential prompts as well.", "## License\n\nBasic Math 1M Numerical is dual-licensed under the GNU GPL license and the CC-BY-SA 4.0 license, you may choose either at your choice. If you are interested in including this dataset in another differently-licensed dataset, please contact me.", "## Credit\n\nBasic Math 1M was inspired by Simple Math but was created independently." ]
[ "TAGS\n#task_categories-text-generation #task_categories-text2text-generation #size_categories-1M<n<10M #language-English #license-cc-by-sa-4.0 #license-gpl #math #region-us \n", "# Basic Math 1M Numerical\n\nA dataset of 1 million basic arithmetic problems with only numbers. See the original version for a version with potential prompts as well.", "## License\n\nBasic Math 1M Numerical is dual-licensed under the GNU GPL license and the CC-BY-SA 4.0 license, you may choose either at your choice. If you are interested in including this dataset in another differently-licensed dataset, please contact me.", "## Credit\n\nBasic Math 1M was inspired by Simple Math but was created independently." ]
88867a9c95313eb278501c1355ad600a3a5869c1
# Dataset of selfira (Granblue Fantasy) This is the dataset of selfira (Granblue Fantasy), containing 11 images and their tags. The core tags of this character are `animal_ears, red_hair, long_hair, bangs, breasts, ponytail, mole, medium_breasts, brown_eyes, mole_under_eye, brown_hair`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:-------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 11 | 9.01 MiB | [Download](https://huggingface.co/datasets/CyberHarem/selfira_granbluefantasy/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 11 | 6.95 MiB | [Download](https://huggingface.co/datasets/CyberHarem/selfira_granbluefantasy/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 25 | 13.21 MiB | [Download](https://huggingface.co/datasets/CyberHarem/selfira_granbluefantasy/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 11 | 8.85 MiB | [Download](https://huggingface.co/datasets/CyberHarem/selfira_granbluefantasy/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 25 | 15.89 MiB | [Download](https://huggingface.co/datasets/CyberHarem/selfira_granbluefantasy/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/selfira_granbluefantasy', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 11 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, erune, solo, looking_at_viewer, red_dress, bare_shoulders, simple_background, detached_sleeves, bare_back, cape, from_behind, looking_back, ass, backless_dress, blush, white_background | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | erune | solo | looking_at_viewer | red_dress | bare_shoulders | simple_background | detached_sleeves | bare_back | cape | from_behind | looking_back | ass | backless_dress | blush | white_background | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------|:-------|:--------------------|:------------|:-----------------|:--------------------|:-------------------|:------------|:-------|:--------------|:---------------|:------|:-----------------|:--------|:-------------------| | 0 | 11 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/selfira_granbluefantasy
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-21T23:02:16+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-21T23:04:10+00:00
[]
[]
TAGS #task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
Dataset of selfira (Granblue Fantasy) ===================================== This is the dataset of selfira (Granblue Fantasy), containing 11 images and their tags. The core tags of this character are 'animal\_ears, red\_hair, long\_hair, bangs, breasts, ponytail, mole, medium\_breasts, brown\_eyes, mole\_under\_eye, brown\_hair', which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization). List of Packages ---------------- ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code List of Clusters ---------------- List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version ### Table Version
[ "### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.", "### Raw Text Version", "### Table Version" ]
[ "TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n", "### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.", "### Raw Text Version", "### Table Version" ]
206387fb38f7f38f3d102a40be0987e7d547f7ee
# Dataset Card for Evaluation run of abhishekchohan/mistral-7B-forest-merge <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [abhishekchohan/mistral-7B-forest-merge](https://huggingface.co/abhishekchohan/mistral-7B-forest-merge) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_abhishekchohan__mistral-7B-forest-merge", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-21T23:23:15.649063](https://huggingface.co/datasets/open-llm-leaderboard/details_abhishekchohan__mistral-7B-forest-merge/blob/main/results_2024-01-21T23-23-15.649063.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.6022067316089463, "acc_stderr": 0.032877722301518426, "acc_norm": 0.6045609403878123, "acc_norm_stderr": 0.03353760382711908, "mc1": 0.41615667074663404, "mc1_stderr": 0.017255657502903043, "mc2": 0.5748469157653282, "mc2_stderr": 0.015758784357589765 }, "harness|arc:challenge|25": { "acc": 0.6049488054607508, "acc_stderr": 0.014285898292938167, "acc_norm": 0.636518771331058, "acc_norm_stderr": 0.014056207319068285 }, "harness|hellaswag|10": { "acc": 0.6519617606054571, "acc_stderr": 0.004753746951620151, "acc_norm": 0.8440549691296555, "acc_norm_stderr": 0.0036206175507473956 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.29, "acc_stderr": 0.045604802157206845, "acc_norm": 0.29, "acc_norm_stderr": 0.045604802157206845 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.562962962962963, "acc_stderr": 0.04284958639753401, "acc_norm": 0.562962962962963, "acc_norm_stderr": 0.04284958639753401 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.6578947368421053, "acc_stderr": 0.03860731599316092, "acc_norm": 0.6578947368421053, "acc_norm_stderr": 0.03860731599316092 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.61, "acc_stderr": 0.04902071300001975, "acc_norm": 0.61, "acc_norm_stderr": 0.04902071300001975 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.6679245283018868, "acc_stderr": 0.02898545565233439, "acc_norm": 0.6679245283018868, "acc_norm_stderr": 0.02898545565233439 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.6597222222222222, "acc_stderr": 0.039621355734862175, "acc_norm": 0.6597222222222222, "acc_norm_stderr": 0.039621355734862175 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.41, "acc_stderr": 0.049431107042371025, "acc_norm": 0.41, "acc_norm_stderr": 0.049431107042371025 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.48, "acc_stderr": 0.050211673156867795, "acc_norm": 0.48, "acc_norm_stderr": 0.050211673156867795 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.3, "acc_stderr": 0.046056618647183814, "acc_norm": 0.3, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.5953757225433526, "acc_stderr": 0.03742461193887248, "acc_norm": 0.5953757225433526, "acc_norm_stderr": 0.03742461193887248 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.3431372549019608, "acc_stderr": 0.04724007352383888, "acc_norm": 0.3431372549019608, "acc_norm_stderr": 0.04724007352383888 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.79, "acc_stderr": 0.04093601807403326, "acc_norm": 0.79, "acc_norm_stderr": 0.04093601807403326 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5148936170212766, "acc_stderr": 0.03267151848924777, "acc_norm": 0.5148936170212766, "acc_norm_stderr": 0.03267151848924777 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.38596491228070173, "acc_stderr": 0.04579639422070434, "acc_norm": 0.38596491228070173, "acc_norm_stderr": 0.04579639422070434 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.5241379310344828, "acc_stderr": 0.0416180850350153, "acc_norm": 0.5241379310344828, "acc_norm_stderr": 0.0416180850350153 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.4074074074074074, "acc_stderr": 0.025305906241590632, "acc_norm": 0.4074074074074074, "acc_norm_stderr": 0.025305906241590632 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.42063492063492064, "acc_stderr": 0.04415438226743744, "acc_norm": 0.42063492063492064, "acc_norm_stderr": 0.04415438226743744 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.34, "acc_stderr": 0.04760952285695235, "acc_norm": 0.34, "acc_norm_stderr": 0.04760952285695235 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.7161290322580646, "acc_stderr": 0.02564938106302927, "acc_norm": 0.7161290322580646, "acc_norm_stderr": 0.02564938106302927 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.4187192118226601, "acc_stderr": 0.034711928605184676, "acc_norm": 0.4187192118226601, "acc_norm_stderr": 0.034711928605184676 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.67, "acc_stderr": 0.047258156262526094, "acc_norm": 0.67, "acc_norm_stderr": 0.047258156262526094 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7333333333333333, "acc_stderr": 0.03453131801885417, "acc_norm": 0.7333333333333333, "acc_norm_stderr": 0.03453131801885417 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.7323232323232324, "acc_stderr": 0.03154449888270285, "acc_norm": 0.7323232323232324, "acc_norm_stderr": 0.03154449888270285 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.8134715025906736, "acc_stderr": 0.028112091210117467, "acc_norm": 0.8134715025906736, "acc_norm_stderr": 0.028112091210117467 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.5512820512820513, "acc_stderr": 0.025217315184846486, "acc_norm": 0.5512820512820513, "acc_norm_stderr": 0.025217315184846486 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.29259259259259257, "acc_stderr": 0.027738969632176088, "acc_norm": 0.29259259259259257, "acc_norm_stderr": 0.027738969632176088 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.5672268907563025, "acc_stderr": 0.032183581077426124, "acc_norm": 0.5672268907563025, "acc_norm_stderr": 0.032183581077426124 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.3443708609271523, "acc_stderr": 0.038796870240733264, "acc_norm": 0.3443708609271523, "acc_norm_stderr": 0.038796870240733264 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.7871559633027523, "acc_stderr": 0.017549376389313694, "acc_norm": 0.7871559633027523, "acc_norm_stderr": 0.017549376389313694 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.4305555555555556, "acc_stderr": 0.03376922151252336, "acc_norm": 0.4305555555555556, "acc_norm_stderr": 0.03376922151252336 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.7941176470588235, "acc_stderr": 0.028379449451588667, "acc_norm": 0.7941176470588235, "acc_norm_stderr": 0.028379449451588667 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7932489451476793, "acc_stderr": 0.0263616516683891, "acc_norm": 0.7932489451476793, "acc_norm_stderr": 0.0263616516683891 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6681614349775785, "acc_stderr": 0.03160295143776679, "acc_norm": 0.6681614349775785, "acc_norm_stderr": 0.03160295143776679 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.7404580152671756, "acc_stderr": 0.03844876139785271, "acc_norm": 0.7404580152671756, "acc_norm_stderr": 0.03844876139785271 }, "harness|hendrycksTest-international_law|5": { "acc": 0.7933884297520661, "acc_stderr": 0.03695980128098822, "acc_norm": 0.7933884297520661, "acc_norm_stderr": 0.03695980128098822 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.8055555555555556, "acc_stderr": 0.038260763248848646, "acc_norm": 0.8055555555555556, "acc_norm_stderr": 0.038260763248848646 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.6809815950920245, "acc_stderr": 0.03661997551073836, "acc_norm": 0.6809815950920245, "acc_norm_stderr": 0.03661997551073836 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.41964285714285715, "acc_stderr": 0.04684099321077106, "acc_norm": 0.41964285714285715, "acc_norm_stderr": 0.04684099321077106 }, "harness|hendrycksTest-management|5": { "acc": 0.7766990291262136, "acc_stderr": 0.04123553189891431, "acc_norm": 0.7766990291262136, "acc_norm_stderr": 0.04123553189891431 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8589743589743589, "acc_stderr": 0.02280138253459754, "acc_norm": 0.8589743589743589, "acc_norm_stderr": 0.02280138253459754 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.65, "acc_stderr": 0.047937248544110196, "acc_norm": 0.65, "acc_norm_stderr": 0.047937248544110196 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.7816091954022989, "acc_stderr": 0.014774358319934499, "acc_norm": 0.7816091954022989, "acc_norm_stderr": 0.014774358319934499 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.6560693641618497, "acc_stderr": 0.02557412378654667, "acc_norm": 0.6560693641618497, "acc_norm_stderr": 0.02557412378654667 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.3664804469273743, "acc_stderr": 0.01611523550486548, "acc_norm": 0.3664804469273743, "acc_norm_stderr": 0.01611523550486548 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.6470588235294118, "acc_stderr": 0.027363593284684972, "acc_norm": 0.6470588235294118, "acc_norm_stderr": 0.027363593284684972 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.6913183279742765, "acc_stderr": 0.026236965881153273, "acc_norm": 0.6913183279742765, "acc_norm_stderr": 0.026236965881153273 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.6759259259259259, "acc_stderr": 0.02604176620271716, "acc_norm": 0.6759259259259259, "acc_norm_stderr": 0.02604176620271716 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.425531914893617, "acc_stderr": 0.029494827600144366, "acc_norm": 0.425531914893617, "acc_norm_stderr": 0.029494827600144366 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.4426336375488918, "acc_stderr": 0.01268590653820624, "acc_norm": 0.4426336375488918, "acc_norm_stderr": 0.01268590653820624 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.6139705882352942, "acc_stderr": 0.029573269134411124, "acc_norm": 0.6139705882352942, "acc_norm_stderr": 0.029573269134411124 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6078431372549019, "acc_stderr": 0.019751726508762637, "acc_norm": 0.6078431372549019, "acc_norm_stderr": 0.019751726508762637 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6636363636363637, "acc_stderr": 0.04525393596302506, "acc_norm": 0.6636363636363637, "acc_norm_stderr": 0.04525393596302506 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.673469387755102, "acc_stderr": 0.030021056238440307, "acc_norm": 0.673469387755102, "acc_norm_stderr": 0.030021056238440307 }, "harness|hendrycksTest-sociology|5": { "acc": 0.7661691542288557, "acc_stderr": 0.029929415408348384, "acc_norm": 0.7661691542288557, "acc_norm_stderr": 0.029929415408348384 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.86, "acc_stderr": 0.034873508801977704, "acc_norm": 0.86, "acc_norm_stderr": 0.034873508801977704 }, "harness|hendrycksTest-virology|5": { "acc": 0.4879518072289157, "acc_stderr": 0.03891364495835821, "acc_norm": 0.4879518072289157, "acc_norm_stderr": 0.03891364495835821 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8304093567251462, "acc_stderr": 0.02878210810540171, "acc_norm": 0.8304093567251462, "acc_norm_stderr": 0.02878210810540171 }, "harness|truthfulqa:mc|0": { "mc1": 0.41615667074663404, "mc1_stderr": 0.017255657502903043, "mc2": 0.5748469157653282, "mc2_stderr": 0.015758784357589765 }, "harness|winogrande|5": { "acc": 0.7774269928966061, "acc_stderr": 0.011690933809712664 }, "harness|gsm8k|5": { "acc": 0.511751326762699, "acc_stderr": 0.013768680408142806 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_abhishekchohan__mistral-7B-forest-merge
[ "region:us" ]
2024-01-21T23:21:35+00:00
{"pretty_name": "Evaluation run of abhishekchohan/mistral-7B-forest-merge", "dataset_summary": "Dataset automatically created during the evaluation run of model [abhishekchohan/mistral-7B-forest-merge](https://huggingface.co/abhishekchohan/mistral-7B-forest-merge) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_abhishekchohan__mistral-7B-forest-merge\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-21T23:23:15.649063](https://huggingface.co/datasets/open-llm-leaderboard/details_abhishekchohan__mistral-7B-forest-merge/blob/main/results_2024-01-21T23-23-15.649063.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6022067316089463,\n \"acc_stderr\": 0.032877722301518426,\n \"acc_norm\": 0.6045609403878123,\n \"acc_norm_stderr\": 0.03353760382711908,\n \"mc1\": 0.41615667074663404,\n \"mc1_stderr\": 0.017255657502903043,\n \"mc2\": 0.5748469157653282,\n \"mc2_stderr\": 0.015758784357589765\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.6049488054607508,\n \"acc_stderr\": 0.014285898292938167,\n \"acc_norm\": 0.636518771331058,\n \"acc_norm_stderr\": 0.014056207319068285\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6519617606054571,\n \"acc_stderr\": 0.004753746951620151,\n \"acc_norm\": 0.8440549691296555,\n \"acc_norm_stderr\": 0.0036206175507473956\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.29,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\": 0.29,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.562962962962963,\n \"acc_stderr\": 0.04284958639753401,\n \"acc_norm\": 0.562962962962963,\n \"acc_norm_stderr\": 0.04284958639753401\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.6578947368421053,\n \"acc_stderr\": 0.03860731599316092,\n \"acc_norm\": 0.6578947368421053,\n \"acc_norm_stderr\": 0.03860731599316092\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.61,\n \"acc_stderr\": 0.04902071300001975,\n \"acc_norm\": 0.61,\n \"acc_norm_stderr\": 0.04902071300001975\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.6679245283018868,\n \"acc_stderr\": 0.02898545565233439,\n \"acc_norm\": 0.6679245283018868,\n \"acc_norm_stderr\": 0.02898545565233439\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.6597222222222222,\n \"acc_stderr\": 0.039621355734862175,\n \"acc_norm\": 0.6597222222222222,\n \"acc_norm_stderr\": 0.039621355734862175\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.41,\n \"acc_stderr\": 0.049431107042371025,\n \"acc_norm\": 0.41,\n \"acc_norm_stderr\": 0.049431107042371025\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.48,\n \"acc_stderr\": 0.050211673156867795,\n \"acc_norm\": 0.48,\n \"acc_norm_stderr\": 0.050211673156867795\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.3,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.3,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.5953757225433526,\n \"acc_stderr\": 0.03742461193887248,\n \"acc_norm\": 0.5953757225433526,\n \"acc_norm_stderr\": 0.03742461193887248\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.3431372549019608,\n \"acc_stderr\": 0.04724007352383888,\n \"acc_norm\": 0.3431372549019608,\n \"acc_norm_stderr\": 0.04724007352383888\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.79,\n \"acc_stderr\": 0.04093601807403326,\n \"acc_norm\": 0.79,\n \"acc_norm_stderr\": 0.04093601807403326\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5148936170212766,\n \"acc_stderr\": 0.03267151848924777,\n \"acc_norm\": 0.5148936170212766,\n \"acc_norm_stderr\": 0.03267151848924777\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.38596491228070173,\n \"acc_stderr\": 0.04579639422070434,\n \"acc_norm\": 0.38596491228070173,\n \"acc_norm_stderr\": 0.04579639422070434\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5241379310344828,\n \"acc_stderr\": 0.0416180850350153,\n \"acc_norm\": 0.5241379310344828,\n \"acc_norm_stderr\": 0.0416180850350153\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.4074074074074074,\n \"acc_stderr\": 0.025305906241590632,\n \"acc_norm\": 0.4074074074074074,\n \"acc_norm_stderr\": 0.025305906241590632\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.42063492063492064,\n \"acc_stderr\": 0.04415438226743744,\n \"acc_norm\": 0.42063492063492064,\n \"acc_norm_stderr\": 0.04415438226743744\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.34,\n \"acc_stderr\": 0.04760952285695235,\n \"acc_norm\": 0.34,\n \"acc_norm_stderr\": 0.04760952285695235\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7161290322580646,\n \"acc_stderr\": 0.02564938106302927,\n \"acc_norm\": 0.7161290322580646,\n \"acc_norm_stderr\": 0.02564938106302927\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.4187192118226601,\n \"acc_stderr\": 0.034711928605184676,\n \"acc_norm\": 0.4187192118226601,\n \"acc_norm_stderr\": 0.034711928605184676\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.67,\n \"acc_stderr\": 0.047258156262526094,\n \"acc_norm\": 0.67,\n \"acc_norm_stderr\": 0.047258156262526094\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7333333333333333,\n \"acc_stderr\": 0.03453131801885417,\n \"acc_norm\": 0.7333333333333333,\n \"acc_norm_stderr\": 0.03453131801885417\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7323232323232324,\n \"acc_stderr\": 0.03154449888270285,\n \"acc_norm\": 0.7323232323232324,\n \"acc_norm_stderr\": 0.03154449888270285\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8134715025906736,\n \"acc_stderr\": 0.028112091210117467,\n \"acc_norm\": 0.8134715025906736,\n \"acc_norm_stderr\": 0.028112091210117467\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.5512820512820513,\n \"acc_stderr\": 0.025217315184846486,\n \"acc_norm\": 0.5512820512820513,\n \"acc_norm_stderr\": 0.025217315184846486\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.29259259259259257,\n \"acc_stderr\": 0.027738969632176088,\n \"acc_norm\": 0.29259259259259257,\n \"acc_norm_stderr\": 0.027738969632176088\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.5672268907563025,\n \"acc_stderr\": 0.032183581077426124,\n \"acc_norm\": 0.5672268907563025,\n \"acc_norm_stderr\": 0.032183581077426124\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.3443708609271523,\n \"acc_stderr\": 0.038796870240733264,\n \"acc_norm\": 0.3443708609271523,\n \"acc_norm_stderr\": 0.038796870240733264\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.7871559633027523,\n \"acc_stderr\": 0.017549376389313694,\n \"acc_norm\": 0.7871559633027523,\n \"acc_norm_stderr\": 0.017549376389313694\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.4305555555555556,\n \"acc_stderr\": 0.03376922151252336,\n \"acc_norm\": 0.4305555555555556,\n \"acc_norm_stderr\": 0.03376922151252336\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.7941176470588235,\n \"acc_stderr\": 0.028379449451588667,\n \"acc_norm\": 0.7941176470588235,\n \"acc_norm_stderr\": 0.028379449451588667\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7932489451476793,\n \"acc_stderr\": 0.0263616516683891,\n \"acc_norm\": 0.7932489451476793,\n \"acc_norm_stderr\": 0.0263616516683891\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6681614349775785,\n \"acc_stderr\": 0.03160295143776679,\n \"acc_norm\": 0.6681614349775785,\n \"acc_norm_stderr\": 0.03160295143776679\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7404580152671756,\n \"acc_stderr\": 0.03844876139785271,\n \"acc_norm\": 0.7404580152671756,\n \"acc_norm_stderr\": 0.03844876139785271\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.7933884297520661,\n \"acc_stderr\": 0.03695980128098822,\n \"acc_norm\": 0.7933884297520661,\n \"acc_norm_stderr\": 0.03695980128098822\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.8055555555555556,\n \"acc_stderr\": 0.038260763248848646,\n \"acc_norm\": 0.8055555555555556,\n \"acc_norm_stderr\": 0.038260763248848646\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.6809815950920245,\n \"acc_stderr\": 0.03661997551073836,\n \"acc_norm\": 0.6809815950920245,\n \"acc_norm_stderr\": 0.03661997551073836\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.41964285714285715,\n \"acc_stderr\": 0.04684099321077106,\n \"acc_norm\": 0.41964285714285715,\n \"acc_norm_stderr\": 0.04684099321077106\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7766990291262136,\n \"acc_stderr\": 0.04123553189891431,\n \"acc_norm\": 0.7766990291262136,\n \"acc_norm_stderr\": 0.04123553189891431\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8589743589743589,\n \"acc_stderr\": 0.02280138253459754,\n \"acc_norm\": 0.8589743589743589,\n \"acc_norm_stderr\": 0.02280138253459754\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.65,\n \"acc_stderr\": 0.047937248544110196,\n \"acc_norm\": 0.65,\n \"acc_norm_stderr\": 0.047937248544110196\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.7816091954022989,\n \"acc_stderr\": 0.014774358319934499,\n \"acc_norm\": 0.7816091954022989,\n \"acc_norm_stderr\": 0.014774358319934499\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.6560693641618497,\n \"acc_stderr\": 0.02557412378654667,\n \"acc_norm\": 0.6560693641618497,\n \"acc_norm_stderr\": 0.02557412378654667\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.3664804469273743,\n \"acc_stderr\": 0.01611523550486548,\n \"acc_norm\": 0.3664804469273743,\n \"acc_norm_stderr\": 0.01611523550486548\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.6470588235294118,\n \"acc_stderr\": 0.027363593284684972,\n \"acc_norm\": 0.6470588235294118,\n \"acc_norm_stderr\": 0.027363593284684972\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.6913183279742765,\n \"acc_stderr\": 0.026236965881153273,\n \"acc_norm\": 0.6913183279742765,\n \"acc_norm_stderr\": 0.026236965881153273\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.6759259259259259,\n \"acc_stderr\": 0.02604176620271716,\n \"acc_norm\": 0.6759259259259259,\n \"acc_norm_stderr\": 0.02604176620271716\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.425531914893617,\n \"acc_stderr\": 0.029494827600144366,\n \"acc_norm\": 0.425531914893617,\n \"acc_norm_stderr\": 0.029494827600144366\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.4426336375488918,\n \"acc_stderr\": 0.01268590653820624,\n \"acc_norm\": 0.4426336375488918,\n \"acc_norm_stderr\": 0.01268590653820624\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6139705882352942,\n \"acc_stderr\": 0.029573269134411124,\n \"acc_norm\": 0.6139705882352942,\n \"acc_norm_stderr\": 0.029573269134411124\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6078431372549019,\n \"acc_stderr\": 0.019751726508762637,\n \"acc_norm\": 0.6078431372549019,\n \"acc_norm_stderr\": 0.019751726508762637\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6636363636363637,\n \"acc_stderr\": 0.04525393596302506,\n \"acc_norm\": 0.6636363636363637,\n \"acc_norm_stderr\": 0.04525393596302506\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.673469387755102,\n \"acc_stderr\": 0.030021056238440307,\n \"acc_norm\": 0.673469387755102,\n \"acc_norm_stderr\": 0.030021056238440307\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.7661691542288557,\n \"acc_stderr\": 0.029929415408348384,\n \"acc_norm\": 0.7661691542288557,\n \"acc_norm_stderr\": 0.029929415408348384\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.86,\n \"acc_stderr\": 0.034873508801977704,\n \"acc_norm\": 0.86,\n \"acc_norm_stderr\": 0.034873508801977704\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.4879518072289157,\n \"acc_stderr\": 0.03891364495835821,\n \"acc_norm\": 0.4879518072289157,\n \"acc_norm_stderr\": 0.03891364495835821\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8304093567251462,\n \"acc_stderr\": 0.02878210810540171,\n \"acc_norm\": 0.8304093567251462,\n \"acc_norm_stderr\": 0.02878210810540171\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.41615667074663404,\n \"mc1_stderr\": 0.017255657502903043,\n \"mc2\": 0.5748469157653282,\n \"mc2_stderr\": 0.015758784357589765\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.7774269928966061,\n \"acc_stderr\": 0.011690933809712664\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.511751326762699,\n \"acc_stderr\": 0.013768680408142806\n }\n}\n```", "repo_url": "https://huggingface.co/abhishekchohan/mistral-7B-forest-merge", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|arc:challenge|25_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|arc:challenge|25_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|gsm8k|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|gsm8k|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hellaswag|10_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hellaswag|10_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-21T23-19-15.004437.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-21T23-23-15.649063.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["**/details_harness|winogrande|5_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["**/details_harness|winogrande|5_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-21T23-23-15.649063.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_21T23_19_15.004437", "path": ["results_2024-01-21T23-19-15.004437.parquet"]}, {"split": "2024_01_21T23_23_15.649063", "path": ["results_2024-01-21T23-23-15.649063.parquet"]}, {"split": "latest", "path": ["results_2024-01-21T23-23-15.649063.parquet"]}]}]}
2024-01-21T23:26:00+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of abhishekchohan/mistral-7B-forest-merge Dataset automatically created during the evaluation run of model abhishekchohan/mistral-7B-forest-merge on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-21T23:23:15.649063(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of abhishekchohan/mistral-7B-forest-merge\n\n\n\nDataset automatically created during the evaluation run of model abhishekchohan/mistral-7B-forest-merge on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-21T23:23:15.649063(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of abhishekchohan/mistral-7B-forest-merge\n\n\n\nDataset automatically created during the evaluation run of model abhishekchohan/mistral-7B-forest-merge on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-21T23:23:15.649063(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
e5ab116e3f0827cdb98d437aa2706585ede20975
# Dataset Card for "hub-report-raw" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
Kevinger/hub-report-raw
[ "region:us" ]
2024-01-21T23:38:32+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "score", "dtype": "float64"}, {"name": "label", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 8565909, "num_examples": 3159}], "download_size": 0, "dataset_size": 8565909}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-22T22:02:14+00:00
[]
[]
TAGS #region-us
# Dataset Card for "hub-report-raw" More Information needed
[ "# Dataset Card for \"hub-report-raw\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"hub-report-raw\"\n\nMore Information needed" ]
473acca6a2964ed0c39e65e89436c15b5325e2ae
# Dataset Card for Evaluation run of abhishekchohan/mistral-7B-med-merge <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [abhishekchohan/mistral-7B-med-merge](https://huggingface.co/abhishekchohan/mistral-7B-med-merge) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_abhishekchohan__mistral-7B-med-merge", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-21T23:55:53.444793](https://huggingface.co/datasets/open-llm-leaderboard/details_abhishekchohan__mistral-7B-med-merge/blob/main/results_2024-01-21T23-55-53.444793.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.5813577401888572, "acc_stderr": 0.03392117164078901, "acc_norm": 0.5837504497394033, "acc_norm_stderr": 0.03462209771980794, "mc1": 0.3880048959608323, "mc1_stderr": 0.017058761501347976, "mc2": 0.536535823977723, "mc2_stderr": 0.015589392373408393 }, "harness|arc:challenge|25": { "acc": 0.6143344709897611, "acc_stderr": 0.014224250973257187, "acc_norm": 0.6450511945392492, "acc_norm_stderr": 0.013983036904094089 }, "harness|hellaswag|10": { "acc": 0.6461860187213703, "acc_stderr": 0.004771751187407019, "acc_norm": 0.8296156144194383, "acc_norm_stderr": 0.0037520176390837515 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.32, "acc_stderr": 0.046882617226215034, "acc_norm": 0.32, "acc_norm_stderr": 0.046882617226215034 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.5851851851851851, "acc_stderr": 0.04256193767901408, "acc_norm": 0.5851851851851851, "acc_norm_stderr": 0.04256193767901408 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.631578947368421, "acc_stderr": 0.03925523381052932, "acc_norm": 0.631578947368421, "acc_norm_stderr": 0.03925523381052932 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.6, "acc_stderr": 0.04923659639173309, "acc_norm": 0.6, "acc_norm_stderr": 0.04923659639173309 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.6113207547169811, "acc_stderr": 0.030000485448675986, "acc_norm": 0.6113207547169811, "acc_norm_stderr": 0.030000485448675986 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.6458333333333334, "acc_stderr": 0.039994111357535424, "acc_norm": 0.6458333333333334, "acc_norm_stderr": 0.039994111357535424 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.42, "acc_stderr": 0.049604496374885836, "acc_norm": 0.42, "acc_norm_stderr": 0.049604496374885836 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.48, "acc_stderr": 0.050211673156867795, "acc_norm": 0.48, "acc_norm_stderr": 0.050211673156867795 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.39, "acc_stderr": 0.04902071300001974, "acc_norm": 0.39, "acc_norm_stderr": 0.04902071300001974 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.5549132947976878, "acc_stderr": 0.03789401760283647, "acc_norm": 0.5549132947976878, "acc_norm_stderr": 0.03789401760283647 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.3235294117647059, "acc_stderr": 0.04655010411319616, "acc_norm": 0.3235294117647059, "acc_norm_stderr": 0.04655010411319616 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.65, "acc_stderr": 0.047937248544110196, "acc_norm": 0.65, "acc_norm_stderr": 0.047937248544110196 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5702127659574469, "acc_stderr": 0.03236214467715564, "acc_norm": 0.5702127659574469, "acc_norm_stderr": 0.03236214467715564 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.38596491228070173, "acc_stderr": 0.04579639422070434, "acc_norm": 0.38596491228070173, "acc_norm_stderr": 0.04579639422070434 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.5379310344827586, "acc_stderr": 0.04154659671707548, "acc_norm": 0.5379310344827586, "acc_norm_stderr": 0.04154659671707548 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.42857142857142855, "acc_stderr": 0.025487187147859375, "acc_norm": 0.42857142857142855, "acc_norm_stderr": 0.025487187147859375 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.35714285714285715, "acc_stderr": 0.042857142857142816, "acc_norm": 0.35714285714285715, "acc_norm_stderr": 0.042857142857142816 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.38, "acc_stderr": 0.048783173121456316, "acc_norm": 0.38, "acc_norm_stderr": 0.048783173121456316 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.6806451612903226, "acc_stderr": 0.026522709674667768, "acc_norm": 0.6806451612903226, "acc_norm_stderr": 0.026522709674667768 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.4433497536945813, "acc_stderr": 0.03495334582162933, "acc_norm": 0.4433497536945813, "acc_norm_stderr": 0.03495334582162933 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.65, "acc_stderr": 0.047937248544110196, "acc_norm": 0.65, "acc_norm_stderr": 0.047937248544110196 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.6848484848484848, "acc_stderr": 0.0362773057502241, "acc_norm": 0.6848484848484848, "acc_norm_stderr": 0.0362773057502241 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.7070707070707071, "acc_stderr": 0.03242497958178816, "acc_norm": 0.7070707070707071, "acc_norm_stderr": 0.03242497958178816 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.7668393782383419, "acc_stderr": 0.03051611137147601, "acc_norm": 0.7668393782383419, "acc_norm_stderr": 0.03051611137147601 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.5512820512820513, "acc_stderr": 0.025217315184846486, "acc_norm": 0.5512820512820513, "acc_norm_stderr": 0.025217315184846486 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.3148148148148148, "acc_stderr": 0.02831753349606648, "acc_norm": 0.3148148148148148, "acc_norm_stderr": 0.02831753349606648 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6008403361344538, "acc_stderr": 0.031811100324139245, "acc_norm": 0.6008403361344538, "acc_norm_stderr": 0.031811100324139245 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.3708609271523179, "acc_stderr": 0.03943966699183629, "acc_norm": 0.3708609271523179, "acc_norm_stderr": 0.03943966699183629 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.7467889908256881, "acc_stderr": 0.01864407304137503, "acc_norm": 0.7467889908256881, "acc_norm_stderr": 0.01864407304137503 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.4351851851851852, "acc_stderr": 0.03381200005643525, "acc_norm": 0.4351851851851852, "acc_norm_stderr": 0.03381200005643525 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.7107843137254902, "acc_stderr": 0.03182231867647553, "acc_norm": 0.7107843137254902, "acc_norm_stderr": 0.03182231867647553 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7468354430379747, "acc_stderr": 0.0283046579430353, "acc_norm": 0.7468354430379747, "acc_norm_stderr": 0.0283046579430353 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.672645739910314, "acc_stderr": 0.03149384670994131, "acc_norm": 0.672645739910314, "acc_norm_stderr": 0.03149384670994131 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.7251908396946565, "acc_stderr": 0.039153454088478354, "acc_norm": 0.7251908396946565, "acc_norm_stderr": 0.039153454088478354 }, "harness|hendrycksTest-international_law|5": { "acc": 0.7768595041322314, "acc_stderr": 0.03800754475228732, "acc_norm": 0.7768595041322314, "acc_norm_stderr": 0.03800754475228732 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.6203703703703703, "acc_stderr": 0.04691521224077742, "acc_norm": 0.6203703703703703, "acc_norm_stderr": 0.04691521224077742 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.6687116564417178, "acc_stderr": 0.03697983910025588, "acc_norm": 0.6687116564417178, "acc_norm_stderr": 0.03697983910025588 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.4375, "acc_stderr": 0.04708567521880525, "acc_norm": 0.4375, "acc_norm_stderr": 0.04708567521880525 }, "harness|hendrycksTest-management|5": { "acc": 0.6310679611650486, "acc_stderr": 0.0477761518115674, "acc_norm": 0.6310679611650486, "acc_norm_stderr": 0.0477761518115674 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8205128205128205, "acc_stderr": 0.02514093595033543, "acc_norm": 0.8205128205128205, "acc_norm_stderr": 0.02514093595033543 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.61, "acc_stderr": 0.04902071300001975, "acc_norm": 0.61, "acc_norm_stderr": 0.04902071300001975 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.6756066411238825, "acc_stderr": 0.016740929047162702, "acc_norm": 0.6756066411238825, "acc_norm_stderr": 0.016740929047162702 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.6676300578034682, "acc_stderr": 0.02536116874968822, "acc_norm": 0.6676300578034682, "acc_norm_stderr": 0.02536116874968822 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.3318435754189944, "acc_stderr": 0.015748421208187303, "acc_norm": 0.3318435754189944, "acc_norm_stderr": 0.015748421208187303 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.6601307189542484, "acc_stderr": 0.027121956071388866, "acc_norm": 0.6601307189542484, "acc_norm_stderr": 0.027121956071388866 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.6077170418006431, "acc_stderr": 0.027731258647012, "acc_norm": 0.6077170418006431, "acc_norm_stderr": 0.027731258647012 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.6265432098765432, "acc_stderr": 0.02691500301138016, "acc_norm": 0.6265432098765432, "acc_norm_stderr": 0.02691500301138016 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.425531914893617, "acc_stderr": 0.02949482760014437, "acc_norm": 0.425531914893617, "acc_norm_stderr": 0.02949482760014437 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.4276401564537158, "acc_stderr": 0.012635799922765844, "acc_norm": 0.4276401564537158, "acc_norm_stderr": 0.012635799922765844 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.5955882352941176, "acc_stderr": 0.02981263070156974, "acc_norm": 0.5955882352941176, "acc_norm_stderr": 0.02981263070156974 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.5669934640522876, "acc_stderr": 0.020045442473324227, "acc_norm": 0.5669934640522876, "acc_norm_stderr": 0.020045442473324227 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6636363636363637, "acc_stderr": 0.04525393596302505, "acc_norm": 0.6636363636363637, "acc_norm_stderr": 0.04525393596302505 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7020408163265306, "acc_stderr": 0.029279567411065677, "acc_norm": 0.7020408163265306, "acc_norm_stderr": 0.029279567411065677 }, "harness|hendrycksTest-sociology|5": { "acc": 0.7910447761194029, "acc_stderr": 0.028748298931728655, "acc_norm": 0.7910447761194029, "acc_norm_stderr": 0.028748298931728655 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.76, "acc_stderr": 0.04292346959909282, "acc_norm": 0.76, "acc_norm_stderr": 0.04292346959909282 }, "harness|hendrycksTest-virology|5": { "acc": 0.5060240963855421, "acc_stderr": 0.03892212195333045, "acc_norm": 0.5060240963855421, "acc_norm_stderr": 0.03892212195333045 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.7134502923976608, "acc_stderr": 0.034678266857038245, "acc_norm": 0.7134502923976608, "acc_norm_stderr": 0.034678266857038245 }, "harness|truthfulqa:mc|0": { "mc1": 0.3880048959608323, "mc1_stderr": 0.017058761501347976, "mc2": 0.536535823977723, "mc2_stderr": 0.015589392373408393 }, "harness|winogrande|5": { "acc": 0.7861089187056038, "acc_stderr": 0.011524466954090254 }, "harness|gsm8k|5": { "acc": 0.4495830174374526, "acc_stderr": 0.013702290047884738 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_abhishekchohan__mistral-7B-med-merge
[ "region:us" ]
2024-01-21T23:58:12+00:00
{"pretty_name": "Evaluation run of abhishekchohan/mistral-7B-med-merge", "dataset_summary": "Dataset automatically created during the evaluation run of model [abhishekchohan/mistral-7B-med-merge](https://huggingface.co/abhishekchohan/mistral-7B-med-merge) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_abhishekchohan__mistral-7B-med-merge\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-21T23:55:53.444793](https://huggingface.co/datasets/open-llm-leaderboard/details_abhishekchohan__mistral-7B-med-merge/blob/main/results_2024-01-21T23-55-53.444793.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.5813577401888572,\n \"acc_stderr\": 0.03392117164078901,\n \"acc_norm\": 0.5837504497394033,\n \"acc_norm_stderr\": 0.03462209771980794,\n \"mc1\": 0.3880048959608323,\n \"mc1_stderr\": 0.017058761501347976,\n \"mc2\": 0.536535823977723,\n \"mc2_stderr\": 0.015589392373408393\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.6143344709897611,\n \"acc_stderr\": 0.014224250973257187,\n \"acc_norm\": 0.6450511945392492,\n \"acc_norm_stderr\": 0.013983036904094089\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6461860187213703,\n \"acc_stderr\": 0.004771751187407019,\n \"acc_norm\": 0.8296156144194383,\n \"acc_norm_stderr\": 0.0037520176390837515\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.32,\n \"acc_stderr\": 0.046882617226215034,\n \"acc_norm\": 0.32,\n \"acc_norm_stderr\": 0.046882617226215034\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.5851851851851851,\n \"acc_stderr\": 0.04256193767901408,\n \"acc_norm\": 0.5851851851851851,\n \"acc_norm_stderr\": 0.04256193767901408\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.631578947368421,\n \"acc_stderr\": 0.03925523381052932,\n \"acc_norm\": 0.631578947368421,\n \"acc_norm_stderr\": 0.03925523381052932\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.6,\n \"acc_stderr\": 0.04923659639173309,\n \"acc_norm\": 0.6,\n \"acc_norm_stderr\": 0.04923659639173309\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.6113207547169811,\n \"acc_stderr\": 0.030000485448675986,\n \"acc_norm\": 0.6113207547169811,\n \"acc_norm_stderr\": 0.030000485448675986\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.6458333333333334,\n \"acc_stderr\": 0.039994111357535424,\n \"acc_norm\": 0.6458333333333334,\n \"acc_norm_stderr\": 0.039994111357535424\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.42,\n \"acc_stderr\": 0.049604496374885836,\n \"acc_norm\": 0.42,\n \"acc_norm_stderr\": 0.049604496374885836\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.48,\n \"acc_stderr\": 0.050211673156867795,\n \"acc_norm\": 0.48,\n \"acc_norm_stderr\": 0.050211673156867795\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.39,\n \"acc_stderr\": 0.04902071300001974,\n \"acc_norm\": 0.39,\n \"acc_norm_stderr\": 0.04902071300001974\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.5549132947976878,\n \"acc_stderr\": 0.03789401760283647,\n \"acc_norm\": 0.5549132947976878,\n \"acc_norm_stderr\": 0.03789401760283647\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.3235294117647059,\n \"acc_stderr\": 0.04655010411319616,\n \"acc_norm\": 0.3235294117647059,\n \"acc_norm_stderr\": 0.04655010411319616\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.65,\n \"acc_stderr\": 0.047937248544110196,\n \"acc_norm\": 0.65,\n \"acc_norm_stderr\": 0.047937248544110196\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5702127659574469,\n \"acc_stderr\": 0.03236214467715564,\n \"acc_norm\": 0.5702127659574469,\n \"acc_norm_stderr\": 0.03236214467715564\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.38596491228070173,\n \"acc_stderr\": 0.04579639422070434,\n \"acc_norm\": 0.38596491228070173,\n \"acc_norm_stderr\": 0.04579639422070434\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5379310344827586,\n \"acc_stderr\": 0.04154659671707548,\n \"acc_norm\": 0.5379310344827586,\n \"acc_norm_stderr\": 0.04154659671707548\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.42857142857142855,\n \"acc_stderr\": 0.025487187147859375,\n \"acc_norm\": 0.42857142857142855,\n \"acc_norm_stderr\": 0.025487187147859375\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.35714285714285715,\n \"acc_stderr\": 0.042857142857142816,\n \"acc_norm\": 0.35714285714285715,\n \"acc_norm_stderr\": 0.042857142857142816\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.38,\n \"acc_stderr\": 0.048783173121456316,\n \"acc_norm\": 0.38,\n \"acc_norm_stderr\": 0.048783173121456316\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.6806451612903226,\n \"acc_stderr\": 0.026522709674667768,\n \"acc_norm\": 0.6806451612903226,\n \"acc_norm_stderr\": 0.026522709674667768\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.4433497536945813,\n \"acc_stderr\": 0.03495334582162933,\n \"acc_norm\": 0.4433497536945813,\n \"acc_norm_stderr\": 0.03495334582162933\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.65,\n \"acc_stderr\": 0.047937248544110196,\n \"acc_norm\": 0.65,\n \"acc_norm_stderr\": 0.047937248544110196\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.6848484848484848,\n \"acc_stderr\": 0.0362773057502241,\n \"acc_norm\": 0.6848484848484848,\n \"acc_norm_stderr\": 0.0362773057502241\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7070707070707071,\n \"acc_stderr\": 0.03242497958178816,\n \"acc_norm\": 0.7070707070707071,\n \"acc_norm_stderr\": 0.03242497958178816\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.7668393782383419,\n \"acc_stderr\": 0.03051611137147601,\n \"acc_norm\": 0.7668393782383419,\n \"acc_norm_stderr\": 0.03051611137147601\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.5512820512820513,\n \"acc_stderr\": 0.025217315184846486,\n \"acc_norm\": 0.5512820512820513,\n \"acc_norm_stderr\": 0.025217315184846486\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.3148148148148148,\n \"acc_stderr\": 0.02831753349606648,\n \"acc_norm\": 0.3148148148148148,\n \"acc_norm_stderr\": 0.02831753349606648\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6008403361344538,\n \"acc_stderr\": 0.031811100324139245,\n \"acc_norm\": 0.6008403361344538,\n \"acc_norm_stderr\": 0.031811100324139245\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.3708609271523179,\n \"acc_stderr\": 0.03943966699183629,\n \"acc_norm\": 0.3708609271523179,\n \"acc_norm_stderr\": 0.03943966699183629\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.7467889908256881,\n \"acc_stderr\": 0.01864407304137503,\n \"acc_norm\": 0.7467889908256881,\n \"acc_norm_stderr\": 0.01864407304137503\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.4351851851851852,\n \"acc_stderr\": 0.03381200005643525,\n \"acc_norm\": 0.4351851851851852,\n \"acc_norm_stderr\": 0.03381200005643525\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.7107843137254902,\n \"acc_stderr\": 0.03182231867647553,\n \"acc_norm\": 0.7107843137254902,\n \"acc_norm_stderr\": 0.03182231867647553\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7468354430379747,\n \"acc_stderr\": 0.0283046579430353,\n \"acc_norm\": 0.7468354430379747,\n \"acc_norm_stderr\": 0.0283046579430353\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.672645739910314,\n \"acc_stderr\": 0.03149384670994131,\n \"acc_norm\": 0.672645739910314,\n \"acc_norm_stderr\": 0.03149384670994131\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7251908396946565,\n \"acc_stderr\": 0.039153454088478354,\n \"acc_norm\": 0.7251908396946565,\n \"acc_norm_stderr\": 0.039153454088478354\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.7768595041322314,\n \"acc_stderr\": 0.03800754475228732,\n \"acc_norm\": 0.7768595041322314,\n \"acc_norm_stderr\": 0.03800754475228732\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.6203703703703703,\n \"acc_stderr\": 0.04691521224077742,\n \"acc_norm\": 0.6203703703703703,\n \"acc_norm_stderr\": 0.04691521224077742\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.6687116564417178,\n \"acc_stderr\": 0.03697983910025588,\n \"acc_norm\": 0.6687116564417178,\n \"acc_norm_stderr\": 0.03697983910025588\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.4375,\n \"acc_stderr\": 0.04708567521880525,\n \"acc_norm\": 0.4375,\n \"acc_norm_stderr\": 0.04708567521880525\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.6310679611650486,\n \"acc_stderr\": 0.0477761518115674,\n \"acc_norm\": 0.6310679611650486,\n \"acc_norm_stderr\": 0.0477761518115674\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8205128205128205,\n \"acc_stderr\": 0.02514093595033543,\n \"acc_norm\": 0.8205128205128205,\n \"acc_norm_stderr\": 0.02514093595033543\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.61,\n \"acc_stderr\": 0.04902071300001975,\n \"acc_norm\": 0.61,\n \"acc_norm_stderr\": 0.04902071300001975\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.6756066411238825,\n \"acc_stderr\": 0.016740929047162702,\n \"acc_norm\": 0.6756066411238825,\n \"acc_norm_stderr\": 0.016740929047162702\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.6676300578034682,\n \"acc_stderr\": 0.02536116874968822,\n \"acc_norm\": 0.6676300578034682,\n \"acc_norm_stderr\": 0.02536116874968822\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.3318435754189944,\n \"acc_stderr\": 0.015748421208187303,\n \"acc_norm\": 0.3318435754189944,\n \"acc_norm_stderr\": 0.015748421208187303\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.6601307189542484,\n \"acc_stderr\": 0.027121956071388866,\n \"acc_norm\": 0.6601307189542484,\n \"acc_norm_stderr\": 0.027121956071388866\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.6077170418006431,\n \"acc_stderr\": 0.027731258647012,\n \"acc_norm\": 0.6077170418006431,\n \"acc_norm_stderr\": 0.027731258647012\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.6265432098765432,\n \"acc_stderr\": 0.02691500301138016,\n \"acc_norm\": 0.6265432098765432,\n \"acc_norm_stderr\": 0.02691500301138016\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.425531914893617,\n \"acc_stderr\": 0.02949482760014437,\n \"acc_norm\": 0.425531914893617,\n \"acc_norm_stderr\": 0.02949482760014437\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.4276401564537158,\n \"acc_stderr\": 0.012635799922765844,\n \"acc_norm\": 0.4276401564537158,\n \"acc_norm_stderr\": 0.012635799922765844\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.5955882352941176,\n \"acc_stderr\": 0.02981263070156974,\n \"acc_norm\": 0.5955882352941176,\n \"acc_norm_stderr\": 0.02981263070156974\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.5669934640522876,\n \"acc_stderr\": 0.020045442473324227,\n \"acc_norm\": 0.5669934640522876,\n \"acc_norm_stderr\": 0.020045442473324227\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6636363636363637,\n \"acc_stderr\": 0.04525393596302505,\n \"acc_norm\": 0.6636363636363637,\n \"acc_norm_stderr\": 0.04525393596302505\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7020408163265306,\n \"acc_stderr\": 0.029279567411065677,\n \"acc_norm\": 0.7020408163265306,\n \"acc_norm_stderr\": 0.029279567411065677\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.7910447761194029,\n \"acc_stderr\": 0.028748298931728655,\n \"acc_norm\": 0.7910447761194029,\n \"acc_norm_stderr\": 0.028748298931728655\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.76,\n \"acc_stderr\": 0.04292346959909282,\n \"acc_norm\": 0.76,\n \"acc_norm_stderr\": 0.04292346959909282\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5060240963855421,\n \"acc_stderr\": 0.03892212195333045,\n \"acc_norm\": 0.5060240963855421,\n \"acc_norm_stderr\": 0.03892212195333045\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.7134502923976608,\n \"acc_stderr\": 0.034678266857038245,\n \"acc_norm\": 0.7134502923976608,\n \"acc_norm_stderr\": 0.034678266857038245\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.3880048959608323,\n \"mc1_stderr\": 0.017058761501347976,\n \"mc2\": 0.536535823977723,\n \"mc2_stderr\": 0.015589392373408393\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.7861089187056038,\n \"acc_stderr\": 0.011524466954090254\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.4495830174374526,\n \"acc_stderr\": 0.013702290047884738\n }\n}\n```", "repo_url": "https://huggingface.co/abhishekchohan/mistral-7B-med-merge", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|arc:challenge|25_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|gsm8k|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hellaswag|10_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-21T23-55-53.444793.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["**/details_harness|winogrande|5_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-21T23-55-53.444793.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_21T23_55_53.444793", "path": ["results_2024-01-21T23-55-53.444793.parquet"]}, {"split": "latest", "path": ["results_2024-01-21T23-55-53.444793.parquet"]}]}]}
2024-01-21T23:58:32+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of abhishekchohan/mistral-7B-med-merge Dataset automatically created during the evaluation run of model abhishekchohan/mistral-7B-med-merge on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-21T23:55:53.444793(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of abhishekchohan/mistral-7B-med-merge\n\n\n\nDataset automatically created during the evaluation run of model abhishekchohan/mistral-7B-med-merge on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-21T23:55:53.444793(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of abhishekchohan/mistral-7B-med-merge\n\n\n\nDataset automatically created during the evaluation run of model abhishekchohan/mistral-7B-med-merge on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-21T23:55:53.444793(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
8b69311c27202b58c750ae277c6aeb95b8ed8774
# 한국어 모델 캘리브레이션용 데이터셋 허깅페이스에 올라와 있는 다양한 한국어 데이터셋이 사용되었습니다.
maywell/ko-calibration
[ "region:us" ]
2024-01-22T00:43:23+00:00
{"dataset_info": {"features": [{"name": "instruction", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 55843115, "num_examples": 38772}], "download_size": 31384444, "dataset_size": 55843115}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-22T02:39:20+00:00
[]
[]
TAGS #region-us
# 한국어 모델 캘리브레이션용 데이터셋 허깅페이스에 올라와 있는 다양한 한국어 데이터셋이 사용되었습니다.
[ "# 한국어 모델 캘리브레이션용 데이터셋\n\n허깅페이스에 올라와 있는 다양한 한국어 데이터셋이 사용되었습니다." ]
[ "TAGS\n#region-us \n", "# 한국어 모델 캘리브레이션용 데이터셋\n\n허깅페이스에 올라와 있는 다양한 한국어 데이터셋이 사용되었습니다." ]
3a1c15d2d41d5b1efd95e21f288ccef1ac5a379e
# Dataset Card for Evaluation run of lodrick-the-lafted/Grafted-Llama2-2x70B <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [lodrick-the-lafted/Grafted-Llama2-2x70B](https://huggingface.co/lodrick-the-lafted/Grafted-Llama2-2x70B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_lodrick-the-lafted__Grafted-Llama2-2x70B", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-22T00:41:15.048922](https://huggingface.co/datasets/open-llm-leaderboard/details_lodrick-the-lafted__Grafted-Llama2-2x70B/blob/main/results_2024-01-22T00-41-15.048922.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.7162400942995992, "acc_stderr": 0.029857485504267534, "acc_norm": 0.7199041020126216, "acc_norm_stderr": 0.030434480280872887, "mc1": 0.4920440636474908, "mc1_stderr": 0.01750128507455183, "mc2": 0.6649277907845683, "mc2_stderr": 0.014471158700072567 }, "harness|arc:challenge|25": { "acc": 0.6928327645051194, "acc_stderr": 0.013481034054980945, "acc_norm": 0.7261092150170648, "acc_norm_stderr": 0.013032004972989505 }, "harness|hellaswag|10": { "acc": 0.7223660625373431, "acc_stderr": 0.004469165728600332, "acc_norm": 0.8957379008165705, "acc_norm_stderr": 0.003049756910828993 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.37, "acc_stderr": 0.04852365870939099, "acc_norm": 0.37, "acc_norm_stderr": 0.04852365870939099 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6148148148148148, "acc_stderr": 0.042039210401562783, "acc_norm": 0.6148148148148148, "acc_norm_stderr": 0.042039210401562783 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.8223684210526315, "acc_stderr": 0.03110318238312338, "acc_norm": 0.8223684210526315, "acc_norm_stderr": 0.03110318238312338 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.76, "acc_stderr": 0.04292346959909283, "acc_norm": 0.76, "acc_norm_stderr": 0.04292346959909283 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.7433962264150943, "acc_stderr": 0.026880647889051982, "acc_norm": 0.7433962264150943, "acc_norm_stderr": 0.026880647889051982 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.8263888888888888, "acc_stderr": 0.03167473383795718, "acc_norm": 0.8263888888888888, "acc_norm_stderr": 0.03167473383795718 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.49, "acc_stderr": 0.05024183937956912, "acc_norm": 0.49, "acc_norm_stderr": 0.05024183937956912 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.56, "acc_stderr": 0.04988876515698589, "acc_norm": 0.56, "acc_norm_stderr": 0.04988876515698589 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.41, "acc_stderr": 0.04943110704237102, "acc_norm": 0.41, "acc_norm_stderr": 0.04943110704237102 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.7167630057803468, "acc_stderr": 0.03435568056047875, "acc_norm": 0.7167630057803468, "acc_norm_stderr": 0.03435568056047875 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.3627450980392157, "acc_stderr": 0.04784060704105654, "acc_norm": 0.3627450980392157, "acc_norm_stderr": 0.04784060704105654 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.76, "acc_stderr": 0.04292346959909281, "acc_norm": 0.76, "acc_norm_stderr": 0.04292346959909281 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.7148936170212766, "acc_stderr": 0.02951319662553935, "acc_norm": 0.7148936170212766, "acc_norm_stderr": 0.02951319662553935 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.47368421052631576, "acc_stderr": 0.04697085136647863, "acc_norm": 0.47368421052631576, "acc_norm_stderr": 0.04697085136647863 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.6620689655172414, "acc_stderr": 0.039417076320648906, "acc_norm": 0.6620689655172414, "acc_norm_stderr": 0.039417076320648906 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.48412698412698413, "acc_stderr": 0.02573833063941215, "acc_norm": 0.48412698412698413, "acc_norm_stderr": 0.02573833063941215 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.5158730158730159, "acc_stderr": 0.044698818540726076, "acc_norm": 0.5158730158730159, "acc_norm_stderr": 0.044698818540726076 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.5, "acc_stderr": 0.050251890762960605, "acc_norm": 0.5, "acc_norm_stderr": 0.050251890762960605 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.8354838709677419, "acc_stderr": 0.021090847745939303, "acc_norm": 0.8354838709677419, "acc_norm_stderr": 0.021090847745939303 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.5467980295566502, "acc_stderr": 0.03502544650845872, "acc_norm": 0.5467980295566502, "acc_norm_stderr": 0.03502544650845872 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.83, "acc_stderr": 0.0377525168068637, "acc_norm": 0.83, "acc_norm_stderr": 0.0377525168068637 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.8545454545454545, "acc_stderr": 0.027530196355066573, "acc_norm": 0.8545454545454545, "acc_norm_stderr": 0.027530196355066573 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.8838383838383839, "acc_stderr": 0.022828881775249377, "acc_norm": 0.8838383838383839, "acc_norm_stderr": 0.022828881775249377 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.9378238341968912, "acc_stderr": 0.017426974154240528, "acc_norm": 0.9378238341968912, "acc_norm_stderr": 0.017426974154240528 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.7230769230769231, "acc_stderr": 0.022688042352424994, "acc_norm": 0.7230769230769231, "acc_norm_stderr": 0.022688042352424994 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.32222222222222224, "acc_stderr": 0.028493465091028597, "acc_norm": 0.32222222222222224, "acc_norm_stderr": 0.028493465091028597 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.7857142857142857, "acc_stderr": 0.026653531596715487, "acc_norm": 0.7857142857142857, "acc_norm_stderr": 0.026653531596715487 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.5165562913907285, "acc_stderr": 0.04080244185628972, "acc_norm": 0.5165562913907285, "acc_norm_stderr": 0.04080244185628972 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.9009174311926605, "acc_stderr": 0.01280978008187893, "acc_norm": 0.9009174311926605, "acc_norm_stderr": 0.01280978008187893 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.6435185185185185, "acc_stderr": 0.032664783315272714, "acc_norm": 0.6435185185185185, "acc_norm_stderr": 0.032664783315272714 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.9313725490196079, "acc_stderr": 0.017744453647073315, "acc_norm": 0.9313725490196079, "acc_norm_stderr": 0.017744453647073315 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.9071729957805907, "acc_stderr": 0.018889750550956715, "acc_norm": 0.9071729957805907, "acc_norm_stderr": 0.018889750550956715 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.8161434977578476, "acc_stderr": 0.025998379092356517, "acc_norm": 0.8161434977578476, "acc_norm_stderr": 0.025998379092356517 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.8473282442748091, "acc_stderr": 0.03154521672005472, "acc_norm": 0.8473282442748091, "acc_norm_stderr": 0.03154521672005472 }, "harness|hendrycksTest-international_law|5": { "acc": 0.8760330578512396, "acc_stderr": 0.030083098716035206, "acc_norm": 0.8760330578512396, "acc_norm_stderr": 0.030083098716035206 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.8611111111111112, "acc_stderr": 0.03343270062869621, "acc_norm": 0.8611111111111112, "acc_norm_stderr": 0.03343270062869621 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.803680981595092, "acc_stderr": 0.031207970394709225, "acc_norm": 0.803680981595092, "acc_norm_stderr": 0.031207970394709225 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.5625, "acc_stderr": 0.04708567521880525, "acc_norm": 0.5625, "acc_norm_stderr": 0.04708567521880525 }, "harness|hendrycksTest-management|5": { "acc": 0.8446601941747572, "acc_stderr": 0.03586594738573974, "acc_norm": 0.8446601941747572, "acc_norm_stderr": 0.03586594738573974 }, "harness|hendrycksTest-marketing|5": { "acc": 0.9145299145299145, "acc_stderr": 0.01831589168562585, "acc_norm": 0.9145299145299145, "acc_norm_stderr": 0.01831589168562585 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.73, "acc_stderr": 0.0446196043338474, "acc_norm": 0.73, "acc_norm_stderr": 0.0446196043338474 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.876117496807152, "acc_stderr": 0.011781017100950739, "acc_norm": 0.876117496807152, "acc_norm_stderr": 0.011781017100950739 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.815028901734104, "acc_stderr": 0.02090397584208303, "acc_norm": 0.815028901734104, "acc_norm_stderr": 0.02090397584208303 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.6312849162011173, "acc_stderr": 0.016135759015030126, "acc_norm": 0.6312849162011173, "acc_norm_stderr": 0.016135759015030126 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.7875816993464052, "acc_stderr": 0.02342037547829613, "acc_norm": 0.7875816993464052, "acc_norm_stderr": 0.02342037547829613 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.7781350482315113, "acc_stderr": 0.02359885829286305, "acc_norm": 0.7781350482315113, "acc_norm_stderr": 0.02359885829286305 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.8487654320987654, "acc_stderr": 0.019935086092149893, "acc_norm": 0.8487654320987654, "acc_norm_stderr": 0.019935086092149893 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.5957446808510638, "acc_stderr": 0.02927553215970472, "acc_norm": 0.5957446808510638, "acc_norm_stderr": 0.02927553215970472 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.5808344198174706, "acc_stderr": 0.012602244505788219, "acc_norm": 0.5808344198174706, "acc_norm_stderr": 0.012602244505788219 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.7426470588235294, "acc_stderr": 0.0265565194700415, "acc_norm": 0.7426470588235294, "acc_norm_stderr": 0.0265565194700415 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.7696078431372549, "acc_stderr": 0.01703522925803403, "acc_norm": 0.7696078431372549, "acc_norm_stderr": 0.01703522925803403 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.7454545454545455, "acc_stderr": 0.041723430387053825, "acc_norm": 0.7454545454545455, "acc_norm_stderr": 0.041723430387053825 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.8040816326530612, "acc_stderr": 0.02540930195322568, "acc_norm": 0.8040816326530612, "acc_norm_stderr": 0.02540930195322568 }, "harness|hendrycksTest-sociology|5": { "acc": 0.8955223880597015, "acc_stderr": 0.021628920516700637, "acc_norm": 0.8955223880597015, "acc_norm_stderr": 0.021628920516700637 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.9, "acc_stderr": 0.030151134457776334, "acc_norm": 0.9, "acc_norm_stderr": 0.030151134457776334 }, "harness|hendrycksTest-virology|5": { "acc": 0.5481927710843374, "acc_stderr": 0.03874371556587953, "acc_norm": 0.5481927710843374, "acc_norm_stderr": 0.03874371556587953 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8713450292397661, "acc_stderr": 0.025679342723276915, "acc_norm": 0.8713450292397661, "acc_norm_stderr": 0.025679342723276915 }, "harness|truthfulqa:mc|0": { "mc1": 0.4920440636474908, "mc1_stderr": 0.01750128507455183, "mc2": 0.6649277907845683, "mc2_stderr": 0.014471158700072567 }, "harness|winogrande|5": { "acc": 0.8437253354380426, "acc_stderr": 0.010205351791873499 }, "harness|gsm8k|5": { "acc": 0.579226686884003, "acc_stderr": 0.013598489497182838 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_lodrick-the-lafted__Grafted-Llama2-2x70B
[ "region:us" ]
2024-01-22T00:43:36+00:00
{"pretty_name": "Evaluation run of lodrick-the-lafted/Grafted-Llama2-2x70B", "dataset_summary": "Dataset automatically created during the evaluation run of model [lodrick-the-lafted/Grafted-Llama2-2x70B](https://huggingface.co/lodrick-the-lafted/Grafted-Llama2-2x70B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_lodrick-the-lafted__Grafted-Llama2-2x70B\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-22T00:41:15.048922](https://huggingface.co/datasets/open-llm-leaderboard/details_lodrick-the-lafted__Grafted-Llama2-2x70B/blob/main/results_2024-01-22T00-41-15.048922.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.7162400942995992,\n \"acc_stderr\": 0.029857485504267534,\n \"acc_norm\": 0.7199041020126216,\n \"acc_norm_stderr\": 0.030434480280872887,\n \"mc1\": 0.4920440636474908,\n \"mc1_stderr\": 0.01750128507455183,\n \"mc2\": 0.6649277907845683,\n \"mc2_stderr\": 0.014471158700072567\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.6928327645051194,\n \"acc_stderr\": 0.013481034054980945,\n \"acc_norm\": 0.7261092150170648,\n \"acc_norm_stderr\": 0.013032004972989505\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.7223660625373431,\n \"acc_stderr\": 0.004469165728600332,\n \"acc_norm\": 0.8957379008165705,\n \"acc_norm_stderr\": 0.003049756910828993\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.37,\n \"acc_stderr\": 0.04852365870939099,\n \"acc_norm\": 0.37,\n \"acc_norm_stderr\": 0.04852365870939099\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6148148148148148,\n \"acc_stderr\": 0.042039210401562783,\n \"acc_norm\": 0.6148148148148148,\n \"acc_norm_stderr\": 0.042039210401562783\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.8223684210526315,\n \"acc_stderr\": 0.03110318238312338,\n \"acc_norm\": 0.8223684210526315,\n \"acc_norm_stderr\": 0.03110318238312338\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.76,\n \"acc_stderr\": 0.04292346959909283,\n \"acc_norm\": 0.76,\n \"acc_norm_stderr\": 0.04292346959909283\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.7433962264150943,\n \"acc_stderr\": 0.026880647889051982,\n \"acc_norm\": 0.7433962264150943,\n \"acc_norm_stderr\": 0.026880647889051982\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.8263888888888888,\n \"acc_stderr\": 0.03167473383795718,\n \"acc_norm\": 0.8263888888888888,\n \"acc_norm_stderr\": 0.03167473383795718\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.49,\n \"acc_stderr\": 0.05024183937956912,\n \"acc_norm\": 0.49,\n \"acc_norm_stderr\": 0.05024183937956912\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.56,\n \"acc_stderr\": 0.04988876515698589,\n \"acc_norm\": 0.56,\n \"acc_norm_stderr\": 0.04988876515698589\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.41,\n \"acc_stderr\": 0.04943110704237102,\n \"acc_norm\": 0.41,\n \"acc_norm_stderr\": 0.04943110704237102\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.7167630057803468,\n \"acc_stderr\": 0.03435568056047875,\n \"acc_norm\": 0.7167630057803468,\n \"acc_norm_stderr\": 0.03435568056047875\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.3627450980392157,\n \"acc_stderr\": 0.04784060704105654,\n \"acc_norm\": 0.3627450980392157,\n \"acc_norm_stderr\": 0.04784060704105654\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.76,\n \"acc_stderr\": 0.04292346959909281,\n \"acc_norm\": 0.76,\n \"acc_norm_stderr\": 0.04292346959909281\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.7148936170212766,\n \"acc_stderr\": 0.02951319662553935,\n \"acc_norm\": 0.7148936170212766,\n \"acc_norm_stderr\": 0.02951319662553935\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.47368421052631576,\n \"acc_stderr\": 0.04697085136647863,\n \"acc_norm\": 0.47368421052631576,\n \"acc_norm_stderr\": 0.04697085136647863\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.6620689655172414,\n \"acc_stderr\": 0.039417076320648906,\n \"acc_norm\": 0.6620689655172414,\n \"acc_norm_stderr\": 0.039417076320648906\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.48412698412698413,\n \"acc_stderr\": 0.02573833063941215,\n \"acc_norm\": 0.48412698412698413,\n \"acc_norm_stderr\": 0.02573833063941215\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.5158730158730159,\n \"acc_stderr\": 0.044698818540726076,\n \"acc_norm\": 0.5158730158730159,\n \"acc_norm_stderr\": 0.044698818540726076\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.5,\n \"acc_stderr\": 0.050251890762960605,\n \"acc_norm\": 0.5,\n \"acc_norm_stderr\": 0.050251890762960605\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.8354838709677419,\n \"acc_stderr\": 0.021090847745939303,\n \"acc_norm\": 0.8354838709677419,\n \"acc_norm_stderr\": 0.021090847745939303\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.5467980295566502,\n \"acc_stderr\": 0.03502544650845872,\n \"acc_norm\": 0.5467980295566502,\n \"acc_norm_stderr\": 0.03502544650845872\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.83,\n \"acc_stderr\": 0.0377525168068637,\n \"acc_norm\": 0.83,\n \"acc_norm_stderr\": 0.0377525168068637\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.8545454545454545,\n \"acc_stderr\": 0.027530196355066573,\n \"acc_norm\": 0.8545454545454545,\n \"acc_norm_stderr\": 0.027530196355066573\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.8838383838383839,\n \"acc_stderr\": 0.022828881775249377,\n \"acc_norm\": 0.8838383838383839,\n \"acc_norm_stderr\": 0.022828881775249377\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.9378238341968912,\n \"acc_stderr\": 0.017426974154240528,\n \"acc_norm\": 0.9378238341968912,\n \"acc_norm_stderr\": 0.017426974154240528\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.7230769230769231,\n \"acc_stderr\": 0.022688042352424994,\n \"acc_norm\": 0.7230769230769231,\n \"acc_norm_stderr\": 0.022688042352424994\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.32222222222222224,\n \"acc_stderr\": 0.028493465091028597,\n \"acc_norm\": 0.32222222222222224,\n \"acc_norm_stderr\": 0.028493465091028597\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.7857142857142857,\n \"acc_stderr\": 0.026653531596715487,\n \"acc_norm\": 0.7857142857142857,\n \"acc_norm_stderr\": 0.026653531596715487\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.5165562913907285,\n \"acc_stderr\": 0.04080244185628972,\n \"acc_norm\": 0.5165562913907285,\n \"acc_norm_stderr\": 0.04080244185628972\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.9009174311926605,\n \"acc_stderr\": 0.01280978008187893,\n \"acc_norm\": 0.9009174311926605,\n \"acc_norm_stderr\": 0.01280978008187893\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.6435185185185185,\n \"acc_stderr\": 0.032664783315272714,\n \"acc_norm\": 0.6435185185185185,\n \"acc_norm_stderr\": 0.032664783315272714\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.9313725490196079,\n \"acc_stderr\": 0.017744453647073315,\n \"acc_norm\": 0.9313725490196079,\n \"acc_norm_stderr\": 0.017744453647073315\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.9071729957805907,\n \"acc_stderr\": 0.018889750550956715,\n \"acc_norm\": 0.9071729957805907,\n \"acc_norm_stderr\": 0.018889750550956715\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.8161434977578476,\n \"acc_stderr\": 0.025998379092356517,\n \"acc_norm\": 0.8161434977578476,\n \"acc_norm_stderr\": 0.025998379092356517\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.8473282442748091,\n \"acc_stderr\": 0.03154521672005472,\n \"acc_norm\": 0.8473282442748091,\n \"acc_norm_stderr\": 0.03154521672005472\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8760330578512396,\n \"acc_stderr\": 0.030083098716035206,\n \"acc_norm\": 0.8760330578512396,\n \"acc_norm_stderr\": 0.030083098716035206\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.8611111111111112,\n \"acc_stderr\": 0.03343270062869621,\n \"acc_norm\": 0.8611111111111112,\n \"acc_norm_stderr\": 0.03343270062869621\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.803680981595092,\n \"acc_stderr\": 0.031207970394709225,\n \"acc_norm\": 0.803680981595092,\n \"acc_norm_stderr\": 0.031207970394709225\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.5625,\n \"acc_stderr\": 0.04708567521880525,\n \"acc_norm\": 0.5625,\n \"acc_norm_stderr\": 0.04708567521880525\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.8446601941747572,\n \"acc_stderr\": 0.03586594738573974,\n \"acc_norm\": 0.8446601941747572,\n \"acc_norm_stderr\": 0.03586594738573974\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.9145299145299145,\n \"acc_stderr\": 0.01831589168562585,\n \"acc_norm\": 0.9145299145299145,\n \"acc_norm_stderr\": 0.01831589168562585\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.73,\n \"acc_stderr\": 0.0446196043338474,\n \"acc_norm\": 0.73,\n \"acc_norm_stderr\": 0.0446196043338474\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.876117496807152,\n \"acc_stderr\": 0.011781017100950739,\n \"acc_norm\": 0.876117496807152,\n \"acc_norm_stderr\": 0.011781017100950739\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.815028901734104,\n \"acc_stderr\": 0.02090397584208303,\n \"acc_norm\": 0.815028901734104,\n \"acc_norm_stderr\": 0.02090397584208303\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.6312849162011173,\n \"acc_stderr\": 0.016135759015030126,\n \"acc_norm\": 0.6312849162011173,\n \"acc_norm_stderr\": 0.016135759015030126\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7875816993464052,\n \"acc_stderr\": 0.02342037547829613,\n \"acc_norm\": 0.7875816993464052,\n \"acc_norm_stderr\": 0.02342037547829613\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.7781350482315113,\n \"acc_stderr\": 0.02359885829286305,\n \"acc_norm\": 0.7781350482315113,\n \"acc_norm_stderr\": 0.02359885829286305\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.8487654320987654,\n \"acc_stderr\": 0.019935086092149893,\n \"acc_norm\": 0.8487654320987654,\n \"acc_norm_stderr\": 0.019935086092149893\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.5957446808510638,\n \"acc_stderr\": 0.02927553215970472,\n \"acc_norm\": 0.5957446808510638,\n \"acc_norm_stderr\": 0.02927553215970472\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.5808344198174706,\n \"acc_stderr\": 0.012602244505788219,\n \"acc_norm\": 0.5808344198174706,\n \"acc_norm_stderr\": 0.012602244505788219\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.7426470588235294,\n \"acc_stderr\": 0.0265565194700415,\n \"acc_norm\": 0.7426470588235294,\n \"acc_norm_stderr\": 0.0265565194700415\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.7696078431372549,\n \"acc_stderr\": 0.01703522925803403,\n \"acc_norm\": 0.7696078431372549,\n \"acc_norm_stderr\": 0.01703522925803403\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.7454545454545455,\n \"acc_stderr\": 0.041723430387053825,\n \"acc_norm\": 0.7454545454545455,\n \"acc_norm_stderr\": 0.041723430387053825\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.8040816326530612,\n \"acc_stderr\": 0.02540930195322568,\n \"acc_norm\": 0.8040816326530612,\n \"acc_norm_stderr\": 0.02540930195322568\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8955223880597015,\n \"acc_stderr\": 0.021628920516700637,\n \"acc_norm\": 0.8955223880597015,\n \"acc_norm_stderr\": 0.021628920516700637\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.9,\n \"acc_stderr\": 0.030151134457776334,\n \"acc_norm\": 0.9,\n \"acc_norm_stderr\": 0.030151134457776334\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5481927710843374,\n \"acc_stderr\": 0.03874371556587953,\n \"acc_norm\": 0.5481927710843374,\n \"acc_norm_stderr\": 0.03874371556587953\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8713450292397661,\n \"acc_stderr\": 0.025679342723276915,\n \"acc_norm\": 0.8713450292397661,\n \"acc_norm_stderr\": 0.025679342723276915\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.4920440636474908,\n \"mc1_stderr\": 0.01750128507455183,\n \"mc2\": 0.6649277907845683,\n \"mc2_stderr\": 0.014471158700072567\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.8437253354380426,\n \"acc_stderr\": 0.010205351791873499\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.579226686884003,\n \"acc_stderr\": 0.013598489497182838\n }\n}\n```", "repo_url": "https://huggingface.co/lodrick-the-lafted/Grafted-Llama2-2x70B", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|arc:challenge|25_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|gsm8k|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hellaswag|10_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T00-41-15.048922.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["**/details_harness|winogrande|5_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-22T00-41-15.048922.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_22T00_41_15.048922", "path": ["results_2024-01-22T00-41-15.048922.parquet"]}, {"split": "latest", "path": ["results_2024-01-22T00-41-15.048922.parquet"]}]}]}
2024-01-22T00:43:56+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of lodrick-the-lafted/Grafted-Llama2-2x70B Dataset automatically created during the evaluation run of model lodrick-the-lafted/Grafted-Llama2-2x70B on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-22T00:41:15.048922(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of lodrick-the-lafted/Grafted-Llama2-2x70B\n\n\n\nDataset automatically created during the evaluation run of model lodrick-the-lafted/Grafted-Llama2-2x70B on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T00:41:15.048922(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of lodrick-the-lafted/Grafted-Llama2-2x70B\n\n\n\nDataset automatically created during the evaluation run of model lodrick-the-lafted/Grafted-Llama2-2x70B on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T00:41:15.048922(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
2c97bcd6713edd075e1d88fa8401ca0b881c9464
# PMData Dataset ## About Dataset Paper: <https://dl.acm.org/doi/10.1145/3339825.3394926> In this dataset, we present the PMData dataset that aims to combine traditional lifelogging with sports activity logging. Such a dataset enables the development of several interesting analysis applications, e.g., where additional sports data can be used to predict and analyze everyday developments like a person's weight and sleep patterns, and where traditional lifelog data can be used in a sports context to predict an athletes performance. In this respect, we have used the Fitbit Versa 2 smartwatch wristband, the PMSys sports logging app a and Google forms for the data collection, and PMData contains logging data for 5 months from 16 persons. Our initial experiments show that such analyzes are possible, but there are still large rooms for improvements. ### Dataset Details The structure of the main folder: ```text [Main folder] ├── p01 ├── p02 ├── ... ├── p16 └── participant-overview.xlsx ``` Each participant's folder (pXX) contains: - `fitbit` [folder] - `calories.json`: Shows how many calories the person have burned the last minute. - `distance.json`: Gives the distance moved per minute. Distance seems to be in centimeters. - `exercise.json`: Describes each activity in more detail. It contains the date with start and stop time, time in different activity levels, type of activity and various performance metrics depending a bit on type of exercise, e.g., for running, it contains distance, time, steps, calories, speed and pace. - `heart_rate.json`: Shows the number of heart beats per minute (bpm) at a given time. - `lightly_active_minutes.json`: Sums up the number of lightly active minutes per day. - `moderately_active_minutes.json`: Sums up the number of moderately active minutes per day. - `resting_heart_rate.json`: Gives the resting heart rate per day. - `sedentary_minutes.json`: Sums up the number of sedentary minutes per day. - `sleep_score.csv`: Helps understand the sleep each night so you can see trends in the sleep patterns. It contains an overall 0-100 score made up from composition, revitalization and duration scores, the number of deep sleep minutes, the resting heart rate and a restlessness score. - `sleep.json`: A per sleep breakdown of the sleep into periods of light, deep, rem sleeps and time awake. - `steps.json`: Displays the number of steps per minute. - `time_in_heart_rate_zones.json`: Gives the number of minutes in different heart rate zones. Using the common formula of 220 minus your age, Fitbit will calculate your maximum heart rate and then create three target heart rate zones fat burn (50 to 69 percent of your max heart rate), cardio (70 to 84 percent of your max heart rate), and peak (85 to 100 percent of your max heart rate) - based off that number. - `very_active_minutes.json`: Sums up the number of very active minutes per day. - `googledocs` [folder] - `reporting.csv`: Contains one line per report including the date reported for, a timestamp of the report submission time, the eaten meals (breakfast, lunch, dinner and evening meal), the participants weight this day, the number of glasses drunk, and whether one has consumed alcohol. - `pmsys` [folder] - `injury.csv`: Shows injuries with a time and date and corresponding injury locations and a minor and major severity. - `srpe.csv`: Contains a training session’s end-time, type of activity, the perceived exertion (RPE), and the duration in the number of minutes. This is, for example, used to calculate the sessions training load or sRPE (RPE×duration). - `wellness.csv`: Includes parameters like time and date, fatigue, mood, readiness, sleep duration (number of hours), sleep quality, soreness (and soreness area), and stress. Fatigue, sleep qual-ity, soreness, stress, and mood all have a 1-5 scale. The score 3 is normal, and 1-2 are scores below normal and 4-5 are scores above normal. Sleep length is just a measure of how long the sleep was in hours, and readiness (scale 0-10) is an overall subjective measure of how ready are you to exercise, i.e., 0 means not ready at all and 10 indicates that you cannot feel any better and are ready for anything! - `food-images.zip`: Participants 1, 3 and 5 have taken pictures of everything they have eaten except water during 2 months (February and March). There are food images included in this .zip file, and information about day and time is given in the image header. The participants used their own mobile cameras to collect the images (Iphone 6s, Iphone X and Iphone XS). The standard export function of the MacOS Photos software with full quality was used to export the images. ### Term of use The license for the PMData dataset is Attribution-NonCommercial 4.0 International. More information can be found here: <https://creativecommons.org/licenses/by-nc/4.0/legalcode> ### Citation ```bibtex @inproceedings{10.1145/3339825.3394926, address = {New York, NY, USA}, author = {Thambawita, Vajira and Hicks, Steven Alexander and Borgli, Hanna and Stensland, H\r{a}kon Kvale and Jha, Debesh and Svensen, Martin Kristoffer and Pettersen, Svein-Arne and Johansen, Dag and Johansen, H\r{a}vard Dagenborg and Pettersen, Susann Dahl and Nordvang, Simon and Pedersen, Sigurd and Gjerdrum, Anders and Gr\o{}nli, Tor-Morten and Fredriksen, Per Morten and Eg, Ragnhild and Hansen, Kjeld and Fagernes, Siri and Claudi, Christine and Bi\o{}rn-Hansen, Andreas and Nguyen, Duc Tien Dang and Kupka, Tomas and Hammer, Hugo Lewi and Jain, Ramesh and Riegler, Michael Alexander and Halvorsen, P\r{a}l}, booktitle = {Proceedings of the 11th ACM Multimedia Systems Conference}, doi = {10.1145/3339825.3394926}, isbn = {9781450368452}, keywords = {sports logging, questionnaires, food pictures, neural networks, multimedia dataset, sensor data, machine learning}, location = {Istanbul, Turkey}, numpages = {6}, pages = {231-236}, publisher = {Association for Computing Machinery}, series = {MMSys '20}, title = {PMData: A Sports Logging Dataset}, url = {https://doi.org/10.1145/3339825.3394926}, year = {2020}, } ```
aai530-group6/pmdata
[ "language:en", "license:cc-by-4.0", "health", "region:us" ]
2024-01-22T00:51:14+00:00
{"language": ["en"], "license": "cc-by-4.0", "pretty_name": "pmdata", "tags": ["health"]}
2024-01-22T03:55:50+00:00
[]
[ "en" ]
TAGS #language-English #license-cc-by-4.0 #health #region-us
# PMData Dataset ## About Dataset Paper: <URL In this dataset, we present the PMData dataset that aims to combine traditional lifelogging with sports activity logging. Such a dataset enables the development of several interesting analysis applications, e.g., where additional sports data can be used to predict and analyze everyday developments like a person's weight and sleep patterns, and where traditional lifelog data can be used in a sports context to predict an athletes performance. In this respect, we have used the Fitbit Versa 2 smartwatch wristband, the PMSys sports logging app a and Google forms for the data collection, and PMData contains logging data for 5 months from 16 persons. Our initial experiments show that such analyzes are possible, but there are still large rooms for improvements. ### Dataset Details The structure of the main folder: Each participant's folder (pXX) contains: - 'fitbit' [folder] - 'URL': Shows how many calories the person have burned the last minute. - 'URL': Gives the distance moved per minute. Distance seems to be in centimeters. - 'URL': Describes each activity in more detail. It contains the date with start and stop time, time in different activity levels, type of activity and various performance metrics depending a bit on type of exercise, e.g., for running, it contains distance, time, steps, calories, speed and pace. - 'heart_rate.json': Shows the number of heart beats per minute (bpm) at a given time. - 'lightly_active_minutes.json': Sums up the number of lightly active minutes per day. - 'moderately_active_minutes.json': Sums up the number of moderately active minutes per day. - 'resting_heart_rate.json': Gives the resting heart rate per day. - 'sedentary_minutes.json': Sums up the number of sedentary minutes per day. - 'sleep_score.csv': Helps understand the sleep each night so you can see trends in the sleep patterns. It contains an overall 0-100 score made up from composition, revitalization and duration scores, the number of deep sleep minutes, the resting heart rate and a restlessness score. - 'URL': A per sleep breakdown of the sleep into periods of light, deep, rem sleeps and time awake. - 'URL': Displays the number of steps per minute. - 'time_in_heart_rate_zones.json': Gives the number of minutes in different heart rate zones. Using the common formula of 220 minus your age, Fitbit will calculate your maximum heart rate and then create three target heart rate zones fat burn (50 to 69 percent of your max heart rate), cardio (70 to 84 percent of your max heart rate), and peak (85 to 100 percent of your max heart rate) - based off that number. - 'very_active_minutes.json': Sums up the number of very active minutes per day. - 'googledocs' [folder] - 'URL': Contains one line per report including the date reported for, a timestamp of the report submission time, the eaten meals (breakfast, lunch, dinner and evening meal), the participants weight this day, the number of glasses drunk, and whether one has consumed alcohol. - 'pmsys' [folder] - 'URL': Shows injuries with a time and date and corresponding injury locations and a minor and major severity. - 'URL': Contains a training session’s end-time, type of activity, the perceived exertion (RPE), and the duration in the number of minutes. This is, for example, used to calculate the sessions training load or sRPE (RPE×duration). - 'URL': Includes parameters like time and date, fatigue, mood, readiness, sleep duration (number of hours), sleep quality, soreness (and soreness area), and stress. Fatigue, sleep qual-ity, soreness, stress, and mood all have a 1-5 scale. The score 3 is normal, and 1-2 are scores below normal and 4-5 are scores above normal. Sleep length is just a measure of how long the sleep was in hours, and readiness (scale 0-10) is an overall subjective measure of how ready are you to exercise, i.e., 0 means not ready at all and 10 indicates that you cannot feel any better and are ready for anything! - 'URL': Participants 1, 3 and 5 have taken pictures of everything they have eaten except water during 2 months (February and March). There are food images included in this .zip file, and information about day and time is given in the image header. The participants used their own mobile cameras to collect the images (Iphone 6s, Iphone X and Iphone XS). The standard export function of the MacOS Photos software with full quality was used to export the images. ### Term of use The license for the PMData dataset is Attribution-NonCommercial 4.0 International. More information can be found here: <URL
[ "# PMData Dataset", "## About Dataset\n\nPaper: <URL\n\nIn this dataset, we present the PMData dataset that aims to combine traditional lifelogging with sports activity logging. Such a dataset enables the development of several interesting analysis applications, e.g., where additional sports data can be used to predict and analyze everyday developments like a person's weight and sleep patterns, and where traditional lifelog data can be used in a sports context to predict an athletes performance. In this respect, we have used the Fitbit Versa 2 smartwatch wristband, the PMSys sports logging app a and Google forms for the data collection, and PMData contains logging data for 5 months from 16 persons. Our initial experiments show that such analyzes are possible, but there are still large rooms for improvements.", "### Dataset Details\n\nThe structure of the main folder:\n\n\n\nEach participant's folder (pXX) contains:\n\n- 'fitbit' [folder]\n - 'URL': Shows how many calories the person have burned the last minute.\n - 'URL': Gives the distance moved per minute. Distance seems to be in centimeters.\n - 'URL': Describes each activity in more detail. It contains the date with start and stop time, time in different activity levels, type of activity and various performance metrics depending a bit on type of exercise, e.g., for running, it contains distance, time, steps, calories, speed and pace.\n - 'heart_rate.json': Shows the number of heart beats per minute (bpm) at a given time.\n - 'lightly_active_minutes.json': Sums up the number of lightly active minutes per day.\n - 'moderately_active_minutes.json': Sums up the number of moderately active minutes per day.\n - 'resting_heart_rate.json': Gives the resting heart rate per day.\n - 'sedentary_minutes.json': Sums up the number of sedentary minutes per day.\n - 'sleep_score.csv': Helps understand the sleep each night so you can see trends in the sleep patterns. It contains an overall 0-100 score made up from composition, revitalization and duration scores, the number of deep sleep minutes, the resting heart rate and a restlessness score.\n - 'URL': A per sleep breakdown of the sleep into periods of light, deep, rem sleeps and time awake.\n - 'URL': Displays the number of steps per minute.\n - 'time_in_heart_rate_zones.json': Gives the number of minutes in different heart rate zones. Using the common formula of 220 minus your age, Fitbit will calculate your maximum heart rate and then create three target heart rate zones fat burn (50 to 69 percent of your max heart rate), cardio (70 to 84 percent of your max heart rate), and peak (85 to 100 percent of your max heart rate) - based off that number.\n - 'very_active_minutes.json': Sums up the number of very active minutes per day.\n\n- 'googledocs' [folder]\n - 'URL': Contains one line per report including the date reported for, a timestamp of the report submission time, the eaten meals (breakfast, lunch, dinner and evening meal), the participants weight this day, the number of glasses drunk, and whether one has consumed alcohol.\n\n- 'pmsys' [folder]\n - 'URL': Shows injuries with a time and date and corresponding injury locations and a minor and major severity.\n - 'URL': Contains a training session’s end-time, type of activity, the perceived exertion (RPE), and the duration in the number of minutes. This is, for example, used to calculate the sessions training load or sRPE (RPE×duration).\n - 'URL': Includes parameters like time and date, fatigue, mood, readiness, sleep duration (number of hours), sleep quality, soreness (and soreness area), and stress. Fatigue, sleep qual-ity, soreness, stress, and mood all have a 1-5 scale. The score 3 is normal, and 1-2 are scores below normal and 4-5 are scores above normal. Sleep length is just a measure of how long the sleep was in hours, and readiness (scale 0-10) is an overall subjective measure of how ready are you to exercise, i.e., 0 means not ready at all and 10 indicates that you cannot feel any better and are ready for anything!\n\n- 'URL': Participants 1, 3 and 5 have taken pictures of everything they have eaten except water during 2 months (February and March). There are food images included in this .zip file, and information about day and time is given in the image header. The participants used their own mobile cameras to collect the images (Iphone 6s, Iphone X and Iphone XS). The standard export function of the MacOS Photos software with full quality was used to export the images.", "### Term of use\n\nThe license for the PMData dataset is Attribution-NonCommercial 4.0 International. More information can be found here: <URL" ]
[ "TAGS\n#language-English #license-cc-by-4.0 #health #region-us \n", "# PMData Dataset", "## About Dataset\n\nPaper: <URL\n\nIn this dataset, we present the PMData dataset that aims to combine traditional lifelogging with sports activity logging. Such a dataset enables the development of several interesting analysis applications, e.g., where additional sports data can be used to predict and analyze everyday developments like a person's weight and sleep patterns, and where traditional lifelog data can be used in a sports context to predict an athletes performance. In this respect, we have used the Fitbit Versa 2 smartwatch wristband, the PMSys sports logging app a and Google forms for the data collection, and PMData contains logging data for 5 months from 16 persons. Our initial experiments show that such analyzes are possible, but there are still large rooms for improvements.", "### Dataset Details\n\nThe structure of the main folder:\n\n\n\nEach participant's folder (pXX) contains:\n\n- 'fitbit' [folder]\n - 'URL': Shows how many calories the person have burned the last minute.\n - 'URL': Gives the distance moved per minute. Distance seems to be in centimeters.\n - 'URL': Describes each activity in more detail. It contains the date with start and stop time, time in different activity levels, type of activity and various performance metrics depending a bit on type of exercise, e.g., for running, it contains distance, time, steps, calories, speed and pace.\n - 'heart_rate.json': Shows the number of heart beats per minute (bpm) at a given time.\n - 'lightly_active_minutes.json': Sums up the number of lightly active minutes per day.\n - 'moderately_active_minutes.json': Sums up the number of moderately active minutes per day.\n - 'resting_heart_rate.json': Gives the resting heart rate per day.\n - 'sedentary_minutes.json': Sums up the number of sedentary minutes per day.\n - 'sleep_score.csv': Helps understand the sleep each night so you can see trends in the sleep patterns. It contains an overall 0-100 score made up from composition, revitalization and duration scores, the number of deep sleep minutes, the resting heart rate and a restlessness score.\n - 'URL': A per sleep breakdown of the sleep into periods of light, deep, rem sleeps and time awake.\n - 'URL': Displays the number of steps per minute.\n - 'time_in_heart_rate_zones.json': Gives the number of minutes in different heart rate zones. Using the common formula of 220 minus your age, Fitbit will calculate your maximum heart rate and then create three target heart rate zones fat burn (50 to 69 percent of your max heart rate), cardio (70 to 84 percent of your max heart rate), and peak (85 to 100 percent of your max heart rate) - based off that number.\n - 'very_active_minutes.json': Sums up the number of very active minutes per day.\n\n- 'googledocs' [folder]\n - 'URL': Contains one line per report including the date reported for, a timestamp of the report submission time, the eaten meals (breakfast, lunch, dinner and evening meal), the participants weight this day, the number of glasses drunk, and whether one has consumed alcohol.\n\n- 'pmsys' [folder]\n - 'URL': Shows injuries with a time and date and corresponding injury locations and a minor and major severity.\n - 'URL': Contains a training session’s end-time, type of activity, the perceived exertion (RPE), and the duration in the number of minutes. This is, for example, used to calculate the sessions training load or sRPE (RPE×duration).\n - 'URL': Includes parameters like time and date, fatigue, mood, readiness, sleep duration (number of hours), sleep quality, soreness (and soreness area), and stress. Fatigue, sleep qual-ity, soreness, stress, and mood all have a 1-5 scale. The score 3 is normal, and 1-2 are scores below normal and 4-5 are scores above normal. Sleep length is just a measure of how long the sleep was in hours, and readiness (scale 0-10) is an overall subjective measure of how ready are you to exercise, i.e., 0 means not ready at all and 10 indicates that you cannot feel any better and are ready for anything!\n\n- 'URL': Participants 1, 3 and 5 have taken pictures of everything they have eaten except water during 2 months (February and March). There are food images included in this .zip file, and information about day and time is given in the image header. The participants used their own mobile cameras to collect the images (Iphone 6s, Iphone X and Iphone XS). The standard export function of the MacOS Photos software with full quality was used to export the images.", "### Term of use\n\nThe license for the PMData dataset is Attribution-NonCommercial 4.0 International. More information can be found here: <URL" ]
870e6dc75de4ae993b10e23fcc69837f94386cc6
# Dataset Card for Dataset Name <!-- Provide a quick summary of the dataset. --> This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1). ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
LeeDaeSeong/HPMP
[ "region:us" ]
2024-01-22T00:54:11+00:00
{}
2024-01-22T04:47:26+00:00
[]
[]
TAGS #region-us
# Dataset Card for Dataset Name This dataset card aims to be a base template for new datasets. It has been generated using this raw template. ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Dataset Name\n\n\n\nThis dataset card aims to be a base template for new datasets. It has been generated using this raw template.", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Dataset Name\n\n\n\nThis dataset card aims to be a base template for new datasets. It has been generated using this raw template.", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
1f8165f7dd18b232a77c0427f9f1fa51378e2bdc
# Dataset Card for CHOCOLATE - [Dataset Description](https://huggingface.co/datasets/khhuang/CHOCOLATE/blob/main/README.md#dataset-description) - [Paper Information](https://huggingface.co/datasets/khhuang/CHOCOLATE/blob/main/README.md#paper-information) - [Citation](https://huggingface.co/datasets/khhuang/CHOCOLATE/blob/main/README.md#citation) ## Dataset Description **CHOCOLATE** is a benchmark for detecting and correcting factual inconsistency in generated chart captions. It consists of captions produced by six most advanced models, which are categorized into three subsets: - **LVLM**: GPT-4V, Bard (before Gemini) - **LLM-based Pipeline**: DePlot + GPT-4 - **Fine-tuned Model**: ChartT5, MatCha, UniChart The charts are from two datasets: VisText and the Pew split of Chart-to-Text. In total, **CHOCOLATE** consists of **1,187 examples**. Each instance in **CHOCOLATE** consists of a caption generated by one of the model and the annotations of the factual errors for each caption sentence. ## Paper Information - Paper: https://arxiv.org/abs/2312.10160 - Code: https://github.com/khuangaf/CHOCOLATE/ - Project: https://khuangaf.github.io/CHOCOLATE ## Citation If you use the **CHOCOLATE** dataset in your work, please kindly cite the paper using this BibTeX: ``` @misc{huang-etal-2023-do, title = "Do LVLMs Understand Charts? Analyzing and Correcting Factual Errors in Chart Captioning", author = "Huang, Kung-Hsiang and Zhou, Mingyang and Chan, Hou Pong and Fung, Yi R. and Wang, Zhenhailong and Zhang, Lingyu and Chang, Shih-Fu and Ji, Heng", year={2023}, eprint={2312.10160}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
khhuang/CHOCOLATE
[ "annotations_creators:expert-generated", "annotations_creators:found", "language_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "language:en", "license:apache-2.0", "chart", "plot", "chart-to-text", "vistext", "statista", "pew", "chart-understanding", "chart-captioning", "chart-summarization", "document-image", "arxiv:2312.10160", "region:us" ]
2024-01-22T01:27:40+00:00
{"annotations_creators": ["expert-generated", "found"], "language_creators": ["expert-generated", "found"], "language": ["en"], "license": "apache-2.0", "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "paperswithcode_id": "chocolate", "pretty_name": "CHOCOLATE", "tags": ["chart", "plot", "chart-to-text", "vistext", "statista", "pew", "chart-understanding", "chart-captioning", "chart-summarization", "document-image"], "configs": [{"config_name": "default", "data_files": [{"split": "test", "path": "chocolate.json"}]}]}
2024-01-22T06:04:42+00:00
[ "2312.10160" ]
[ "en" ]
TAGS #annotations_creators-expert-generated #annotations_creators-found #language_creators-expert-generated #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #language-English #license-apache-2.0 #chart #plot #chart-to-text #vistext #statista #pew #chart-understanding #chart-captioning #chart-summarization #document-image #arxiv-2312.10160 #region-us
# Dataset Card for CHOCOLATE - Dataset Description - Paper Information - Citation ## Dataset Description CHOCOLATE is a benchmark for detecting and correcting factual inconsistency in generated chart captions. It consists of captions produced by six most advanced models, which are categorized into three subsets: - LVLM: GPT-4V, Bard (before Gemini) - LLM-based Pipeline: DePlot + GPT-4 - Fine-tuned Model: ChartT5, MatCha, UniChart The charts are from two datasets: VisText and the Pew split of Chart-to-Text. In total, CHOCOLATE consists of 1,187 examples. Each instance in CHOCOLATE consists of a caption generated by one of the model and the annotations of the factual errors for each caption sentence. ## Paper Information - Paper: URL - Code: URL - Project: URL If you use the CHOCOLATE dataset in your work, please kindly cite the paper using this BibTeX:
[ "# Dataset Card for CHOCOLATE\n\n- Dataset Description\n- Paper Information\n- Citation", "## Dataset Description\n\nCHOCOLATE is a benchmark for detecting and correcting factual inconsistency in generated chart captions. It consists of captions produced by six most advanced models, which are categorized into three subsets:\n\n- LVLM: GPT-4V, Bard (before Gemini)\n- LLM-based Pipeline: DePlot + GPT-4\n- Fine-tuned Model: ChartT5, MatCha, UniChart\n\n\nThe charts are from two datasets: VisText and the Pew split of Chart-to-Text. In total, CHOCOLATE consists of 1,187 examples. Each instance in CHOCOLATE consists of a caption generated by one of the model and the annotations of the factual errors for each caption sentence.", "## Paper Information\n\n- Paper: URL\n- Code: URL\n- Project: URL\n\n\nIf you use the CHOCOLATE dataset in your work, please kindly cite the paper using this BibTeX:" ]
[ "TAGS\n#annotations_creators-expert-generated #annotations_creators-found #language_creators-expert-generated #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #language-English #license-apache-2.0 #chart #plot #chart-to-text #vistext #statista #pew #chart-understanding #chart-captioning #chart-summarization #document-image #arxiv-2312.10160 #region-us \n", "# Dataset Card for CHOCOLATE\n\n- Dataset Description\n- Paper Information\n- Citation", "## Dataset Description\n\nCHOCOLATE is a benchmark for detecting and correcting factual inconsistency in generated chart captions. It consists of captions produced by six most advanced models, which are categorized into three subsets:\n\n- LVLM: GPT-4V, Bard (before Gemini)\n- LLM-based Pipeline: DePlot + GPT-4\n- Fine-tuned Model: ChartT5, MatCha, UniChart\n\n\nThe charts are from two datasets: VisText and the Pew split of Chart-to-Text. In total, CHOCOLATE consists of 1,187 examples. Each instance in CHOCOLATE consists of a caption generated by one of the model and the annotations of the factual errors for each caption sentence.", "## Paper Information\n\n- Paper: URL\n- Code: URL\n- Project: URL\n\n\nIf you use the CHOCOLATE dataset in your work, please kindly cite the paper using this BibTeX:" ]
a88419d84aa7192c680bb2116356e4b0ea135ee0
I modified https://huggingface.co/datasets/IlyaGusev/pippa_scored so that it can be used as training data. http://openerotica.etsy.com/ https://www.patreon.com/openerotica
openerotica/pippa_scored2sharegpt
[ "license:apache-2.0", "region:us" ]
2024-01-22T01:31:35+00:00
{"license": "apache-2.0"}
2024-01-22T01:44:19+00:00
[]
[]
TAGS #license-apache-2.0 #region-us
I modified URL so that it can be used as training data. URL URL
[]
[ "TAGS\n#license-apache-2.0 #region-us \n" ]
063058fe9d1c385b10ec9d0febf7a10c3cf1ecda
# Pandora RLHF A Reinforcement Learning from Human Feedback (RLHF) dataset for Direct Preference Optimization (DPO) fine-tuning of the Pandora Large Language Model (LLM). The dataset is based on the [anthropic/hh-rlhf](https://huggingface.co/datasets/anthropic/hh-rlhf) dataset. ## Copyright and license Copyright (c) 2024, Danilo Peixoto Ferreira. All rights reserved. Project developed under a [BSD-3-Clause license](LICENSE.md).
danilopeixoto/pandora-rlhf
[ "task_categories:text-generation", "size_categories:100K<n<1M", "license:bsd-3-clause", "dpo", "fine-tuning", "rlhf", "region:us" ]
2024-01-22T01:32:36+00:00
{"license": "bsd-3-clause", "size_categories": ["100K<n<1M"], "task_categories": ["text-generation"], "pretty_name": "Pandora RLHF", "tags": ["dpo", "fine-tuning", "rlhf"]}
2024-01-22T01:35:26+00:00
[]
[]
TAGS #task_categories-text-generation #size_categories-100K<n<1M #license-bsd-3-clause #dpo #fine-tuning #rlhf #region-us
# Pandora RLHF A Reinforcement Learning from Human Feedback (RLHF) dataset for Direct Preference Optimization (DPO) fine-tuning of the Pandora Large Language Model (LLM). The dataset is based on the anthropic/hh-rlhf dataset. ## Copyright and license Copyright (c) 2024, Danilo Peixoto Ferreira. All rights reserved. Project developed under a BSD-3-Clause license.
[ "# Pandora RLHF\n\nA Reinforcement Learning from Human Feedback (RLHF) dataset for Direct Preference Optimization (DPO) fine-tuning of the Pandora Large Language Model (LLM).\n\nThe dataset is based on the anthropic/hh-rlhf dataset.", "## Copyright and license\n\nCopyright (c) 2024, Danilo Peixoto Ferreira. All rights reserved.\n\nProject developed under a BSD-3-Clause license." ]
[ "TAGS\n#task_categories-text-generation #size_categories-100K<n<1M #license-bsd-3-clause #dpo #fine-tuning #rlhf #region-us \n", "# Pandora RLHF\n\nA Reinforcement Learning from Human Feedback (RLHF) dataset for Direct Preference Optimization (DPO) fine-tuning of the Pandora Large Language Model (LLM).\n\nThe dataset is based on the anthropic/hh-rlhf dataset.", "## Copyright and license\n\nCopyright (c) 2024, Danilo Peixoto Ferreira. All rights reserved.\n\nProject developed under a BSD-3-Clause license." ]
097d3ed2baeb2cbc02ca73f0fd9d2c9956a5e560
# Dataset Card for Evaluation run of Vasanth/Beast-Soul <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [Vasanth/Beast-Soul](https://huggingface.co/Vasanth/Beast-Soul) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_Vasanth__Beast-Soul", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-22T01:37:25.115466](https://huggingface.co/datasets/open-llm-leaderboard/details_Vasanth__Beast-Soul/blob/main/results_2024-01-22T01-37-25.115466.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.6534978697420841, "acc_stderr": 0.0320972689830544, "acc_norm": 0.6529230512023926, "acc_norm_stderr": 0.032767010735709305, "mc1": 0.5140758873929009, "mc1_stderr": 0.01749656371704278, "mc2": 0.6675667113390573, "mc2_stderr": 0.015196423862548429 }, "harness|arc:challenge|25": { "acc": 0.6979522184300341, "acc_stderr": 0.013417519144716417, "acc_norm": 0.7252559726962458, "acc_norm_stderr": 0.013044617212771227 }, "harness|hellaswag|10": { "acc": 0.7096195976897033, "acc_stderr": 0.0045301018699731915, "acc_norm": 0.8814977096195977, "acc_norm_stderr": 0.003225414119289712 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.33, "acc_stderr": 0.04725815626252605, "acc_norm": 0.33, "acc_norm_stderr": 0.04725815626252605 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6592592592592592, "acc_stderr": 0.04094376269996792, "acc_norm": 0.6592592592592592, "acc_norm_stderr": 0.04094376269996792 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.7039473684210527, "acc_stderr": 0.03715062154998904, "acc_norm": 0.7039473684210527, "acc_norm_stderr": 0.03715062154998904 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.65, "acc_stderr": 0.0479372485441102, "acc_norm": 0.65, "acc_norm_stderr": 0.0479372485441102 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.7169811320754716, "acc_stderr": 0.027724236492700914, "acc_norm": 0.7169811320754716, "acc_norm_stderr": 0.027724236492700914 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.7708333333333334, "acc_stderr": 0.03514697467862388, "acc_norm": 0.7708333333333334, "acc_norm_stderr": 0.03514697467862388 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.46, "acc_stderr": 0.05009082659620333, "acc_norm": 0.46, "acc_norm_stderr": 0.05009082659620333 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.51, "acc_stderr": 0.05024183937956911, "acc_norm": 0.51, "acc_norm_stderr": 0.05024183937956911 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.34, "acc_stderr": 0.04760952285695235, "acc_norm": 0.34, "acc_norm_stderr": 0.04760952285695235 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6416184971098265, "acc_stderr": 0.036563436533531585, "acc_norm": 0.6416184971098265, "acc_norm_stderr": 0.036563436533531585 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.4215686274509804, "acc_stderr": 0.049135952012744975, "acc_norm": 0.4215686274509804, "acc_norm_stderr": 0.049135952012744975 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.76, "acc_stderr": 0.04292346959909283, "acc_norm": 0.76, "acc_norm_stderr": 0.04292346959909283 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5787234042553191, "acc_stderr": 0.03227834510146268, "acc_norm": 0.5787234042553191, "acc_norm_stderr": 0.03227834510146268 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.49122807017543857, "acc_stderr": 0.04702880432049615, "acc_norm": 0.49122807017543857, "acc_norm_stderr": 0.04702880432049615 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.5517241379310345, "acc_stderr": 0.04144311810878152, "acc_norm": 0.5517241379310345, "acc_norm_stderr": 0.04144311810878152 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.43386243386243384, "acc_stderr": 0.02552503438247489, "acc_norm": 0.43386243386243384, "acc_norm_stderr": 0.02552503438247489 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.4523809523809524, "acc_stderr": 0.044518079590553275, "acc_norm": 0.4523809523809524, "acc_norm_stderr": 0.044518079590553275 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.34, "acc_stderr": 0.04760952285695235, "acc_norm": 0.34, "acc_norm_stderr": 0.04760952285695235 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.7806451612903226, "acc_stderr": 0.023540799358723295, "acc_norm": 0.7806451612903226, "acc_norm_stderr": 0.023540799358723295 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.5024630541871922, "acc_stderr": 0.035179450386910616, "acc_norm": 0.5024630541871922, "acc_norm_stderr": 0.035179450386910616 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.7, "acc_stderr": 0.046056618647183814, "acc_norm": 0.7, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7757575757575758, "acc_stderr": 0.03256866661681102, "acc_norm": 0.7757575757575758, "acc_norm_stderr": 0.03256866661681102 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.7878787878787878, "acc_stderr": 0.029126522834586815, "acc_norm": 0.7878787878787878, "acc_norm_stderr": 0.029126522834586815 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.8963730569948186, "acc_stderr": 0.02199531196364424, "acc_norm": 0.8963730569948186, "acc_norm_stderr": 0.02199531196364424 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.6717948717948717, "acc_stderr": 0.023807633198657266, "acc_norm": 0.6717948717948717, "acc_norm_stderr": 0.023807633198657266 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.35555555555555557, "acc_stderr": 0.029185714949857416, "acc_norm": 0.35555555555555557, "acc_norm_stderr": 0.029185714949857416 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.680672268907563, "acc_stderr": 0.0302839955258844, "acc_norm": 0.680672268907563, "acc_norm_stderr": 0.0302839955258844 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.3443708609271523, "acc_stderr": 0.038796870240733264, "acc_norm": 0.3443708609271523, "acc_norm_stderr": 0.038796870240733264 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8495412844036697, "acc_stderr": 0.015328563932669235, "acc_norm": 0.8495412844036697, "acc_norm_stderr": 0.015328563932669235 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.5092592592592593, "acc_stderr": 0.034093869469927006, "acc_norm": 0.5092592592592593, "acc_norm_stderr": 0.034093869469927006 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.8382352941176471, "acc_stderr": 0.025845017986926917, "acc_norm": 0.8382352941176471, "acc_norm_stderr": 0.025845017986926917 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7974683544303798, "acc_stderr": 0.026160568246601443, "acc_norm": 0.7974683544303798, "acc_norm_stderr": 0.026160568246601443 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6860986547085202, "acc_stderr": 0.031146796482972465, "acc_norm": 0.6860986547085202, "acc_norm_stderr": 0.031146796482972465 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.8015267175572519, "acc_stderr": 0.03498149385462472, "acc_norm": 0.8015267175572519, "acc_norm_stderr": 0.03498149385462472 }, "harness|hendrycksTest-international_law|5": { "acc": 0.7768595041322314, "acc_stderr": 0.03800754475228732, "acc_norm": 0.7768595041322314, "acc_norm_stderr": 0.03800754475228732 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.7592592592592593, "acc_stderr": 0.04133119440243839, "acc_norm": 0.7592592592592593, "acc_norm_stderr": 0.04133119440243839 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7668711656441718, "acc_stderr": 0.0332201579577674, "acc_norm": 0.7668711656441718, "acc_norm_stderr": 0.0332201579577674 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.44642857142857145, "acc_stderr": 0.04718471485219588, "acc_norm": 0.44642857142857145, "acc_norm_stderr": 0.04718471485219588 }, "harness|hendrycksTest-management|5": { "acc": 0.7864077669902912, "acc_stderr": 0.040580420156460344, "acc_norm": 0.7864077669902912, "acc_norm_stderr": 0.040580420156460344 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8888888888888888, "acc_stderr": 0.020588491316092375, "acc_norm": 0.8888888888888888, "acc_norm_stderr": 0.020588491316092375 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.71, "acc_stderr": 0.045604802157206845, "acc_norm": 0.71, "acc_norm_stderr": 0.045604802157206845 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.8250319284802043, "acc_stderr": 0.013586619219903341, "acc_norm": 0.8250319284802043, "acc_norm_stderr": 0.013586619219903341 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.7427745664739884, "acc_stderr": 0.02353292543104429, "acc_norm": 0.7427745664739884, "acc_norm_stderr": 0.02353292543104429 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.441340782122905, "acc_stderr": 0.016607021781050876, "acc_norm": 0.441340782122905, "acc_norm_stderr": 0.016607021781050876 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.7156862745098039, "acc_stderr": 0.02582916327275748, "acc_norm": 0.7156862745098039, "acc_norm_stderr": 0.02582916327275748 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.707395498392283, "acc_stderr": 0.02583989833487798, "acc_norm": 0.707395498392283, "acc_norm_stderr": 0.02583989833487798 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.7561728395061729, "acc_stderr": 0.023891879541959607, "acc_norm": 0.7561728395061729, "acc_norm_stderr": 0.023891879541959607 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.49645390070921985, "acc_stderr": 0.02982674915328092, "acc_norm": 0.49645390070921985, "acc_norm_stderr": 0.02982674915328092 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.470013037809648, "acc_stderr": 0.012747248967079069, "acc_norm": 0.470013037809648, "acc_norm_stderr": 0.012747248967079069 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.6691176470588235, "acc_stderr": 0.02858270975389845, "acc_norm": 0.6691176470588235, "acc_norm_stderr": 0.02858270975389845 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6748366013071896, "acc_stderr": 0.018950886770806315, "acc_norm": 0.6748366013071896, "acc_norm_stderr": 0.018950886770806315 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6727272727272727, "acc_stderr": 0.0449429086625209, "acc_norm": 0.6727272727272727, "acc_norm_stderr": 0.0449429086625209 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.726530612244898, "acc_stderr": 0.028535560337128448, "acc_norm": 0.726530612244898, "acc_norm_stderr": 0.028535560337128448 }, "harness|hendrycksTest-sociology|5": { "acc": 0.8407960199004975, "acc_stderr": 0.025870646766169136, "acc_norm": 0.8407960199004975, "acc_norm_stderr": 0.025870646766169136 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.85, "acc_stderr": 0.0358870281282637, "acc_norm": 0.85, "acc_norm_stderr": 0.0358870281282637 }, "harness|hendrycksTest-virology|5": { "acc": 0.5602409638554217, "acc_stderr": 0.03864139923699121, "acc_norm": 0.5602409638554217, "acc_norm_stderr": 0.03864139923699121 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8421052631578947, "acc_stderr": 0.027966785859160896, "acc_norm": 0.8421052631578947, "acc_norm_stderr": 0.027966785859160896 }, "harness|truthfulqa:mc|0": { "mc1": 0.5140758873929009, "mc1_stderr": 0.01749656371704278, "mc2": 0.6675667113390573, "mc2_stderr": 0.015196423862548429 }, "harness|winogrande|5": { "acc": 0.8342541436464088, "acc_stderr": 0.010450899545370623 }, "harness|gsm8k|5": { "acc": 0.7058377558756633, "acc_stderr": 0.012551285331470152 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_Vasanth__Beast-Soul
[ "region:us" ]
2024-01-22T01:39:43+00:00
{"pretty_name": "Evaluation run of Vasanth/Beast-Soul", "dataset_summary": "Dataset automatically created during the evaluation run of model [Vasanth/Beast-Soul](https://huggingface.co/Vasanth/Beast-Soul) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_Vasanth__Beast-Soul\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-22T01:37:25.115466](https://huggingface.co/datasets/open-llm-leaderboard/details_Vasanth__Beast-Soul/blob/main/results_2024-01-22T01-37-25.115466.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6534978697420841,\n \"acc_stderr\": 0.0320972689830544,\n \"acc_norm\": 0.6529230512023926,\n \"acc_norm_stderr\": 0.032767010735709305,\n \"mc1\": 0.5140758873929009,\n \"mc1_stderr\": 0.01749656371704278,\n \"mc2\": 0.6675667113390573,\n \"mc2_stderr\": 0.015196423862548429\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.6979522184300341,\n \"acc_stderr\": 0.013417519144716417,\n \"acc_norm\": 0.7252559726962458,\n \"acc_norm_stderr\": 0.013044617212771227\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.7096195976897033,\n \"acc_stderr\": 0.0045301018699731915,\n \"acc_norm\": 0.8814977096195977,\n \"acc_norm_stderr\": 0.003225414119289712\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.33,\n \"acc_stderr\": 0.04725815626252605,\n \"acc_norm\": 0.33,\n \"acc_norm_stderr\": 0.04725815626252605\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6592592592592592,\n \"acc_stderr\": 0.04094376269996792,\n \"acc_norm\": 0.6592592592592592,\n \"acc_norm_stderr\": 0.04094376269996792\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.7039473684210527,\n \"acc_stderr\": 0.03715062154998904,\n \"acc_norm\": 0.7039473684210527,\n \"acc_norm_stderr\": 0.03715062154998904\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.65,\n \"acc_stderr\": 0.0479372485441102,\n \"acc_norm\": 0.65,\n \"acc_norm_stderr\": 0.0479372485441102\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.7169811320754716,\n \"acc_stderr\": 0.027724236492700914,\n \"acc_norm\": 0.7169811320754716,\n \"acc_norm_stderr\": 0.027724236492700914\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7708333333333334,\n \"acc_stderr\": 0.03514697467862388,\n \"acc_norm\": 0.7708333333333334,\n \"acc_norm_stderr\": 0.03514697467862388\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.46,\n \"acc_stderr\": 0.05009082659620333,\n \"acc_norm\": 0.46,\n \"acc_norm_stderr\": 0.05009082659620333\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.51,\n \"acc_stderr\": 0.05024183937956911,\n \"acc_norm\": 0.51,\n \"acc_norm_stderr\": 0.05024183937956911\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.34,\n \"acc_stderr\": 0.04760952285695235,\n \"acc_norm\": 0.34,\n \"acc_norm_stderr\": 0.04760952285695235\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6416184971098265,\n \"acc_stderr\": 0.036563436533531585,\n \"acc_norm\": 0.6416184971098265,\n \"acc_norm_stderr\": 0.036563436533531585\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.4215686274509804,\n \"acc_stderr\": 0.049135952012744975,\n \"acc_norm\": 0.4215686274509804,\n \"acc_norm_stderr\": 0.049135952012744975\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.76,\n \"acc_stderr\": 0.04292346959909283,\n \"acc_norm\": 0.76,\n \"acc_norm_stderr\": 0.04292346959909283\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5787234042553191,\n \"acc_stderr\": 0.03227834510146268,\n \"acc_norm\": 0.5787234042553191,\n \"acc_norm_stderr\": 0.03227834510146268\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.49122807017543857,\n \"acc_stderr\": 0.04702880432049615,\n \"acc_norm\": 0.49122807017543857,\n \"acc_norm_stderr\": 0.04702880432049615\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5517241379310345,\n \"acc_stderr\": 0.04144311810878152,\n \"acc_norm\": 0.5517241379310345,\n \"acc_norm_stderr\": 0.04144311810878152\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.43386243386243384,\n \"acc_stderr\": 0.02552503438247489,\n \"acc_norm\": 0.43386243386243384,\n \"acc_norm_stderr\": 0.02552503438247489\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.4523809523809524,\n \"acc_stderr\": 0.044518079590553275,\n \"acc_norm\": 0.4523809523809524,\n \"acc_norm_stderr\": 0.044518079590553275\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.34,\n \"acc_stderr\": 0.04760952285695235,\n \"acc_norm\": 0.34,\n \"acc_norm_stderr\": 0.04760952285695235\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7806451612903226,\n \"acc_stderr\": 0.023540799358723295,\n \"acc_norm\": 0.7806451612903226,\n \"acc_norm_stderr\": 0.023540799358723295\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.5024630541871922,\n \"acc_stderr\": 0.035179450386910616,\n \"acc_norm\": 0.5024630541871922,\n \"acc_norm_stderr\": 0.035179450386910616\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.7,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.7,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7757575757575758,\n \"acc_stderr\": 0.03256866661681102,\n \"acc_norm\": 0.7757575757575758,\n \"acc_norm_stderr\": 0.03256866661681102\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7878787878787878,\n \"acc_stderr\": 0.029126522834586815,\n \"acc_norm\": 0.7878787878787878,\n \"acc_norm_stderr\": 0.029126522834586815\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8963730569948186,\n \"acc_stderr\": 0.02199531196364424,\n \"acc_norm\": 0.8963730569948186,\n \"acc_norm_stderr\": 0.02199531196364424\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6717948717948717,\n \"acc_stderr\": 0.023807633198657266,\n \"acc_norm\": 0.6717948717948717,\n \"acc_norm_stderr\": 0.023807633198657266\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.35555555555555557,\n \"acc_stderr\": 0.029185714949857416,\n \"acc_norm\": 0.35555555555555557,\n \"acc_norm_stderr\": 0.029185714949857416\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.680672268907563,\n \"acc_stderr\": 0.0302839955258844,\n \"acc_norm\": 0.680672268907563,\n \"acc_norm_stderr\": 0.0302839955258844\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.3443708609271523,\n \"acc_stderr\": 0.038796870240733264,\n \"acc_norm\": 0.3443708609271523,\n \"acc_norm_stderr\": 0.038796870240733264\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8495412844036697,\n \"acc_stderr\": 0.015328563932669235,\n \"acc_norm\": 0.8495412844036697,\n \"acc_norm_stderr\": 0.015328563932669235\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.5092592592592593,\n \"acc_stderr\": 0.034093869469927006,\n \"acc_norm\": 0.5092592592592593,\n \"acc_norm_stderr\": 0.034093869469927006\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.8382352941176471,\n \"acc_stderr\": 0.025845017986926917,\n \"acc_norm\": 0.8382352941176471,\n \"acc_norm_stderr\": 0.025845017986926917\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7974683544303798,\n \"acc_stderr\": 0.026160568246601443,\n \"acc_norm\": 0.7974683544303798,\n \"acc_norm_stderr\": 0.026160568246601443\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6860986547085202,\n \"acc_stderr\": 0.031146796482972465,\n \"acc_norm\": 0.6860986547085202,\n \"acc_norm_stderr\": 0.031146796482972465\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.8015267175572519,\n \"acc_stderr\": 0.03498149385462472,\n \"acc_norm\": 0.8015267175572519,\n \"acc_norm_stderr\": 0.03498149385462472\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.7768595041322314,\n \"acc_stderr\": 0.03800754475228732,\n \"acc_norm\": 0.7768595041322314,\n \"acc_norm_stderr\": 0.03800754475228732\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7592592592592593,\n \"acc_stderr\": 0.04133119440243839,\n \"acc_norm\": 0.7592592592592593,\n \"acc_norm_stderr\": 0.04133119440243839\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7668711656441718,\n \"acc_stderr\": 0.0332201579577674,\n \"acc_norm\": 0.7668711656441718,\n \"acc_norm_stderr\": 0.0332201579577674\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.44642857142857145,\n \"acc_stderr\": 0.04718471485219588,\n \"acc_norm\": 0.44642857142857145,\n \"acc_norm_stderr\": 0.04718471485219588\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7864077669902912,\n \"acc_stderr\": 0.040580420156460344,\n \"acc_norm\": 0.7864077669902912,\n \"acc_norm_stderr\": 0.040580420156460344\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8888888888888888,\n \"acc_stderr\": 0.020588491316092375,\n \"acc_norm\": 0.8888888888888888,\n \"acc_norm_stderr\": 0.020588491316092375\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.71,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\": 0.71,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8250319284802043,\n \"acc_stderr\": 0.013586619219903341,\n \"acc_norm\": 0.8250319284802043,\n \"acc_norm_stderr\": 0.013586619219903341\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7427745664739884,\n \"acc_stderr\": 0.02353292543104429,\n \"acc_norm\": 0.7427745664739884,\n \"acc_norm_stderr\": 0.02353292543104429\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.441340782122905,\n \"acc_stderr\": 0.016607021781050876,\n \"acc_norm\": 0.441340782122905,\n \"acc_norm_stderr\": 0.016607021781050876\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7156862745098039,\n \"acc_stderr\": 0.02582916327275748,\n \"acc_norm\": 0.7156862745098039,\n \"acc_norm_stderr\": 0.02582916327275748\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.707395498392283,\n \"acc_stderr\": 0.02583989833487798,\n \"acc_norm\": 0.707395498392283,\n \"acc_norm_stderr\": 0.02583989833487798\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.7561728395061729,\n \"acc_stderr\": 0.023891879541959607,\n \"acc_norm\": 0.7561728395061729,\n \"acc_norm_stderr\": 0.023891879541959607\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.49645390070921985,\n \"acc_stderr\": 0.02982674915328092,\n \"acc_norm\": 0.49645390070921985,\n \"acc_norm_stderr\": 0.02982674915328092\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.470013037809648,\n \"acc_stderr\": 0.012747248967079069,\n \"acc_norm\": 0.470013037809648,\n \"acc_norm_stderr\": 0.012747248967079069\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6691176470588235,\n \"acc_stderr\": 0.02858270975389845,\n \"acc_norm\": 0.6691176470588235,\n \"acc_norm_stderr\": 0.02858270975389845\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6748366013071896,\n \"acc_stderr\": 0.018950886770806315,\n \"acc_norm\": 0.6748366013071896,\n \"acc_norm_stderr\": 0.018950886770806315\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6727272727272727,\n \"acc_stderr\": 0.0449429086625209,\n \"acc_norm\": 0.6727272727272727,\n \"acc_norm_stderr\": 0.0449429086625209\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.726530612244898,\n \"acc_stderr\": 0.028535560337128448,\n \"acc_norm\": 0.726530612244898,\n \"acc_norm_stderr\": 0.028535560337128448\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8407960199004975,\n \"acc_stderr\": 0.025870646766169136,\n \"acc_norm\": 0.8407960199004975,\n \"acc_norm_stderr\": 0.025870646766169136\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.85,\n \"acc_stderr\": 0.0358870281282637,\n \"acc_norm\": 0.85,\n \"acc_norm_stderr\": 0.0358870281282637\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5602409638554217,\n \"acc_stderr\": 0.03864139923699121,\n \"acc_norm\": 0.5602409638554217,\n \"acc_norm_stderr\": 0.03864139923699121\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8421052631578947,\n \"acc_stderr\": 0.027966785859160896,\n \"acc_norm\": 0.8421052631578947,\n \"acc_norm_stderr\": 0.027966785859160896\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.5140758873929009,\n \"mc1_stderr\": 0.01749656371704278,\n \"mc2\": 0.6675667113390573,\n \"mc2_stderr\": 0.015196423862548429\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.8342541436464088,\n \"acc_stderr\": 0.010450899545370623\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.7058377558756633,\n \"acc_stderr\": 0.012551285331470152\n }\n}\n```", "repo_url": "https://huggingface.co/Vasanth/Beast-Soul", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|arc:challenge|25_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|gsm8k|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hellaswag|10_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T01-37-25.115466.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["**/details_harness|winogrande|5_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-22T01-37-25.115466.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_22T01_37_25.115466", "path": ["results_2024-01-22T01-37-25.115466.parquet"]}, {"split": "latest", "path": ["results_2024-01-22T01-37-25.115466.parquet"]}]}]}
2024-01-22T01:40:03+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of Vasanth/Beast-Soul Dataset automatically created during the evaluation run of model Vasanth/Beast-Soul on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-22T01:37:25.115466(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of Vasanth/Beast-Soul\n\n\n\nDataset automatically created during the evaluation run of model Vasanth/Beast-Soul on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T01:37:25.115466(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of Vasanth/Beast-Soul\n\n\n\nDataset automatically created during the evaluation run of model Vasanth/Beast-Soul on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T01:37:25.115466(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
95252d625728d3592265903306ccf4d49a4c4e83
--- language: - en license: odbl tags: - health - heart-disease - medical - machine-learning annotations_creators: - expert-generated language_creators: - expert-generated pretty_name: Heart Failure Prediction Dataset size_categories: - 1K<n<10K source_datasets: - original task_categories: - structured-data-classification task_ids: - binary-classification - health-data-analysis paperswithcode_id: heart-failure-prediction configs: - default dataset_info: features: - name: Age dtype: int32 - name: Sex dtype: string - name: ChestPainType dtype: string - name: RestingBP dtype: int32 - name: Cholesterol dtype: int32 - name: FastingBS dtype: int32 - name: RestingECG dtype: string - name: MaxHR dtype: int32 - name: ExerciseAngina dtype: string - name: Oldpeak dtype: float32 - name: ST_Slope dtype: string - name: HeartDisease dtype: int32 config_name: default splits: - name: total num_bytes: UNKNOWN num_examples: 918 download_size: UNKNOWN dataset_size: UNKNOWN train-eval-index: - config: default task: structured-data-classification task_id: binary-classification splits: train_split: train eval_split: validation col_mapping: Age: Age Sex: Sex ChestPainType: ChestPainType RestingBP: RestingBP Cholesterol: Cholesterol FastingBS: FastingBS RestingECG: RestingECG MaxHR: MaxHR ExerciseAngina: ExerciseAngina Oldpeak: Oldpeak ST_Slope: ST_Slope HeartDisease: HeartDisease metrics: - type: accuracy name: Accuracy - type: f1 name: F1 Score
aai530-group6/heart-failure-prediction-dataset
[ "region:us" ]
2024-01-22T01:46:08+00:00
{}
2024-01-22T02:16:19+00:00
[]
[]
TAGS #region-us
--- language: - en license: odbl tags: - health - heart-disease - medical - machine-learning annotations_creators: - expert-generated language_creators: - expert-generated pretty_name: Heart Failure Prediction Dataset size_categories: - 1K<n<10K source_datasets: - original task_categories: - structured-data-classification task_ids: - binary-classification - health-data-analysis paperswithcode_id: heart-failure-prediction configs: - default dataset_info: features: - name: Age dtype: int32 - name: Sex dtype: string - name: ChestPainType dtype: string - name: RestingBP dtype: int32 - name: Cholesterol dtype: int32 - name: FastingBS dtype: int32 - name: RestingECG dtype: string - name: MaxHR dtype: int32 - name: ExerciseAngina dtype: string - name: Oldpeak dtype: float32 - name: ST_Slope dtype: string - name: HeartDisease dtype: int32 config_name: default splits: - name: total num_bytes: UNKNOWN num_examples: 918 download_size: UNKNOWN dataset_size: UNKNOWN train-eval-index: - config: default task: structured-data-classification task_id: binary-classification splits: train_split: train eval_split: validation col_mapping: Age: Age Sex: Sex ChestPainType: ChestPainType RestingBP: RestingBP Cholesterol: Cholesterol FastingBS: FastingBS RestingECG: RestingECG MaxHR: MaxHR ExerciseAngina: ExerciseAngina Oldpeak: Oldpeak ST_Slope: ST_Slope HeartDisease: HeartDisease metrics: - type: accuracy name: Accuracy - type: f1 name: F1 Score
[]
[ "TAGS\n#region-us \n" ]
bc5530c11e28e3a879ae75413fc8b237ac3dc3e0
# Dataset Card for Evaluation run of Weyaxi/Stellaris-internlm2-20b-r128 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [Weyaxi/Stellaris-internlm2-20b-r128](https://huggingface.co/Weyaxi/Stellaris-internlm2-20b-r128) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_Weyaxi__Stellaris-internlm2-20b-r128", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-22T02:02:49.417178](https://huggingface.co/datasets/open-llm-leaderboard/details_Weyaxi__Stellaris-internlm2-20b-r128/blob/main/results_2024-01-22T02-02-49.417178.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.6473729518927601, "acc_stderr": 0.03165407821154855, "acc_norm": 0.6587026634697054, "acc_norm_stderr": 0.032520024648863555, "mc1": 0.3427172582619339, "mc1_stderr": 0.016614949385347032, "mc2": 0.5250446633100931, "mc2_stderr": 0.015325921720538403 }, "harness|arc:challenge|25": { "acc": 0.5767918088737202, "acc_stderr": 0.014438036220848029, "acc_norm": 0.6126279863481229, "acc_norm_stderr": 0.014235872487909869 }, "harness|hellaswag|10": { "acc": 0.6256721768571998, "acc_stderr": 0.004829598101635788, "acc_norm": 0.8174666401115316, "acc_norm_stderr": 0.0038549403270910537 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.42, "acc_stderr": 0.049604496374885836, "acc_norm": 0.42, "acc_norm_stderr": 0.049604496374885836 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.5777777777777777, "acc_stderr": 0.04266763404099582, "acc_norm": 0.5777777777777777, "acc_norm_stderr": 0.04266763404099582 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.7697368421052632, "acc_stderr": 0.03426059424403165, "acc_norm": 0.7697368421052632, "acc_norm_stderr": 0.03426059424403165 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.7, "acc_stderr": 0.046056618647183814, "acc_norm": 0.7, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.7283018867924528, "acc_stderr": 0.027377706624670713, "acc_norm": 0.7283018867924528, "acc_norm_stderr": 0.027377706624670713 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.7986111111111112, "acc_stderr": 0.03353647469713839, "acc_norm": 0.7986111111111112, "acc_norm_stderr": 0.03353647469713839 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.46, "acc_stderr": 0.05009082659620332, "acc_norm": 0.46, "acc_norm_stderr": 0.05009082659620332 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.56, "acc_stderr": 0.049888765156985884, "acc_norm": 0.56, "acc_norm_stderr": 0.049888765156985884 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.39, "acc_stderr": 0.04902071300001975, "acc_norm": 0.39, "acc_norm_stderr": 0.04902071300001975 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6820809248554913, "acc_stderr": 0.0355068398916558, "acc_norm": 0.6820809248554913, "acc_norm_stderr": 0.0355068398916558 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.37254901960784315, "acc_stderr": 0.04810840148082635, "acc_norm": 0.37254901960784315, "acc_norm_stderr": 0.04810840148082635 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.81, "acc_stderr": 0.039427724440366234, "acc_norm": 0.81, "acc_norm_stderr": 0.039427724440366234 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.6468085106382979, "acc_stderr": 0.031245325202761926, "acc_norm": 0.6468085106382979, "acc_norm_stderr": 0.031245325202761926 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.47368421052631576, "acc_stderr": 0.046970851366478626, "acc_norm": 0.47368421052631576, "acc_norm_stderr": 0.046970851366478626 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.6, "acc_stderr": 0.040824829046386284, "acc_norm": 0.6, "acc_norm_stderr": 0.040824829046386284 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.4497354497354497, "acc_stderr": 0.02562085704293665, "acc_norm": 0.4497354497354497, "acc_norm_stderr": 0.02562085704293665 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.46825396825396826, "acc_stderr": 0.04463112720677173, "acc_norm": 0.46825396825396826, "acc_norm_stderr": 0.04463112720677173 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.3, "acc_stderr": 0.046056618647183814, "acc_norm": 0.3, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.8161290322580645, "acc_stderr": 0.022037217340267822, "acc_norm": 0.8161290322580645, "acc_norm_stderr": 0.022037217340267822 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.5812807881773399, "acc_stderr": 0.034711928605184676, "acc_norm": 0.5812807881773399, "acc_norm_stderr": 0.034711928605184676 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.74, "acc_stderr": 0.0440844002276808, "acc_norm": 0.74, "acc_norm_stderr": 0.0440844002276808 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7878787878787878, "acc_stderr": 0.03192271569548302, "acc_norm": 0.7878787878787878, "acc_norm_stderr": 0.03192271569548302 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.8131313131313131, "acc_stderr": 0.02777253333421896, "acc_norm": 0.8131313131313131, "acc_norm_stderr": 0.02777253333421896 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.8860103626943006, "acc_stderr": 0.022935144053919436, "acc_norm": 0.8860103626943006, "acc_norm_stderr": 0.022935144053919436 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.6692307692307692, "acc_stderr": 0.023854795680971114, "acc_norm": 0.6692307692307692, "acc_norm_stderr": 0.023854795680971114 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.3, "acc_stderr": 0.02794045713622842, "acc_norm": 0.3, "acc_norm_stderr": 0.02794045713622842 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.7226890756302521, "acc_stderr": 0.029079374539480007, "acc_norm": 0.7226890756302521, "acc_norm_stderr": 0.029079374539480007 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.3576158940397351, "acc_stderr": 0.03913453431177258, "acc_norm": 0.3576158940397351, "acc_norm_stderr": 0.03913453431177258 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8495412844036697, "acc_stderr": 0.015328563932669237, "acc_norm": 0.8495412844036697, "acc_norm_stderr": 0.015328563932669237 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.5, "acc_stderr": 0.034099716973523674, "acc_norm": 0.5, "acc_norm_stderr": 0.034099716973523674 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.8529411764705882, "acc_stderr": 0.02485747808025046, "acc_norm": 0.8529411764705882, "acc_norm_stderr": 0.02485747808025046 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.810126582278481, "acc_stderr": 0.025530100460233494, "acc_norm": 0.810126582278481, "acc_norm_stderr": 0.025530100460233494 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.7174887892376681, "acc_stderr": 0.03021683101150877, "acc_norm": 0.7174887892376681, "acc_norm_stderr": 0.03021683101150877 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.6641221374045801, "acc_stderr": 0.041423137719966634, "acc_norm": 0.6641221374045801, "acc_norm_stderr": 0.041423137719966634 }, "harness|hendrycksTest-international_law|5": { "acc": 0.8429752066115702, "acc_stderr": 0.03321244842547128, "acc_norm": 0.8429752066115702, "acc_norm_stderr": 0.03321244842547128 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.75, "acc_stderr": 0.04186091791394607, "acc_norm": 0.75, "acc_norm_stderr": 0.04186091791394607 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.754601226993865, "acc_stderr": 0.03380939813943354, "acc_norm": 0.754601226993865, "acc_norm_stderr": 0.03380939813943354 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.5267857142857143, "acc_stderr": 0.047389751192741546, "acc_norm": 0.5267857142857143, "acc_norm_stderr": 0.047389751192741546 }, "harness|hendrycksTest-management|5": { "acc": 0.8543689320388349, "acc_stderr": 0.0349260647662379, "acc_norm": 0.8543689320388349, "acc_norm_stderr": 0.0349260647662379 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8760683760683761, "acc_stderr": 0.02158649400128137, "acc_norm": 0.8760683760683761, "acc_norm_stderr": 0.02158649400128137 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.72, "acc_stderr": 0.04512608598542128, "acc_norm": 0.72, "acc_norm_stderr": 0.04512608598542128 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.8007662835249042, "acc_stderr": 0.01428337804429641, "acc_norm": 0.8007662835249042, "acc_norm_stderr": 0.01428337804429641 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.708092485549133, "acc_stderr": 0.02447699407624734, "acc_norm": 0.708092485549133, "acc_norm_stderr": 0.02447699407624734 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.4201117318435754, "acc_stderr": 0.016507671073256402, "acc_norm": 0.4201117318435754, "acc_norm_stderr": 0.016507671073256402 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.7156862745098039, "acc_stderr": 0.02582916327275748, "acc_norm": 0.7156862745098039, "acc_norm_stderr": 0.02582916327275748 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.7427652733118971, "acc_stderr": 0.024826171289250888, "acc_norm": 0.7427652733118971, "acc_norm_stderr": 0.024826171289250888 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.75, "acc_stderr": 0.02409347123262133, "acc_norm": 0.75, "acc_norm_stderr": 0.02409347123262133 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.46808510638297873, "acc_stderr": 0.029766675075873862, "acc_norm": 0.46808510638297873, "acc_norm_stderr": 0.029766675075873862 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.4810951760104302, "acc_stderr": 0.012761104871472657, "acc_norm": 0.4810951760104302, "acc_norm_stderr": 0.012761104871472657 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.6691176470588235, "acc_stderr": 0.02858270975389844, "acc_norm": 0.6691176470588235, "acc_norm_stderr": 0.02858270975389844 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6748366013071896, "acc_stderr": 0.018950886770806315, "acc_norm": 0.6748366013071896, "acc_norm_stderr": 0.018950886770806315 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6181818181818182, "acc_stderr": 0.046534298079135075, "acc_norm": 0.6181818181818182, "acc_norm_stderr": 0.046534298079135075 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7918367346938775, "acc_stderr": 0.025991117672813296, "acc_norm": 0.7918367346938775, "acc_norm_stderr": 0.025991117672813296 }, "harness|hendrycksTest-sociology|5": { "acc": 0.8407960199004975, "acc_stderr": 0.02587064676616913, "acc_norm": 0.8407960199004975, "acc_norm_stderr": 0.02587064676616913 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.82, "acc_stderr": 0.038612291966536934, "acc_norm": 0.82, "acc_norm_stderr": 0.038612291966536934 }, "harness|hendrycksTest-virology|5": { "acc": 0.536144578313253, "acc_stderr": 0.038823108508905954, "acc_norm": 0.536144578313253, "acc_norm_stderr": 0.038823108508905954 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.7953216374269005, "acc_stderr": 0.030944459778533193, "acc_norm": 0.7953216374269005, "acc_norm_stderr": 0.030944459778533193 }, "harness|truthfulqa:mc|0": { "mc1": 0.3427172582619339, "mc1_stderr": 0.016614949385347032, "mc2": 0.5250446633100931, "mc2_stderr": 0.015325921720538403 }, "harness|winogrande|5": { "acc": 0.8524072612470402, "acc_stderr": 0.009968715765479648 }, "harness|gsm8k|5": { "acc": 0.001516300227445034, "acc_stderr": 0.0010717793485492658 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_Weyaxi__Stellaris-internlm2-20b-r128
[ "region:us" ]
2024-01-22T02:04:52+00:00
{"pretty_name": "Evaluation run of Weyaxi/Stellaris-internlm2-20b-r128", "dataset_summary": "Dataset automatically created during the evaluation run of model [Weyaxi/Stellaris-internlm2-20b-r128](https://huggingface.co/Weyaxi/Stellaris-internlm2-20b-r128) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_Weyaxi__Stellaris-internlm2-20b-r128\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-22T02:02:49.417178](https://huggingface.co/datasets/open-llm-leaderboard/details_Weyaxi__Stellaris-internlm2-20b-r128/blob/main/results_2024-01-22T02-02-49.417178.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6473729518927601,\n \"acc_stderr\": 0.03165407821154855,\n \"acc_norm\": 0.6587026634697054,\n \"acc_norm_stderr\": 0.032520024648863555,\n \"mc1\": 0.3427172582619339,\n \"mc1_stderr\": 0.016614949385347032,\n \"mc2\": 0.5250446633100931,\n \"mc2_stderr\": 0.015325921720538403\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.5767918088737202,\n \"acc_stderr\": 0.014438036220848029,\n \"acc_norm\": 0.6126279863481229,\n \"acc_norm_stderr\": 0.014235872487909869\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6256721768571998,\n \"acc_stderr\": 0.004829598101635788,\n \"acc_norm\": 0.8174666401115316,\n \"acc_norm_stderr\": 0.0038549403270910537\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.42,\n \"acc_stderr\": 0.049604496374885836,\n \"acc_norm\": 0.42,\n \"acc_norm_stderr\": 0.049604496374885836\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.5777777777777777,\n \"acc_stderr\": 0.04266763404099582,\n \"acc_norm\": 0.5777777777777777,\n \"acc_norm_stderr\": 0.04266763404099582\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.7697368421052632,\n \"acc_stderr\": 0.03426059424403165,\n \"acc_norm\": 0.7697368421052632,\n \"acc_norm_stderr\": 0.03426059424403165\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.7,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.7,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.7283018867924528,\n \"acc_stderr\": 0.027377706624670713,\n \"acc_norm\": 0.7283018867924528,\n \"acc_norm_stderr\": 0.027377706624670713\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7986111111111112,\n \"acc_stderr\": 0.03353647469713839,\n \"acc_norm\": 0.7986111111111112,\n \"acc_norm_stderr\": 0.03353647469713839\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.46,\n \"acc_stderr\": 0.05009082659620332,\n \"acc_norm\": 0.46,\n \"acc_norm_stderr\": 0.05009082659620332\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.56,\n \"acc_stderr\": 0.049888765156985884,\n \"acc_norm\": 0.56,\n \"acc_norm_stderr\": 0.049888765156985884\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.39,\n \"acc_stderr\": 0.04902071300001975,\n \"acc_norm\": 0.39,\n \"acc_norm_stderr\": 0.04902071300001975\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6820809248554913,\n \"acc_stderr\": 0.0355068398916558,\n \"acc_norm\": 0.6820809248554913,\n \"acc_norm_stderr\": 0.0355068398916558\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.37254901960784315,\n \"acc_stderr\": 0.04810840148082635,\n \"acc_norm\": 0.37254901960784315,\n \"acc_norm_stderr\": 0.04810840148082635\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.81,\n \"acc_stderr\": 0.039427724440366234,\n \"acc_norm\": 0.81,\n \"acc_norm_stderr\": 0.039427724440366234\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.6468085106382979,\n \"acc_stderr\": 0.031245325202761926,\n \"acc_norm\": 0.6468085106382979,\n \"acc_norm_stderr\": 0.031245325202761926\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.47368421052631576,\n \"acc_stderr\": 0.046970851366478626,\n \"acc_norm\": 0.47368421052631576,\n \"acc_norm_stderr\": 0.046970851366478626\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.6,\n \"acc_stderr\": 0.040824829046386284,\n \"acc_norm\": 0.6,\n \"acc_norm_stderr\": 0.040824829046386284\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.4497354497354497,\n \"acc_stderr\": 0.02562085704293665,\n \"acc_norm\": 0.4497354497354497,\n \"acc_norm_stderr\": 0.02562085704293665\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.46825396825396826,\n \"acc_stderr\": 0.04463112720677173,\n \"acc_norm\": 0.46825396825396826,\n \"acc_norm_stderr\": 0.04463112720677173\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.3,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.3,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.8161290322580645,\n \"acc_stderr\": 0.022037217340267822,\n \"acc_norm\": 0.8161290322580645,\n \"acc_norm_stderr\": 0.022037217340267822\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.5812807881773399,\n \"acc_stderr\": 0.034711928605184676,\n \"acc_norm\": 0.5812807881773399,\n \"acc_norm_stderr\": 0.034711928605184676\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.74,\n \"acc_stderr\": 0.0440844002276808,\n \"acc_norm\": 0.74,\n \"acc_norm_stderr\": 0.0440844002276808\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7878787878787878,\n \"acc_stderr\": 0.03192271569548302,\n \"acc_norm\": 0.7878787878787878,\n \"acc_norm_stderr\": 0.03192271569548302\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.8131313131313131,\n \"acc_stderr\": 0.02777253333421896,\n \"acc_norm\": 0.8131313131313131,\n \"acc_norm_stderr\": 0.02777253333421896\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8860103626943006,\n \"acc_stderr\": 0.022935144053919436,\n \"acc_norm\": 0.8860103626943006,\n \"acc_norm_stderr\": 0.022935144053919436\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6692307692307692,\n \"acc_stderr\": 0.023854795680971114,\n \"acc_norm\": 0.6692307692307692,\n \"acc_norm_stderr\": 0.023854795680971114\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.3,\n \"acc_stderr\": 0.02794045713622842,\n \"acc_norm\": 0.3,\n \"acc_norm_stderr\": 0.02794045713622842\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.7226890756302521,\n \"acc_stderr\": 0.029079374539480007,\n \"acc_norm\": 0.7226890756302521,\n \"acc_norm_stderr\": 0.029079374539480007\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.3576158940397351,\n \"acc_stderr\": 0.03913453431177258,\n \"acc_norm\": 0.3576158940397351,\n \"acc_norm_stderr\": 0.03913453431177258\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8495412844036697,\n \"acc_stderr\": 0.015328563932669237,\n \"acc_norm\": 0.8495412844036697,\n \"acc_norm_stderr\": 0.015328563932669237\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.5,\n \"acc_stderr\": 0.034099716973523674,\n \"acc_norm\": 0.5,\n \"acc_norm_stderr\": 0.034099716973523674\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.8529411764705882,\n \"acc_stderr\": 0.02485747808025046,\n \"acc_norm\": 0.8529411764705882,\n \"acc_norm_stderr\": 0.02485747808025046\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.810126582278481,\n \"acc_stderr\": 0.025530100460233494,\n \"acc_norm\": 0.810126582278481,\n \"acc_norm_stderr\": 0.025530100460233494\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.7174887892376681,\n \"acc_stderr\": 0.03021683101150877,\n \"acc_norm\": 0.7174887892376681,\n \"acc_norm_stderr\": 0.03021683101150877\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.6641221374045801,\n \"acc_stderr\": 0.041423137719966634,\n \"acc_norm\": 0.6641221374045801,\n \"acc_norm_stderr\": 0.041423137719966634\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8429752066115702,\n \"acc_stderr\": 0.03321244842547128,\n \"acc_norm\": 0.8429752066115702,\n \"acc_norm_stderr\": 0.03321244842547128\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.75,\n \"acc_stderr\": 0.04186091791394607,\n \"acc_norm\": 0.75,\n \"acc_norm_stderr\": 0.04186091791394607\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.754601226993865,\n \"acc_stderr\": 0.03380939813943354,\n \"acc_norm\": 0.754601226993865,\n \"acc_norm_stderr\": 0.03380939813943354\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.5267857142857143,\n \"acc_stderr\": 0.047389751192741546,\n \"acc_norm\": 0.5267857142857143,\n \"acc_norm_stderr\": 0.047389751192741546\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.8543689320388349,\n \"acc_stderr\": 0.0349260647662379,\n \"acc_norm\": 0.8543689320388349,\n \"acc_norm_stderr\": 0.0349260647662379\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8760683760683761,\n \"acc_stderr\": 0.02158649400128137,\n \"acc_norm\": 0.8760683760683761,\n \"acc_norm_stderr\": 0.02158649400128137\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.72,\n \"acc_stderr\": 0.04512608598542128,\n \"acc_norm\": 0.72,\n \"acc_norm_stderr\": 0.04512608598542128\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8007662835249042,\n \"acc_stderr\": 0.01428337804429641,\n \"acc_norm\": 0.8007662835249042,\n \"acc_norm_stderr\": 0.01428337804429641\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.708092485549133,\n \"acc_stderr\": 0.02447699407624734,\n \"acc_norm\": 0.708092485549133,\n \"acc_norm_stderr\": 0.02447699407624734\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.4201117318435754,\n \"acc_stderr\": 0.016507671073256402,\n \"acc_norm\": 0.4201117318435754,\n \"acc_norm_stderr\": 0.016507671073256402\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7156862745098039,\n \"acc_stderr\": 0.02582916327275748,\n \"acc_norm\": 0.7156862745098039,\n \"acc_norm_stderr\": 0.02582916327275748\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.7427652733118971,\n \"acc_stderr\": 0.024826171289250888,\n \"acc_norm\": 0.7427652733118971,\n \"acc_norm_stderr\": 0.024826171289250888\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.75,\n \"acc_stderr\": 0.02409347123262133,\n \"acc_norm\": 0.75,\n \"acc_norm_stderr\": 0.02409347123262133\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.46808510638297873,\n \"acc_stderr\": 0.029766675075873862,\n \"acc_norm\": 0.46808510638297873,\n \"acc_norm_stderr\": 0.029766675075873862\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.4810951760104302,\n \"acc_stderr\": 0.012761104871472657,\n \"acc_norm\": 0.4810951760104302,\n \"acc_norm_stderr\": 0.012761104871472657\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6691176470588235,\n \"acc_stderr\": 0.02858270975389844,\n \"acc_norm\": 0.6691176470588235,\n \"acc_norm_stderr\": 0.02858270975389844\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6748366013071896,\n \"acc_stderr\": 0.018950886770806315,\n \"acc_norm\": 0.6748366013071896,\n \"acc_norm_stderr\": 0.018950886770806315\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6181818181818182,\n \"acc_stderr\": 0.046534298079135075,\n \"acc_norm\": 0.6181818181818182,\n \"acc_norm_stderr\": 0.046534298079135075\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7918367346938775,\n \"acc_stderr\": 0.025991117672813296,\n \"acc_norm\": 0.7918367346938775,\n \"acc_norm_stderr\": 0.025991117672813296\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8407960199004975,\n \"acc_stderr\": 0.02587064676616913,\n \"acc_norm\": 0.8407960199004975,\n \"acc_norm_stderr\": 0.02587064676616913\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.82,\n \"acc_stderr\": 0.038612291966536934,\n \"acc_norm\": 0.82,\n \"acc_norm_stderr\": 0.038612291966536934\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.536144578313253,\n \"acc_stderr\": 0.038823108508905954,\n \"acc_norm\": 0.536144578313253,\n \"acc_norm_stderr\": 0.038823108508905954\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.7953216374269005,\n \"acc_stderr\": 0.030944459778533193,\n \"acc_norm\": 0.7953216374269005,\n \"acc_norm_stderr\": 0.030944459778533193\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.3427172582619339,\n \"mc1_stderr\": 0.016614949385347032,\n \"mc2\": 0.5250446633100931,\n \"mc2_stderr\": 0.015325921720538403\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.8524072612470402,\n \"acc_stderr\": 0.009968715765479648\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.001516300227445034,\n \"acc_stderr\": 0.0010717793485492658\n }\n}\n```", "repo_url": "https://huggingface.co/Weyaxi/Stellaris-internlm2-20b-r128", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|arc:challenge|25_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|gsm8k|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hellaswag|10_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T02-02-49.417178.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["**/details_harness|winogrande|5_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-22T02-02-49.417178.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_22T02_02_49.417178", "path": ["results_2024-01-22T02-02-49.417178.parquet"]}, {"split": "latest", "path": ["results_2024-01-22T02-02-49.417178.parquet"]}]}]}
2024-01-22T02:05:17+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of Weyaxi/Stellaris-internlm2-20b-r128 Dataset automatically created during the evaluation run of model Weyaxi/Stellaris-internlm2-20b-r128 on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-22T02:02:49.417178(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of Weyaxi/Stellaris-internlm2-20b-r128\n\n\n\nDataset automatically created during the evaluation run of model Weyaxi/Stellaris-internlm2-20b-r128 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T02:02:49.417178(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of Weyaxi/Stellaris-internlm2-20b-r128\n\n\n\nDataset automatically created during the evaluation run of model Weyaxi/Stellaris-internlm2-20b-r128 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T02:02:49.417178(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
2a3f63eb685b9948add564da8d4938534bfac1af
# Dataset Card for Evaluation run of kimwooglae/AISquare-Instruct-SOLAR-10.7b-v0.5.31 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [kimwooglae/AISquare-Instruct-SOLAR-10.7b-v0.5.31](https://huggingface.co/kimwooglae/AISquare-Instruct-SOLAR-10.7b-v0.5.31) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_kimwooglae__AISquare-Instruct-SOLAR-10.7b-v0.5.31", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-22T02:13:58.257879](https://huggingface.co/datasets/open-llm-leaderboard/details_kimwooglae__AISquare-Instruct-SOLAR-10.7b-v0.5.31/blob/main/results_2024-01-22T02-13-58.257879.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.5330985732271527, "acc_stderr": 0.034185007803077, "acc_norm": 0.5352323665963996, "acc_norm_stderr": 0.034920748737001794, "mc1": 0.35006119951040393, "mc1_stderr": 0.01669794942015103, "mc2": 0.5134609475665187, "mc2_stderr": 0.014908191115467387 }, "harness|arc:challenge|25": { "acc": 0.5725255972696246, "acc_stderr": 0.014456862944650649, "acc_norm": 0.606655290102389, "acc_norm_stderr": 0.014275101465693028 }, "harness|hellaswag|10": { "acc": 0.6441943835889266, "acc_stderr": 0.004777782584817781, "acc_norm": 0.8419637522405895, "acc_norm_stderr": 0.003640294912838683 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.35, "acc_stderr": 0.04793724854411022, "acc_norm": 0.35, "acc_norm_stderr": 0.04793724854411022 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.5703703703703704, "acc_stderr": 0.04276349494376599, "acc_norm": 0.5703703703703704, "acc_norm_stderr": 0.04276349494376599 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.5263157894736842, "acc_stderr": 0.04063302731486671, "acc_norm": 0.5263157894736842, "acc_norm_stderr": 0.04063302731486671 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.53, "acc_stderr": 0.05016135580465919, "acc_norm": 0.53, "acc_norm_stderr": 0.05016135580465919 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.5207547169811321, "acc_stderr": 0.030746349975723463, "acc_norm": 0.5207547169811321, "acc_norm_stderr": 0.030746349975723463 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.6180555555555556, "acc_stderr": 0.040629907841466674, "acc_norm": 0.6180555555555556, "acc_norm_stderr": 0.040629907841466674 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.27, "acc_stderr": 0.0446196043338474, "acc_norm": 0.27, "acc_norm_stderr": 0.0446196043338474 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.46, "acc_stderr": 0.05009082659620332, "acc_norm": 0.46, "acc_norm_stderr": 0.05009082659620332 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.32, "acc_stderr": 0.046882617226215034, "acc_norm": 0.32, "acc_norm_stderr": 0.046882617226215034 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.4682080924855491, "acc_stderr": 0.03804749744364764, "acc_norm": 0.4682080924855491, "acc_norm_stderr": 0.03804749744364764 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.23529411764705882, "acc_stderr": 0.04220773659171451, "acc_norm": 0.23529411764705882, "acc_norm_stderr": 0.04220773659171451 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.7, "acc_stderr": 0.046056618647183814, "acc_norm": 0.7, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.4553191489361702, "acc_stderr": 0.032555253593403555, "acc_norm": 0.4553191489361702, "acc_norm_stderr": 0.032555253593403555 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.37719298245614036, "acc_stderr": 0.04559522141958216, "acc_norm": 0.37719298245614036, "acc_norm_stderr": 0.04559522141958216 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.42758620689655175, "acc_stderr": 0.041227371113703316, "acc_norm": 0.42758620689655175, "acc_norm_stderr": 0.041227371113703316 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.3968253968253968, "acc_stderr": 0.025197101074246487, "acc_norm": 0.3968253968253968, "acc_norm_stderr": 0.025197101074246487 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.3492063492063492, "acc_stderr": 0.04263906892795133, "acc_norm": 0.3492063492063492, "acc_norm_stderr": 0.04263906892795133 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.4, "acc_stderr": 0.049236596391733084, "acc_norm": 0.4, "acc_norm_stderr": 0.049236596391733084 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.6225806451612903, "acc_stderr": 0.02757596072327824, "acc_norm": 0.6225806451612903, "acc_norm_stderr": 0.02757596072327824 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.3891625615763547, "acc_stderr": 0.03430462416103872, "acc_norm": 0.3891625615763547, "acc_norm_stderr": 0.03430462416103872 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.59, "acc_stderr": 0.04943110704237101, "acc_norm": 0.59, "acc_norm_stderr": 0.04943110704237101 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.6545454545454545, "acc_stderr": 0.03713158067481913, "acc_norm": 0.6545454545454545, "acc_norm_stderr": 0.03713158067481913 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.6363636363636364, "acc_stderr": 0.03427308652999934, "acc_norm": 0.6363636363636364, "acc_norm_stderr": 0.03427308652999934 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.7098445595854922, "acc_stderr": 0.03275264467791516, "acc_norm": 0.7098445595854922, "acc_norm_stderr": 0.03275264467791516 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.4794871794871795, "acc_stderr": 0.025329663163489943, "acc_norm": 0.4794871794871795, "acc_norm_stderr": 0.025329663163489943 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.337037037037037, "acc_stderr": 0.028820884666253255, "acc_norm": 0.337037037037037, "acc_norm_stderr": 0.028820884666253255 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.46218487394957986, "acc_stderr": 0.032385469487589795, "acc_norm": 0.46218487394957986, "acc_norm_stderr": 0.032385469487589795 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.2980132450331126, "acc_stderr": 0.037345356767871984, "acc_norm": 0.2980132450331126, "acc_norm_stderr": 0.037345356767871984 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.6458715596330276, "acc_stderr": 0.020504729013829114, "acc_norm": 0.6458715596330276, "acc_norm_stderr": 0.020504729013829114 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.2916666666666667, "acc_stderr": 0.030998666304560524, "acc_norm": 0.2916666666666667, "acc_norm_stderr": 0.030998666304560524 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.6862745098039216, "acc_stderr": 0.032566854844603886, "acc_norm": 0.6862745098039216, "acc_norm_stderr": 0.032566854844603886 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7130801687763713, "acc_stderr": 0.02944377302259469, "acc_norm": 0.7130801687763713, "acc_norm_stderr": 0.02944377302259469 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.672645739910314, "acc_stderr": 0.03149384670994131, "acc_norm": 0.672645739910314, "acc_norm_stderr": 0.03149384670994131 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.5954198473282443, "acc_stderr": 0.043046937953806645, "acc_norm": 0.5954198473282443, "acc_norm_stderr": 0.043046937953806645 }, "harness|hendrycksTest-international_law|5": { "acc": 0.71900826446281, "acc_stderr": 0.04103203830514512, "acc_norm": 0.71900826446281, "acc_norm_stderr": 0.04103203830514512 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.6388888888888888, "acc_stderr": 0.04643454608906275, "acc_norm": 0.6388888888888888, "acc_norm_stderr": 0.04643454608906275 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.6993865030674846, "acc_stderr": 0.03602511318806771, "acc_norm": 0.6993865030674846, "acc_norm_stderr": 0.03602511318806771 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.4107142857142857, "acc_stderr": 0.04669510663875191, "acc_norm": 0.4107142857142857, "acc_norm_stderr": 0.04669510663875191 }, "harness|hendrycksTest-management|5": { "acc": 0.6019417475728155, "acc_stderr": 0.0484674825397724, "acc_norm": 0.6019417475728155, "acc_norm_stderr": 0.0484674825397724 }, "harness|hendrycksTest-marketing|5": { "acc": 0.7606837606837606, "acc_stderr": 0.027951826808924333, "acc_norm": 0.7606837606837606, "acc_norm_stderr": 0.027951826808924333 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.62, "acc_stderr": 0.048783173121456316, "acc_norm": 0.62, "acc_norm_stderr": 0.048783173121456316 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.7650063856960408, "acc_stderr": 0.015162024152278434, "acc_norm": 0.7650063856960408, "acc_norm_stderr": 0.015162024152278434 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.6127167630057804, "acc_stderr": 0.026226158605124655, "acc_norm": 0.6127167630057804, "acc_norm_stderr": 0.026226158605124655 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.2916201117318436, "acc_stderr": 0.01520103251252044, "acc_norm": 0.2916201117318436, "acc_norm_stderr": 0.01520103251252044 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.5849673202614379, "acc_stderr": 0.0282135041778241, "acc_norm": 0.5849673202614379, "acc_norm_stderr": 0.0282135041778241 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.572347266881029, "acc_stderr": 0.02809924077580955, "acc_norm": 0.572347266881029, "acc_norm_stderr": 0.02809924077580955 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.6388888888888888, "acc_stderr": 0.026725868809100793, "acc_norm": 0.6388888888888888, "acc_norm_stderr": 0.026725868809100793 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.425531914893617, "acc_stderr": 0.02949482760014437, "acc_norm": 0.425531914893617, "acc_norm_stderr": 0.02949482760014437 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.39960886571056065, "acc_stderr": 0.01251018163696068, "acc_norm": 0.39960886571056065, "acc_norm_stderr": 0.01251018163696068 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.4227941176470588, "acc_stderr": 0.030008562845003483, "acc_norm": 0.4227941176470588, "acc_norm_stderr": 0.030008562845003483 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.5849673202614379, "acc_stderr": 0.01993362777685742, "acc_norm": 0.5849673202614379, "acc_norm_stderr": 0.01993362777685742 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6181818181818182, "acc_stderr": 0.04653429807913508, "acc_norm": 0.6181818181818182, "acc_norm_stderr": 0.04653429807913508 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.4816326530612245, "acc_stderr": 0.031987615467631264, "acc_norm": 0.4816326530612245, "acc_norm_stderr": 0.031987615467631264 }, "harness|hendrycksTest-sociology|5": { "acc": 0.6368159203980099, "acc_stderr": 0.034005985055990146, "acc_norm": 0.6368159203980099, "acc_norm_stderr": 0.034005985055990146 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.72, "acc_stderr": 0.04512608598542128, "acc_norm": 0.72, "acc_norm_stderr": 0.04512608598542128 }, "harness|hendrycksTest-virology|5": { "acc": 0.4457831325301205, "acc_stderr": 0.03869543323472101, "acc_norm": 0.4457831325301205, "acc_norm_stderr": 0.03869543323472101 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.7192982456140351, "acc_stderr": 0.034462962170884265, "acc_norm": 0.7192982456140351, "acc_norm_stderr": 0.034462962170884265 }, "harness|truthfulqa:mc|0": { "mc1": 0.35006119951040393, "mc1_stderr": 0.01669794942015103, "mc2": 0.5134609475665187, "mc2_stderr": 0.014908191115467387 }, "harness|winogrande|5": { "acc": 0.829518547750592, "acc_stderr": 0.01056902112282591 }, "harness|gsm8k|5": { "acc": 0.34268385140257773, "acc_stderr": 0.01307303023082791 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_kimwooglae__AISquare-Instruct-SOLAR-10.7b-v0.5.31
[ "region:us" ]
2024-01-22T02:16:14+00:00
{"pretty_name": "Evaluation run of kimwooglae/AISquare-Instruct-SOLAR-10.7b-v0.5.31", "dataset_summary": "Dataset automatically created during the evaluation run of model [kimwooglae/AISquare-Instruct-SOLAR-10.7b-v0.5.31](https://huggingface.co/kimwooglae/AISquare-Instruct-SOLAR-10.7b-v0.5.31) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_kimwooglae__AISquare-Instruct-SOLAR-10.7b-v0.5.31\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-22T02:13:58.257879](https://huggingface.co/datasets/open-llm-leaderboard/details_kimwooglae__AISquare-Instruct-SOLAR-10.7b-v0.5.31/blob/main/results_2024-01-22T02-13-58.257879.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.5330985732271527,\n \"acc_stderr\": 0.034185007803077,\n \"acc_norm\": 0.5352323665963996,\n \"acc_norm_stderr\": 0.034920748737001794,\n \"mc1\": 0.35006119951040393,\n \"mc1_stderr\": 0.01669794942015103,\n \"mc2\": 0.5134609475665187,\n \"mc2_stderr\": 0.014908191115467387\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.5725255972696246,\n \"acc_stderr\": 0.014456862944650649,\n \"acc_norm\": 0.606655290102389,\n \"acc_norm_stderr\": 0.014275101465693028\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6441943835889266,\n \"acc_stderr\": 0.004777782584817781,\n \"acc_norm\": 0.8419637522405895,\n \"acc_norm_stderr\": 0.003640294912838683\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.35,\n \"acc_stderr\": 0.04793724854411022,\n \"acc_norm\": 0.35,\n \"acc_norm_stderr\": 0.04793724854411022\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.5703703703703704,\n \"acc_stderr\": 0.04276349494376599,\n \"acc_norm\": 0.5703703703703704,\n \"acc_norm_stderr\": 0.04276349494376599\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.5263157894736842,\n \"acc_stderr\": 0.04063302731486671,\n \"acc_norm\": 0.5263157894736842,\n \"acc_norm_stderr\": 0.04063302731486671\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.53,\n \"acc_stderr\": 0.05016135580465919,\n \"acc_norm\": 0.53,\n \"acc_norm_stderr\": 0.05016135580465919\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.5207547169811321,\n \"acc_stderr\": 0.030746349975723463,\n \"acc_norm\": 0.5207547169811321,\n \"acc_norm_stderr\": 0.030746349975723463\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.6180555555555556,\n \"acc_stderr\": 0.040629907841466674,\n \"acc_norm\": 0.6180555555555556,\n \"acc_norm_stderr\": 0.040629907841466674\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.27,\n \"acc_stderr\": 0.0446196043338474,\n \"acc_norm\": 0.27,\n \"acc_norm_stderr\": 0.0446196043338474\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.46,\n \"acc_stderr\": 0.05009082659620332,\n \"acc_norm\": 0.46,\n \"acc_norm_stderr\": 0.05009082659620332\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.32,\n \"acc_stderr\": 0.046882617226215034,\n \"acc_norm\": 0.32,\n \"acc_norm_stderr\": 0.046882617226215034\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.4682080924855491,\n \"acc_stderr\": 0.03804749744364764,\n \"acc_norm\": 0.4682080924855491,\n \"acc_norm_stderr\": 0.03804749744364764\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.23529411764705882,\n \"acc_stderr\": 0.04220773659171451,\n \"acc_norm\": 0.23529411764705882,\n \"acc_norm_stderr\": 0.04220773659171451\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.7,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.7,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.4553191489361702,\n \"acc_stderr\": 0.032555253593403555,\n \"acc_norm\": 0.4553191489361702,\n \"acc_norm_stderr\": 0.032555253593403555\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.37719298245614036,\n \"acc_stderr\": 0.04559522141958216,\n \"acc_norm\": 0.37719298245614036,\n \"acc_norm_stderr\": 0.04559522141958216\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.42758620689655175,\n \"acc_stderr\": 0.041227371113703316,\n \"acc_norm\": 0.42758620689655175,\n \"acc_norm_stderr\": 0.041227371113703316\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.3968253968253968,\n \"acc_stderr\": 0.025197101074246487,\n \"acc_norm\": 0.3968253968253968,\n \"acc_norm_stderr\": 0.025197101074246487\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.3492063492063492,\n \"acc_stderr\": 0.04263906892795133,\n \"acc_norm\": 0.3492063492063492,\n \"acc_norm_stderr\": 0.04263906892795133\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.4,\n \"acc_stderr\": 0.049236596391733084,\n \"acc_norm\": 0.4,\n \"acc_norm_stderr\": 0.049236596391733084\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.6225806451612903,\n \"acc_stderr\": 0.02757596072327824,\n \"acc_norm\": 0.6225806451612903,\n \"acc_norm_stderr\": 0.02757596072327824\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.3891625615763547,\n \"acc_stderr\": 0.03430462416103872,\n \"acc_norm\": 0.3891625615763547,\n \"acc_norm_stderr\": 0.03430462416103872\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.59,\n \"acc_stderr\": 0.04943110704237101,\n \"acc_norm\": 0.59,\n \"acc_norm_stderr\": 0.04943110704237101\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.6545454545454545,\n \"acc_stderr\": 0.03713158067481913,\n \"acc_norm\": 0.6545454545454545,\n \"acc_norm_stderr\": 0.03713158067481913\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.6363636363636364,\n \"acc_stderr\": 0.03427308652999934,\n \"acc_norm\": 0.6363636363636364,\n \"acc_norm_stderr\": 0.03427308652999934\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.7098445595854922,\n \"acc_stderr\": 0.03275264467791516,\n \"acc_norm\": 0.7098445595854922,\n \"acc_norm_stderr\": 0.03275264467791516\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.4794871794871795,\n \"acc_stderr\": 0.025329663163489943,\n \"acc_norm\": 0.4794871794871795,\n \"acc_norm_stderr\": 0.025329663163489943\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.337037037037037,\n \"acc_stderr\": 0.028820884666253255,\n \"acc_norm\": 0.337037037037037,\n \"acc_norm_stderr\": 0.028820884666253255\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.46218487394957986,\n \"acc_stderr\": 0.032385469487589795,\n \"acc_norm\": 0.46218487394957986,\n \"acc_norm_stderr\": 0.032385469487589795\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.2980132450331126,\n \"acc_stderr\": 0.037345356767871984,\n \"acc_norm\": 0.2980132450331126,\n \"acc_norm_stderr\": 0.037345356767871984\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.6458715596330276,\n \"acc_stderr\": 0.020504729013829114,\n \"acc_norm\": 0.6458715596330276,\n \"acc_norm_stderr\": 0.020504729013829114\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.2916666666666667,\n \"acc_stderr\": 0.030998666304560524,\n \"acc_norm\": 0.2916666666666667,\n \"acc_norm_stderr\": 0.030998666304560524\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.6862745098039216,\n \"acc_stderr\": 0.032566854844603886,\n \"acc_norm\": 0.6862745098039216,\n \"acc_norm_stderr\": 0.032566854844603886\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7130801687763713,\n \"acc_stderr\": 0.02944377302259469,\n \"acc_norm\": 0.7130801687763713,\n \"acc_norm_stderr\": 0.02944377302259469\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.672645739910314,\n \"acc_stderr\": 0.03149384670994131,\n \"acc_norm\": 0.672645739910314,\n \"acc_norm_stderr\": 0.03149384670994131\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.5954198473282443,\n \"acc_stderr\": 0.043046937953806645,\n \"acc_norm\": 0.5954198473282443,\n \"acc_norm_stderr\": 0.043046937953806645\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.71900826446281,\n \"acc_stderr\": 0.04103203830514512,\n \"acc_norm\": 0.71900826446281,\n \"acc_norm_stderr\": 0.04103203830514512\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.6388888888888888,\n \"acc_stderr\": 0.04643454608906275,\n \"acc_norm\": 0.6388888888888888,\n \"acc_norm_stderr\": 0.04643454608906275\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.6993865030674846,\n \"acc_stderr\": 0.03602511318806771,\n \"acc_norm\": 0.6993865030674846,\n \"acc_norm_stderr\": 0.03602511318806771\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.4107142857142857,\n \"acc_stderr\": 0.04669510663875191,\n \"acc_norm\": 0.4107142857142857,\n \"acc_norm_stderr\": 0.04669510663875191\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.6019417475728155,\n \"acc_stderr\": 0.0484674825397724,\n \"acc_norm\": 0.6019417475728155,\n \"acc_norm_stderr\": 0.0484674825397724\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.7606837606837606,\n \"acc_stderr\": 0.027951826808924333,\n \"acc_norm\": 0.7606837606837606,\n \"acc_norm_stderr\": 0.027951826808924333\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.62,\n \"acc_stderr\": 0.048783173121456316,\n \"acc_norm\": 0.62,\n \"acc_norm_stderr\": 0.048783173121456316\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.7650063856960408,\n \"acc_stderr\": 0.015162024152278434,\n \"acc_norm\": 0.7650063856960408,\n \"acc_norm_stderr\": 0.015162024152278434\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.6127167630057804,\n \"acc_stderr\": 0.026226158605124655,\n \"acc_norm\": 0.6127167630057804,\n \"acc_norm_stderr\": 0.026226158605124655\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.2916201117318436,\n \"acc_stderr\": 0.01520103251252044,\n \"acc_norm\": 0.2916201117318436,\n \"acc_norm_stderr\": 0.01520103251252044\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.5849673202614379,\n \"acc_stderr\": 0.0282135041778241,\n \"acc_norm\": 0.5849673202614379,\n \"acc_norm_stderr\": 0.0282135041778241\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.572347266881029,\n \"acc_stderr\": 0.02809924077580955,\n \"acc_norm\": 0.572347266881029,\n \"acc_norm_stderr\": 0.02809924077580955\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.6388888888888888,\n \"acc_stderr\": 0.026725868809100793,\n \"acc_norm\": 0.6388888888888888,\n \"acc_norm_stderr\": 0.026725868809100793\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.425531914893617,\n \"acc_stderr\": 0.02949482760014437,\n \"acc_norm\": 0.425531914893617,\n \"acc_norm_stderr\": 0.02949482760014437\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.39960886571056065,\n \"acc_stderr\": 0.01251018163696068,\n \"acc_norm\": 0.39960886571056065,\n \"acc_norm_stderr\": 0.01251018163696068\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.4227941176470588,\n \"acc_stderr\": 0.030008562845003483,\n \"acc_norm\": 0.4227941176470588,\n \"acc_norm_stderr\": 0.030008562845003483\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.5849673202614379,\n \"acc_stderr\": 0.01993362777685742,\n \"acc_norm\": 0.5849673202614379,\n \"acc_norm_stderr\": 0.01993362777685742\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6181818181818182,\n \"acc_stderr\": 0.04653429807913508,\n \"acc_norm\": 0.6181818181818182,\n \"acc_norm_stderr\": 0.04653429807913508\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.4816326530612245,\n \"acc_stderr\": 0.031987615467631264,\n \"acc_norm\": 0.4816326530612245,\n \"acc_norm_stderr\": 0.031987615467631264\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.6368159203980099,\n \"acc_stderr\": 0.034005985055990146,\n \"acc_norm\": 0.6368159203980099,\n \"acc_norm_stderr\": 0.034005985055990146\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.72,\n \"acc_stderr\": 0.04512608598542128,\n \"acc_norm\": 0.72,\n \"acc_norm_stderr\": 0.04512608598542128\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.4457831325301205,\n \"acc_stderr\": 0.03869543323472101,\n \"acc_norm\": 0.4457831325301205,\n \"acc_norm_stderr\": 0.03869543323472101\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.7192982456140351,\n \"acc_stderr\": 0.034462962170884265,\n \"acc_norm\": 0.7192982456140351,\n \"acc_norm_stderr\": 0.034462962170884265\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.35006119951040393,\n \"mc1_stderr\": 0.01669794942015103,\n \"mc2\": 0.5134609475665187,\n \"mc2_stderr\": 0.014908191115467387\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.829518547750592,\n \"acc_stderr\": 0.01056902112282591\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.34268385140257773,\n \"acc_stderr\": 0.01307303023082791\n }\n}\n```", "repo_url": "https://huggingface.co/kimwooglae/AISquare-Instruct-SOLAR-10.7b-v0.5.31", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|arc:challenge|25_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|gsm8k|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hellaswag|10_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T02-13-58.257879.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["**/details_harness|winogrande|5_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-22T02-13-58.257879.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_22T02_13_58.257879", "path": ["results_2024-01-22T02-13-58.257879.parquet"]}, {"split": "latest", "path": ["results_2024-01-22T02-13-58.257879.parquet"]}]}]}
2024-01-22T02:16:36+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of kimwooglae/AISquare-Instruct-SOLAR-10.7b-v0.5.31 Dataset automatically created during the evaluation run of model kimwooglae/AISquare-Instruct-SOLAR-10.7b-v0.5.31 on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-22T02:13:58.257879(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of kimwooglae/AISquare-Instruct-SOLAR-10.7b-v0.5.31\n\n\n\nDataset automatically created during the evaluation run of model kimwooglae/AISquare-Instruct-SOLAR-10.7b-v0.5.31 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T02:13:58.257879(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of kimwooglae/AISquare-Instruct-SOLAR-10.7b-v0.5.31\n\n\n\nDataset automatically created during the evaluation run of model kimwooglae/AISquare-Instruct-SOLAR-10.7b-v0.5.31 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T02:13:58.257879(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
da97cf8cf1416aa75f836a2c35b0f7f4bbb090e0
# Dataset Card for Evaluation run of andysalerno/cloudymixtral7Bx2-nectar-0.2 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [andysalerno/cloudymixtral7Bx2-nectar-0.2](https://huggingface.co/andysalerno/cloudymixtral7Bx2-nectar-0.2) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_andysalerno__cloudymixtral7Bx2-nectar-0.2", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-22T02:17:36.925599](https://huggingface.co/datasets/open-llm-leaderboard/details_andysalerno__cloudymixtral7Bx2-nectar-0.2/blob/main/results_2024-01-22T02-17-36.925599.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.6411500131859755, "acc_stderr": 0.03188163161208531, "acc_norm": 0.6539831613919124, "acc_norm_stderr": 0.032683317989685615, "mc1": 0.5226438188494492, "mc1_stderr": 0.017485542258489636, "mc2": 0.6873292641569112, "mc2_stderr": 0.015222039787426868 }, "harness|arc:challenge|25": { "acc": 0.6476109215017065, "acc_stderr": 0.01396014260059868, "acc_norm": 0.6749146757679181, "acc_norm_stderr": 0.013688147309729124 }, "harness|hellaswag|10": { "acc": 0.6092411870145389, "acc_stderr": 0.004869232758103324, "acc_norm": 0.8077076279625572, "acc_norm_stderr": 0.003932960974008082 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.33, "acc_stderr": 0.04725815626252605, "acc_norm": 0.33, "acc_norm_stderr": 0.04725815626252605 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6592592592592592, "acc_stderr": 0.04094376269996792, "acc_norm": 0.6592592592592592, "acc_norm_stderr": 0.04094376269996792 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.7105263157894737, "acc_stderr": 0.03690677986137283, "acc_norm": 0.7105263157894737, "acc_norm_stderr": 0.03690677986137283 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.6, "acc_stderr": 0.04923659639173309, "acc_norm": 0.6, "acc_norm_stderr": 0.04923659639173309 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.7169811320754716, "acc_stderr": 0.027724236492700918, "acc_norm": 0.7169811320754716, "acc_norm_stderr": 0.027724236492700918 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.7569444444444444, "acc_stderr": 0.035868792800803406, "acc_norm": 0.7569444444444444, "acc_norm_stderr": 0.035868792800803406 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.45, "acc_stderr": 0.05, "acc_norm": 0.45, "acc_norm_stderr": 0.05 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.53, "acc_stderr": 0.050161355804659205, "acc_norm": 0.53, "acc_norm_stderr": 0.050161355804659205 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.3, "acc_stderr": 0.046056618647183814, "acc_norm": 0.3, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6820809248554913, "acc_stderr": 0.0355068398916558, "acc_norm": 0.6820809248554913, "acc_norm_stderr": 0.0355068398916558 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.43137254901960786, "acc_stderr": 0.04928099597287534, "acc_norm": 0.43137254901960786, "acc_norm_stderr": 0.04928099597287534 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.79, "acc_stderr": 0.04093601807403326, "acc_norm": 0.79, "acc_norm_stderr": 0.04093601807403326 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5787234042553191, "acc_stderr": 0.03227834510146267, "acc_norm": 0.5787234042553191, "acc_norm_stderr": 0.03227834510146267 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.5087719298245614, "acc_stderr": 0.04702880432049615, "acc_norm": 0.5087719298245614, "acc_norm_stderr": 0.04702880432049615 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.6137931034482759, "acc_stderr": 0.04057324734419036, "acc_norm": 0.6137931034482759, "acc_norm_stderr": 0.04057324734419036 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.43386243386243384, "acc_stderr": 0.02552503438247489, "acc_norm": 0.43386243386243384, "acc_norm_stderr": 0.02552503438247489 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.5079365079365079, "acc_stderr": 0.044715725362943486, "acc_norm": 0.5079365079365079, "acc_norm_stderr": 0.044715725362943486 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.36, "acc_stderr": 0.048241815132442176, "acc_norm": 0.36, "acc_norm_stderr": 0.048241815132442176 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.7838709677419354, "acc_stderr": 0.02341529343356852, "acc_norm": 0.7838709677419354, "acc_norm_stderr": 0.02341529343356852 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.5270935960591133, "acc_stderr": 0.03512819077876106, "acc_norm": 0.5270935960591133, "acc_norm_stderr": 0.03512819077876106 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.66, "acc_stderr": 0.04760952285695237, "acc_norm": 0.66, "acc_norm_stderr": 0.04760952285695237 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7878787878787878, "acc_stderr": 0.03192271569548301, "acc_norm": 0.7878787878787878, "acc_norm_stderr": 0.03192271569548301 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.8181818181818182, "acc_stderr": 0.0274796030105388, "acc_norm": 0.8181818181818182, "acc_norm_stderr": 0.0274796030105388 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.9067357512953368, "acc_stderr": 0.020986854593289736, "acc_norm": 0.9067357512953368, "acc_norm_stderr": 0.020986854593289736 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.6615384615384615, "acc_stderr": 0.023991500500313036, "acc_norm": 0.6615384615384615, "acc_norm_stderr": 0.023991500500313036 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.3333333333333333, "acc_stderr": 0.028742040903948485, "acc_norm": 0.3333333333333333, "acc_norm_stderr": 0.028742040903948485 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6680672268907563, "acc_stderr": 0.03058869701378364, "acc_norm": 0.6680672268907563, "acc_norm_stderr": 0.03058869701378364 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.39072847682119205, "acc_stderr": 0.039837983066598075, "acc_norm": 0.39072847682119205, "acc_norm_stderr": 0.039837983066598075 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8458715596330275, "acc_stderr": 0.015480826865374303, "acc_norm": 0.8458715596330275, "acc_norm_stderr": 0.015480826865374303 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.5138888888888888, "acc_stderr": 0.034086558679777494, "acc_norm": 0.5138888888888888, "acc_norm_stderr": 0.034086558679777494 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.8382352941176471, "acc_stderr": 0.02584501798692692, "acc_norm": 0.8382352941176471, "acc_norm_stderr": 0.02584501798692692 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.8016877637130801, "acc_stderr": 0.025955020841621115, "acc_norm": 0.8016877637130801, "acc_norm_stderr": 0.025955020841621115 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6905829596412556, "acc_stderr": 0.03102441174057221, "acc_norm": 0.6905829596412556, "acc_norm_stderr": 0.03102441174057221 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.8091603053435115, "acc_stderr": 0.03446513350752598, "acc_norm": 0.8091603053435115, "acc_norm_stderr": 0.03446513350752598 }, "harness|hendrycksTest-international_law|5": { "acc": 0.7933884297520661, "acc_stderr": 0.03695980128098824, "acc_norm": 0.7933884297520661, "acc_norm_stderr": 0.03695980128098824 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.7592592592592593, "acc_stderr": 0.04133119440243838, "acc_norm": 0.7592592592592593, "acc_norm_stderr": 0.04133119440243838 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7668711656441718, "acc_stderr": 0.0332201579577674, "acc_norm": 0.7668711656441718, "acc_norm_stderr": 0.0332201579577674 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.45535714285714285, "acc_stderr": 0.04726835553719099, "acc_norm": 0.45535714285714285, "acc_norm_stderr": 0.04726835553719099 }, "harness|hendrycksTest-management|5": { "acc": 0.7766990291262136, "acc_stderr": 0.04123553189891431, "acc_norm": 0.7766990291262136, "acc_norm_stderr": 0.04123553189891431 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8803418803418803, "acc_stderr": 0.021262719400406953, "acc_norm": 0.8803418803418803, "acc_norm_stderr": 0.021262719400406953 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.69, "acc_stderr": 0.04648231987117316, "acc_norm": 0.69, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.8314176245210728, "acc_stderr": 0.013387895731543604, "acc_norm": 0.8314176245210728, "acc_norm_stderr": 0.013387895731543604 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.7254335260115607, "acc_stderr": 0.024027745155265023, "acc_norm": 0.7254335260115607, "acc_norm_stderr": 0.024027745155265023 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.4547486033519553, "acc_stderr": 0.016653875777524012, "acc_norm": 0.4547486033519553, "acc_norm_stderr": 0.016653875777524012 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.7287581699346405, "acc_stderr": 0.02545775669666788, "acc_norm": 0.7287581699346405, "acc_norm_stderr": 0.02545775669666788 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.707395498392283, "acc_stderr": 0.02583989833487798, "acc_norm": 0.707395498392283, "acc_norm_stderr": 0.02583989833487798 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.7407407407407407, "acc_stderr": 0.02438366553103545, "acc_norm": 0.7407407407407407, "acc_norm_stderr": 0.02438366553103545 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.4645390070921986, "acc_stderr": 0.029752389657427047, "acc_norm": 0.4645390070921986, "acc_norm_stderr": 0.029752389657427047 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.4654498044328553, "acc_stderr": 0.012739711554045704, "acc_norm": 0.4654498044328553, "acc_norm_stderr": 0.012739711554045704 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.6801470588235294, "acc_stderr": 0.0283329595140312, "acc_norm": 0.6801470588235294, "acc_norm_stderr": 0.0283329595140312 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6666666666666666, "acc_stderr": 0.019070985589687495, "acc_norm": 0.6666666666666666, "acc_norm_stderr": 0.019070985589687495 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6727272727272727, "acc_stderr": 0.0449429086625209, "acc_norm": 0.6727272727272727, "acc_norm_stderr": 0.0449429086625209 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7346938775510204, "acc_stderr": 0.028263889943784593, "acc_norm": 0.7346938775510204, "acc_norm_stderr": 0.028263889943784593 }, "harness|hendrycksTest-sociology|5": { "acc": 0.8606965174129353, "acc_stderr": 0.024484487162913973, "acc_norm": 0.8606965174129353, "acc_norm_stderr": 0.024484487162913973 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.86, "acc_stderr": 0.0348735088019777, "acc_norm": 0.86, "acc_norm_stderr": 0.0348735088019777 }, "harness|hendrycksTest-virology|5": { "acc": 0.536144578313253, "acc_stderr": 0.03882310850890594, "acc_norm": 0.536144578313253, "acc_norm_stderr": 0.03882310850890594 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8538011695906432, "acc_stderr": 0.02709729011807082, "acc_norm": 0.8538011695906432, "acc_norm_stderr": 0.02709729011807082 }, "harness|truthfulqa:mc|0": { "mc1": 0.5226438188494492, "mc1_stderr": 0.017485542258489636, "mc2": 0.6873292641569112, "mc2_stderr": 0.015222039787426868 }, "harness|winogrande|5": { "acc": 0.739542225730071, "acc_stderr": 0.012334833671998285 }, "harness|gsm8k|5": { "acc": 0.011372251705837756, "acc_stderr": 0.0029206661987887282 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_andysalerno__cloudymixtral7Bx2-nectar-0.2
[ "region:us" ]
2024-01-22T02:17:24+00:00
{"pretty_name": "Evaluation run of andysalerno/cloudymixtral7Bx2-nectar-0.2", "dataset_summary": "Dataset automatically created during the evaluation run of model [andysalerno/cloudymixtral7Bx2-nectar-0.2](https://huggingface.co/andysalerno/cloudymixtral7Bx2-nectar-0.2) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_andysalerno__cloudymixtral7Bx2-nectar-0.2\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-22T02:17:36.925599](https://huggingface.co/datasets/open-llm-leaderboard/details_andysalerno__cloudymixtral7Bx2-nectar-0.2/blob/main/results_2024-01-22T02-17-36.925599.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6411500131859755,\n \"acc_stderr\": 0.03188163161208531,\n \"acc_norm\": 0.6539831613919124,\n \"acc_norm_stderr\": 0.032683317989685615,\n \"mc1\": 0.5226438188494492,\n \"mc1_stderr\": 0.017485542258489636,\n \"mc2\": 0.6873292641569112,\n \"mc2_stderr\": 0.015222039787426868\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.6476109215017065,\n \"acc_stderr\": 0.01396014260059868,\n \"acc_norm\": 0.6749146757679181,\n \"acc_norm_stderr\": 0.013688147309729124\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6092411870145389,\n \"acc_stderr\": 0.004869232758103324,\n \"acc_norm\": 0.8077076279625572,\n \"acc_norm_stderr\": 0.003932960974008082\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.33,\n \"acc_stderr\": 0.04725815626252605,\n \"acc_norm\": 0.33,\n \"acc_norm_stderr\": 0.04725815626252605\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6592592592592592,\n \"acc_stderr\": 0.04094376269996792,\n \"acc_norm\": 0.6592592592592592,\n \"acc_norm_stderr\": 0.04094376269996792\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.7105263157894737,\n \"acc_stderr\": 0.03690677986137283,\n \"acc_norm\": 0.7105263157894737,\n \"acc_norm_stderr\": 0.03690677986137283\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.6,\n \"acc_stderr\": 0.04923659639173309,\n \"acc_norm\": 0.6,\n \"acc_norm_stderr\": 0.04923659639173309\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.7169811320754716,\n \"acc_stderr\": 0.027724236492700918,\n \"acc_norm\": 0.7169811320754716,\n \"acc_norm_stderr\": 0.027724236492700918\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7569444444444444,\n \"acc_stderr\": 0.035868792800803406,\n \"acc_norm\": 0.7569444444444444,\n \"acc_norm_stderr\": 0.035868792800803406\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.45,\n \"acc_stderr\": 0.05,\n \"acc_norm\": 0.45,\n \"acc_norm_stderr\": 0.05\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.53,\n \"acc_stderr\": 0.050161355804659205,\n \"acc_norm\": 0.53,\n \"acc_norm_stderr\": 0.050161355804659205\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.3,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.3,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6820809248554913,\n \"acc_stderr\": 0.0355068398916558,\n \"acc_norm\": 0.6820809248554913,\n \"acc_norm_stderr\": 0.0355068398916558\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.43137254901960786,\n \"acc_stderr\": 0.04928099597287534,\n \"acc_norm\": 0.43137254901960786,\n \"acc_norm_stderr\": 0.04928099597287534\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.79,\n \"acc_stderr\": 0.04093601807403326,\n \"acc_norm\": 0.79,\n \"acc_norm_stderr\": 0.04093601807403326\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5787234042553191,\n \"acc_stderr\": 0.03227834510146267,\n \"acc_norm\": 0.5787234042553191,\n \"acc_norm_stderr\": 0.03227834510146267\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.5087719298245614,\n \"acc_stderr\": 0.04702880432049615,\n \"acc_norm\": 0.5087719298245614,\n \"acc_norm_stderr\": 0.04702880432049615\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.6137931034482759,\n \"acc_stderr\": 0.04057324734419036,\n \"acc_norm\": 0.6137931034482759,\n \"acc_norm_stderr\": 0.04057324734419036\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.43386243386243384,\n \"acc_stderr\": 0.02552503438247489,\n \"acc_norm\": 0.43386243386243384,\n \"acc_norm_stderr\": 0.02552503438247489\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.5079365079365079,\n \"acc_stderr\": 0.044715725362943486,\n \"acc_norm\": 0.5079365079365079,\n \"acc_norm_stderr\": 0.044715725362943486\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.36,\n \"acc_stderr\": 0.048241815132442176,\n \"acc_norm\": 0.36,\n \"acc_norm_stderr\": 0.048241815132442176\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7838709677419354,\n \"acc_stderr\": 0.02341529343356852,\n \"acc_norm\": 0.7838709677419354,\n \"acc_norm_stderr\": 0.02341529343356852\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.5270935960591133,\n \"acc_stderr\": 0.03512819077876106,\n \"acc_norm\": 0.5270935960591133,\n \"acc_norm_stderr\": 0.03512819077876106\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.66,\n \"acc_stderr\": 0.04760952285695237,\n \"acc_norm\": 0.66,\n \"acc_norm_stderr\": 0.04760952285695237\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7878787878787878,\n \"acc_stderr\": 0.03192271569548301,\n \"acc_norm\": 0.7878787878787878,\n \"acc_norm_stderr\": 0.03192271569548301\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.8181818181818182,\n \"acc_stderr\": 0.0274796030105388,\n \"acc_norm\": 0.8181818181818182,\n \"acc_norm_stderr\": 0.0274796030105388\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.9067357512953368,\n \"acc_stderr\": 0.020986854593289736,\n \"acc_norm\": 0.9067357512953368,\n \"acc_norm_stderr\": 0.020986854593289736\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6615384615384615,\n \"acc_stderr\": 0.023991500500313036,\n \"acc_norm\": 0.6615384615384615,\n \"acc_norm_stderr\": 0.023991500500313036\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.3333333333333333,\n \"acc_stderr\": 0.028742040903948485,\n \"acc_norm\": 0.3333333333333333,\n \"acc_norm_stderr\": 0.028742040903948485\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6680672268907563,\n \"acc_stderr\": 0.03058869701378364,\n \"acc_norm\": 0.6680672268907563,\n \"acc_norm_stderr\": 0.03058869701378364\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.39072847682119205,\n \"acc_stderr\": 0.039837983066598075,\n \"acc_norm\": 0.39072847682119205,\n \"acc_norm_stderr\": 0.039837983066598075\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8458715596330275,\n \"acc_stderr\": 0.015480826865374303,\n \"acc_norm\": 0.8458715596330275,\n \"acc_norm_stderr\": 0.015480826865374303\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.5138888888888888,\n \"acc_stderr\": 0.034086558679777494,\n \"acc_norm\": 0.5138888888888888,\n \"acc_norm_stderr\": 0.034086558679777494\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.8382352941176471,\n \"acc_stderr\": 0.02584501798692692,\n \"acc_norm\": 0.8382352941176471,\n \"acc_norm_stderr\": 0.02584501798692692\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.8016877637130801,\n \"acc_stderr\": 0.025955020841621115,\n \"acc_norm\": 0.8016877637130801,\n \"acc_norm_stderr\": 0.025955020841621115\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6905829596412556,\n \"acc_stderr\": 0.03102441174057221,\n \"acc_norm\": 0.6905829596412556,\n \"acc_norm_stderr\": 0.03102441174057221\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.8091603053435115,\n \"acc_stderr\": 0.03446513350752598,\n \"acc_norm\": 0.8091603053435115,\n \"acc_norm_stderr\": 0.03446513350752598\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.7933884297520661,\n \"acc_stderr\": 0.03695980128098824,\n \"acc_norm\": 0.7933884297520661,\n \"acc_norm_stderr\": 0.03695980128098824\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7592592592592593,\n \"acc_stderr\": 0.04133119440243838,\n \"acc_norm\": 0.7592592592592593,\n \"acc_norm_stderr\": 0.04133119440243838\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7668711656441718,\n \"acc_stderr\": 0.0332201579577674,\n \"acc_norm\": 0.7668711656441718,\n \"acc_norm_stderr\": 0.0332201579577674\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.45535714285714285,\n \"acc_stderr\": 0.04726835553719099,\n \"acc_norm\": 0.45535714285714285,\n \"acc_norm_stderr\": 0.04726835553719099\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7766990291262136,\n \"acc_stderr\": 0.04123553189891431,\n \"acc_norm\": 0.7766990291262136,\n \"acc_norm_stderr\": 0.04123553189891431\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8803418803418803,\n \"acc_stderr\": 0.021262719400406953,\n \"acc_norm\": 0.8803418803418803,\n \"acc_norm_stderr\": 0.021262719400406953\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.69,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.69,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8314176245210728,\n \"acc_stderr\": 0.013387895731543604,\n \"acc_norm\": 0.8314176245210728,\n \"acc_norm_stderr\": 0.013387895731543604\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7254335260115607,\n \"acc_stderr\": 0.024027745155265023,\n \"acc_norm\": 0.7254335260115607,\n \"acc_norm_stderr\": 0.024027745155265023\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.4547486033519553,\n \"acc_stderr\": 0.016653875777524012,\n \"acc_norm\": 0.4547486033519553,\n \"acc_norm_stderr\": 0.016653875777524012\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7287581699346405,\n \"acc_stderr\": 0.02545775669666788,\n \"acc_norm\": 0.7287581699346405,\n \"acc_norm_stderr\": 0.02545775669666788\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.707395498392283,\n \"acc_stderr\": 0.02583989833487798,\n \"acc_norm\": 0.707395498392283,\n \"acc_norm_stderr\": 0.02583989833487798\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.7407407407407407,\n \"acc_stderr\": 0.02438366553103545,\n \"acc_norm\": 0.7407407407407407,\n \"acc_norm_stderr\": 0.02438366553103545\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.4645390070921986,\n \"acc_stderr\": 0.029752389657427047,\n \"acc_norm\": 0.4645390070921986,\n \"acc_norm_stderr\": 0.029752389657427047\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.4654498044328553,\n \"acc_stderr\": 0.012739711554045704,\n \"acc_norm\": 0.4654498044328553,\n \"acc_norm_stderr\": 0.012739711554045704\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6801470588235294,\n \"acc_stderr\": 0.0283329595140312,\n \"acc_norm\": 0.6801470588235294,\n \"acc_norm_stderr\": 0.0283329595140312\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6666666666666666,\n \"acc_stderr\": 0.019070985589687495,\n \"acc_norm\": 0.6666666666666666,\n \"acc_norm_stderr\": 0.019070985589687495\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6727272727272727,\n \"acc_stderr\": 0.0449429086625209,\n \"acc_norm\": 0.6727272727272727,\n \"acc_norm_stderr\": 0.0449429086625209\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7346938775510204,\n \"acc_stderr\": 0.028263889943784593,\n \"acc_norm\": 0.7346938775510204,\n \"acc_norm_stderr\": 0.028263889943784593\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8606965174129353,\n \"acc_stderr\": 0.024484487162913973,\n \"acc_norm\": 0.8606965174129353,\n \"acc_norm_stderr\": 0.024484487162913973\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.86,\n \"acc_stderr\": 0.0348735088019777,\n \"acc_norm\": 0.86,\n \"acc_norm_stderr\": 0.0348735088019777\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.536144578313253,\n \"acc_stderr\": 0.03882310850890594,\n \"acc_norm\": 0.536144578313253,\n \"acc_norm_stderr\": 0.03882310850890594\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8538011695906432,\n \"acc_stderr\": 0.02709729011807082,\n \"acc_norm\": 0.8538011695906432,\n \"acc_norm_stderr\": 0.02709729011807082\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.5226438188494492,\n \"mc1_stderr\": 0.017485542258489636,\n \"mc2\": 0.6873292641569112,\n \"mc2_stderr\": 0.015222039787426868\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.739542225730071,\n \"acc_stderr\": 0.012334833671998285\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.011372251705837756,\n \"acc_stderr\": 0.0029206661987887282\n }\n}\n```", "repo_url": "https://huggingface.co/andysalerno/cloudymixtral7Bx2-nectar-0.2", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|arc:challenge|25_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|arc:challenge|25_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|gsm8k|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|gsm8k|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hellaswag|10_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hellaswag|10_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T02-15-08.544766.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T02-17-36.925599.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["**/details_harness|winogrande|5_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["**/details_harness|winogrande|5_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-22T02-17-36.925599.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_22T02_15_08.544766", "path": ["results_2024-01-22T02-15-08.544766.parquet"]}, {"split": "2024_01_22T02_17_36.925599", "path": ["results_2024-01-22T02-17-36.925599.parquet"]}, {"split": "latest", "path": ["results_2024-01-22T02-17-36.925599.parquet"]}]}]}
2024-01-22T02:20:23+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of andysalerno/cloudymixtral7Bx2-nectar-0.2 Dataset automatically created during the evaluation run of model andysalerno/cloudymixtral7Bx2-nectar-0.2 on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-22T02:17:36.925599(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of andysalerno/cloudymixtral7Bx2-nectar-0.2\n\n\n\nDataset automatically created during the evaluation run of model andysalerno/cloudymixtral7Bx2-nectar-0.2 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T02:17:36.925599(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of andysalerno/cloudymixtral7Bx2-nectar-0.2\n\n\n\nDataset automatically created during the evaluation run of model andysalerno/cloudymixtral7Bx2-nectar-0.2 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T02:17:36.925599(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
f688c393221bbb87bf676e8a5ad33841dd23e92a
# Dataset Description We are releasing under the CC-BY licence a new large-scale dataset for Automatic Symptom Detection (ASD) and Automatic Diagnosis (AD) systems in the medical domain. The dataset contains patients synthesized using a proprietary medical knowledge base and a commercial rule-based AD system. Patients in the dataset are characterized by their socio-demographic data, a pathology they are suffering from, a set of symptoms and antecedents related to this pathology, and a differential diagnosis. The symptoms and antecedents can be binary, categorical and multi-choice, with the potential of leading to more efficient and natural interactions between ASD/AD systems and patients. To the best of our knowledge, this is the first large-scale dataset that includes the differential diagnosis, and non-binary symptoms and antecedents. **Note**: We use evidence as a general term to refer to a symptom or an antecedent. This directory contains the following files: - **release_evidences.json**: a JSON file describing all possible evidences considered in the dataset. - **release_conditions.json**: a JSON file describing all pathologies considered in the dataset. - **release_train_patients.zip**: a CSV file containing the patients of the training set. - **release_validate_patients.zip**: a CSV file containing the patients of the validation set. - **release_test_patients.zip**: a CSV file containing the patients of the test set. ## Evidence Description Each evidence in the `release_evidences.json` file is described using the following entries: - **name**: name of the evidence. - **code_question**: a code allowing to identify which evidences are related. Evidences having the same `code_question` form a group of related symptoms. The value of the `code_question` refers to the evidence that need to be simulated/activated for the other members of the group to be eventually simulated. - **question_fr**: the query, in French, associated to the evidence. - **question_en**: the query, in English, associated to the evidence. - **is_antecedent**: a flag indicating whether the evidence is an antecedent or a symptom. - **data_type**: the type of evidence. We use `B` for binary, `C` for categorical, and `M` for multi-choice evidences. - **default_value**: the default value of the evidence. If this value is used to characterize the evidence, then it is as if the evidence was not synthesized. - **possible-values**: the possible values for the evidences. Only valid for categorical and multi-choice evidences. - **value_meaning**: The meaning, in French and English, of each code that is part of the `possible-values` field. Only valid for categorical and multi-choice evidences. ## Pathology Description The file `release_conditions.json` contains information about the pathologies that patients in the datasets may suffer from. Each pathology has the following attributes: - **condition_name**: name of the pathology. - **cond-name-fr**: name of the pathology in French. - **cond-name-eng**: name of the pathology in English. - **icd10-id**: ICD-10 code of the pathology. - **severity**: the severity associated with the pathology. The lower the more severe. - **symptoms**: data structure describing the set of symptoms characterizing the pathology. Each symptom is represented by its corresponding `name` entry in the `release_evidences.json` file. - **antecedents**: data structure describing the set of antecedents characterizing the pathology. Each antecedent is represented by its corresponding `name` entry in the `release_evidences.json` file. ## Patient Description Each patient in each of the 3 sets has the following attributes: - **AGE**: the age of the synthesized patient. - **SEX**: the sex of the synthesized patient. - **PATHOLOGY**: name of the ground truth pathology (`condition_name` property in the `release_conditions.json` file) that the synthesized patient is suffering from. - **EVIDENCES**: list of evidences experienced by the patient. An evidence can either be binary, categorical or multi-choice. A categorical or multi-choice evidence is represented in the format `[evidence-name]_@_[evidence-value]` where [`evidence-name`] is the name of the evidence (`name` entry in the `release_evidences.json` file) and [`evidence-value`] is a value from the `possible-values` entry. Note that for a multi-choice evidence, it is possible to have several `[evidence-name]_@_[evidence-value]` items in the evidence list, with each item being associated with a different evidence value. A binary evidence is represented as `[evidence-name]`. - **INITIAL_EVIDENCE**: the evidence provided by the patient to kick-start an interaction with an ASD/AD system. This is useful during model evaluation for a fair comparison of ASD/AD systems as they will all begin an interaction with a given patient from the same starting point. The initial evidence is randomly selected from the binary evidences found in the evidence list mentioned above (i.e., `EVIDENCES`) and it is part of this list. - **DIFFERENTIAL_DIAGNOSIS**: The ground truth differential diagnosis for the patient. It is represented as a list of pairs of the form `[[patho_1, proba_1], [patho_2, proba_2], ...]` where `patho_i` is the pathology name (`condition_name` entry in the `release_conditions.json` file) and `proba_i` is its related probability. ## Note: We hope this dataset will encourage future works for ASD and AD systems that consider the differential diagnosis and the severity of pathologies. It is important to keep in mind that this dataset is formed of synthetic patients and is meant for research purposes. Given the assumptions made during the generation process of this dataset, we would like to emphasize that the dataset should not be used to train and deploy a model prior to performing rigorous evaluations of the model performance and verifying that the system has proper coverage and representation of the population that it will interact with. It is important to understand that the level of specificity, sensitivity and confidence that a physician will seek when evaluating a patient will be influenced by the clinical setting. The dataset was built for acute care and biased toward high mortality and morbidity pathologies. Physicians will tend to consider negative evidences as equally important in such a clinical context in order to evaluate high acuity diseases. In the creation of the DDXPlus dataset, a small subset of the diseases was chosen to establish a baseline. Medical professionals have to consider this very important point when reviewing the results of models trained with this dataset, as the differential is considerably smaller. A smaller differential means less potential evidences to collect. It is thus essential to understand this point when we look at the differential produced and the evidence collected by a model based on this dataset. For more information, please check our [paper](https://arxiv.org/abs/2205.09148).
aai530-group6/ddxplus-french
[ "task_categories:tabular-classification", "task_ids:multi-class-classification", "size_categories:1K<n<10K", "source_datasets:original", "language:fr", "license:cc-by-4.0", "automatic-diagnosis", "automatic-symptom-detection", "differential-diagnosis", "synthetic-patients", "diseases", "health-care", "arxiv:2205.09148", "region:us" ]
2024-01-22T02:17:41+00:00
{"language": ["fr"], "license": "cc-by-4.0", "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["tabular-classification"], "task_ids": ["multi-class-classification"], "paperswithcode_id": "ddxplus", "pretty_name": "DDXPlus", "license_link": "https://creativecommons.org/licenses/by/4.0/", "tags": ["automatic-diagnosis", "automatic-symptom-detection", "differential-diagnosis", "synthetic-patients", "diseases", "health-care"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "train.csv"}, {"split": "test", "path": "test.csv"}, {"split": "validate", "path": "validate.csv"}]}], "extra_gated_prompt": "By accessing this dataset, you agree to use it solely for research purposes and not for clinical decision-making.", "extra_gated_fields": {"Consent": "checkbox", "Purpose of use": {"type": "select", "options": ["Research", "Educational", {"label": "Other", "value": "other"}]}}, "train-eval-index": [{"config": "default", "task": "medical-diagnosis", "task_id": "binary-classification", "splits": {"train_split": "train", "eval_split": "validate"}, "col_mapping": {"AGE": "AGE", "SEX": "SEX", "PATHOLOGY": "PATHOLOGY", "EVIDENCES": "EVIDENCES", "INITIAL_EVIDENCE": "INITIAL_EVIDENCE", "DIFFERENTIAL_DIAGNOSIS": "DIFFERENTIAL_DIAGNOSIS"}, "metrics": [{"type": "accuracy", "name": "Accuracy"}, {"type": "f1", "name": "F1 Score"}]}]}
2024-01-22T03:35:29+00:00
[ "2205.09148" ]
[ "fr" ]
TAGS #task_categories-tabular-classification #task_ids-multi-class-classification #size_categories-1K<n<10K #source_datasets-original #language-French #license-cc-by-4.0 #automatic-diagnosis #automatic-symptom-detection #differential-diagnosis #synthetic-patients #diseases #health-care #arxiv-2205.09148 #region-us
# Dataset Description We are releasing under the CC-BY licence a new large-scale dataset for Automatic Symptom Detection (ASD) and Automatic Diagnosis (AD) systems in the medical domain. The dataset contains patients synthesized using a proprietary medical knowledge base and a commercial rule-based AD system. Patients in the dataset are characterized by their socio-demographic data, a pathology they are suffering from, a set of symptoms and antecedents related to this pathology, and a differential diagnosis. The symptoms and antecedents can be binary, categorical and multi-choice, with the potential of leading to more efficient and natural interactions between ASD/AD systems and patients. To the best of our knowledge, this is the first large-scale dataset that includes the differential diagnosis, and non-binary symptoms and antecedents. Note: We use evidence as a general term to refer to a symptom or an antecedent. This directory contains the following files: - release_evidences.json: a JSON file describing all possible evidences considered in the dataset. - release_conditions.json: a JSON file describing all pathologies considered in the dataset. - release_train_patients.zip: a CSV file containing the patients of the training set. - release_validate_patients.zip: a CSV file containing the patients of the validation set. - release_test_patients.zip: a CSV file containing the patients of the test set. ## Evidence Description Each evidence in the 'release_evidences.json' file is described using the following entries: - name: name of the evidence. - code_question: a code allowing to identify which evidences are related. Evidences having the same 'code_question' form a group of related symptoms. The value of the 'code_question' refers to the evidence that need to be simulated/activated for the other members of the group to be eventually simulated. - question_fr: the query, in French, associated to the evidence. - question_en: the query, in English, associated to the evidence. - is_antecedent: a flag indicating whether the evidence is an antecedent or a symptom. - data_type: the type of evidence. We use 'B' for binary, 'C' for categorical, and 'M' for multi-choice evidences. - default_value: the default value of the evidence. If this value is used to characterize the evidence, then it is as if the evidence was not synthesized. - possible-values: the possible values for the evidences. Only valid for categorical and multi-choice evidences. - value_meaning: The meaning, in French and English, of each code that is part of the 'possible-values' field. Only valid for categorical and multi-choice evidences. ## Pathology Description The file 'release_conditions.json' contains information about the pathologies that patients in the datasets may suffer from. Each pathology has the following attributes: - condition_name: name of the pathology. - cond-name-fr: name of the pathology in French. - cond-name-eng: name of the pathology in English. - icd10-id: ICD-10 code of the pathology. - severity: the severity associated with the pathology. The lower the more severe. - symptoms: data structure describing the set of symptoms characterizing the pathology. Each symptom is represented by its corresponding 'name' entry in the 'release_evidences.json' file. - antecedents: data structure describing the set of antecedents characterizing the pathology. Each antecedent is represented by its corresponding 'name' entry in the 'release_evidences.json' file. ## Patient Description Each patient in each of the 3 sets has the following attributes: - AGE: the age of the synthesized patient. - SEX: the sex of the synthesized patient. - PATHOLOGY: name of the ground truth pathology ('condition_name' property in the 'release_conditions.json' file) that the synthesized patient is suffering from. - EVIDENCES: list of evidences experienced by the patient. An evidence can either be binary, categorical or multi-choice. A categorical or multi-choice evidence is represented in the format '[evidence-name]_@_[evidence-value]' where ['evidence-name'] is the name of the evidence ('name' entry in the 'release_evidences.json' file) and ['evidence-value'] is a value from the 'possible-values' entry. Note that for a multi-choice evidence, it is possible to have several '[evidence-name]_@_[evidence-value]' items in the evidence list, with each item being associated with a different evidence value. A binary evidence is represented as '[evidence-name]'. - INITIAL_EVIDENCE: the evidence provided by the patient to kick-start an interaction with an ASD/AD system. This is useful during model evaluation for a fair comparison of ASD/AD systems as they will all begin an interaction with a given patient from the same starting point. The initial evidence is randomly selected from the binary evidences found in the evidence list mentioned above (i.e., 'EVIDENCES') and it is part of this list. - DIFFERENTIAL_DIAGNOSIS: The ground truth differential diagnosis for the patient. It is represented as a list of pairs of the form '[[patho_1, proba_1], [patho_2, proba_2], ...]' where 'patho_i' is the pathology name ('condition_name' entry in the 'release_conditions.json' file) and 'proba_i' is its related probability. ## Note: We hope this dataset will encourage future works for ASD and AD systems that consider the differential diagnosis and the severity of pathologies. It is important to keep in mind that this dataset is formed of synthetic patients and is meant for research purposes. Given the assumptions made during the generation process of this dataset, we would like to emphasize that the dataset should not be used to train and deploy a model prior to performing rigorous evaluations of the model performance and verifying that the system has proper coverage and representation of the population that it will interact with. It is important to understand that the level of specificity, sensitivity and confidence that a physician will seek when evaluating a patient will be influenced by the clinical setting. The dataset was built for acute care and biased toward high mortality and morbidity pathologies. Physicians will tend to consider negative evidences as equally important in such a clinical context in order to evaluate high acuity diseases. In the creation of the DDXPlus dataset, a small subset of the diseases was chosen to establish a baseline. Medical professionals have to consider this very important point when reviewing the results of models trained with this dataset, as the differential is considerably smaller. A smaller differential means less potential evidences to collect. It is thus essential to understand this point when we look at the differential produced and the evidence collected by a model based on this dataset. For more information, please check our paper.
[ "# Dataset Description\n\nWe are releasing under the CC-BY licence a new large-scale dataset for Automatic Symptom Detection (ASD) and Automatic Diagnosis (AD) systems in the medical domain. The dataset contains patients synthesized using a proprietary medical knowledge base and a commercial rule-based AD system. Patients in the dataset are characterized by their socio-demographic data, a pathology they are suffering from, a set of symptoms and antecedents related to this pathology, and a differential diagnosis. The symptoms and antecedents can be binary, categorical and multi-choice, with the potential of leading to more efficient and natural interactions between ASD/AD systems and patients. To the best of our knowledge, this is the first large-scale dataset that includes the differential diagnosis, and non-binary symptoms and antecedents.\n\nNote: We use evidence as a general term to refer to a symptom or an antecedent.\n\nThis directory contains the following files:\n - release_evidences.json: a JSON file describing all possible evidences considered in the dataset.\n - release_conditions.json: a JSON file describing all pathologies considered in the dataset.\n - release_train_patients.zip: a CSV file containing the patients of the training set.\n - release_validate_patients.zip: a CSV file containing the patients of the validation set.\n - release_test_patients.zip: a CSV file containing the patients of the test set.", "## Evidence Description\n\nEach evidence in the 'release_evidences.json' file is described using the following entries:\n - name: name of the evidence.\n - code_question: a code allowing to identify which evidences are related. Evidences having the same 'code_question' form a group of related symptoms. The value of the 'code_question' refers to the evidence that need to be simulated/activated for the other members of the group to be eventually simulated.\n - question_fr: the query, in French, associated to the evidence.\n - question_en: the query, in English, associated to the evidence.\n - is_antecedent: a flag indicating whether the evidence is an antecedent or a symptom.\n - data_type: the type of evidence. We use 'B' for binary, 'C' for categorical, and 'M' for multi-choice evidences.\n - default_value: the default value of the evidence. If this value is used to characterize the evidence, then it is as if the evidence was not synthesized.\n - possible-values: the possible values for the evidences. Only valid for categorical and multi-choice evidences.\n - value_meaning: The meaning, in French and English, of each code that is part of the 'possible-values' field. Only valid for categorical and multi-choice evidences.", "## Pathology Description\nThe file 'release_conditions.json' contains information about the pathologies that patients in the datasets may suffer from. Each pathology has the following attributes:\n - condition_name: name of the pathology.\n - cond-name-fr: name of the pathology in French.\n - cond-name-eng: name of the pathology in English.\n - icd10-id: ICD-10 code of the pathology.\n - severity: the severity associated with the pathology. The lower the more severe.\n - symptoms: data structure describing the set of symptoms characterizing the pathology. Each symptom is represented by its corresponding 'name' entry in the 'release_evidences.json' file.\n - antecedents: data structure describing the set of antecedents characterizing the pathology. Each antecedent is represented by its corresponding 'name' entry in the 'release_evidences.json' file.", "## Patient Description\n\nEach patient in each of the 3 sets has the following attributes:\n - AGE: the age of the synthesized patient.\n - SEX: the sex of the synthesized patient.\n - PATHOLOGY: name of the ground truth pathology ('condition_name' property in the 'release_conditions.json' file) that the synthesized patient is suffering from.\n - EVIDENCES: list of evidences experienced by the patient. An evidence can either be binary, categorical or multi-choice. A categorical or multi-choice evidence is represented in the format '[evidence-name]_@_[evidence-value]' where ['evidence-name'] is the name of the evidence ('name' entry in the 'release_evidences.json' file) and ['evidence-value'] is a value from the 'possible-values' entry. Note that for a multi-choice evidence, it is possible to have several '[evidence-name]_@_[evidence-value]' items in the evidence list, with each item being associated with a different evidence value. A binary evidence is represented as '[evidence-name]'.\n - INITIAL_EVIDENCE: the evidence provided by the patient to kick-start an interaction with an ASD/AD system. This is useful during model evaluation for a fair comparison of ASD/AD systems as they will all begin an interaction with a given patient from the same starting point. The initial evidence is randomly selected from the binary evidences found in the evidence list mentioned above (i.e., 'EVIDENCES') and it is part of this list.\n - DIFFERENTIAL_DIAGNOSIS: The ground truth differential diagnosis for the patient. It is represented as a list of pairs of the form '[[patho_1, proba_1], [patho_2, proba_2], ...]' where 'patho_i' is the pathology name ('condition_name' entry in the 'release_conditions.json' file) and 'proba_i' is its related probability.", "## Note:\n\nWe hope this dataset will encourage future works for ASD and AD systems that consider the differential diagnosis and the severity of pathologies. It is important to keep in mind that this dataset is formed of synthetic patients and is meant for research purposes. Given the assumptions made during the generation process of this dataset, we would like to emphasize that the dataset should not be used to train and deploy a model prior to performing rigorous evaluations of the model performance and verifying that the system has proper coverage and representation of the population that it will interact with.\n\nIt is important to understand that the level of specificity, sensitivity and confidence that a physician will seek when evaluating a patient will be influenced by the clinical setting. The dataset was built for acute care and biased toward high mortality and morbidity pathologies. Physicians will tend to consider negative evidences as equally important in such a clinical context in order to evaluate high acuity diseases.\n\nIn the creation of the DDXPlus dataset, a small subset of the diseases was chosen to establish a baseline. Medical professionals have to consider this very important point when reviewing the results of models trained with this dataset, as the differential is considerably smaller. A smaller differential means less potential evidences to collect. It is thus essential to understand this point when we look at the differential produced and the evidence collected by a model based on this dataset.\n\nFor more information, please check our paper." ]
[ "TAGS\n#task_categories-tabular-classification #task_ids-multi-class-classification #size_categories-1K<n<10K #source_datasets-original #language-French #license-cc-by-4.0 #automatic-diagnosis #automatic-symptom-detection #differential-diagnosis #synthetic-patients #diseases #health-care #arxiv-2205.09148 #region-us \n", "# Dataset Description\n\nWe are releasing under the CC-BY licence a new large-scale dataset for Automatic Symptom Detection (ASD) and Automatic Diagnosis (AD) systems in the medical domain. The dataset contains patients synthesized using a proprietary medical knowledge base and a commercial rule-based AD system. Patients in the dataset are characterized by their socio-demographic data, a pathology they are suffering from, a set of symptoms and antecedents related to this pathology, and a differential diagnosis. The symptoms and antecedents can be binary, categorical and multi-choice, with the potential of leading to more efficient and natural interactions between ASD/AD systems and patients. To the best of our knowledge, this is the first large-scale dataset that includes the differential diagnosis, and non-binary symptoms and antecedents.\n\nNote: We use evidence as a general term to refer to a symptom or an antecedent.\n\nThis directory contains the following files:\n - release_evidences.json: a JSON file describing all possible evidences considered in the dataset.\n - release_conditions.json: a JSON file describing all pathologies considered in the dataset.\n - release_train_patients.zip: a CSV file containing the patients of the training set.\n - release_validate_patients.zip: a CSV file containing the patients of the validation set.\n - release_test_patients.zip: a CSV file containing the patients of the test set.", "## Evidence Description\n\nEach evidence in the 'release_evidences.json' file is described using the following entries:\n - name: name of the evidence.\n - code_question: a code allowing to identify which evidences are related. Evidences having the same 'code_question' form a group of related symptoms. The value of the 'code_question' refers to the evidence that need to be simulated/activated for the other members of the group to be eventually simulated.\n - question_fr: the query, in French, associated to the evidence.\n - question_en: the query, in English, associated to the evidence.\n - is_antecedent: a flag indicating whether the evidence is an antecedent or a symptom.\n - data_type: the type of evidence. We use 'B' for binary, 'C' for categorical, and 'M' for multi-choice evidences.\n - default_value: the default value of the evidence. If this value is used to characterize the evidence, then it is as if the evidence was not synthesized.\n - possible-values: the possible values for the evidences. Only valid for categorical and multi-choice evidences.\n - value_meaning: The meaning, in French and English, of each code that is part of the 'possible-values' field. Only valid for categorical and multi-choice evidences.", "## Pathology Description\nThe file 'release_conditions.json' contains information about the pathologies that patients in the datasets may suffer from. Each pathology has the following attributes:\n - condition_name: name of the pathology.\n - cond-name-fr: name of the pathology in French.\n - cond-name-eng: name of the pathology in English.\n - icd10-id: ICD-10 code of the pathology.\n - severity: the severity associated with the pathology. The lower the more severe.\n - symptoms: data structure describing the set of symptoms characterizing the pathology. Each symptom is represented by its corresponding 'name' entry in the 'release_evidences.json' file.\n - antecedents: data structure describing the set of antecedents characterizing the pathology. Each antecedent is represented by its corresponding 'name' entry in the 'release_evidences.json' file.", "## Patient Description\n\nEach patient in each of the 3 sets has the following attributes:\n - AGE: the age of the synthesized patient.\n - SEX: the sex of the synthesized patient.\n - PATHOLOGY: name of the ground truth pathology ('condition_name' property in the 'release_conditions.json' file) that the synthesized patient is suffering from.\n - EVIDENCES: list of evidences experienced by the patient. An evidence can either be binary, categorical or multi-choice. A categorical or multi-choice evidence is represented in the format '[evidence-name]_@_[evidence-value]' where ['evidence-name'] is the name of the evidence ('name' entry in the 'release_evidences.json' file) and ['evidence-value'] is a value from the 'possible-values' entry. Note that for a multi-choice evidence, it is possible to have several '[evidence-name]_@_[evidence-value]' items in the evidence list, with each item being associated with a different evidence value. A binary evidence is represented as '[evidence-name]'.\n - INITIAL_EVIDENCE: the evidence provided by the patient to kick-start an interaction with an ASD/AD system. This is useful during model evaluation for a fair comparison of ASD/AD systems as they will all begin an interaction with a given patient from the same starting point. The initial evidence is randomly selected from the binary evidences found in the evidence list mentioned above (i.e., 'EVIDENCES') and it is part of this list.\n - DIFFERENTIAL_DIAGNOSIS: The ground truth differential diagnosis for the patient. It is represented as a list of pairs of the form '[[patho_1, proba_1], [patho_2, proba_2], ...]' where 'patho_i' is the pathology name ('condition_name' entry in the 'release_conditions.json' file) and 'proba_i' is its related probability.", "## Note:\n\nWe hope this dataset will encourage future works for ASD and AD systems that consider the differential diagnosis and the severity of pathologies. It is important to keep in mind that this dataset is formed of synthetic patients and is meant for research purposes. Given the assumptions made during the generation process of this dataset, we would like to emphasize that the dataset should not be used to train and deploy a model prior to performing rigorous evaluations of the model performance and verifying that the system has proper coverage and representation of the population that it will interact with.\n\nIt is important to understand that the level of specificity, sensitivity and confidence that a physician will seek when evaluating a patient will be influenced by the clinical setting. The dataset was built for acute care and biased toward high mortality and morbidity pathologies. Physicians will tend to consider negative evidences as equally important in such a clinical context in order to evaluate high acuity diseases.\n\nIn the creation of the DDXPlus dataset, a small subset of the diseases was chosen to establish a baseline. Medical professionals have to consider this very important point when reviewing the results of models trained with this dataset, as the differential is considerably smaller. A smaller differential means less potential evidences to collect. It is thus essential to understand this point when we look at the differential produced and the evidence collected by a model based on this dataset.\n\nFor more information, please check our paper." ]
d180f35e87fbc77d99133cc901ddc340fe78ad78
# Dataset Card for Evaluation run of antiven0m/brugle-rp <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [antiven0m/brugle-rp](https://huggingface.co/antiven0m/brugle-rp) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_antiven0m__brugle-rp", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-22T02:19:10.123124](https://huggingface.co/datasets/open-llm-leaderboard/details_antiven0m__brugle-rp/blob/main/results_2024-01-22T02-19-10.123124.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.23196194129343728, "acc_stderr": 0.029934654752561563, "acc_norm": 0.2314240573187148, "acc_norm_stderr": 0.03071122006512167, "mc1": 1.0, "mc1_stderr": 0.0, "mc2": NaN, "mc2_stderr": NaN }, "harness|arc:challenge|25": { "acc": 0.22696245733788395, "acc_stderr": 0.012240491536132861, "acc_norm": 0.22696245733788395, "acc_norm_stderr": 0.012240491536132861 }, "harness|hellaswag|10": { "acc": 0.2504481179047998, "acc_stderr": 0.004323856300539177, "acc_norm": 0.2504481179047998, "acc_norm_stderr": 0.004323856300539177 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.22, "acc_stderr": 0.04163331998932268, "acc_norm": 0.22, "acc_norm_stderr": 0.04163331998932268 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.18518518518518517, "acc_stderr": 0.03355677216313142, "acc_norm": 0.18518518518518517, "acc_norm_stderr": 0.03355677216313142 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.17763157894736842, "acc_stderr": 0.031103182383123398, "acc_norm": 0.17763157894736842, "acc_norm_stderr": 0.031103182383123398 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.3, "acc_stderr": 0.046056618647183814, "acc_norm": 0.3, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.21509433962264152, "acc_stderr": 0.02528839450289137, "acc_norm": 0.21509433962264152, "acc_norm_stderr": 0.02528839450289137 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.2569444444444444, "acc_stderr": 0.03653946969442099, "acc_norm": 0.2569444444444444, "acc_norm_stderr": 0.03653946969442099 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.2, "acc_stderr": 0.04020151261036845, "acc_norm": 0.2, "acc_norm_stderr": 0.04020151261036845 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.26, "acc_stderr": 0.0440844002276808, "acc_norm": 0.26, "acc_norm_stderr": 0.0440844002276808 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.21, "acc_stderr": 0.040936018074033256, "acc_norm": 0.21, "acc_norm_stderr": 0.040936018074033256 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.20809248554913296, "acc_stderr": 0.030952890217749874, "acc_norm": 0.20809248554913296, "acc_norm_stderr": 0.030952890217749874 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.21568627450980393, "acc_stderr": 0.04092563958237654, "acc_norm": 0.21568627450980393, "acc_norm_stderr": 0.04092563958237654 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.28, "acc_stderr": 0.045126085985421276, "acc_norm": 0.28, "acc_norm_stderr": 0.045126085985421276 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.26382978723404255, "acc_stderr": 0.028809989854102973, "acc_norm": 0.26382978723404255, "acc_norm_stderr": 0.028809989854102973 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.23684210526315788, "acc_stderr": 0.039994238792813365, "acc_norm": 0.23684210526315788, "acc_norm_stderr": 0.039994238792813365 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.2413793103448276, "acc_stderr": 0.03565998174135302, "acc_norm": 0.2413793103448276, "acc_norm_stderr": 0.03565998174135302 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.20899470899470898, "acc_stderr": 0.02094048156533486, "acc_norm": 0.20899470899470898, "acc_norm_stderr": 0.02094048156533486 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.2857142857142857, "acc_stderr": 0.04040610178208841, "acc_norm": 0.2857142857142857, "acc_norm_stderr": 0.04040610178208841 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.18, "acc_stderr": 0.038612291966536934, "acc_norm": 0.18, "acc_norm_stderr": 0.038612291966536934 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.1774193548387097, "acc_stderr": 0.02173254068932927, "acc_norm": 0.1774193548387097, "acc_norm_stderr": 0.02173254068932927 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.15270935960591134, "acc_stderr": 0.02530890453938063, "acc_norm": 0.15270935960591134, "acc_norm_stderr": 0.02530890453938063 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.25, "acc_stderr": 0.04351941398892446, "acc_norm": 0.25, "acc_norm_stderr": 0.04351941398892446 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.21818181818181817, "acc_stderr": 0.03225078108306289, "acc_norm": 0.21818181818181817, "acc_norm_stderr": 0.03225078108306289 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.17676767676767677, "acc_stderr": 0.027178752639044915, "acc_norm": 0.17676767676767677, "acc_norm_stderr": 0.027178752639044915 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.19689119170984457, "acc_stderr": 0.028697873971860664, "acc_norm": 0.19689119170984457, "acc_norm_stderr": 0.028697873971860664 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.20256410256410257, "acc_stderr": 0.020377660970371372, "acc_norm": 0.20256410256410257, "acc_norm_stderr": 0.020377660970371372 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.2111111111111111, "acc_stderr": 0.024882116857655075, "acc_norm": 0.2111111111111111, "acc_norm_stderr": 0.024882116857655075 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.21008403361344538, "acc_stderr": 0.026461398717471874, "acc_norm": 0.21008403361344538, "acc_norm_stderr": 0.026461398717471874 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.1986754966887417, "acc_stderr": 0.03257847384436776, "acc_norm": 0.1986754966887417, "acc_norm_stderr": 0.03257847384436776 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.1926605504587156, "acc_stderr": 0.016909276884936094, "acc_norm": 0.1926605504587156, "acc_norm_stderr": 0.016909276884936094 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.1527777777777778, "acc_stderr": 0.024536326026134224, "acc_norm": 0.1527777777777778, "acc_norm_stderr": 0.024536326026134224 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.25, "acc_stderr": 0.03039153369274154, "acc_norm": 0.25, "acc_norm_stderr": 0.03039153369274154 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.270042194092827, "acc_stderr": 0.028900721906293426, "acc_norm": 0.270042194092827, "acc_norm_stderr": 0.028900721906293426 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.31390134529147984, "acc_stderr": 0.031146796482972465, "acc_norm": 0.31390134529147984, "acc_norm_stderr": 0.031146796482972465 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.2595419847328244, "acc_stderr": 0.03844876139785271, "acc_norm": 0.2595419847328244, "acc_norm_stderr": 0.03844876139785271 }, "harness|hendrycksTest-international_law|5": { "acc": 0.2396694214876033, "acc_stderr": 0.03896878985070417, "acc_norm": 0.2396694214876033, "acc_norm_stderr": 0.03896878985070417 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.25925925925925924, "acc_stderr": 0.042365112580946336, "acc_norm": 0.25925925925925924, "acc_norm_stderr": 0.042365112580946336 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.22085889570552147, "acc_stderr": 0.032591773927421776, "acc_norm": 0.22085889570552147, "acc_norm_stderr": 0.032591773927421776 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.3125, "acc_stderr": 0.043994650575715215, "acc_norm": 0.3125, "acc_norm_stderr": 0.043994650575715215 }, "harness|hendrycksTest-management|5": { "acc": 0.17475728155339806, "acc_stderr": 0.037601780060266224, "acc_norm": 0.17475728155339806, "acc_norm_stderr": 0.037601780060266224 }, "harness|hendrycksTest-marketing|5": { "acc": 0.2905982905982906, "acc_stderr": 0.02974504857267404, "acc_norm": 0.2905982905982906, "acc_norm_stderr": 0.02974504857267404 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.3, "acc_stderr": 0.046056618647183814, "acc_norm": 0.3, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.23754789272030652, "acc_stderr": 0.015218733046150193, "acc_norm": 0.23754789272030652, "acc_norm_stderr": 0.015218733046150193 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.24855491329479767, "acc_stderr": 0.023267528432100174, "acc_norm": 0.24855491329479767, "acc_norm_stderr": 0.023267528432100174 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.23798882681564246, "acc_stderr": 0.014242630070574915, "acc_norm": 0.23798882681564246, "acc_norm_stderr": 0.014242630070574915 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.22549019607843138, "acc_stderr": 0.023929155517351284, "acc_norm": 0.22549019607843138, "acc_norm_stderr": 0.023929155517351284 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.1864951768488746, "acc_stderr": 0.02212243977248077, "acc_norm": 0.1864951768488746, "acc_norm_stderr": 0.02212243977248077 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.21604938271604937, "acc_stderr": 0.022899162918445806, "acc_norm": 0.21604938271604937, "acc_norm_stderr": 0.022899162918445806 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.23404255319148937, "acc_stderr": 0.025257861359432417, "acc_norm": 0.23404255319148937, "acc_norm_stderr": 0.025257861359432417 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.2457627118644068, "acc_stderr": 0.010996156635142692, "acc_norm": 0.2457627118644068, "acc_norm_stderr": 0.010996156635142692 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.18382352941176472, "acc_stderr": 0.023529242185193106, "acc_norm": 0.18382352941176472, "acc_norm_stderr": 0.023529242185193106 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.25, "acc_stderr": 0.01751781884501444, "acc_norm": 0.25, "acc_norm_stderr": 0.01751781884501444 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.21818181818181817, "acc_stderr": 0.03955932861795833, "acc_norm": 0.21818181818181817, "acc_norm_stderr": 0.03955932861795833 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.18775510204081633, "acc_stderr": 0.02500025603954621, "acc_norm": 0.18775510204081633, "acc_norm_stderr": 0.02500025603954621 }, "harness|hendrycksTest-sociology|5": { "acc": 0.24378109452736318, "acc_stderr": 0.03036049015401465, "acc_norm": 0.24378109452736318, "acc_norm_stderr": 0.03036049015401465 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.28, "acc_stderr": 0.04512608598542128, "acc_norm": 0.28, "acc_norm_stderr": 0.04512608598542128 }, "harness|hendrycksTest-virology|5": { "acc": 0.28313253012048195, "acc_stderr": 0.03507295431370518, "acc_norm": 0.28313253012048195, "acc_norm_stderr": 0.03507295431370518 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.3216374269005848, "acc_stderr": 0.03582529442573122, "acc_norm": 0.3216374269005848, "acc_norm_stderr": 0.03582529442573122 }, "harness|truthfulqa:mc|0": { "mc1": 1.0, "mc1_stderr": 0.0, "mc2": NaN, "mc2_stderr": NaN }, "harness|winogrande|5": { "acc": 0.4956590370955012, "acc_stderr": 0.014051956064076911 }, "harness|gsm8k|5": { "acc": 0.0, "acc_stderr": 0.0 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_antiven0m__brugle-rp
[ "region:us" ]
2024-01-22T02:21:29+00:00
{"pretty_name": "Evaluation run of antiven0m/brugle-rp", "dataset_summary": "Dataset automatically created during the evaluation run of model [antiven0m/brugle-rp](https://huggingface.co/antiven0m/brugle-rp) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_antiven0m__brugle-rp\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-22T02:19:10.123124](https://huggingface.co/datasets/open-llm-leaderboard/details_antiven0m__brugle-rp/blob/main/results_2024-01-22T02-19-10.123124.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.23196194129343728,\n \"acc_stderr\": 0.029934654752561563,\n \"acc_norm\": 0.2314240573187148,\n \"acc_norm_stderr\": 0.03071122006512167,\n \"mc1\": 1.0,\n \"mc1_stderr\": 0.0,\n \"mc2\": NaN,\n \"mc2_stderr\": NaN\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.22696245733788395,\n \"acc_stderr\": 0.012240491536132861,\n \"acc_norm\": 0.22696245733788395,\n \"acc_norm_stderr\": 0.012240491536132861\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.2504481179047998,\n \"acc_stderr\": 0.004323856300539177,\n \"acc_norm\": 0.2504481179047998,\n \"acc_norm_stderr\": 0.004323856300539177\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.22,\n \"acc_stderr\": 0.04163331998932268,\n \"acc_norm\": 0.22,\n \"acc_norm_stderr\": 0.04163331998932268\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.18518518518518517,\n \"acc_stderr\": 0.03355677216313142,\n \"acc_norm\": 0.18518518518518517,\n \"acc_norm_stderr\": 0.03355677216313142\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.17763157894736842,\n \"acc_stderr\": 0.031103182383123398,\n \"acc_norm\": 0.17763157894736842,\n \"acc_norm_stderr\": 0.031103182383123398\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.3,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.3,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.21509433962264152,\n \"acc_stderr\": 0.02528839450289137,\n \"acc_norm\": 0.21509433962264152,\n \"acc_norm_stderr\": 0.02528839450289137\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.2569444444444444,\n \"acc_stderr\": 0.03653946969442099,\n \"acc_norm\": 0.2569444444444444,\n \"acc_norm_stderr\": 0.03653946969442099\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.2,\n \"acc_stderr\": 0.04020151261036845,\n \"acc_norm\": 0.2,\n \"acc_norm_stderr\": 0.04020151261036845\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.26,\n \"acc_stderr\": 0.0440844002276808,\n \"acc_norm\": 0.26,\n \"acc_norm_stderr\": 0.0440844002276808\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.21,\n \"acc_stderr\": 0.040936018074033256,\n \"acc_norm\": 0.21,\n \"acc_norm_stderr\": 0.040936018074033256\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.20809248554913296,\n \"acc_stderr\": 0.030952890217749874,\n \"acc_norm\": 0.20809248554913296,\n \"acc_norm_stderr\": 0.030952890217749874\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.21568627450980393,\n \"acc_stderr\": 0.04092563958237654,\n \"acc_norm\": 0.21568627450980393,\n \"acc_norm_stderr\": 0.04092563958237654\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.28,\n \"acc_stderr\": 0.045126085985421276,\n \"acc_norm\": 0.28,\n \"acc_norm_stderr\": 0.045126085985421276\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.26382978723404255,\n \"acc_stderr\": 0.028809989854102973,\n \"acc_norm\": 0.26382978723404255,\n \"acc_norm_stderr\": 0.028809989854102973\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.23684210526315788,\n \"acc_stderr\": 0.039994238792813365,\n \"acc_norm\": 0.23684210526315788,\n \"acc_norm_stderr\": 0.039994238792813365\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.2413793103448276,\n \"acc_stderr\": 0.03565998174135302,\n \"acc_norm\": 0.2413793103448276,\n \"acc_norm_stderr\": 0.03565998174135302\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.20899470899470898,\n \"acc_stderr\": 0.02094048156533486,\n \"acc_norm\": 0.20899470899470898,\n \"acc_norm_stderr\": 0.02094048156533486\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.2857142857142857,\n \"acc_stderr\": 0.04040610178208841,\n \"acc_norm\": 0.2857142857142857,\n \"acc_norm_stderr\": 0.04040610178208841\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.18,\n \"acc_stderr\": 0.038612291966536934,\n \"acc_norm\": 0.18,\n \"acc_norm_stderr\": 0.038612291966536934\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.1774193548387097,\n \"acc_stderr\": 0.02173254068932927,\n \"acc_norm\": 0.1774193548387097,\n \"acc_norm_stderr\": 0.02173254068932927\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.15270935960591134,\n \"acc_stderr\": 0.02530890453938063,\n \"acc_norm\": 0.15270935960591134,\n \"acc_norm_stderr\": 0.02530890453938063\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.25,\n \"acc_stderr\": 0.04351941398892446,\n \"acc_norm\": 0.25,\n \"acc_norm_stderr\": 0.04351941398892446\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.21818181818181817,\n \"acc_stderr\": 0.03225078108306289,\n \"acc_norm\": 0.21818181818181817,\n \"acc_norm_stderr\": 0.03225078108306289\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.17676767676767677,\n \"acc_stderr\": 0.027178752639044915,\n \"acc_norm\": 0.17676767676767677,\n \"acc_norm_stderr\": 0.027178752639044915\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.19689119170984457,\n \"acc_stderr\": 0.028697873971860664,\n \"acc_norm\": 0.19689119170984457,\n \"acc_norm_stderr\": 0.028697873971860664\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.20256410256410257,\n \"acc_stderr\": 0.020377660970371372,\n \"acc_norm\": 0.20256410256410257,\n \"acc_norm_stderr\": 0.020377660970371372\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.2111111111111111,\n \"acc_stderr\": 0.024882116857655075,\n \"acc_norm\": 0.2111111111111111,\n \"acc_norm_stderr\": 0.024882116857655075\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.21008403361344538,\n \"acc_stderr\": 0.026461398717471874,\n \"acc_norm\": 0.21008403361344538,\n \"acc_norm_stderr\": 0.026461398717471874\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.1986754966887417,\n \"acc_stderr\": 0.03257847384436776,\n \"acc_norm\": 0.1986754966887417,\n \"acc_norm_stderr\": 0.03257847384436776\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.1926605504587156,\n \"acc_stderr\": 0.016909276884936094,\n \"acc_norm\": 0.1926605504587156,\n \"acc_norm_stderr\": 0.016909276884936094\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.1527777777777778,\n \"acc_stderr\": 0.024536326026134224,\n \"acc_norm\": 0.1527777777777778,\n \"acc_norm_stderr\": 0.024536326026134224\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.25,\n \"acc_stderr\": 0.03039153369274154,\n \"acc_norm\": 0.25,\n \"acc_norm_stderr\": 0.03039153369274154\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.270042194092827,\n \"acc_stderr\": 0.028900721906293426,\n \"acc_norm\": 0.270042194092827,\n \"acc_norm_stderr\": 0.028900721906293426\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.31390134529147984,\n \"acc_stderr\": 0.031146796482972465,\n \"acc_norm\": 0.31390134529147984,\n \"acc_norm_stderr\": 0.031146796482972465\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.2595419847328244,\n \"acc_stderr\": 0.03844876139785271,\n \"acc_norm\": 0.2595419847328244,\n \"acc_norm_stderr\": 0.03844876139785271\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.2396694214876033,\n \"acc_stderr\": 0.03896878985070417,\n \"acc_norm\": 0.2396694214876033,\n \"acc_norm_stderr\": 0.03896878985070417\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.25925925925925924,\n \"acc_stderr\": 0.042365112580946336,\n \"acc_norm\": 0.25925925925925924,\n \"acc_norm_stderr\": 0.042365112580946336\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.22085889570552147,\n \"acc_stderr\": 0.032591773927421776,\n \"acc_norm\": 0.22085889570552147,\n \"acc_norm_stderr\": 0.032591773927421776\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.3125,\n \"acc_stderr\": 0.043994650575715215,\n \"acc_norm\": 0.3125,\n \"acc_norm_stderr\": 0.043994650575715215\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.17475728155339806,\n \"acc_stderr\": 0.037601780060266224,\n \"acc_norm\": 0.17475728155339806,\n \"acc_norm_stderr\": 0.037601780060266224\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.2905982905982906,\n \"acc_stderr\": 0.02974504857267404,\n \"acc_norm\": 0.2905982905982906,\n \"acc_norm_stderr\": 0.02974504857267404\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.3,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.3,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.23754789272030652,\n \"acc_stderr\": 0.015218733046150193,\n \"acc_norm\": 0.23754789272030652,\n \"acc_norm_stderr\": 0.015218733046150193\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.24855491329479767,\n \"acc_stderr\": 0.023267528432100174,\n \"acc_norm\": 0.24855491329479767,\n \"acc_norm_stderr\": 0.023267528432100174\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.23798882681564246,\n \"acc_stderr\": 0.014242630070574915,\n \"acc_norm\": 0.23798882681564246,\n \"acc_norm_stderr\": 0.014242630070574915\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.22549019607843138,\n \"acc_stderr\": 0.023929155517351284,\n \"acc_norm\": 0.22549019607843138,\n \"acc_norm_stderr\": 0.023929155517351284\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.1864951768488746,\n \"acc_stderr\": 0.02212243977248077,\n \"acc_norm\": 0.1864951768488746,\n \"acc_norm_stderr\": 0.02212243977248077\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.21604938271604937,\n \"acc_stderr\": 0.022899162918445806,\n \"acc_norm\": 0.21604938271604937,\n \"acc_norm_stderr\": 0.022899162918445806\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.23404255319148937,\n \"acc_stderr\": 0.025257861359432417,\n \"acc_norm\": 0.23404255319148937,\n \"acc_norm_stderr\": 0.025257861359432417\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.2457627118644068,\n \"acc_stderr\": 0.010996156635142692,\n \"acc_norm\": 0.2457627118644068,\n \"acc_norm_stderr\": 0.010996156635142692\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.18382352941176472,\n \"acc_stderr\": 0.023529242185193106,\n \"acc_norm\": 0.18382352941176472,\n \"acc_norm_stderr\": 0.023529242185193106\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.25,\n \"acc_stderr\": 0.01751781884501444,\n \"acc_norm\": 0.25,\n \"acc_norm_stderr\": 0.01751781884501444\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.21818181818181817,\n \"acc_stderr\": 0.03955932861795833,\n \"acc_norm\": 0.21818181818181817,\n \"acc_norm_stderr\": 0.03955932861795833\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.18775510204081633,\n \"acc_stderr\": 0.02500025603954621,\n \"acc_norm\": 0.18775510204081633,\n \"acc_norm_stderr\": 0.02500025603954621\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.24378109452736318,\n \"acc_stderr\": 0.03036049015401465,\n \"acc_norm\": 0.24378109452736318,\n \"acc_norm_stderr\": 0.03036049015401465\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.28,\n \"acc_stderr\": 0.04512608598542128,\n \"acc_norm\": 0.28,\n \"acc_norm_stderr\": 0.04512608598542128\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.28313253012048195,\n \"acc_stderr\": 0.03507295431370518,\n \"acc_norm\": 0.28313253012048195,\n \"acc_norm_stderr\": 0.03507295431370518\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.3216374269005848,\n \"acc_stderr\": 0.03582529442573122,\n \"acc_norm\": 0.3216374269005848,\n \"acc_norm_stderr\": 0.03582529442573122\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 1.0,\n \"mc1_stderr\": 0.0,\n \"mc2\": NaN,\n \"mc2_stderr\": NaN\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.4956590370955012,\n \"acc_stderr\": 0.014051956064076911\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.0,\n \"acc_stderr\": 0.0\n }\n}\n```", "repo_url": "https://huggingface.co/antiven0m/brugle-rp", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|arc:challenge|25_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|gsm8k|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hellaswag|10_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T02-19-10.123124.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["**/details_harness|winogrande|5_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-22T02-19-10.123124.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_22T02_19_10.123124", "path": ["results_2024-01-22T02-19-10.123124.parquet"]}, {"split": "latest", "path": ["results_2024-01-22T02-19-10.123124.parquet"]}]}]}
2024-01-22T02:21:50+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of antiven0m/brugle-rp Dataset automatically created during the evaluation run of model antiven0m/brugle-rp on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-22T02:19:10.123124(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of antiven0m/brugle-rp\n\n\n\nDataset automatically created during the evaluation run of model antiven0m/brugle-rp on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T02:19:10.123124(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of antiven0m/brugle-rp\n\n\n\nDataset automatically created during the evaluation run of model antiven0m/brugle-rp on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T02:19:10.123124(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
b31041ceba7babbf46f267030b651bf4e53e3b1f
# Dataset Card for Evaluation run of Weyaxi/Stellaris-internlm2-20b-r256 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [Weyaxi/Stellaris-internlm2-20b-r256](https://huggingface.co/Weyaxi/Stellaris-internlm2-20b-r256) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_Weyaxi__Stellaris-internlm2-20b-r256", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-22T02:30:15.872651](https://huggingface.co/datasets/open-llm-leaderboard/details_Weyaxi__Stellaris-internlm2-20b-r256/blob/main/results_2024-01-22T02-30-15.872651.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.6508661042256001, "acc_stderr": 0.03172035451202671, "acc_norm": 0.6620431850943416, "acc_norm_stderr": 0.03255546322018798, "mc1": 0.3390452876376989, "mc1_stderr": 0.016571797910626605, "mc2": 0.5181219506294198, "mc2_stderr": 0.015229145792254558 }, "harness|arc:challenge|25": { "acc": 0.5750853242320819, "acc_stderr": 0.014445698968520772, "acc_norm": 0.6109215017064846, "acc_norm_stderr": 0.014247309976045607 }, "harness|hellaswag|10": { "acc": 0.6358295160326628, "acc_stderr": 0.004802133511654238, "acc_norm": 0.8222465644293966, "acc_norm_stderr": 0.0038152372699611094 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.39, "acc_stderr": 0.04902071300001975, "acc_norm": 0.39, "acc_norm_stderr": 0.04902071300001975 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.5925925925925926, "acc_stderr": 0.04244633238353227, "acc_norm": 0.5925925925925926, "acc_norm_stderr": 0.04244633238353227 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.7631578947368421, "acc_stderr": 0.03459777606810536, "acc_norm": 0.7631578947368421, "acc_norm_stderr": 0.03459777606810536 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.69, "acc_stderr": 0.04648231987117316, "acc_norm": 0.69, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.720754716981132, "acc_stderr": 0.027611163402399715, "acc_norm": 0.720754716981132, "acc_norm_stderr": 0.027611163402399715 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.7916666666666666, "acc_stderr": 0.033961162058453336, "acc_norm": 0.7916666666666666, "acc_norm_stderr": 0.033961162058453336 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.47, "acc_stderr": 0.050161355804659205, "acc_norm": 0.47, "acc_norm_stderr": 0.050161355804659205 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.55, "acc_stderr": 0.05, "acc_norm": 0.55, "acc_norm_stderr": 0.05 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.4, "acc_stderr": 0.049236596391733084, "acc_norm": 0.4, "acc_norm_stderr": 0.049236596391733084 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6589595375722543, "acc_stderr": 0.036146654241808254, "acc_norm": 0.6589595375722543, "acc_norm_stderr": 0.036146654241808254 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.4019607843137255, "acc_stderr": 0.04878608714466996, "acc_norm": 0.4019607843137255, "acc_norm_stderr": 0.04878608714466996 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.82, "acc_stderr": 0.038612291966536955, "acc_norm": 0.82, "acc_norm_stderr": 0.038612291966536955 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.6425531914893617, "acc_stderr": 0.031329417894764254, "acc_norm": 0.6425531914893617, "acc_norm_stderr": 0.031329417894764254 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.47368421052631576, "acc_stderr": 0.046970851366478626, "acc_norm": 0.47368421052631576, "acc_norm_stderr": 0.046970851366478626 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.5862068965517241, "acc_stderr": 0.04104269211806232, "acc_norm": 0.5862068965517241, "acc_norm_stderr": 0.04104269211806232 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.47354497354497355, "acc_stderr": 0.02571523981134676, "acc_norm": 0.47354497354497355, "acc_norm_stderr": 0.02571523981134676 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.48412698412698413, "acc_stderr": 0.04469881854072606, "acc_norm": 0.48412698412698413, "acc_norm_stderr": 0.04469881854072606 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.37, "acc_stderr": 0.048523658709391, "acc_norm": 0.37, "acc_norm_stderr": 0.048523658709391 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.8096774193548387, "acc_stderr": 0.022331707611823074, "acc_norm": 0.8096774193548387, "acc_norm_stderr": 0.022331707611823074 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.5862068965517241, "acc_stderr": 0.034653044884067945, "acc_norm": 0.5862068965517241, "acc_norm_stderr": 0.034653044884067945 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.73, "acc_stderr": 0.044619604333847394, "acc_norm": 0.73, "acc_norm_stderr": 0.044619604333847394 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.8, "acc_stderr": 0.031234752377721164, "acc_norm": 0.8, "acc_norm_stderr": 0.031234752377721164 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.8080808080808081, "acc_stderr": 0.02805779167298902, "acc_norm": 0.8080808080808081, "acc_norm_stderr": 0.02805779167298902 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.8808290155440415, "acc_stderr": 0.023381935348121427, "acc_norm": 0.8808290155440415, "acc_norm_stderr": 0.023381935348121427 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.6794871794871795, "acc_stderr": 0.02366129639396428, "acc_norm": 0.6794871794871795, "acc_norm_stderr": 0.02366129639396428 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.3148148148148148, "acc_stderr": 0.028317533496066468, "acc_norm": 0.3148148148148148, "acc_norm_stderr": 0.028317533496066468 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.7226890756302521, "acc_stderr": 0.029079374539480007, "acc_norm": 0.7226890756302521, "acc_norm_stderr": 0.029079374539480007 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.36423841059602646, "acc_stderr": 0.03929111781242742, "acc_norm": 0.36423841059602646, "acc_norm_stderr": 0.03929111781242742 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8477064220183487, "acc_stderr": 0.015405084393157074, "acc_norm": 0.8477064220183487, "acc_norm_stderr": 0.015405084393157074 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.5324074074074074, "acc_stderr": 0.03402801581358966, "acc_norm": 0.5324074074074074, "acc_norm_stderr": 0.03402801581358966 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.8627450980392157, "acc_stderr": 0.024152225962801588, "acc_norm": 0.8627450980392157, "acc_norm_stderr": 0.024152225962801588 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.8185654008438819, "acc_stderr": 0.025085961144579654, "acc_norm": 0.8185654008438819, "acc_norm_stderr": 0.025085961144579654 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.726457399103139, "acc_stderr": 0.029918586707798827, "acc_norm": 0.726457399103139, "acc_norm_stderr": 0.029918586707798827 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.6717557251908397, "acc_stderr": 0.041184385658062976, "acc_norm": 0.6717557251908397, "acc_norm_stderr": 0.041184385658062976 }, "harness|hendrycksTest-international_law|5": { "acc": 0.8347107438016529, "acc_stderr": 0.03390780612972776, "acc_norm": 0.8347107438016529, "acc_norm_stderr": 0.03390780612972776 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.7407407407407407, "acc_stderr": 0.042365112580946315, "acc_norm": 0.7407407407407407, "acc_norm_stderr": 0.042365112580946315 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7607361963190185, "acc_stderr": 0.0335195387952127, "acc_norm": 0.7607361963190185, "acc_norm_stderr": 0.0335195387952127 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.5267857142857143, "acc_stderr": 0.047389751192741546, "acc_norm": 0.5267857142857143, "acc_norm_stderr": 0.047389751192741546 }, "harness|hendrycksTest-management|5": { "acc": 0.8446601941747572, "acc_stderr": 0.03586594738573973, "acc_norm": 0.8446601941747572, "acc_norm_stderr": 0.03586594738573973 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8803418803418803, "acc_stderr": 0.021262719400406974, "acc_norm": 0.8803418803418803, "acc_norm_stderr": 0.021262719400406974 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.7, "acc_stderr": 0.046056618647183814, "acc_norm": 0.7, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.8007662835249042, "acc_stderr": 0.01428337804429641, "acc_norm": 0.8007662835249042, "acc_norm_stderr": 0.01428337804429641 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.7138728323699421, "acc_stderr": 0.02433214677913413, "acc_norm": 0.7138728323699421, "acc_norm_stderr": 0.02433214677913413 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.3754189944134078, "acc_stderr": 0.01619510424846353, "acc_norm": 0.3754189944134078, "acc_norm_stderr": 0.01619510424846353 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.7156862745098039, "acc_stderr": 0.025829163272757482, "acc_norm": 0.7156862745098039, "acc_norm_stderr": 0.025829163272757482 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.752411575562701, "acc_stderr": 0.024513879973621967, "acc_norm": 0.752411575562701, "acc_norm_stderr": 0.024513879973621967 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.7654320987654321, "acc_stderr": 0.023576881744005716, "acc_norm": 0.7654320987654321, "acc_norm_stderr": 0.023576881744005716 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.48226950354609927, "acc_stderr": 0.02980873964223777, "acc_norm": 0.48226950354609927, "acc_norm_stderr": 0.02980873964223777 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.49022164276401564, "acc_stderr": 0.012767793787729338, "acc_norm": 0.49022164276401564, "acc_norm_stderr": 0.012767793787729338 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.6875, "acc_stderr": 0.02815637344037142, "acc_norm": 0.6875, "acc_norm_stderr": 0.02815637344037142 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.673202614379085, "acc_stderr": 0.0189754279205072, "acc_norm": 0.673202614379085, "acc_norm_stderr": 0.0189754279205072 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6363636363636364, "acc_stderr": 0.046075820907199756, "acc_norm": 0.6363636363636364, "acc_norm_stderr": 0.046075820907199756 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.8, "acc_stderr": 0.025607375986579157, "acc_norm": 0.8, "acc_norm_stderr": 0.025607375986579157 }, "harness|hendrycksTest-sociology|5": { "acc": 0.845771144278607, "acc_stderr": 0.025538433368578337, "acc_norm": 0.845771144278607, "acc_norm_stderr": 0.025538433368578337 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.84, "acc_stderr": 0.03684529491774708, "acc_norm": 0.84, "acc_norm_stderr": 0.03684529491774708 }, "harness|hendrycksTest-virology|5": { "acc": 0.536144578313253, "acc_stderr": 0.038823108508905954, "acc_norm": 0.536144578313253, "acc_norm_stderr": 0.038823108508905954 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.7894736842105263, "acc_stderr": 0.031267817146631786, "acc_norm": 0.7894736842105263, "acc_norm_stderr": 0.031267817146631786 }, "harness|truthfulqa:mc|0": { "mc1": 0.3390452876376989, "mc1_stderr": 0.016571797910626605, "mc2": 0.5181219506294198, "mc2_stderr": 0.015229145792254558 }, "harness|winogrande|5": { "acc": 0.8524072612470402, "acc_stderr": 0.009968715765479653 }, "harness|gsm8k|5": { "acc": 0.012130401819560273, "acc_stderr": 0.0030152942428909434 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_Weyaxi__Stellaris-internlm2-20b-r256
[ "region:us" ]
2024-01-22T02:32:34+00:00
{"pretty_name": "Evaluation run of Weyaxi/Stellaris-internlm2-20b-r256", "dataset_summary": "Dataset automatically created during the evaluation run of model [Weyaxi/Stellaris-internlm2-20b-r256](https://huggingface.co/Weyaxi/Stellaris-internlm2-20b-r256) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_Weyaxi__Stellaris-internlm2-20b-r256\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-22T02:30:15.872651](https://huggingface.co/datasets/open-llm-leaderboard/details_Weyaxi__Stellaris-internlm2-20b-r256/blob/main/results_2024-01-22T02-30-15.872651.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6508661042256001,\n \"acc_stderr\": 0.03172035451202671,\n \"acc_norm\": 0.6620431850943416,\n \"acc_norm_stderr\": 0.03255546322018798,\n \"mc1\": 0.3390452876376989,\n \"mc1_stderr\": 0.016571797910626605,\n \"mc2\": 0.5181219506294198,\n \"mc2_stderr\": 0.015229145792254558\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.5750853242320819,\n \"acc_stderr\": 0.014445698968520772,\n \"acc_norm\": 0.6109215017064846,\n \"acc_norm_stderr\": 0.014247309976045607\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6358295160326628,\n \"acc_stderr\": 0.004802133511654238,\n \"acc_norm\": 0.8222465644293966,\n \"acc_norm_stderr\": 0.0038152372699611094\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.39,\n \"acc_stderr\": 0.04902071300001975,\n \"acc_norm\": 0.39,\n \"acc_norm_stderr\": 0.04902071300001975\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.5925925925925926,\n \"acc_stderr\": 0.04244633238353227,\n \"acc_norm\": 0.5925925925925926,\n \"acc_norm_stderr\": 0.04244633238353227\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.7631578947368421,\n \"acc_stderr\": 0.03459777606810536,\n \"acc_norm\": 0.7631578947368421,\n \"acc_norm_stderr\": 0.03459777606810536\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.69,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.69,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.720754716981132,\n \"acc_stderr\": 0.027611163402399715,\n \"acc_norm\": 0.720754716981132,\n \"acc_norm_stderr\": 0.027611163402399715\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7916666666666666,\n \"acc_stderr\": 0.033961162058453336,\n \"acc_norm\": 0.7916666666666666,\n \"acc_norm_stderr\": 0.033961162058453336\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.47,\n \"acc_stderr\": 0.050161355804659205,\n \"acc_norm\": 0.47,\n \"acc_norm_stderr\": 0.050161355804659205\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.55,\n \"acc_stderr\": 0.05,\n \"acc_norm\": 0.55,\n \"acc_norm_stderr\": 0.05\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.4,\n \"acc_stderr\": 0.049236596391733084,\n \"acc_norm\": 0.4,\n \"acc_norm_stderr\": 0.049236596391733084\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6589595375722543,\n \"acc_stderr\": 0.036146654241808254,\n \"acc_norm\": 0.6589595375722543,\n \"acc_norm_stderr\": 0.036146654241808254\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.4019607843137255,\n \"acc_stderr\": 0.04878608714466996,\n \"acc_norm\": 0.4019607843137255,\n \"acc_norm_stderr\": 0.04878608714466996\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.82,\n \"acc_stderr\": 0.038612291966536955,\n \"acc_norm\": 0.82,\n \"acc_norm_stderr\": 0.038612291966536955\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.6425531914893617,\n \"acc_stderr\": 0.031329417894764254,\n \"acc_norm\": 0.6425531914893617,\n \"acc_norm_stderr\": 0.031329417894764254\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.47368421052631576,\n \"acc_stderr\": 0.046970851366478626,\n \"acc_norm\": 0.47368421052631576,\n \"acc_norm_stderr\": 0.046970851366478626\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5862068965517241,\n \"acc_stderr\": 0.04104269211806232,\n \"acc_norm\": 0.5862068965517241,\n \"acc_norm_stderr\": 0.04104269211806232\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.47354497354497355,\n \"acc_stderr\": 0.02571523981134676,\n \"acc_norm\": 0.47354497354497355,\n \"acc_norm_stderr\": 0.02571523981134676\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.48412698412698413,\n \"acc_stderr\": 0.04469881854072606,\n \"acc_norm\": 0.48412698412698413,\n \"acc_norm_stderr\": 0.04469881854072606\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.37,\n \"acc_stderr\": 0.048523658709391,\n \"acc_norm\": 0.37,\n \"acc_norm_stderr\": 0.048523658709391\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.8096774193548387,\n \"acc_stderr\": 0.022331707611823074,\n \"acc_norm\": 0.8096774193548387,\n \"acc_norm_stderr\": 0.022331707611823074\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.5862068965517241,\n \"acc_stderr\": 0.034653044884067945,\n \"acc_norm\": 0.5862068965517241,\n \"acc_norm_stderr\": 0.034653044884067945\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.73,\n \"acc_stderr\": 0.044619604333847394,\n \"acc_norm\": 0.73,\n \"acc_norm_stderr\": 0.044619604333847394\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.8,\n \"acc_stderr\": 0.031234752377721164,\n \"acc_norm\": 0.8,\n \"acc_norm_stderr\": 0.031234752377721164\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.8080808080808081,\n \"acc_stderr\": 0.02805779167298902,\n \"acc_norm\": 0.8080808080808081,\n \"acc_norm_stderr\": 0.02805779167298902\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8808290155440415,\n \"acc_stderr\": 0.023381935348121427,\n \"acc_norm\": 0.8808290155440415,\n \"acc_norm_stderr\": 0.023381935348121427\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6794871794871795,\n \"acc_stderr\": 0.02366129639396428,\n \"acc_norm\": 0.6794871794871795,\n \"acc_norm_stderr\": 0.02366129639396428\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.3148148148148148,\n \"acc_stderr\": 0.028317533496066468,\n \"acc_norm\": 0.3148148148148148,\n \"acc_norm_stderr\": 0.028317533496066468\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.7226890756302521,\n \"acc_stderr\": 0.029079374539480007,\n \"acc_norm\": 0.7226890756302521,\n \"acc_norm_stderr\": 0.029079374539480007\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.36423841059602646,\n \"acc_stderr\": 0.03929111781242742,\n \"acc_norm\": 0.36423841059602646,\n \"acc_norm_stderr\": 0.03929111781242742\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8477064220183487,\n \"acc_stderr\": 0.015405084393157074,\n \"acc_norm\": 0.8477064220183487,\n \"acc_norm_stderr\": 0.015405084393157074\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.5324074074074074,\n \"acc_stderr\": 0.03402801581358966,\n \"acc_norm\": 0.5324074074074074,\n \"acc_norm_stderr\": 0.03402801581358966\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.8627450980392157,\n \"acc_stderr\": 0.024152225962801588,\n \"acc_norm\": 0.8627450980392157,\n \"acc_norm_stderr\": 0.024152225962801588\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.8185654008438819,\n \"acc_stderr\": 0.025085961144579654,\n \"acc_norm\": 0.8185654008438819,\n \"acc_norm_stderr\": 0.025085961144579654\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.726457399103139,\n \"acc_stderr\": 0.029918586707798827,\n \"acc_norm\": 0.726457399103139,\n \"acc_norm_stderr\": 0.029918586707798827\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.6717557251908397,\n \"acc_stderr\": 0.041184385658062976,\n \"acc_norm\": 0.6717557251908397,\n \"acc_norm_stderr\": 0.041184385658062976\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8347107438016529,\n \"acc_stderr\": 0.03390780612972776,\n \"acc_norm\": 0.8347107438016529,\n \"acc_norm_stderr\": 0.03390780612972776\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7407407407407407,\n \"acc_stderr\": 0.042365112580946315,\n \"acc_norm\": 0.7407407407407407,\n \"acc_norm_stderr\": 0.042365112580946315\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7607361963190185,\n \"acc_stderr\": 0.0335195387952127,\n \"acc_norm\": 0.7607361963190185,\n \"acc_norm_stderr\": 0.0335195387952127\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.5267857142857143,\n \"acc_stderr\": 0.047389751192741546,\n \"acc_norm\": 0.5267857142857143,\n \"acc_norm_stderr\": 0.047389751192741546\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.8446601941747572,\n \"acc_stderr\": 0.03586594738573973,\n \"acc_norm\": 0.8446601941747572,\n \"acc_norm_stderr\": 0.03586594738573973\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8803418803418803,\n \"acc_stderr\": 0.021262719400406974,\n \"acc_norm\": 0.8803418803418803,\n \"acc_norm_stderr\": 0.021262719400406974\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.7,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.7,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8007662835249042,\n \"acc_stderr\": 0.01428337804429641,\n \"acc_norm\": 0.8007662835249042,\n \"acc_norm_stderr\": 0.01428337804429641\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7138728323699421,\n \"acc_stderr\": 0.02433214677913413,\n \"acc_norm\": 0.7138728323699421,\n \"acc_norm_stderr\": 0.02433214677913413\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.3754189944134078,\n \"acc_stderr\": 0.01619510424846353,\n \"acc_norm\": 0.3754189944134078,\n \"acc_norm_stderr\": 0.01619510424846353\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7156862745098039,\n \"acc_stderr\": 0.025829163272757482,\n \"acc_norm\": 0.7156862745098039,\n \"acc_norm_stderr\": 0.025829163272757482\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.752411575562701,\n \"acc_stderr\": 0.024513879973621967,\n \"acc_norm\": 0.752411575562701,\n \"acc_norm_stderr\": 0.024513879973621967\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.7654320987654321,\n \"acc_stderr\": 0.023576881744005716,\n \"acc_norm\": 0.7654320987654321,\n \"acc_norm_stderr\": 0.023576881744005716\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.48226950354609927,\n \"acc_stderr\": 0.02980873964223777,\n \"acc_norm\": 0.48226950354609927,\n \"acc_norm_stderr\": 0.02980873964223777\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.49022164276401564,\n \"acc_stderr\": 0.012767793787729338,\n \"acc_norm\": 0.49022164276401564,\n \"acc_norm_stderr\": 0.012767793787729338\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6875,\n \"acc_stderr\": 0.02815637344037142,\n \"acc_norm\": 0.6875,\n \"acc_norm_stderr\": 0.02815637344037142\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.673202614379085,\n \"acc_stderr\": 0.0189754279205072,\n \"acc_norm\": 0.673202614379085,\n \"acc_norm_stderr\": 0.0189754279205072\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6363636363636364,\n \"acc_stderr\": 0.046075820907199756,\n \"acc_norm\": 0.6363636363636364,\n \"acc_norm_stderr\": 0.046075820907199756\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.8,\n \"acc_stderr\": 0.025607375986579157,\n \"acc_norm\": 0.8,\n \"acc_norm_stderr\": 0.025607375986579157\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.845771144278607,\n \"acc_stderr\": 0.025538433368578337,\n \"acc_norm\": 0.845771144278607,\n \"acc_norm_stderr\": 0.025538433368578337\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.84,\n \"acc_stderr\": 0.03684529491774708,\n \"acc_norm\": 0.84,\n \"acc_norm_stderr\": 0.03684529491774708\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.536144578313253,\n \"acc_stderr\": 0.038823108508905954,\n \"acc_norm\": 0.536144578313253,\n \"acc_norm_stderr\": 0.038823108508905954\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.7894736842105263,\n \"acc_stderr\": 0.031267817146631786,\n \"acc_norm\": 0.7894736842105263,\n \"acc_norm_stderr\": 0.031267817146631786\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.3390452876376989,\n \"mc1_stderr\": 0.016571797910626605,\n \"mc2\": 0.5181219506294198,\n \"mc2_stderr\": 0.015229145792254558\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.8524072612470402,\n \"acc_stderr\": 0.009968715765479653\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.012130401819560273,\n \"acc_stderr\": 0.0030152942428909434\n }\n}\n```", "repo_url": "https://huggingface.co/Weyaxi/Stellaris-internlm2-20b-r256", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|arc:challenge|25_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|gsm8k|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hellaswag|10_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T02-30-15.872651.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["**/details_harness|winogrande|5_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-22T02-30-15.872651.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_22T02_30_15.872651", "path": ["results_2024-01-22T02-30-15.872651.parquet"]}, {"split": "latest", "path": ["results_2024-01-22T02-30-15.872651.parquet"]}]}]}
2024-01-22T02:32:56+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of Weyaxi/Stellaris-internlm2-20b-r256 Dataset automatically created during the evaluation run of model Weyaxi/Stellaris-internlm2-20b-r256 on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-22T02:30:15.872651(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of Weyaxi/Stellaris-internlm2-20b-r256\n\n\n\nDataset automatically created during the evaluation run of model Weyaxi/Stellaris-internlm2-20b-r256 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T02:30:15.872651(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of Weyaxi/Stellaris-internlm2-20b-r256\n\n\n\nDataset automatically created during the evaluation run of model Weyaxi/Stellaris-internlm2-20b-r256 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T02:30:15.872651(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
f61b365f6f335c967b4703868adaaf1e49905959
# Dataset Card for "mlqa" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [https://github.com/facebookresearch/MLQA](https://github.com/facebookresearch/MLQA) - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of downloaded dataset files:** 4.15 GB - **Size of the generated dataset:** 910.01 MB - **Total amount of disk used:** 5.06 GB ### Dataset Summary MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance. MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic, German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between 4 different languages on average. ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages MLQA contains QA instances in 7 languages, English, Arabic, German, Spanish, Hindi, Vietnamese and Simplified Chinese. ## Dataset Structure ### Data Instances #### mlqa-translate-test.ar - **Size of downloaded dataset files:** 10.08 MB - **Size of the generated dataset:** 5.48 MB - **Total amount of disk used:** 15.56 MB An example of 'test' looks as follows. ``` ``` #### mlqa-translate-test.de - **Size of downloaded dataset files:** 10.08 MB - **Size of the generated dataset:** 3.88 MB - **Total amount of disk used:** 13.96 MB An example of 'test' looks as follows. ``` ``` #### mlqa-translate-test.es - **Size of downloaded dataset files:** 10.08 MB - **Size of the generated dataset:** 3.92 MB - **Total amount of disk used:** 13.99 MB An example of 'test' looks as follows. ``` ``` #### mlqa-translate-test.hi - **Size of downloaded dataset files:** 10.08 MB - **Size of the generated dataset:** 4.61 MB - **Total amount of disk used:** 14.68 MB An example of 'test' looks as follows. ``` ``` #### mlqa-translate-test.vi - **Size of downloaded dataset files:** 10.08 MB - **Size of the generated dataset:** 6.00 MB - **Total amount of disk used:** 16.07 MB An example of 'test' looks as follows. ``` ``` ### Data Fields The data fields are the same among all splits. #### mlqa-translate-test.ar - `context`: a `string` feature. - `question`: a `string` feature. - `answers`: a dictionary feature containing: - `answer_start`: a `int32` feature. - `text`: a `string` feature. - `id`: a `string` feature. #### mlqa-translate-test.de - `context`: a `string` feature. - `question`: a `string` feature. - `answers`: a dictionary feature containing: - `answer_start`: a `int32` feature. - `text`: a `string` feature. - `id`: a `string` feature. #### mlqa-translate-test.es - `context`: a `string` feature. - `question`: a `string` feature. - `answers`: a dictionary feature containing: - `answer_start`: a `int32` feature. - `text`: a `string` feature. - `id`: a `string` feature. #### mlqa-translate-test.hi - `context`: a `string` feature. - `question`: a `string` feature. - `answers`: a dictionary feature containing: - `answer_start`: a `int32` feature. - `text`: a `string` feature. - `id`: a `string` feature. #### mlqa-translate-test.vi - `context`: a `string` feature. - `question`: a `string` feature. - `answers`: a dictionary feature containing: - `answer_start`: a `int32` feature. - `text`: a `string` feature. - `id`: a `string` feature. ### Data Splits | name |test| |----------------------|---:| |mlqa-translate-test.ar|5335| |mlqa-translate-test.de|4517| |mlqa-translate-test.es|5253| |mlqa-translate-test.hi|4918| |mlqa-translate-test.vi|5495| ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @article{lewis2019mlqa, title = {MLQA: Evaluating Cross-lingual Extractive Question Answering}, author = {Lewis, Patrick and Oguz, Barlas and Rinott, Ruty and Riedel, Sebastian and Schwenk, Holger}, journal = {arXiv preprint arXiv:1910.07475}, year = 2019, eid = {arXiv: 1910.07475} } ``` ### Contributions Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten), [@M-Salti](https://github.com/M-Salti), [@lewtun](https://github.com/lewtun), [@thomwolf](https://github.com/thomwolf), [@mariamabarham](https://github.com/mariamabarham), [@lhoestq](https://github.com/lhoestq) for adding this dataset. --- license: apache-2.0 ---
TheTung/mlqa
[ "task_categories:question-answering", "task_ids:extractive-qa", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:multilingual", "size_categories:10K<n<100K", "source_datasets:original", "language:en", "language:de", "language:es", "language:ar", "language:zh", "language:vi", "language:hi", "license:cc-by-sa-3.0", "region:us" ]
2024-01-22T02:35:45+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["crowdsourced"], "language": ["en", "de", "es", "ar", "zh", "vi", "hi"], "license": ["cc-by-sa-3.0"], "multilinguality": ["multilingual"], "size_categories": ["10K<n<100K"], "source_datasets": ["original"], "task_categories": ["question-answering"], "task_ids": ["extractive-qa"], "paperswithcode_id": "mlqa", "pretty_name": "MLQA (MultiLingual Question Answering)", "dataset_info": [{"config_name": "mlqa-translate-train.ar", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 101227245, "num_examples": 78058}, {"name": "validation", "num_bytes": 13144332, "num_examples": 9512}], "download_size": 63364123, "dataset_size": 114371577}, {"config_name": "mlqa-translate-train.de", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 77996825, "num_examples": 80069}, {"name": "validation", "num_bytes": 10322113, "num_examples": 9927}], "download_size": 63364123, "dataset_size": 88318938}, {"config_name": "mlqa-translate-train.vi", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 97387431, "num_examples": 84816}, {"name": "validation", "num_bytes": 12731112, "num_examples": 10356}], "download_size": 63364123, "dataset_size": 110118543}, {"config_name": "mlqa-translate-train.zh", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 55143547, "num_examples": 76285}, {"name": "validation", "num_bytes": 7418070, "num_examples": 9568}], "download_size": 63364123, "dataset_size": 62561617}, {"config_name": "mlqa-translate-train.es", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 80789653, "num_examples": 81810}, {"name": "validation", "num_bytes": 10718376, "num_examples": 10123}], "download_size": 63364123, "dataset_size": 91508029}, {"config_name": "mlqa-translate-train.hi", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 168117671, "num_examples": 82451}, {"name": "validation", "num_bytes": 22422152, "num_examples": 10253}], "download_size": 63364123, "dataset_size": 190539823}, {"config_name": "mlqa-translate-test.ar", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 5484467, "num_examples": 5335}], "download_size": 10075488, "dataset_size": 5484467}, {"config_name": "mlqa-translate-test.de", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 3884332, "num_examples": 4517}], "download_size": 10075488, "dataset_size": 3884332}, {"config_name": "mlqa-translate-test.vi", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 5998327, "num_examples": 5495}], "download_size": 10075488, "dataset_size": 5998327}, {"config_name": "mlqa-translate-test.zh", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 4831704, "num_examples": 5137}], "download_size": 10075488, "dataset_size": 4831704}, {"config_name": "mlqa-translate-test.es", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 3916758, "num_examples": 5253}], "download_size": 10075488, "dataset_size": 3916758}, {"config_name": "mlqa-translate-test.hi", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 4608811, "num_examples": 4918}], "download_size": 10075488, "dataset_size": 4608811}, {"config_name": "mlqa.ar.ar", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 8216837, "num_examples": 5335}, {"name": "validation", "num_bytes": 808830, "num_examples": 517}], "download_size": 75719050, "dataset_size": 9025667}, {"config_name": "mlqa.ar.de", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 2132247, "num_examples": 1649}, {"name": "validation", "num_bytes": 358554, "num_examples": 207}], "download_size": 75719050, "dataset_size": 2490801}, {"config_name": "mlqa.ar.vi", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 3235363, "num_examples": 2047}, {"name": "validation", "num_bytes": 283834, "num_examples": 163}], "download_size": 75719050, "dataset_size": 3519197}, {"config_name": "mlqa.ar.zh", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 3175660, "num_examples": 1912}, {"name": "validation", "num_bytes": 334016, "num_examples": 188}], "download_size": 75719050, "dataset_size": 3509676}, {"config_name": "mlqa.ar.en", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 8074057, "num_examples": 5335}, {"name": "validation", "num_bytes": 794775, "num_examples": 517}], "download_size": 75719050, "dataset_size": 8868832}, {"config_name": "mlqa.ar.es", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 2981237, "num_examples": 1978}, {"name": "validation", "num_bytes": 223188, "num_examples": 161}], "download_size": 75719050, "dataset_size": 3204425}, {"config_name": "mlqa.ar.hi", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 2993225, "num_examples": 1831}, {"name": "validation", "num_bytes": 276727, "num_examples": 186}], "download_size": 75719050, "dataset_size": 3269952}, {"config_name": "mlqa.de.ar", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 1587005, "num_examples": 1649}, {"name": "validation", "num_bytes": 195822, "num_examples": 207}], "download_size": 75719050, "dataset_size": 1782827}, {"config_name": "mlqa.de.de", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 4274496, "num_examples": 4517}, {"name": "validation", "num_bytes": 477366, "num_examples": 512}], "download_size": 75719050, "dataset_size": 4751862}, {"config_name": "mlqa.de.vi", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 1654540, "num_examples": 1675}, {"name": "validation", "num_bytes": 211985, "num_examples": 182}], "download_size": 75719050, "dataset_size": 1866525}, {"config_name": "mlqa.de.zh", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 1645937, "num_examples": 1621}, {"name": "validation", "num_bytes": 180114, "num_examples": 190}], "download_size": 75719050, "dataset_size": 1826051}, {"config_name": "mlqa.de.en", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 4251153, "num_examples": 4517}, {"name": "validation", "num_bytes": 474863, "num_examples": 512}], "download_size": 75719050, "dataset_size": 4726016}, {"config_name": "mlqa.de.es", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 1678176, "num_examples": 1776}, {"name": "validation", "num_bytes": 166193, "num_examples": 196}], "download_size": 75719050, "dataset_size": 1844369}, {"config_name": "mlqa.de.hi", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 1343983, "num_examples": 1430}, {"name": "validation", "num_bytes": 150679, "num_examples": 163}], "download_size": 75719050, "dataset_size": 1494662}, {"config_name": "mlqa.vi.ar", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 3164094, "num_examples": 2047}, {"name": "validation", "num_bytes": 226724, "num_examples": 163}], "download_size": 75719050, "dataset_size": 3390818}, {"config_name": "mlqa.vi.de", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 2189315, "num_examples": 1675}, {"name": "validation", "num_bytes": 272794, "num_examples": 182}], "download_size": 75719050, "dataset_size": 2462109}, {"config_name": "mlqa.vi.vi", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 7807045, "num_examples": 5495}, {"name": "validation", "num_bytes": 715291, "num_examples": 511}], "download_size": 75719050, "dataset_size": 8522336}, {"config_name": "mlqa.vi.zh", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 2947458, "num_examples": 1943}, {"name": "validation", "num_bytes": 265154, "num_examples": 184}], "download_size": 75719050, "dataset_size": 3212612}, {"config_name": "mlqa.vi.en", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 7727204, "num_examples": 5495}, {"name": "validation", "num_bytes": 707925, "num_examples": 511}], "download_size": 75719050, "dataset_size": 8435129}, {"config_name": "mlqa.vi.es", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 2822481, "num_examples": 2018}, {"name": "validation", "num_bytes": 279235, "num_examples": 189}], "download_size": 75719050, "dataset_size": 3101716}, {"config_name": "mlqa.vi.hi", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 2738045, "num_examples": 1947}, {"name": "validation", "num_bytes": 251470, "num_examples": 177}], "download_size": 75719050, "dataset_size": 2989515}, {"config_name": "mlqa.zh.ar", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 1697005, "num_examples": 1912}, {"name": "validation", "num_bytes": 171743, "num_examples": 188}], "download_size": 75719050, "dataset_size": 1868748}, {"config_name": "mlqa.zh.de", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 1356268, "num_examples": 1621}, {"name": "validation", "num_bytes": 170686, "num_examples": 190}], "download_size": 75719050, "dataset_size": 1526954}, {"config_name": "mlqa.zh.vi", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 1770535, "num_examples": 1943}, {"name": "validation", "num_bytes": 169651, "num_examples": 184}], "download_size": 75719050, "dataset_size": 1940186}, {"config_name": "mlqa.zh.zh", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 4324740, "num_examples": 5137}, {"name": "validation", "num_bytes": 433960, "num_examples": 504}], "download_size": 75719050, "dataset_size": 4758700}, {"config_name": "mlqa.zh.en", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 4353361, "num_examples": 5137}, {"name": "validation", "num_bytes": 437016, "num_examples": 504}], "download_size": 75719050, "dataset_size": 4790377}, {"config_name": "mlqa.zh.es", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 1697983, "num_examples": 1947}, {"name": "validation", "num_bytes": 134693, "num_examples": 161}], "download_size": 75719050, "dataset_size": 1832676}, {"config_name": "mlqa.zh.hi", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 1547159, "num_examples": 1767}, {"name": "validation", "num_bytes": 180928, "num_examples": 189}], "download_size": 75719050, "dataset_size": 1728087}, {"config_name": "mlqa.en.ar", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 6641971, "num_examples": 5335}, {"name": "validation", "num_bytes": 621075, "num_examples": 517}], "download_size": 75719050, "dataset_size": 7263046}, {"config_name": "mlqa.en.de", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 4966262, "num_examples": 4517}, {"name": "validation", "num_bytes": 584725, "num_examples": 512}], "download_size": 75719050, "dataset_size": 5550987}, {"config_name": "mlqa.en.vi", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 6958087, "num_examples": 5495}, {"name": "validation", "num_bytes": 631268, "num_examples": 511}], "download_size": 75719050, "dataset_size": 7589355}, {"config_name": "mlqa.en.zh", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 6441614, "num_examples": 5137}, {"name": "validation", "num_bytes": 598772, "num_examples": 504}], "download_size": 75719050, "dataset_size": 7040386}, {"config_name": "mlqa.en.en", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 13787522, "num_examples": 11590}, {"name": "validation", "num_bytes": 1307399, "num_examples": 1148}], "download_size": 75719050, "dataset_size": 15094921}, {"config_name": "mlqa.en.es", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 6074990, "num_examples": 5253}, {"name": "validation", "num_bytes": 545657, "num_examples": 500}], "download_size": 75719050, "dataset_size": 6620647}, {"config_name": "mlqa.en.hi", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 6293785, "num_examples": 4918}, {"name": "validation", "num_bytes": 614223, "num_examples": 507}], "download_size": 75719050, "dataset_size": 6908008}, {"config_name": "mlqa.es.ar", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 1696778, "num_examples": 1978}, {"name": "validation", "num_bytes": 145105, "num_examples": 161}], "download_size": 75719050, "dataset_size": 1841883}, {"config_name": "mlqa.es.de", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 1361983, "num_examples": 1776}, {"name": "validation", "num_bytes": 139968, "num_examples": 196}], "download_size": 75719050, "dataset_size": 1501951}, {"config_name": "mlqa.es.vi", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 1707141, "num_examples": 2018}, {"name": "validation", "num_bytes": 172801, "num_examples": 189}], "download_size": 75719050, "dataset_size": 1879942}, {"config_name": "mlqa.es.zh", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 1635294, "num_examples": 1947}, {"name": "validation", "num_bytes": 122829, "num_examples": 161}], "download_size": 75719050, "dataset_size": 1758123}, {"config_name": "mlqa.es.en", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 4249431, "num_examples": 5253}, {"name": "validation", "num_bytes": 408169, "num_examples": 500}], "download_size": 75719050, "dataset_size": 4657600}, {"config_name": "mlqa.es.es", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 4281273, "num_examples": 5253}, {"name": "validation", "num_bytes": 411196, "num_examples": 500}], "download_size": 75719050, "dataset_size": 4692469}, {"config_name": "mlqa.es.hi", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 1489611, "num_examples": 1723}, {"name": "validation", "num_bytes": 178003, "num_examples": 187}], "download_size": 75719050, "dataset_size": 1667614}, {"config_name": "mlqa.hi.ar", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 4374373, "num_examples": 1831}, {"name": "validation", "num_bytes": 402817, "num_examples": 186}], "download_size": 75719050, "dataset_size": 4777190}, {"config_name": "mlqa.hi.de", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 2961556, "num_examples": 1430}, {"name": "validation", "num_bytes": 294325, "num_examples": 163}], "download_size": 75719050, "dataset_size": 3255881}, {"config_name": "mlqa.hi.vi", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 4664436, "num_examples": 1947}, {"name": "validation", "num_bytes": 411654, "num_examples": 177}], "download_size": 75719050, "dataset_size": 5076090}, {"config_name": "mlqa.hi.zh", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 4281309, "num_examples": 1767}, {"name": "validation", "num_bytes": 416192, "num_examples": 189}], "download_size": 75719050, "dataset_size": 4697501}, {"config_name": "mlqa.hi.en", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 11245629, "num_examples": 4918}, {"name": "validation", "num_bytes": 1076115, "num_examples": 507}], "download_size": 75719050, "dataset_size": 12321744}, {"config_name": "mlqa.hi.es", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 3789337, "num_examples": 1723}, {"name": "validation", "num_bytes": 412469, "num_examples": 187}], "download_size": 75719050, "dataset_size": 4201806}, {"config_name": "mlqa.hi.hi", "features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "sequence": [{"name": "answer_start", "dtype": "int32"}, {"name": "text", "dtype": "string"}]}, {"name": "id", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 11606982, "num_examples": 4918}, {"name": "validation", "num_bytes": 1115055, "num_examples": 507}], "download_size": 75719050, "dataset_size": 12722037}]}
2024-01-22T02:42:54+00:00
[]
[ "en", "de", "es", "ar", "zh", "vi", "hi" ]
TAGS #task_categories-question-answering #task_ids-extractive-qa #annotations_creators-crowdsourced #language_creators-crowdsourced #multilinguality-multilingual #size_categories-10K<n<100K #source_datasets-original #language-English #language-German #language-Spanish #language-Arabic #language-Chinese #language-Vietnamese #language-Hindi #license-cc-by-sa-3.0 #region-us
Dataset Card for "mlqa" ======================= Table of Contents ----------------- * Dataset Description + Dataset Summary + Supported Tasks and Leaderboards + Languages * Dataset Structure + Data Instances + Data Fields + Data Splits * Dataset Creation + Curation Rationale + Source Data + Annotations + Personal and Sensitive Information * Considerations for Using the Data + Social Impact of Dataset + Discussion of Biases + Other Known Limitations * Additional Information + Dataset Curators + Licensing Information + Citation Information + Contributions Dataset Description ------------------- * Homepage: URL * Repository: * Paper: * Point of Contact: * Size of downloaded dataset files: 4.15 GB * Size of the generated dataset: 910.01 MB * Total amount of disk used: 5.06 GB ### Dataset Summary ``` MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance. MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic, German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between 4 different languages on average. ``` ### Supported Tasks and Leaderboards ### Languages MLQA contains QA instances in 7 languages, English, Arabic, German, Spanish, Hindi, Vietnamese and Simplified Chinese. Dataset Structure ----------------- ### Data Instances #### URL * Size of downloaded dataset files: 10.08 MB * Size of the generated dataset: 5.48 MB * Total amount of disk used: 15.56 MB An example of 'test' looks as follows. #### URL * Size of downloaded dataset files: 10.08 MB * Size of the generated dataset: 3.88 MB * Total amount of disk used: 13.96 MB An example of 'test' looks as follows. #### URL * Size of downloaded dataset files: 10.08 MB * Size of the generated dataset: 3.92 MB * Total amount of disk used: 13.99 MB An example of 'test' looks as follows. #### URL * Size of downloaded dataset files: 10.08 MB * Size of the generated dataset: 4.61 MB * Total amount of disk used: 14.68 MB An example of 'test' looks as follows. #### URL * Size of downloaded dataset files: 10.08 MB * Size of the generated dataset: 6.00 MB * Total amount of disk used: 16.07 MB An example of 'test' looks as follows. ### Data Fields The data fields are the same among all splits. #### URL * 'context': a 'string' feature. * 'question': a 'string' feature. * 'answers': a dictionary feature containing: + 'answer\_start': a 'int32' feature. + 'text': a 'string' feature. * 'id': a 'string' feature. #### URL * 'context': a 'string' feature. * 'question': a 'string' feature. * 'answers': a dictionary feature containing: + 'answer\_start': a 'int32' feature. + 'text': a 'string' feature. * 'id': a 'string' feature. #### URL * 'context': a 'string' feature. * 'question': a 'string' feature. * 'answers': a dictionary feature containing: + 'answer\_start': a 'int32' feature. + 'text': a 'string' feature. * 'id': a 'string' feature. #### URL * 'context': a 'string' feature. * 'question': a 'string' feature. * 'answers': a dictionary feature containing: + 'answer\_start': a 'int32' feature. + 'text': a 'string' feature. * 'id': a 'string' feature. #### URL * 'context': a 'string' feature. * 'question': a 'string' feature. * 'answers': a dictionary feature containing: + 'answer\_start': a 'int32' feature. + 'text': a 'string' feature. * 'id': a 'string' feature. ### Data Splits Dataset Creation ---------------- ### Curation Rationale ### Source Data #### Initial Data Collection and Normalization #### Who are the source language producers? ### Annotations #### Annotation process #### Who are the annotators? ### Personal and Sensitive Information Considerations for Using the Data --------------------------------- ### Social Impact of Dataset ### Discussion of Biases ### Other Known Limitations Additional Information ---------------------- ### Dataset Curators ### Licensing Information ### Contributions Thanks to @patrickvonplaten, @M-Salti, @lewtun, @thomwolf, @mariamabarham, @lhoestq for adding this dataset. --- license: apache-2.0 -------------------
[ "### Dataset Summary\n\n\n\n```\nMLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.\nMLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,\nGerman, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between\n4 different languages on average.\n\n```", "### Supported Tasks and Leaderboards", "### Languages\n\n\nMLQA contains QA instances in 7 languages, English, Arabic, German, Spanish, Hindi, Vietnamese and Simplified Chinese.\n\n\nDataset Structure\n-----------------", "### Data Instances", "#### URL\n\n\n* Size of downloaded dataset files: 10.08 MB\n* Size of the generated dataset: 5.48 MB\n* Total amount of disk used: 15.56 MB\n\n\nAn example of 'test' looks as follows.", "#### URL\n\n\n* Size of downloaded dataset files: 10.08 MB\n* Size of the generated dataset: 3.88 MB\n* Total amount of disk used: 13.96 MB\n\n\nAn example of 'test' looks as follows.", "#### URL\n\n\n* Size of downloaded dataset files: 10.08 MB\n* Size of the generated dataset: 3.92 MB\n* Total amount of disk used: 13.99 MB\n\n\nAn example of 'test' looks as follows.", "#### URL\n\n\n* Size of downloaded dataset files: 10.08 MB\n* Size of the generated dataset: 4.61 MB\n* Total amount of disk used: 14.68 MB\n\n\nAn example of 'test' looks as follows.", "#### URL\n\n\n* Size of downloaded dataset files: 10.08 MB\n* Size of the generated dataset: 6.00 MB\n* Total amount of disk used: 16.07 MB\n\n\nAn example of 'test' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.", "#### URL\n\n\n* 'context': a 'string' feature.\n* 'question': a 'string' feature.\n* 'answers': a dictionary feature containing:\n\t+ 'answer\\_start': a 'int32' feature.\n\t+ 'text': a 'string' feature.\n* 'id': a 'string' feature.", "#### URL\n\n\n* 'context': a 'string' feature.\n* 'question': a 'string' feature.\n* 'answers': a dictionary feature containing:\n\t+ 'answer\\_start': a 'int32' feature.\n\t+ 'text': a 'string' feature.\n* 'id': a 'string' feature.", "#### URL\n\n\n* 'context': a 'string' feature.\n* 'question': a 'string' feature.\n* 'answers': a dictionary feature containing:\n\t+ 'answer\\_start': a 'int32' feature.\n\t+ 'text': a 'string' feature.\n* 'id': a 'string' feature.", "#### URL\n\n\n* 'context': a 'string' feature.\n* 'question': a 'string' feature.\n* 'answers': a dictionary feature containing:\n\t+ 'answer\\_start': a 'int32' feature.\n\t+ 'text': a 'string' feature.\n* 'id': a 'string' feature.", "#### URL\n\n\n* 'context': a 'string' feature.\n* 'question': a 'string' feature.\n* 'answers': a dictionary feature containing:\n\t+ 'answer\\_start': a 'int32' feature.\n\t+ 'text': a 'string' feature.\n* 'id': a 'string' feature.", "### Data Splits\n\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information", "### Contributions\n\n\nThanks to @patrickvonplaten, @M-Salti, @lewtun, @thomwolf, @mariamabarham, @lhoestq for adding this dataset.\n\n\n\n\n---\n\n\nlicense: apache-2.0\n-------------------" ]
[ "TAGS\n#task_categories-question-answering #task_ids-extractive-qa #annotations_creators-crowdsourced #language_creators-crowdsourced #multilinguality-multilingual #size_categories-10K<n<100K #source_datasets-original #language-English #language-German #language-Spanish #language-Arabic #language-Chinese #language-Vietnamese #language-Hindi #license-cc-by-sa-3.0 #region-us \n", "### Dataset Summary\n\n\n\n```\nMLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.\nMLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,\nGerman, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between\n4 different languages on average.\n\n```", "### Supported Tasks and Leaderboards", "### Languages\n\n\nMLQA contains QA instances in 7 languages, English, Arabic, German, Spanish, Hindi, Vietnamese and Simplified Chinese.\n\n\nDataset Structure\n-----------------", "### Data Instances", "#### URL\n\n\n* Size of downloaded dataset files: 10.08 MB\n* Size of the generated dataset: 5.48 MB\n* Total amount of disk used: 15.56 MB\n\n\nAn example of 'test' looks as follows.", "#### URL\n\n\n* Size of downloaded dataset files: 10.08 MB\n* Size of the generated dataset: 3.88 MB\n* Total amount of disk used: 13.96 MB\n\n\nAn example of 'test' looks as follows.", "#### URL\n\n\n* Size of downloaded dataset files: 10.08 MB\n* Size of the generated dataset: 3.92 MB\n* Total amount of disk used: 13.99 MB\n\n\nAn example of 'test' looks as follows.", "#### URL\n\n\n* Size of downloaded dataset files: 10.08 MB\n* Size of the generated dataset: 4.61 MB\n* Total amount of disk used: 14.68 MB\n\n\nAn example of 'test' looks as follows.", "#### URL\n\n\n* Size of downloaded dataset files: 10.08 MB\n* Size of the generated dataset: 6.00 MB\n* Total amount of disk used: 16.07 MB\n\n\nAn example of 'test' looks as follows.", "### Data Fields\n\n\nThe data fields are the same among all splits.", "#### URL\n\n\n* 'context': a 'string' feature.\n* 'question': a 'string' feature.\n* 'answers': a dictionary feature containing:\n\t+ 'answer\\_start': a 'int32' feature.\n\t+ 'text': a 'string' feature.\n* 'id': a 'string' feature.", "#### URL\n\n\n* 'context': a 'string' feature.\n* 'question': a 'string' feature.\n* 'answers': a dictionary feature containing:\n\t+ 'answer\\_start': a 'int32' feature.\n\t+ 'text': a 'string' feature.\n* 'id': a 'string' feature.", "#### URL\n\n\n* 'context': a 'string' feature.\n* 'question': a 'string' feature.\n* 'answers': a dictionary feature containing:\n\t+ 'answer\\_start': a 'int32' feature.\n\t+ 'text': a 'string' feature.\n* 'id': a 'string' feature.", "#### URL\n\n\n* 'context': a 'string' feature.\n* 'question': a 'string' feature.\n* 'answers': a dictionary feature containing:\n\t+ 'answer\\_start': a 'int32' feature.\n\t+ 'text': a 'string' feature.\n* 'id': a 'string' feature.", "#### URL\n\n\n* 'context': a 'string' feature.\n* 'question': a 'string' feature.\n* 'answers': a dictionary feature containing:\n\t+ 'answer\\_start': a 'int32' feature.\n\t+ 'text': a 'string' feature.\n* 'id': a 'string' feature.", "### Data Splits\n\n\n\nDataset Creation\n----------------", "### Curation Rationale", "### Source Data", "#### Initial Data Collection and Normalization", "#### Who are the source language producers?", "### Annotations", "#### Annotation process", "#### Who are the annotators?", "### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------", "### Social Impact of Dataset", "### Discussion of Biases", "### Other Known Limitations\n\n\nAdditional Information\n----------------------", "### Dataset Curators", "### Licensing Information", "### Contributions\n\n\nThanks to @patrickvonplaten, @M-Salti, @lewtun, @thomwolf, @mariamabarham, @lhoestq for adding this dataset.\n\n\n\n\n---\n\n\nlicense: apache-2.0\n-------------------" ]
02fda995fd57f3c2c7946632f3c73fa80728c204
# Dataset Card for Evaluation run of Weyaxi/Stellaris-internlm2-20b-r512 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [Weyaxi/Stellaris-internlm2-20b-r512](https://huggingface.co/Weyaxi/Stellaris-internlm2-20b-r512) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_Weyaxi__Stellaris-internlm2-20b-r512", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-22T02:33:44.720538](https://huggingface.co/datasets/open-llm-leaderboard/details_Weyaxi__Stellaris-internlm2-20b-r512/blob/main/results_2024-01-22T02-33-44.720538.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.6566278372965977, "acc_stderr": 0.03172928992616415, "acc_norm": 0.6659506224432014, "acc_norm_stderr": 0.03244356975655913, "mc1": 0.3157894736842105, "mc1_stderr": 0.01627228795791691, "mc2": 0.4950678335769212, "mc2_stderr": 0.015192417727874554 }, "harness|arc:challenge|25": { "acc": 0.590443686006826, "acc_stderr": 0.014370358632472437, "acc_norm": 0.6382252559726962, "acc_norm_stderr": 0.014041957945038076 }, "harness|hellaswag|10": { "acc": 0.6601274646484764, "acc_stderr": 0.00472697660713081, "acc_norm": 0.8399721171081458, "acc_norm_stderr": 0.0036588262081016093 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.33, "acc_stderr": 0.047258156262526045, "acc_norm": 0.33, "acc_norm_stderr": 0.047258156262526045 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.5925925925925926, "acc_stderr": 0.04244633238353227, "acc_norm": 0.5925925925925926, "acc_norm_stderr": 0.04244633238353227 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.7763157894736842, "acc_stderr": 0.03391160934343603, "acc_norm": 0.7763157894736842, "acc_norm_stderr": 0.03391160934343603 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.72, "acc_stderr": 0.045126085985421276, "acc_norm": 0.72, "acc_norm_stderr": 0.045126085985421276 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.7358490566037735, "acc_stderr": 0.027134291628741713, "acc_norm": 0.7358490566037735, "acc_norm_stderr": 0.027134291628741713 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.7916666666666666, "acc_stderr": 0.033961162058453336, "acc_norm": 0.7916666666666666, "acc_norm_stderr": 0.033961162058453336 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.47, "acc_stderr": 0.05016135580465919, "acc_norm": 0.47, "acc_norm_stderr": 0.05016135580465919 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.51, "acc_stderr": 0.05024183937956911, "acc_norm": 0.51, "acc_norm_stderr": 0.05024183937956911 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.41, "acc_stderr": 0.049431107042371025, "acc_norm": 0.41, "acc_norm_stderr": 0.049431107042371025 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6820809248554913, "acc_stderr": 0.0355068398916558, "acc_norm": 0.6820809248554913, "acc_norm_stderr": 0.0355068398916558 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.45098039215686275, "acc_stderr": 0.04951218252396264, "acc_norm": 0.45098039215686275, "acc_norm_stderr": 0.04951218252396264 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.8, "acc_stderr": 0.04020151261036845, "acc_norm": 0.8, "acc_norm_stderr": 0.04020151261036845 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.6680851063829787, "acc_stderr": 0.030783736757745647, "acc_norm": 0.6680851063829787, "acc_norm_stderr": 0.030783736757745647 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.47368421052631576, "acc_stderr": 0.046970851366478626, "acc_norm": 0.47368421052631576, "acc_norm_stderr": 0.046970851366478626 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.593103448275862, "acc_stderr": 0.04093793981266237, "acc_norm": 0.593103448275862, "acc_norm_stderr": 0.04093793981266237 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.49206349206349204, "acc_stderr": 0.02574806587167329, "acc_norm": 0.49206349206349204, "acc_norm_stderr": 0.02574806587167329 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.4444444444444444, "acc_stderr": 0.04444444444444449, "acc_norm": 0.4444444444444444, "acc_norm_stderr": 0.04444444444444449 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.28, "acc_stderr": 0.04512608598542127, "acc_norm": 0.28, "acc_norm_stderr": 0.04512608598542127 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.832258064516129, "acc_stderr": 0.021255464065371325, "acc_norm": 0.832258064516129, "acc_norm_stderr": 0.021255464065371325 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.5911330049261084, "acc_stderr": 0.03459058815883233, "acc_norm": 0.5911330049261084, "acc_norm_stderr": 0.03459058815883233 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.73, "acc_stderr": 0.044619604333847394, "acc_norm": 0.73, "acc_norm_stderr": 0.044619604333847394 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.8, "acc_stderr": 0.031234752377721164, "acc_norm": 0.8, "acc_norm_stderr": 0.031234752377721164 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.8282828282828283, "acc_stderr": 0.026869716187429914, "acc_norm": 0.8282828282828283, "acc_norm_stderr": 0.026869716187429914 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.8756476683937824, "acc_stderr": 0.023814477086593552, "acc_norm": 0.8756476683937824, "acc_norm_stderr": 0.023814477086593552 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.6923076923076923, "acc_stderr": 0.02340092891831049, "acc_norm": 0.6923076923076923, "acc_norm_stderr": 0.02340092891831049 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.34814814814814815, "acc_stderr": 0.02904560029061627, "acc_norm": 0.34814814814814815, "acc_norm_stderr": 0.02904560029061627 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.7184873949579832, "acc_stderr": 0.02921354941437216, "acc_norm": 0.7184873949579832, "acc_norm_stderr": 0.02921354941437216 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.3841059602649007, "acc_stderr": 0.03971301814719197, "acc_norm": 0.3841059602649007, "acc_norm_stderr": 0.03971301814719197 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8642201834862385, "acc_stderr": 0.014686907556340013, "acc_norm": 0.8642201834862385, "acc_norm_stderr": 0.014686907556340013 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.5787037037037037, "acc_stderr": 0.03367462138896078, "acc_norm": 0.5787037037037037, "acc_norm_stderr": 0.03367462138896078 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.8382352941176471, "acc_stderr": 0.025845017986926924, "acc_norm": 0.8382352941176471, "acc_norm_stderr": 0.025845017986926924 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.8185654008438819, "acc_stderr": 0.025085961144579654, "acc_norm": 0.8185654008438819, "acc_norm_stderr": 0.025085961144579654 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.7174887892376681, "acc_stderr": 0.030216831011508773, "acc_norm": 0.7174887892376681, "acc_norm_stderr": 0.030216831011508773 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.6793893129770993, "acc_stderr": 0.04093329229834278, "acc_norm": 0.6793893129770993, "acc_norm_stderr": 0.04093329229834278 }, "harness|hendrycksTest-international_law|5": { "acc": 0.8347107438016529, "acc_stderr": 0.03390780612972776, "acc_norm": 0.8347107438016529, "acc_norm_stderr": 0.03390780612972776 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.75, "acc_stderr": 0.04186091791394607, "acc_norm": 0.75, "acc_norm_stderr": 0.04186091791394607 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7668711656441718, "acc_stderr": 0.0332201579577674, "acc_norm": 0.7668711656441718, "acc_norm_stderr": 0.0332201579577674 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.5267857142857143, "acc_stderr": 0.047389751192741546, "acc_norm": 0.5267857142857143, "acc_norm_stderr": 0.047389751192741546 }, "harness|hendrycksTest-management|5": { "acc": 0.8349514563106796, "acc_stderr": 0.036756688322331886, "acc_norm": 0.8349514563106796, "acc_norm_stderr": 0.036756688322331886 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8803418803418803, "acc_stderr": 0.02126271940040697, "acc_norm": 0.8803418803418803, "acc_norm_stderr": 0.02126271940040697 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.68, "acc_stderr": 0.04688261722621504, "acc_norm": 0.68, "acc_norm_stderr": 0.04688261722621504 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.7994891443167306, "acc_stderr": 0.014317653708594209, "acc_norm": 0.7994891443167306, "acc_norm_stderr": 0.014317653708594209 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.7341040462427746, "acc_stderr": 0.02378620325550829, "acc_norm": 0.7341040462427746, "acc_norm_stderr": 0.02378620325550829 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.42793296089385474, "acc_stderr": 0.016547887997416112, "acc_norm": 0.42793296089385474, "acc_norm_stderr": 0.016547887997416112 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.738562091503268, "acc_stderr": 0.025160998214292456, "acc_norm": 0.738562091503268, "acc_norm_stderr": 0.025160998214292456 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.7556270096463023, "acc_stderr": 0.024406162094668886, "acc_norm": 0.7556270096463023, "acc_norm_stderr": 0.024406162094668886 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.7469135802469136, "acc_stderr": 0.024191808600713002, "acc_norm": 0.7469135802469136, "acc_norm_stderr": 0.024191808600713002 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.4787234042553192, "acc_stderr": 0.029800481645628693, "acc_norm": 0.4787234042553192, "acc_norm_stderr": 0.029800481645628693 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.5071707953063885, "acc_stderr": 0.012768922739553303, "acc_norm": 0.5071707953063885, "acc_norm_stderr": 0.012768922739553303 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.7058823529411765, "acc_stderr": 0.027678468642144714, "acc_norm": 0.7058823529411765, "acc_norm_stderr": 0.027678468642144714 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6879084967320261, "acc_stderr": 0.01874501120127766, "acc_norm": 0.6879084967320261, "acc_norm_stderr": 0.01874501120127766 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6454545454545455, "acc_stderr": 0.045820048415054174, "acc_norm": 0.6454545454545455, "acc_norm_stderr": 0.045820048415054174 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7755102040816326, "acc_stderr": 0.02671143055553841, "acc_norm": 0.7755102040816326, "acc_norm_stderr": 0.02671143055553841 }, "harness|hendrycksTest-sociology|5": { "acc": 0.8407960199004975, "acc_stderr": 0.02587064676616913, "acc_norm": 0.8407960199004975, "acc_norm_stderr": 0.02587064676616913 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.84, "acc_stderr": 0.03684529491774708, "acc_norm": 0.84, "acc_norm_stderr": 0.03684529491774708 }, "harness|hendrycksTest-virology|5": { "acc": 0.536144578313253, "acc_stderr": 0.038823108508905954, "acc_norm": 0.536144578313253, "acc_norm_stderr": 0.038823108508905954 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8011695906432749, "acc_stderr": 0.03061111655743253, "acc_norm": 0.8011695906432749, "acc_norm_stderr": 0.03061111655743253 }, "harness|truthfulqa:mc|0": { "mc1": 0.3157894736842105, "mc1_stderr": 0.01627228795791691, "mc2": 0.4950678335769212, "mc2_stderr": 0.015192417727874554 }, "harness|winogrande|5": { "acc": 0.8445146014206788, "acc_stderr": 0.010184308214775777 }, "harness|gsm8k|5": { "acc": 0.1463229719484458, "acc_stderr": 0.009735210557785257 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_Weyaxi__Stellaris-internlm2-20b-r512
[ "region:us" ]
2024-01-22T02:35:49+00:00
{"pretty_name": "Evaluation run of Weyaxi/Stellaris-internlm2-20b-r512", "dataset_summary": "Dataset automatically created during the evaluation run of model [Weyaxi/Stellaris-internlm2-20b-r512](https://huggingface.co/Weyaxi/Stellaris-internlm2-20b-r512) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_Weyaxi__Stellaris-internlm2-20b-r512\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-22T02:33:44.720538](https://huggingface.co/datasets/open-llm-leaderboard/details_Weyaxi__Stellaris-internlm2-20b-r512/blob/main/results_2024-01-22T02-33-44.720538.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6566278372965977,\n \"acc_stderr\": 0.03172928992616415,\n \"acc_norm\": 0.6659506224432014,\n \"acc_norm_stderr\": 0.03244356975655913,\n \"mc1\": 0.3157894736842105,\n \"mc1_stderr\": 0.01627228795791691,\n \"mc2\": 0.4950678335769212,\n \"mc2_stderr\": 0.015192417727874554\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.590443686006826,\n \"acc_stderr\": 0.014370358632472437,\n \"acc_norm\": 0.6382252559726962,\n \"acc_norm_stderr\": 0.014041957945038076\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6601274646484764,\n \"acc_stderr\": 0.00472697660713081,\n \"acc_norm\": 0.8399721171081458,\n \"acc_norm_stderr\": 0.0036588262081016093\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.33,\n \"acc_stderr\": 0.047258156262526045,\n \"acc_norm\": 0.33,\n \"acc_norm_stderr\": 0.047258156262526045\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.5925925925925926,\n \"acc_stderr\": 0.04244633238353227,\n \"acc_norm\": 0.5925925925925926,\n \"acc_norm_stderr\": 0.04244633238353227\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.7763157894736842,\n \"acc_stderr\": 0.03391160934343603,\n \"acc_norm\": 0.7763157894736842,\n \"acc_norm_stderr\": 0.03391160934343603\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.72,\n \"acc_stderr\": 0.045126085985421276,\n \"acc_norm\": 0.72,\n \"acc_norm_stderr\": 0.045126085985421276\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.7358490566037735,\n \"acc_stderr\": 0.027134291628741713,\n \"acc_norm\": 0.7358490566037735,\n \"acc_norm_stderr\": 0.027134291628741713\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7916666666666666,\n \"acc_stderr\": 0.033961162058453336,\n \"acc_norm\": 0.7916666666666666,\n \"acc_norm_stderr\": 0.033961162058453336\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.47,\n \"acc_stderr\": 0.05016135580465919,\n \"acc_norm\": 0.47,\n \"acc_norm_stderr\": 0.05016135580465919\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.51,\n \"acc_stderr\": 0.05024183937956911,\n \"acc_norm\": 0.51,\n \"acc_norm_stderr\": 0.05024183937956911\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.41,\n \"acc_stderr\": 0.049431107042371025,\n \"acc_norm\": 0.41,\n \"acc_norm_stderr\": 0.049431107042371025\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6820809248554913,\n \"acc_stderr\": 0.0355068398916558,\n \"acc_norm\": 0.6820809248554913,\n \"acc_norm_stderr\": 0.0355068398916558\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.45098039215686275,\n \"acc_stderr\": 0.04951218252396264,\n \"acc_norm\": 0.45098039215686275,\n \"acc_norm_stderr\": 0.04951218252396264\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.8,\n \"acc_stderr\": 0.04020151261036845,\n \"acc_norm\": 0.8,\n \"acc_norm_stderr\": 0.04020151261036845\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.6680851063829787,\n \"acc_stderr\": 0.030783736757745647,\n \"acc_norm\": 0.6680851063829787,\n \"acc_norm_stderr\": 0.030783736757745647\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.47368421052631576,\n \"acc_stderr\": 0.046970851366478626,\n \"acc_norm\": 0.47368421052631576,\n \"acc_norm_stderr\": 0.046970851366478626\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.593103448275862,\n \"acc_stderr\": 0.04093793981266237,\n \"acc_norm\": 0.593103448275862,\n \"acc_norm_stderr\": 0.04093793981266237\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.49206349206349204,\n \"acc_stderr\": 0.02574806587167329,\n \"acc_norm\": 0.49206349206349204,\n \"acc_norm_stderr\": 0.02574806587167329\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.4444444444444444,\n \"acc_stderr\": 0.04444444444444449,\n \"acc_norm\": 0.4444444444444444,\n \"acc_norm_stderr\": 0.04444444444444449\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.28,\n \"acc_stderr\": 0.04512608598542127,\n \"acc_norm\": 0.28,\n \"acc_norm_stderr\": 0.04512608598542127\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.832258064516129,\n \"acc_stderr\": 0.021255464065371325,\n \"acc_norm\": 0.832258064516129,\n \"acc_norm_stderr\": 0.021255464065371325\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.5911330049261084,\n \"acc_stderr\": 0.03459058815883233,\n \"acc_norm\": 0.5911330049261084,\n \"acc_norm_stderr\": 0.03459058815883233\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.73,\n \"acc_stderr\": 0.044619604333847394,\n \"acc_norm\": 0.73,\n \"acc_norm_stderr\": 0.044619604333847394\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.8,\n \"acc_stderr\": 0.031234752377721164,\n \"acc_norm\": 0.8,\n \"acc_norm_stderr\": 0.031234752377721164\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.8282828282828283,\n \"acc_stderr\": 0.026869716187429914,\n \"acc_norm\": 0.8282828282828283,\n \"acc_norm_stderr\": 0.026869716187429914\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8756476683937824,\n \"acc_stderr\": 0.023814477086593552,\n \"acc_norm\": 0.8756476683937824,\n \"acc_norm_stderr\": 0.023814477086593552\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6923076923076923,\n \"acc_stderr\": 0.02340092891831049,\n \"acc_norm\": 0.6923076923076923,\n \"acc_norm_stderr\": 0.02340092891831049\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.34814814814814815,\n \"acc_stderr\": 0.02904560029061627,\n \"acc_norm\": 0.34814814814814815,\n \"acc_norm_stderr\": 0.02904560029061627\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.7184873949579832,\n \"acc_stderr\": 0.02921354941437216,\n \"acc_norm\": 0.7184873949579832,\n \"acc_norm_stderr\": 0.02921354941437216\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.3841059602649007,\n \"acc_stderr\": 0.03971301814719197,\n \"acc_norm\": 0.3841059602649007,\n \"acc_norm_stderr\": 0.03971301814719197\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8642201834862385,\n \"acc_stderr\": 0.014686907556340013,\n \"acc_norm\": 0.8642201834862385,\n \"acc_norm_stderr\": 0.014686907556340013\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.5787037037037037,\n \"acc_stderr\": 0.03367462138896078,\n \"acc_norm\": 0.5787037037037037,\n \"acc_norm_stderr\": 0.03367462138896078\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.8382352941176471,\n \"acc_stderr\": 0.025845017986926924,\n \"acc_norm\": 0.8382352941176471,\n \"acc_norm_stderr\": 0.025845017986926924\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.8185654008438819,\n \"acc_stderr\": 0.025085961144579654,\n \"acc_norm\": 0.8185654008438819,\n \"acc_norm_stderr\": 0.025085961144579654\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.7174887892376681,\n \"acc_stderr\": 0.030216831011508773,\n \"acc_norm\": 0.7174887892376681,\n \"acc_norm_stderr\": 0.030216831011508773\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.6793893129770993,\n \"acc_stderr\": 0.04093329229834278,\n \"acc_norm\": 0.6793893129770993,\n \"acc_norm_stderr\": 0.04093329229834278\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8347107438016529,\n \"acc_stderr\": 0.03390780612972776,\n \"acc_norm\": 0.8347107438016529,\n \"acc_norm_stderr\": 0.03390780612972776\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.75,\n \"acc_stderr\": 0.04186091791394607,\n \"acc_norm\": 0.75,\n \"acc_norm_stderr\": 0.04186091791394607\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7668711656441718,\n \"acc_stderr\": 0.0332201579577674,\n \"acc_norm\": 0.7668711656441718,\n \"acc_norm_stderr\": 0.0332201579577674\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.5267857142857143,\n \"acc_stderr\": 0.047389751192741546,\n \"acc_norm\": 0.5267857142857143,\n \"acc_norm_stderr\": 0.047389751192741546\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.8349514563106796,\n \"acc_stderr\": 0.036756688322331886,\n \"acc_norm\": 0.8349514563106796,\n \"acc_norm_stderr\": 0.036756688322331886\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8803418803418803,\n \"acc_stderr\": 0.02126271940040697,\n \"acc_norm\": 0.8803418803418803,\n \"acc_norm_stderr\": 0.02126271940040697\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.68,\n \"acc_stderr\": 0.04688261722621504,\n \"acc_norm\": 0.68,\n \"acc_norm_stderr\": 0.04688261722621504\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.7994891443167306,\n \"acc_stderr\": 0.014317653708594209,\n \"acc_norm\": 0.7994891443167306,\n \"acc_norm_stderr\": 0.014317653708594209\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7341040462427746,\n \"acc_stderr\": 0.02378620325550829,\n \"acc_norm\": 0.7341040462427746,\n \"acc_norm_stderr\": 0.02378620325550829\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.42793296089385474,\n \"acc_stderr\": 0.016547887997416112,\n \"acc_norm\": 0.42793296089385474,\n \"acc_norm_stderr\": 0.016547887997416112\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.738562091503268,\n \"acc_stderr\": 0.025160998214292456,\n \"acc_norm\": 0.738562091503268,\n \"acc_norm_stderr\": 0.025160998214292456\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.7556270096463023,\n \"acc_stderr\": 0.024406162094668886,\n \"acc_norm\": 0.7556270096463023,\n \"acc_norm_stderr\": 0.024406162094668886\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.7469135802469136,\n \"acc_stderr\": 0.024191808600713002,\n \"acc_norm\": 0.7469135802469136,\n \"acc_norm_stderr\": 0.024191808600713002\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.4787234042553192,\n \"acc_stderr\": 0.029800481645628693,\n \"acc_norm\": 0.4787234042553192,\n \"acc_norm_stderr\": 0.029800481645628693\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.5071707953063885,\n \"acc_stderr\": 0.012768922739553303,\n \"acc_norm\": 0.5071707953063885,\n \"acc_norm_stderr\": 0.012768922739553303\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.7058823529411765,\n \"acc_stderr\": 0.027678468642144714,\n \"acc_norm\": 0.7058823529411765,\n \"acc_norm_stderr\": 0.027678468642144714\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6879084967320261,\n \"acc_stderr\": 0.01874501120127766,\n \"acc_norm\": 0.6879084967320261,\n \"acc_norm_stderr\": 0.01874501120127766\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6454545454545455,\n \"acc_stderr\": 0.045820048415054174,\n \"acc_norm\": 0.6454545454545455,\n \"acc_norm_stderr\": 0.045820048415054174\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7755102040816326,\n \"acc_stderr\": 0.02671143055553841,\n \"acc_norm\": 0.7755102040816326,\n \"acc_norm_stderr\": 0.02671143055553841\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8407960199004975,\n \"acc_stderr\": 0.02587064676616913,\n \"acc_norm\": 0.8407960199004975,\n \"acc_norm_stderr\": 0.02587064676616913\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.84,\n \"acc_stderr\": 0.03684529491774708,\n \"acc_norm\": 0.84,\n \"acc_norm_stderr\": 0.03684529491774708\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.536144578313253,\n \"acc_stderr\": 0.038823108508905954,\n \"acc_norm\": 0.536144578313253,\n \"acc_norm_stderr\": 0.038823108508905954\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8011695906432749,\n \"acc_stderr\": 0.03061111655743253,\n \"acc_norm\": 0.8011695906432749,\n \"acc_norm_stderr\": 0.03061111655743253\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.3157894736842105,\n \"mc1_stderr\": 0.01627228795791691,\n \"mc2\": 0.4950678335769212,\n \"mc2_stderr\": 0.015192417727874554\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.8445146014206788,\n \"acc_stderr\": 0.010184308214775777\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.1463229719484458,\n \"acc_stderr\": 0.009735210557785257\n }\n}\n```", "repo_url": "https://huggingface.co/Weyaxi/Stellaris-internlm2-20b-r512", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|arc:challenge|25_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|gsm8k|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hellaswag|10_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T02-33-44.720538.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["**/details_harness|winogrande|5_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-22T02-33-44.720538.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_22T02_33_44.720538", "path": ["results_2024-01-22T02-33-44.720538.parquet"]}, {"split": "latest", "path": ["results_2024-01-22T02-33-44.720538.parquet"]}]}]}
2024-01-22T02:36:15+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of Weyaxi/Stellaris-internlm2-20b-r512 Dataset automatically created during the evaluation run of model Weyaxi/Stellaris-internlm2-20b-r512 on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-22T02:33:44.720538(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of Weyaxi/Stellaris-internlm2-20b-r512\n\n\n\nDataset automatically created during the evaluation run of model Weyaxi/Stellaris-internlm2-20b-r512 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T02:33:44.720538(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of Weyaxi/Stellaris-internlm2-20b-r512\n\n\n\nDataset automatically created during the evaluation run of model Weyaxi/Stellaris-internlm2-20b-r512 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T02:33:44.720538(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
9a8677238e0b6ec76e94a522152e20a790f93405
arXiv subset from MathPile_Commercial. Filtered for samples that are **8192 or less** in tokens length based on the Mistral tokenizer.
vilm/MathPile-arXiv-medium
[ "region:us" ]
2024-01-22T02:38:36+00:00
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 833254840, "num_examples": 48005}], "download_size": 402095355, "dataset_size": 833254840}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-22T03:49:38+00:00
[]
[]
TAGS #region-us
arXiv subset from MathPile_Commercial. Filtered for samples that are 8192 or less in tokens length based on the Mistral tokenizer.
[]
[ "TAGS\n#region-us \n" ]
b4b6ca8a7aad867295cfe8d5b245f09a26d6483f
# Dataset Card for Dataset Name <!-- Provide a quick summary of the dataset. --> This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1). ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
tanibt/crowne_plaza
[ "region:us" ]
2024-01-22T02:41:06+00:00
{}
2024-01-22T02:42:00+00:00
[]
[]
TAGS #region-us
# Dataset Card for Dataset Name This dataset card aims to be a base template for new datasets. It has been generated using this raw template. ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Dataset Name\n\n\n\nThis dataset card aims to be a base template for new datasets. It has been generated using this raw template.", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Dataset Name\n\n\n\nThis dataset card aims to be a base template for new datasets. It has been generated using this raw template.", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
89fe7cc1ddde1a0d86f30fd2da5af3f6aba6cf61
# BEE-spoke-data/sbert-paraphrase-data Paraphrase data from [sentence-transformers](https://www.sbert.net/examples/training/paraphrases/README.html#datasets) ## contents ### default | No. | Filename | |-----|--------------------------------------------------------------| | 1 | yahoo_answers_title_question.jsonl | | 2 | squad_pairs.jsonl | | 3 | eli5_question_answer.jsonl | | 4 | WikiAnswers_pairs.jsonl | | 5 | stackexchange_duplicate_questions_title_title.jsonl | | 6 | TriviaQA_pairs.jsonl | | 7 | stackexchange_duplicate_questions.jsonl | | 8 | sentence-compression.jsonl | | 9 | AllNLI_2cols.jsonl | | 10 | NQ-train_pairs.jsonl | | 11 | searchQA_question_top5_snippets_merged.jsonl | | 12 | stackexchange_duplicate_questions_title-body_title-body.jsonl| | 13 | SimpleWiki.jsonl | | 14 | yahoo_answers_question_answer.jsonl | | 15 | gooaq_pairs.jsonl | | 16 | quora_duplicates.jsonl | | 17 | stackexchange_duplicate_questions_body_body.jsonl | | 18 | yahoo_answers_title_answer.jsonl | | 19 | S2ORC_citation_pairs.jsonl | | 20 | stackexchange_title_body_small.jsonl | | 21 | fever_train.jsonl | | 22 | altlex.jsonl | | 23 | amazon-qa-train-pairs.jsonl | | 24 | codesearchnet.jsonl | | 25 | searchQA_question_topSnippet.jsonl | ### triplets | No. | Filename | |-----|--------------------------------------| | 1 | AllNLI.jsonl | | 2 | specter_train_triples.jsonl | | 3 | quora_duplicates_triplets.jsonl |
BEE-spoke-data/sbert-paraphrase-data
[ "task_categories:sentence-similarity", "size_categories:100M<n<1B", "language:en", "license:odc-by", "region:us" ]
2024-01-22T02:59:19+00:00
{"language": ["en"], "license": "odc-by", "size_categories": ["100M<n<1B"], "task_categories": ["sentence-similarity"], "dataset_info": [{"config_name": "default", "features": [{"name": "0", "dtype": "string"}, {"name": "1", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 23655222164, "num_examples": 142947230}], "download_size": 15494823340, "dataset_size": 23655222164}, {"config_name": "msmarco-triplets-flat", "features": [{"name": "text", "dtype": "string"}, {"name": "positive", "dtype": "string"}, {"name": "negative", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 358771844, "num_examples": 485469}], "download_size": 233344152, "dataset_size": 358771844}, {"config_name": "pairs-100word", "features": [{"name": "0", "dtype": "string"}, {"name": "1", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2317278084, "num_examples": 1611483}], "download_size": 1332475321, "dataset_size": 2317278084}, {"config_name": "triplets", "features": [{"name": "text", "dtype": "string"}, {"name": "positive", "dtype": "string"}, {"name": "negative", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 222068225, "num_examples": 1064993}], "download_size": 106956648, "dataset_size": 222068225}, {"config_name": "triplets-expanded", "features": [{"name": "text", "dtype": "string"}, {"name": "positive", "dtype": "string"}, {"name": "negative", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1028568107, "num_examples": 1660962}], "download_size": 693685496, "dataset_size": 1028568107}], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "msmarco-triplets-flat", "data_files": [{"split": "train", "path": "msmarco-triplets-flat/train-*"}]}, {"config_name": "pairs-100word", "data_files": [{"split": "train", "path": "pairs-100word/train-*"}]}, {"config_name": "triplets", "data_files": [{"split": "train", "path": "triplets/train-*"}]}, {"config_name": "triplets-expanded", "data_files": [{"split": "train", "path": "triplets-expanded/train-*"}]}]}
2024-01-30T08:16:26+00:00
[]
[ "en" ]
TAGS #task_categories-sentence-similarity #size_categories-100M<n<1B #language-English #license-odc-by #region-us
BEE-spoke-data/sbert-paraphrase-data ==================================== Paraphrase data from sentence-transformers contents -------- ### default ### triplets
[ "### default", "### triplets" ]
[ "TAGS\n#task_categories-sentence-similarity #size_categories-100M<n<1B #language-English #license-odc-by #region-us \n", "### default", "### triplets" ]
2ad986acc1ec62fb4a94171acc43f4fdd5bfde53
# Dataset Description We are releasing under the CC-BY licence a new large-scale dataset for Automatic Symptom Detection (ASD) and Automatic Diagnosis (AD) systems in the medical domain. The dataset contains patients synthesized using a proprietary medical knowledge base and a commercial rule-based AD system. Patients in the dataset are characterized by their socio-demographic data, a pathology they are suffering from, a set of symptoms and antecedents related to this pathology, and a differential diagnosis. The symptoms and antecedents can be binary, categorical and multi-choice, with the potential of leading to more efficient and natural interactions between ASD/AD systems and patients. To the best of our knowledge, this is the first large-scale dataset that includes the differential diagnosis, and non-binary symptoms and antecedents. **Note**: We use evidence as a general term to refer to a symptom or an antecedent. This directory contains the following files: - **release_evidences.json**: a JSON file describing all possible evidences considered in the dataset. - **release_conditions.json**: a JSON file describing all pathologies considered in the dataset. - **release_train_patients.zip**: a CSV file containing the patients of the training set. - **release_validate_patients.zip**: a CSV file containing the patients of the validation set. - **release_test_patients.zip**: a CSV file containing the patients of the test set. ## Evidence Description Each evidence in the `release_evidences.json` file is described using the following entries: - **name**: name of the evidence. - **code_question**: a code allowing to identify which evidences are related. Evidences having the same `code_question` form a group of related symptoms. The value of the `code_question` refers to the evidence that need to be simulated/activated for the other members of the group to be eventually simulated. - **question_fr**: the query, in French, associated to the evidence. - **question_en**: the query, in English, associated to the evidence. - **is_antecedent**: a flag indicating whether the evidence is an antecedent or a symptom. - **data_type**: the type of evidence. We use `B` for binary, `C` for categorical, and `M` for multi-choice evidences. - **default_value**: the default value of the evidence. If this value is used to characterize the evidence, then it is as if the evidence was not synthesized. - **possible-values**: the possible values for the evidences. Only valid for categorical and multi-choice evidences. - **value_meaning**: The meaning, in French and English, of each code that is part of the `possible-values` field. Only valid for categorical and multi-choice evidences. ## Pathology Description The file `release_conditions.json` contains information about the pathologies that patients in the datasets may suffer from. Each pathology has the following attributes: - **condition_name**: name of the pathology. - **cond-name-fr**: name of the pathology in French. - **cond-name-eng**: name of the pathology in English. - **icd10-id**: ICD-10 code of the pathology. - **severity**: the severity associated with the pathology. The lower the more severe. - **symptoms**: data structure describing the set of symptoms characterizing the pathology. Each symptom is represented by its corresponding `name` entry in the `release_evidences.json` file. - **antecedents**: data structure describing the set of antecedents characterizing the pathology. Each antecedent is represented by its corresponding `name` entry in the `release_evidences.json` file. ## Patient Description Each patient in each of the 3 sets has the following attributes: - **AGE**: the age of the synthesized patient. - **SEX**: the sex of the synthesized patient. - **PATHOLOGY**: name of the ground truth pathology (`condition_name` property in the `release_conditions.json` file) that the synthesized patient is suffering from. - **EVIDENCES**: list of evidences experienced by the patient. An evidence can either be binary, categorical or multi-choice. A categorical or multi-choice evidence is represented in the format `[evidence-name]_@_[evidence-value]` where [`evidence-name`] is the name of the evidence (`name` entry in the `release_evidences.json` file) and [`evidence-value`] is a value from the `possible-values` entry. Note that for a multi-choice evidence, it is possible to have several `[evidence-name]_@_[evidence-value]` items in the evidence list, with each item being associated with a different evidence value. A binary evidence is represented as `[evidence-name]`. - **INITIAL_EVIDENCE**: the evidence provided by the patient to kick-start an interaction with an ASD/AD system. This is useful during model evaluation for a fair comparison of ASD/AD systems as they will all begin an interaction with a given patient from the same starting point. The initial evidence is randomly selected from the binary evidences found in the evidence list mentioned above (i.e., `EVIDENCES`) and it is part of this list. - **DIFFERENTIAL_DIAGNOSIS**: The ground truth differential diagnosis for the patient. It is represented as a list of pairs of the form `[[patho_1, proba_1], [patho_2, proba_2], ...]` where `patho_i` is the pathology name (`condition_name` entry in the `release_conditions.json` file) and `proba_i` is its related probability. ## Note: We hope this dataset will encourage future works for ASD and AD systems that consider the differential diagnosis and the severity of pathologies. It is important to keep in mind that this dataset is formed of synthetic patients and is meant for research purposes. Given the assumptions made during the generation process of this dataset, we would like to emphasize that the dataset should not be used to train and deploy a model prior to performing rigorous evaluations of the model performance and verifying that the system has proper coverage and representation of the population that it will interact with. It is important to understand that the level of specificity, sensitivity and confidence that a physician will seek when evaluating a patient will be influenced by the clinical setting. The dataset was built for acute care and biased toward high mortality and morbidity pathologies. Physicians will tend to consider negative evidences as equally important in such a clinical context in order to evaluate high acuity diseases. In the creation of the DDXPlus dataset, a small subset of the diseases was chosen to establish a baseline. Medical professionals have to consider this very important point when reviewing the results of models trained with this dataset, as the differential is considerably smaller. A smaller differential means less potential evidences to collect. It is thus essential to understand this point when we look at the differential produced and the evidence collected by a model based on this dataset. For more information, please check our [paper](https://arxiv.org/abs/2205.09148).
aai530-group6/ddxplus
[ "task_categories:tabular-classification", "task_ids:multi-class-classification", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc-by-4.0", "automatic-diagnosis", "automatic-symptom-detection", "differential-diagnosis", "synthetic-patients", "diseases", "health-care", "arxiv:2205.09148", "region:us" ]
2024-01-22T03:37:14+00:00
{"language": ["en"], "license": "cc-by-4.0", "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["tabular-classification"], "task_ids": ["multi-class-classification"], "paperswithcode_id": "ddxplus", "pretty_name": "DDXPlus", "license_link": "https://creativecommons.org/licenses/by/4.0/", "tags": ["automatic-diagnosis", "automatic-symptom-detection", "differential-diagnosis", "synthetic-patients", "diseases", "health-care"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "train.csv"}, {"split": "test", "path": "test.csv"}, {"split": "validate", "path": "validate.csv"}]}], "extra_gated_prompt": "By accessing this dataset, you agree to use it solely for research purposes and not for clinical decision-making.", "extra_gated_fields": {"Consent": "checkbox", "Purpose of use": {"type": "select", "options": ["Research", "Educational", {"label": "Other", "value": "other"}]}}, "train-eval-index": [{"config": "default", "task": "medical-diagnosis", "task_id": "binary-classification", "splits": {"train_split": "train", "eval_split": "validate"}, "col_mapping": {"AGE": "AGE", "SEX": "SEX", "PATHOLOGY": "PATHOLOGY", "EVIDENCES": "EVIDENCES", "INITIAL_EVIDENCE": "INITIAL_EVIDENCE", "DIFFERENTIAL_DIAGNOSIS": "DIFFERENTIAL_DIAGNOSIS"}, "metrics": [{"type": "accuracy", "name": "Accuracy"}, {"type": "f1", "name": "F1 Score"}]}]}
2024-01-22T03:48:18+00:00
[ "2205.09148" ]
[ "en" ]
TAGS #task_categories-tabular-classification #task_ids-multi-class-classification #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc-by-4.0 #automatic-diagnosis #automatic-symptom-detection #differential-diagnosis #synthetic-patients #diseases #health-care #arxiv-2205.09148 #region-us
# Dataset Description We are releasing under the CC-BY licence a new large-scale dataset for Automatic Symptom Detection (ASD) and Automatic Diagnosis (AD) systems in the medical domain. The dataset contains patients synthesized using a proprietary medical knowledge base and a commercial rule-based AD system. Patients in the dataset are characterized by their socio-demographic data, a pathology they are suffering from, a set of symptoms and antecedents related to this pathology, and a differential diagnosis. The symptoms and antecedents can be binary, categorical and multi-choice, with the potential of leading to more efficient and natural interactions between ASD/AD systems and patients. To the best of our knowledge, this is the first large-scale dataset that includes the differential diagnosis, and non-binary symptoms and antecedents. Note: We use evidence as a general term to refer to a symptom or an antecedent. This directory contains the following files: - release_evidences.json: a JSON file describing all possible evidences considered in the dataset. - release_conditions.json: a JSON file describing all pathologies considered in the dataset. - release_train_patients.zip: a CSV file containing the patients of the training set. - release_validate_patients.zip: a CSV file containing the patients of the validation set. - release_test_patients.zip: a CSV file containing the patients of the test set. ## Evidence Description Each evidence in the 'release_evidences.json' file is described using the following entries: - name: name of the evidence. - code_question: a code allowing to identify which evidences are related. Evidences having the same 'code_question' form a group of related symptoms. The value of the 'code_question' refers to the evidence that need to be simulated/activated for the other members of the group to be eventually simulated. - question_fr: the query, in French, associated to the evidence. - question_en: the query, in English, associated to the evidence. - is_antecedent: a flag indicating whether the evidence is an antecedent or a symptom. - data_type: the type of evidence. We use 'B' for binary, 'C' for categorical, and 'M' for multi-choice evidences. - default_value: the default value of the evidence. If this value is used to characterize the evidence, then it is as if the evidence was not synthesized. - possible-values: the possible values for the evidences. Only valid for categorical and multi-choice evidences. - value_meaning: The meaning, in French and English, of each code that is part of the 'possible-values' field. Only valid for categorical and multi-choice evidences. ## Pathology Description The file 'release_conditions.json' contains information about the pathologies that patients in the datasets may suffer from. Each pathology has the following attributes: - condition_name: name of the pathology. - cond-name-fr: name of the pathology in French. - cond-name-eng: name of the pathology in English. - icd10-id: ICD-10 code of the pathology. - severity: the severity associated with the pathology. The lower the more severe. - symptoms: data structure describing the set of symptoms characterizing the pathology. Each symptom is represented by its corresponding 'name' entry in the 'release_evidences.json' file. - antecedents: data structure describing the set of antecedents characterizing the pathology. Each antecedent is represented by its corresponding 'name' entry in the 'release_evidences.json' file. ## Patient Description Each patient in each of the 3 sets has the following attributes: - AGE: the age of the synthesized patient. - SEX: the sex of the synthesized patient. - PATHOLOGY: name of the ground truth pathology ('condition_name' property in the 'release_conditions.json' file) that the synthesized patient is suffering from. - EVIDENCES: list of evidences experienced by the patient. An evidence can either be binary, categorical or multi-choice. A categorical or multi-choice evidence is represented in the format '[evidence-name]_@_[evidence-value]' where ['evidence-name'] is the name of the evidence ('name' entry in the 'release_evidences.json' file) and ['evidence-value'] is a value from the 'possible-values' entry. Note that for a multi-choice evidence, it is possible to have several '[evidence-name]_@_[evidence-value]' items in the evidence list, with each item being associated with a different evidence value. A binary evidence is represented as '[evidence-name]'. - INITIAL_EVIDENCE: the evidence provided by the patient to kick-start an interaction with an ASD/AD system. This is useful during model evaluation for a fair comparison of ASD/AD systems as they will all begin an interaction with a given patient from the same starting point. The initial evidence is randomly selected from the binary evidences found in the evidence list mentioned above (i.e., 'EVIDENCES') and it is part of this list. - DIFFERENTIAL_DIAGNOSIS: The ground truth differential diagnosis for the patient. It is represented as a list of pairs of the form '[[patho_1, proba_1], [patho_2, proba_2], ...]' where 'patho_i' is the pathology name ('condition_name' entry in the 'release_conditions.json' file) and 'proba_i' is its related probability. ## Note: We hope this dataset will encourage future works for ASD and AD systems that consider the differential diagnosis and the severity of pathologies. It is important to keep in mind that this dataset is formed of synthetic patients and is meant for research purposes. Given the assumptions made during the generation process of this dataset, we would like to emphasize that the dataset should not be used to train and deploy a model prior to performing rigorous evaluations of the model performance and verifying that the system has proper coverage and representation of the population that it will interact with. It is important to understand that the level of specificity, sensitivity and confidence that a physician will seek when evaluating a patient will be influenced by the clinical setting. The dataset was built for acute care and biased toward high mortality and morbidity pathologies. Physicians will tend to consider negative evidences as equally important in such a clinical context in order to evaluate high acuity diseases. In the creation of the DDXPlus dataset, a small subset of the diseases was chosen to establish a baseline. Medical professionals have to consider this very important point when reviewing the results of models trained with this dataset, as the differential is considerably smaller. A smaller differential means less potential evidences to collect. It is thus essential to understand this point when we look at the differential produced and the evidence collected by a model based on this dataset. For more information, please check our paper.
[ "# Dataset Description\n\nWe are releasing under the CC-BY licence a new large-scale dataset for Automatic Symptom Detection (ASD) and Automatic Diagnosis (AD) systems in the medical domain. The dataset contains patients synthesized using a proprietary medical knowledge base and a commercial rule-based AD system. Patients in the dataset are characterized by their socio-demographic data, a pathology they are suffering from, a set of symptoms and antecedents related to this pathology, and a differential diagnosis. The symptoms and antecedents can be binary, categorical and multi-choice, with the potential of leading to more efficient and natural interactions between ASD/AD systems and patients. To the best of our knowledge, this is the first large-scale dataset that includes the differential diagnosis, and non-binary symptoms and antecedents.\n\nNote: We use evidence as a general term to refer to a symptom or an antecedent.\n\nThis directory contains the following files:\n - release_evidences.json: a JSON file describing all possible evidences considered in the dataset.\n - release_conditions.json: a JSON file describing all pathologies considered in the dataset.\n - release_train_patients.zip: a CSV file containing the patients of the training set.\n - release_validate_patients.zip: a CSV file containing the patients of the validation set.\n - release_test_patients.zip: a CSV file containing the patients of the test set.", "## Evidence Description\n\nEach evidence in the 'release_evidences.json' file is described using the following entries:\n - name: name of the evidence.\n - code_question: a code allowing to identify which evidences are related. Evidences having the same 'code_question' form a group of related symptoms. The value of the 'code_question' refers to the evidence that need to be simulated/activated for the other members of the group to be eventually simulated.\n - question_fr: the query, in French, associated to the evidence.\n - question_en: the query, in English, associated to the evidence.\n - is_antecedent: a flag indicating whether the evidence is an antecedent or a symptom.\n - data_type: the type of evidence. We use 'B' for binary, 'C' for categorical, and 'M' for multi-choice evidences.\n - default_value: the default value of the evidence. If this value is used to characterize the evidence, then it is as if the evidence was not synthesized.\n - possible-values: the possible values for the evidences. Only valid for categorical and multi-choice evidences.\n - value_meaning: The meaning, in French and English, of each code that is part of the 'possible-values' field. Only valid for categorical and multi-choice evidences.", "## Pathology Description\nThe file 'release_conditions.json' contains information about the pathologies that patients in the datasets may suffer from. Each pathology has the following attributes:\n - condition_name: name of the pathology.\n - cond-name-fr: name of the pathology in French.\n - cond-name-eng: name of the pathology in English.\n - icd10-id: ICD-10 code of the pathology.\n - severity: the severity associated with the pathology. The lower the more severe.\n - symptoms: data structure describing the set of symptoms characterizing the pathology. Each symptom is represented by its corresponding 'name' entry in the 'release_evidences.json' file.\n - antecedents: data structure describing the set of antecedents characterizing the pathology. Each antecedent is represented by its corresponding 'name' entry in the 'release_evidences.json' file.", "## Patient Description\n\nEach patient in each of the 3 sets has the following attributes:\n - AGE: the age of the synthesized patient.\n - SEX: the sex of the synthesized patient.\n - PATHOLOGY: name of the ground truth pathology ('condition_name' property in the 'release_conditions.json' file) that the synthesized patient is suffering from.\n - EVIDENCES: list of evidences experienced by the patient. An evidence can either be binary, categorical or multi-choice. A categorical or multi-choice evidence is represented in the format '[evidence-name]_@_[evidence-value]' where ['evidence-name'] is the name of the evidence ('name' entry in the 'release_evidences.json' file) and ['evidence-value'] is a value from the 'possible-values' entry. Note that for a multi-choice evidence, it is possible to have several '[evidence-name]_@_[evidence-value]' items in the evidence list, with each item being associated with a different evidence value. A binary evidence is represented as '[evidence-name]'.\n - INITIAL_EVIDENCE: the evidence provided by the patient to kick-start an interaction with an ASD/AD system. This is useful during model evaluation for a fair comparison of ASD/AD systems as they will all begin an interaction with a given patient from the same starting point. The initial evidence is randomly selected from the binary evidences found in the evidence list mentioned above (i.e., 'EVIDENCES') and it is part of this list.\n - DIFFERENTIAL_DIAGNOSIS: The ground truth differential diagnosis for the patient. It is represented as a list of pairs of the form '[[patho_1, proba_1], [patho_2, proba_2], ...]' where 'patho_i' is the pathology name ('condition_name' entry in the 'release_conditions.json' file) and 'proba_i' is its related probability.", "## Note:\n\nWe hope this dataset will encourage future works for ASD and AD systems that consider the differential diagnosis and the severity of pathologies. It is important to keep in mind that this dataset is formed of synthetic patients and is meant for research purposes. Given the assumptions made during the generation process of this dataset, we would like to emphasize that the dataset should not be used to train and deploy a model prior to performing rigorous evaluations of the model performance and verifying that the system has proper coverage and representation of the population that it will interact with.\n\nIt is important to understand that the level of specificity, sensitivity and confidence that a physician will seek when evaluating a patient will be influenced by the clinical setting. The dataset was built for acute care and biased toward high mortality and morbidity pathologies. Physicians will tend to consider negative evidences as equally important in such a clinical context in order to evaluate high acuity diseases.\n\nIn the creation of the DDXPlus dataset, a small subset of the diseases was chosen to establish a baseline. Medical professionals have to consider this very important point when reviewing the results of models trained with this dataset, as the differential is considerably smaller. A smaller differential means less potential evidences to collect. It is thus essential to understand this point when we look at the differential produced and the evidence collected by a model based on this dataset.\n\nFor more information, please check our paper." ]
[ "TAGS\n#task_categories-tabular-classification #task_ids-multi-class-classification #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc-by-4.0 #automatic-diagnosis #automatic-symptom-detection #differential-diagnosis #synthetic-patients #diseases #health-care #arxiv-2205.09148 #region-us \n", "# Dataset Description\n\nWe are releasing under the CC-BY licence a new large-scale dataset for Automatic Symptom Detection (ASD) and Automatic Diagnosis (AD) systems in the medical domain. The dataset contains patients synthesized using a proprietary medical knowledge base and a commercial rule-based AD system. Patients in the dataset are characterized by their socio-demographic data, a pathology they are suffering from, a set of symptoms and antecedents related to this pathology, and a differential diagnosis. The symptoms and antecedents can be binary, categorical and multi-choice, with the potential of leading to more efficient and natural interactions between ASD/AD systems and patients. To the best of our knowledge, this is the first large-scale dataset that includes the differential diagnosis, and non-binary symptoms and antecedents.\n\nNote: We use evidence as a general term to refer to a symptom or an antecedent.\n\nThis directory contains the following files:\n - release_evidences.json: a JSON file describing all possible evidences considered in the dataset.\n - release_conditions.json: a JSON file describing all pathologies considered in the dataset.\n - release_train_patients.zip: a CSV file containing the patients of the training set.\n - release_validate_patients.zip: a CSV file containing the patients of the validation set.\n - release_test_patients.zip: a CSV file containing the patients of the test set.", "## Evidence Description\n\nEach evidence in the 'release_evidences.json' file is described using the following entries:\n - name: name of the evidence.\n - code_question: a code allowing to identify which evidences are related. Evidences having the same 'code_question' form a group of related symptoms. The value of the 'code_question' refers to the evidence that need to be simulated/activated for the other members of the group to be eventually simulated.\n - question_fr: the query, in French, associated to the evidence.\n - question_en: the query, in English, associated to the evidence.\n - is_antecedent: a flag indicating whether the evidence is an antecedent or a symptom.\n - data_type: the type of evidence. We use 'B' for binary, 'C' for categorical, and 'M' for multi-choice evidences.\n - default_value: the default value of the evidence. If this value is used to characterize the evidence, then it is as if the evidence was not synthesized.\n - possible-values: the possible values for the evidences. Only valid for categorical and multi-choice evidences.\n - value_meaning: The meaning, in French and English, of each code that is part of the 'possible-values' field. Only valid for categorical and multi-choice evidences.", "## Pathology Description\nThe file 'release_conditions.json' contains information about the pathologies that patients in the datasets may suffer from. Each pathology has the following attributes:\n - condition_name: name of the pathology.\n - cond-name-fr: name of the pathology in French.\n - cond-name-eng: name of the pathology in English.\n - icd10-id: ICD-10 code of the pathology.\n - severity: the severity associated with the pathology. The lower the more severe.\n - symptoms: data structure describing the set of symptoms characterizing the pathology. Each symptom is represented by its corresponding 'name' entry in the 'release_evidences.json' file.\n - antecedents: data structure describing the set of antecedents characterizing the pathology. Each antecedent is represented by its corresponding 'name' entry in the 'release_evidences.json' file.", "## Patient Description\n\nEach patient in each of the 3 sets has the following attributes:\n - AGE: the age of the synthesized patient.\n - SEX: the sex of the synthesized patient.\n - PATHOLOGY: name of the ground truth pathology ('condition_name' property in the 'release_conditions.json' file) that the synthesized patient is suffering from.\n - EVIDENCES: list of evidences experienced by the patient. An evidence can either be binary, categorical or multi-choice. A categorical or multi-choice evidence is represented in the format '[evidence-name]_@_[evidence-value]' where ['evidence-name'] is the name of the evidence ('name' entry in the 'release_evidences.json' file) and ['evidence-value'] is a value from the 'possible-values' entry. Note that for a multi-choice evidence, it is possible to have several '[evidence-name]_@_[evidence-value]' items in the evidence list, with each item being associated with a different evidence value. A binary evidence is represented as '[evidence-name]'.\n - INITIAL_EVIDENCE: the evidence provided by the patient to kick-start an interaction with an ASD/AD system. This is useful during model evaluation for a fair comparison of ASD/AD systems as they will all begin an interaction with a given patient from the same starting point. The initial evidence is randomly selected from the binary evidences found in the evidence list mentioned above (i.e., 'EVIDENCES') and it is part of this list.\n - DIFFERENTIAL_DIAGNOSIS: The ground truth differential diagnosis for the patient. It is represented as a list of pairs of the form '[[patho_1, proba_1], [patho_2, proba_2], ...]' where 'patho_i' is the pathology name ('condition_name' entry in the 'release_conditions.json' file) and 'proba_i' is its related probability.", "## Note:\n\nWe hope this dataset will encourage future works for ASD and AD systems that consider the differential diagnosis and the severity of pathologies. It is important to keep in mind that this dataset is formed of synthetic patients and is meant for research purposes. Given the assumptions made during the generation process of this dataset, we would like to emphasize that the dataset should not be used to train and deploy a model prior to performing rigorous evaluations of the model performance and verifying that the system has proper coverage and representation of the population that it will interact with.\n\nIt is important to understand that the level of specificity, sensitivity and confidence that a physician will seek when evaluating a patient will be influenced by the clinical setting. The dataset was built for acute care and biased toward high mortality and morbidity pathologies. Physicians will tend to consider negative evidences as equally important in such a clinical context in order to evaluate high acuity diseases.\n\nIn the creation of the DDXPlus dataset, a small subset of the diseases was chosen to establish a baseline. Medical professionals have to consider this very important point when reviewing the results of models trained with this dataset, as the differential is considerably smaller. A smaller differential means less potential evidences to collect. It is thus essential to understand this point when we look at the differential produced and the evidence collected by a model based on this dataset.\n\nFor more information, please check our paper." ]
5f1f2021485bb9d397d72af7a0165e0a4223b923
Optical flows associated with our work "We're Not Using Videos Effectively: An Updated Domain Adaptive Video Segmentation Baseline" See the [github](https://github.com/SimarKareer/UnifiedVideoDA) for full instructions, but to install run ```bash git lfs install git clone https://huggingface.co/datasets/hoffman-lab/Unified-VideoDA-Generated-Flows ```
hoffman-lab/Unified-VideoDA-Generated-Flows
[ "region:us" ]
2024-01-22T03:50:49+00:00
{}
2024-01-28T01:02:47+00:00
[]
[]
TAGS #region-us
Optical flows associated with our work "We're Not Using Videos Effectively: An Updated Domain Adaptive Video Segmentation Baseline" See the github for full instructions, but to install run
[]
[ "TAGS\n#region-us \n" ]
196f18dd036583ab40e4f7d74696f495f6a178f8
# Dataset of Jeanne d'Arc (Dark) (Granblue Fantasy) This is the dataset of Jeanne d'Arc (Dark) (Granblue Fantasy), containing 74 images and their tags. The core tags of this character are `long_hair, hair_ornament, breasts, white_hair, red_eyes, large_breasts, bangs, hair_flower, medium_breasts, very_long_hair, wings`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:-----------|:-----------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 74 | 96.32 MiB | [Download](https://huggingface.co/datasets/CyberHarem/dark_jeanne_granbluefantasy/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 74 | 62.26 MiB | [Download](https://huggingface.co/datasets/CyberHarem/dark_jeanne_granbluefantasy/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 171 | 123.73 MiB | [Download](https://huggingface.co/datasets/CyberHarem/dark_jeanne_granbluefantasy/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 74 | 88.22 MiB | [Download](https://huggingface.co/datasets/CyberHarem/dark_jeanne_granbluefantasy/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 171 | 163.22 MiB | [Download](https://huggingface.co/datasets/CyberHarem/dark_jeanne_granbluefantasy/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/dark_jeanne_granbluefantasy', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 7 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, cleavage, looking_at_viewer, smile, solo, bare_shoulders, collarbone, navel, black_bikini, blush, feather_hair_ornament, flower, hair_between_eyes, official_alternate_costume, see-through, simple_background, white_background | | 1 | 7 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, bare_shoulders, cleavage, smile, solo, looking_at_viewer, simple_background, armor, black_gloves, collarbone, dress, feather_hair_ornament, white_background | | 2 | 11 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | 1girl, looking_at_viewer, smile, solo, armor, feathers, holding_sword, cleavage, bare_shoulders, collarbone, black_gloves, boots, ahoge, open_mouth, single_glove, skirt | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | cleavage | looking_at_viewer | smile | solo | bare_shoulders | collarbone | navel | black_bikini | blush | feather_hair_ornament | flower | hair_between_eyes | official_alternate_costume | see-through | simple_background | white_background | armor | black_gloves | dress | feathers | holding_sword | boots | ahoge | open_mouth | single_glove | skirt | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-----------|:--------------------|:--------|:-------|:-----------------|:-------------|:--------|:---------------|:--------|:------------------------|:---------|:--------------------|:-----------------------------|:--------------|:--------------------|:-------------------|:--------|:---------------|:--------|:-----------|:----------------|:--------|:--------|:-------------|:---------------|:--------| | 0 | 7 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | 1 | 7 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | X | X | X | X | X | X | X | | | | X | | | | | X | X | X | X | X | | | | | | | | | 2 | 11 | ![](samples/2/clu2-sample0.png) | ![](samples/2/clu2-sample1.png) | ![](samples/2/clu2-sample2.png) | ![](samples/2/clu2-sample3.png) | ![](samples/2/clu2-sample4.png) | X | X | X | X | X | X | X | | | | | | | | | | | X | X | | X | X | X | X | X | X | X |
CyberHarem/dark_jeanne_granbluefantasy
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-01-22T03:57:04+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-01-22T04:11:03+00:00
[]
[]
TAGS #task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
Dataset of Jeanne d'Arc (Dark) (Granblue Fantasy) ================================================= This is the dataset of Jeanne d'Arc (Dark) (Granblue Fantasy), containing 74 images and their tags. The core tags of this character are 'long\_hair, hair\_ornament, breasts, white\_hair, red\_eyes, large\_breasts, bangs, hair\_flower, medium\_breasts, very\_long\_hair, wings', which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization). List of Packages ---------------- ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code List of Clusters ---------------- List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version ### Table Version
[ "### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.", "### Raw Text Version", "### Table Version" ]
[ "TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n", "### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.", "### Raw Text Version", "### Table Version" ]
158d0a690d51f9a8e6f61d55dd30105c67eefb8e
Two types of questions are in this dataset. * Synthetic generated questions and answers from Chatgpt 3.5 Turbo on US History. * This included a python script to first randomly select a date between 1607-2020. Then generate a historical question from that date. Repeated 3000 times. * This is along with a curated 2048 character chunked American Yawp and Openstax American History, that were feed into Chatgpt 3.5 Turbo one chunk at a time to generate the context, then a question from that context, then an answer from that question. Python script used to generate synthetic history questions and answer from ChatGPT Turbo-Instruct. ``` import pandas as pd import random import openai from datetime import datetime # Set your OpenAI API key openai.api_key = "API KEY" # Function to generate synthetic historical questions using OpenAI GPT-3 def generate_question(): # Define a prompt to get a historical question from GPT-3 prompt = "Generate a historical question related to American History from 1607-2020." # Call the OpenAI API to get a synthetic question response = openai.Completion.create( engine="gpt-3.5-turbo-instruct", prompt=prompt, max_tokens=50, n=1, stop=None ) # Extract the generated question from the API response question = response['choices'][0]['text'].strip() # Generate input and output based on the selected question context = f"Make sure the answer does not include any form of list, and that it completes the prompt with a complete sentence." input_text = "" # Set input_text to an empty string # Instead of using the question as the answer, let's generate a concise response response_prompt = f"{context} Answer the following question: {question} " answer_response = openai.Completion.create( engine="gpt-3.5-turbo-instruct", prompt=response_prompt, max_tokens=50, n=1, stop=None ) # Check the token count and adjust the prompt if needed remaining_tokens = 100 - answer_response['usage']['total_tokens'] if remaining_tokens < 10: # If there are fewer than 10 tokens left, reduce the max tokens in the response answer_response = openai.Completion.create( engine="gpt-3.5-turbo-instruct", prompt=response_prompt, max_tokens=answer_response['usage']['total_tokens'] + 10, n=1, stop=None ) output_text = f"{answer_response['choices'][0]['text'].strip()}" return question, input_text, output_text # Create a DataFrame to store the synthetic dataset data = {'instruction': [], 'input': [], 'output': []} # Generate 10 entries for _ in range(100): question, input_text, output_text = generate_question() data['instruction'].append(question) data['input'].append(input_text) data['output'].append(output_text) # Convert the dictionary to a DataFrame df = pd.DataFrame(data) # Generate a timestamp for the unique filename timestamp = datetime.now().strftime("%Y%m%d%H%M%S") # Save the DataFrame to a CSV file with a unique filename file_path = f'/content/data_sets/data_set_{timestamp}.csv' df.to_csv(file_path, index=False) print(f"Synthetic dataset generated and saved to '{file_path}'") ``` This is the python script to segment books or text files into chunks, then generate a question and answer into a csv. This does produce some misalignments between cells. So make sure to look over the data when completed for any data issues. This was generated through colab, so !pip instruction are present. ## Generating Chunks Chunking the sizes helps depending if you want to modify the llm to something with a larger token window. I tried to keep mine within the token limit of ChatGPT 3.5 Turbo 1106 for the larger context window. ``` # Commented out IPython magic to ensure Python compatibility. !pip install openai==0.28.0 !pip install pandas # %mkdir textfiles # %mkdir chunks import os input_file = "/content/textfiles/text.txt" chunk_size = 8192 output_dir = "chunks" if not os.path.exists(output_dir): os.makedirs(output_dir) with open(input_file) as f: text = f.read() print(f"Original text length: {len(text)}") chunks = [] for i in range(0, len(text), chunk_size): chunks.append(text[i:i+chunk_size]) last_chunk = text[i+chunk_size:] if last_chunk: chunks.append(last_chunk) total_chunks = "".join(chunks) assert total_chunks == text, "Text does not match chunks" print(f"Total chunks length: {len(total_chunks)}") print(f"Num chunks: {len(chunks)}") for i, chunk in enumerate(chunks): chunk_file = os.path.join(output_dir, f"chunk{i}.txt") with open(chunk_file, "w") as f: f.write(chunk) print(f"Saved {len(chunks)} chunks to {output_dir}") ``` ## Generating text (questions and answers) and formating Using the chatgpt to generate the context of the chunk, then having it create a historical question from that text. Then having it create the answer. (At time it wanted to put the answers into a summarized list, so I add to the instruction NOT to include it in a list. This has seemed to work a little better.) The last part is to bring it all into a csv file from the format generated from the code above. Make sure that you have made backup to the chunks gereated by the first python script. If you wish to keep them. The last part of this code deletes the last chunk that it created an answer and question for. This helped me figure out where I need to stop and start it next time. ``` import os import openai import pandas as pd # Set your OpenAI API key openai.api_key = 'API KEY' chunk_dir = "/content/chunks" qa_dir = "/content/qa_chunks" # Ensure the output directory exists if not os.path.exists(qa_dir): os.makedirs(qa_dir) # Function to get historical context and Q&A def process_chunk(chunk): # Get historical context context_response = openai.ChatCompletion.create( model="gpt-3.5-turbo-1106", messages=[{"role": "system", "content": "Determine the historical context of the following text."}, {"role": "user", "content": chunk}] ) context = context_response['choices'][0]['message']['content'] # Generate Q&A questions = [] answers = [] for i in range(5): question_response = openai.ChatCompletion.create( model="gpt-3.5-turbo-1106", messages=[{"role": "system", "content": "Generate a different question about the historical context of the text."}, {"role": "user", "content": chunk}] ) question = question_response['choices'][0]['message']['content'] questions.append(question) answer_response = openai.ChatCompletion.create( model="gpt-3.5-turbo-1106", messages=[{"role": "system", "content": f"Answer this question based on the text, do not put the answer into a list: {question}"}, {"role": "user", "content": chunk}] ) answer = answer_response['choices'][0]['message']['content'] answers.append(answer) return questions, answers # Function to create a CSV file def create_csv(questions, answers, filename): df = pd.DataFrame({'Question': questions, 'Answer': answers}) df.to_csv(filename, index=False) # Read and process each chunk with a pause after every 50 chunks chunk_counter = 0 # Retrieve and sort chunk file names chunk_files = sorted([f for f in os.listdir(chunk_dir) if f.startswith("chunk") and f.endswith(".txt")], key=lambda x: int(x[5:-4])) for chunk_file in chunk_files: chunk_path = os.path.join(chunk_dir, chunk_file) with open(chunk_path, 'r') as f: chunk = f.read() questions, answers = process_chunk(chunk) csv_file = os.path.join(qa_dir, f"qa_{chunk_file[:-4]}.csv") create_csv(questions, answers, csv_file) print(f"Processed {chunk_file}, questions and answers saved to {csv_file}") # Delete the chunk file after processing os.remove(chunk_path) print(f"Deleted processed chunk file: {chunk_file}") chunk_counter += 1 if chunk_counter % 50 == 0: input("Processed 50 chunks. Press Enter to continue...") print("Processing complete.") ```
ambrosfitz/mighty-history-merge
[ "license:cc-by-4.0", "region:us" ]
2024-01-22T04:27:12+00:00
{"license": "cc-by-4.0"}
2024-01-25T23:43:43+00:00
[]
[]
TAGS #license-cc-by-4.0 #region-us
Two types of questions are in this dataset. * Synthetic generated questions and answers from Chatgpt 3.5 Turbo on US History. * This included a python script to first randomly select a date between 1607-2020. Then generate a historical question from that date. Repeated 3000 times. * This is along with a curated 2048 character chunked American Yawp and Openstax American History, that were feed into Chatgpt 3.5 Turbo one chunk at a time to generate the context, then a question from that context, then an answer from that question. Python script used to generate synthetic history questions and answer from ChatGPT Turbo-Instruct. This is the python script to segment books or text files into chunks, then generate a question and answer into a csv. This does produce some misalignments between cells. So make sure to look over the data when completed for any data issues. This was generated through colab, so !pip instruction are present. ## Generating Chunks Chunking the sizes helps depending if you want to modify the llm to something with a larger token window. I tried to keep mine within the token limit of ChatGPT 3.5 Turbo 1106 for the larger context window. ## Generating text (questions and answers) and formating Using the chatgpt to generate the context of the chunk, then having it create a historical question from that text. Then having it create the answer. (At time it wanted to put the answers into a summarized list, so I add to the instruction NOT to include it in a list. This has seemed to work a little better.) The last part is to bring it all into a csv file from the format generated from the code above. Make sure that you have made backup to the chunks gereated by the first python script. If you wish to keep them. The last part of this code deletes the last chunk that it created an answer and question for. This helped me figure out where I need to stop and start it next time.
[ "## Generating Chunks\n\nChunking the sizes helps depending if you want to modify the llm to something with a larger token window. I tried to keep mine within the\ntoken limit of ChatGPT 3.5 Turbo 1106 for the larger context window.", "## Generating text (questions and answers) and formating\n\nUsing the chatgpt to generate the context of the chunk, then having it create a historical question from that text. Then having it create\nthe answer. (At time it wanted to put the answers into a summarized list, so I add to the instruction NOT to include it in a list. This \nhas seemed to work a little better.)\n\nThe last part is to bring it all into a csv file from the format generated from the code above. Make sure that you have made backup to the\nchunks gereated by the first python script. If you wish to keep them. The last part of this code deletes the last chunk that it created\nan answer and question for. This helped me figure out where I need to stop and start it next time." ]
[ "TAGS\n#license-cc-by-4.0 #region-us \n", "## Generating Chunks\n\nChunking the sizes helps depending if you want to modify the llm to something with a larger token window. I tried to keep mine within the\ntoken limit of ChatGPT 3.5 Turbo 1106 for the larger context window.", "## Generating text (questions and answers) and formating\n\nUsing the chatgpt to generate the context of the chunk, then having it create a historical question from that text. Then having it create\nthe answer. (At time it wanted to put the answers into a summarized list, so I add to the instruction NOT to include it in a list. This \nhas seemed to work a little better.)\n\nThe last part is to bring it all into a csv file from the format generated from the code above. Make sure that you have made backup to the\nchunks gereated by the first python script. If you wish to keep them. The last part of this code deletes the last chunk that it created\nan answer and question for. This helped me figure out where I need to stop and start it next time." ]
c1ada1560eea70c9fa352792222cf28418f54b04
... dataset_info: features: - name: id dtype: string - name: Label dtype: string
aidystark/FOOT40K
[ "task_categories:image-classification", "size_categories:10K<n<100K", "language:en", "license:apache-2.0", "region:us" ]
2024-01-22T04:28:26+00:00
{"language": ["en"], "license": "apache-2.0", "size_categories": ["10K<n<100K"], "task_categories": ["image-classification"], "pretty_name": "FOOT40k"}
2024-01-22T11:27:10+00:00
[]
[ "en" ]
TAGS #task_categories-image-classification #size_categories-10K<n<100K #language-English #license-apache-2.0 #region-us
... dataset_info: features: - name: id dtype: string - name: Label dtype: string
[]
[ "TAGS\n#task_categories-image-classification #size_categories-10K<n<100K #language-English #license-apache-2.0 #region-us \n" ]
7e625c4f95bd52d7147d6fc97d7829fab59ec976
# Dataset Card for "processed" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
loganengstrom/dsdm-candidate-c4
[ "region:us" ]
2024-01-22T04:38:16+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "input_ids", "sequence": "uint16"}], "splits": [{"name": "train", "num_bytes": 445178826792, "num_examples": 216948746}], "download_size": 0, "dataset_size": 445178826792}}
2024-01-23T10:42:32+00:00
[]
[]
TAGS #region-us
# Dataset Card for "processed" More Information needed
[ "# Dataset Card for \"processed\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"processed\"\n\nMore Information needed" ]
53dbb883a0a484a96c3d0e6d40b881c8f59c4c7b
This dataset was generated by reformatting [`coref-data/arrau_raw`](https://huggingface.co/datasets/coref-data/arrau_raw) into the indiscrim coreference format. See that repo for dataset details. See [ianporada/coref-data](https://github.com/ianporada/coref-data) for additional conversion details and the conversion script. Please create an issue in the repo above or in this dataset repo for any questions.
coref-data/arrau_indiscrim
[ "region:us" ]
2024-01-22T04:44:39+00:00
{"dataset_info": {"features": [{"name": "split", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "sentences", "list": [{"name": "id", "dtype": "int64"}, {"name": "misc", "struct": [{"name": "parse_tree", "dtype": "string"}]}, {"name": "speaker", "dtype": "null"}, {"name": "text", "dtype": "string"}, {"name": "tokens", "list": [{"name": "deprel", "dtype": "string"}, {"name": "end_char", "dtype": "int64"}, {"name": "feats", "dtype": "string"}, {"name": "head", "dtype": "int64"}, {"name": "id", "dtype": "int64"}, {"name": "lemma", "dtype": "string"}, {"name": "misc", "dtype": "string"}, {"name": "start_char", "dtype": "int64"}, {"name": "text", "dtype": "string"}, {"name": "upos", "dtype": "string"}, {"name": "xpos", "dtype": "string"}]}]}, {"name": "coref_chains", "sequence": {"sequence": {"sequence": "int64"}}}, {"name": "genre", "dtype": "string"}, {"name": "meta_data", "struct": [{"name": "comment", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 34956353, "num_examples": 444}, {"name": "validation", "num_bytes": 3984498, "num_examples": 33}, {"name": "test", "num_bytes": 5549898, "num_examples": 75}], "download_size": 9374318, "dataset_size": 44490749}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}, {"split": "test", "path": "data/test-*"}]}]}
2024-02-13T04:15:47+00:00
[]
[]
TAGS #region-us
This dataset was generated by reformatting 'coref-data/arrau_raw' into the indiscrim coreference format. See that repo for dataset details. See ianporada/coref-data for additional conversion details and the conversion script. Please create an issue in the repo above or in this dataset repo for any questions.
[]
[ "TAGS\n#region-us \n" ]
ab2187f93350722902a1364341aeaf1e2a02fc3d
# Dataset Card for Evaluation run of inswave/AISquare-Instruct-llama2-koen-13b-v0.9.24 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [inswave/AISquare-Instruct-llama2-koen-13b-v0.9.24](https://huggingface.co/inswave/AISquare-Instruct-llama2-koen-13b-v0.9.24) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_inswave__AISquare-Instruct-llama2-koen-13b-v0.9.24", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-22T04:44:53.381027](https://huggingface.co/datasets/open-llm-leaderboard/details_inswave__AISquare-Instruct-llama2-koen-13b-v0.9.24/blob/main/results_2024-01-22T04-44-53.381027.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.5189240030169358, "acc_stderr": 0.03417423514779615, "acc_norm": 0.5233187157188728, "acc_norm_stderr": 0.03491752755385364, "mc1": 0.3574051407588739, "mc1_stderr": 0.016776599676729405, "mc2": 0.530042963383804, "mc2_stderr": 0.014928626205495087 }, "harness|arc:challenge|25": { "acc": 0.5307167235494881, "acc_stderr": 0.014583792546304038, "acc_norm": 0.5563139931740614, "acc_norm_stderr": 0.014518421825670452 }, "harness|hellaswag|10": { "acc": 0.6161123282214698, "acc_stderr": 0.004853371646239246, "acc_norm": 0.813483369846644, "acc_norm_stderr": 0.0038872693686016107 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.32, "acc_stderr": 0.046882617226215034, "acc_norm": 0.32, "acc_norm_stderr": 0.046882617226215034 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.4888888888888889, "acc_stderr": 0.04318275491977976, "acc_norm": 0.4888888888888889, "acc_norm_stderr": 0.04318275491977976 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.5328947368421053, "acc_stderr": 0.040601270352363966, "acc_norm": 0.5328947368421053, "acc_norm_stderr": 0.040601270352363966 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.47, "acc_stderr": 0.05016135580465919, "acc_norm": 0.47, "acc_norm_stderr": 0.05016135580465919 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.5584905660377358, "acc_stderr": 0.030561590426731833, "acc_norm": 0.5584905660377358, "acc_norm_stderr": 0.030561590426731833 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.5347222222222222, "acc_stderr": 0.04171115858181618, "acc_norm": 0.5347222222222222, "acc_norm_stderr": 0.04171115858181618 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.35, "acc_stderr": 0.0479372485441102, "acc_norm": 0.35, "acc_norm_stderr": 0.0479372485441102 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.44, "acc_stderr": 0.04988876515698589, "acc_norm": 0.44, "acc_norm_stderr": 0.04988876515698589 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.31, "acc_stderr": 0.04648231987117316, "acc_norm": 0.31, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.5028901734104047, "acc_stderr": 0.038124005659748335, "acc_norm": 0.5028901734104047, "acc_norm_stderr": 0.038124005659748335 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.3137254901960784, "acc_stderr": 0.04617034827006717, "acc_norm": 0.3137254901960784, "acc_norm_stderr": 0.04617034827006717 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.65, "acc_stderr": 0.0479372485441102, "acc_norm": 0.65, "acc_norm_stderr": 0.0479372485441102 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.3659574468085106, "acc_stderr": 0.0314895582974553, "acc_norm": 0.3659574468085106, "acc_norm_stderr": 0.0314895582974553 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.2894736842105263, "acc_stderr": 0.04266339443159394, "acc_norm": 0.2894736842105263, "acc_norm_stderr": 0.04266339443159394 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.503448275862069, "acc_stderr": 0.04166567577101579, "acc_norm": 0.503448275862069, "acc_norm_stderr": 0.04166567577101579 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.32275132275132273, "acc_stderr": 0.024078943243597016, "acc_norm": 0.32275132275132273, "acc_norm_stderr": 0.024078943243597016 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.2857142857142857, "acc_stderr": 0.040406101782088394, "acc_norm": 0.2857142857142857, "acc_norm_stderr": 0.040406101782088394 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.37, "acc_stderr": 0.048523658709391, "acc_norm": 0.37, "acc_norm_stderr": 0.048523658709391 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.5741935483870968, "acc_stderr": 0.028129112709165904, "acc_norm": 0.5741935483870968, "acc_norm_stderr": 0.028129112709165904 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.4187192118226601, "acc_stderr": 0.034711928605184676, "acc_norm": 0.4187192118226601, "acc_norm_stderr": 0.034711928605184676 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.55, "acc_stderr": 0.05, "acc_norm": 0.55, "acc_norm_stderr": 0.05 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.6606060606060606, "acc_stderr": 0.03697442205031595, "acc_norm": 0.6606060606060606, "acc_norm_stderr": 0.03697442205031595 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.6515151515151515, "acc_stderr": 0.033948539651564025, "acc_norm": 0.6515151515151515, "acc_norm_stderr": 0.033948539651564025 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.7823834196891192, "acc_stderr": 0.029778663037752954, "acc_norm": 0.7823834196891192, "acc_norm_stderr": 0.029778663037752954 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.541025641025641, "acc_stderr": 0.025265525491284295, "acc_norm": 0.541025641025641, "acc_norm_stderr": 0.025265525491284295 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.3, "acc_stderr": 0.027940457136228402, "acc_norm": 0.3, "acc_norm_stderr": 0.027940457136228402 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.49159663865546216, "acc_stderr": 0.03247390276569669, "acc_norm": 0.49159663865546216, "acc_norm_stderr": 0.03247390276569669 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.3576158940397351, "acc_stderr": 0.03913453431177258, "acc_norm": 0.3576158940397351, "acc_norm_stderr": 0.03913453431177258 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.689908256880734, "acc_stderr": 0.019830849684439756, "acc_norm": 0.689908256880734, "acc_norm_stderr": 0.019830849684439756 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.37037037037037035, "acc_stderr": 0.03293377139415191, "acc_norm": 0.37037037037037035, "acc_norm_stderr": 0.03293377139415191 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.6715686274509803, "acc_stderr": 0.03296245110172229, "acc_norm": 0.6715686274509803, "acc_norm_stderr": 0.03296245110172229 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.729957805907173, "acc_stderr": 0.028900721906293426, "acc_norm": 0.729957805907173, "acc_norm_stderr": 0.028900721906293426 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.5964125560538116, "acc_stderr": 0.032928028193303135, "acc_norm": 0.5964125560538116, "acc_norm_stderr": 0.032928028193303135 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.5801526717557252, "acc_stderr": 0.043285772152629715, "acc_norm": 0.5801526717557252, "acc_norm_stderr": 0.043285772152629715 }, "harness|hendrycksTest-international_law|5": { "acc": 0.7024793388429752, "acc_stderr": 0.04173349148083499, "acc_norm": 0.7024793388429752, "acc_norm_stderr": 0.04173349148083499 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.6481481481481481, "acc_stderr": 0.046166311118017125, "acc_norm": 0.6481481481481481, "acc_norm_stderr": 0.046166311118017125 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.5828220858895705, "acc_stderr": 0.03874102859818082, "acc_norm": 0.5828220858895705, "acc_norm_stderr": 0.03874102859818082 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.30357142857142855, "acc_stderr": 0.04364226155841044, "acc_norm": 0.30357142857142855, "acc_norm_stderr": 0.04364226155841044 }, "harness|hendrycksTest-management|5": { "acc": 0.6310679611650486, "acc_stderr": 0.0477761518115674, "acc_norm": 0.6310679611650486, "acc_norm_stderr": 0.0477761518115674 }, "harness|hendrycksTest-marketing|5": { "acc": 0.717948717948718, "acc_stderr": 0.029480360549541194, "acc_norm": 0.717948717948718, "acc_norm_stderr": 0.029480360549541194 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.51, "acc_stderr": 0.05024183937956912, "acc_norm": 0.51, "acc_norm_stderr": 0.05024183937956912 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.7037037037037037, "acc_stderr": 0.016328814422102052, "acc_norm": 0.7037037037037037, "acc_norm_stderr": 0.016328814422102052 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.615606936416185, "acc_stderr": 0.02618966696627204, "acc_norm": 0.615606936416185, "acc_norm_stderr": 0.02618966696627204 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.24692737430167597, "acc_stderr": 0.014422292204808835, "acc_norm": 0.24692737430167597, "acc_norm_stderr": 0.014422292204808835 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.5522875816993464, "acc_stderr": 0.028472938478033526, "acc_norm": 0.5522875816993464, "acc_norm_stderr": 0.028472938478033526 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.5980707395498392, "acc_stderr": 0.027846476005930473, "acc_norm": 0.5980707395498392, "acc_norm_stderr": 0.027846476005930473 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.6172839506172839, "acc_stderr": 0.027044538138402605, "acc_norm": 0.6172839506172839, "acc_norm_stderr": 0.027044538138402605 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.3971631205673759, "acc_stderr": 0.029189805673587095, "acc_norm": 0.3971631205673759, "acc_norm_stderr": 0.029189805673587095 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.39765319426336376, "acc_stderr": 0.012499840347460643, "acc_norm": 0.39765319426336376, "acc_norm_stderr": 0.012499840347460643 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.40808823529411764, "acc_stderr": 0.029855261393483924, "acc_norm": 0.40808823529411764, "acc_norm_stderr": 0.029855261393483924 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.5375816993464052, "acc_stderr": 0.020170614974969768, "acc_norm": 0.5375816993464052, "acc_norm_stderr": 0.020170614974969768 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6, "acc_stderr": 0.0469237132203465, "acc_norm": 0.6, "acc_norm_stderr": 0.0469237132203465 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.5714285714285714, "acc_stderr": 0.031680911612338825, "acc_norm": 0.5714285714285714, "acc_norm_stderr": 0.031680911612338825 }, "harness|hendrycksTest-sociology|5": { "acc": 0.6915422885572139, "acc_stderr": 0.032658195885126966, "acc_norm": 0.6915422885572139, "acc_norm_stderr": 0.032658195885126966 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.81, "acc_stderr": 0.03942772444036624, "acc_norm": 0.81, "acc_norm_stderr": 0.03942772444036624 }, "harness|hendrycksTest-virology|5": { "acc": 0.39759036144578314, "acc_stderr": 0.038099730845402184, "acc_norm": 0.39759036144578314, "acc_norm_stderr": 0.038099730845402184 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.6900584795321637, "acc_stderr": 0.035469769593931624, "acc_norm": 0.6900584795321637, "acc_norm_stderr": 0.035469769593931624 }, "harness|truthfulqa:mc|0": { "mc1": 0.3574051407588739, "mc1_stderr": 0.016776599676729405, "mc2": 0.530042963383804, "mc2_stderr": 0.014928626205495087 }, "harness|winogrande|5": { "acc": 0.7695343330702447, "acc_stderr": 0.01183587216483667 }, "harness|gsm8k|5": { "acc": 0.23199393479909022, "acc_stderr": 0.01162687317509241 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_inswave__AISquare-Instruct-llama2-koen-13b-v0.9.24
[ "region:us" ]
2024-01-22T04:46:42+00:00
{"pretty_name": "Evaluation run of inswave/AISquare-Instruct-llama2-koen-13b-v0.9.24", "dataset_summary": "Dataset automatically created during the evaluation run of model [inswave/AISquare-Instruct-llama2-koen-13b-v0.9.24](https://huggingface.co/inswave/AISquare-Instruct-llama2-koen-13b-v0.9.24) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_inswave__AISquare-Instruct-llama2-koen-13b-v0.9.24\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-22T04:44:53.381027](https://huggingface.co/datasets/open-llm-leaderboard/details_inswave__AISquare-Instruct-llama2-koen-13b-v0.9.24/blob/main/results_2024-01-22T04-44-53.381027.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.5189240030169358,\n \"acc_stderr\": 0.03417423514779615,\n \"acc_norm\": 0.5233187157188728,\n \"acc_norm_stderr\": 0.03491752755385364,\n \"mc1\": 0.3574051407588739,\n \"mc1_stderr\": 0.016776599676729405,\n \"mc2\": 0.530042963383804,\n \"mc2_stderr\": 0.014928626205495087\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.5307167235494881,\n \"acc_stderr\": 0.014583792546304038,\n \"acc_norm\": 0.5563139931740614,\n \"acc_norm_stderr\": 0.014518421825670452\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6161123282214698,\n \"acc_stderr\": 0.004853371646239246,\n \"acc_norm\": 0.813483369846644,\n \"acc_norm_stderr\": 0.0038872693686016107\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.32,\n \"acc_stderr\": 0.046882617226215034,\n \"acc_norm\": 0.32,\n \"acc_norm_stderr\": 0.046882617226215034\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.4888888888888889,\n \"acc_stderr\": 0.04318275491977976,\n \"acc_norm\": 0.4888888888888889,\n \"acc_norm_stderr\": 0.04318275491977976\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.5328947368421053,\n \"acc_stderr\": 0.040601270352363966,\n \"acc_norm\": 0.5328947368421053,\n \"acc_norm_stderr\": 0.040601270352363966\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.47,\n \"acc_stderr\": 0.05016135580465919,\n \"acc_norm\": 0.47,\n \"acc_norm_stderr\": 0.05016135580465919\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.5584905660377358,\n \"acc_stderr\": 0.030561590426731833,\n \"acc_norm\": 0.5584905660377358,\n \"acc_norm_stderr\": 0.030561590426731833\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.5347222222222222,\n \"acc_stderr\": 0.04171115858181618,\n \"acc_norm\": 0.5347222222222222,\n \"acc_norm_stderr\": 0.04171115858181618\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.35,\n \"acc_stderr\": 0.0479372485441102,\n \"acc_norm\": 0.35,\n \"acc_norm_stderr\": 0.0479372485441102\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.44,\n \"acc_stderr\": 0.04988876515698589,\n \"acc_norm\": 0.44,\n \"acc_norm_stderr\": 0.04988876515698589\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.31,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.5028901734104047,\n \"acc_stderr\": 0.038124005659748335,\n \"acc_norm\": 0.5028901734104047,\n \"acc_norm_stderr\": 0.038124005659748335\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.3137254901960784,\n \"acc_stderr\": 0.04617034827006717,\n \"acc_norm\": 0.3137254901960784,\n \"acc_norm_stderr\": 0.04617034827006717\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.65,\n \"acc_stderr\": 0.0479372485441102,\n \"acc_norm\": 0.65,\n \"acc_norm_stderr\": 0.0479372485441102\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.3659574468085106,\n \"acc_stderr\": 0.0314895582974553,\n \"acc_norm\": 0.3659574468085106,\n \"acc_norm_stderr\": 0.0314895582974553\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.2894736842105263,\n \"acc_stderr\": 0.04266339443159394,\n \"acc_norm\": 0.2894736842105263,\n \"acc_norm_stderr\": 0.04266339443159394\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.503448275862069,\n \"acc_stderr\": 0.04166567577101579,\n \"acc_norm\": 0.503448275862069,\n \"acc_norm_stderr\": 0.04166567577101579\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.32275132275132273,\n \"acc_stderr\": 0.024078943243597016,\n \"acc_norm\": 0.32275132275132273,\n \"acc_norm_stderr\": 0.024078943243597016\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.2857142857142857,\n \"acc_stderr\": 0.040406101782088394,\n \"acc_norm\": 0.2857142857142857,\n \"acc_norm_stderr\": 0.040406101782088394\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.37,\n \"acc_stderr\": 0.048523658709391,\n \"acc_norm\": 0.37,\n \"acc_norm_stderr\": 0.048523658709391\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.5741935483870968,\n \"acc_stderr\": 0.028129112709165904,\n \"acc_norm\": 0.5741935483870968,\n \"acc_norm_stderr\": 0.028129112709165904\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.4187192118226601,\n \"acc_stderr\": 0.034711928605184676,\n \"acc_norm\": 0.4187192118226601,\n \"acc_norm_stderr\": 0.034711928605184676\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.55,\n \"acc_stderr\": 0.05,\n \"acc_norm\": 0.55,\n \"acc_norm_stderr\": 0.05\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.6606060606060606,\n \"acc_stderr\": 0.03697442205031595,\n \"acc_norm\": 0.6606060606060606,\n \"acc_norm_stderr\": 0.03697442205031595\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.6515151515151515,\n \"acc_stderr\": 0.033948539651564025,\n \"acc_norm\": 0.6515151515151515,\n \"acc_norm_stderr\": 0.033948539651564025\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.7823834196891192,\n \"acc_stderr\": 0.029778663037752954,\n \"acc_norm\": 0.7823834196891192,\n \"acc_norm_stderr\": 0.029778663037752954\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.541025641025641,\n \"acc_stderr\": 0.025265525491284295,\n \"acc_norm\": 0.541025641025641,\n \"acc_norm_stderr\": 0.025265525491284295\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.3,\n \"acc_stderr\": 0.027940457136228402,\n \"acc_norm\": 0.3,\n \"acc_norm_stderr\": 0.027940457136228402\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.49159663865546216,\n \"acc_stderr\": 0.03247390276569669,\n \"acc_norm\": 0.49159663865546216,\n \"acc_norm_stderr\": 0.03247390276569669\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.3576158940397351,\n \"acc_stderr\": 0.03913453431177258,\n \"acc_norm\": 0.3576158940397351,\n \"acc_norm_stderr\": 0.03913453431177258\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.689908256880734,\n \"acc_stderr\": 0.019830849684439756,\n \"acc_norm\": 0.689908256880734,\n \"acc_norm_stderr\": 0.019830849684439756\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.37037037037037035,\n \"acc_stderr\": 0.03293377139415191,\n \"acc_norm\": 0.37037037037037035,\n \"acc_norm_stderr\": 0.03293377139415191\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.6715686274509803,\n \"acc_stderr\": 0.03296245110172229,\n \"acc_norm\": 0.6715686274509803,\n \"acc_norm_stderr\": 0.03296245110172229\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.729957805907173,\n \"acc_stderr\": 0.028900721906293426,\n \"acc_norm\": 0.729957805907173,\n \"acc_norm_stderr\": 0.028900721906293426\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.5964125560538116,\n \"acc_stderr\": 0.032928028193303135,\n \"acc_norm\": 0.5964125560538116,\n \"acc_norm_stderr\": 0.032928028193303135\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.5801526717557252,\n \"acc_stderr\": 0.043285772152629715,\n \"acc_norm\": 0.5801526717557252,\n \"acc_norm_stderr\": 0.043285772152629715\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.7024793388429752,\n \"acc_stderr\": 0.04173349148083499,\n \"acc_norm\": 0.7024793388429752,\n \"acc_norm_stderr\": 0.04173349148083499\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.6481481481481481,\n \"acc_stderr\": 0.046166311118017125,\n \"acc_norm\": 0.6481481481481481,\n \"acc_norm_stderr\": 0.046166311118017125\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.5828220858895705,\n \"acc_stderr\": 0.03874102859818082,\n \"acc_norm\": 0.5828220858895705,\n \"acc_norm_stderr\": 0.03874102859818082\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.30357142857142855,\n \"acc_stderr\": 0.04364226155841044,\n \"acc_norm\": 0.30357142857142855,\n \"acc_norm_stderr\": 0.04364226155841044\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.6310679611650486,\n \"acc_stderr\": 0.0477761518115674,\n \"acc_norm\": 0.6310679611650486,\n \"acc_norm_stderr\": 0.0477761518115674\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.717948717948718,\n \"acc_stderr\": 0.029480360549541194,\n \"acc_norm\": 0.717948717948718,\n \"acc_norm_stderr\": 0.029480360549541194\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.51,\n \"acc_stderr\": 0.05024183937956912,\n \"acc_norm\": 0.51,\n \"acc_norm_stderr\": 0.05024183937956912\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.7037037037037037,\n \"acc_stderr\": 0.016328814422102052,\n \"acc_norm\": 0.7037037037037037,\n \"acc_norm_stderr\": 0.016328814422102052\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.615606936416185,\n \"acc_stderr\": 0.02618966696627204,\n \"acc_norm\": 0.615606936416185,\n \"acc_norm_stderr\": 0.02618966696627204\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.24692737430167597,\n \"acc_stderr\": 0.014422292204808835,\n \"acc_norm\": 0.24692737430167597,\n \"acc_norm_stderr\": 0.014422292204808835\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.5522875816993464,\n \"acc_stderr\": 0.028472938478033526,\n \"acc_norm\": 0.5522875816993464,\n \"acc_norm_stderr\": 0.028472938478033526\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.5980707395498392,\n \"acc_stderr\": 0.027846476005930473,\n \"acc_norm\": 0.5980707395498392,\n \"acc_norm_stderr\": 0.027846476005930473\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.6172839506172839,\n \"acc_stderr\": 0.027044538138402605,\n \"acc_norm\": 0.6172839506172839,\n \"acc_norm_stderr\": 0.027044538138402605\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.3971631205673759,\n \"acc_stderr\": 0.029189805673587095,\n \"acc_norm\": 0.3971631205673759,\n \"acc_norm_stderr\": 0.029189805673587095\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.39765319426336376,\n \"acc_stderr\": 0.012499840347460643,\n \"acc_norm\": 0.39765319426336376,\n \"acc_norm_stderr\": 0.012499840347460643\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.40808823529411764,\n \"acc_stderr\": 0.029855261393483924,\n \"acc_norm\": 0.40808823529411764,\n \"acc_norm_stderr\": 0.029855261393483924\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.5375816993464052,\n \"acc_stderr\": 0.020170614974969768,\n \"acc_norm\": 0.5375816993464052,\n \"acc_norm_stderr\": 0.020170614974969768\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6,\n \"acc_stderr\": 0.0469237132203465,\n \"acc_norm\": 0.6,\n \"acc_norm_stderr\": 0.0469237132203465\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.5714285714285714,\n \"acc_stderr\": 0.031680911612338825,\n \"acc_norm\": 0.5714285714285714,\n \"acc_norm_stderr\": 0.031680911612338825\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.6915422885572139,\n \"acc_stderr\": 0.032658195885126966,\n \"acc_norm\": 0.6915422885572139,\n \"acc_norm_stderr\": 0.032658195885126966\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.81,\n \"acc_stderr\": 0.03942772444036624,\n \"acc_norm\": 0.81,\n \"acc_norm_stderr\": 0.03942772444036624\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.39759036144578314,\n \"acc_stderr\": 0.038099730845402184,\n \"acc_norm\": 0.39759036144578314,\n \"acc_norm_stderr\": 0.038099730845402184\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.6900584795321637,\n \"acc_stderr\": 0.035469769593931624,\n \"acc_norm\": 0.6900584795321637,\n \"acc_norm_stderr\": 0.035469769593931624\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.3574051407588739,\n \"mc1_stderr\": 0.016776599676729405,\n \"mc2\": 0.530042963383804,\n \"mc2_stderr\": 0.014928626205495087\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.7695343330702447,\n \"acc_stderr\": 0.01183587216483667\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.23199393479909022,\n \"acc_stderr\": 0.01162687317509241\n }\n}\n```", "repo_url": "https://huggingface.co/inswave/AISquare-Instruct-llama2-koen-13b-v0.9.24", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|arc:challenge|25_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|gsm8k|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hellaswag|10_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T04-44-53.381027.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["**/details_harness|winogrande|5_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-22T04-44-53.381027.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_22T04_44_53.381027", "path": ["results_2024-01-22T04-44-53.381027.parquet"]}, {"split": "latest", "path": ["results_2024-01-22T04-44-53.381027.parquet"]}]}]}
2024-01-22T04:47:02+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of inswave/AISquare-Instruct-llama2-koen-13b-v0.9.24 Dataset automatically created during the evaluation run of model inswave/AISquare-Instruct-llama2-koen-13b-v0.9.24 on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-22T04:44:53.381027(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of inswave/AISquare-Instruct-llama2-koen-13b-v0.9.24\n\n\n\nDataset automatically created during the evaluation run of model inswave/AISquare-Instruct-llama2-koen-13b-v0.9.24 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T04:44:53.381027(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of inswave/AISquare-Instruct-llama2-koen-13b-v0.9.24\n\n\n\nDataset automatically created during the evaluation run of model inswave/AISquare-Instruct-llama2-koen-13b-v0.9.24 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T04:44:53.381027(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
8376f494f02a85d47069d61c351c27d7bbe72451
# Dataset Card for Evaluation run of kimwooglae/AISquare-Instruct-SOLAR-10.7b-v0.5.32 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [kimwooglae/AISquare-Instruct-SOLAR-10.7b-v0.5.32](https://huggingface.co/kimwooglae/AISquare-Instruct-SOLAR-10.7b-v0.5.32) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_kimwooglae__AISquare-Instruct-SOLAR-10.7b-v0.5.32", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-22T04:57:39.972792](https://huggingface.co/datasets/open-llm-leaderboard/details_kimwooglae__AISquare-Instruct-SOLAR-10.7b-v0.5.32/blob/main/results_2024-01-22T04-57-39.972792.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.626011070759908, "acc_stderr": 0.03257825702529057, "acc_norm": 0.6346917759501802, "acc_norm_stderr": 0.033311769083313715, "mc1": 0.36107711138310894, "mc1_stderr": 0.016814312844836886, "mc2": 0.5118901360350582, "mc2_stderr": 0.015028312827746176 }, "harness|arc:challenge|25": { "acc": 0.5742320819112628, "acc_stderr": 0.014449464278868809, "acc_norm": 0.6186006825938567, "acc_norm_stderr": 0.014194389086685247 }, "harness|hellaswag|10": { "acc": 0.6520613423620792, "acc_stderr": 0.004753429806645434, "acc_norm": 0.8466440948018323, "acc_norm_stderr": 0.0035959381241662137 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.36, "acc_stderr": 0.04824181513244218, "acc_norm": 0.36, "acc_norm_stderr": 0.04824181513244218 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6, "acc_stderr": 0.042320736951515885, "acc_norm": 0.6, "acc_norm_stderr": 0.042320736951515885 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.6973684210526315, "acc_stderr": 0.03738520676119669, "acc_norm": 0.6973684210526315, "acc_norm_stderr": 0.03738520676119669 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.67, "acc_stderr": 0.047258156262526066, "acc_norm": 0.67, "acc_norm_stderr": 0.047258156262526066 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.7018867924528301, "acc_stderr": 0.02815283794249386, "acc_norm": 0.7018867924528301, "acc_norm_stderr": 0.02815283794249386 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.7222222222222222, "acc_stderr": 0.037455547914624555, "acc_norm": 0.7222222222222222, "acc_norm_stderr": 0.037455547914624555 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.46, "acc_stderr": 0.05009082659620333, "acc_norm": 0.46, "acc_norm_stderr": 0.05009082659620333 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.54, "acc_stderr": 0.05009082659620332, "acc_norm": 0.54, "acc_norm_stderr": 0.05009082659620332 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.39, "acc_stderr": 0.04902071300001975, "acc_norm": 0.39, "acc_norm_stderr": 0.04902071300001975 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6647398843930635, "acc_stderr": 0.03599586301247077, "acc_norm": 0.6647398843930635, "acc_norm_stderr": 0.03599586301247077 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.4019607843137255, "acc_stderr": 0.04878608714466996, "acc_norm": 0.4019607843137255, "acc_norm_stderr": 0.04878608714466996 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.71, "acc_stderr": 0.04560480215720685, "acc_norm": 0.71, "acc_norm_stderr": 0.04560480215720685 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5404255319148936, "acc_stderr": 0.032579014820998356, "acc_norm": 0.5404255319148936, "acc_norm_stderr": 0.032579014820998356 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.4473684210526316, "acc_stderr": 0.04677473004491199, "acc_norm": 0.4473684210526316, "acc_norm_stderr": 0.04677473004491199 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.5103448275862069, "acc_stderr": 0.04165774775728763, "acc_norm": 0.5103448275862069, "acc_norm_stderr": 0.04165774775728763 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.4312169312169312, "acc_stderr": 0.0255064816981382, "acc_norm": 0.4312169312169312, "acc_norm_stderr": 0.0255064816981382 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.40476190476190477, "acc_stderr": 0.04390259265377562, "acc_norm": 0.40476190476190477, "acc_norm_stderr": 0.04390259265377562 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.38, "acc_stderr": 0.04878317312145632, "acc_norm": 0.38, "acc_norm_stderr": 0.04878317312145632 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.7741935483870968, "acc_stderr": 0.023785577884181015, "acc_norm": 0.7741935483870968, "acc_norm_stderr": 0.023785577884181015 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.49261083743842365, "acc_stderr": 0.03517603540361008, "acc_norm": 0.49261083743842365, "acc_norm_stderr": 0.03517603540361008 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.69, "acc_stderr": 0.04648231987117316, "acc_norm": 0.69, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.8, "acc_stderr": 0.03123475237772117, "acc_norm": 0.8, "acc_norm_stderr": 0.03123475237772117 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.8333333333333334, "acc_stderr": 0.026552207828215293, "acc_norm": 0.8333333333333334, "acc_norm_stderr": 0.026552207828215293 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.8860103626943006, "acc_stderr": 0.022935144053919426, "acc_norm": 0.8860103626943006, "acc_norm_stderr": 0.022935144053919426 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.6205128205128205, "acc_stderr": 0.02460362692409742, "acc_norm": 0.6205128205128205, "acc_norm_stderr": 0.02460362692409742 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.337037037037037, "acc_stderr": 0.028820884666253255, "acc_norm": 0.337037037037037, "acc_norm_stderr": 0.028820884666253255 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6218487394957983, "acc_stderr": 0.031499305777849054, "acc_norm": 0.6218487394957983, "acc_norm_stderr": 0.031499305777849054 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.37748344370860926, "acc_stderr": 0.0395802723112157, "acc_norm": 0.37748344370860926, "acc_norm_stderr": 0.0395802723112157 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8275229357798165, "acc_stderr": 0.01619780795684803, "acc_norm": 0.8275229357798165, "acc_norm_stderr": 0.01619780795684803 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.5370370370370371, "acc_stderr": 0.03400603625538271, "acc_norm": 0.5370370370370371, "acc_norm_stderr": 0.03400603625538271 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.8284313725490197, "acc_stderr": 0.026460569561240644, "acc_norm": 0.8284313725490197, "acc_norm_stderr": 0.026460569561240644 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.8481012658227848, "acc_stderr": 0.02336387809663245, "acc_norm": 0.8481012658227848, "acc_norm_stderr": 0.02336387809663245 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6771300448430493, "acc_stderr": 0.031381476375754995, "acc_norm": 0.6771300448430493, "acc_norm_stderr": 0.031381476375754995 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.6641221374045801, "acc_stderr": 0.04142313771996665, "acc_norm": 0.6641221374045801, "acc_norm_stderr": 0.04142313771996665 }, "harness|hendrycksTest-international_law|5": { "acc": 0.8181818181818182, "acc_stderr": 0.03520893951097654, "acc_norm": 0.8181818181818182, "acc_norm_stderr": 0.03520893951097654 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.7592592592592593, "acc_stderr": 0.04133119440243839, "acc_norm": 0.7592592592592593, "acc_norm_stderr": 0.04133119440243839 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7116564417177914, "acc_stderr": 0.035590395316173425, "acc_norm": 0.7116564417177914, "acc_norm_stderr": 0.035590395316173425 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.49107142857142855, "acc_stderr": 0.04745033255489123, "acc_norm": 0.49107142857142855, "acc_norm_stderr": 0.04745033255489123 }, "harness|hendrycksTest-management|5": { "acc": 0.7669902912621359, "acc_stderr": 0.04185832598928315, "acc_norm": 0.7669902912621359, "acc_norm_stderr": 0.04185832598928315 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8675213675213675, "acc_stderr": 0.02220930907316562, "acc_norm": 0.8675213675213675, "acc_norm_stderr": 0.02220930907316562 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.72, "acc_stderr": 0.04512608598542128, "acc_norm": 0.72, "acc_norm_stderr": 0.04512608598542128 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.822477650063857, "acc_stderr": 0.013664230995834834, "acc_norm": 0.822477650063857, "acc_norm_stderr": 0.013664230995834834 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.653179190751445, "acc_stderr": 0.025624723994030454, "acc_norm": 0.653179190751445, "acc_norm_stderr": 0.025624723994030454 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.30837988826815643, "acc_stderr": 0.015445716910998874, "acc_norm": 0.30837988826815643, "acc_norm_stderr": 0.015445716910998874 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.6797385620915033, "acc_stderr": 0.026716118380156837, "acc_norm": 0.6797385620915033, "acc_norm_stderr": 0.026716118380156837 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.6688102893890675, "acc_stderr": 0.026730620728004903, "acc_norm": 0.6688102893890675, "acc_norm_stderr": 0.026730620728004903 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.7407407407407407, "acc_stderr": 0.024383665531035457, "acc_norm": 0.7407407407407407, "acc_norm_stderr": 0.024383665531035457 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.4858156028368794, "acc_stderr": 0.02981549448368206, "acc_norm": 0.4858156028368794, "acc_norm_stderr": 0.02981549448368206 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.48370273794002605, "acc_stderr": 0.012763450734699812, "acc_norm": 0.48370273794002605, "acc_norm_stderr": 0.012763450734699812 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.6801470588235294, "acc_stderr": 0.02833295951403121, "acc_norm": 0.6801470588235294, "acc_norm_stderr": 0.02833295951403121 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6568627450980392, "acc_stderr": 0.01920660684882537, "acc_norm": 0.6568627450980392, "acc_norm_stderr": 0.01920660684882537 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6454545454545455, "acc_stderr": 0.04582004841505417, "acc_norm": 0.6454545454545455, "acc_norm_stderr": 0.04582004841505417 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.6448979591836734, "acc_stderr": 0.030635655150387638, "acc_norm": 0.6448979591836734, "acc_norm_stderr": 0.030635655150387638 }, "harness|hendrycksTest-sociology|5": { "acc": 0.8059701492537313, "acc_stderr": 0.027962677604768914, "acc_norm": 0.8059701492537313, "acc_norm_stderr": 0.027962677604768914 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.81, "acc_stderr": 0.039427724440366255, "acc_norm": 0.81, "acc_norm_stderr": 0.039427724440366255 }, "harness|hendrycksTest-virology|5": { "acc": 0.5060240963855421, "acc_stderr": 0.03892212195333047, "acc_norm": 0.5060240963855421, "acc_norm_stderr": 0.03892212195333047 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8070175438596491, "acc_stderr": 0.030267457554898458, "acc_norm": 0.8070175438596491, "acc_norm_stderr": 0.030267457554898458 }, "harness|truthfulqa:mc|0": { "mc1": 0.36107711138310894, "mc1_stderr": 0.016814312844836886, "mc2": 0.5118901360350582, "mc2_stderr": 0.015028312827746176 }, "harness|winogrande|5": { "acc": 0.8279400157853196, "acc_stderr": 0.010607731615247005 }, "harness|gsm8k|5": { "acc": 0.1508718726307809, "acc_stderr": 0.009859004137305687 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_kimwooglae__AISquare-Instruct-SOLAR-10.7b-v0.5.32
[ "region:us" ]
2024-01-22T05:00:03+00:00
{"pretty_name": "Evaluation run of kimwooglae/AISquare-Instruct-SOLAR-10.7b-v0.5.32", "dataset_summary": "Dataset automatically created during the evaluation run of model [kimwooglae/AISquare-Instruct-SOLAR-10.7b-v0.5.32](https://huggingface.co/kimwooglae/AISquare-Instruct-SOLAR-10.7b-v0.5.32) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_kimwooglae__AISquare-Instruct-SOLAR-10.7b-v0.5.32\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-22T04:57:39.972792](https://huggingface.co/datasets/open-llm-leaderboard/details_kimwooglae__AISquare-Instruct-SOLAR-10.7b-v0.5.32/blob/main/results_2024-01-22T04-57-39.972792.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.626011070759908,\n \"acc_stderr\": 0.03257825702529057,\n \"acc_norm\": 0.6346917759501802,\n \"acc_norm_stderr\": 0.033311769083313715,\n \"mc1\": 0.36107711138310894,\n \"mc1_stderr\": 0.016814312844836886,\n \"mc2\": 0.5118901360350582,\n \"mc2_stderr\": 0.015028312827746176\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.5742320819112628,\n \"acc_stderr\": 0.014449464278868809,\n \"acc_norm\": 0.6186006825938567,\n \"acc_norm_stderr\": 0.014194389086685247\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6520613423620792,\n \"acc_stderr\": 0.004753429806645434,\n \"acc_norm\": 0.8466440948018323,\n \"acc_norm_stderr\": 0.0035959381241662137\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.36,\n \"acc_stderr\": 0.04824181513244218,\n \"acc_norm\": 0.36,\n \"acc_norm_stderr\": 0.04824181513244218\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6,\n \"acc_stderr\": 0.042320736951515885,\n \"acc_norm\": 0.6,\n \"acc_norm_stderr\": 0.042320736951515885\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.6973684210526315,\n \"acc_stderr\": 0.03738520676119669,\n \"acc_norm\": 0.6973684210526315,\n \"acc_norm_stderr\": 0.03738520676119669\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.67,\n \"acc_stderr\": 0.047258156262526066,\n \"acc_norm\": 0.67,\n \"acc_norm_stderr\": 0.047258156262526066\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.7018867924528301,\n \"acc_stderr\": 0.02815283794249386,\n \"acc_norm\": 0.7018867924528301,\n \"acc_norm_stderr\": 0.02815283794249386\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7222222222222222,\n \"acc_stderr\": 0.037455547914624555,\n \"acc_norm\": 0.7222222222222222,\n \"acc_norm_stderr\": 0.037455547914624555\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.46,\n \"acc_stderr\": 0.05009082659620333,\n \"acc_norm\": 0.46,\n \"acc_norm_stderr\": 0.05009082659620333\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.54,\n \"acc_stderr\": 0.05009082659620332,\n \"acc_norm\": 0.54,\n \"acc_norm_stderr\": 0.05009082659620332\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.39,\n \"acc_stderr\": 0.04902071300001975,\n \"acc_norm\": 0.39,\n \"acc_norm_stderr\": 0.04902071300001975\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6647398843930635,\n \"acc_stderr\": 0.03599586301247077,\n \"acc_norm\": 0.6647398843930635,\n \"acc_norm_stderr\": 0.03599586301247077\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.4019607843137255,\n \"acc_stderr\": 0.04878608714466996,\n \"acc_norm\": 0.4019607843137255,\n \"acc_norm_stderr\": 0.04878608714466996\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.71,\n \"acc_stderr\": 0.04560480215720685,\n \"acc_norm\": 0.71,\n \"acc_norm_stderr\": 0.04560480215720685\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5404255319148936,\n \"acc_stderr\": 0.032579014820998356,\n \"acc_norm\": 0.5404255319148936,\n \"acc_norm_stderr\": 0.032579014820998356\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.4473684210526316,\n \"acc_stderr\": 0.04677473004491199,\n \"acc_norm\": 0.4473684210526316,\n \"acc_norm_stderr\": 0.04677473004491199\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5103448275862069,\n \"acc_stderr\": 0.04165774775728763,\n \"acc_norm\": 0.5103448275862069,\n \"acc_norm_stderr\": 0.04165774775728763\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.4312169312169312,\n \"acc_stderr\": 0.0255064816981382,\n \"acc_norm\": 0.4312169312169312,\n \"acc_norm_stderr\": 0.0255064816981382\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.40476190476190477,\n \"acc_stderr\": 0.04390259265377562,\n \"acc_norm\": 0.40476190476190477,\n \"acc_norm_stderr\": 0.04390259265377562\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.38,\n \"acc_stderr\": 0.04878317312145632,\n \"acc_norm\": 0.38,\n \"acc_norm_stderr\": 0.04878317312145632\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7741935483870968,\n \"acc_stderr\": 0.023785577884181015,\n \"acc_norm\": 0.7741935483870968,\n \"acc_norm_stderr\": 0.023785577884181015\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.49261083743842365,\n \"acc_stderr\": 0.03517603540361008,\n \"acc_norm\": 0.49261083743842365,\n \"acc_norm_stderr\": 0.03517603540361008\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.69,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.69,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.8,\n \"acc_stderr\": 0.03123475237772117,\n \"acc_norm\": 0.8,\n \"acc_norm_stderr\": 0.03123475237772117\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.8333333333333334,\n \"acc_stderr\": 0.026552207828215293,\n \"acc_norm\": 0.8333333333333334,\n \"acc_norm_stderr\": 0.026552207828215293\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8860103626943006,\n \"acc_stderr\": 0.022935144053919426,\n \"acc_norm\": 0.8860103626943006,\n \"acc_norm_stderr\": 0.022935144053919426\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6205128205128205,\n \"acc_stderr\": 0.02460362692409742,\n \"acc_norm\": 0.6205128205128205,\n \"acc_norm_stderr\": 0.02460362692409742\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.337037037037037,\n \"acc_stderr\": 0.028820884666253255,\n \"acc_norm\": 0.337037037037037,\n \"acc_norm_stderr\": 0.028820884666253255\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6218487394957983,\n \"acc_stderr\": 0.031499305777849054,\n \"acc_norm\": 0.6218487394957983,\n \"acc_norm_stderr\": 0.031499305777849054\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.37748344370860926,\n \"acc_stderr\": 0.0395802723112157,\n \"acc_norm\": 0.37748344370860926,\n \"acc_norm_stderr\": 0.0395802723112157\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8275229357798165,\n \"acc_stderr\": 0.01619780795684803,\n \"acc_norm\": 0.8275229357798165,\n \"acc_norm_stderr\": 0.01619780795684803\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.5370370370370371,\n \"acc_stderr\": 0.03400603625538271,\n \"acc_norm\": 0.5370370370370371,\n \"acc_norm_stderr\": 0.03400603625538271\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.8284313725490197,\n \"acc_stderr\": 0.026460569561240644,\n \"acc_norm\": 0.8284313725490197,\n \"acc_norm_stderr\": 0.026460569561240644\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.8481012658227848,\n \"acc_stderr\": 0.02336387809663245,\n \"acc_norm\": 0.8481012658227848,\n \"acc_norm_stderr\": 0.02336387809663245\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6771300448430493,\n \"acc_stderr\": 0.031381476375754995,\n \"acc_norm\": 0.6771300448430493,\n \"acc_norm_stderr\": 0.031381476375754995\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.6641221374045801,\n \"acc_stderr\": 0.04142313771996665,\n \"acc_norm\": 0.6641221374045801,\n \"acc_norm_stderr\": 0.04142313771996665\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8181818181818182,\n \"acc_stderr\": 0.03520893951097654,\n \"acc_norm\": 0.8181818181818182,\n \"acc_norm_stderr\": 0.03520893951097654\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7592592592592593,\n \"acc_stderr\": 0.04133119440243839,\n \"acc_norm\": 0.7592592592592593,\n \"acc_norm_stderr\": 0.04133119440243839\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7116564417177914,\n \"acc_stderr\": 0.035590395316173425,\n \"acc_norm\": 0.7116564417177914,\n \"acc_norm_stderr\": 0.035590395316173425\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.49107142857142855,\n \"acc_stderr\": 0.04745033255489123,\n \"acc_norm\": 0.49107142857142855,\n \"acc_norm_stderr\": 0.04745033255489123\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7669902912621359,\n \"acc_stderr\": 0.04185832598928315,\n \"acc_norm\": 0.7669902912621359,\n \"acc_norm_stderr\": 0.04185832598928315\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8675213675213675,\n \"acc_stderr\": 0.02220930907316562,\n \"acc_norm\": 0.8675213675213675,\n \"acc_norm_stderr\": 0.02220930907316562\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.72,\n \"acc_stderr\": 0.04512608598542128,\n \"acc_norm\": 0.72,\n \"acc_norm_stderr\": 0.04512608598542128\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.822477650063857,\n \"acc_stderr\": 0.013664230995834834,\n \"acc_norm\": 0.822477650063857,\n \"acc_norm_stderr\": 0.013664230995834834\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.653179190751445,\n \"acc_stderr\": 0.025624723994030454,\n \"acc_norm\": 0.653179190751445,\n \"acc_norm_stderr\": 0.025624723994030454\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.30837988826815643,\n \"acc_stderr\": 0.015445716910998874,\n \"acc_norm\": 0.30837988826815643,\n \"acc_norm_stderr\": 0.015445716910998874\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.6797385620915033,\n \"acc_stderr\": 0.026716118380156837,\n \"acc_norm\": 0.6797385620915033,\n \"acc_norm_stderr\": 0.026716118380156837\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.6688102893890675,\n \"acc_stderr\": 0.026730620728004903,\n \"acc_norm\": 0.6688102893890675,\n \"acc_norm_stderr\": 0.026730620728004903\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.7407407407407407,\n \"acc_stderr\": 0.024383665531035457,\n \"acc_norm\": 0.7407407407407407,\n \"acc_norm_stderr\": 0.024383665531035457\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.4858156028368794,\n \"acc_stderr\": 0.02981549448368206,\n \"acc_norm\": 0.4858156028368794,\n \"acc_norm_stderr\": 0.02981549448368206\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.48370273794002605,\n \"acc_stderr\": 0.012763450734699812,\n \"acc_norm\": 0.48370273794002605,\n \"acc_norm_stderr\": 0.012763450734699812\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6801470588235294,\n \"acc_stderr\": 0.02833295951403121,\n \"acc_norm\": 0.6801470588235294,\n \"acc_norm_stderr\": 0.02833295951403121\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6568627450980392,\n \"acc_stderr\": 0.01920660684882537,\n \"acc_norm\": 0.6568627450980392,\n \"acc_norm_stderr\": 0.01920660684882537\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6454545454545455,\n \"acc_stderr\": 0.04582004841505417,\n \"acc_norm\": 0.6454545454545455,\n \"acc_norm_stderr\": 0.04582004841505417\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.6448979591836734,\n \"acc_stderr\": 0.030635655150387638,\n \"acc_norm\": 0.6448979591836734,\n \"acc_norm_stderr\": 0.030635655150387638\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8059701492537313,\n \"acc_stderr\": 0.027962677604768914,\n \"acc_norm\": 0.8059701492537313,\n \"acc_norm_stderr\": 0.027962677604768914\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.81,\n \"acc_stderr\": 0.039427724440366255,\n \"acc_norm\": 0.81,\n \"acc_norm_stderr\": 0.039427724440366255\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5060240963855421,\n \"acc_stderr\": 0.03892212195333047,\n \"acc_norm\": 0.5060240963855421,\n \"acc_norm_stderr\": 0.03892212195333047\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8070175438596491,\n \"acc_stderr\": 0.030267457554898458,\n \"acc_norm\": 0.8070175438596491,\n \"acc_norm_stderr\": 0.030267457554898458\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.36107711138310894,\n \"mc1_stderr\": 0.016814312844836886,\n \"mc2\": 0.5118901360350582,\n \"mc2_stderr\": 0.015028312827746176\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.8279400157853196,\n \"acc_stderr\": 0.010607731615247005\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.1508718726307809,\n \"acc_stderr\": 0.009859004137305687\n }\n}\n```", "repo_url": "https://huggingface.co/kimwooglae/AISquare-Instruct-SOLAR-10.7b-v0.5.32", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|arc:challenge|25_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|gsm8k|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hellaswag|10_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T04-57-39.972792.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["**/details_harness|winogrande|5_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-22T04-57-39.972792.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_22T04_57_39.972792", "path": ["results_2024-01-22T04-57-39.972792.parquet"]}, {"split": "latest", "path": ["results_2024-01-22T04-57-39.972792.parquet"]}]}]}
2024-01-22T05:00:29+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of kimwooglae/AISquare-Instruct-SOLAR-10.7b-v0.5.32 Dataset automatically created during the evaluation run of model kimwooglae/AISquare-Instruct-SOLAR-10.7b-v0.5.32 on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-22T04:57:39.972792(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of kimwooglae/AISquare-Instruct-SOLAR-10.7b-v0.5.32\n\n\n\nDataset automatically created during the evaluation run of model kimwooglae/AISquare-Instruct-SOLAR-10.7b-v0.5.32 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T04:57:39.972792(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of kimwooglae/AISquare-Instruct-SOLAR-10.7b-v0.5.32\n\n\n\nDataset automatically created during the evaluation run of model kimwooglae/AISquare-Instruct-SOLAR-10.7b-v0.5.32 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T04:57:39.972792(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
98b6c399e15088041c7a4bb0efc861c762a77a05
This dataset was generated by reformatting [`coref-data/phrase_detectives_raw`](https://huggingface.co/datasets/coref-data/phrase_detectives_raw) into the indiscrim coreference format. See that repo for dataset details. See [ianporada/coref-data](https://github.com/ianporada/coref-data) for additional conversion details and the conversion script. Please create an issue in the repo above or in this dataset repo for any questions.
coref-data/phrase_detectives_indiscrim
[ "region:us" ]
2024-01-22T05:09:50+00:00
{"dataset_info": {"features": [{"name": "sentences", "list": [{"name": "id", "dtype": "int64"}, {"name": "speaker", "dtype": "null"}, {"name": "text", "dtype": "string"}, {"name": "tokens", "list": [{"name": "id", "dtype": "int64"}, {"name": "text", "dtype": "string"}]}]}, {"name": "coref_chains", "sequence": {"sequence": {"sequence": "int64"}}}, {"name": "id", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "genre", "dtype": "string"}, {"name": "meta_data", "struct": [{"name": "comment", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 43394172.38513514, "num_examples": 695}, {"name": "validation", "num_bytes": 2809694.614864865, "num_examples": 45}, {"name": "test", "num_bytes": 847618, "num_examples": 45}], "download_size": 13119886, "dataset_size": 47051485.0}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}, {"split": "test", "path": "data/test-*"}]}]}
2024-01-22T05:09:53+00:00
[]
[]
TAGS #region-us
This dataset was generated by reformatting 'coref-data/phrase_detectives_raw' into the indiscrim coreference format. See that repo for dataset details. See ianporada/coref-data for additional conversion details and the conversion script. Please create an issue in the repo above or in this dataset repo for any questions.
[]
[ "TAGS\n#region-us \n" ]
1f1f6cfa167165944ee5f388e7c6ef412406c052
This dataset was generated by reformatting [`coref-data/korean_ecmt_raw`](https://huggingface.co/datasets/coref-data/korean_ecmt_raw) into the indiscrim coreference format. See that repo for dataset details. See [ianporada/coref-data](https://github.com/ianporada/coref-data) for additional conversion details and the conversion script. Please create an issue in the repo above or in this dataset repo for any questions.
coref-data/korean_ecmt_indiscrim
[ "region:us" ]
2024-01-22T05:20:21+00:00
{"dataset_info": {"features": [{"name": "sentences", "list": [{"name": "id", "dtype": "int64"}, {"name": "speaker", "dtype": "null"}, {"name": "text", "dtype": "string"}, {"name": "tokens", "list": [{"name": "id", "dtype": "int64"}, {"name": "lemma", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "xpos", "dtype": "string"}]}]}, {"name": "coref_chains", "sequence": {"sequence": {"sequence": "int64"}}}, {"name": "id", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "genre", "dtype": "string"}, {"name": "meta_data", "struct": [{"name": "comment", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 36047013, "num_examples": 1345}, {"name": "validation", "num_bytes": 3639179, "num_examples": 135}, {"name": "test", "num_bytes": 3703845, "num_examples": 207}], "download_size": 11763612, "dataset_size": 43390037}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}, {"split": "test", "path": "data/test-*"}]}]}
2024-01-22T05:21:37+00:00
[]
[]
TAGS #region-us
This dataset was generated by reformatting 'coref-data/korean_ecmt_raw' into the indiscrim coreference format. See that repo for dataset details. See ianporada/coref-data for additional conversion details and the conversion script. Please create an issue in the repo above or in this dataset repo for any questions.
[]
[ "TAGS\n#region-us \n" ]
118b64c21ee3e807b46c0ec3f23022f51d65b7c0
# Dataset Card for Evaluation run of LordNoah/Alpaca-tuned-gpt2 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [LordNoah/Alpaca-tuned-gpt2](https://huggingface.co/LordNoah/Alpaca-tuned-gpt2) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_LordNoah__Alpaca-tuned-gpt2", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-22T05:37:05.003524](https://huggingface.co/datasets/open-llm-leaderboard/details_LordNoah__Alpaca-tuned-gpt2/blob/main/results_2024-01-22T05-37-05.003524.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.27365684756436603, "acc_stderr": 0.03148180517103422, "acc_norm": 0.27504156315130057, "acc_norm_stderr": 0.0322748672143349, "mc1": 0.22276621787025705, "mc1_stderr": 0.014566506961396736, "mc2": 0.3764778441319414, "mc2_stderr": 0.014234316118661302 }, "harness|arc:challenge|25": { "acc": 0.25597269624573377, "acc_stderr": 0.012753013241244518, "acc_norm": 0.26535836177474403, "acc_norm_stderr": 0.012902554762313964 }, "harness|hellaswag|10": { "acc": 0.36367257518422624, "acc_stderr": 0.004800728138792374, "acc_norm": 0.4479187412865963, "acc_norm_stderr": 0.004962638446395992 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.25, "acc_stderr": 0.04351941398892446, "acc_norm": 0.25, "acc_norm_stderr": 0.04351941398892446 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.2222222222222222, "acc_stderr": 0.035914440841969694, "acc_norm": 0.2222222222222222, "acc_norm_stderr": 0.035914440841969694 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.2894736842105263, "acc_stderr": 0.036906779861372814, "acc_norm": 0.2894736842105263, "acc_norm_stderr": 0.036906779861372814 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.24, "acc_stderr": 0.042923469599092816, "acc_norm": 0.24, "acc_norm_stderr": 0.042923469599092816 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.33584905660377357, "acc_stderr": 0.029067220146644823, "acc_norm": 0.33584905660377357, "acc_norm_stderr": 0.029067220146644823 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.2569444444444444, "acc_stderr": 0.03653946969442099, "acc_norm": 0.2569444444444444, "acc_norm_stderr": 0.03653946969442099 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.19, "acc_stderr": 0.03942772444036625, "acc_norm": 0.19, "acc_norm_stderr": 0.03942772444036625 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.36, "acc_stderr": 0.04824181513244218, "acc_norm": 0.36, "acc_norm_stderr": 0.04824181513244218 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.33, "acc_stderr": 0.04725815626252604, "acc_norm": 0.33, "acc_norm_stderr": 0.04725815626252604 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.26011560693641617, "acc_stderr": 0.033450369167889925, "acc_norm": 0.26011560693641617, "acc_norm_stderr": 0.033450369167889925 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.24509803921568626, "acc_stderr": 0.042801058373643966, "acc_norm": 0.24509803921568626, "acc_norm_stderr": 0.042801058373643966 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.28, "acc_stderr": 0.04512608598542129, "acc_norm": 0.28, "acc_norm_stderr": 0.04512608598542129 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.28085106382978725, "acc_stderr": 0.029379170464124818, "acc_norm": 0.28085106382978725, "acc_norm_stderr": 0.029379170464124818 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.22807017543859648, "acc_stderr": 0.03947152782669415, "acc_norm": 0.22807017543859648, "acc_norm_stderr": 0.03947152782669415 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.3310344827586207, "acc_stderr": 0.03921545312467122, "acc_norm": 0.3310344827586207, "acc_norm_stderr": 0.03921545312467122 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.2724867724867725, "acc_stderr": 0.022930973071633356, "acc_norm": 0.2724867724867725, "acc_norm_stderr": 0.022930973071633356 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.18253968253968253, "acc_stderr": 0.03455071019102147, "acc_norm": 0.18253968253968253, "acc_norm_stderr": 0.03455071019102147 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.37, "acc_stderr": 0.048523658709391, "acc_norm": 0.37, "acc_norm_stderr": 0.048523658709391 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.26129032258064516, "acc_stderr": 0.024993053397764822, "acc_norm": 0.26129032258064516, "acc_norm_stderr": 0.024993053397764822 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.33497536945812806, "acc_stderr": 0.033208527423483104, "acc_norm": 0.33497536945812806, "acc_norm_stderr": 0.033208527423483104 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.31, "acc_stderr": 0.04648231987117316, "acc_norm": 0.31, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.26666666666666666, "acc_stderr": 0.03453131801885415, "acc_norm": 0.26666666666666666, "acc_norm_stderr": 0.03453131801885415 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.35353535353535354, "acc_stderr": 0.03406086723547153, "acc_norm": 0.35353535353535354, "acc_norm_stderr": 0.03406086723547153 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.31088082901554404, "acc_stderr": 0.033403619062765885, "acc_norm": 0.31088082901554404, "acc_norm_stderr": 0.033403619062765885 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.358974358974359, "acc_stderr": 0.024321738484602357, "acc_norm": 0.358974358974359, "acc_norm_stderr": 0.024321738484602357 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.24814814814814815, "acc_stderr": 0.0263357394040558, "acc_norm": 0.24814814814814815, "acc_norm_stderr": 0.0263357394040558 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.2184873949579832, "acc_stderr": 0.026841514322958948, "acc_norm": 0.2184873949579832, "acc_norm_stderr": 0.026841514322958948 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.271523178807947, "acc_stderr": 0.03631329803969653, "acc_norm": 0.271523178807947, "acc_norm_stderr": 0.03631329803969653 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.3321100917431193, "acc_stderr": 0.020192682985423344, "acc_norm": 0.3321100917431193, "acc_norm_stderr": 0.020192682985423344 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.26851851851851855, "acc_stderr": 0.030225226160012393, "acc_norm": 0.26851851851851855, "acc_norm_stderr": 0.030225226160012393 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.25980392156862747, "acc_stderr": 0.03077855467869326, "acc_norm": 0.25980392156862747, "acc_norm_stderr": 0.03077855467869326 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.270042194092827, "acc_stderr": 0.028900721906293426, "acc_norm": 0.270042194092827, "acc_norm_stderr": 0.028900721906293426 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.10762331838565023, "acc_stderr": 0.020799400082879994, "acc_norm": 0.10762331838565023, "acc_norm_stderr": 0.020799400082879994 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.26717557251908397, "acc_stderr": 0.038808483010823944, "acc_norm": 0.26717557251908397, "acc_norm_stderr": 0.038808483010823944 }, "harness|hendrycksTest-international_law|5": { "acc": 0.33884297520661155, "acc_stderr": 0.043207678075366705, "acc_norm": 0.33884297520661155, "acc_norm_stderr": 0.043207678075366705 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.21296296296296297, "acc_stderr": 0.03957835471980981, "acc_norm": 0.21296296296296297, "acc_norm_stderr": 0.03957835471980981 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.3006134969325153, "acc_stderr": 0.03602511318806771, "acc_norm": 0.3006134969325153, "acc_norm_stderr": 0.03602511318806771 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.25, "acc_stderr": 0.04109974682633932, "acc_norm": 0.25, "acc_norm_stderr": 0.04109974682633932 }, "harness|hendrycksTest-management|5": { "acc": 0.3786407766990291, "acc_stderr": 0.04802694698258972, "acc_norm": 0.3786407766990291, "acc_norm_stderr": 0.04802694698258972 }, "harness|hendrycksTest-marketing|5": { "acc": 0.2606837606837607, "acc_stderr": 0.028760348956523414, "acc_norm": 0.2606837606837607, "acc_norm_stderr": 0.028760348956523414 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.19, "acc_stderr": 0.03942772444036623, "acc_norm": 0.19, "acc_norm_stderr": 0.03942772444036623 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.20434227330779056, "acc_stderr": 0.0144191239809319, "acc_norm": 0.20434227330779056, "acc_norm_stderr": 0.0144191239809319 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.30346820809248554, "acc_stderr": 0.02475241196091721, "acc_norm": 0.30346820809248554, "acc_norm_stderr": 0.02475241196091721 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.2424581005586592, "acc_stderr": 0.014333522059217889, "acc_norm": 0.2424581005586592, "acc_norm_stderr": 0.014333522059217889 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.24836601307189543, "acc_stderr": 0.02473998135511359, "acc_norm": 0.24836601307189543, "acc_norm_stderr": 0.02473998135511359 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.3215434083601286, "acc_stderr": 0.026527724079528872, "acc_norm": 0.3215434083601286, "acc_norm_stderr": 0.026527724079528872 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.25308641975308643, "acc_stderr": 0.024191808600713002, "acc_norm": 0.25308641975308643, "acc_norm_stderr": 0.024191808600713002 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.25886524822695034, "acc_stderr": 0.02612957252718085, "acc_norm": 0.25886524822695034, "acc_norm_stderr": 0.02612957252718085 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.24641460234680573, "acc_stderr": 0.011005971399927221, "acc_norm": 0.24641460234680573, "acc_norm_stderr": 0.011005971399927221 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.2647058823529412, "acc_stderr": 0.026799562024887678, "acc_norm": 0.2647058823529412, "acc_norm_stderr": 0.026799562024887678 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.23202614379084968, "acc_stderr": 0.017077373377857002, "acc_norm": 0.23202614379084968, "acc_norm_stderr": 0.017077373377857002 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.20909090909090908, "acc_stderr": 0.038950910157241364, "acc_norm": 0.20909090909090908, "acc_norm_stderr": 0.038950910157241364 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.32653061224489793, "acc_stderr": 0.030021056238440296, "acc_norm": 0.32653061224489793, "acc_norm_stderr": 0.030021056238440296 }, "harness|hendrycksTest-sociology|5": { "acc": 0.2537313432835821, "acc_stderr": 0.03076944496729601, "acc_norm": 0.2537313432835821, "acc_norm_stderr": 0.03076944496729601 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.32, "acc_stderr": 0.046882617226215034, "acc_norm": 0.32, "acc_norm_stderr": 0.046882617226215034 }, "harness|hendrycksTest-virology|5": { "acc": 0.24096385542168675, "acc_stderr": 0.033293941190735296, "acc_norm": 0.24096385542168675, "acc_norm_stderr": 0.033293941190735296 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.29239766081871343, "acc_stderr": 0.034886477134579215, "acc_norm": 0.29239766081871343, "acc_norm_stderr": 0.034886477134579215 }, "harness|truthfulqa:mc|0": { "mc1": 0.22276621787025705, "mc1_stderr": 0.014566506961396736, "mc2": 0.3764778441319414, "mc2_stderr": 0.014234316118661302 }, "harness|winogrande|5": { "acc": 0.5509076558800315, "acc_stderr": 0.013979459389140839 }, "harness|gsm8k|5": { "acc": 0.008339651250947688, "acc_stderr": 0.0025049422268605213 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_LordNoah__Alpaca-tuned-gpt2
[ "region:us" ]
2024-01-22T05:38:24+00:00
{"pretty_name": "Evaluation run of LordNoah/Alpaca-tuned-gpt2", "dataset_summary": "Dataset automatically created during the evaluation run of model [LordNoah/Alpaca-tuned-gpt2](https://huggingface.co/LordNoah/Alpaca-tuned-gpt2) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_LordNoah__Alpaca-tuned-gpt2\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-22T05:37:05.003524](https://huggingface.co/datasets/open-llm-leaderboard/details_LordNoah__Alpaca-tuned-gpt2/blob/main/results_2024-01-22T05-37-05.003524.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.27365684756436603,\n \"acc_stderr\": 0.03148180517103422,\n \"acc_norm\": 0.27504156315130057,\n \"acc_norm_stderr\": 0.0322748672143349,\n \"mc1\": 0.22276621787025705,\n \"mc1_stderr\": 0.014566506961396736,\n \"mc2\": 0.3764778441319414,\n \"mc2_stderr\": 0.014234316118661302\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.25597269624573377,\n \"acc_stderr\": 0.012753013241244518,\n \"acc_norm\": 0.26535836177474403,\n \"acc_norm_stderr\": 0.012902554762313964\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.36367257518422624,\n \"acc_stderr\": 0.004800728138792374,\n \"acc_norm\": 0.4479187412865963,\n \"acc_norm_stderr\": 0.004962638446395992\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.25,\n \"acc_stderr\": 0.04351941398892446,\n \"acc_norm\": 0.25,\n \"acc_norm_stderr\": 0.04351941398892446\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.2222222222222222,\n \"acc_stderr\": 0.035914440841969694,\n \"acc_norm\": 0.2222222222222222,\n \"acc_norm_stderr\": 0.035914440841969694\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.2894736842105263,\n \"acc_stderr\": 0.036906779861372814,\n \"acc_norm\": 0.2894736842105263,\n \"acc_norm_stderr\": 0.036906779861372814\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.24,\n \"acc_stderr\": 0.042923469599092816,\n \"acc_norm\": 0.24,\n \"acc_norm_stderr\": 0.042923469599092816\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.33584905660377357,\n \"acc_stderr\": 0.029067220146644823,\n \"acc_norm\": 0.33584905660377357,\n \"acc_norm_stderr\": 0.029067220146644823\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.2569444444444444,\n \"acc_stderr\": 0.03653946969442099,\n \"acc_norm\": 0.2569444444444444,\n \"acc_norm_stderr\": 0.03653946969442099\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.19,\n \"acc_stderr\": 0.03942772444036625,\n \"acc_norm\": 0.19,\n \"acc_norm_stderr\": 0.03942772444036625\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.36,\n \"acc_stderr\": 0.04824181513244218,\n \"acc_norm\": 0.36,\n \"acc_norm_stderr\": 0.04824181513244218\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.33,\n \"acc_stderr\": 0.04725815626252604,\n \"acc_norm\": 0.33,\n \"acc_norm_stderr\": 0.04725815626252604\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.26011560693641617,\n \"acc_stderr\": 0.033450369167889925,\n \"acc_norm\": 0.26011560693641617,\n \"acc_norm_stderr\": 0.033450369167889925\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.24509803921568626,\n \"acc_stderr\": 0.042801058373643966,\n \"acc_norm\": 0.24509803921568626,\n \"acc_norm_stderr\": 0.042801058373643966\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.28,\n \"acc_stderr\": 0.04512608598542129,\n \"acc_norm\": 0.28,\n \"acc_norm_stderr\": 0.04512608598542129\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.28085106382978725,\n \"acc_stderr\": 0.029379170464124818,\n \"acc_norm\": 0.28085106382978725,\n \"acc_norm_stderr\": 0.029379170464124818\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.22807017543859648,\n \"acc_stderr\": 0.03947152782669415,\n \"acc_norm\": 0.22807017543859648,\n \"acc_norm_stderr\": 0.03947152782669415\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.3310344827586207,\n \"acc_stderr\": 0.03921545312467122,\n \"acc_norm\": 0.3310344827586207,\n \"acc_norm_stderr\": 0.03921545312467122\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.2724867724867725,\n \"acc_stderr\": 0.022930973071633356,\n \"acc_norm\": 0.2724867724867725,\n \"acc_norm_stderr\": 0.022930973071633356\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.18253968253968253,\n \"acc_stderr\": 0.03455071019102147,\n \"acc_norm\": 0.18253968253968253,\n \"acc_norm_stderr\": 0.03455071019102147\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.37,\n \"acc_stderr\": 0.048523658709391,\n \"acc_norm\": 0.37,\n \"acc_norm_stderr\": 0.048523658709391\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.26129032258064516,\n \"acc_stderr\": 0.024993053397764822,\n \"acc_norm\": 0.26129032258064516,\n \"acc_norm_stderr\": 0.024993053397764822\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.33497536945812806,\n \"acc_stderr\": 0.033208527423483104,\n \"acc_norm\": 0.33497536945812806,\n \"acc_norm_stderr\": 0.033208527423483104\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.31,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.26666666666666666,\n \"acc_stderr\": 0.03453131801885415,\n \"acc_norm\": 0.26666666666666666,\n \"acc_norm_stderr\": 0.03453131801885415\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.35353535353535354,\n \"acc_stderr\": 0.03406086723547153,\n \"acc_norm\": 0.35353535353535354,\n \"acc_norm_stderr\": 0.03406086723547153\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.31088082901554404,\n \"acc_stderr\": 0.033403619062765885,\n \"acc_norm\": 0.31088082901554404,\n \"acc_norm_stderr\": 0.033403619062765885\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.358974358974359,\n \"acc_stderr\": 0.024321738484602357,\n \"acc_norm\": 0.358974358974359,\n \"acc_norm_stderr\": 0.024321738484602357\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.24814814814814815,\n \"acc_stderr\": 0.0263357394040558,\n \"acc_norm\": 0.24814814814814815,\n \"acc_norm_stderr\": 0.0263357394040558\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.2184873949579832,\n \"acc_stderr\": 0.026841514322958948,\n \"acc_norm\": 0.2184873949579832,\n \"acc_norm_stderr\": 0.026841514322958948\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.271523178807947,\n \"acc_stderr\": 0.03631329803969653,\n \"acc_norm\": 0.271523178807947,\n \"acc_norm_stderr\": 0.03631329803969653\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.3321100917431193,\n \"acc_stderr\": 0.020192682985423344,\n \"acc_norm\": 0.3321100917431193,\n \"acc_norm_stderr\": 0.020192682985423344\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.26851851851851855,\n \"acc_stderr\": 0.030225226160012393,\n \"acc_norm\": 0.26851851851851855,\n \"acc_norm_stderr\": 0.030225226160012393\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.25980392156862747,\n \"acc_stderr\": 0.03077855467869326,\n \"acc_norm\": 0.25980392156862747,\n \"acc_norm_stderr\": 0.03077855467869326\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.270042194092827,\n \"acc_stderr\": 0.028900721906293426,\n \"acc_norm\": 0.270042194092827,\n \"acc_norm_stderr\": 0.028900721906293426\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.10762331838565023,\n \"acc_stderr\": 0.020799400082879994,\n \"acc_norm\": 0.10762331838565023,\n \"acc_norm_stderr\": 0.020799400082879994\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.26717557251908397,\n \"acc_stderr\": 0.038808483010823944,\n \"acc_norm\": 0.26717557251908397,\n \"acc_norm_stderr\": 0.038808483010823944\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.33884297520661155,\n \"acc_stderr\": 0.043207678075366705,\n \"acc_norm\": 0.33884297520661155,\n \"acc_norm_stderr\": 0.043207678075366705\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.21296296296296297,\n \"acc_stderr\": 0.03957835471980981,\n \"acc_norm\": 0.21296296296296297,\n \"acc_norm_stderr\": 0.03957835471980981\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.3006134969325153,\n \"acc_stderr\": 0.03602511318806771,\n \"acc_norm\": 0.3006134969325153,\n \"acc_norm_stderr\": 0.03602511318806771\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.25,\n \"acc_stderr\": 0.04109974682633932,\n \"acc_norm\": 0.25,\n \"acc_norm_stderr\": 0.04109974682633932\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.3786407766990291,\n \"acc_stderr\": 0.04802694698258972,\n \"acc_norm\": 0.3786407766990291,\n \"acc_norm_stderr\": 0.04802694698258972\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.2606837606837607,\n \"acc_stderr\": 0.028760348956523414,\n \"acc_norm\": 0.2606837606837607,\n \"acc_norm_stderr\": 0.028760348956523414\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.19,\n \"acc_stderr\": 0.03942772444036623,\n \"acc_norm\": 0.19,\n \"acc_norm_stderr\": 0.03942772444036623\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.20434227330779056,\n \"acc_stderr\": 0.0144191239809319,\n \"acc_norm\": 0.20434227330779056,\n \"acc_norm_stderr\": 0.0144191239809319\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.30346820809248554,\n \"acc_stderr\": 0.02475241196091721,\n \"acc_norm\": 0.30346820809248554,\n \"acc_norm_stderr\": 0.02475241196091721\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.2424581005586592,\n \"acc_stderr\": 0.014333522059217889,\n \"acc_norm\": 0.2424581005586592,\n \"acc_norm_stderr\": 0.014333522059217889\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.24836601307189543,\n \"acc_stderr\": 0.02473998135511359,\n \"acc_norm\": 0.24836601307189543,\n \"acc_norm_stderr\": 0.02473998135511359\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.3215434083601286,\n \"acc_stderr\": 0.026527724079528872,\n \"acc_norm\": 0.3215434083601286,\n \"acc_norm_stderr\": 0.026527724079528872\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.25308641975308643,\n \"acc_stderr\": 0.024191808600713002,\n \"acc_norm\": 0.25308641975308643,\n \"acc_norm_stderr\": 0.024191808600713002\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.25886524822695034,\n \"acc_stderr\": 0.02612957252718085,\n \"acc_norm\": 0.25886524822695034,\n \"acc_norm_stderr\": 0.02612957252718085\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.24641460234680573,\n \"acc_stderr\": 0.011005971399927221,\n \"acc_norm\": 0.24641460234680573,\n \"acc_norm_stderr\": 0.011005971399927221\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.2647058823529412,\n \"acc_stderr\": 0.026799562024887678,\n \"acc_norm\": 0.2647058823529412,\n \"acc_norm_stderr\": 0.026799562024887678\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.23202614379084968,\n \"acc_stderr\": 0.017077373377857002,\n \"acc_norm\": 0.23202614379084968,\n \"acc_norm_stderr\": 0.017077373377857002\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.20909090909090908,\n \"acc_stderr\": 0.038950910157241364,\n \"acc_norm\": 0.20909090909090908,\n \"acc_norm_stderr\": 0.038950910157241364\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.32653061224489793,\n \"acc_stderr\": 0.030021056238440296,\n \"acc_norm\": 0.32653061224489793,\n \"acc_norm_stderr\": 0.030021056238440296\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.2537313432835821,\n \"acc_stderr\": 0.03076944496729601,\n \"acc_norm\": 0.2537313432835821,\n \"acc_norm_stderr\": 0.03076944496729601\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.32,\n \"acc_stderr\": 0.046882617226215034,\n \"acc_norm\": 0.32,\n \"acc_norm_stderr\": 0.046882617226215034\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.24096385542168675,\n \"acc_stderr\": 0.033293941190735296,\n \"acc_norm\": 0.24096385542168675,\n \"acc_norm_stderr\": 0.033293941190735296\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.29239766081871343,\n \"acc_stderr\": 0.034886477134579215,\n \"acc_norm\": 0.29239766081871343,\n \"acc_norm_stderr\": 0.034886477134579215\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.22276621787025705,\n \"mc1_stderr\": 0.014566506961396736,\n \"mc2\": 0.3764778441319414,\n \"mc2_stderr\": 0.014234316118661302\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.5509076558800315,\n \"acc_stderr\": 0.013979459389140839\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.008339651250947688,\n \"acc_stderr\": 0.0025049422268605213\n }\n}\n```", "repo_url": "https://huggingface.co/LordNoah/Alpaca-tuned-gpt2", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|arc:challenge|25_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|gsm8k|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hellaswag|10_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T05-37-05.003524.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["**/details_harness|winogrande|5_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-22T05-37-05.003524.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_22T05_37_05.003524", "path": ["results_2024-01-22T05-37-05.003524.parquet"]}, {"split": "latest", "path": ["results_2024-01-22T05-37-05.003524.parquet"]}]}]}
2024-01-22T05:38:46+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of LordNoah/Alpaca-tuned-gpt2 Dataset automatically created during the evaluation run of model LordNoah/Alpaca-tuned-gpt2 on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-22T05:37:05.003524(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of LordNoah/Alpaca-tuned-gpt2\n\n\n\nDataset automatically created during the evaluation run of model LordNoah/Alpaca-tuned-gpt2 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T05:37:05.003524(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of LordNoah/Alpaca-tuned-gpt2\n\n\n\nDataset automatically created during the evaluation run of model LordNoah/Alpaca-tuned-gpt2 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T05:37:05.003524(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
b974c2242204240c63ed7becc407fb3d9388028d
This dataset was generated by reformatting [`coref-data/mmc_raw`](https://huggingface.co/datasets/coref-data/mmc_raw) into the indiscrim coreference format. See that repo for dataset details. See [ianporada/coref-data](https://github.com/ianporada/coref-data) for additional conversion details and the conversion script. Please create an issue in the repo above or in this dataset repo for any questions.
coref-data/mmc_indiscrim
[ "region:us" ]
2024-01-22T05:59:43+00:00
{"dataset_info": [{"config_name": "mmc_en", "features": [{"name": "sentences", "list": [{"name": "id", "dtype": "int64"}, {"name": "misc", "struct": [{"name": "parse_tree", "dtype": "string"}]}, {"name": "speaker", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "tokens", "list": [{"name": "deprel", "dtype": "string"}, {"name": "end_char", "dtype": "int64"}, {"name": "feats", "dtype": "string"}, {"name": "head", "dtype": "int64"}, {"name": "id", "dtype": "int64"}, {"name": "lemma", "dtype": "string"}, {"name": "misc", "dtype": "string"}, {"name": "start_char", "dtype": "int64"}, {"name": "text", "dtype": "string"}, {"name": "upos", "dtype": "string"}, {"name": "xpos", "dtype": "string"}]}]}, {"name": "coref_chains", "sequence": {"sequence": {"sequence": "int64"}}}, {"name": "id", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "genre", "dtype": "string"}, {"name": "meta_data", "struct": [{"name": "comment", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 32714450, "num_examples": 955}, {"name": "validation", "num_bytes": 4684074, "num_examples": 134}, {"name": "test", "num_bytes": 3576454, "num_examples": 133}], "download_size": 8195117, "dataset_size": 40974978}, {"config_name": "mmc_fa", "features": [{"name": "sentences", "list": [{"name": "id", "dtype": "int64"}, {"name": "speaker", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "tokens", "list": [{"name": "id", "dtype": "int64"}, {"name": "text", "dtype": "string"}]}]}, {"name": "coref_chains", "sequence": {"sequence": {"sequence": "int64"}}}, {"name": "id", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "genre", "dtype": "string"}, {"name": "meta_data", "struct": [{"name": "comment", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 8511917, "num_examples": 950}, {"name": "validation", "num_bytes": 1308706, "num_examples": 134}, {"name": "test", "num_bytes": 959400, "num_examples": 133}], "download_size": 3083246, "dataset_size": 10780023}, {"config_name": "mmc_fa_corrected", "features": [{"name": "sentences", "list": [{"name": "id", "dtype": "int64"}, {"name": "speaker", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "tokens", "list": [{"name": "id", "dtype": "int64"}, {"name": "text", "dtype": "string"}]}]}, {"name": "coref_chains", "sequence": {"sequence": {"sequence": "int64"}}}, {"name": "id", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "genre", "dtype": "string"}, {"name": "meta_data", "struct": [{"name": "comment", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 8511917, "num_examples": 950}, {"name": "validation", "num_bytes": 1308706, "num_examples": 134}, {"name": "test", "num_bytes": 988920, "num_examples": 133}], "download_size": 3086246, "dataset_size": 10809543}, {"config_name": "mmc_zh_corrected", "features": [{"name": "sentences", "list": [{"name": "id", "dtype": "int64"}, {"name": "speaker", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "tokens", "list": [{"name": "id", "dtype": "int64"}, {"name": "text", "dtype": "string"}]}]}, {"name": "coref_chains", "sequence": {"sequence": {"sequence": "int64"}}}, {"name": "id", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "genre", "dtype": "string"}, {"name": "meta_data", "struct": [{"name": "comment", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 8024979, "num_examples": 948}, {"name": "validation", "num_bytes": 1217704, "num_examples": 134}, {"name": "test", "num_bytes": 765302, "num_examples": 133}], "download_size": 2653472, "dataset_size": 10007985}, {"config_name": "mmc_zh_uncorrected", "features": [{"name": "sentences", "list": [{"name": "id", "dtype": "int64"}, {"name": "speaker", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "tokens", "list": [{"name": "id", "dtype": "int64"}, {"name": "text", "dtype": "string"}]}]}, {"name": "coref_chains", "sequence": {"sequence": {"sequence": "int64"}}}, {"name": "id", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "genre", "dtype": "string"}, {"name": "meta_data", "struct": [{"name": "comment", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 8024979, "num_examples": 948}, {"name": "validation", "num_bytes": 1217704, "num_examples": 134}, {"name": "test", "num_bytes": 926344, "num_examples": 133}], "download_size": 2655536, "dataset_size": 10169027}], "configs": [{"config_name": "mmc_en", "data_files": [{"split": "train", "path": "mmc_en/train-*"}, {"split": "validation", "path": "mmc_en/validation-*"}, {"split": "test", "path": "mmc_en/test-*"}]}, {"config_name": "mmc_fa", "data_files": [{"split": "train", "path": "mmc_fa/train-*"}, {"split": "validation", "path": "mmc_fa/validation-*"}, {"split": "test", "path": "mmc_fa/test-*"}]}, {"config_name": "mmc_fa_corrected", "data_files": [{"split": "train", "path": "mmc_fa_corrected/train-*"}, {"split": "validation", "path": "mmc_fa_corrected/validation-*"}, {"split": "test", "path": "mmc_fa_corrected/test-*"}]}, {"config_name": "mmc_zh_corrected", "data_files": [{"split": "train", "path": "mmc_zh_corrected/train-*"}, {"split": "validation", "path": "mmc_zh_corrected/validation-*"}, {"split": "test", "path": "mmc_zh_corrected/test-*"}]}, {"config_name": "mmc_zh_uncorrected", "data_files": [{"split": "train", "path": "mmc_zh_uncorrected/train-*"}, {"split": "validation", "path": "mmc_zh_uncorrected/validation-*"}, {"split": "test", "path": "mmc_zh_uncorrected/test-*"}]}]}
2024-02-13T04:04:52+00:00
[]
[]
TAGS #region-us
This dataset was generated by reformatting 'coref-data/mmc_raw' into the indiscrim coreference format. See that repo for dataset details. See ianporada/coref-data for additional conversion details and the conversion script. Please create an issue in the repo above or in this dataset repo for any questions.
[]
[ "TAGS\n#region-us \n" ]
59e92a9f79d72813c9b6111c5b492ec9c12adfa3
# MMCBench Dataset: Benchmarking Dataset for Multimodal Model Evaluation 🚀 ## Overview The MMCBench Dataset is a curated collection of data designed for the comprehensive evaluation of Large Multimodal Models (LMMs) under common corruption scenarios. This dataset supports the MMCBench framework, focusing on cross-modal interactions involving text, image, and speech. It provides essential data for generative tasks such as text-to-image, image-to-text, text-to-speech, and speech-to-text, enabling robustness and self-consistency assessments of LMMs. ## Dataset Composition 📊 The MMCBench Dataset is structured to facilitate the evaluation across four key generative tasks: - **Text-to-Image:** A collection of text descriptions with their corresponding corrupted versions and associated images. - **Image-to-Text:** A set of images with clean and corrupted captions. - **Text-to-Speech:** Text inputs with their clean and corrupted audio outputs. - **Speech-to-Text:** Audio files with transcriptions before and after audio corruptions. Each subset of the dataset has been meticulously selected and processed to represent challenging scenarios for LMMs. ## Using the Dataset 🛠️ To use the MMCBench Dataset for model evaluation: 1. **Access the Data**: The dataset is hosted on Hugging Face and can be accessed using their dataset library or direct download. 2. **Select the Task**: Choose from text-to-image, image-to-text, text-to-speech, or speech-to-text tasks based on your model's capabilities. 3. **Apply the Benchmark**: Utilize the data for each task to test your model's performance against various corruptions. Follow the [MMCBench](https://github.com/sail-sg/MMCBench/tree/main) framework for a consistent and standardized evaluation. ### Dataset Structure 📁 The dataset is organized into four main directories, each corresponding to one of the generative tasks: - `text2image/`: Contains text inputs and associated images. - `image2text/`: Comprises images and their descriptive captions. - `text2speech/`: Includes text inputs and generated speech outputs. - `speech2text/`: Contains audio files and their transcriptions. ## Contributing to the Dataset 🤝 Contributions to the MMCBench Dataset are welcome. If you have suggestions for additional data or improvements, please reach out through the Hugging Face platform or directly contribute via GitHub. ## License 📜 The MMCBench Dataset is made available under the Apache 2.0 License, ensuring open and ethical use for research and development. ## Acknowledgments and Citations 📚 When using the MMCBench Dataset in your research, please cite it appropriately. We extend our gratitude to all contributors and collaborators who have enriched this dataset, making it a valuable resource for the AI and ML community.
javyduck/MMCBench
[ "region:us" ]
2024-01-22T06:02:41+00:00
{}
2024-01-23T05:55:21+00:00
[]
[]
TAGS #region-us
# MMCBench Dataset: Benchmarking Dataset for Multimodal Model Evaluation ## Overview The MMCBench Dataset is a curated collection of data designed for the comprehensive evaluation of Large Multimodal Models (LMMs) under common corruption scenarios. This dataset supports the MMCBench framework, focusing on cross-modal interactions involving text, image, and speech. It provides essential data for generative tasks such as text-to-image, image-to-text, text-to-speech, and speech-to-text, enabling robustness and self-consistency assessments of LMMs. ## Dataset Composition The MMCBench Dataset is structured to facilitate the evaluation across four key generative tasks: - Text-to-Image: A collection of text descriptions with their corresponding corrupted versions and associated images. - Image-to-Text: A set of images with clean and corrupted captions. - Text-to-Speech: Text inputs with their clean and corrupted audio outputs. - Speech-to-Text: Audio files with transcriptions before and after audio corruptions. Each subset of the dataset has been meticulously selected and processed to represent challenging scenarios for LMMs. ## Using the Dataset ️ To use the MMCBench Dataset for model evaluation: 1. Access the Data: The dataset is hosted on Hugging Face and can be accessed using their dataset library or direct download. 2. Select the Task: Choose from text-to-image, image-to-text, text-to-speech, or speech-to-text tasks based on your model's capabilities. 3. Apply the Benchmark: Utilize the data for each task to test your model's performance against various corruptions. Follow the MMCBench framework for a consistent and standardized evaluation. ### Dataset Structure The dataset is organized into four main directories, each corresponding to one of the generative tasks: - 'text2image/': Contains text inputs and associated images. - 'image2text/': Comprises images and their descriptive captions. - 'text2speech/': Includes text inputs and generated speech outputs. - 'speech2text/': Contains audio files and their transcriptions. ## Contributing to the Dataset Contributions to the MMCBench Dataset are welcome. If you have suggestions for additional data or improvements, please reach out through the Hugging Face platform or directly contribute via GitHub. ## License The MMCBench Dataset is made available under the Apache 2.0 License, ensuring open and ethical use for research and development. ## Acknowledgments and Citations When using the MMCBench Dataset in your research, please cite it appropriately. We extend our gratitude to all contributors and collaborators who have enriched this dataset, making it a valuable resource for the AI and ML community.
[ "# MMCBench Dataset: Benchmarking Dataset for Multimodal Model Evaluation", "## Overview\n\nThe MMCBench Dataset is a curated collection of data designed for the comprehensive evaluation of Large Multimodal Models (LMMs) under common corruption scenarios. This dataset supports the MMCBench framework, focusing on cross-modal interactions involving text, image, and speech. It provides essential data for generative tasks such as text-to-image, image-to-text, text-to-speech, and speech-to-text, enabling robustness and self-consistency assessments of LMMs.", "## Dataset Composition \n\nThe MMCBench Dataset is structured to facilitate the evaluation across four key generative tasks:\n\n- Text-to-Image: A collection of text descriptions with their corresponding corrupted versions and associated images.\n- Image-to-Text: A set of images with clean and corrupted captions.\n- Text-to-Speech: Text inputs with their clean and corrupted audio outputs.\n- Speech-to-Text: Audio files with transcriptions before and after audio corruptions.\n\nEach subset of the dataset has been meticulously selected and processed to represent challenging scenarios for LMMs.", "## Using the Dataset ️\n\nTo use the MMCBench Dataset for model evaluation:\n\n1. Access the Data: The dataset is hosted on Hugging Face and can be accessed using their dataset library or direct download.\n2. Select the Task: Choose from text-to-image, image-to-text, text-to-speech, or speech-to-text tasks based on your model's capabilities.\n3. Apply the Benchmark: Utilize the data for each task to test your model's performance against various corruptions. Follow the MMCBench framework for a consistent and standardized evaluation.", "### Dataset Structure \n\nThe dataset is organized into four main directories, each corresponding to one of the generative tasks:\n\n- 'text2image/': Contains text inputs and associated images.\n- 'image2text/': Comprises images and their descriptive captions.\n- 'text2speech/': Includes text inputs and generated speech outputs.\n- 'speech2text/': Contains audio files and their transcriptions.", "## Contributing to the Dataset \n\nContributions to the MMCBench Dataset are welcome. If you have suggestions for additional data or improvements, please reach out through the Hugging Face platform or directly contribute via GitHub.", "## License \n\nThe MMCBench Dataset is made available under the Apache 2.0 License, ensuring open and ethical use for research and development.", "## Acknowledgments and Citations \n\nWhen using the MMCBench Dataset in your research, please cite it appropriately. We extend our gratitude to all contributors and collaborators who have enriched this dataset, making it a valuable resource for the AI and ML community." ]
[ "TAGS\n#region-us \n", "# MMCBench Dataset: Benchmarking Dataset for Multimodal Model Evaluation", "## Overview\n\nThe MMCBench Dataset is a curated collection of data designed for the comprehensive evaluation of Large Multimodal Models (LMMs) under common corruption scenarios. This dataset supports the MMCBench framework, focusing on cross-modal interactions involving text, image, and speech. It provides essential data for generative tasks such as text-to-image, image-to-text, text-to-speech, and speech-to-text, enabling robustness and self-consistency assessments of LMMs.", "## Dataset Composition \n\nThe MMCBench Dataset is structured to facilitate the evaluation across four key generative tasks:\n\n- Text-to-Image: A collection of text descriptions with their corresponding corrupted versions and associated images.\n- Image-to-Text: A set of images with clean and corrupted captions.\n- Text-to-Speech: Text inputs with their clean and corrupted audio outputs.\n- Speech-to-Text: Audio files with transcriptions before and after audio corruptions.\n\nEach subset of the dataset has been meticulously selected and processed to represent challenging scenarios for LMMs.", "## Using the Dataset ️\n\nTo use the MMCBench Dataset for model evaluation:\n\n1. Access the Data: The dataset is hosted on Hugging Face and can be accessed using their dataset library or direct download.\n2. Select the Task: Choose from text-to-image, image-to-text, text-to-speech, or speech-to-text tasks based on your model's capabilities.\n3. Apply the Benchmark: Utilize the data for each task to test your model's performance against various corruptions. Follow the MMCBench framework for a consistent and standardized evaluation.", "### Dataset Structure \n\nThe dataset is organized into four main directories, each corresponding to one of the generative tasks:\n\n- 'text2image/': Contains text inputs and associated images.\n- 'image2text/': Comprises images and their descriptive captions.\n- 'text2speech/': Includes text inputs and generated speech outputs.\n- 'speech2text/': Contains audio files and their transcriptions.", "## Contributing to the Dataset \n\nContributions to the MMCBench Dataset are welcome. If you have suggestions for additional data or improvements, please reach out through the Hugging Face platform or directly contribute via GitHub.", "## License \n\nThe MMCBench Dataset is made available under the Apache 2.0 License, ensuring open and ethical use for research and development.", "## Acknowledgments and Citations \n\nWhen using the MMCBench Dataset in your research, please cite it appropriately. We extend our gratitude to all contributors and collaborators who have enriched this dataset, making it a valuable resource for the AI and ML community." ]
891d2f2cfe5410467ae69344507b5ecc79a77b21
Source: https://universe.roboflow.com/david-bxemt/detecciones Follow the source license
brainer/detecciones
[ "region:us" ]
2024-01-22T06:23:19+00:00
{"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int64"}, {"name": "height", "dtype": "int64"}, {"name": "image_id", "dtype": "int64"}, {"name": "objects", "sequence": [{"name": "area", "dtype": "float64"}, {"name": "bbox", "sequence": "float64"}, {"name": "category", "dtype": "int64"}, {"name": "id", "dtype": "int64"}]}], "splits": [{"name": "train", "num_bytes": 127628464.08, "num_examples": 3330}, {"name": "test", "num_bytes": 7837783.0, "num_examples": 175}, {"name": "valid", "num_bytes": 11554347.0, "num_examples": 301}], "download_size": 125191442, "dataset_size": 147020594.07999998}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}, {"split": "valid", "path": "data/valid-*"}]}]}
2024-01-22T08:07:40+00:00
[]
[]
TAGS #region-us
Source: URL Follow the source license
[]
[ "TAGS\n#region-us \n" ]
177841080f84dcf1a5bea97ee36d4abc1f31e2a9
Check out the [paper](https://arxiv.org/abs/2401.13311).
ucla-contextual/contextual_all
[ "license:mit", "arxiv:2401.13311", "region:us" ]
2024-01-22T06:53:25+00:00
{"license": "mit"}
2024-02-05T06:39:26+00:00
[ "2401.13311" ]
[]
TAGS #license-mit #arxiv-2401.13311 #region-us
Check out the paper.
[]
[ "TAGS\n#license-mit #arxiv-2401.13311 #region-us \n" ]
716afd2ddb2264daa994a8afc54fb5e99f7b3141
# Dataset Card for "poc_last" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
wisenut-nlp-team/poc_last
[ "region:us" ]
2024-01-22T07:11:05+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "context", "sequence": "string"}, {"name": "answer", "sequence": "string"}, {"name": "original_answer", "sequence": "string"}, {"name": "similar_contexts", "sequence": "string"}], "splits": [{"name": "train", "num_bytes": 49532937707.387, "num_examples": 1908041}, {"name": "validation", "num_bytes": 5254087627.188539, "num_examples": 201427}], "download_size": 27113302745, "dataset_size": 54787025334.57554}}
2024-01-22T09:04:10+00:00
[]
[]
TAGS #region-us
# Dataset Card for "poc_last" More Information needed
[ "# Dataset Card for \"poc_last\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"poc_last\"\n\nMore Information needed" ]
c4ddcf4b2500a2ccde373c0b05665cb69f24cfbc
Context Rice genotype and phenotype data. Twelve agronomic traits and a hundred simulated traits. May be useful for GWAS (Genome Wide Association Study) models. The column name IDs in the trait file map to the following traits. CUDI_REPRO -> Culm diameter CULT_REPRO -> Culm length CUNO_REPRO -> Culm number GRLT -> Grain length GRWD -> Grain width GRWT100 -> Grain weight HDG_80HEAD -> Heading date LIGLT -> Ligule length LLT -> Leaf length LWD -> Leaf width PLT_POST -> Panicle length SDHT -> Seedling height Acknowledgements Orhobor, Oghenejokpeme; Alexandrov, Nickolai; Chebotarev, Dmitri; Kretzschmar, Tobias; McNally, Kenneth L.; Sanciangco, Millicent; King, Ross (2018), “Rice genotype and phenotype data.”, Mendeley Data, V1, doi: 10.17632/sr8zzsrpcs.1 Originally posted on Kaggle by SAURABH SHAHANE licensed CC BY 4.0 DEED Attribution 4.0 International
Solshine/Rice_Genotype_and_Phenotype_Data
[ "license:cc-by-sa-4.0", "region:us" ]
2024-01-22T07:16:21+00:00
{"license": "cc-by-sa-4.0"}
2024-01-22T07:25:32+00:00
[]
[]
TAGS #license-cc-by-sa-4.0 #region-us
Context Rice genotype and phenotype data. Twelve agronomic traits and a hundred simulated traits. May be useful for GWAS (Genome Wide Association Study) models. The column name IDs in the trait file map to the following traits. CUDI_REPRO -> Culm diameter CULT_REPRO -> Culm length CUNO_REPRO -> Culm number GRLT -> Grain length GRWD -> Grain width GRWT100 -> Grain weight HDG_80HEAD -> Heading date LIGLT -> Ligule length LLT -> Leaf length LWD -> Leaf width PLT_POST -> Panicle length SDHT -> Seedling height Acknowledgements Orhobor, Oghenejokpeme; Alexandrov, Nickolai; Chebotarev, Dmitri; Kretzschmar, Tobias; McNally, Kenneth L.; Sanciangco, Millicent; King, Ross (2018), “Rice genotype and phenotype data.”, Mendeley Data, V1, doi: 10.17632/sr8zzsrpcs.1 Originally posted on Kaggle by SAURABH SHAHANE licensed CC BY 4.0 DEED Attribution 4.0 International
[]
[ "TAGS\n#license-cc-by-sa-4.0 #region-us \n" ]
e93227baec94ab4116a90d432978ee7696d50239
Context: This data originally came from the College of Agriculture and Forestry Originally posted to Kaggle by AGRICULTURAL INNOVATIONS with the following description "Precision agriculture is in trend nowadays. It helps the farmers to get informed decision about the farming strategy. Here, we present to you a dataset which would allow the users to build a predictive model to recommend the most suitable crops to grow in a particular farm based on various parameters." Includes recommendations for the following needs of plants: N, P, K, temperature, humidity, ph, rainfall This may also be useful for training models in reccomending nutrition for crops based on environmental conditions.
Solshine/CollegeOfAgricultureAndForestry_Agricultural_Crop_Dataset
[ "license:cc", "region:us" ]
2024-01-22T07:28:34+00:00
{"license": "cc"}
2024-01-23T04:42:21+00:00
[]
[]
TAGS #license-cc #region-us
Context: This data originally came from the College of Agriculture and Forestry Originally posted to Kaggle by AGRICULTURAL INNOVATIONS with the following description "Precision agriculture is in trend nowadays. It helps the farmers to get informed decision about the farming strategy. Here, we present to you a dataset which would allow the users to build a predictive model to recommend the most suitable crops to grow in a particular farm based on various parameters." Includes recommendations for the following needs of plants: N, P, K, temperature, humidity, ph, rainfall This may also be useful for training models in reccomending nutrition for crops based on environmental conditions.
[]
[ "TAGS\n#license-cc #region-us \n" ]
7d3443b863cd2758398e44025368027d030fb65d
# Dataset Card for Evaluation run of FelixChao/Sirius-10B <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [FelixChao/Sirius-10B](https://huggingface.co/FelixChao/Sirius-10B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_FelixChao__Sirius-10B", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-22T07:26:29.480473](https://huggingface.co/datasets/open-llm-leaderboard/details_FelixChao__Sirius-10B/blob/main/results_2024-01-22T07-26-29.480473.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.6512873434629626, "acc_stderr": 0.032166651969407094, "acc_norm": 0.6523094390168064, "acc_norm_stderr": 0.03282308883774373, "mc1": 0.5226438188494492, "mc1_stderr": 0.017485542258489643, "mc2": 0.6810112131261441, "mc2_stderr": 0.015016502423502063 }, "harness|arc:challenge|25": { "acc": 0.6928327645051194, "acc_stderr": 0.013481034054980943, "acc_norm": 0.7192832764505119, "acc_norm_stderr": 0.013131238126975576 }, "harness|hellaswag|10": { "acc": 0.6930890260904202, "acc_stderr": 0.004602695416756988, "acc_norm": 0.8732324238199561, "acc_norm_stderr": 0.0033203245481454044 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.35, "acc_stderr": 0.0479372485441102, "acc_norm": 0.35, "acc_norm_stderr": 0.0479372485441102 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6370370370370371, "acc_stderr": 0.04153948404742398, "acc_norm": 0.6370370370370371, "acc_norm_stderr": 0.04153948404742398 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.6973684210526315, "acc_stderr": 0.03738520676119669, "acc_norm": 0.6973684210526315, "acc_norm_stderr": 0.03738520676119669 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.62, "acc_stderr": 0.048783173121456316, "acc_norm": 0.62, "acc_norm_stderr": 0.048783173121456316 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.7094339622641509, "acc_stderr": 0.02794321998933714, "acc_norm": 0.7094339622641509, "acc_norm_stderr": 0.02794321998933714 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.7708333333333334, "acc_stderr": 0.03514697467862388, "acc_norm": 0.7708333333333334, "acc_norm_stderr": 0.03514697467862388 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.51, "acc_stderr": 0.05024183937956912, "acc_norm": 0.51, "acc_norm_stderr": 0.05024183937956912 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.56, "acc_stderr": 0.049888765156985884, "acc_norm": 0.56, "acc_norm_stderr": 0.049888765156985884 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.31, "acc_stderr": 0.04648231987117316, "acc_norm": 0.31, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6647398843930635, "acc_stderr": 0.03599586301247077, "acc_norm": 0.6647398843930635, "acc_norm_stderr": 0.03599586301247077 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.4215686274509804, "acc_stderr": 0.04913595201274498, "acc_norm": 0.4215686274509804, "acc_norm_stderr": 0.04913595201274498 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.75, "acc_stderr": 0.04351941398892446, "acc_norm": 0.75, "acc_norm_stderr": 0.04351941398892446 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5574468085106383, "acc_stderr": 0.03246956919789958, "acc_norm": 0.5574468085106383, "acc_norm_stderr": 0.03246956919789958 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.4649122807017544, "acc_stderr": 0.046920083813689104, "acc_norm": 0.4649122807017544, "acc_norm_stderr": 0.046920083813689104 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.5586206896551724, "acc_stderr": 0.04137931034482757, "acc_norm": 0.5586206896551724, "acc_norm_stderr": 0.04137931034482757 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.4126984126984127, "acc_stderr": 0.025355741263055273, "acc_norm": 0.4126984126984127, "acc_norm_stderr": 0.025355741263055273 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.4603174603174603, "acc_stderr": 0.04458029125470973, "acc_norm": 0.4603174603174603, "acc_norm_stderr": 0.04458029125470973 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.38, "acc_stderr": 0.04878317312145633, "acc_norm": 0.38, "acc_norm_stderr": 0.04878317312145633 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.7806451612903226, "acc_stderr": 0.023540799358723295, "acc_norm": 0.7806451612903226, "acc_norm_stderr": 0.023540799358723295 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.5123152709359606, "acc_stderr": 0.035169204442208966, "acc_norm": 0.5123152709359606, "acc_norm_stderr": 0.035169204442208966 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.71, "acc_stderr": 0.045604802157206845, "acc_norm": 0.71, "acc_norm_stderr": 0.045604802157206845 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7757575757575758, "acc_stderr": 0.03256866661681102, "acc_norm": 0.7757575757575758, "acc_norm_stderr": 0.03256866661681102 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.7676767676767676, "acc_stderr": 0.030088629490217487, "acc_norm": 0.7676767676767676, "acc_norm_stderr": 0.030088629490217487 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.9067357512953368, "acc_stderr": 0.02098685459328973, "acc_norm": 0.9067357512953368, "acc_norm_stderr": 0.02098685459328973 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.6666666666666666, "acc_stderr": 0.023901157979402538, "acc_norm": 0.6666666666666666, "acc_norm_stderr": 0.023901157979402538 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.337037037037037, "acc_stderr": 0.028820884666253255, "acc_norm": 0.337037037037037, "acc_norm_stderr": 0.028820884666253255 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6638655462184874, "acc_stderr": 0.030684737115135363, "acc_norm": 0.6638655462184874, "acc_norm_stderr": 0.030684737115135363 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.36423841059602646, "acc_stderr": 0.03929111781242742, "acc_norm": 0.36423841059602646, "acc_norm_stderr": 0.03929111781242742 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8348623853211009, "acc_stderr": 0.015919557829976044, "acc_norm": 0.8348623853211009, "acc_norm_stderr": 0.015919557829976044 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.5370370370370371, "acc_stderr": 0.03400603625538272, "acc_norm": 0.5370370370370371, "acc_norm_stderr": 0.03400603625538272 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.8382352941176471, "acc_stderr": 0.025845017986926917, "acc_norm": 0.8382352941176471, "acc_norm_stderr": 0.025845017986926917 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7932489451476793, "acc_stderr": 0.026361651668389094, "acc_norm": 0.7932489451476793, "acc_norm_stderr": 0.026361651668389094 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6816143497757847, "acc_stderr": 0.03126580522513713, "acc_norm": 0.6816143497757847, "acc_norm_stderr": 0.03126580522513713 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.7938931297709924, "acc_stderr": 0.03547771004159465, "acc_norm": 0.7938931297709924, "acc_norm_stderr": 0.03547771004159465 }, "harness|hendrycksTest-international_law|5": { "acc": 0.768595041322314, "acc_stderr": 0.038498560987940904, "acc_norm": 0.768595041322314, "acc_norm_stderr": 0.038498560987940904 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.7870370370370371, "acc_stderr": 0.0395783547198098, "acc_norm": 0.7870370370370371, "acc_norm_stderr": 0.0395783547198098 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7852760736196319, "acc_stderr": 0.032262193772867744, "acc_norm": 0.7852760736196319, "acc_norm_stderr": 0.032262193772867744 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.42857142857142855, "acc_stderr": 0.04697113923010212, "acc_norm": 0.42857142857142855, "acc_norm_stderr": 0.04697113923010212 }, "harness|hendrycksTest-management|5": { "acc": 0.7766990291262136, "acc_stderr": 0.04123553189891431, "acc_norm": 0.7766990291262136, "acc_norm_stderr": 0.04123553189891431 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8803418803418803, "acc_stderr": 0.021262719400406964, "acc_norm": 0.8803418803418803, "acc_norm_stderr": 0.021262719400406964 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.69, "acc_stderr": 0.04648231987117316, "acc_norm": 0.69, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.8199233716475096, "acc_stderr": 0.013740797258579825, "acc_norm": 0.8199233716475096, "acc_norm_stderr": 0.013740797258579825 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.7254335260115607, "acc_stderr": 0.024027745155265023, "acc_norm": 0.7254335260115607, "acc_norm_stderr": 0.024027745155265023 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.45363128491620114, "acc_stderr": 0.016650437588269073, "acc_norm": 0.45363128491620114, "acc_norm_stderr": 0.016650437588269073 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.7320261437908496, "acc_stderr": 0.025360603796242557, "acc_norm": 0.7320261437908496, "acc_norm_stderr": 0.025360603796242557 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.7106109324758842, "acc_stderr": 0.025755865922632945, "acc_norm": 0.7106109324758842, "acc_norm_stderr": 0.025755865922632945 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.75, "acc_stderr": 0.02409347123262133, "acc_norm": 0.75, "acc_norm_stderr": 0.02409347123262133 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.49645390070921985, "acc_stderr": 0.02982674915328092, "acc_norm": 0.49645390070921985, "acc_norm_stderr": 0.02982674915328092 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.4602346805736636, "acc_stderr": 0.012729785386598564, "acc_norm": 0.4602346805736636, "acc_norm_stderr": 0.012729785386598564 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.6875, "acc_stderr": 0.02815637344037142, "acc_norm": 0.6875, "acc_norm_stderr": 0.02815637344037142 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6650326797385621, "acc_stderr": 0.019094228167000325, "acc_norm": 0.6650326797385621, "acc_norm_stderr": 0.019094228167000325 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6545454545454545, "acc_stderr": 0.04554619617541054, "acc_norm": 0.6545454545454545, "acc_norm_stderr": 0.04554619617541054 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7224489795918367, "acc_stderr": 0.02866685779027465, "acc_norm": 0.7224489795918367, "acc_norm_stderr": 0.02866685779027465 }, "harness|hendrycksTest-sociology|5": { "acc": 0.845771144278607, "acc_stderr": 0.02553843336857833, "acc_norm": 0.845771144278607, "acc_norm_stderr": 0.02553843336857833 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.87, "acc_stderr": 0.03379976689896308, "acc_norm": 0.87, "acc_norm_stderr": 0.03379976689896308 }, "harness|hendrycksTest-virology|5": { "acc": 0.5602409638554217, "acc_stderr": 0.03864139923699121, "acc_norm": 0.5602409638554217, "acc_norm_stderr": 0.03864139923699121 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8245614035087719, "acc_stderr": 0.029170885500727665, "acc_norm": 0.8245614035087719, "acc_norm_stderr": 0.029170885500727665 }, "harness|truthfulqa:mc|0": { "mc1": 0.5226438188494492, "mc1_stderr": 0.017485542258489643, "mc2": 0.6810112131261441, "mc2_stderr": 0.015016502423502063 }, "harness|winogrande|5": { "acc": 0.8279400157853196, "acc_stderr": 0.010607731615247003 }, "harness|gsm8k|5": { "acc": 0.6209249431387415, "acc_stderr": 0.01336363029508835 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_FelixChao__Sirius-10B
[ "region:us" ]
2024-01-22T07:28:44+00:00
{"pretty_name": "Evaluation run of FelixChao/Sirius-10B", "dataset_summary": "Dataset automatically created during the evaluation run of model [FelixChao/Sirius-10B](https://huggingface.co/FelixChao/Sirius-10B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_FelixChao__Sirius-10B\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-22T07:26:29.480473](https://huggingface.co/datasets/open-llm-leaderboard/details_FelixChao__Sirius-10B/blob/main/results_2024-01-22T07-26-29.480473.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6512873434629626,\n \"acc_stderr\": 0.032166651969407094,\n \"acc_norm\": 0.6523094390168064,\n \"acc_norm_stderr\": 0.03282308883774373,\n \"mc1\": 0.5226438188494492,\n \"mc1_stderr\": 0.017485542258489643,\n \"mc2\": 0.6810112131261441,\n \"mc2_stderr\": 0.015016502423502063\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.6928327645051194,\n \"acc_stderr\": 0.013481034054980943,\n \"acc_norm\": 0.7192832764505119,\n \"acc_norm_stderr\": 0.013131238126975576\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6930890260904202,\n \"acc_stderr\": 0.004602695416756988,\n \"acc_norm\": 0.8732324238199561,\n \"acc_norm_stderr\": 0.0033203245481454044\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.35,\n \"acc_stderr\": 0.0479372485441102,\n \"acc_norm\": 0.35,\n \"acc_norm_stderr\": 0.0479372485441102\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6370370370370371,\n \"acc_stderr\": 0.04153948404742398,\n \"acc_norm\": 0.6370370370370371,\n \"acc_norm_stderr\": 0.04153948404742398\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.6973684210526315,\n \"acc_stderr\": 0.03738520676119669,\n \"acc_norm\": 0.6973684210526315,\n \"acc_norm_stderr\": 0.03738520676119669\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.62,\n \"acc_stderr\": 0.048783173121456316,\n \"acc_norm\": 0.62,\n \"acc_norm_stderr\": 0.048783173121456316\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.7094339622641509,\n \"acc_stderr\": 0.02794321998933714,\n \"acc_norm\": 0.7094339622641509,\n \"acc_norm_stderr\": 0.02794321998933714\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7708333333333334,\n \"acc_stderr\": 0.03514697467862388,\n \"acc_norm\": 0.7708333333333334,\n \"acc_norm_stderr\": 0.03514697467862388\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.51,\n \"acc_stderr\": 0.05024183937956912,\n \"acc_norm\": 0.51,\n \"acc_norm_stderr\": 0.05024183937956912\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.56,\n \"acc_stderr\": 0.049888765156985884,\n \"acc_norm\": 0.56,\n \"acc_norm_stderr\": 0.049888765156985884\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.31,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6647398843930635,\n \"acc_stderr\": 0.03599586301247077,\n \"acc_norm\": 0.6647398843930635,\n \"acc_norm_stderr\": 0.03599586301247077\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.4215686274509804,\n \"acc_stderr\": 0.04913595201274498,\n \"acc_norm\": 0.4215686274509804,\n \"acc_norm_stderr\": 0.04913595201274498\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.75,\n \"acc_stderr\": 0.04351941398892446,\n \"acc_norm\": 0.75,\n \"acc_norm_stderr\": 0.04351941398892446\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5574468085106383,\n \"acc_stderr\": 0.03246956919789958,\n \"acc_norm\": 0.5574468085106383,\n \"acc_norm_stderr\": 0.03246956919789958\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.4649122807017544,\n \"acc_stderr\": 0.046920083813689104,\n \"acc_norm\": 0.4649122807017544,\n \"acc_norm_stderr\": 0.046920083813689104\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5586206896551724,\n \"acc_stderr\": 0.04137931034482757,\n \"acc_norm\": 0.5586206896551724,\n \"acc_norm_stderr\": 0.04137931034482757\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.4126984126984127,\n \"acc_stderr\": 0.025355741263055273,\n \"acc_norm\": 0.4126984126984127,\n \"acc_norm_stderr\": 0.025355741263055273\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.4603174603174603,\n \"acc_stderr\": 0.04458029125470973,\n \"acc_norm\": 0.4603174603174603,\n \"acc_norm_stderr\": 0.04458029125470973\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.38,\n \"acc_stderr\": 0.04878317312145633,\n \"acc_norm\": 0.38,\n \"acc_norm_stderr\": 0.04878317312145633\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7806451612903226,\n \"acc_stderr\": 0.023540799358723295,\n \"acc_norm\": 0.7806451612903226,\n \"acc_norm_stderr\": 0.023540799358723295\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.5123152709359606,\n \"acc_stderr\": 0.035169204442208966,\n \"acc_norm\": 0.5123152709359606,\n \"acc_norm_stderr\": 0.035169204442208966\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.71,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\": 0.71,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7757575757575758,\n \"acc_stderr\": 0.03256866661681102,\n \"acc_norm\": 0.7757575757575758,\n \"acc_norm_stderr\": 0.03256866661681102\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7676767676767676,\n \"acc_stderr\": 0.030088629490217487,\n \"acc_norm\": 0.7676767676767676,\n \"acc_norm_stderr\": 0.030088629490217487\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.9067357512953368,\n \"acc_stderr\": 0.02098685459328973,\n \"acc_norm\": 0.9067357512953368,\n \"acc_norm_stderr\": 0.02098685459328973\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6666666666666666,\n \"acc_stderr\": 0.023901157979402538,\n \"acc_norm\": 0.6666666666666666,\n \"acc_norm_stderr\": 0.023901157979402538\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.337037037037037,\n \"acc_stderr\": 0.028820884666253255,\n \"acc_norm\": 0.337037037037037,\n \"acc_norm_stderr\": 0.028820884666253255\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6638655462184874,\n \"acc_stderr\": 0.030684737115135363,\n \"acc_norm\": 0.6638655462184874,\n \"acc_norm_stderr\": 0.030684737115135363\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.36423841059602646,\n \"acc_stderr\": 0.03929111781242742,\n \"acc_norm\": 0.36423841059602646,\n \"acc_norm_stderr\": 0.03929111781242742\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8348623853211009,\n \"acc_stderr\": 0.015919557829976044,\n \"acc_norm\": 0.8348623853211009,\n \"acc_norm_stderr\": 0.015919557829976044\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.5370370370370371,\n \"acc_stderr\": 0.03400603625538272,\n \"acc_norm\": 0.5370370370370371,\n \"acc_norm_stderr\": 0.03400603625538272\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.8382352941176471,\n \"acc_stderr\": 0.025845017986926917,\n \"acc_norm\": 0.8382352941176471,\n \"acc_norm_stderr\": 0.025845017986926917\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7932489451476793,\n \"acc_stderr\": 0.026361651668389094,\n \"acc_norm\": 0.7932489451476793,\n \"acc_norm_stderr\": 0.026361651668389094\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6816143497757847,\n \"acc_stderr\": 0.03126580522513713,\n \"acc_norm\": 0.6816143497757847,\n \"acc_norm_stderr\": 0.03126580522513713\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7938931297709924,\n \"acc_stderr\": 0.03547771004159465,\n \"acc_norm\": 0.7938931297709924,\n \"acc_norm_stderr\": 0.03547771004159465\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.768595041322314,\n \"acc_stderr\": 0.038498560987940904,\n \"acc_norm\": 0.768595041322314,\n \"acc_norm_stderr\": 0.038498560987940904\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7870370370370371,\n \"acc_stderr\": 0.0395783547198098,\n \"acc_norm\": 0.7870370370370371,\n \"acc_norm_stderr\": 0.0395783547198098\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7852760736196319,\n \"acc_stderr\": 0.032262193772867744,\n \"acc_norm\": 0.7852760736196319,\n \"acc_norm_stderr\": 0.032262193772867744\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.42857142857142855,\n \"acc_stderr\": 0.04697113923010212,\n \"acc_norm\": 0.42857142857142855,\n \"acc_norm_stderr\": 0.04697113923010212\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7766990291262136,\n \"acc_stderr\": 0.04123553189891431,\n \"acc_norm\": 0.7766990291262136,\n \"acc_norm_stderr\": 0.04123553189891431\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8803418803418803,\n \"acc_stderr\": 0.021262719400406964,\n \"acc_norm\": 0.8803418803418803,\n \"acc_norm_stderr\": 0.021262719400406964\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.69,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.69,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8199233716475096,\n \"acc_stderr\": 0.013740797258579825,\n \"acc_norm\": 0.8199233716475096,\n \"acc_norm_stderr\": 0.013740797258579825\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7254335260115607,\n \"acc_stderr\": 0.024027745155265023,\n \"acc_norm\": 0.7254335260115607,\n \"acc_norm_stderr\": 0.024027745155265023\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.45363128491620114,\n \"acc_stderr\": 0.016650437588269073,\n \"acc_norm\": 0.45363128491620114,\n \"acc_norm_stderr\": 0.016650437588269073\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7320261437908496,\n \"acc_stderr\": 0.025360603796242557,\n \"acc_norm\": 0.7320261437908496,\n \"acc_norm_stderr\": 0.025360603796242557\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.7106109324758842,\n \"acc_stderr\": 0.025755865922632945,\n \"acc_norm\": 0.7106109324758842,\n \"acc_norm_stderr\": 0.025755865922632945\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.75,\n \"acc_stderr\": 0.02409347123262133,\n \"acc_norm\": 0.75,\n \"acc_norm_stderr\": 0.02409347123262133\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.49645390070921985,\n \"acc_stderr\": 0.02982674915328092,\n \"acc_norm\": 0.49645390070921985,\n \"acc_norm_stderr\": 0.02982674915328092\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.4602346805736636,\n \"acc_stderr\": 0.012729785386598564,\n \"acc_norm\": 0.4602346805736636,\n \"acc_norm_stderr\": 0.012729785386598564\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6875,\n \"acc_stderr\": 0.02815637344037142,\n \"acc_norm\": 0.6875,\n \"acc_norm_stderr\": 0.02815637344037142\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6650326797385621,\n \"acc_stderr\": 0.019094228167000325,\n \"acc_norm\": 0.6650326797385621,\n \"acc_norm_stderr\": 0.019094228167000325\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6545454545454545,\n \"acc_stderr\": 0.04554619617541054,\n \"acc_norm\": 0.6545454545454545,\n \"acc_norm_stderr\": 0.04554619617541054\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7224489795918367,\n \"acc_stderr\": 0.02866685779027465,\n \"acc_norm\": 0.7224489795918367,\n \"acc_norm_stderr\": 0.02866685779027465\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.845771144278607,\n \"acc_stderr\": 0.02553843336857833,\n \"acc_norm\": 0.845771144278607,\n \"acc_norm_stderr\": 0.02553843336857833\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.87,\n \"acc_stderr\": 0.03379976689896308,\n \"acc_norm\": 0.87,\n \"acc_norm_stderr\": 0.03379976689896308\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5602409638554217,\n \"acc_stderr\": 0.03864139923699121,\n \"acc_norm\": 0.5602409638554217,\n \"acc_norm_stderr\": 0.03864139923699121\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8245614035087719,\n \"acc_stderr\": 0.029170885500727665,\n \"acc_norm\": 0.8245614035087719,\n \"acc_norm_stderr\": 0.029170885500727665\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.5226438188494492,\n \"mc1_stderr\": 0.017485542258489643,\n \"mc2\": 0.6810112131261441,\n \"mc2_stderr\": 0.015016502423502063\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.8279400157853196,\n \"acc_stderr\": 0.010607731615247003\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.6209249431387415,\n \"acc_stderr\": 0.01336363029508835\n }\n}\n```", "repo_url": "https://huggingface.co/FelixChao/Sirius-10B", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|arc:challenge|25_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|gsm8k|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hellaswag|10_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T07-26-29.480473.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["**/details_harness|winogrande|5_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-22T07-26-29.480473.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_22T07_26_29.480473", "path": ["results_2024-01-22T07-26-29.480473.parquet"]}, {"split": "latest", "path": ["results_2024-01-22T07-26-29.480473.parquet"]}]}]}
2024-01-22T07:29:05+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of FelixChao/Sirius-10B Dataset automatically created during the evaluation run of model FelixChao/Sirius-10B on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-22T07:26:29.480473(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of FelixChao/Sirius-10B\n\n\n\nDataset automatically created during the evaluation run of model FelixChao/Sirius-10B on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T07:26:29.480473(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of FelixChao/Sirius-10B\n\n\n\nDataset automatically created during the evaluation run of model FelixChao/Sirius-10B on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T07:26:29.480473(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
37608025af45057383b4dc6eef06c3a43799150a
# Dataset Card for Evaluation run of Eurdem/Voltran-1.0-MoE-2x7B <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [Eurdem/Voltran-1.0-MoE-2x7B](https://huggingface.co/Eurdem/Voltran-1.0-MoE-2x7B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_Eurdem__Voltran-1.0-MoE-2x7B", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-22T07:49:54.062079](https://huggingface.co/datasets/open-llm-leaderboard/details_Eurdem__Voltran-1.0-MoE-2x7B/blob/main/results_2024-01-22T07-49-54.062079.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.6144636049773026, "acc_stderr": 0.033017267421085336, "acc_norm": 0.6168693020696908, "acc_norm_stderr": 0.033678924264574035, "mc1": 0.408812729498164, "mc1_stderr": 0.01720995215164173, "mc2": 0.5748009213372511, "mc2_stderr": 0.015610411040968409 }, "harness|arc:challenge|25": { "acc": 0.5955631399317406, "acc_stderr": 0.014342036483436179, "acc_norm": 0.6407849829351536, "acc_norm_stderr": 0.014020224155839162 }, "harness|hellaswag|10": { "acc": 0.6444931288587931, "acc_stderr": 0.004776883632722614, "acc_norm": 0.837382991435969, "acc_norm_stderr": 0.0036826171219143085 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.31, "acc_stderr": 0.04648231987117316, "acc_norm": 0.31, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6, "acc_stderr": 0.04232073695151589, "acc_norm": 0.6, "acc_norm_stderr": 0.04232073695151589 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.6710526315789473, "acc_stderr": 0.038234289699266046, "acc_norm": 0.6710526315789473, "acc_norm_stderr": 0.038234289699266046 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.55, "acc_stderr": 0.05, "acc_norm": 0.55, "acc_norm_stderr": 0.05 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.6641509433962264, "acc_stderr": 0.029067220146644823, "acc_norm": 0.6641509433962264, "acc_norm_stderr": 0.029067220146644823 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.7083333333333334, "acc_stderr": 0.038009680605548594, "acc_norm": 0.7083333333333334, "acc_norm_stderr": 0.038009680605548594 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.46, "acc_stderr": 0.05009082659620333, "acc_norm": 0.46, "acc_norm_stderr": 0.05009082659620333 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.55, "acc_stderr": 0.05, "acc_norm": 0.55, "acc_norm_stderr": 0.05 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.34, "acc_stderr": 0.04760952285695235, "acc_norm": 0.34, "acc_norm_stderr": 0.04760952285695235 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6069364161849711, "acc_stderr": 0.03724249595817731, "acc_norm": 0.6069364161849711, "acc_norm_stderr": 0.03724249595817731 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.3431372549019608, "acc_stderr": 0.047240073523838876, "acc_norm": 0.3431372549019608, "acc_norm_stderr": 0.047240073523838876 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.76, "acc_stderr": 0.04292346959909284, "acc_norm": 0.76, "acc_norm_stderr": 0.04292346959909284 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5148936170212766, "acc_stderr": 0.03267151848924777, "acc_norm": 0.5148936170212766, "acc_norm_stderr": 0.03267151848924777 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.47368421052631576, "acc_stderr": 0.046970851366478626, "acc_norm": 0.47368421052631576, "acc_norm_stderr": 0.046970851366478626 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.5655172413793104, "acc_stderr": 0.04130740879555497, "acc_norm": 0.5655172413793104, "acc_norm_stderr": 0.04130740879555497 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.40476190476190477, "acc_stderr": 0.025279850397404904, "acc_norm": 0.40476190476190477, "acc_norm_stderr": 0.025279850397404904 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.42063492063492064, "acc_stderr": 0.04415438226743744, "acc_norm": 0.42063492063492064, "acc_norm_stderr": 0.04415438226743744 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.37, "acc_stderr": 0.04852365870939099, "acc_norm": 0.37, "acc_norm_stderr": 0.04852365870939099 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.5612903225806452, "acc_stderr": 0.02822949732031721, "acc_norm": 0.5612903225806452, "acc_norm_stderr": 0.02822949732031721 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.4827586206896552, "acc_stderr": 0.035158955511656986, "acc_norm": 0.4827586206896552, "acc_norm_stderr": 0.035158955511656986 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.66, "acc_stderr": 0.04760952285695237, "acc_norm": 0.66, "acc_norm_stderr": 0.04760952285695237 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7454545454545455, "acc_stderr": 0.03401506715249039, "acc_norm": 0.7454545454545455, "acc_norm_stderr": 0.03401506715249039 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.7676767676767676, "acc_stderr": 0.030088629490217487, "acc_norm": 0.7676767676767676, "acc_norm_stderr": 0.030088629490217487 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.8393782383419689, "acc_stderr": 0.02649905770139744, "acc_norm": 0.8393782383419689, "acc_norm_stderr": 0.02649905770139744 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.5897435897435898, "acc_stderr": 0.024939313906940788, "acc_norm": 0.5897435897435898, "acc_norm_stderr": 0.024939313906940788 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.32592592592592595, "acc_stderr": 0.028578348365473072, "acc_norm": 0.32592592592592595, "acc_norm_stderr": 0.028578348365473072 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6218487394957983, "acc_stderr": 0.031499305777849054, "acc_norm": 0.6218487394957983, "acc_norm_stderr": 0.031499305777849054 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.3443708609271523, "acc_stderr": 0.038796870240733264, "acc_norm": 0.3443708609271523, "acc_norm_stderr": 0.038796870240733264 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8201834862385321, "acc_stderr": 0.01646534546739152, "acc_norm": 0.8201834862385321, "acc_norm_stderr": 0.01646534546739152 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.49074074074074076, "acc_stderr": 0.034093869469927006, "acc_norm": 0.49074074074074076, "acc_norm_stderr": 0.034093869469927006 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.7696078431372549, "acc_stderr": 0.029554292605695063, "acc_norm": 0.7696078431372549, "acc_norm_stderr": 0.029554292605695063 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7805907172995781, "acc_stderr": 0.026939106581553945, "acc_norm": 0.7805907172995781, "acc_norm_stderr": 0.026939106581553945 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6502242152466368, "acc_stderr": 0.03200736719484503, "acc_norm": 0.6502242152466368, "acc_norm_stderr": 0.03200736719484503 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.7633587786259542, "acc_stderr": 0.03727673575596913, "acc_norm": 0.7633587786259542, "acc_norm_stderr": 0.03727673575596913 }, "harness|hendrycksTest-international_law|5": { "acc": 0.8181818181818182, "acc_stderr": 0.03520893951097653, "acc_norm": 0.8181818181818182, "acc_norm_stderr": 0.03520893951097653 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.7407407407407407, "acc_stderr": 0.04236511258094633, "acc_norm": 0.7407407407407407, "acc_norm_stderr": 0.04236511258094633 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7116564417177914, "acc_stderr": 0.035590395316173425, "acc_norm": 0.7116564417177914, "acc_norm_stderr": 0.035590395316173425 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.49107142857142855, "acc_stderr": 0.04745033255489123, "acc_norm": 0.49107142857142855, "acc_norm_stderr": 0.04745033255489123 }, "harness|hendrycksTest-management|5": { "acc": 0.7572815533980582, "acc_stderr": 0.04245022486384495, "acc_norm": 0.7572815533980582, "acc_norm_stderr": 0.04245022486384495 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8888888888888888, "acc_stderr": 0.020588491316092368, "acc_norm": 0.8888888888888888, "acc_norm_stderr": 0.020588491316092368 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.72, "acc_stderr": 0.04512608598542128, "acc_norm": 0.72, "acc_norm_stderr": 0.04512608598542128 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.8109833971902938, "acc_stderr": 0.014000791294406999, "acc_norm": 0.8109833971902938, "acc_norm_stderr": 0.014000791294406999 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.6734104046242775, "acc_stderr": 0.025248264774242836, "acc_norm": 0.6734104046242775, "acc_norm_stderr": 0.025248264774242836 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.4324022346368715, "acc_stderr": 0.01656897123354861, "acc_norm": 0.4324022346368715, "acc_norm_stderr": 0.01656897123354861 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.6928104575163399, "acc_stderr": 0.026415601914388992, "acc_norm": 0.6928104575163399, "acc_norm_stderr": 0.026415601914388992 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.684887459807074, "acc_stderr": 0.026385273703464492, "acc_norm": 0.684887459807074, "acc_norm_stderr": 0.026385273703464492 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.7191358024691358, "acc_stderr": 0.025006469755799208, "acc_norm": 0.7191358024691358, "acc_norm_stderr": 0.025006469755799208 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.46099290780141844, "acc_stderr": 0.02973659252642444, "acc_norm": 0.46099290780141844, "acc_norm_stderr": 0.02973659252642444 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.4452411994784876, "acc_stderr": 0.012693421303973294, "acc_norm": 0.4452411994784876, "acc_norm_stderr": 0.012693421303973294 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.6507352941176471, "acc_stderr": 0.028959755196824866, "acc_norm": 0.6507352941176471, "acc_norm_stderr": 0.028959755196824866 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6633986928104575, "acc_stderr": 0.019117213911495144, "acc_norm": 0.6633986928104575, "acc_norm_stderr": 0.019117213911495144 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6454545454545455, "acc_stderr": 0.045820048415054174, "acc_norm": 0.6454545454545455, "acc_norm_stderr": 0.045820048415054174 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7306122448979592, "acc_stderr": 0.02840125202902294, "acc_norm": 0.7306122448979592, "acc_norm_stderr": 0.02840125202902294 }, "harness|hendrycksTest-sociology|5": { "acc": 0.5323383084577115, "acc_stderr": 0.03528131472933607, "acc_norm": 0.5323383084577115, "acc_norm_stderr": 0.03528131472933607 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.82, "acc_stderr": 0.038612291966536934, "acc_norm": 0.82, "acc_norm_stderr": 0.038612291966536934 }, "harness|hendrycksTest-virology|5": { "acc": 0.4819277108433735, "acc_stderr": 0.038899512528272166, "acc_norm": 0.4819277108433735, "acc_norm_stderr": 0.038899512528272166 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8187134502923976, "acc_stderr": 0.029547741687640038, "acc_norm": 0.8187134502923976, "acc_norm_stderr": 0.029547741687640038 }, "harness|truthfulqa:mc|0": { "mc1": 0.408812729498164, "mc1_stderr": 0.01720995215164173, "mc2": 0.5748009213372511, "mc2_stderr": 0.015610411040968409 }, "harness|winogrande|5": { "acc": 0.7655880031570639, "acc_stderr": 0.011906130106237986 }, "harness|gsm8k|5": { "acc": 0.5595147839272175, "acc_stderr": 0.013674572131693888 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_Eurdem__Voltran-1.0-MoE-2x7B
[ "region:us" ]
2024-01-22T07:52:07+00:00
{"pretty_name": "Evaluation run of Eurdem/Voltran-1.0-MoE-2x7B", "dataset_summary": "Dataset automatically created during the evaluation run of model [Eurdem/Voltran-1.0-MoE-2x7B](https://huggingface.co/Eurdem/Voltran-1.0-MoE-2x7B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_Eurdem__Voltran-1.0-MoE-2x7B\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-22T07:49:54.062079](https://huggingface.co/datasets/open-llm-leaderboard/details_Eurdem__Voltran-1.0-MoE-2x7B/blob/main/results_2024-01-22T07-49-54.062079.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6144636049773026,\n \"acc_stderr\": 0.033017267421085336,\n \"acc_norm\": 0.6168693020696908,\n \"acc_norm_stderr\": 0.033678924264574035,\n \"mc1\": 0.408812729498164,\n \"mc1_stderr\": 0.01720995215164173,\n \"mc2\": 0.5748009213372511,\n \"mc2_stderr\": 0.015610411040968409\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.5955631399317406,\n \"acc_stderr\": 0.014342036483436179,\n \"acc_norm\": 0.6407849829351536,\n \"acc_norm_stderr\": 0.014020224155839162\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6444931288587931,\n \"acc_stderr\": 0.004776883632722614,\n \"acc_norm\": 0.837382991435969,\n \"acc_norm_stderr\": 0.0036826171219143085\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.31,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6,\n \"acc_stderr\": 0.04232073695151589,\n \"acc_norm\": 0.6,\n \"acc_norm_stderr\": 0.04232073695151589\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.6710526315789473,\n \"acc_stderr\": 0.038234289699266046,\n \"acc_norm\": 0.6710526315789473,\n \"acc_norm_stderr\": 0.038234289699266046\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.55,\n \"acc_stderr\": 0.05,\n \"acc_norm\": 0.55,\n \"acc_norm_stderr\": 0.05\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.6641509433962264,\n \"acc_stderr\": 0.029067220146644823,\n \"acc_norm\": 0.6641509433962264,\n \"acc_norm_stderr\": 0.029067220146644823\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7083333333333334,\n \"acc_stderr\": 0.038009680605548594,\n \"acc_norm\": 0.7083333333333334,\n \"acc_norm_stderr\": 0.038009680605548594\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.46,\n \"acc_stderr\": 0.05009082659620333,\n \"acc_norm\": 0.46,\n \"acc_norm_stderr\": 0.05009082659620333\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.55,\n \"acc_stderr\": 0.05,\n \"acc_norm\": 0.55,\n \"acc_norm_stderr\": 0.05\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.34,\n \"acc_stderr\": 0.04760952285695235,\n \"acc_norm\": 0.34,\n \"acc_norm_stderr\": 0.04760952285695235\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6069364161849711,\n \"acc_stderr\": 0.03724249595817731,\n \"acc_norm\": 0.6069364161849711,\n \"acc_norm_stderr\": 0.03724249595817731\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.3431372549019608,\n \"acc_stderr\": 0.047240073523838876,\n \"acc_norm\": 0.3431372549019608,\n \"acc_norm_stderr\": 0.047240073523838876\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.76,\n \"acc_stderr\": 0.04292346959909284,\n \"acc_norm\": 0.76,\n \"acc_norm_stderr\": 0.04292346959909284\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5148936170212766,\n \"acc_stderr\": 0.03267151848924777,\n \"acc_norm\": 0.5148936170212766,\n \"acc_norm_stderr\": 0.03267151848924777\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.47368421052631576,\n \"acc_stderr\": 0.046970851366478626,\n \"acc_norm\": 0.47368421052631576,\n \"acc_norm_stderr\": 0.046970851366478626\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5655172413793104,\n \"acc_stderr\": 0.04130740879555497,\n \"acc_norm\": 0.5655172413793104,\n \"acc_norm_stderr\": 0.04130740879555497\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.40476190476190477,\n \"acc_stderr\": 0.025279850397404904,\n \"acc_norm\": 0.40476190476190477,\n \"acc_norm_stderr\": 0.025279850397404904\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.42063492063492064,\n \"acc_stderr\": 0.04415438226743744,\n \"acc_norm\": 0.42063492063492064,\n \"acc_norm_stderr\": 0.04415438226743744\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.37,\n \"acc_stderr\": 0.04852365870939099,\n \"acc_norm\": 0.37,\n \"acc_norm_stderr\": 0.04852365870939099\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.5612903225806452,\n \"acc_stderr\": 0.02822949732031721,\n \"acc_norm\": 0.5612903225806452,\n \"acc_norm_stderr\": 0.02822949732031721\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.4827586206896552,\n \"acc_stderr\": 0.035158955511656986,\n \"acc_norm\": 0.4827586206896552,\n \"acc_norm_stderr\": 0.035158955511656986\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.66,\n \"acc_stderr\": 0.04760952285695237,\n \"acc_norm\": 0.66,\n \"acc_norm_stderr\": 0.04760952285695237\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7454545454545455,\n \"acc_stderr\": 0.03401506715249039,\n \"acc_norm\": 0.7454545454545455,\n \"acc_norm_stderr\": 0.03401506715249039\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7676767676767676,\n \"acc_stderr\": 0.030088629490217487,\n \"acc_norm\": 0.7676767676767676,\n \"acc_norm_stderr\": 0.030088629490217487\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8393782383419689,\n \"acc_stderr\": 0.02649905770139744,\n \"acc_norm\": 0.8393782383419689,\n \"acc_norm_stderr\": 0.02649905770139744\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.5897435897435898,\n \"acc_stderr\": 0.024939313906940788,\n \"acc_norm\": 0.5897435897435898,\n \"acc_norm_stderr\": 0.024939313906940788\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.32592592592592595,\n \"acc_stderr\": 0.028578348365473072,\n \"acc_norm\": 0.32592592592592595,\n \"acc_norm_stderr\": 0.028578348365473072\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6218487394957983,\n \"acc_stderr\": 0.031499305777849054,\n \"acc_norm\": 0.6218487394957983,\n \"acc_norm_stderr\": 0.031499305777849054\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.3443708609271523,\n \"acc_stderr\": 0.038796870240733264,\n \"acc_norm\": 0.3443708609271523,\n \"acc_norm_stderr\": 0.038796870240733264\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8201834862385321,\n \"acc_stderr\": 0.01646534546739152,\n \"acc_norm\": 0.8201834862385321,\n \"acc_norm_stderr\": 0.01646534546739152\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.49074074074074076,\n \"acc_stderr\": 0.034093869469927006,\n \"acc_norm\": 0.49074074074074076,\n \"acc_norm_stderr\": 0.034093869469927006\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.7696078431372549,\n \"acc_stderr\": 0.029554292605695063,\n \"acc_norm\": 0.7696078431372549,\n \"acc_norm_stderr\": 0.029554292605695063\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7805907172995781,\n \"acc_stderr\": 0.026939106581553945,\n \"acc_norm\": 0.7805907172995781,\n \"acc_norm_stderr\": 0.026939106581553945\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6502242152466368,\n \"acc_stderr\": 0.03200736719484503,\n \"acc_norm\": 0.6502242152466368,\n \"acc_norm_stderr\": 0.03200736719484503\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7633587786259542,\n \"acc_stderr\": 0.03727673575596913,\n \"acc_norm\": 0.7633587786259542,\n \"acc_norm_stderr\": 0.03727673575596913\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8181818181818182,\n \"acc_stderr\": 0.03520893951097653,\n \"acc_norm\": 0.8181818181818182,\n \"acc_norm_stderr\": 0.03520893951097653\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7407407407407407,\n \"acc_stderr\": 0.04236511258094633,\n \"acc_norm\": 0.7407407407407407,\n \"acc_norm_stderr\": 0.04236511258094633\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7116564417177914,\n \"acc_stderr\": 0.035590395316173425,\n \"acc_norm\": 0.7116564417177914,\n \"acc_norm_stderr\": 0.035590395316173425\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.49107142857142855,\n \"acc_stderr\": 0.04745033255489123,\n \"acc_norm\": 0.49107142857142855,\n \"acc_norm_stderr\": 0.04745033255489123\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7572815533980582,\n \"acc_stderr\": 0.04245022486384495,\n \"acc_norm\": 0.7572815533980582,\n \"acc_norm_stderr\": 0.04245022486384495\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8888888888888888,\n \"acc_stderr\": 0.020588491316092368,\n \"acc_norm\": 0.8888888888888888,\n \"acc_norm_stderr\": 0.020588491316092368\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.72,\n \"acc_stderr\": 0.04512608598542128,\n \"acc_norm\": 0.72,\n \"acc_norm_stderr\": 0.04512608598542128\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8109833971902938,\n \"acc_stderr\": 0.014000791294406999,\n \"acc_norm\": 0.8109833971902938,\n \"acc_norm_stderr\": 0.014000791294406999\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.6734104046242775,\n \"acc_stderr\": 0.025248264774242836,\n \"acc_norm\": 0.6734104046242775,\n \"acc_norm_stderr\": 0.025248264774242836\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.4324022346368715,\n \"acc_stderr\": 0.01656897123354861,\n \"acc_norm\": 0.4324022346368715,\n \"acc_norm_stderr\": 0.01656897123354861\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.6928104575163399,\n \"acc_stderr\": 0.026415601914388992,\n \"acc_norm\": 0.6928104575163399,\n \"acc_norm_stderr\": 0.026415601914388992\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.684887459807074,\n \"acc_stderr\": 0.026385273703464492,\n \"acc_norm\": 0.684887459807074,\n \"acc_norm_stderr\": 0.026385273703464492\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.7191358024691358,\n \"acc_stderr\": 0.025006469755799208,\n \"acc_norm\": 0.7191358024691358,\n \"acc_norm_stderr\": 0.025006469755799208\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.46099290780141844,\n \"acc_stderr\": 0.02973659252642444,\n \"acc_norm\": 0.46099290780141844,\n \"acc_norm_stderr\": 0.02973659252642444\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.4452411994784876,\n \"acc_stderr\": 0.012693421303973294,\n \"acc_norm\": 0.4452411994784876,\n \"acc_norm_stderr\": 0.012693421303973294\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6507352941176471,\n \"acc_stderr\": 0.028959755196824866,\n \"acc_norm\": 0.6507352941176471,\n \"acc_norm_stderr\": 0.028959755196824866\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6633986928104575,\n \"acc_stderr\": 0.019117213911495144,\n \"acc_norm\": 0.6633986928104575,\n \"acc_norm_stderr\": 0.019117213911495144\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6454545454545455,\n \"acc_stderr\": 0.045820048415054174,\n \"acc_norm\": 0.6454545454545455,\n \"acc_norm_stderr\": 0.045820048415054174\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7306122448979592,\n \"acc_stderr\": 0.02840125202902294,\n \"acc_norm\": 0.7306122448979592,\n \"acc_norm_stderr\": 0.02840125202902294\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.5323383084577115,\n \"acc_stderr\": 0.03528131472933607,\n \"acc_norm\": 0.5323383084577115,\n \"acc_norm_stderr\": 0.03528131472933607\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.82,\n \"acc_stderr\": 0.038612291966536934,\n \"acc_norm\": 0.82,\n \"acc_norm_stderr\": 0.038612291966536934\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.4819277108433735,\n \"acc_stderr\": 0.038899512528272166,\n \"acc_norm\": 0.4819277108433735,\n \"acc_norm_stderr\": 0.038899512528272166\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8187134502923976,\n \"acc_stderr\": 0.029547741687640038,\n \"acc_norm\": 0.8187134502923976,\n \"acc_norm_stderr\": 0.029547741687640038\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.408812729498164,\n \"mc1_stderr\": 0.01720995215164173,\n \"mc2\": 0.5748009213372511,\n \"mc2_stderr\": 0.015610411040968409\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.7655880031570639,\n \"acc_stderr\": 0.011906130106237986\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.5595147839272175,\n \"acc_stderr\": 0.013674572131693888\n }\n}\n```", "repo_url": "https://huggingface.co/Eurdem/Voltran-1.0-MoE-2x7B", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|arc:challenge|25_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|gsm8k|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hellaswag|10_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T07-49-54.062079.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["**/details_harness|winogrande|5_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-22T07-49-54.062079.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_22T07_49_54.062079", "path": ["results_2024-01-22T07-49-54.062079.parquet"]}, {"split": "latest", "path": ["results_2024-01-22T07-49-54.062079.parquet"]}]}]}
2024-01-22T07:52:29+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of Eurdem/Voltran-1.0-MoE-2x7B Dataset automatically created during the evaluation run of model Eurdem/Voltran-1.0-MoE-2x7B on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-22T07:49:54.062079(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of Eurdem/Voltran-1.0-MoE-2x7B\n\n\n\nDataset automatically created during the evaluation run of model Eurdem/Voltran-1.0-MoE-2x7B on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T07:49:54.062079(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of Eurdem/Voltran-1.0-MoE-2x7B\n\n\n\nDataset automatically created during the evaluation run of model Eurdem/Voltran-1.0-MoE-2x7B on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T07:49:54.062079(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
3c2c9fe9e5785e6d81f5510bf4639e7e5c9d2cb0
# Dataset Card for "one-summary-test" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
mtc/one-summary-test
[ "region:us" ]
2024-01-22T08:01:11+00:00
{"dataset_info": {"features": [{"name": "document", "dtype": "string"}, {"name": "summary", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5018, "num_examples": 4}], "download_size": 0, "dataset_size": 5018}}
2024-01-24T12:10:45+00:00
[]
[]
TAGS #region-us
# Dataset Card for "one-summary-test" More Information needed
[ "# Dataset Card for \"one-summary-test\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"one-summary-test\"\n\nMore Information needed" ]
4c46ec3a9ce0d63521f23304653d6572b9d4e681
About Dataset Context The National Park Service publishes a database of animal and plant species identified in individual national parks and verified by evidence — observations, vouchers, or reports that document the presence of a species in a park. All park species records are available to the public on the National Park Species portal; exceptions are made for sensitive, threatened, or endangered species when widespread distribution of information could pose a risk to the species in the park. Content National Park species lists provide information on the presence and status of species in our national parks. These species lists are works in progress and the absence of a species from a list does not necessarily mean the species is absent from a park. The time and effort spent on species inventories varies from park to park, which may result in data gaps. Species taxonomy changes over time and reflects regional variations or preferences; therefore, records may be listed under a different species name. Each park species record includes a species ID, park name, taxonomic information, scientific name, one or more common names, record status, occurrence (verification of species presence in park), nativeness (species native or foreign to park), abundance (presence and visibility of species in park), seasonality (season and nature of presence in park), and conservation status (species classification according to US Fish & Wildlife Service). Taxonomic classes have been translated from Latin to English for species categorization; order, family, and scientific name (genus, species, subspecies) are in Latin. Acknowledgements The National Park Service species list database is managed and updated by staff at individual national parks and the systemwide Inventory and Monitoring department. Source: https://irma.nps.gov/NPSpecies Also available on Kaggle: https://www.kaggle.com/datasets/nationalparkservice/park-biodiversity Users interested in getting this data via web services, please go to: http://irmaservices.nps.gov
Solshine/Biodiversity_In_National_Parks
[ "license:cc", "region:us" ]
2024-01-22T08:08:19+00:00
{"license": "cc"}
2024-01-22T08:11:25+00:00
[]
[]
TAGS #license-cc #region-us
About Dataset Context The National Park Service publishes a database of animal and plant species identified in individual national parks and verified by evidence — observations, vouchers, or reports that document the presence of a species in a park. All park species records are available to the public on the National Park Species portal; exceptions are made for sensitive, threatened, or endangered species when widespread distribution of information could pose a risk to the species in the park. Content National Park species lists provide information on the presence and status of species in our national parks. These species lists are works in progress and the absence of a species from a list does not necessarily mean the species is absent from a park. The time and effort spent on species inventories varies from park to park, which may result in data gaps. Species taxonomy changes over time and reflects regional variations or preferences; therefore, records may be listed under a different species name. Each park species record includes a species ID, park name, taxonomic information, scientific name, one or more common names, record status, occurrence (verification of species presence in park), nativeness (species native or foreign to park), abundance (presence and visibility of species in park), seasonality (season and nature of presence in park), and conservation status (species classification according to US Fish & Wildlife Service). Taxonomic classes have been translated from Latin to English for species categorization; order, family, and scientific name (genus, species, subspecies) are in Latin. Acknowledgements The National Park Service species list database is managed and updated by staff at individual national parks and the systemwide Inventory and Monitoring department. Source: URL Also available on Kaggle: URL Users interested in getting this data via web services, please go to: URL
[]
[ "TAGS\n#license-cc #region-us \n" ]
efa78cc2f74bbcd21eff2261f9e13aebe40b814e
Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering https://github.com/amazon-science/mintaka We only took entity-type answers and avoided answers that were only numbers or booleans ``` @inproceedings{sen-etal-2022-mintaka, title = "Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering", author = "Sen, Priyanka and Aji, Alham Fikri and Saffari, Amir", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics", url = "https://aclanthology.org/2022.coling-1.138", pages = "1604--1619" } ```
jinaai/mintakaqa
[ "region:eu" ]
2024-01-22T08:21:58+00:00
{}
2024-01-22T13:03:06+00:00
[]
[]
TAGS #region-eu
Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering URL We only took entity-type answers and avoided answers that were only numbers or booleans
[]
[ "TAGS\n#region-eu \n" ]
0afdbedeefdfb34e328fea3c0ed68c7bdecf13a1
# Dataset Card for "one-document-test" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
mtc/one-document-test
[ "region:us" ]
2024-01-22T08:26:02+00:00
{"dataset_info": {"features": [{"name": "document", "dtype": "string"}, {"name": "summary", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 18457, "num_examples": 4}], "download_size": 19435, "dataset_size": 18457}}
2024-01-22T14:31:25+00:00
[]
[]
TAGS #region-us
# Dataset Card for "one-document-test" More Information needed
[ "# Dataset Card for \"one-document-test\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"one-document-test\"\n\nMore Information needed" ]
b00204c55460c28b25eac841a3de8d0b01a488a7
This is a dataset created using [vector-io](https://github.com/ai-northstar-tech/vector-io)
dhruv-anand-aintech/vdf_20240122_140004_c932b
[ "vdf", "vector-io", "vector-dataset", "vector-embeddings", "region:us" ]
2024-01-22T08:30:23+00:00
{"tags": ["vdf", "vector-io", "vector-dataset", "vector-embeddings"]}
2024-01-22T08:30:31+00:00
[]
[]
TAGS #vdf #vector-io #vector-dataset #vector-embeddings #region-us
This is a dataset created using vector-io
[]
[ "TAGS\n#vdf #vector-io #vector-dataset #vector-embeddings #region-us \n" ]
161fd3ce40f6fad4c57ecee9c51d72d8fc4a3434
This dataset is for VinT_Bench: Benchmarking the Object-in-hand Pose from Vision, Touch, and Proproception. Senlin update the vint-sim, Zhaoliang update the vint-real
Jeffreyzhaoliang/vint-bench
[ "license:mit", "region:us" ]
2024-01-22T08:31:47+00:00
{"license": "mit"}
2024-02-06T05:59:30+00:00
[]
[]
TAGS #license-mit #region-us
This dataset is for VinT_Bench: Benchmarking the Object-in-hand Pose from Vision, Touch, and Proproception. Senlin update the vint-sim, Zhaoliang update the vint-real
[]
[ "TAGS\n#license-mit #region-us \n" ]
680bd6217a6a1eb9f7b20418fe58506a3afe61d3
# Animagine XL 3.0 Character [EasySdxlWebUi](https://github.com/Zuntan03/EasySdxlWebUi) による [Animagine XL 3.0](https://huggingface.co/cagliostrolab/animagine-xl-3.0) の [公式 Character ワイルドカード](https://huggingface.co/spaces/Linaqruf/animagine-xl/resolve/main/wildcard/character.txt) の立ち絵データセットです。 データセットのダウンロードは [こちら(2880枚、497MB)](https://huggingface.co/datasets/Zuntan/Animagine_XL_3.0-Character/resolve/main/character.zip?download=true)。 **[表情(278MB)](https://huggingface.co/datasets/Zuntan/Animagine_XL_3.0-Character/resolve/main/face.zip?download=true) と [画風(115MB)](https://yyy.wpx.jp/EasySdxlWebUi/style.zip) も用意しました。** ![face](./face_grid.webp) 画像の類似度や Tagger の結果比較で正常動作するワイルドカードリストを用意できないかな?と思って始めてみました。 が、衣装違いなどの不正解画像でも作品名やキャラ名の影響を大きく受けるため、他のソースなしの正否分類は難しそうです。 - 各 webp 画像を [Stable Diffusion web UI](https://github.com/AUTOMATIC1111/stable-diffusion-webui) の `PNG内の情報を表示` にドラッグ&ドロップすると生成情報を確認できます。 - プロンプトは `__animagine/character__, solo, full body, standing, no background, simple background, masterpiece, best quality <lora:lcm-animagine-3:1>` です。 - ネガティブプロンプト Animagine XL のデフォルトネガティブの先頭に NSFW 対策付与で `nsfw, rating: sensitive, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name` です。 - アップスケール前の生成サイズは `832` x `1216` です。 - Seed は `1234567` です。 - 他のシードで正否が変わる可能性があります。 - 他は EasySdxlWebUi のデフォルト設定です。 [grid0](https://yyy.wpx.jp/m/202401/animagine_character/grid0.webp), [grid1](https://yyy.wpx.jp/m/202401/animagine_character/grid1.webp), [grid2](https://yyy.wpx.jp/m/202401/animagine_character/grid2.webp), [grid3](https://yyy.wpx.jp/m/202401/animagine_character/grid3.webp)
Zuntan/Animagine_XL_3.0-Character
[ "license:unknown", "region:us" ]
2024-01-22T08:43:04+00:00
{"license": "unknown"}
2024-01-26T09:19:08+00:00
[]
[]
TAGS #license-unknown #region-us
# Animagine XL 3.0 Character EasySdxlWebUi による Animagine XL 3.0 の 公式 Character ワイルドカード の立ち絵データセットです。 データセットのダウンロードは こちら(2880枚、497MB)。 表情(278MB) と 画風(115MB) も用意しました。 !face 画像の類似度や Tagger の結果比較で正常動作するワイルドカードリストを用意できないかな?と思って始めてみました。 が、衣装違いなどの不正解画像でも作品名やキャラ名の影響を大きく受けるため、他のソースなしの正否分類は難しそうです。 - 各 webp 画像を Stable Diffusion web UI の 'PNG内の情報を表示' にドラッグ&ドロップすると生成情報を確認できます。 - プロンプトは '__animagine/character__, solo, full body, standing, no background, simple background, masterpiece, best quality <lora:lcm-animagine-3:1>' です。 - ネガティブプロンプト Animagine XL のデフォルトネガティブの先頭に NSFW 対策付与で 'nsfw, rating: sensitive, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name' です。 - アップスケール前の生成サイズは '832' x '1216' です。 - Seed は '1234567' です。 - 他のシードで正否が変わる可能性があります。 - 他は EasySdxlWebUi のデフォルト設定です。 grid0, grid1, grid2, grid3
[ "# Animagine XL 3.0 Character\n\nEasySdxlWebUi による Animagine XL 3.0 の 公式 Character ワイルドカード の立ち絵データセットです。\n\nデータセットのダウンロードは こちら(2880枚、497MB)。 \n表情(278MB) と 画風(115MB) も用意しました。\n\n!face\n\n画像の類似度や Tagger の結果比較で正常動作するワイルドカードリストを用意できないかな?と思って始めてみました。 \nが、衣装違いなどの不正解画像でも作品名やキャラ名の影響を大きく受けるため、他のソースなしの正否分類は難しそうです。\n\n- 各 webp 画像を Stable Diffusion web UI の 'PNG内の情報を表示' にドラッグ&ドロップすると生成情報を確認できます。\n- プロンプトは '__animagine/character__, solo, full body, standing, no background, simple background, masterpiece, best quality <lora:lcm-animagine-3:1>' です。\n- ネガティブプロンプト Animagine XL のデフォルトネガティブの先頭に NSFW 対策付与で 'nsfw, rating: sensitive, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name' です。\n- アップスケール前の生成サイズは '832' x '1216' です。\n- Seed は '1234567' です。\n\t- 他のシードで正否が変わる可能性があります。\n- 他は EasySdxlWebUi のデフォルト設定です。\n\ngrid0, \ngrid1, \ngrid2, \ngrid3" ]
[ "TAGS\n#license-unknown #region-us \n", "# Animagine XL 3.0 Character\n\nEasySdxlWebUi による Animagine XL 3.0 の 公式 Character ワイルドカード の立ち絵データセットです。\n\nデータセットのダウンロードは こちら(2880枚、497MB)。 \n表情(278MB) と 画風(115MB) も用意しました。\n\n!face\n\n画像の類似度や Tagger の結果比較で正常動作するワイルドカードリストを用意できないかな?と思って始めてみました。 \nが、衣装違いなどの不正解画像でも作品名やキャラ名の影響を大きく受けるため、他のソースなしの正否分類は難しそうです。\n\n- 各 webp 画像を Stable Diffusion web UI の 'PNG内の情報を表示' にドラッグ&ドロップすると生成情報を確認できます。\n- プロンプトは '__animagine/character__, solo, full body, standing, no background, simple background, masterpiece, best quality <lora:lcm-animagine-3:1>' です。\n- ネガティブプロンプト Animagine XL のデフォルトネガティブの先頭に NSFW 対策付与で 'nsfw, rating: sensitive, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name' です。\n- アップスケール前の生成サイズは '832' x '1216' です。\n- Seed は '1234567' です。\n\t- 他のシードで正否が変わる可能性があります。\n- 他は EasySdxlWebUi のデフォルト設定です。\n\ngrid0, \ngrid1, \ngrid2, \ngrid3" ]
c99d599f0a6ab9b85b065da6f9d94f9cf731679f
xPQA is a large-scale annotated cross-lingual Product QA dataset https://arxiv.org/abs/2305.09249 https://github.com/amazon-science/contextual-product-qa?tab=readme-ov-file#xpqa ``` @article{shen2023xpqa, title={xPQA: Cross-Lingual Product Question Answering across 12 Languages}, author={Shen, Xiaoyu and Asai, Akari and Byrne, Bill and de Gispert, Adri{\`a}}, journal={arXiv preprint arXiv:2305.09249}, year={2023} } ```
jinaai/xpqa
[ "arxiv:2305.09249", "region:eu" ]
2024-01-22T08:51:01+00:00
{}
2024-01-22T13:04:24+00:00
[ "2305.09249" ]
[]
TAGS #arxiv-2305.09249 #region-eu
xPQA is a large-scale annotated cross-lingual Product QA dataset URL URL
[]
[ "TAGS\n#arxiv-2305.09249 #region-eu \n" ]
81120515b20c8b0246c6e7b517a540d96a22a871
- max count_word cluster_1: 1722 - min count_word cluster_1: 11 - max count_word cluster_2: 2624 - min count_word cluster_2: 21 - max count_word cluster_3: 2370 - min count_word cluster_3: 31 ```Python DatasetDict({ Cluster_1: Dataset({ features: ['Text', 'Cluster', 'Polarity', 'count_word'], num_rows: 4797 }) Cluster_2: Dataset({ features: ['Text', 'Cluster', 'Polarity', 'count_word'], num_rows: 4025 }) Cluster_3: Dataset({ features: ['Text', 'Cluster', 'Polarity', 'count_word'], num_rows: 5026 }) }) ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/641b435ba5f876fe30c5ae0a/Ttmlj2f0dGArlmxDfcQMq.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/641b435ba5f876fe30c5ae0a/rvDdQ10Ike-niaNBTV6Mp.png)
NickyNicky/oasst2_clusters
[ "language:en", "language:es", "language:ru", "language:zh", "language:de", "language:fr", "language:th", "language:ca", "language:it", "language:ja", "language:pl", "language:eo", "language:eu", "language:vi", "language:fi", "language:hu", "language:ar", "language:nl", "language:da", "language:tr", "language:ko", "language:he", "language:id", "language:cs", "language:bn", "language:sv", "region:us" ]
2024-01-22T08:52:53+00:00
{"language": ["en", "es", "ru", "zh", "de", "fr", "th", "ca", "it", "ja", "pl", "eo", "eu", "vi", "fi", "hu", "ar", "nl", "da", "tr", "ko", "he", "id", "cs", "bn", "sv"], "dataset_info": {"features": [{"name": "Text", "dtype": "string"}, {"name": "Cluster", "dtype": "int32"}, {"name": "Polarity", "dtype": "float64"}, {"name": "count_word", "dtype": "int64"}], "splits": [{"name": "Cluster_1", "num_bytes": 11487341, "num_examples": 4797}, {"name": "Cluster_2", "num_bytes": 8423711, "num_examples": 4025}, {"name": "Cluster_3", "num_bytes": 16002250, "num_examples": 5026}], "download_size": 18951480, "dataset_size": 35913302}, "configs": [{"config_name": "default", "data_files": [{"split": "Cluster_1", "path": "data/Cluster_1-*"}, {"split": "Cluster_2", "path": "data/Cluster_2-*"}, {"split": "Cluster_3", "path": "data/Cluster_3-*"}]}]}
2024-01-26T13:16:49+00:00
[]
[ "en", "es", "ru", "zh", "de", "fr", "th", "ca", "it", "ja", "pl", "eo", "eu", "vi", "fi", "hu", "ar", "nl", "da", "tr", "ko", "he", "id", "cs", "bn", "sv" ]
TAGS #language-English #language-Spanish #language-Russian #language-Chinese #language-German #language-French #language-Thai #language-Catalan #language-Italian #language-Japanese #language-Polish #language-Esperanto #language-Basque #language-Vietnamese #language-Finnish #language-Hungarian #language-Arabic #language-Dutch #language-Danish #language-Turkish #language-Korean #language-Hebrew #language-Indonesian #language-Czech #language-Bengali #language-Swedish #region-us
- max count_word cluster_1: 1722 - min count_word cluster_1: 11 - max count_word cluster_2: 2624 - min count_word cluster_2: 21 - max count_word cluster_3: 2370 - min count_word cluster_3: 31 !image/png !image/png
[]
[ "TAGS\n#language-English #language-Spanish #language-Russian #language-Chinese #language-German #language-French #language-Thai #language-Catalan #language-Italian #language-Japanese #language-Polish #language-Esperanto #language-Basque #language-Vietnamese #language-Finnish #language-Hungarian #language-Arabic #language-Dutch #language-Danish #language-Turkish #language-Korean #language-Hebrew #language-Indonesian #language-Czech #language-Bengali #language-Swedish #region-us \n" ]
cce93bc1b608facec8cf883f2369968b48fffc59
# Dataset Card for Evaluation run of senseable/WestLake-7B-v2 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [senseable/WestLake-7B-v2](https://huggingface.co/senseable/WestLake-7B-v2) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_senseable__WestLake-7B-v2", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-22T09:52:08.185697](https://huggingface.co/datasets/open-llm-leaderboard/details_senseable__WestLake-7B-v2/blob/main/results_2024-01-22T09-52-08.185697.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.6533732034583493, "acc_stderr": 0.03209755561849309, "acc_norm": 0.652581699527691, "acc_norm_stderr": 0.03277838192989007, "mc1": 0.5422276621787026, "mc1_stderr": 0.017440965712482125, "mc2": 0.6706202401619532, "mc2_stderr": 0.015393271752873241 }, "harness|arc:challenge|25": { "acc": 0.7047781569965871, "acc_stderr": 0.013329750293382318, "acc_norm": 0.7303754266211604, "acc_norm_stderr": 0.01296804068686914 }, "harness|hellaswag|10": { "acc": 0.7194781915952997, "acc_stderr": 0.0044833603701405775, "acc_norm": 0.8864767974507071, "acc_norm_stderr": 0.0031658294884891794 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.32, "acc_stderr": 0.046882617226215034, "acc_norm": 0.32, "acc_norm_stderr": 0.046882617226215034 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6666666666666666, "acc_stderr": 0.04072314811876837, "acc_norm": 0.6666666666666666, "acc_norm_stderr": 0.04072314811876837 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.7105263157894737, "acc_stderr": 0.03690677986137283, "acc_norm": 0.7105263157894737, "acc_norm_stderr": 0.03690677986137283 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.64, "acc_stderr": 0.04824181513244218, "acc_norm": 0.64, "acc_norm_stderr": 0.04824181513244218 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.720754716981132, "acc_stderr": 0.027611163402399715, "acc_norm": 0.720754716981132, "acc_norm_stderr": 0.027611163402399715 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.7569444444444444, "acc_stderr": 0.03586879280080341, "acc_norm": 0.7569444444444444, "acc_norm_stderr": 0.03586879280080341 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.45, "acc_stderr": 0.05, "acc_norm": 0.45, "acc_norm_stderr": 0.05 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.53, "acc_stderr": 0.050161355804659205, "acc_norm": 0.53, "acc_norm_stderr": 0.050161355804659205 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.32, "acc_stderr": 0.04688261722621504, "acc_norm": 0.32, "acc_norm_stderr": 0.04688261722621504 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6647398843930635, "acc_stderr": 0.03599586301247077, "acc_norm": 0.6647398843930635, "acc_norm_stderr": 0.03599586301247077 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.4117647058823529, "acc_stderr": 0.048971049527263666, "acc_norm": 0.4117647058823529, "acc_norm_stderr": 0.048971049527263666 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.75, "acc_stderr": 0.04351941398892446, "acc_norm": 0.75, "acc_norm_stderr": 0.04351941398892446 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.574468085106383, "acc_stderr": 0.03232146916224468, "acc_norm": 0.574468085106383, "acc_norm_stderr": 0.03232146916224468 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.5, "acc_stderr": 0.047036043419179864, "acc_norm": 0.5, "acc_norm_stderr": 0.047036043419179864 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.5586206896551724, "acc_stderr": 0.04137931034482757, "acc_norm": 0.5586206896551724, "acc_norm_stderr": 0.04137931034482757 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.4444444444444444, "acc_stderr": 0.025591857761382186, "acc_norm": 0.4444444444444444, "acc_norm_stderr": 0.025591857761382186 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.49206349206349204, "acc_stderr": 0.044715725362943486, "acc_norm": 0.49206349206349204, "acc_norm_stderr": 0.044715725362943486 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.34, "acc_stderr": 0.04760952285695235, "acc_norm": 0.34, "acc_norm_stderr": 0.04760952285695235 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.7838709677419354, "acc_stderr": 0.02341529343356852, "acc_norm": 0.7838709677419354, "acc_norm_stderr": 0.02341529343356852 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.5024630541871922, "acc_stderr": 0.035179450386910616, "acc_norm": 0.5024630541871922, "acc_norm_stderr": 0.035179450386910616 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.68, "acc_stderr": 0.04688261722621505, "acc_norm": 0.68, "acc_norm_stderr": 0.04688261722621505 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7878787878787878, "acc_stderr": 0.031922715695483016, "acc_norm": 0.7878787878787878, "acc_norm_stderr": 0.031922715695483016 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.8131313131313131, "acc_stderr": 0.027772533334218974, "acc_norm": 0.8131313131313131, "acc_norm_stderr": 0.027772533334218974 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.9067357512953368, "acc_stderr": 0.02098685459328973, "acc_norm": 0.9067357512953368, "acc_norm_stderr": 0.02098685459328973 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.6641025641025641, "acc_stderr": 0.023946724741563973, "acc_norm": 0.6641025641025641, "acc_norm_stderr": 0.023946724741563973 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.35555555555555557, "acc_stderr": 0.029185714949857416, "acc_norm": 0.35555555555555557, "acc_norm_stderr": 0.029185714949857416 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6848739495798319, "acc_stderr": 0.030176808288974333, "acc_norm": 0.6848739495798319, "acc_norm_stderr": 0.030176808288974333 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.3841059602649007, "acc_stderr": 0.03971301814719197, "acc_norm": 0.3841059602649007, "acc_norm_stderr": 0.03971301814719197 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8385321100917431, "acc_stderr": 0.01577623925616325, "acc_norm": 0.8385321100917431, "acc_norm_stderr": 0.01577623925616325 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.49074074074074076, "acc_stderr": 0.034093869469927006, "acc_norm": 0.49074074074074076, "acc_norm_stderr": 0.034093869469927006 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.8431372549019608, "acc_stderr": 0.02552472232455335, "acc_norm": 0.8431372549019608, "acc_norm_stderr": 0.02552472232455335 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7932489451476793, "acc_stderr": 0.026361651668389094, "acc_norm": 0.7932489451476793, "acc_norm_stderr": 0.026361651668389094 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6905829596412556, "acc_stderr": 0.03102441174057221, "acc_norm": 0.6905829596412556, "acc_norm_stderr": 0.03102441174057221 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.7862595419847328, "acc_stderr": 0.0359546161177469, "acc_norm": 0.7862595419847328, "acc_norm_stderr": 0.0359546161177469 }, "harness|hendrycksTest-international_law|5": { "acc": 0.7933884297520661, "acc_stderr": 0.03695980128098823, "acc_norm": 0.7933884297520661, "acc_norm_stderr": 0.03695980128098823 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.75, "acc_stderr": 0.04186091791394607, "acc_norm": 0.75, "acc_norm_stderr": 0.04186091791394607 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.754601226993865, "acc_stderr": 0.03380939813943354, "acc_norm": 0.754601226993865, "acc_norm_stderr": 0.03380939813943354 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.41964285714285715, "acc_stderr": 0.04684099321077106, "acc_norm": 0.41964285714285715, "acc_norm_stderr": 0.04684099321077106 }, "harness|hendrycksTest-management|5": { "acc": 0.7572815533980582, "acc_stderr": 0.04245022486384495, "acc_norm": 0.7572815533980582, "acc_norm_stderr": 0.04245022486384495 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8974358974358975, "acc_stderr": 0.019875655027867454, "acc_norm": 0.8974358974358975, "acc_norm_stderr": 0.019875655027867454 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.75, "acc_stderr": 0.04351941398892446, "acc_norm": 0.75, "acc_norm_stderr": 0.04351941398892446 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.8212005108556832, "acc_stderr": 0.013702643715368985, "acc_norm": 0.8212005108556832, "acc_norm_stderr": 0.013702643715368985 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.7398843930635838, "acc_stderr": 0.023618678310069356, "acc_norm": 0.7398843930635838, "acc_norm_stderr": 0.023618678310069356 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.4446927374301676, "acc_stderr": 0.016619881988177015, "acc_norm": 0.4446927374301676, "acc_norm_stderr": 0.016619881988177015 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.7189542483660131, "acc_stderr": 0.02573885479781873, "acc_norm": 0.7189542483660131, "acc_norm_stderr": 0.02573885479781873 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.7106109324758842, "acc_stderr": 0.025755865922632945, "acc_norm": 0.7106109324758842, "acc_norm_stderr": 0.025755865922632945 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.75, "acc_stderr": 0.02409347123262133, "acc_norm": 0.75, "acc_norm_stderr": 0.02409347123262133 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.48226950354609927, "acc_stderr": 0.02980873964223777, "acc_norm": 0.48226950354609927, "acc_norm_stderr": 0.02980873964223777 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.4706649282920469, "acc_stderr": 0.012748238397365549, "acc_norm": 0.4706649282920469, "acc_norm_stderr": 0.012748238397365549 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.6691176470588235, "acc_stderr": 0.02858270975389845, "acc_norm": 0.6691176470588235, "acc_norm_stderr": 0.02858270975389845 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6568627450980392, "acc_stderr": 0.01920660684882536, "acc_norm": 0.6568627450980392, "acc_norm_stderr": 0.01920660684882536 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6636363636363637, "acc_stderr": 0.04525393596302506, "acc_norm": 0.6636363636363637, "acc_norm_stderr": 0.04525393596302506 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7306122448979592, "acc_stderr": 0.02840125202902294, "acc_norm": 0.7306122448979592, "acc_norm_stderr": 0.02840125202902294 }, "harness|hendrycksTest-sociology|5": { "acc": 0.835820895522388, "acc_stderr": 0.026193923544454115, "acc_norm": 0.835820895522388, "acc_norm_stderr": 0.026193923544454115 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.84, "acc_stderr": 0.03684529491774709, "acc_norm": 0.84, "acc_norm_stderr": 0.03684529491774709 }, "harness|hendrycksTest-virology|5": { "acc": 0.5421686746987951, "acc_stderr": 0.0387862677100236, "acc_norm": 0.5421686746987951, "acc_norm_stderr": 0.0387862677100236 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8304093567251462, "acc_stderr": 0.02878210810540171, "acc_norm": 0.8304093567251462, "acc_norm_stderr": 0.02878210810540171 }, "harness|truthfulqa:mc|0": { "mc1": 0.5422276621787026, "mc1_stderr": 0.017440965712482125, "mc2": 0.6706202401619532, "mc2_stderr": 0.015393271752873241 }, "harness|winogrande|5": { "acc": 0.8697711128650355, "acc_stderr": 0.009458870979028597 }, "harness|gsm8k|5": { "acc": 0.6762699014404853, "acc_stderr": 0.012888247397371141 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_senseable__WestLake-7B-v2
[ "region:us" ]
2024-01-22T09:54:32+00:00
{"pretty_name": "Evaluation run of senseable/WestLake-7B-v2", "dataset_summary": "Dataset automatically created during the evaluation run of model [senseable/WestLake-7B-v2](https://huggingface.co/senseable/WestLake-7B-v2) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_senseable__WestLake-7B-v2\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-22T09:52:08.185697](https://huggingface.co/datasets/open-llm-leaderboard/details_senseable__WestLake-7B-v2/blob/main/results_2024-01-22T09-52-08.185697.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6533732034583493,\n \"acc_stderr\": 0.03209755561849309,\n \"acc_norm\": 0.652581699527691,\n \"acc_norm_stderr\": 0.03277838192989007,\n \"mc1\": 0.5422276621787026,\n \"mc1_stderr\": 0.017440965712482125,\n \"mc2\": 0.6706202401619532,\n \"mc2_stderr\": 0.015393271752873241\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.7047781569965871,\n \"acc_stderr\": 0.013329750293382318,\n \"acc_norm\": 0.7303754266211604,\n \"acc_norm_stderr\": 0.01296804068686914\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.7194781915952997,\n \"acc_stderr\": 0.0044833603701405775,\n \"acc_norm\": 0.8864767974507071,\n \"acc_norm_stderr\": 0.0031658294884891794\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.32,\n \"acc_stderr\": 0.046882617226215034,\n \"acc_norm\": 0.32,\n \"acc_norm_stderr\": 0.046882617226215034\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6666666666666666,\n \"acc_stderr\": 0.04072314811876837,\n \"acc_norm\": 0.6666666666666666,\n \"acc_norm_stderr\": 0.04072314811876837\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.7105263157894737,\n \"acc_stderr\": 0.03690677986137283,\n \"acc_norm\": 0.7105263157894737,\n \"acc_norm_stderr\": 0.03690677986137283\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.64,\n \"acc_stderr\": 0.04824181513244218,\n \"acc_norm\": 0.64,\n \"acc_norm_stderr\": 0.04824181513244218\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.720754716981132,\n \"acc_stderr\": 0.027611163402399715,\n \"acc_norm\": 0.720754716981132,\n \"acc_norm_stderr\": 0.027611163402399715\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7569444444444444,\n \"acc_stderr\": 0.03586879280080341,\n \"acc_norm\": 0.7569444444444444,\n \"acc_norm_stderr\": 0.03586879280080341\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.45,\n \"acc_stderr\": 0.05,\n \"acc_norm\": 0.45,\n \"acc_norm_stderr\": 0.05\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.53,\n \"acc_stderr\": 0.050161355804659205,\n \"acc_norm\": 0.53,\n \"acc_norm_stderr\": 0.050161355804659205\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.32,\n \"acc_stderr\": 0.04688261722621504,\n \"acc_norm\": 0.32,\n \"acc_norm_stderr\": 0.04688261722621504\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6647398843930635,\n \"acc_stderr\": 0.03599586301247077,\n \"acc_norm\": 0.6647398843930635,\n \"acc_norm_stderr\": 0.03599586301247077\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.4117647058823529,\n \"acc_stderr\": 0.048971049527263666,\n \"acc_norm\": 0.4117647058823529,\n \"acc_norm_stderr\": 0.048971049527263666\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.75,\n \"acc_stderr\": 0.04351941398892446,\n \"acc_norm\": 0.75,\n \"acc_norm_stderr\": 0.04351941398892446\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.574468085106383,\n \"acc_stderr\": 0.03232146916224468,\n \"acc_norm\": 0.574468085106383,\n \"acc_norm_stderr\": 0.03232146916224468\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.5,\n \"acc_stderr\": 0.047036043419179864,\n \"acc_norm\": 0.5,\n \"acc_norm_stderr\": 0.047036043419179864\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5586206896551724,\n \"acc_stderr\": 0.04137931034482757,\n \"acc_norm\": 0.5586206896551724,\n \"acc_norm_stderr\": 0.04137931034482757\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.4444444444444444,\n \"acc_stderr\": 0.025591857761382186,\n \"acc_norm\": 0.4444444444444444,\n \"acc_norm_stderr\": 0.025591857761382186\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.49206349206349204,\n \"acc_stderr\": 0.044715725362943486,\n \"acc_norm\": 0.49206349206349204,\n \"acc_norm_stderr\": 0.044715725362943486\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.34,\n \"acc_stderr\": 0.04760952285695235,\n \"acc_norm\": 0.34,\n \"acc_norm_stderr\": 0.04760952285695235\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7838709677419354,\n \"acc_stderr\": 0.02341529343356852,\n \"acc_norm\": 0.7838709677419354,\n \"acc_norm_stderr\": 0.02341529343356852\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.5024630541871922,\n \"acc_stderr\": 0.035179450386910616,\n \"acc_norm\": 0.5024630541871922,\n \"acc_norm_stderr\": 0.035179450386910616\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.68,\n \"acc_stderr\": 0.04688261722621505,\n \"acc_norm\": 0.68,\n \"acc_norm_stderr\": 0.04688261722621505\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7878787878787878,\n \"acc_stderr\": 0.031922715695483016,\n \"acc_norm\": 0.7878787878787878,\n \"acc_norm_stderr\": 0.031922715695483016\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.8131313131313131,\n \"acc_stderr\": 0.027772533334218974,\n \"acc_norm\": 0.8131313131313131,\n \"acc_norm_stderr\": 0.027772533334218974\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.9067357512953368,\n \"acc_stderr\": 0.02098685459328973,\n \"acc_norm\": 0.9067357512953368,\n \"acc_norm_stderr\": 0.02098685459328973\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6641025641025641,\n \"acc_stderr\": 0.023946724741563973,\n \"acc_norm\": 0.6641025641025641,\n \"acc_norm_stderr\": 0.023946724741563973\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.35555555555555557,\n \"acc_stderr\": 0.029185714949857416,\n \"acc_norm\": 0.35555555555555557,\n \"acc_norm_stderr\": 0.029185714949857416\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6848739495798319,\n \"acc_stderr\": 0.030176808288974333,\n \"acc_norm\": 0.6848739495798319,\n \"acc_norm_stderr\": 0.030176808288974333\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.3841059602649007,\n \"acc_stderr\": 0.03971301814719197,\n \"acc_norm\": 0.3841059602649007,\n \"acc_norm_stderr\": 0.03971301814719197\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8385321100917431,\n \"acc_stderr\": 0.01577623925616325,\n \"acc_norm\": 0.8385321100917431,\n \"acc_norm_stderr\": 0.01577623925616325\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.49074074074074076,\n \"acc_stderr\": 0.034093869469927006,\n \"acc_norm\": 0.49074074074074076,\n \"acc_norm_stderr\": 0.034093869469927006\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.8431372549019608,\n \"acc_stderr\": 0.02552472232455335,\n \"acc_norm\": 0.8431372549019608,\n \"acc_norm_stderr\": 0.02552472232455335\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7932489451476793,\n \"acc_stderr\": 0.026361651668389094,\n \"acc_norm\": 0.7932489451476793,\n \"acc_norm_stderr\": 0.026361651668389094\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6905829596412556,\n \"acc_stderr\": 0.03102441174057221,\n \"acc_norm\": 0.6905829596412556,\n \"acc_norm_stderr\": 0.03102441174057221\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7862595419847328,\n \"acc_stderr\": 0.0359546161177469,\n \"acc_norm\": 0.7862595419847328,\n \"acc_norm_stderr\": 0.0359546161177469\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.7933884297520661,\n \"acc_stderr\": 0.03695980128098823,\n \"acc_norm\": 0.7933884297520661,\n \"acc_norm_stderr\": 0.03695980128098823\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.75,\n \"acc_stderr\": 0.04186091791394607,\n \"acc_norm\": 0.75,\n \"acc_norm_stderr\": 0.04186091791394607\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.754601226993865,\n \"acc_stderr\": 0.03380939813943354,\n \"acc_norm\": 0.754601226993865,\n \"acc_norm_stderr\": 0.03380939813943354\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.41964285714285715,\n \"acc_stderr\": 0.04684099321077106,\n \"acc_norm\": 0.41964285714285715,\n \"acc_norm_stderr\": 0.04684099321077106\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7572815533980582,\n \"acc_stderr\": 0.04245022486384495,\n \"acc_norm\": 0.7572815533980582,\n \"acc_norm_stderr\": 0.04245022486384495\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8974358974358975,\n \"acc_stderr\": 0.019875655027867454,\n \"acc_norm\": 0.8974358974358975,\n \"acc_norm_stderr\": 0.019875655027867454\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.75,\n \"acc_stderr\": 0.04351941398892446,\n \"acc_norm\": 0.75,\n \"acc_norm_stderr\": 0.04351941398892446\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8212005108556832,\n \"acc_stderr\": 0.013702643715368985,\n \"acc_norm\": 0.8212005108556832,\n \"acc_norm_stderr\": 0.013702643715368985\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7398843930635838,\n \"acc_stderr\": 0.023618678310069356,\n \"acc_norm\": 0.7398843930635838,\n \"acc_norm_stderr\": 0.023618678310069356\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.4446927374301676,\n \"acc_stderr\": 0.016619881988177015,\n \"acc_norm\": 0.4446927374301676,\n \"acc_norm_stderr\": 0.016619881988177015\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7189542483660131,\n \"acc_stderr\": 0.02573885479781873,\n \"acc_norm\": 0.7189542483660131,\n \"acc_norm_stderr\": 0.02573885479781873\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.7106109324758842,\n \"acc_stderr\": 0.025755865922632945,\n \"acc_norm\": 0.7106109324758842,\n \"acc_norm_stderr\": 0.025755865922632945\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.75,\n \"acc_stderr\": 0.02409347123262133,\n \"acc_norm\": 0.75,\n \"acc_norm_stderr\": 0.02409347123262133\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.48226950354609927,\n \"acc_stderr\": 0.02980873964223777,\n \"acc_norm\": 0.48226950354609927,\n \"acc_norm_stderr\": 0.02980873964223777\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.4706649282920469,\n \"acc_stderr\": 0.012748238397365549,\n \"acc_norm\": 0.4706649282920469,\n \"acc_norm_stderr\": 0.012748238397365549\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6691176470588235,\n \"acc_stderr\": 0.02858270975389845,\n \"acc_norm\": 0.6691176470588235,\n \"acc_norm_stderr\": 0.02858270975389845\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6568627450980392,\n \"acc_stderr\": 0.01920660684882536,\n \"acc_norm\": 0.6568627450980392,\n \"acc_norm_stderr\": 0.01920660684882536\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6636363636363637,\n \"acc_stderr\": 0.04525393596302506,\n \"acc_norm\": 0.6636363636363637,\n \"acc_norm_stderr\": 0.04525393596302506\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7306122448979592,\n \"acc_stderr\": 0.02840125202902294,\n \"acc_norm\": 0.7306122448979592,\n \"acc_norm_stderr\": 0.02840125202902294\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.835820895522388,\n \"acc_stderr\": 0.026193923544454115,\n \"acc_norm\": 0.835820895522388,\n \"acc_norm_stderr\": 0.026193923544454115\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.84,\n \"acc_stderr\": 0.03684529491774709,\n \"acc_norm\": 0.84,\n \"acc_norm_stderr\": 0.03684529491774709\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5421686746987951,\n \"acc_stderr\": 0.0387862677100236,\n \"acc_norm\": 0.5421686746987951,\n \"acc_norm_stderr\": 0.0387862677100236\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8304093567251462,\n \"acc_stderr\": 0.02878210810540171,\n \"acc_norm\": 0.8304093567251462,\n \"acc_norm_stderr\": 0.02878210810540171\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.5422276621787026,\n \"mc1_stderr\": 0.017440965712482125,\n \"mc2\": 0.6706202401619532,\n \"mc2_stderr\": 0.015393271752873241\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.8697711128650355,\n \"acc_stderr\": 0.009458870979028597\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.6762699014404853,\n \"acc_stderr\": 0.012888247397371141\n }\n}\n```", "repo_url": "https://huggingface.co/senseable/WestLake-7B-v2", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|arc:challenge|25_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|gsm8k|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hellaswag|10_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T09-52-08.185697.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["**/details_harness|winogrande|5_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-22T09-52-08.185697.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_22T09_52_08.185697", "path": ["results_2024-01-22T09-52-08.185697.parquet"]}, {"split": "latest", "path": ["results_2024-01-22T09-52-08.185697.parquet"]}]}]}
2024-01-22T09:54:58+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of senseable/WestLake-7B-v2 Dataset automatically created during the evaluation run of model senseable/WestLake-7B-v2 on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-22T09:52:08.185697(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of senseable/WestLake-7B-v2\n\n\n\nDataset automatically created during the evaluation run of model senseable/WestLake-7B-v2 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T09:52:08.185697(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of senseable/WestLake-7B-v2\n\n\n\nDataset automatically created during the evaluation run of model senseable/WestLake-7B-v2 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T09:52:08.185697(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
c21f00b2a4f210555acac8f1cc7c0fbadbdf788c
# Dataset Card for Evaluation run of silvercoder45/Mistral-7b-instruct-v0.2-summ-sft-dpo-e1 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [silvercoder45/Mistral-7b-instruct-v0.2-summ-sft-dpo-e1](https://huggingface.co/silvercoder45/Mistral-7b-instruct-v0.2-summ-sft-dpo-e1) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_silvercoder45__Mistral-7b-instruct-v0.2-summ-sft-dpo-e1", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-22T09:52:31.786673](https://huggingface.co/datasets/open-llm-leaderboard/details_silvercoder45__Mistral-7b-instruct-v0.2-summ-sft-dpo-e1/blob/main/results_2024-01-22T09-52-31.786673.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.6062600204892812, "acc_stderr": 0.03315436827084122, "acc_norm": 0.6105005647485784, "acc_norm_stderr": 0.033825828468753205, "mc1": 0.5605875152998776, "mc1_stderr": 0.017374520482513707, "mc2": 0.7076437205804561, "mc2_stderr": 0.015031924672941057 }, "harness|arc:challenge|25": { "acc": 0.5930034129692833, "acc_stderr": 0.01435639941800912, "acc_norm": 0.6271331058020477, "acc_norm_stderr": 0.014131176760131172 }, "harness|hellaswag|10": { "acc": 0.6742680740888269, "acc_stderr": 0.004676898861978911, "acc_norm": 0.8530173272256523, "acc_norm_stderr": 0.003533649851728493 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.31, "acc_stderr": 0.04648231987117316, "acc_norm": 0.31, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.5851851851851851, "acc_stderr": 0.04256193767901408, "acc_norm": 0.5851851851851851, "acc_norm_stderr": 0.04256193767901408 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.618421052631579, "acc_stderr": 0.039531733777491945, "acc_norm": 0.618421052631579, "acc_norm_stderr": 0.039531733777491945 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.6, "acc_stderr": 0.049236596391733084, "acc_norm": 0.6, "acc_norm_stderr": 0.049236596391733084 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.6754716981132075, "acc_stderr": 0.02881561571343211, "acc_norm": 0.6754716981132075, "acc_norm_stderr": 0.02881561571343211 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.6875, "acc_stderr": 0.038760854559127644, "acc_norm": 0.6875, "acc_norm_stderr": 0.038760854559127644 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.4, "acc_stderr": 0.049236596391733084, "acc_norm": 0.4, "acc_norm_stderr": 0.049236596391733084 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.5, "acc_stderr": 0.050251890762960605, "acc_norm": 0.5, "acc_norm_stderr": 0.050251890762960605 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.38, "acc_stderr": 0.04878317312145632, "acc_norm": 0.38, "acc_norm_stderr": 0.04878317312145632 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.5953757225433526, "acc_stderr": 0.03742461193887248, "acc_norm": 0.5953757225433526, "acc_norm_stderr": 0.03742461193887248 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.4117647058823529, "acc_stderr": 0.04897104952726367, "acc_norm": 0.4117647058823529, "acc_norm_stderr": 0.04897104952726367 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.69, "acc_stderr": 0.04648231987117316, "acc_norm": 0.69, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5234042553191489, "acc_stderr": 0.03265019475033582, "acc_norm": 0.5234042553191489, "acc_norm_stderr": 0.03265019475033582 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.42105263157894735, "acc_stderr": 0.046446020912223177, "acc_norm": 0.42105263157894735, "acc_norm_stderr": 0.046446020912223177 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.6068965517241379, "acc_stderr": 0.0407032901370707, "acc_norm": 0.6068965517241379, "acc_norm_stderr": 0.0407032901370707 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.3835978835978836, "acc_stderr": 0.0250437573185202, "acc_norm": 0.3835978835978836, "acc_norm_stderr": 0.0250437573185202 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.42857142857142855, "acc_stderr": 0.0442626668137991, "acc_norm": 0.42857142857142855, "acc_norm_stderr": 0.0442626668137991 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.36, "acc_stderr": 0.04824181513244218, "acc_norm": 0.36, "acc_norm_stderr": 0.04824181513244218 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.603225806451613, "acc_stderr": 0.027831231605767948, "acc_norm": 0.603225806451613, "acc_norm_stderr": 0.027831231605767948 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.5123152709359606, "acc_stderr": 0.035169204442208966, "acc_norm": 0.5123152709359606, "acc_norm_stderr": 0.035169204442208966 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.62, "acc_stderr": 0.04878317312145632, "acc_norm": 0.62, "acc_norm_stderr": 0.04878317312145632 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7393939393939394, "acc_stderr": 0.034277431758165236, "acc_norm": 0.7393939393939394, "acc_norm_stderr": 0.034277431758165236 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.7474747474747475, "acc_stderr": 0.03095405547036589, "acc_norm": 0.7474747474747475, "acc_norm_stderr": 0.03095405547036589 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.8549222797927462, "acc_stderr": 0.025416343096306443, "acc_norm": 0.8549222797927462, "acc_norm_stderr": 0.025416343096306443 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.5743589743589743, "acc_stderr": 0.025069094387296532, "acc_norm": 0.5743589743589743, "acc_norm_stderr": 0.025069094387296532 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.29259259259259257, "acc_stderr": 0.027738969632176085, "acc_norm": 0.29259259259259257, "acc_norm_stderr": 0.027738969632176085 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6722689075630253, "acc_stderr": 0.030489911417673227, "acc_norm": 0.6722689075630253, "acc_norm_stderr": 0.030489911417673227 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.33774834437086093, "acc_stderr": 0.0386155754625517, "acc_norm": 0.33774834437086093, "acc_norm_stderr": 0.0386155754625517 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.7889908256880734, "acc_stderr": 0.01749392240411265, "acc_norm": 0.7889908256880734, "acc_norm_stderr": 0.01749392240411265 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.4398148148148148, "acc_stderr": 0.03385177976044811, "acc_norm": 0.4398148148148148, "acc_norm_stderr": 0.03385177976044811 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.7794117647058824, "acc_stderr": 0.02910225438967407, "acc_norm": 0.7794117647058824, "acc_norm_stderr": 0.02910225438967407 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.759493670886076, "acc_stderr": 0.02782078198114969, "acc_norm": 0.759493670886076, "acc_norm_stderr": 0.02782078198114969 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6188340807174888, "acc_stderr": 0.03259625118416827, "acc_norm": 0.6188340807174888, "acc_norm_stderr": 0.03259625118416827 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.7251908396946565, "acc_stderr": 0.03915345408847836, "acc_norm": 0.7251908396946565, "acc_norm_stderr": 0.03915345408847836 }, "harness|hendrycksTest-international_law|5": { "acc": 0.8016528925619835, "acc_stderr": 0.03640118271990947, "acc_norm": 0.8016528925619835, "acc_norm_stderr": 0.03640118271990947 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.7407407407407407, "acc_stderr": 0.042365112580946336, "acc_norm": 0.7407407407407407, "acc_norm_stderr": 0.042365112580946336 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7423312883435583, "acc_stderr": 0.03436150827846917, "acc_norm": 0.7423312883435583, "acc_norm_stderr": 0.03436150827846917 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.4642857142857143, "acc_stderr": 0.04733667890053756, "acc_norm": 0.4642857142857143, "acc_norm_stderr": 0.04733667890053756 }, "harness|hendrycksTest-management|5": { "acc": 0.7378640776699029, "acc_stderr": 0.04354631077260594, "acc_norm": 0.7378640776699029, "acc_norm_stderr": 0.04354631077260594 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8675213675213675, "acc_stderr": 0.022209309073165612, "acc_norm": 0.8675213675213675, "acc_norm_stderr": 0.022209309073165612 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.68, "acc_stderr": 0.046882617226215034, "acc_norm": 0.68, "acc_norm_stderr": 0.046882617226215034 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.7816091954022989, "acc_stderr": 0.014774358319934486, "acc_norm": 0.7816091954022989, "acc_norm_stderr": 0.014774358319934486 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.6878612716763006, "acc_stderr": 0.024946792225272314, "acc_norm": 0.6878612716763006, "acc_norm_stderr": 0.024946792225272314 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.29720670391061454, "acc_stderr": 0.015285313353641602, "acc_norm": 0.29720670391061454, "acc_norm_stderr": 0.015285313353641602 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.6764705882352942, "acc_stderr": 0.026787453111906508, "acc_norm": 0.6764705882352942, "acc_norm_stderr": 0.026787453111906508 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.6977491961414791, "acc_stderr": 0.02608270069539966, "acc_norm": 0.6977491961414791, "acc_norm_stderr": 0.02608270069539966 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.6944444444444444, "acc_stderr": 0.025630824975621344, "acc_norm": 0.6944444444444444, "acc_norm_stderr": 0.025630824975621344 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.4716312056737589, "acc_stderr": 0.029779450957303062, "acc_norm": 0.4716312056737589, "acc_norm_stderr": 0.029779450957303062 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.4361147327249022, "acc_stderr": 0.012665568135455333, "acc_norm": 0.4361147327249022, "acc_norm_stderr": 0.012665568135455333 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.6213235294117647, "acc_stderr": 0.02946513363977613, "acc_norm": 0.6213235294117647, "acc_norm_stderr": 0.02946513363977613 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.630718954248366, "acc_stderr": 0.019524316744866356, "acc_norm": 0.630718954248366, "acc_norm_stderr": 0.019524316744866356 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.7181818181818181, "acc_stderr": 0.043091187099464585, "acc_norm": 0.7181818181818181, "acc_norm_stderr": 0.043091187099464585 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7183673469387755, "acc_stderr": 0.028795185574291293, "acc_norm": 0.7183673469387755, "acc_norm_stderr": 0.028795185574291293 }, "harness|hendrycksTest-sociology|5": { "acc": 0.7014925373134329, "acc_stderr": 0.032357437893550424, "acc_norm": 0.7014925373134329, "acc_norm_stderr": 0.032357437893550424 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.81, "acc_stderr": 0.039427724440366255, "acc_norm": 0.81, "acc_norm_stderr": 0.039427724440366255 }, "harness|hendrycksTest-virology|5": { "acc": 0.4939759036144578, "acc_stderr": 0.03892212195333047, "acc_norm": 0.4939759036144578, "acc_norm_stderr": 0.03892212195333047 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8245614035087719, "acc_stderr": 0.02917088550072767, "acc_norm": 0.8245614035087719, "acc_norm_stderr": 0.02917088550072767 }, "harness|truthfulqa:mc|0": { "mc1": 0.5605875152998776, "mc1_stderr": 0.017374520482513707, "mc2": 0.7076437205804561, "mc2_stderr": 0.015031924672941057 }, "harness|winogrande|5": { "acc": 0.771112865035517, "acc_stderr": 0.01180736022402539 }, "harness|gsm8k|5": { "acc": 0.4040940106141016, "acc_stderr": 0.013516752972721717 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_silvercoder45__Mistral-7b-instruct-v0.2-summ-sft-dpo-e1
[ "region:us" ]
2024-01-22T09:54:48+00:00
{"pretty_name": "Evaluation run of silvercoder45/Mistral-7b-instruct-v0.2-summ-sft-dpo-e1", "dataset_summary": "Dataset automatically created during the evaluation run of model [silvercoder45/Mistral-7b-instruct-v0.2-summ-sft-dpo-e1](https://huggingface.co/silvercoder45/Mistral-7b-instruct-v0.2-summ-sft-dpo-e1) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_silvercoder45__Mistral-7b-instruct-v0.2-summ-sft-dpo-e1\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-22T09:52:31.786673](https://huggingface.co/datasets/open-llm-leaderboard/details_silvercoder45__Mistral-7b-instruct-v0.2-summ-sft-dpo-e1/blob/main/results_2024-01-22T09-52-31.786673.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6062600204892812,\n \"acc_stderr\": 0.03315436827084122,\n \"acc_norm\": 0.6105005647485784,\n \"acc_norm_stderr\": 0.033825828468753205,\n \"mc1\": 0.5605875152998776,\n \"mc1_stderr\": 0.017374520482513707,\n \"mc2\": 0.7076437205804561,\n \"mc2_stderr\": 0.015031924672941057\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.5930034129692833,\n \"acc_stderr\": 0.01435639941800912,\n \"acc_norm\": 0.6271331058020477,\n \"acc_norm_stderr\": 0.014131176760131172\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6742680740888269,\n \"acc_stderr\": 0.004676898861978911,\n \"acc_norm\": 0.8530173272256523,\n \"acc_norm_stderr\": 0.003533649851728493\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.31,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.5851851851851851,\n \"acc_stderr\": 0.04256193767901408,\n \"acc_norm\": 0.5851851851851851,\n \"acc_norm_stderr\": 0.04256193767901408\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.618421052631579,\n \"acc_stderr\": 0.039531733777491945,\n \"acc_norm\": 0.618421052631579,\n \"acc_norm_stderr\": 0.039531733777491945\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.6,\n \"acc_stderr\": 0.049236596391733084,\n \"acc_norm\": 0.6,\n \"acc_norm_stderr\": 0.049236596391733084\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.6754716981132075,\n \"acc_stderr\": 0.02881561571343211,\n \"acc_norm\": 0.6754716981132075,\n \"acc_norm_stderr\": 0.02881561571343211\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.6875,\n \"acc_stderr\": 0.038760854559127644,\n \"acc_norm\": 0.6875,\n \"acc_norm_stderr\": 0.038760854559127644\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.4,\n \"acc_stderr\": 0.049236596391733084,\n \"acc_norm\": 0.4,\n \"acc_norm_stderr\": 0.049236596391733084\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.5,\n \"acc_stderr\": 0.050251890762960605,\n \"acc_norm\": 0.5,\n \"acc_norm_stderr\": 0.050251890762960605\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.38,\n \"acc_stderr\": 0.04878317312145632,\n \"acc_norm\": 0.38,\n \"acc_norm_stderr\": 0.04878317312145632\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.5953757225433526,\n \"acc_stderr\": 0.03742461193887248,\n \"acc_norm\": 0.5953757225433526,\n \"acc_norm_stderr\": 0.03742461193887248\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.4117647058823529,\n \"acc_stderr\": 0.04897104952726367,\n \"acc_norm\": 0.4117647058823529,\n \"acc_norm_stderr\": 0.04897104952726367\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.69,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.69,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5234042553191489,\n \"acc_stderr\": 0.03265019475033582,\n \"acc_norm\": 0.5234042553191489,\n \"acc_norm_stderr\": 0.03265019475033582\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.42105263157894735,\n \"acc_stderr\": 0.046446020912223177,\n \"acc_norm\": 0.42105263157894735,\n \"acc_norm_stderr\": 0.046446020912223177\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.6068965517241379,\n \"acc_stderr\": 0.0407032901370707,\n \"acc_norm\": 0.6068965517241379,\n \"acc_norm_stderr\": 0.0407032901370707\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.3835978835978836,\n \"acc_stderr\": 0.0250437573185202,\n \"acc_norm\": 0.3835978835978836,\n \"acc_norm_stderr\": 0.0250437573185202\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.42857142857142855,\n \"acc_stderr\": 0.0442626668137991,\n \"acc_norm\": 0.42857142857142855,\n \"acc_norm_stderr\": 0.0442626668137991\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.36,\n \"acc_stderr\": 0.04824181513244218,\n \"acc_norm\": 0.36,\n \"acc_norm_stderr\": 0.04824181513244218\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.603225806451613,\n \"acc_stderr\": 0.027831231605767948,\n \"acc_norm\": 0.603225806451613,\n \"acc_norm_stderr\": 0.027831231605767948\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.5123152709359606,\n \"acc_stderr\": 0.035169204442208966,\n \"acc_norm\": 0.5123152709359606,\n \"acc_norm_stderr\": 0.035169204442208966\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.62,\n \"acc_stderr\": 0.04878317312145632,\n \"acc_norm\": 0.62,\n \"acc_norm_stderr\": 0.04878317312145632\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7393939393939394,\n \"acc_stderr\": 0.034277431758165236,\n \"acc_norm\": 0.7393939393939394,\n \"acc_norm_stderr\": 0.034277431758165236\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7474747474747475,\n \"acc_stderr\": 0.03095405547036589,\n \"acc_norm\": 0.7474747474747475,\n \"acc_norm_stderr\": 0.03095405547036589\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8549222797927462,\n \"acc_stderr\": 0.025416343096306443,\n \"acc_norm\": 0.8549222797927462,\n \"acc_norm_stderr\": 0.025416343096306443\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.5743589743589743,\n \"acc_stderr\": 0.025069094387296532,\n \"acc_norm\": 0.5743589743589743,\n \"acc_norm_stderr\": 0.025069094387296532\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.29259259259259257,\n \"acc_stderr\": 0.027738969632176085,\n \"acc_norm\": 0.29259259259259257,\n \"acc_norm_stderr\": 0.027738969632176085\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6722689075630253,\n \"acc_stderr\": 0.030489911417673227,\n \"acc_norm\": 0.6722689075630253,\n \"acc_norm_stderr\": 0.030489911417673227\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.33774834437086093,\n \"acc_stderr\": 0.0386155754625517,\n \"acc_norm\": 0.33774834437086093,\n \"acc_norm_stderr\": 0.0386155754625517\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.7889908256880734,\n \"acc_stderr\": 0.01749392240411265,\n \"acc_norm\": 0.7889908256880734,\n \"acc_norm_stderr\": 0.01749392240411265\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.4398148148148148,\n \"acc_stderr\": 0.03385177976044811,\n \"acc_norm\": 0.4398148148148148,\n \"acc_norm_stderr\": 0.03385177976044811\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.7794117647058824,\n \"acc_stderr\": 0.02910225438967407,\n \"acc_norm\": 0.7794117647058824,\n \"acc_norm_stderr\": 0.02910225438967407\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.759493670886076,\n \"acc_stderr\": 0.02782078198114969,\n \"acc_norm\": 0.759493670886076,\n \"acc_norm_stderr\": 0.02782078198114969\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6188340807174888,\n \"acc_stderr\": 0.03259625118416827,\n \"acc_norm\": 0.6188340807174888,\n \"acc_norm_stderr\": 0.03259625118416827\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7251908396946565,\n \"acc_stderr\": 0.03915345408847836,\n \"acc_norm\": 0.7251908396946565,\n \"acc_norm_stderr\": 0.03915345408847836\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8016528925619835,\n \"acc_stderr\": 0.03640118271990947,\n \"acc_norm\": 0.8016528925619835,\n \"acc_norm_stderr\": 0.03640118271990947\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7407407407407407,\n \"acc_stderr\": 0.042365112580946336,\n \"acc_norm\": 0.7407407407407407,\n \"acc_norm_stderr\": 0.042365112580946336\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7423312883435583,\n \"acc_stderr\": 0.03436150827846917,\n \"acc_norm\": 0.7423312883435583,\n \"acc_norm_stderr\": 0.03436150827846917\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.4642857142857143,\n \"acc_stderr\": 0.04733667890053756,\n \"acc_norm\": 0.4642857142857143,\n \"acc_norm_stderr\": 0.04733667890053756\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7378640776699029,\n \"acc_stderr\": 0.04354631077260594,\n \"acc_norm\": 0.7378640776699029,\n \"acc_norm_stderr\": 0.04354631077260594\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8675213675213675,\n \"acc_stderr\": 0.022209309073165612,\n \"acc_norm\": 0.8675213675213675,\n \"acc_norm_stderr\": 0.022209309073165612\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.68,\n \"acc_stderr\": 0.046882617226215034,\n \"acc_norm\": 0.68,\n \"acc_norm_stderr\": 0.046882617226215034\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.7816091954022989,\n \"acc_stderr\": 0.014774358319934486,\n \"acc_norm\": 0.7816091954022989,\n \"acc_norm_stderr\": 0.014774358319934486\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.6878612716763006,\n \"acc_stderr\": 0.024946792225272314,\n \"acc_norm\": 0.6878612716763006,\n \"acc_norm_stderr\": 0.024946792225272314\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.29720670391061454,\n \"acc_stderr\": 0.015285313353641602,\n \"acc_norm\": 0.29720670391061454,\n \"acc_norm_stderr\": 0.015285313353641602\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.6764705882352942,\n \"acc_stderr\": 0.026787453111906508,\n \"acc_norm\": 0.6764705882352942,\n \"acc_norm_stderr\": 0.026787453111906508\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.6977491961414791,\n \"acc_stderr\": 0.02608270069539966,\n \"acc_norm\": 0.6977491961414791,\n \"acc_norm_stderr\": 0.02608270069539966\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.6944444444444444,\n \"acc_stderr\": 0.025630824975621344,\n \"acc_norm\": 0.6944444444444444,\n \"acc_norm_stderr\": 0.025630824975621344\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.4716312056737589,\n \"acc_stderr\": 0.029779450957303062,\n \"acc_norm\": 0.4716312056737589,\n \"acc_norm_stderr\": 0.029779450957303062\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.4361147327249022,\n \"acc_stderr\": 0.012665568135455333,\n \"acc_norm\": 0.4361147327249022,\n \"acc_norm_stderr\": 0.012665568135455333\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6213235294117647,\n \"acc_stderr\": 0.02946513363977613,\n \"acc_norm\": 0.6213235294117647,\n \"acc_norm_stderr\": 0.02946513363977613\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.630718954248366,\n \"acc_stderr\": 0.019524316744866356,\n \"acc_norm\": 0.630718954248366,\n \"acc_norm_stderr\": 0.019524316744866356\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.7181818181818181,\n \"acc_stderr\": 0.043091187099464585,\n \"acc_norm\": 0.7181818181818181,\n \"acc_norm_stderr\": 0.043091187099464585\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7183673469387755,\n \"acc_stderr\": 0.028795185574291293,\n \"acc_norm\": 0.7183673469387755,\n \"acc_norm_stderr\": 0.028795185574291293\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.7014925373134329,\n \"acc_stderr\": 0.032357437893550424,\n \"acc_norm\": 0.7014925373134329,\n \"acc_norm_stderr\": 0.032357437893550424\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.81,\n \"acc_stderr\": 0.039427724440366255,\n \"acc_norm\": 0.81,\n \"acc_norm_stderr\": 0.039427724440366255\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.4939759036144578,\n \"acc_stderr\": 0.03892212195333047,\n \"acc_norm\": 0.4939759036144578,\n \"acc_norm_stderr\": 0.03892212195333047\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8245614035087719,\n \"acc_stderr\": 0.02917088550072767,\n \"acc_norm\": 0.8245614035087719,\n \"acc_norm_stderr\": 0.02917088550072767\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.5605875152998776,\n \"mc1_stderr\": 0.017374520482513707,\n \"mc2\": 0.7076437205804561,\n \"mc2_stderr\": 0.015031924672941057\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.771112865035517,\n \"acc_stderr\": 0.01180736022402539\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.4040940106141016,\n \"acc_stderr\": 0.013516752972721717\n }\n}\n```", "repo_url": "https://huggingface.co/silvercoder45/Mistral-7b-instruct-v0.2-summ-sft-dpo-e1", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|arc:challenge|25_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|gsm8k|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hellaswag|10_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T09-52-31.786673.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["**/details_harness|winogrande|5_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-22T09-52-31.786673.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_22T09_52_31.786673", "path": ["results_2024-01-22T09-52-31.786673.parquet"]}, {"split": "latest", "path": ["results_2024-01-22T09-52-31.786673.parquet"]}]}]}
2024-01-22T09:55:16+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of silvercoder45/Mistral-7b-instruct-v0.2-summ-sft-dpo-e1 Dataset automatically created during the evaluation run of model silvercoder45/Mistral-7b-instruct-v0.2-summ-sft-dpo-e1 on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-22T09:52:31.786673(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of silvercoder45/Mistral-7b-instruct-v0.2-summ-sft-dpo-e1\n\n\n\nDataset automatically created during the evaluation run of model silvercoder45/Mistral-7b-instruct-v0.2-summ-sft-dpo-e1 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T09:52:31.786673(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of silvercoder45/Mistral-7b-instruct-v0.2-summ-sft-dpo-e1\n\n\n\nDataset automatically created during the evaluation run of model silvercoder45/Mistral-7b-instruct-v0.2-summ-sft-dpo-e1 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T09:52:31.786673(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
4b77479ea2f664289eedf3b19ac06ef19a8d8ec6
# Dataset Card for Evaluation run of silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e1 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e1](https://huggingface.co/silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e1) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_silvercoder45__Mistral-7b-instruct-v0.2-summ-dpo-e1", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-22T09:52:53.024904](https://huggingface.co/datasets/open-llm-leaderboard/details_silvercoder45__Mistral-7b-instruct-v0.2-summ-dpo-e1/blob/main/results_2024-01-22T09-52-53.024904.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.6068306303971267, "acc_stderr": 0.033128919989688366, "acc_norm": 0.611125593463237, "acc_norm_stderr": 0.03379981124271015, "mc1": 0.5605875152998776, "mc1_stderr": 0.017374520482513704, "mc2": 0.7056173366389187, "mc2_stderr": 0.015050090065464976 }, "harness|arc:challenge|25": { "acc": 0.5921501706484642, "acc_stderr": 0.014361097288449701, "acc_norm": 0.6245733788395904, "acc_norm_stderr": 0.014150631435111728 }, "harness|hellaswag|10": { "acc": 0.6751643098984266, "acc_stderr": 0.004673563250946101, "acc_norm": 0.852320254929297, "acc_norm_stderr": 0.0035405716545956313 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.3, "acc_stderr": 0.046056618647183814, "acc_norm": 0.3, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.5925925925925926, "acc_stderr": 0.04244633238353228, "acc_norm": 0.5925925925925926, "acc_norm_stderr": 0.04244633238353228 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.618421052631579, "acc_stderr": 0.039531733777491945, "acc_norm": 0.618421052631579, "acc_norm_stderr": 0.039531733777491945 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.6, "acc_stderr": 0.049236596391733084, "acc_norm": 0.6, "acc_norm_stderr": 0.049236596391733084 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.6792452830188679, "acc_stderr": 0.02872750295788027, "acc_norm": 0.6792452830188679, "acc_norm_stderr": 0.02872750295788027 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.6875, "acc_stderr": 0.038760854559127644, "acc_norm": 0.6875, "acc_norm_stderr": 0.038760854559127644 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.4, "acc_stderr": 0.049236596391733084, "acc_norm": 0.4, "acc_norm_stderr": 0.049236596391733084 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.51, "acc_stderr": 0.05024183937956911, "acc_norm": 0.51, "acc_norm_stderr": 0.05024183937956911 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.38, "acc_stderr": 0.04878317312145632, "acc_norm": 0.38, "acc_norm_stderr": 0.04878317312145632 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.5953757225433526, "acc_stderr": 0.03742461193887248, "acc_norm": 0.5953757225433526, "acc_norm_stderr": 0.03742461193887248 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.4215686274509804, "acc_stderr": 0.04913595201274498, "acc_norm": 0.4215686274509804, "acc_norm_stderr": 0.04913595201274498 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.69, "acc_stderr": 0.04648231987117316, "acc_norm": 0.69, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5234042553191489, "acc_stderr": 0.03265019475033582, "acc_norm": 0.5234042553191489, "acc_norm_stderr": 0.03265019475033582 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.42105263157894735, "acc_stderr": 0.046446020912223177, "acc_norm": 0.42105263157894735, "acc_norm_stderr": 0.046446020912223177 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.6137931034482759, "acc_stderr": 0.04057324734419035, "acc_norm": 0.6137931034482759, "acc_norm_stderr": 0.04057324734419035 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.38095238095238093, "acc_stderr": 0.025010749116137595, "acc_norm": 0.38095238095238093, "acc_norm_stderr": 0.025010749116137595 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.42857142857142855, "acc_stderr": 0.0442626668137991, "acc_norm": 0.42857142857142855, "acc_norm_stderr": 0.0442626668137991 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.36, "acc_stderr": 0.04824181513244218, "acc_norm": 0.36, "acc_norm_stderr": 0.04824181513244218 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.6064516129032258, "acc_stderr": 0.027791878753132274, "acc_norm": 0.6064516129032258, "acc_norm_stderr": 0.027791878753132274 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.5172413793103449, "acc_stderr": 0.035158955511656986, "acc_norm": 0.5172413793103449, "acc_norm_stderr": 0.035158955511656986 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.63, "acc_stderr": 0.04852365870939098, "acc_norm": 0.63, "acc_norm_stderr": 0.04852365870939098 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7333333333333333, "acc_stderr": 0.03453131801885417, "acc_norm": 0.7333333333333333, "acc_norm_stderr": 0.03453131801885417 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.7525252525252525, "acc_stderr": 0.030746300742124484, "acc_norm": 0.7525252525252525, "acc_norm_stderr": 0.030746300742124484 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.8549222797927462, "acc_stderr": 0.025416343096306443, "acc_norm": 0.8549222797927462, "acc_norm_stderr": 0.025416343096306443 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.5717948717948718, "acc_stderr": 0.025088301454694834, "acc_norm": 0.5717948717948718, "acc_norm_stderr": 0.025088301454694834 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.3074074074074074, "acc_stderr": 0.028133252578815632, "acc_norm": 0.3074074074074074, "acc_norm_stderr": 0.028133252578815632 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6722689075630253, "acc_stderr": 0.030489911417673227, "acc_norm": 0.6722689075630253, "acc_norm_stderr": 0.030489911417673227 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.33112582781456956, "acc_stderr": 0.038425817186598696, "acc_norm": 0.33112582781456956, "acc_norm_stderr": 0.038425817186598696 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.7908256880733945, "acc_stderr": 0.017437937173343233, "acc_norm": 0.7908256880733945, "acc_norm_stderr": 0.017437937173343233 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.4351851851851852, "acc_stderr": 0.03381200005643525, "acc_norm": 0.4351851851851852, "acc_norm_stderr": 0.03381200005643525 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.7794117647058824, "acc_stderr": 0.02910225438967407, "acc_norm": 0.7794117647058824, "acc_norm_stderr": 0.02910225438967407 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7552742616033755, "acc_stderr": 0.027985699387036423, "acc_norm": 0.7552742616033755, "acc_norm_stderr": 0.027985699387036423 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6188340807174888, "acc_stderr": 0.03259625118416827, "acc_norm": 0.6188340807174888, "acc_norm_stderr": 0.03259625118416827 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.732824427480916, "acc_stderr": 0.03880848301082393, "acc_norm": 0.732824427480916, "acc_norm_stderr": 0.03880848301082393 }, "harness|hendrycksTest-international_law|5": { "acc": 0.8016528925619835, "acc_stderr": 0.03640118271990947, "acc_norm": 0.8016528925619835, "acc_norm_stderr": 0.03640118271990947 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.7407407407407407, "acc_stderr": 0.042365112580946336, "acc_norm": 0.7407407407407407, "acc_norm_stderr": 0.042365112580946336 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7484662576687117, "acc_stderr": 0.03408997886857529, "acc_norm": 0.7484662576687117, "acc_norm_stderr": 0.03408997886857529 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.44642857142857145, "acc_stderr": 0.04718471485219588, "acc_norm": 0.44642857142857145, "acc_norm_stderr": 0.04718471485219588 }, "harness|hendrycksTest-management|5": { "acc": 0.7572815533980582, "acc_stderr": 0.04245022486384495, "acc_norm": 0.7572815533980582, "acc_norm_stderr": 0.04245022486384495 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8589743589743589, "acc_stderr": 0.022801382534597552, "acc_norm": 0.8589743589743589, "acc_norm_stderr": 0.022801382534597552 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.69, "acc_stderr": 0.04648231987117316, "acc_norm": 0.69, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.7803320561941252, "acc_stderr": 0.014805384478371151, "acc_norm": 0.7803320561941252, "acc_norm_stderr": 0.014805384478371151 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.6878612716763006, "acc_stderr": 0.024946792225272314, "acc_norm": 0.6878612716763006, "acc_norm_stderr": 0.024946792225272314 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.3027932960893855, "acc_stderr": 0.01536686038639711, "acc_norm": 0.3027932960893855, "acc_norm_stderr": 0.01536686038639711 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.6764705882352942, "acc_stderr": 0.026787453111906504, "acc_norm": 0.6764705882352942, "acc_norm_stderr": 0.026787453111906504 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.6913183279742765, "acc_stderr": 0.02623696588115326, "acc_norm": 0.6913183279742765, "acc_norm_stderr": 0.02623696588115326 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.6944444444444444, "acc_stderr": 0.025630824975621344, "acc_norm": 0.6944444444444444, "acc_norm_stderr": 0.025630824975621344 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.46808510638297873, "acc_stderr": 0.029766675075873866, "acc_norm": 0.46808510638297873, "acc_norm_stderr": 0.029766675075873866 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.43285528031290743, "acc_stderr": 0.012654565234622868, "acc_norm": 0.43285528031290743, "acc_norm_stderr": 0.012654565234622868 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.6176470588235294, "acc_stderr": 0.02952009569768776, "acc_norm": 0.6176470588235294, "acc_norm_stderr": 0.02952009569768776 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6241830065359477, "acc_stderr": 0.01959402113657744, "acc_norm": 0.6241830065359477, "acc_norm_stderr": 0.01959402113657744 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.7181818181818181, "acc_stderr": 0.043091187099464585, "acc_norm": 0.7181818181818181, "acc_norm_stderr": 0.043091187099464585 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7061224489795919, "acc_stderr": 0.02916273841024977, "acc_norm": 0.7061224489795919, "acc_norm_stderr": 0.02916273841024977 }, "harness|hendrycksTest-sociology|5": { "acc": 0.7014925373134329, "acc_stderr": 0.032357437893550424, "acc_norm": 0.7014925373134329, "acc_norm_stderr": 0.032357437893550424 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.8, "acc_stderr": 0.04020151261036846, "acc_norm": 0.8, "acc_norm_stderr": 0.04020151261036846 }, "harness|hendrycksTest-virology|5": { "acc": 0.5060240963855421, "acc_stderr": 0.03892212195333045, "acc_norm": 0.5060240963855421, "acc_norm_stderr": 0.03892212195333045 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8362573099415205, "acc_stderr": 0.028380919596145866, "acc_norm": 0.8362573099415205, "acc_norm_stderr": 0.028380919596145866 }, "harness|truthfulqa:mc|0": { "mc1": 0.5605875152998776, "mc1_stderr": 0.017374520482513704, "mc2": 0.7056173366389187, "mc2_stderr": 0.015050090065464976 }, "harness|winogrande|5": { "acc": 0.7695343330702447, "acc_stderr": 0.011835872164836675 }, "harness|gsm8k|5": { "acc": 0.400303260045489, "acc_stderr": 0.013495926436566438 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_silvercoder45__Mistral-7b-instruct-v0.2-summ-dpo-e1
[ "region:us" ]
2024-01-22T09:55:14+00:00
{"pretty_name": "Evaluation run of silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e1", "dataset_summary": "Dataset automatically created during the evaluation run of model [silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e1](https://huggingface.co/silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e1) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_silvercoder45__Mistral-7b-instruct-v0.2-summ-dpo-e1\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-22T09:52:53.024904](https://huggingface.co/datasets/open-llm-leaderboard/details_silvercoder45__Mistral-7b-instruct-v0.2-summ-dpo-e1/blob/main/results_2024-01-22T09-52-53.024904.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6068306303971267,\n \"acc_stderr\": 0.033128919989688366,\n \"acc_norm\": 0.611125593463237,\n \"acc_norm_stderr\": 0.03379981124271015,\n \"mc1\": 0.5605875152998776,\n \"mc1_stderr\": 0.017374520482513704,\n \"mc2\": 0.7056173366389187,\n \"mc2_stderr\": 0.015050090065464976\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.5921501706484642,\n \"acc_stderr\": 0.014361097288449701,\n \"acc_norm\": 0.6245733788395904,\n \"acc_norm_stderr\": 0.014150631435111728\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6751643098984266,\n \"acc_stderr\": 0.004673563250946101,\n \"acc_norm\": 0.852320254929297,\n \"acc_norm_stderr\": 0.0035405716545956313\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.3,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.3,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.5925925925925926,\n \"acc_stderr\": 0.04244633238353228,\n \"acc_norm\": 0.5925925925925926,\n \"acc_norm_stderr\": 0.04244633238353228\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.618421052631579,\n \"acc_stderr\": 0.039531733777491945,\n \"acc_norm\": 0.618421052631579,\n \"acc_norm_stderr\": 0.039531733777491945\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.6,\n \"acc_stderr\": 0.049236596391733084,\n \"acc_norm\": 0.6,\n \"acc_norm_stderr\": 0.049236596391733084\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.6792452830188679,\n \"acc_stderr\": 0.02872750295788027,\n \"acc_norm\": 0.6792452830188679,\n \"acc_norm_stderr\": 0.02872750295788027\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.6875,\n \"acc_stderr\": 0.038760854559127644,\n \"acc_norm\": 0.6875,\n \"acc_norm_stderr\": 0.038760854559127644\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.4,\n \"acc_stderr\": 0.049236596391733084,\n \"acc_norm\": 0.4,\n \"acc_norm_stderr\": 0.049236596391733084\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.51,\n \"acc_stderr\": 0.05024183937956911,\n \"acc_norm\": 0.51,\n \"acc_norm_stderr\": 0.05024183937956911\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.38,\n \"acc_stderr\": 0.04878317312145632,\n \"acc_norm\": 0.38,\n \"acc_norm_stderr\": 0.04878317312145632\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.5953757225433526,\n \"acc_stderr\": 0.03742461193887248,\n \"acc_norm\": 0.5953757225433526,\n \"acc_norm_stderr\": 0.03742461193887248\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.4215686274509804,\n \"acc_stderr\": 0.04913595201274498,\n \"acc_norm\": 0.4215686274509804,\n \"acc_norm_stderr\": 0.04913595201274498\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.69,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.69,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5234042553191489,\n \"acc_stderr\": 0.03265019475033582,\n \"acc_norm\": 0.5234042553191489,\n \"acc_norm_stderr\": 0.03265019475033582\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.42105263157894735,\n \"acc_stderr\": 0.046446020912223177,\n \"acc_norm\": 0.42105263157894735,\n \"acc_norm_stderr\": 0.046446020912223177\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.6137931034482759,\n \"acc_stderr\": 0.04057324734419035,\n \"acc_norm\": 0.6137931034482759,\n \"acc_norm_stderr\": 0.04057324734419035\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.38095238095238093,\n \"acc_stderr\": 0.025010749116137595,\n \"acc_norm\": 0.38095238095238093,\n \"acc_norm_stderr\": 0.025010749116137595\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.42857142857142855,\n \"acc_stderr\": 0.0442626668137991,\n \"acc_norm\": 0.42857142857142855,\n \"acc_norm_stderr\": 0.0442626668137991\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.36,\n \"acc_stderr\": 0.04824181513244218,\n \"acc_norm\": 0.36,\n \"acc_norm_stderr\": 0.04824181513244218\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.6064516129032258,\n \"acc_stderr\": 0.027791878753132274,\n \"acc_norm\": 0.6064516129032258,\n \"acc_norm_stderr\": 0.027791878753132274\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.5172413793103449,\n \"acc_stderr\": 0.035158955511656986,\n \"acc_norm\": 0.5172413793103449,\n \"acc_norm_stderr\": 0.035158955511656986\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.63,\n \"acc_stderr\": 0.04852365870939098,\n \"acc_norm\": 0.63,\n \"acc_norm_stderr\": 0.04852365870939098\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7333333333333333,\n \"acc_stderr\": 0.03453131801885417,\n \"acc_norm\": 0.7333333333333333,\n \"acc_norm_stderr\": 0.03453131801885417\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7525252525252525,\n \"acc_stderr\": 0.030746300742124484,\n \"acc_norm\": 0.7525252525252525,\n \"acc_norm_stderr\": 0.030746300742124484\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8549222797927462,\n \"acc_stderr\": 0.025416343096306443,\n \"acc_norm\": 0.8549222797927462,\n \"acc_norm_stderr\": 0.025416343096306443\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.5717948717948718,\n \"acc_stderr\": 0.025088301454694834,\n \"acc_norm\": 0.5717948717948718,\n \"acc_norm_stderr\": 0.025088301454694834\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.3074074074074074,\n \"acc_stderr\": 0.028133252578815632,\n \"acc_norm\": 0.3074074074074074,\n \"acc_norm_stderr\": 0.028133252578815632\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6722689075630253,\n \"acc_stderr\": 0.030489911417673227,\n \"acc_norm\": 0.6722689075630253,\n \"acc_norm_stderr\": 0.030489911417673227\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.33112582781456956,\n \"acc_stderr\": 0.038425817186598696,\n \"acc_norm\": 0.33112582781456956,\n \"acc_norm_stderr\": 0.038425817186598696\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.7908256880733945,\n \"acc_stderr\": 0.017437937173343233,\n \"acc_norm\": 0.7908256880733945,\n \"acc_norm_stderr\": 0.017437937173343233\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.4351851851851852,\n \"acc_stderr\": 0.03381200005643525,\n \"acc_norm\": 0.4351851851851852,\n \"acc_norm_stderr\": 0.03381200005643525\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.7794117647058824,\n \"acc_stderr\": 0.02910225438967407,\n \"acc_norm\": 0.7794117647058824,\n \"acc_norm_stderr\": 0.02910225438967407\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7552742616033755,\n \"acc_stderr\": 0.027985699387036423,\n \"acc_norm\": 0.7552742616033755,\n \"acc_norm_stderr\": 0.027985699387036423\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6188340807174888,\n \"acc_stderr\": 0.03259625118416827,\n \"acc_norm\": 0.6188340807174888,\n \"acc_norm_stderr\": 0.03259625118416827\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.732824427480916,\n \"acc_stderr\": 0.03880848301082393,\n \"acc_norm\": 0.732824427480916,\n \"acc_norm_stderr\": 0.03880848301082393\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8016528925619835,\n \"acc_stderr\": 0.03640118271990947,\n \"acc_norm\": 0.8016528925619835,\n \"acc_norm_stderr\": 0.03640118271990947\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7407407407407407,\n \"acc_stderr\": 0.042365112580946336,\n \"acc_norm\": 0.7407407407407407,\n \"acc_norm_stderr\": 0.042365112580946336\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7484662576687117,\n \"acc_stderr\": 0.03408997886857529,\n \"acc_norm\": 0.7484662576687117,\n \"acc_norm_stderr\": 0.03408997886857529\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.44642857142857145,\n \"acc_stderr\": 0.04718471485219588,\n \"acc_norm\": 0.44642857142857145,\n \"acc_norm_stderr\": 0.04718471485219588\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7572815533980582,\n \"acc_stderr\": 0.04245022486384495,\n \"acc_norm\": 0.7572815533980582,\n \"acc_norm_stderr\": 0.04245022486384495\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8589743589743589,\n \"acc_stderr\": 0.022801382534597552,\n \"acc_norm\": 0.8589743589743589,\n \"acc_norm_stderr\": 0.022801382534597552\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.69,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.69,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.7803320561941252,\n \"acc_stderr\": 0.014805384478371151,\n \"acc_norm\": 0.7803320561941252,\n \"acc_norm_stderr\": 0.014805384478371151\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.6878612716763006,\n \"acc_stderr\": 0.024946792225272314,\n \"acc_norm\": 0.6878612716763006,\n \"acc_norm_stderr\": 0.024946792225272314\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.3027932960893855,\n \"acc_stderr\": 0.01536686038639711,\n \"acc_norm\": 0.3027932960893855,\n \"acc_norm_stderr\": 0.01536686038639711\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.6764705882352942,\n \"acc_stderr\": 0.026787453111906504,\n \"acc_norm\": 0.6764705882352942,\n \"acc_norm_stderr\": 0.026787453111906504\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.6913183279742765,\n \"acc_stderr\": 0.02623696588115326,\n \"acc_norm\": 0.6913183279742765,\n \"acc_norm_stderr\": 0.02623696588115326\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.6944444444444444,\n \"acc_stderr\": 0.025630824975621344,\n \"acc_norm\": 0.6944444444444444,\n \"acc_norm_stderr\": 0.025630824975621344\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.46808510638297873,\n \"acc_stderr\": 0.029766675075873866,\n \"acc_norm\": 0.46808510638297873,\n \"acc_norm_stderr\": 0.029766675075873866\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.43285528031290743,\n \"acc_stderr\": 0.012654565234622868,\n \"acc_norm\": 0.43285528031290743,\n \"acc_norm_stderr\": 0.012654565234622868\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6176470588235294,\n \"acc_stderr\": 0.02952009569768776,\n \"acc_norm\": 0.6176470588235294,\n \"acc_norm_stderr\": 0.02952009569768776\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6241830065359477,\n \"acc_stderr\": 0.01959402113657744,\n \"acc_norm\": 0.6241830065359477,\n \"acc_norm_stderr\": 0.01959402113657744\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.7181818181818181,\n \"acc_stderr\": 0.043091187099464585,\n \"acc_norm\": 0.7181818181818181,\n \"acc_norm_stderr\": 0.043091187099464585\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7061224489795919,\n \"acc_stderr\": 0.02916273841024977,\n \"acc_norm\": 0.7061224489795919,\n \"acc_norm_stderr\": 0.02916273841024977\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.7014925373134329,\n \"acc_stderr\": 0.032357437893550424,\n \"acc_norm\": 0.7014925373134329,\n \"acc_norm_stderr\": 0.032357437893550424\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.8,\n \"acc_stderr\": 0.04020151261036846,\n \"acc_norm\": 0.8,\n \"acc_norm_stderr\": 0.04020151261036846\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5060240963855421,\n \"acc_stderr\": 0.03892212195333045,\n \"acc_norm\": 0.5060240963855421,\n \"acc_norm_stderr\": 0.03892212195333045\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8362573099415205,\n \"acc_stderr\": 0.028380919596145866,\n \"acc_norm\": 0.8362573099415205,\n \"acc_norm_stderr\": 0.028380919596145866\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.5605875152998776,\n \"mc1_stderr\": 0.017374520482513704,\n \"mc2\": 0.7056173366389187,\n \"mc2_stderr\": 0.015050090065464976\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.7695343330702447,\n \"acc_stderr\": 0.011835872164836675\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.400303260045489,\n \"acc_stderr\": 0.013495926436566438\n }\n}\n```", "repo_url": "https://huggingface.co/silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e1", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|arc:challenge|25_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|gsm8k|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hellaswag|10_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T09-52-53.024904.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["**/details_harness|winogrande|5_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-22T09-52-53.024904.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_22T09_52_53.024904", "path": ["results_2024-01-22T09-52-53.024904.parquet"]}, {"split": "latest", "path": ["results_2024-01-22T09-52-53.024904.parquet"]}]}]}
2024-01-22T09:55:36+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e1 Dataset automatically created during the evaluation run of model silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e1 on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-22T09:52:53.024904(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e1\n\n\n\nDataset automatically created during the evaluation run of model silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e1 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T09:52:53.024904(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e1\n\n\n\nDataset automatically created during the evaluation run of model silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e1 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T09:52:53.024904(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
252f298e5f992eddd952bf83f37902487e9d1545
# Dataset Card for Evaluation run of moreh/MoMo-72B-lora-1.8.7-DPO <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [moreh/MoMo-72B-lora-1.8.7-DPO](https://huggingface.co/moreh/MoMo-72B-lora-1.8.7-DPO) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_moreh__MoMo-72B-lora-1.8.7-DPO", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-22T10:33:58.465501](https://huggingface.co/datasets/open-llm-leaderboard/details_moreh__MoMo-72B-lora-1.8.7-DPO/blob/main/results_2024-01-22T10-33-58.465501.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.76953499319056, "acc_stderr": 0.0279294705479517, "acc_norm": 0.7716820258755411, "acc_norm_stderr": 0.0284840002969871, "mc1": 0.631578947368421, "mc1_stderr": 0.016886551261046046, "mc2": 0.7470556249138, "mc2_stderr": 0.014379615349295343 }, "harness|arc:challenge|25": { "acc": 0.6800341296928327, "acc_stderr": 0.013631345807016195, "acc_norm": 0.7081911262798635, "acc_norm_stderr": 0.013284525292403511 }, "harness|hellaswag|10": { "acc": 0.6733718382792272, "acc_stderr": 0.004680215003395925, "acc_norm": 0.8595897231627166, "acc_norm_stderr": 0.0034670217932838386 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.4, "acc_stderr": 0.04923659639173309, "acc_norm": 0.4, "acc_norm_stderr": 0.04923659639173309 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.7111111111111111, "acc_stderr": 0.03915450630414251, "acc_norm": 0.7111111111111111, "acc_norm_stderr": 0.03915450630414251 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.8881578947368421, "acc_stderr": 0.02564834125169361, "acc_norm": 0.8881578947368421, "acc_norm_stderr": 0.02564834125169361 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.81, "acc_stderr": 0.03942772444036623, "acc_norm": 0.81, "acc_norm_stderr": 0.03942772444036623 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.8452830188679246, "acc_stderr": 0.02225707555879128, "acc_norm": 0.8452830188679246, "acc_norm_stderr": 0.02225707555879128 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.9305555555555556, "acc_stderr": 0.02125797482283205, "acc_norm": 0.9305555555555556, "acc_norm_stderr": 0.02125797482283205 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.54, "acc_stderr": 0.05009082659620332, "acc_norm": 0.54, "acc_norm_stderr": 0.05009082659620332 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.63, "acc_stderr": 0.048523658709391, "acc_norm": 0.63, "acc_norm_stderr": 0.048523658709391 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.53, "acc_stderr": 0.05016135580465919, "acc_norm": 0.53, "acc_norm_stderr": 0.05016135580465919 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.7687861271676301, "acc_stderr": 0.03214737302029468, "acc_norm": 0.7687861271676301, "acc_norm_stderr": 0.03214737302029468 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.5490196078431373, "acc_stderr": 0.049512182523962604, "acc_norm": 0.5490196078431373, "acc_norm_stderr": 0.049512182523962604 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.8, "acc_stderr": 0.04020151261036845, "acc_norm": 0.8, "acc_norm_stderr": 0.04020151261036845 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.7914893617021277, "acc_stderr": 0.02655698211783873, "acc_norm": 0.7914893617021277, "acc_norm_stderr": 0.02655698211783873 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.5964912280701754, "acc_stderr": 0.04615186962583707, "acc_norm": 0.5964912280701754, "acc_norm_stderr": 0.04615186962583707 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.7793103448275862, "acc_stderr": 0.03455930201924811, "acc_norm": 0.7793103448275862, "acc_norm_stderr": 0.03455930201924811 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.6957671957671958, "acc_stderr": 0.023695415009463087, "acc_norm": 0.6957671957671958, "acc_norm_stderr": 0.023695415009463087 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.5714285714285714, "acc_stderr": 0.04426266681379909, "acc_norm": 0.5714285714285714, "acc_norm_stderr": 0.04426266681379909 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.49, "acc_stderr": 0.05024183937956912, "acc_norm": 0.49, "acc_norm_stderr": 0.05024183937956912 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.8838709677419355, "acc_stderr": 0.018225757949432306, "acc_norm": 0.8838709677419355, "acc_norm_stderr": 0.018225757949432306 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.645320197044335, "acc_stderr": 0.0336612448905145, "acc_norm": 0.645320197044335, "acc_norm_stderr": 0.0336612448905145 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.81, "acc_stderr": 0.03942772444036625, "acc_norm": 0.81, "acc_norm_stderr": 0.03942772444036625 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.8606060606060606, "acc_stderr": 0.0270459488258654, "acc_norm": 0.8606060606060606, "acc_norm_stderr": 0.0270459488258654 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.9343434343434344, "acc_stderr": 0.01764652667723332, "acc_norm": 0.9343434343434344, "acc_norm_stderr": 0.01764652667723332 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.9896373056994818, "acc_stderr": 0.007308424386792194, "acc_norm": 0.9896373056994818, "acc_norm_stderr": 0.007308424386792194 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.8076923076923077, "acc_stderr": 0.019982347208637296, "acc_norm": 0.8076923076923077, "acc_norm_stderr": 0.019982347208637296 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.4666666666666667, "acc_stderr": 0.03041771696171748, "acc_norm": 0.4666666666666667, "acc_norm_stderr": 0.03041771696171748 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.8529411764705882, "acc_stderr": 0.023005459446673957, "acc_norm": 0.8529411764705882, "acc_norm_stderr": 0.023005459446673957 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.5629139072847682, "acc_stderr": 0.040500357222306355, "acc_norm": 0.5629139072847682, "acc_norm_stderr": 0.040500357222306355 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.9284403669724771, "acc_stderr": 0.011051255247815476, "acc_norm": 0.9284403669724771, "acc_norm_stderr": 0.011051255247815476 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.6805555555555556, "acc_stderr": 0.03179876342176853, "acc_norm": 0.6805555555555556, "acc_norm_stderr": 0.03179876342176853 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.9215686274509803, "acc_stderr": 0.018869514646658928, "acc_norm": 0.9215686274509803, "acc_norm_stderr": 0.018869514646658928 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.9071729957805907, "acc_stderr": 0.018889750550956715, "acc_norm": 0.9071729957805907, "acc_norm_stderr": 0.018889750550956715 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.8026905829596412, "acc_stderr": 0.02670985334496796, "acc_norm": 0.8026905829596412, "acc_norm_stderr": 0.02670985334496796 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.8854961832061069, "acc_stderr": 0.027927473753597453, "acc_norm": 0.8854961832061069, "acc_norm_stderr": 0.027927473753597453 }, "harness|hendrycksTest-international_law|5": { "acc": 0.8925619834710744, "acc_stderr": 0.028268812192540616, "acc_norm": 0.8925619834710744, "acc_norm_stderr": 0.028268812192540616 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.8611111111111112, "acc_stderr": 0.0334327006286962, "acc_norm": 0.8611111111111112, "acc_norm_stderr": 0.0334327006286962 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.8466257668711656, "acc_stderr": 0.028311601441438596, "acc_norm": 0.8466257668711656, "acc_norm_stderr": 0.028311601441438596 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.6071428571428571, "acc_stderr": 0.046355501356099754, "acc_norm": 0.6071428571428571, "acc_norm_stderr": 0.046355501356099754 }, "harness|hendrycksTest-management|5": { "acc": 0.8640776699029126, "acc_stderr": 0.03393295729761011, "acc_norm": 0.8640776699029126, "acc_norm_stderr": 0.03393295729761011 }, "harness|hendrycksTest-marketing|5": { "acc": 0.9401709401709402, "acc_stderr": 0.015537514263253874, "acc_norm": 0.9401709401709402, "acc_norm_stderr": 0.015537514263253874 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.86, "acc_stderr": 0.034873508801977725, "acc_norm": 0.86, "acc_norm_stderr": 0.034873508801977725 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.9157088122605364, "acc_stderr": 0.009934966499513784, "acc_norm": 0.9157088122605364, "acc_norm_stderr": 0.009934966499513784 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.8410404624277457, "acc_stderr": 0.019685307033571946, "acc_norm": 0.8410404624277457, "acc_norm_stderr": 0.019685307033571946 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.7027932960893855, "acc_stderr": 0.015285313353641597, "acc_norm": 0.7027932960893855, "acc_norm_stderr": 0.015285313353641597 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.8496732026143791, "acc_stderr": 0.02046417512433263, "acc_norm": 0.8496732026143791, "acc_norm_stderr": 0.02046417512433263 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.8488745980707395, "acc_stderr": 0.020342749744428647, "acc_norm": 0.8488745980707395, "acc_norm_stderr": 0.020342749744428647 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.8796296296296297, "acc_stderr": 0.018105414094329676, "acc_norm": 0.8796296296296297, "acc_norm_stderr": 0.018105414094329676 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.6453900709219859, "acc_stderr": 0.02853865002887863, "acc_norm": 0.6453900709219859, "acc_norm_stderr": 0.02853865002887863 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.6088657105606258, "acc_stderr": 0.01246386183998206, "acc_norm": 0.6088657105606258, "acc_norm_stderr": 0.01246386183998206 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.8345588235294118, "acc_stderr": 0.02257177102549473, "acc_norm": 0.8345588235294118, "acc_norm_stderr": 0.02257177102549473 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.8169934640522876, "acc_stderr": 0.01564306991127334, "acc_norm": 0.8169934640522876, "acc_norm_stderr": 0.01564306991127334 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.7545454545454545, "acc_stderr": 0.041220665028782855, "acc_norm": 0.7545454545454545, "acc_norm_stderr": 0.041220665028782855 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.8163265306122449, "acc_stderr": 0.024789071332007643, "acc_norm": 0.8163265306122449, "acc_norm_stderr": 0.024789071332007643 }, "harness|hendrycksTest-sociology|5": { "acc": 0.900497512437811, "acc_stderr": 0.021166216304659393, "acc_norm": 0.900497512437811, "acc_norm_stderr": 0.021166216304659393 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.94, "acc_stderr": 0.02386832565759419, "acc_norm": 0.94, "acc_norm_stderr": 0.02386832565759419 }, "harness|hendrycksTest-virology|5": { "acc": 0.5903614457831325, "acc_stderr": 0.038284011150790206, "acc_norm": 0.5903614457831325, "acc_norm_stderr": 0.038284011150790206 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8771929824561403, "acc_stderr": 0.02517298435015577, "acc_norm": 0.8771929824561403, "acc_norm_stderr": 0.02517298435015577 }, "harness|truthfulqa:mc|0": { "mc1": 0.631578947368421, "mc1_stderr": 0.016886551261046046, "mc2": 0.7470556249138, "mc2_stderr": 0.014379615349295343 }, "harness|winogrande|5": { "acc": 0.840568271507498, "acc_stderr": 0.010288617479454764 }, "harness|gsm8k|5": { "acc": 0.7862016679302501, "acc_stderr": 0.01129305469863505 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_moreh__MoMo-72B-lora-1.8.7-DPO
[ "region:us" ]
2024-01-22T10:36:02+00:00
{"pretty_name": "Evaluation run of moreh/MoMo-72B-lora-1.8.7-DPO", "dataset_summary": "Dataset automatically created during the evaluation run of model [moreh/MoMo-72B-lora-1.8.7-DPO](https://huggingface.co/moreh/MoMo-72B-lora-1.8.7-DPO) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_moreh__MoMo-72B-lora-1.8.7-DPO\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-22T10:33:58.465501](https://huggingface.co/datasets/open-llm-leaderboard/details_moreh__MoMo-72B-lora-1.8.7-DPO/blob/main/results_2024-01-22T10-33-58.465501.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.76953499319056,\n \"acc_stderr\": 0.0279294705479517,\n \"acc_norm\": 0.7716820258755411,\n \"acc_norm_stderr\": 0.0284840002969871,\n \"mc1\": 0.631578947368421,\n \"mc1_stderr\": 0.016886551261046046,\n \"mc2\": 0.7470556249138,\n \"mc2_stderr\": 0.014379615349295343\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.6800341296928327,\n \"acc_stderr\": 0.013631345807016195,\n \"acc_norm\": 0.7081911262798635,\n \"acc_norm_stderr\": 0.013284525292403511\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6733718382792272,\n \"acc_stderr\": 0.004680215003395925,\n \"acc_norm\": 0.8595897231627166,\n \"acc_norm_stderr\": 0.0034670217932838386\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.4,\n \"acc_stderr\": 0.04923659639173309,\n \"acc_norm\": 0.4,\n \"acc_norm_stderr\": 0.04923659639173309\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.7111111111111111,\n \"acc_stderr\": 0.03915450630414251,\n \"acc_norm\": 0.7111111111111111,\n \"acc_norm_stderr\": 0.03915450630414251\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.8881578947368421,\n \"acc_stderr\": 0.02564834125169361,\n \"acc_norm\": 0.8881578947368421,\n \"acc_norm_stderr\": 0.02564834125169361\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.81,\n \"acc_stderr\": 0.03942772444036623,\n \"acc_norm\": 0.81,\n \"acc_norm_stderr\": 0.03942772444036623\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.8452830188679246,\n \"acc_stderr\": 0.02225707555879128,\n \"acc_norm\": 0.8452830188679246,\n \"acc_norm_stderr\": 0.02225707555879128\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.9305555555555556,\n \"acc_stderr\": 0.02125797482283205,\n \"acc_norm\": 0.9305555555555556,\n \"acc_norm_stderr\": 0.02125797482283205\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.54,\n \"acc_stderr\": 0.05009082659620332,\n \"acc_norm\": 0.54,\n \"acc_norm_stderr\": 0.05009082659620332\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.63,\n \"acc_stderr\": 0.048523658709391,\n \"acc_norm\": 0.63,\n \"acc_norm_stderr\": 0.048523658709391\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.53,\n \"acc_stderr\": 0.05016135580465919,\n \"acc_norm\": 0.53,\n \"acc_norm_stderr\": 0.05016135580465919\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.7687861271676301,\n \"acc_stderr\": 0.03214737302029468,\n \"acc_norm\": 0.7687861271676301,\n \"acc_norm_stderr\": 0.03214737302029468\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.5490196078431373,\n \"acc_stderr\": 0.049512182523962604,\n \"acc_norm\": 0.5490196078431373,\n \"acc_norm_stderr\": 0.049512182523962604\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.8,\n \"acc_stderr\": 0.04020151261036845,\n \"acc_norm\": 0.8,\n \"acc_norm_stderr\": 0.04020151261036845\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.7914893617021277,\n \"acc_stderr\": 0.02655698211783873,\n \"acc_norm\": 0.7914893617021277,\n \"acc_norm_stderr\": 0.02655698211783873\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.5964912280701754,\n \"acc_stderr\": 0.04615186962583707,\n \"acc_norm\": 0.5964912280701754,\n \"acc_norm_stderr\": 0.04615186962583707\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.7793103448275862,\n \"acc_stderr\": 0.03455930201924811,\n \"acc_norm\": 0.7793103448275862,\n \"acc_norm_stderr\": 0.03455930201924811\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.6957671957671958,\n \"acc_stderr\": 0.023695415009463087,\n \"acc_norm\": 0.6957671957671958,\n \"acc_norm_stderr\": 0.023695415009463087\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.5714285714285714,\n \"acc_stderr\": 0.04426266681379909,\n \"acc_norm\": 0.5714285714285714,\n \"acc_norm_stderr\": 0.04426266681379909\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.49,\n \"acc_stderr\": 0.05024183937956912,\n \"acc_norm\": 0.49,\n \"acc_norm_stderr\": 0.05024183937956912\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.8838709677419355,\n \"acc_stderr\": 0.018225757949432306,\n \"acc_norm\": 0.8838709677419355,\n \"acc_norm_stderr\": 0.018225757949432306\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.645320197044335,\n \"acc_stderr\": 0.0336612448905145,\n \"acc_norm\": 0.645320197044335,\n \"acc_norm_stderr\": 0.0336612448905145\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.81,\n \"acc_stderr\": 0.03942772444036625,\n \"acc_norm\": 0.81,\n \"acc_norm_stderr\": 0.03942772444036625\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.8606060606060606,\n \"acc_stderr\": 0.0270459488258654,\n \"acc_norm\": 0.8606060606060606,\n \"acc_norm_stderr\": 0.0270459488258654\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.9343434343434344,\n \"acc_stderr\": 0.01764652667723332,\n \"acc_norm\": 0.9343434343434344,\n \"acc_norm_stderr\": 0.01764652667723332\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.9896373056994818,\n \"acc_stderr\": 0.007308424386792194,\n \"acc_norm\": 0.9896373056994818,\n \"acc_norm_stderr\": 0.007308424386792194\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.8076923076923077,\n \"acc_stderr\": 0.019982347208637296,\n \"acc_norm\": 0.8076923076923077,\n \"acc_norm_stderr\": 0.019982347208637296\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.4666666666666667,\n \"acc_stderr\": 0.03041771696171748,\n \"acc_norm\": 0.4666666666666667,\n \"acc_norm_stderr\": 0.03041771696171748\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.8529411764705882,\n \"acc_stderr\": 0.023005459446673957,\n \"acc_norm\": 0.8529411764705882,\n \"acc_norm_stderr\": 0.023005459446673957\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.5629139072847682,\n \"acc_stderr\": 0.040500357222306355,\n \"acc_norm\": 0.5629139072847682,\n \"acc_norm_stderr\": 0.040500357222306355\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.9284403669724771,\n \"acc_stderr\": 0.011051255247815476,\n \"acc_norm\": 0.9284403669724771,\n \"acc_norm_stderr\": 0.011051255247815476\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.6805555555555556,\n \"acc_stderr\": 0.03179876342176853,\n \"acc_norm\": 0.6805555555555556,\n \"acc_norm_stderr\": 0.03179876342176853\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.9215686274509803,\n \"acc_stderr\": 0.018869514646658928,\n \"acc_norm\": 0.9215686274509803,\n \"acc_norm_stderr\": 0.018869514646658928\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.9071729957805907,\n \"acc_stderr\": 0.018889750550956715,\n \"acc_norm\": 0.9071729957805907,\n \"acc_norm_stderr\": 0.018889750550956715\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.8026905829596412,\n \"acc_stderr\": 0.02670985334496796,\n \"acc_norm\": 0.8026905829596412,\n \"acc_norm_stderr\": 0.02670985334496796\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.8854961832061069,\n \"acc_stderr\": 0.027927473753597453,\n \"acc_norm\": 0.8854961832061069,\n \"acc_norm_stderr\": 0.027927473753597453\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8925619834710744,\n \"acc_stderr\": 0.028268812192540616,\n \"acc_norm\": 0.8925619834710744,\n \"acc_norm_stderr\": 0.028268812192540616\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.8611111111111112,\n \"acc_stderr\": 0.0334327006286962,\n \"acc_norm\": 0.8611111111111112,\n \"acc_norm_stderr\": 0.0334327006286962\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.8466257668711656,\n \"acc_stderr\": 0.028311601441438596,\n \"acc_norm\": 0.8466257668711656,\n \"acc_norm_stderr\": 0.028311601441438596\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.6071428571428571,\n \"acc_stderr\": 0.046355501356099754,\n \"acc_norm\": 0.6071428571428571,\n \"acc_norm_stderr\": 0.046355501356099754\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.8640776699029126,\n \"acc_stderr\": 0.03393295729761011,\n \"acc_norm\": 0.8640776699029126,\n \"acc_norm_stderr\": 0.03393295729761011\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.9401709401709402,\n \"acc_stderr\": 0.015537514263253874,\n \"acc_norm\": 0.9401709401709402,\n \"acc_norm_stderr\": 0.015537514263253874\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.86,\n \"acc_stderr\": 0.034873508801977725,\n \"acc_norm\": 0.86,\n \"acc_norm_stderr\": 0.034873508801977725\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.9157088122605364,\n \"acc_stderr\": 0.009934966499513784,\n \"acc_norm\": 0.9157088122605364,\n \"acc_norm_stderr\": 0.009934966499513784\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.8410404624277457,\n \"acc_stderr\": 0.019685307033571946,\n \"acc_norm\": 0.8410404624277457,\n \"acc_norm_stderr\": 0.019685307033571946\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.7027932960893855,\n \"acc_stderr\": 0.015285313353641597,\n \"acc_norm\": 0.7027932960893855,\n \"acc_norm_stderr\": 0.015285313353641597\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.8496732026143791,\n \"acc_stderr\": 0.02046417512433263,\n \"acc_norm\": 0.8496732026143791,\n \"acc_norm_stderr\": 0.02046417512433263\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.8488745980707395,\n \"acc_stderr\": 0.020342749744428647,\n \"acc_norm\": 0.8488745980707395,\n \"acc_norm_stderr\": 0.020342749744428647\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.8796296296296297,\n \"acc_stderr\": 0.018105414094329676,\n \"acc_norm\": 0.8796296296296297,\n \"acc_norm_stderr\": 0.018105414094329676\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.6453900709219859,\n \"acc_stderr\": 0.02853865002887863,\n \"acc_norm\": 0.6453900709219859,\n \"acc_norm_stderr\": 0.02853865002887863\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.6088657105606258,\n \"acc_stderr\": 0.01246386183998206,\n \"acc_norm\": 0.6088657105606258,\n \"acc_norm_stderr\": 0.01246386183998206\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.8345588235294118,\n \"acc_stderr\": 0.02257177102549473,\n \"acc_norm\": 0.8345588235294118,\n \"acc_norm_stderr\": 0.02257177102549473\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.8169934640522876,\n \"acc_stderr\": 0.01564306991127334,\n \"acc_norm\": 0.8169934640522876,\n \"acc_norm_stderr\": 0.01564306991127334\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.7545454545454545,\n \"acc_stderr\": 0.041220665028782855,\n \"acc_norm\": 0.7545454545454545,\n \"acc_norm_stderr\": 0.041220665028782855\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.8163265306122449,\n \"acc_stderr\": 0.024789071332007643,\n \"acc_norm\": 0.8163265306122449,\n \"acc_norm_stderr\": 0.024789071332007643\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.900497512437811,\n \"acc_stderr\": 0.021166216304659393,\n \"acc_norm\": 0.900497512437811,\n \"acc_norm_stderr\": 0.021166216304659393\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.94,\n \"acc_stderr\": 0.02386832565759419,\n \"acc_norm\": 0.94,\n \"acc_norm_stderr\": 0.02386832565759419\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5903614457831325,\n \"acc_stderr\": 0.038284011150790206,\n \"acc_norm\": 0.5903614457831325,\n \"acc_norm_stderr\": 0.038284011150790206\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8771929824561403,\n \"acc_stderr\": 0.02517298435015577,\n \"acc_norm\": 0.8771929824561403,\n \"acc_norm_stderr\": 0.02517298435015577\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.631578947368421,\n \"mc1_stderr\": 0.016886551261046046,\n \"mc2\": 0.7470556249138,\n \"mc2_stderr\": 0.014379615349295343\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.840568271507498,\n \"acc_stderr\": 0.010288617479454764\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.7862016679302501,\n \"acc_stderr\": 0.01129305469863505\n }\n}\n```", "repo_url": "https://huggingface.co/moreh/MoMo-72B-lora-1.8.7-DPO", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|arc:challenge|25_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|gsm8k|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hellaswag|10_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T10-33-58.465501.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["**/details_harness|winogrande|5_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-22T10-33-58.465501.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_22T10_33_58.465501", "path": ["results_2024-01-22T10-33-58.465501.parquet"]}, {"split": "latest", "path": ["results_2024-01-22T10-33-58.465501.parquet"]}]}]}
2024-01-22T10:36:23+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of moreh/MoMo-72B-lora-1.8.7-DPO Dataset automatically created during the evaluation run of model moreh/MoMo-72B-lora-1.8.7-DPO on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-22T10:33:58.465501(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of moreh/MoMo-72B-lora-1.8.7-DPO\n\n\n\nDataset automatically created during the evaluation run of model moreh/MoMo-72B-lora-1.8.7-DPO on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T10:33:58.465501(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of moreh/MoMo-72B-lora-1.8.7-DPO\n\n\n\nDataset automatically created during the evaluation run of model moreh/MoMo-72B-lora-1.8.7-DPO on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T10:33:58.465501(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
258cb9b36404a64c292a58146d2790ea31d5e340
This dataset contains the Czech subset of the [`wikimedia/wikipedia`](https://huggingface.co/datasets/wikimedia/wikipedia) dataset. Each page is divided into paragraphs, stored as a list in the `chunks` column. For every paragraph, embeddings are created using the [`sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2`](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) model. ## Usage Load the dataset: ```python from datasets import load_dataset ds = load_dataset("karmiq/wikipedia-embeddings-cs-e5-base", split="train") ds[1] ``` ``` { 'id': '1', 'url': 'https://cs.wikipedia.org/wiki/Astronomie', 'title': 'Astronomie', 'chunks': [ 'Astronomie, řecky αστρονομία z άστρον ( astron ) hvězda a νόμος ( nomos )...', 'Myšlenky Aristotelovy rozvinul ve 2. století našeho letopočtu Klaudios Ptolemaios...', ..., ], 'embeddings': [ [0.09006806463003159, -0.009814552962779999, ...], [0.10767366737127304, ...], ... ] } ``` The structure makes it easy to use the dataset for implementing semantic search. <details> <summary>Load the data in Elasticsearch</summary> ```python def doc_generator(data, batch_size=1000): for batch in data.with_format("numpy").iter(batch_size): for i, id in enumerate(batch["id"]): output = {"id": id} output["title"] = batch["title"][i] output["url"] = batch["url"][i] output["parts"] = [ { "chunk": chunk, "embedding": embedding } for chunk, embedding in zip(batch["chunks"][i], batch["embeddings"][i]) ] yield output num_indexed, num_failed = 0, 0, progress = tqdm(total=ds.num_rows, unit="doc", desc="Indexing") for ok, info in parallel_bulk( es, index="wikipedia-search", actions=doc_generator(ds), raise_on_error=False, ): if not ok: print(f"ERROR {info['index']['status']}: " f"{info['index']['error']['type']}: {info['index']['error']['caused_by']['type']}: " f"{info['index']['error']['caused_by']['reason'][:250]}") progress.update(1) ``` </details> <details> <summary>Use <code>sentence_transformers.util.semantic_search</code></summary> ```python import sentence_transformers model = sentence_transformers.SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2") ds.set_format(type="torch", columns=["embeddings"], output_all_columns=True) # Flatten the dataset def explode_sequence(batch): output = { "id": [], "url": [], "title": [], "chunk": [], "embedding": [] } for id, url, title, chunks, embeddings in zip( batch["id"], batch["url"], batch["title"], batch["chunks"], batch["embeddings"] ): output["id"].extend([id for _ in range(len(chunks))]) output["url"].extend([url for _ in range(len(chunks))]) output["title"].extend([title for _ in range(len(chunks))]) output["chunk"].extend(chunks) output["embedding"].extend(embeddings) return output ds_flat = ds.map( explode_sequence, batched=True, remove_columns=ds.column_names, num_proc=min(os.cpu_count(), 32), desc="Flatten") ds_flat query = "Čím se zabývá fyzika?" hits = sentence_transformers.util.semantic_search( query_embeddings=model.encode(query), corpus_embeddings=ds_flat["embedding"], top_k=10) for hit in hits[0]: title = ds_flat[hit['corpus_id']]['title'] chunk = ds_flat[hit['corpus_id']]['chunk'] print(f"[{hit['score']:0.2f}] {textwrap.shorten(chunk, width=100, placeholder='…')} [{title}]") # [0.90] Fyzika částic ( též částicová fyzika ) je oblast fyziky, která se zabývá částicemi. V širším smyslu… [Fyzika částic] # [0.89] Fyzika ( z řeckého φυσικός ( fysikos ): přírodní, ze základu φύσις ( fysis ): příroda, archaicky… [Fyzika] # ... ``` </details> The embeddings generation took about 15 minutes on an NVIDIA A100 80GB GPU. ## License See license of the original dataset: <https://huggingface.co/datasets/wikimedia/wikipedia>.
karmiq/wikipedia-embeddings-cs-minilm
[ "task_categories:text-generation", "task_categories:fill-mask", "size_categories:100K<n<1M", "language:cs", "license:cc-by-sa-3.0", "license:gfdl", "region:us" ]
2024-01-22T10:40:19+00:00
{"language": ["cs"], "license": ["cc-by-sa-3.0", "gfdl"], "size_categories": ["100K<n<1M"], "task_categories": ["text-generation", "fill-mask"], "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "chunks", "sequence": "string"}, {"name": "embeddings", "sequence": {"sequence": "float32"}}], "splits": [{"name": "train", "num_bytes": 3302394852, "num_examples": 534044}], "download_size": 3029969220, "dataset_size": 3302394852}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-22T10:46:46+00:00
[]
[ "cs" ]
TAGS #task_categories-text-generation #task_categories-fill-mask #size_categories-100K<n<1M #language-Czech #license-cc-by-sa-3.0 #license-gfdl #region-us
This dataset contains the Czech subset of the 'wikimedia/wikipedia' dataset. Each page is divided into paragraphs, stored as a list in the 'chunks' column. For every paragraph, embeddings are created using the 'sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2' model. ## Usage Load the dataset: The structure makes it easy to use the dataset for implementing semantic search. <details> <summary>Load the data in Elasticsearch</summary> </details> <details> <summary>Use <code>sentence_transformers.util.semantic_search</code></summary> </details> The embeddings generation took about 15 minutes on an NVIDIA A100 80GB GPU. ## License See license of the original dataset: <URL
[ "## Usage\n\nLoad the dataset:\n\n\n\n\n\nThe structure makes it easy to use the dataset for implementing semantic search.\n\n<details>\n<summary>Load the data in Elasticsearch</summary>\n\n\n</details>\n\n<details>\n<summary>Use <code>sentence_transformers.util.semantic_search</code></summary>\n\n\n</details>\n\nThe embeddings generation took about 15 minutes on an NVIDIA A100 80GB GPU.", "## License\n\nSee license of the original dataset: <URL" ]
[ "TAGS\n#task_categories-text-generation #task_categories-fill-mask #size_categories-100K<n<1M #language-Czech #license-cc-by-sa-3.0 #license-gfdl #region-us \n", "## Usage\n\nLoad the dataset:\n\n\n\n\n\nThe structure makes it easy to use the dataset for implementing semantic search.\n\n<details>\n<summary>Load the data in Elasticsearch</summary>\n\n\n</details>\n\n<details>\n<summary>Use <code>sentence_transformers.util.semantic_search</code></summary>\n\n\n</details>\n\nThe embeddings generation took about 15 minutes on an NVIDIA A100 80GB GPU.", "## License\n\nSee license of the original dataset: <URL" ]
ddbc2a7d969b92a943ad84bfb8e0ec306a9ae068
# CroissantChat SFT data ``` @misc{faysse2024croissantllm, title={CroissantLLM: A Truly Bilingual French-English Language Model}, author={Manuel Faysse and Patrick Fernandes and Nuno M. Guerreiro and António Loison and Duarte M. Alves and Caio Corro and Nicolas Boizard and João Alves and Ricardo Rei and Pedro H. Martins and Antoni Bigata Casademunt and François Yvon and André F. T. Martins and Gautier Viaud and Céline Hudelot and Pierre Colombo}, year={2024}, eprint={2402.00786}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
croissantllm/CroissantLLM-2201-sft
[ "arxiv:2402.00786", "region:us" ]
2024-01-22T10:55:28+00:00
{"dataset_info": {"features": [{"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "markdown", "struct": [{"name": "answer", "dtype": "string"}, {"name": "index", "dtype": "int64"}, {"name": "type", "dtype": "string"}]}, {"name": "text", "dtype": "string"}, {"name": "value", "dtype": "string"}]}, {"name": "lang", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "dataset", "dtype": "string"}, {"name": "task", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1184454542, "num_examples": 294220}], "download_size": 566386739, "dataset_size": 1184454542}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-02-15T08:46:36+00:00
[ "2402.00786" ]
[]
TAGS #arxiv-2402.00786 #region-us
# CroissantChat SFT data
[ "# CroissantChat SFT data" ]
[ "TAGS\n#arxiv-2402.00786 #region-us \n", "# CroissantChat SFT data" ]
6cd180167f0a6d0ef194d2990c12f1eb7c643ef6
#This dataset is collected from ImageReward for the fake class and COCO for the real class
HDanh/RealFakeDB_small
[ "task_categories:image-classification", "size_categories:10K<n<100K", "language:en", "license:mit", "region:us" ]
2024-01-22T11:02:24+00:00
{"language": ["en"], "license": "mit", "size_categories": ["10K<n<100K"], "task_categories": ["image-classification"], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "fake", "1": "real"}}}}], "splits": [{"name": "train", "num_bytes": 10881873439.327, "num_examples": 98163}, {"name": "validation", "num_bytes": 574289333.296, "num_examples": 5168}, {"name": "test", "num_bytes": 592123012.48, "num_examples": 5440}], "download_size": 13085799986, "dataset_size": 12048285785.102999}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}, {"split": "test", "path": "data/test-*"}]}]}
2024-01-23T03:19:40+00:00
[]
[ "en" ]
TAGS #task_categories-image-classification #size_categories-10K<n<100K #language-English #license-mit #region-us
#This dataset is collected from ImageReward for the fake class and COCO for the real class
[]
[ "TAGS\n#task_categories-image-classification #size_categories-10K<n<100K #language-English #license-mit #region-us \n" ]
93ee02366b239d5e24643411bc6f502a7d39ffeb
# Dataset Card for "testpapercomments-ds" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
davanstrien/testpapercomments-ds
[ "region:us" ]
2024-01-22T11:07:57+00:00
{"dataset_info": {"features": [{"name": "paper_url", "dtype": "string"}, {"name": "comment", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 502672, "num_examples": 456}], "download_size": 0, "dataset_size": 502672}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-22T11:22:32+00:00
[]
[]
TAGS #region-us
# Dataset Card for "testpapercomments-ds" More Information needed
[ "# Dataset Card for \"testpapercomments-ds\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"testpapercomments-ds\"\n\nMore Information needed" ]
9354987206020720241edba279e9dfe1031a863b
# Dataset Card for Evaluation run of TomGrc/FusionNet_34Bx2_MoE <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [TomGrc/FusionNet_34Bx2_MoE](https://huggingface.co/TomGrc/FusionNet_34Bx2_MoE) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_TomGrc__FusionNet_34Bx2_MoE", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-22T11:29:51.974520](https://huggingface.co/datasets/open-llm-leaderboard/details_TomGrc__FusionNet_34Bx2_MoE/blob/main/results_2024-01-22T11-29-51.974520.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.7677884016423521, "acc_stderr": 0.028039750027124166, "acc_norm": 0.7713984723671282, "acc_norm_stderr": 0.028574402204719553, "mc1": 0.5520195838433293, "mc1_stderr": 0.017408513063422906, "mc2": 0.7131206524056665, "mc2_stderr": 0.014366676245195859 }, "harness|arc:challenge|25": { "acc": 0.6962457337883959, "acc_stderr": 0.01343890918477876, "acc_norm": 0.7295221843003413, "acc_norm_stderr": 0.012980954547659556 }, "harness|hellaswag|10": { "acc": 0.6693885680143398, "acc_stderr": 0.004694718918225755, "acc_norm": 0.8621788488348935, "acc_norm_stderr": 0.003440076775300576 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.46, "acc_stderr": 0.05009082659620333, "acc_norm": 0.46, "acc_norm_stderr": 0.05009082659620333 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.7333333333333333, "acc_stderr": 0.038201699145179055, "acc_norm": 0.7333333333333333, "acc_norm_stderr": 0.038201699145179055 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.881578947368421, "acc_stderr": 0.026293995855474938, "acc_norm": 0.881578947368421, "acc_norm_stderr": 0.026293995855474938 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.77, "acc_stderr": 0.04229525846816506, "acc_norm": 0.77, "acc_norm_stderr": 0.04229525846816506 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.8075471698113208, "acc_stderr": 0.024262979839372274, "acc_norm": 0.8075471698113208, "acc_norm_stderr": 0.024262979839372274 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.8680555555555556, "acc_stderr": 0.02830096838204443, "acc_norm": 0.8680555555555556, "acc_norm_stderr": 0.02830096838204443 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.5, "acc_stderr": 0.050251890762960605, "acc_norm": 0.5, "acc_norm_stderr": 0.050251890762960605 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.59, "acc_stderr": 0.04943110704237101, "acc_norm": 0.59, "acc_norm_stderr": 0.04943110704237101 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.48, "acc_stderr": 0.050211673156867795, "acc_norm": 0.48, "acc_norm_stderr": 0.050211673156867795 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.7456647398843931, "acc_stderr": 0.0332055644308557, "acc_norm": 0.7456647398843931, "acc_norm_stderr": 0.0332055644308557 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.5686274509803921, "acc_stderr": 0.04928099597287534, "acc_norm": 0.5686274509803921, "acc_norm_stderr": 0.04928099597287534 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.81, "acc_stderr": 0.039427724440366234, "acc_norm": 0.81, "acc_norm_stderr": 0.039427724440366234 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.7829787234042553, "acc_stderr": 0.02694748312149622, "acc_norm": 0.7829787234042553, "acc_norm_stderr": 0.02694748312149622 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.6140350877192983, "acc_stderr": 0.04579639422070434, "acc_norm": 0.6140350877192983, "acc_norm_stderr": 0.04579639422070434 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.7517241379310344, "acc_stderr": 0.036001056927277696, "acc_norm": 0.7517241379310344, "acc_norm_stderr": 0.036001056927277696 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.7222222222222222, "acc_stderr": 0.02306818884826112, "acc_norm": 0.7222222222222222, "acc_norm_stderr": 0.02306818884826112 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.5555555555555556, "acc_stderr": 0.044444444444444495, "acc_norm": 0.5555555555555556, "acc_norm_stderr": 0.044444444444444495 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.59, "acc_stderr": 0.04943110704237102, "acc_norm": 0.59, "acc_norm_stderr": 0.04943110704237102 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.9161290322580645, "acc_stderr": 0.015769027496775664, "acc_norm": 0.9161290322580645, "acc_norm_stderr": 0.015769027496775664 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.6502463054187192, "acc_stderr": 0.03355400904969566, "acc_norm": 0.6502463054187192, "acc_norm_stderr": 0.03355400904969566 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.83, "acc_stderr": 0.03775251680686371, "acc_norm": 0.83, "acc_norm_stderr": 0.03775251680686371 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.8727272727272727, "acc_stderr": 0.026024657651656177, "acc_norm": 0.8727272727272727, "acc_norm_stderr": 0.026024657651656177 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.9191919191919192, "acc_stderr": 0.019417681889724536, "acc_norm": 0.9191919191919192, "acc_norm_stderr": 0.019417681889724536 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.9740932642487047, "acc_stderr": 0.011464523356953162, "acc_norm": 0.9740932642487047, "acc_norm_stderr": 0.011464523356953162 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.8179487179487179, "acc_stderr": 0.019565236782930893, "acc_norm": 0.8179487179487179, "acc_norm_stderr": 0.019565236782930893 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.45925925925925926, "acc_stderr": 0.03038416923235083, "acc_norm": 0.45925925925925926, "acc_norm_stderr": 0.03038416923235083 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.8487394957983193, "acc_stderr": 0.023274255898707946, "acc_norm": 0.8487394957983193, "acc_norm_stderr": 0.023274255898707946 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.4966887417218543, "acc_stderr": 0.04082393379449654, "acc_norm": 0.4966887417218543, "acc_norm_stderr": 0.04082393379449654 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.9155963302752294, "acc_stderr": 0.011918819327334879, "acc_norm": 0.9155963302752294, "acc_norm_stderr": 0.011918819327334879 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.6666666666666666, "acc_stderr": 0.03214952147802749, "acc_norm": 0.6666666666666666, "acc_norm_stderr": 0.03214952147802749 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.9215686274509803, "acc_stderr": 0.018869514646658928, "acc_norm": 0.9215686274509803, "acc_norm_stderr": 0.018869514646658928 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.8987341772151899, "acc_stderr": 0.019637720526065522, "acc_norm": 0.8987341772151899, "acc_norm_stderr": 0.019637720526065522 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.7802690582959642, "acc_stderr": 0.027790177064383595, "acc_norm": 0.7802690582959642, "acc_norm_stderr": 0.027790177064383595 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.8778625954198473, "acc_stderr": 0.028718776889342323, "acc_norm": 0.8778625954198473, "acc_norm_stderr": 0.028718776889342323 }, "harness|hendrycksTest-international_law|5": { "acc": 0.8925619834710744, "acc_stderr": 0.028268812192540637, "acc_norm": 0.8925619834710744, "acc_norm_stderr": 0.028268812192540637 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.8888888888888888, "acc_stderr": 0.03038159675665167, "acc_norm": 0.8888888888888888, "acc_norm_stderr": 0.03038159675665167 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.901840490797546, "acc_stderr": 0.023376180231059602, "acc_norm": 0.901840490797546, "acc_norm_stderr": 0.023376180231059602 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.5892857142857143, "acc_stderr": 0.04669510663875191, "acc_norm": 0.5892857142857143, "acc_norm_stderr": 0.04669510663875191 }, "harness|hendrycksTest-management|5": { "acc": 0.883495145631068, "acc_stderr": 0.03176683948640407, "acc_norm": 0.883495145631068, "acc_norm_stderr": 0.03176683948640407 }, "harness|hendrycksTest-marketing|5": { "acc": 0.9401709401709402, "acc_stderr": 0.015537514263253862, "acc_norm": 0.9401709401709402, "acc_norm_stderr": 0.015537514263253862 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.92, "acc_stderr": 0.027265992434429093, "acc_norm": 0.92, "acc_norm_stderr": 0.027265992434429093 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.9106002554278416, "acc_stderr": 0.010203017847688298, "acc_norm": 0.9106002554278416, "acc_norm_stderr": 0.010203017847688298 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.8265895953757225, "acc_stderr": 0.020383229551135026, "acc_norm": 0.8265895953757225, "acc_norm_stderr": 0.020383229551135026 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.7865921787709497, "acc_stderr": 0.01370285993219609, "acc_norm": 0.7865921787709497, "acc_norm_stderr": 0.01370285993219609 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.8529411764705882, "acc_stderr": 0.020279402936174588, "acc_norm": 0.8529411764705882, "acc_norm_stderr": 0.020279402936174588 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.8360128617363344, "acc_stderr": 0.021029576464662695, "acc_norm": 0.8360128617363344, "acc_norm_stderr": 0.021029576464662695 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.8796296296296297, "acc_stderr": 0.01810541409432967, "acc_norm": 0.8796296296296297, "acc_norm_stderr": 0.01810541409432967 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.6453900709219859, "acc_stderr": 0.028538650028878627, "acc_norm": 0.6453900709219859, "acc_norm_stderr": 0.028538650028878627 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.5938722294654498, "acc_stderr": 0.012543154588412923, "acc_norm": 0.5938722294654498, "acc_norm_stderr": 0.012543154588412923 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.8308823529411765, "acc_stderr": 0.022770868010113018, "acc_norm": 0.8308823529411765, "acc_norm_stderr": 0.022770868010113018 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.826797385620915, "acc_stderr": 0.015309329266969133, "acc_norm": 0.826797385620915, "acc_norm_stderr": 0.015309329266969133 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.7454545454545455, "acc_stderr": 0.041723430387053825, "acc_norm": 0.7454545454545455, "acc_norm_stderr": 0.041723430387053825 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.8489795918367347, "acc_stderr": 0.022923004094736847, "acc_norm": 0.8489795918367347, "acc_norm_stderr": 0.022923004094736847 }, "harness|hendrycksTest-sociology|5": { "acc": 0.900497512437811, "acc_stderr": 0.021166216304659393, "acc_norm": 0.900497512437811, "acc_norm_stderr": 0.021166216304659393 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.9, "acc_stderr": 0.030151134457776334, "acc_norm": 0.9, "acc_norm_stderr": 0.030151134457776334 }, "harness|hendrycksTest-virology|5": { "acc": 0.5602409638554217, "acc_stderr": 0.03864139923699122, "acc_norm": 0.5602409638554217, "acc_norm_stderr": 0.03864139923699122 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8830409356725146, "acc_stderr": 0.024648068961366152, "acc_norm": 0.8830409356725146, "acc_norm_stderr": 0.024648068961366152 }, "harness|truthfulqa:mc|0": { "mc1": 0.5520195838433293, "mc1_stderr": 0.017408513063422906, "mc2": 0.7131206524056665, "mc2_stderr": 0.014366676245195859 }, "harness|winogrande|5": { "acc": 0.8397790055248618, "acc_stderr": 0.010309209498187479 }, "harness|gsm8k|5": { "acc": 0.7088703563305534, "acc_stderr": 0.012513215297888463 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_TomGrc__FusionNet_34Bx2_MoE
[ "region:us" ]
2024-01-22T11:32:06+00:00
{"pretty_name": "Evaluation run of TomGrc/FusionNet_34Bx2_MoE", "dataset_summary": "Dataset automatically created during the evaluation run of model [TomGrc/FusionNet_34Bx2_MoE](https://huggingface.co/TomGrc/FusionNet_34Bx2_MoE) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_TomGrc__FusionNet_34Bx2_MoE\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-22T11:29:51.974520](https://huggingface.co/datasets/open-llm-leaderboard/details_TomGrc__FusionNet_34Bx2_MoE/blob/main/results_2024-01-22T11-29-51.974520.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.7677884016423521,\n \"acc_stderr\": 0.028039750027124166,\n \"acc_norm\": 0.7713984723671282,\n \"acc_norm_stderr\": 0.028574402204719553,\n \"mc1\": 0.5520195838433293,\n \"mc1_stderr\": 0.017408513063422906,\n \"mc2\": 0.7131206524056665,\n \"mc2_stderr\": 0.014366676245195859\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.6962457337883959,\n \"acc_stderr\": 0.01343890918477876,\n \"acc_norm\": 0.7295221843003413,\n \"acc_norm_stderr\": 0.012980954547659556\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6693885680143398,\n \"acc_stderr\": 0.004694718918225755,\n \"acc_norm\": 0.8621788488348935,\n \"acc_norm_stderr\": 0.003440076775300576\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.46,\n \"acc_stderr\": 0.05009082659620333,\n \"acc_norm\": 0.46,\n \"acc_norm_stderr\": 0.05009082659620333\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.7333333333333333,\n \"acc_stderr\": 0.038201699145179055,\n \"acc_norm\": 0.7333333333333333,\n \"acc_norm_stderr\": 0.038201699145179055\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.881578947368421,\n \"acc_stderr\": 0.026293995855474938,\n \"acc_norm\": 0.881578947368421,\n \"acc_norm_stderr\": 0.026293995855474938\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.77,\n \"acc_stderr\": 0.04229525846816506,\n \"acc_norm\": 0.77,\n \"acc_norm_stderr\": 0.04229525846816506\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.8075471698113208,\n \"acc_stderr\": 0.024262979839372274,\n \"acc_norm\": 0.8075471698113208,\n \"acc_norm_stderr\": 0.024262979839372274\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.8680555555555556,\n \"acc_stderr\": 0.02830096838204443,\n \"acc_norm\": 0.8680555555555556,\n \"acc_norm_stderr\": 0.02830096838204443\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.5,\n \"acc_stderr\": 0.050251890762960605,\n \"acc_norm\": 0.5,\n \"acc_norm_stderr\": 0.050251890762960605\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.59,\n \"acc_stderr\": 0.04943110704237101,\n \"acc_norm\": 0.59,\n \"acc_norm_stderr\": 0.04943110704237101\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.48,\n \"acc_stderr\": 0.050211673156867795,\n \"acc_norm\": 0.48,\n \"acc_norm_stderr\": 0.050211673156867795\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.7456647398843931,\n \"acc_stderr\": 0.0332055644308557,\n \"acc_norm\": 0.7456647398843931,\n \"acc_norm_stderr\": 0.0332055644308557\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.5686274509803921,\n \"acc_stderr\": 0.04928099597287534,\n \"acc_norm\": 0.5686274509803921,\n \"acc_norm_stderr\": 0.04928099597287534\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.81,\n \"acc_stderr\": 0.039427724440366234,\n \"acc_norm\": 0.81,\n \"acc_norm_stderr\": 0.039427724440366234\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.7829787234042553,\n \"acc_stderr\": 0.02694748312149622,\n \"acc_norm\": 0.7829787234042553,\n \"acc_norm_stderr\": 0.02694748312149622\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.6140350877192983,\n \"acc_stderr\": 0.04579639422070434,\n \"acc_norm\": 0.6140350877192983,\n \"acc_norm_stderr\": 0.04579639422070434\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.7517241379310344,\n \"acc_stderr\": 0.036001056927277696,\n \"acc_norm\": 0.7517241379310344,\n \"acc_norm_stderr\": 0.036001056927277696\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.7222222222222222,\n \"acc_stderr\": 0.02306818884826112,\n \"acc_norm\": 0.7222222222222222,\n \"acc_norm_stderr\": 0.02306818884826112\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.5555555555555556,\n \"acc_stderr\": 0.044444444444444495,\n \"acc_norm\": 0.5555555555555556,\n \"acc_norm_stderr\": 0.044444444444444495\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.59,\n \"acc_stderr\": 0.04943110704237102,\n \"acc_norm\": 0.59,\n \"acc_norm_stderr\": 0.04943110704237102\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.9161290322580645,\n \"acc_stderr\": 0.015769027496775664,\n \"acc_norm\": 0.9161290322580645,\n \"acc_norm_stderr\": 0.015769027496775664\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.6502463054187192,\n \"acc_stderr\": 0.03355400904969566,\n \"acc_norm\": 0.6502463054187192,\n \"acc_norm_stderr\": 0.03355400904969566\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.83,\n \"acc_stderr\": 0.03775251680686371,\n \"acc_norm\": 0.83,\n \"acc_norm_stderr\": 0.03775251680686371\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.8727272727272727,\n \"acc_stderr\": 0.026024657651656177,\n \"acc_norm\": 0.8727272727272727,\n \"acc_norm_stderr\": 0.026024657651656177\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.9191919191919192,\n \"acc_stderr\": 0.019417681889724536,\n \"acc_norm\": 0.9191919191919192,\n \"acc_norm_stderr\": 0.019417681889724536\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.9740932642487047,\n \"acc_stderr\": 0.011464523356953162,\n \"acc_norm\": 0.9740932642487047,\n \"acc_norm_stderr\": 0.011464523356953162\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.8179487179487179,\n \"acc_stderr\": 0.019565236782930893,\n \"acc_norm\": 0.8179487179487179,\n \"acc_norm_stderr\": 0.019565236782930893\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.45925925925925926,\n \"acc_stderr\": 0.03038416923235083,\n \"acc_norm\": 0.45925925925925926,\n \"acc_norm_stderr\": 0.03038416923235083\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.8487394957983193,\n \"acc_stderr\": 0.023274255898707946,\n \"acc_norm\": 0.8487394957983193,\n \"acc_norm_stderr\": 0.023274255898707946\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.4966887417218543,\n \"acc_stderr\": 0.04082393379449654,\n \"acc_norm\": 0.4966887417218543,\n \"acc_norm_stderr\": 0.04082393379449654\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.9155963302752294,\n \"acc_stderr\": 0.011918819327334879,\n \"acc_norm\": 0.9155963302752294,\n \"acc_norm_stderr\": 0.011918819327334879\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.6666666666666666,\n \"acc_stderr\": 0.03214952147802749,\n \"acc_norm\": 0.6666666666666666,\n \"acc_norm_stderr\": 0.03214952147802749\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.9215686274509803,\n \"acc_stderr\": 0.018869514646658928,\n \"acc_norm\": 0.9215686274509803,\n \"acc_norm_stderr\": 0.018869514646658928\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.8987341772151899,\n \"acc_stderr\": 0.019637720526065522,\n \"acc_norm\": 0.8987341772151899,\n \"acc_norm_stderr\": 0.019637720526065522\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.7802690582959642,\n \"acc_stderr\": 0.027790177064383595,\n \"acc_norm\": 0.7802690582959642,\n \"acc_norm_stderr\": 0.027790177064383595\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.8778625954198473,\n \"acc_stderr\": 0.028718776889342323,\n \"acc_norm\": 0.8778625954198473,\n \"acc_norm_stderr\": 0.028718776889342323\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8925619834710744,\n \"acc_stderr\": 0.028268812192540637,\n \"acc_norm\": 0.8925619834710744,\n \"acc_norm_stderr\": 0.028268812192540637\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.8888888888888888,\n \"acc_stderr\": 0.03038159675665167,\n \"acc_norm\": 0.8888888888888888,\n \"acc_norm_stderr\": 0.03038159675665167\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.901840490797546,\n \"acc_stderr\": 0.023376180231059602,\n \"acc_norm\": 0.901840490797546,\n \"acc_norm_stderr\": 0.023376180231059602\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.5892857142857143,\n \"acc_stderr\": 0.04669510663875191,\n \"acc_norm\": 0.5892857142857143,\n \"acc_norm_stderr\": 0.04669510663875191\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.883495145631068,\n \"acc_stderr\": 0.03176683948640407,\n \"acc_norm\": 0.883495145631068,\n \"acc_norm_stderr\": 0.03176683948640407\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.9401709401709402,\n \"acc_stderr\": 0.015537514263253862,\n \"acc_norm\": 0.9401709401709402,\n \"acc_norm_stderr\": 0.015537514263253862\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.92,\n \"acc_stderr\": 0.027265992434429093,\n \"acc_norm\": 0.92,\n \"acc_norm_stderr\": 0.027265992434429093\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.9106002554278416,\n \"acc_stderr\": 0.010203017847688298,\n \"acc_norm\": 0.9106002554278416,\n \"acc_norm_stderr\": 0.010203017847688298\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.8265895953757225,\n \"acc_stderr\": 0.020383229551135026,\n \"acc_norm\": 0.8265895953757225,\n \"acc_norm_stderr\": 0.020383229551135026\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.7865921787709497,\n \"acc_stderr\": 0.01370285993219609,\n \"acc_norm\": 0.7865921787709497,\n \"acc_norm_stderr\": 0.01370285993219609\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.8529411764705882,\n \"acc_stderr\": 0.020279402936174588,\n \"acc_norm\": 0.8529411764705882,\n \"acc_norm_stderr\": 0.020279402936174588\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.8360128617363344,\n \"acc_stderr\": 0.021029576464662695,\n \"acc_norm\": 0.8360128617363344,\n \"acc_norm_stderr\": 0.021029576464662695\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.8796296296296297,\n \"acc_stderr\": 0.01810541409432967,\n \"acc_norm\": 0.8796296296296297,\n \"acc_norm_stderr\": 0.01810541409432967\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.6453900709219859,\n \"acc_stderr\": 0.028538650028878627,\n \"acc_norm\": 0.6453900709219859,\n \"acc_norm_stderr\": 0.028538650028878627\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.5938722294654498,\n \"acc_stderr\": 0.012543154588412923,\n \"acc_norm\": 0.5938722294654498,\n \"acc_norm_stderr\": 0.012543154588412923\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.8308823529411765,\n \"acc_stderr\": 0.022770868010113018,\n \"acc_norm\": 0.8308823529411765,\n \"acc_norm_stderr\": 0.022770868010113018\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.826797385620915,\n \"acc_stderr\": 0.015309329266969133,\n \"acc_norm\": 0.826797385620915,\n \"acc_norm_stderr\": 0.015309329266969133\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.7454545454545455,\n \"acc_stderr\": 0.041723430387053825,\n \"acc_norm\": 0.7454545454545455,\n \"acc_norm_stderr\": 0.041723430387053825\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.8489795918367347,\n \"acc_stderr\": 0.022923004094736847,\n \"acc_norm\": 0.8489795918367347,\n \"acc_norm_stderr\": 0.022923004094736847\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.900497512437811,\n \"acc_stderr\": 0.021166216304659393,\n \"acc_norm\": 0.900497512437811,\n \"acc_norm_stderr\": 0.021166216304659393\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.9,\n \"acc_stderr\": 0.030151134457776334,\n \"acc_norm\": 0.9,\n \"acc_norm_stderr\": 0.030151134457776334\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5602409638554217,\n \"acc_stderr\": 0.03864139923699122,\n \"acc_norm\": 0.5602409638554217,\n \"acc_norm_stderr\": 0.03864139923699122\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8830409356725146,\n \"acc_stderr\": 0.024648068961366152,\n \"acc_norm\": 0.8830409356725146,\n \"acc_norm_stderr\": 0.024648068961366152\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.5520195838433293,\n \"mc1_stderr\": 0.017408513063422906,\n \"mc2\": 0.7131206524056665,\n \"mc2_stderr\": 0.014366676245195859\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.8397790055248618,\n \"acc_stderr\": 0.010309209498187479\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.7088703563305534,\n \"acc_stderr\": 0.012513215297888463\n }\n}\n```", "repo_url": "https://huggingface.co/TomGrc/FusionNet_34Bx2_MoE", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|arc:challenge|25_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|gsm8k|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hellaswag|10_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T11-29-51.974520.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["**/details_harness|winogrande|5_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-22T11-29-51.974520.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_22T11_29_51.974520", "path": ["results_2024-01-22T11-29-51.974520.parquet"]}, {"split": "latest", "path": ["results_2024-01-22T11-29-51.974520.parquet"]}]}]}
2024-01-22T11:32:28+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of TomGrc/FusionNet_34Bx2_MoE Dataset automatically created during the evaluation run of model TomGrc/FusionNet_34Bx2_MoE on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-22T11:29:51.974520(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of TomGrc/FusionNet_34Bx2_MoE\n\n\n\nDataset automatically created during the evaluation run of model TomGrc/FusionNet_34Bx2_MoE on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T11:29:51.974520(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of TomGrc/FusionNet_34Bx2_MoE\n\n\n\nDataset automatically created during the evaluation run of model TomGrc/FusionNet_34Bx2_MoE on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T11:29:51.974520(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
78b767c96c21c7b4c3335c5b11a786a718178c69
# CMMMU [**🌐 Homepage**](https://cmmmu-benchmark.github.io/) | [**🤗 Paper**](https://huggingface.co/papers/2401.11944) | [**📖 arXiv**](https://arxiv.org/pdf/2401.11944.pdf) | [**🤗 Dataset**](https://huggingface.co/datasets/m-a-p/CMMMU) | [**GitHub**](https://github.com/CMMMU-Benchmark/CMMMU) ## Introduction CMMMU includes 12k manually collected multimodal questions from college exams, quizzes, and textbooks, covering six core disciplines: Art & Design, Business, Science, Health & Medicine, Humanities & Social Science, and Tech \& Engineering, like its companion, MMMU. These questions span 30 subjects and comprise 39 highly heterogeneous image types, such as charts, diagrams, maps, tables, music sheets, and chemical structures. ![Alt text](image.png) ## 🏆 Mini-Leaderboard | Model | Val (900) | Test (11K) | |--------------------------------|:---------:|:------------:| | GPT-4V(ision) (Playground) | **42.5** | **43.7** | | Qwen-VL-PLUS* | 39.5 | 36.8 | | Yi-VL-34B | 36.2 | 36.5 | | Yi-VL-6B | 35.8 | 35.0 | | InternVL-Chat-V1.1* | 34.7 | 34.0 | | Qwen-VL-7B-Chat | 30.7 | 31.3 | | SPHINX-MoE* | 29.3 | 29.5 | | InternVL-Chat-ViT-6B-Vicuna-7B | 26.4 | 26.7 | | InternVL-Chat-ViT-6B-Vicuna-13B| 27.4 | 26.1 | | CogAgent-Chat | 24.6 | 23.6 | | Emu2-Chat | 23.8 | 24.5 | | Chinese-LLaVA | 25.5 | 23.4 | | VisCPM | 25.2 | 22.7 | | mPLUG-OWL2 | 20.8 | 22.2 | | Frequent Choice | 24.1 | 26.0 | | Random Choice | 21.6 | 21.6 | *: results provided by the authors. ## Disclaimers The guidelines for the annotators emphasized strict compliance with copyright and licensing rules from the initial data source, specifically avoiding materials from websites that forbid copying and redistribution. Should you encounter any data samples potentially breaching the copyright or licensing regulations of any site, we encourage you to [contact](#contact) us. Upon verification, such samples will be promptly removed. ## Contact - Ge Zhang: [email protected] - Wenhao Huang: [email protected] - Xinrun Du: [email protected] - Bei Chen: [email protected] - Wenhu Chen: [email protected] - Jie Fu: [email protected] ## Citation **BibTeX:** ```bibtex @article{zhang2024cmmmu, title={CMMMU: A Chinese Massive Multi-discipline Multimodal Understanding Benchmark}, author={Ge, Zhang and Xinrun, Du and Bei, Chen and Yiming, Liang and Tongxu, Luo and Tianyu, Zheng and Kang, Zhu and Yuyang, Cheng and Chunpu, Xu and Shuyue, Guo and Haoran, Zhang and Xingwei, Qu and Junjie, Wang and Ruibin, Yuan and Yizhi, Li and Zekun, Wang and Yudong, Liu and Yu-Hsuan, Tsai and Fengji, Zhang and Chenghua, Lin and Wenhao, Huang and Wenhu, Chen and Jie, Fu}, journal={arXiv preprint arXiv:2401.20847}, year={2024}, } ```
m-a-p/CMMMU
[ "arxiv:2401.11944", "region:us" ]
2024-01-22T11:37:59+00:00
{"dataset_info": [{"config_name": "art_and_design", "features": [{"name": "id", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "source_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "option1", "dtype": "string"}, {"name": "option2", "dtype": "string"}, {"name": "option3", "dtype": "string"}, {"name": "option4", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "answer", "dtype": "string"}, {"name": "analysis", "dtype": "string"}, {"name": "distribution", "dtype": "string"}, {"name": "difficulty_level", "dtype": "string"}, {"name": "subcategory", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "subfield", "dtype": "string"}, {"name": "img_type", "dtype": "string"}, {"name": "image_1_filename", "dtype": "string"}, {"name": "image_2_filename", "dtype": "string"}, {"name": "image_3_filename", "dtype": "string"}, {"name": "image_4_filename", "dtype": "string"}, {"name": "image_5_filename", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 3113808.0, "num_examples": 11}, {"name": "val", "num_bytes": 25493074.0, "num_examples": 88}, {"name": "test", "num_bytes": 311985416.171, "num_examples": 1091}], "download_size": 343578142, "dataset_size": 340592298.171}, {"config_name": "business", "features": [{"name": "id", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "source_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "option1", "dtype": "string"}, {"name": "option2", "dtype": "string"}, {"name": "option3", "dtype": "string"}, {"name": "option4", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "answer", "dtype": "string"}, {"name": "analysis", "dtype": "string"}, {"name": "distribution", "dtype": "string"}, {"name": "difficulty_level", "dtype": "string"}, {"name": "subcategory", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "subfield", "dtype": "string"}, {"name": "img_type", "dtype": "string"}, {"name": "image_1_filename", "dtype": "string"}, {"name": "image_2_filename", "dtype": "string"}, {"name": "image_3_filename", "dtype": "string"}, {"name": "image_4_filename", "dtype": "string"}, {"name": "image_5_filename", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 554457.0, "num_examples": 16}, {"name": "val", "num_bytes": 6152883.0, "num_examples": 126}, {"name": "test", "num_bytes": 60103968.654, "num_examples": 1538}], "download_size": 74809661, "dataset_size": 66811308.654}, {"config_name": "health_and_medicine", "features": [{"name": "id", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "source_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "option1", "dtype": "string"}, {"name": "option2", "dtype": "string"}, {"name": "option3", "dtype": "string"}, {"name": "option4", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "answer", "dtype": "string"}, {"name": "analysis", "dtype": "string"}, {"name": "distribution", "dtype": "string"}, {"name": "difficulty_level", "dtype": "string"}, {"name": "subcategory", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "subfield", "dtype": "string"}, {"name": "img_type", "dtype": "string"}, {"name": "image_1_filename", "dtype": "string"}, {"name": "image_2_filename", "dtype": "string"}, {"name": "image_3_filename", "dtype": "string"}, {"name": "image_4_filename", "dtype": "string"}, {"name": "image_5_filename", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 2837834.0, "num_examples": 18}, {"name": "val", "num_bytes": 23957247.0, "num_examples": 153}, {"name": "test", "num_bytes": 204211130.315, "num_examples": 1865}], "download_size": 293138089, "dataset_size": 231006211.315}, {"config_name": "humanities_and_social_sciences", "features": [{"name": "id", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "source_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "option1", "dtype": "string"}, {"name": "option2", "dtype": "string"}, {"name": "option3", "dtype": "string"}, {"name": "option4", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "answer", "dtype": "string"}, {"name": "analysis", "dtype": "string"}, {"name": "distribution", "dtype": "string"}, {"name": "difficulty_level", "dtype": "string"}, {"name": "subcategory", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "subfield", "dtype": "string"}, {"name": "img_type", "dtype": "string"}, {"name": "image_1_filename", "dtype": "string"}, {"name": "image_2_filename", "dtype": "string"}, {"name": "image_3_filename", "dtype": "string"}, {"name": "image_4_filename", "dtype": "string"}, {"name": "image_5_filename", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 1406107.0, "num_examples": 11}, {"name": "val", "num_bytes": 10657772.0, "num_examples": 85}, {"name": "test", "num_bytes": 157998857.894, "num_examples": 1038}], "download_size": 160096107, "dataset_size": 170062736.894}, {"config_name": "science", "features": [{"name": "id", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "source_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "option1", "dtype": "string"}, {"name": "option2", "dtype": "string"}, {"name": "option3", "dtype": "string"}, {"name": "option4", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "answer", "dtype": "string"}, {"name": "analysis", "dtype": "string"}, {"name": "distribution", "dtype": "string"}, {"name": "difficulty_level", "dtype": "string"}, {"name": "subcategory", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "subfield", "dtype": "string"}, {"name": "img_type", "dtype": "string"}, {"name": "image_1_filename", "dtype": "string"}, {"name": "image_2_filename", "dtype": "string"}, {"name": "image_3_filename", "dtype": "string"}, {"name": "image_4_filename", "dtype": "string"}, {"name": "image_5_filename", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 3750526.0, "num_examples": 25}, {"name": "val", "num_bytes": 14762058.0, "num_examples": 204}, {"name": "test", "num_bytes": 268839654.208, "num_examples": 2494}], "download_size": 214377468, "dataset_size": 287352238.208}, {"config_name": "technology_and_engineering", "features": [{"name": "id", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "source_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "option1", "dtype": "string"}, {"name": "option2", "dtype": "string"}, {"name": "option3", "dtype": "string"}, {"name": "option4", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "answer", "dtype": "string"}, {"name": "analysis", "dtype": "string"}, {"name": "distribution", "dtype": "string"}, {"name": "difficulty_level", "dtype": "string"}, {"name": "subcategory", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "subfield", "dtype": "string"}, {"name": "img_type", "dtype": "string"}, {"name": "image_1_filename", "dtype": "string"}, {"name": "image_2_filename", "dtype": "string"}, {"name": "image_3_filename", "dtype": "string"}, {"name": "image_4_filename", "dtype": "string"}, {"name": "image_5_filename", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 1518231.0, "num_examples": 31}, {"name": "val", "num_bytes": 14794870.0, "num_examples": 244}, {"name": "test", "num_bytes": 134814024.93, "num_examples": 2974}], "download_size": 213411677, "dataset_size": 151127125.93}], "configs": [{"config_name": "art_and_design", "data_files": [{"split": "dev", "path": "art_and_design/dev-*"}, {"split": "val", "path": "art_and_design/val-*"}, {"split": "test", "path": "art_and_design/test-*"}]}, {"config_name": "business", "data_files": [{"split": "dev", "path": "business/dev-*"}, {"split": "val", "path": "business/val-*"}, {"split": "test", "path": "business/test-*"}]}, {"config_name": "health_and_medicine", "data_files": [{"split": "dev", "path": "health_and_medicine/dev-*"}, {"split": "val", "path": "health_and_medicine/val-*"}, {"split": "test", "path": "health_and_medicine/test-*"}]}, {"config_name": "humanities_and_social_sciences", "data_files": [{"split": "dev", "path": "humanities_and_social_sciences/dev-*"}, {"split": "val", "path": "humanities_and_social_sciences/val-*"}, {"split": "test", "path": "humanities_and_social_sciences/test-*"}]}, {"config_name": "science", "data_files": [{"split": "dev", "path": "science/dev-*"}, {"split": "val", "path": "science/val-*"}, {"split": "test", "path": "science/test-*"}]}, {"config_name": "technology_and_engineering", "data_files": [{"split": "dev", "path": "technology_and_engineering/dev-*"}, {"split": "val", "path": "technology_and_engineering/val-*"}, {"split": "test", "path": "technology_and_engineering/test-*"}]}]}
2024-01-29T14:08:55+00:00
[ "2401.11944" ]
[]
TAGS #arxiv-2401.11944 #region-us
CMMMU ===== Homepage | Paper | arXiv | Dataset | GitHub Introduction ------------ CMMMU includes 12k manually collected multimodal questions from college exams, quizzes, and textbooks, covering six core disciplines: Art & Design, Business, Science, Health & Medicine, Humanities & Social Science, and Tech & Engineering, like its companion, MMMU. These questions span 30 subjects and comprise 39 highly heterogeneous image types, such as charts, diagrams, maps, tables, music sheets, and chemical structures. !Alt text Mini-Leaderboard ---------------- \*: results provided by the authors. Disclaimers ----------- The guidelines for the annotators emphasized strict compliance with copyright and licensing rules from the initial data source, specifically avoiding materials from websites that forbid copying and redistribution. Should you encounter any data samples potentially breaching the copyright or licensing regulations of any site, we encourage you to contact us. Upon verification, such samples will be promptly removed. Contact ------- * Ge Zhang: zhangge@URL * Wenhao Huang: huangwenhao@URL * Xinrun Du: duxinrun@URL * Bei Chen: chenbei@URL * Wenhu Chen: wenhuchen@URL * Jie Fu: jiefu@URL BibTeX:
[]
[ "TAGS\n#arxiv-2401.11944 #region-us \n" ]
0b0d93ebc84bb2d19cb97e4e0bf032d8d00c66b8
# Dataset Card for Evaluation run of zhengr/MixTAO-7Bx2-MoE-Instruct-v4.0 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [zhengr/MixTAO-7Bx2-MoE-Instruct-v4.0](https://huggingface.co/zhengr/MixTAO-7Bx2-MoE-Instruct-v4.0) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_zhengr__MixTAO-7Bx2-MoE-Instruct-v4.0", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-22T11:42:12.340351](https://huggingface.co/datasets/open-llm-leaderboard/details_zhengr__MixTAO-7Bx2-MoE-Instruct-v4.0/blob/main/results_2024-01-22T11-42-12.340351.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.6540936000655238, "acc_stderr": 0.03205816083533057, "acc_norm": 0.6522358528859891, "acc_norm_stderr": 0.03276420137095382, "mc1": 0.5581395348837209, "mc1_stderr": 0.01738476747898621, "mc2": 0.6815205984888131, "mc2_stderr": 0.01532113622068651 }, "harness|arc:challenge|25": { "acc": 0.7030716723549488, "acc_stderr": 0.013352025976725227, "acc_norm": 0.7303754266211604, "acc_norm_stderr": 0.012968040686869148 }, "harness|hellaswag|10": { "acc": 0.7338179645488947, "acc_stderr": 0.00441057343183763, "acc_norm": 0.8878709420434177, "acc_norm_stderr": 0.0031488032469642897 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.32, "acc_stderr": 0.046882617226215034, "acc_norm": 0.32, "acc_norm_stderr": 0.046882617226215034 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6370370370370371, "acc_stderr": 0.041539484047423976, "acc_norm": 0.6370370370370371, "acc_norm_stderr": 0.041539484047423976 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.6842105263157895, "acc_stderr": 0.0378272898086547, "acc_norm": 0.6842105263157895, "acc_norm_stderr": 0.0378272898086547 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.66, "acc_stderr": 0.04760952285695238, "acc_norm": 0.66, "acc_norm_stderr": 0.04760952285695238 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.7132075471698113, "acc_stderr": 0.02783491252754406, "acc_norm": 0.7132075471698113, "acc_norm_stderr": 0.02783491252754406 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.7638888888888888, "acc_stderr": 0.03551446610810826, "acc_norm": 0.7638888888888888, "acc_norm_stderr": 0.03551446610810826 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.49, "acc_stderr": 0.05024183937956912, "acc_norm": 0.49, "acc_norm_stderr": 0.05024183937956912 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.53, "acc_stderr": 0.050161355804659205, "acc_norm": 0.53, "acc_norm_stderr": 0.050161355804659205 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.31, "acc_stderr": 0.04648231987117316, "acc_norm": 0.31, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6589595375722543, "acc_stderr": 0.036146654241808254, "acc_norm": 0.6589595375722543, "acc_norm_stderr": 0.036146654241808254 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.4117647058823529, "acc_stderr": 0.048971049527263666, "acc_norm": 0.4117647058823529, "acc_norm_stderr": 0.048971049527263666 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.72, "acc_stderr": 0.04512608598542127, "acc_norm": 0.72, "acc_norm_stderr": 0.04512608598542127 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5914893617021276, "acc_stderr": 0.032134180267015755, "acc_norm": 0.5914893617021276, "acc_norm_stderr": 0.032134180267015755 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.49122807017543857, "acc_stderr": 0.04702880432049615, "acc_norm": 0.49122807017543857, "acc_norm_stderr": 0.04702880432049615 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.5655172413793104, "acc_stderr": 0.04130740879555498, "acc_norm": 0.5655172413793104, "acc_norm_stderr": 0.04130740879555498 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.4365079365079365, "acc_stderr": 0.0255428468174005, "acc_norm": 0.4365079365079365, "acc_norm_stderr": 0.0255428468174005 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.42857142857142855, "acc_stderr": 0.04426266681379909, "acc_norm": 0.42857142857142855, "acc_norm_stderr": 0.04426266681379909 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.34, "acc_stderr": 0.04760952285695235, "acc_norm": 0.34, "acc_norm_stderr": 0.04760952285695235 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.7741935483870968, "acc_stderr": 0.023785577884181015, "acc_norm": 0.7741935483870968, "acc_norm_stderr": 0.023785577884181015 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.5073891625615764, "acc_stderr": 0.035176035403610105, "acc_norm": 0.5073891625615764, "acc_norm_stderr": 0.035176035403610105 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.71, "acc_stderr": 0.045604802157206845, "acc_norm": 0.71, "acc_norm_stderr": 0.045604802157206845 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7757575757575758, "acc_stderr": 0.03256866661681102, "acc_norm": 0.7757575757575758, "acc_norm_stderr": 0.03256866661681102 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.7929292929292929, "acc_stderr": 0.028869778460267042, "acc_norm": 0.7929292929292929, "acc_norm_stderr": 0.028869778460267042 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.9067357512953368, "acc_stderr": 0.020986854593289733, "acc_norm": 0.9067357512953368, "acc_norm_stderr": 0.020986854593289733 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.6717948717948717, "acc_stderr": 0.023807633198657266, "acc_norm": 0.6717948717948717, "acc_norm_stderr": 0.023807633198657266 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.34444444444444444, "acc_stderr": 0.028972648884844267, "acc_norm": 0.34444444444444444, "acc_norm_stderr": 0.028972648884844267 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6848739495798319, "acc_stderr": 0.030176808288974337, "acc_norm": 0.6848739495798319, "acc_norm_stderr": 0.030176808288974337 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.3576158940397351, "acc_stderr": 0.03913453431177258, "acc_norm": 0.3576158940397351, "acc_norm_stderr": 0.03913453431177258 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8403669724770643, "acc_stderr": 0.015703498348461766, "acc_norm": 0.8403669724770643, "acc_norm_stderr": 0.015703498348461766 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.5046296296296297, "acc_stderr": 0.03409825519163572, "acc_norm": 0.5046296296296297, "acc_norm_stderr": 0.03409825519163572 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.8431372549019608, "acc_stderr": 0.02552472232455335, "acc_norm": 0.8431372549019608, "acc_norm_stderr": 0.02552472232455335 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7932489451476793, "acc_stderr": 0.026361651668389094, "acc_norm": 0.7932489451476793, "acc_norm_stderr": 0.026361651668389094 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.7040358744394619, "acc_stderr": 0.030636591348699803, "acc_norm": 0.7040358744394619, "acc_norm_stderr": 0.030636591348699803 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.7938931297709924, "acc_stderr": 0.03547771004159465, "acc_norm": 0.7938931297709924, "acc_norm_stderr": 0.03547771004159465 }, "harness|hendrycksTest-international_law|5": { "acc": 0.7768595041322314, "acc_stderr": 0.03800754475228732, "acc_norm": 0.7768595041322314, "acc_norm_stderr": 0.03800754475228732 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.7777777777777778, "acc_stderr": 0.0401910747255735, "acc_norm": 0.7777777777777778, "acc_norm_stderr": 0.0401910747255735 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7730061349693251, "acc_stderr": 0.03291099578615769, "acc_norm": 0.7730061349693251, "acc_norm_stderr": 0.03291099578615769 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.41964285714285715, "acc_stderr": 0.046840993210771065, "acc_norm": 0.41964285714285715, "acc_norm_stderr": 0.046840993210771065 }, "harness|hendrycksTest-management|5": { "acc": 0.7669902912621359, "acc_stderr": 0.04185832598928315, "acc_norm": 0.7669902912621359, "acc_norm_stderr": 0.04185832598928315 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8931623931623932, "acc_stderr": 0.02023714900899093, "acc_norm": 0.8931623931623932, "acc_norm_stderr": 0.02023714900899093 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.71, "acc_stderr": 0.045604802157206845, "acc_norm": 0.71, "acc_norm_stderr": 0.045604802157206845 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.8275862068965517, "acc_stderr": 0.013507943909371802, "acc_norm": 0.8275862068965517, "acc_norm_stderr": 0.013507943909371802 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.7369942196531792, "acc_stderr": 0.023703099525258172, "acc_norm": 0.7369942196531792, "acc_norm_stderr": 0.023703099525258172 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.4558659217877095, "acc_stderr": 0.01665722942458631, "acc_norm": 0.4558659217877095, "acc_norm_stderr": 0.01665722942458631 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.7222222222222222, "acc_stderr": 0.0256468630971379, "acc_norm": 0.7222222222222222, "acc_norm_stderr": 0.0256468630971379 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.7170418006430869, "acc_stderr": 0.025583062489984813, "acc_norm": 0.7170418006430869, "acc_norm_stderr": 0.025583062489984813 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.75, "acc_stderr": 0.02409347123262133, "acc_norm": 0.75, "acc_norm_stderr": 0.02409347123262133 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.48936170212765956, "acc_stderr": 0.029820747191422473, "acc_norm": 0.48936170212765956, "acc_norm_stderr": 0.029820747191422473 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.4667535853976532, "acc_stderr": 0.012741974333897229, "acc_norm": 0.4667535853976532, "acc_norm_stderr": 0.012741974333897229 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.6617647058823529, "acc_stderr": 0.028739328513983572, "acc_norm": 0.6617647058823529, "acc_norm_stderr": 0.028739328513983572 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6797385620915033, "acc_stderr": 0.018875682938069443, "acc_norm": 0.6797385620915033, "acc_norm_stderr": 0.018875682938069443 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6636363636363637, "acc_stderr": 0.04525393596302506, "acc_norm": 0.6636363636363637, "acc_norm_stderr": 0.04525393596302506 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7346938775510204, "acc_stderr": 0.0282638899437846, "acc_norm": 0.7346938775510204, "acc_norm_stderr": 0.0282638899437846 }, "harness|hendrycksTest-sociology|5": { "acc": 0.8407960199004975, "acc_stderr": 0.025870646766169136, "acc_norm": 0.8407960199004975, "acc_norm_stderr": 0.025870646766169136 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.84, "acc_stderr": 0.03684529491774708, "acc_norm": 0.84, "acc_norm_stderr": 0.03684529491774708 }, "harness|hendrycksTest-virology|5": { "acc": 0.5602409638554217, "acc_stderr": 0.03864139923699121, "acc_norm": 0.5602409638554217, "acc_norm_stderr": 0.03864139923699121 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8421052631578947, "acc_stderr": 0.027966785859160893, "acc_norm": 0.8421052631578947, "acc_norm_stderr": 0.027966785859160893 }, "harness|truthfulqa:mc|0": { "mc1": 0.5581395348837209, "mc1_stderr": 0.01738476747898621, "mc2": 0.6815205984888131, "mc2_stderr": 0.01532113622068651 }, "harness|winogrande|5": { "acc": 0.909234411996843, "acc_stderr": 0.008073868876783524 }, "harness|gsm8k|5": { "acc": 0.6899166034874905, "acc_stderr": 0.01274030571737627 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_zhengr__MixTAO-7Bx2-MoE-Instruct-v4.0
[ "region:us" ]
2024-01-22T11:44:28+00:00
{"pretty_name": "Evaluation run of zhengr/MixTAO-7Bx2-MoE-Instruct-v4.0", "dataset_summary": "Dataset automatically created during the evaluation run of model [zhengr/MixTAO-7Bx2-MoE-Instruct-v4.0](https://huggingface.co/zhengr/MixTAO-7Bx2-MoE-Instruct-v4.0) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_zhengr__MixTAO-7Bx2-MoE-Instruct-v4.0\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-22T11:42:12.340351](https://huggingface.co/datasets/open-llm-leaderboard/details_zhengr__MixTAO-7Bx2-MoE-Instruct-v4.0/blob/main/results_2024-01-22T11-42-12.340351.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6540936000655238,\n \"acc_stderr\": 0.03205816083533057,\n \"acc_norm\": 0.6522358528859891,\n \"acc_norm_stderr\": 0.03276420137095382,\n \"mc1\": 0.5581395348837209,\n \"mc1_stderr\": 0.01738476747898621,\n \"mc2\": 0.6815205984888131,\n \"mc2_stderr\": 0.01532113622068651\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.7030716723549488,\n \"acc_stderr\": 0.013352025976725227,\n \"acc_norm\": 0.7303754266211604,\n \"acc_norm_stderr\": 0.012968040686869148\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.7338179645488947,\n \"acc_stderr\": 0.00441057343183763,\n \"acc_norm\": 0.8878709420434177,\n \"acc_norm_stderr\": 0.0031488032469642897\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.32,\n \"acc_stderr\": 0.046882617226215034,\n \"acc_norm\": 0.32,\n \"acc_norm_stderr\": 0.046882617226215034\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6370370370370371,\n \"acc_stderr\": 0.041539484047423976,\n \"acc_norm\": 0.6370370370370371,\n \"acc_norm_stderr\": 0.041539484047423976\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.6842105263157895,\n \"acc_stderr\": 0.0378272898086547,\n \"acc_norm\": 0.6842105263157895,\n \"acc_norm_stderr\": 0.0378272898086547\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.66,\n \"acc_stderr\": 0.04760952285695238,\n \"acc_norm\": 0.66,\n \"acc_norm_stderr\": 0.04760952285695238\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.7132075471698113,\n \"acc_stderr\": 0.02783491252754406,\n \"acc_norm\": 0.7132075471698113,\n \"acc_norm_stderr\": 0.02783491252754406\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7638888888888888,\n \"acc_stderr\": 0.03551446610810826,\n \"acc_norm\": 0.7638888888888888,\n \"acc_norm_stderr\": 0.03551446610810826\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.49,\n \"acc_stderr\": 0.05024183937956912,\n \"acc_norm\": 0.49,\n \"acc_norm_stderr\": 0.05024183937956912\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.53,\n \"acc_stderr\": 0.050161355804659205,\n \"acc_norm\": 0.53,\n \"acc_norm_stderr\": 0.050161355804659205\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.31,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6589595375722543,\n \"acc_stderr\": 0.036146654241808254,\n \"acc_norm\": 0.6589595375722543,\n \"acc_norm_stderr\": 0.036146654241808254\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.4117647058823529,\n \"acc_stderr\": 0.048971049527263666,\n \"acc_norm\": 0.4117647058823529,\n \"acc_norm_stderr\": 0.048971049527263666\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.72,\n \"acc_stderr\": 0.04512608598542127,\n \"acc_norm\": 0.72,\n \"acc_norm_stderr\": 0.04512608598542127\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5914893617021276,\n \"acc_stderr\": 0.032134180267015755,\n \"acc_norm\": 0.5914893617021276,\n \"acc_norm_stderr\": 0.032134180267015755\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.49122807017543857,\n \"acc_stderr\": 0.04702880432049615,\n \"acc_norm\": 0.49122807017543857,\n \"acc_norm_stderr\": 0.04702880432049615\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5655172413793104,\n \"acc_stderr\": 0.04130740879555498,\n \"acc_norm\": 0.5655172413793104,\n \"acc_norm_stderr\": 0.04130740879555498\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.4365079365079365,\n \"acc_stderr\": 0.0255428468174005,\n \"acc_norm\": 0.4365079365079365,\n \"acc_norm_stderr\": 0.0255428468174005\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.42857142857142855,\n \"acc_stderr\": 0.04426266681379909,\n \"acc_norm\": 0.42857142857142855,\n \"acc_norm_stderr\": 0.04426266681379909\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.34,\n \"acc_stderr\": 0.04760952285695235,\n \"acc_norm\": 0.34,\n \"acc_norm_stderr\": 0.04760952285695235\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7741935483870968,\n \"acc_stderr\": 0.023785577884181015,\n \"acc_norm\": 0.7741935483870968,\n \"acc_norm_stderr\": 0.023785577884181015\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.5073891625615764,\n \"acc_stderr\": 0.035176035403610105,\n \"acc_norm\": 0.5073891625615764,\n \"acc_norm_stderr\": 0.035176035403610105\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.71,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\": 0.71,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7757575757575758,\n \"acc_stderr\": 0.03256866661681102,\n \"acc_norm\": 0.7757575757575758,\n \"acc_norm_stderr\": 0.03256866661681102\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7929292929292929,\n \"acc_stderr\": 0.028869778460267042,\n \"acc_norm\": 0.7929292929292929,\n \"acc_norm_stderr\": 0.028869778460267042\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.9067357512953368,\n \"acc_stderr\": 0.020986854593289733,\n \"acc_norm\": 0.9067357512953368,\n \"acc_norm_stderr\": 0.020986854593289733\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6717948717948717,\n \"acc_stderr\": 0.023807633198657266,\n \"acc_norm\": 0.6717948717948717,\n \"acc_norm_stderr\": 0.023807633198657266\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.34444444444444444,\n \"acc_stderr\": 0.028972648884844267,\n \"acc_norm\": 0.34444444444444444,\n \"acc_norm_stderr\": 0.028972648884844267\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6848739495798319,\n \"acc_stderr\": 0.030176808288974337,\n \"acc_norm\": 0.6848739495798319,\n \"acc_norm_stderr\": 0.030176808288974337\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.3576158940397351,\n \"acc_stderr\": 0.03913453431177258,\n \"acc_norm\": 0.3576158940397351,\n \"acc_norm_stderr\": 0.03913453431177258\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8403669724770643,\n \"acc_stderr\": 0.015703498348461766,\n \"acc_norm\": 0.8403669724770643,\n \"acc_norm_stderr\": 0.015703498348461766\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.5046296296296297,\n \"acc_stderr\": 0.03409825519163572,\n \"acc_norm\": 0.5046296296296297,\n \"acc_norm_stderr\": 0.03409825519163572\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.8431372549019608,\n \"acc_stderr\": 0.02552472232455335,\n \"acc_norm\": 0.8431372549019608,\n \"acc_norm_stderr\": 0.02552472232455335\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7932489451476793,\n \"acc_stderr\": 0.026361651668389094,\n \"acc_norm\": 0.7932489451476793,\n \"acc_norm_stderr\": 0.026361651668389094\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.7040358744394619,\n \"acc_stderr\": 0.030636591348699803,\n \"acc_norm\": 0.7040358744394619,\n \"acc_norm_stderr\": 0.030636591348699803\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7938931297709924,\n \"acc_stderr\": 0.03547771004159465,\n \"acc_norm\": 0.7938931297709924,\n \"acc_norm_stderr\": 0.03547771004159465\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.7768595041322314,\n \"acc_stderr\": 0.03800754475228732,\n \"acc_norm\": 0.7768595041322314,\n \"acc_norm_stderr\": 0.03800754475228732\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7777777777777778,\n \"acc_stderr\": 0.0401910747255735,\n \"acc_norm\": 0.7777777777777778,\n \"acc_norm_stderr\": 0.0401910747255735\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7730061349693251,\n \"acc_stderr\": 0.03291099578615769,\n \"acc_norm\": 0.7730061349693251,\n \"acc_norm_stderr\": 0.03291099578615769\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.41964285714285715,\n \"acc_stderr\": 0.046840993210771065,\n \"acc_norm\": 0.41964285714285715,\n \"acc_norm_stderr\": 0.046840993210771065\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7669902912621359,\n \"acc_stderr\": 0.04185832598928315,\n \"acc_norm\": 0.7669902912621359,\n \"acc_norm_stderr\": 0.04185832598928315\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8931623931623932,\n \"acc_stderr\": 0.02023714900899093,\n \"acc_norm\": 0.8931623931623932,\n \"acc_norm_stderr\": 0.02023714900899093\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.71,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\": 0.71,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8275862068965517,\n \"acc_stderr\": 0.013507943909371802,\n \"acc_norm\": 0.8275862068965517,\n \"acc_norm_stderr\": 0.013507943909371802\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7369942196531792,\n \"acc_stderr\": 0.023703099525258172,\n \"acc_norm\": 0.7369942196531792,\n \"acc_norm_stderr\": 0.023703099525258172\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.4558659217877095,\n \"acc_stderr\": 0.01665722942458631,\n \"acc_norm\": 0.4558659217877095,\n \"acc_norm_stderr\": 0.01665722942458631\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7222222222222222,\n \"acc_stderr\": 0.0256468630971379,\n \"acc_norm\": 0.7222222222222222,\n \"acc_norm_stderr\": 0.0256468630971379\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.7170418006430869,\n \"acc_stderr\": 0.025583062489984813,\n \"acc_norm\": 0.7170418006430869,\n \"acc_norm_stderr\": 0.025583062489984813\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.75,\n \"acc_stderr\": 0.02409347123262133,\n \"acc_norm\": 0.75,\n \"acc_norm_stderr\": 0.02409347123262133\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.48936170212765956,\n \"acc_stderr\": 0.029820747191422473,\n \"acc_norm\": 0.48936170212765956,\n \"acc_norm_stderr\": 0.029820747191422473\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.4667535853976532,\n \"acc_stderr\": 0.012741974333897229,\n \"acc_norm\": 0.4667535853976532,\n \"acc_norm_stderr\": 0.012741974333897229\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6617647058823529,\n \"acc_stderr\": 0.028739328513983572,\n \"acc_norm\": 0.6617647058823529,\n \"acc_norm_stderr\": 0.028739328513983572\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6797385620915033,\n \"acc_stderr\": 0.018875682938069443,\n \"acc_norm\": 0.6797385620915033,\n \"acc_norm_stderr\": 0.018875682938069443\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6636363636363637,\n \"acc_stderr\": 0.04525393596302506,\n \"acc_norm\": 0.6636363636363637,\n \"acc_norm_stderr\": 0.04525393596302506\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7346938775510204,\n \"acc_stderr\": 0.0282638899437846,\n \"acc_norm\": 0.7346938775510204,\n \"acc_norm_stderr\": 0.0282638899437846\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8407960199004975,\n \"acc_stderr\": 0.025870646766169136,\n \"acc_norm\": 0.8407960199004975,\n \"acc_norm_stderr\": 0.025870646766169136\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.84,\n \"acc_stderr\": 0.03684529491774708,\n \"acc_norm\": 0.84,\n \"acc_norm_stderr\": 0.03684529491774708\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5602409638554217,\n \"acc_stderr\": 0.03864139923699121,\n \"acc_norm\": 0.5602409638554217,\n \"acc_norm_stderr\": 0.03864139923699121\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8421052631578947,\n \"acc_stderr\": 0.027966785859160893,\n \"acc_norm\": 0.8421052631578947,\n \"acc_norm_stderr\": 0.027966785859160893\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.5581395348837209,\n \"mc1_stderr\": 0.01738476747898621,\n \"mc2\": 0.6815205984888131,\n \"mc2_stderr\": 0.01532113622068651\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.909234411996843,\n \"acc_stderr\": 0.008073868876783524\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.6899166034874905,\n \"acc_stderr\": 0.01274030571737627\n }\n}\n```", "repo_url": "https://huggingface.co/zhengr/MixTAO-7Bx2-MoE-Instruct-v4.0", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|arc:challenge|25_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|gsm8k|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hellaswag|10_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T11-42-12.340351.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["**/details_harness|winogrande|5_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-22T11-42-12.340351.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_22T11_42_12.340351", "path": ["results_2024-01-22T11-42-12.340351.parquet"]}, {"split": "latest", "path": ["results_2024-01-22T11-42-12.340351.parquet"]}]}]}
2024-01-22T11:44:54+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of zhengr/MixTAO-7Bx2-MoE-Instruct-v4.0 Dataset automatically created during the evaluation run of model zhengr/MixTAO-7Bx2-MoE-Instruct-v4.0 on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-22T11:42:12.340351(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of zhengr/MixTAO-7Bx2-MoE-Instruct-v4.0\n\n\n\nDataset automatically created during the evaluation run of model zhengr/MixTAO-7Bx2-MoE-Instruct-v4.0 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T11:42:12.340351(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of zhengr/MixTAO-7Bx2-MoE-Instruct-v4.0\n\n\n\nDataset automatically created during the evaluation run of model zhengr/MixTAO-7Bx2-MoE-Instruct-v4.0 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T11:42:12.340351(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
87bae63b1be7e11d60e6c892fe69b64b79380808
# ViP-LLaVA Instruct Dataset Card ## Dataset details **Dataset type:** ViP-LLaVA Instruct is composed of a mixture of LLaVA-1.5 instruction data and the region-level visual prompting data. It is constructed for visual instruction tuning and for building large multimodal towards GPT-4 level regional understanding capability. Specifically, we use 1.2M data for stage 2 finetuning, and use 26K data for the optional stage 3 finetuning. **Dataset date:** ViP-LLaVA Instruct was collected in November 2023, by using a mixture of academic dataset and GPT-4/GPT-4V instructed dataset. **Paper or resources for more information:** https://vip-llava.github.io/ **License:** Apache-2.0; and it should abide by the policy of OpenAI: https://openai.com/policies/terms-of-use **Where to send questions or comments about the model:** https://github.com/mu-cai/ViP-LLaVA/issues ## Intended use **Primary intended uses:** The primary use of ViP-LLaVA is research on large multimodal models and chatbots. **Primary intended users:** The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence.
mucai/ViP-LLaVA-Instruct
[ "task_categories:visual-question-answering", "task_categories:question-answering", "size_categories:1M<n<10M", "size_categories:10K<n<100K", "language:en", "license:apache-2.0", "region:us" ]
2024-01-22T11:51:53+00:00
{"language": ["en"], "license": "apache-2.0", "size_categories": ["1M<n<10M", "10K<n<100K"], "task_categories": ["visual-question-answering", "question-answering"], "pretty_name": "ViP-LLaVA Visual Instruct"}
2024-01-23T10:00:31+00:00
[]
[ "en" ]
TAGS #task_categories-visual-question-answering #task_categories-question-answering #size_categories-1M<n<10M #size_categories-10K<n<100K #language-English #license-apache-2.0 #region-us
# ViP-LLaVA Instruct Dataset Card ## Dataset details Dataset type: ViP-LLaVA Instruct is composed of a mixture of LLaVA-1.5 instruction data and the region-level visual prompting data. It is constructed for visual instruction tuning and for building large multimodal towards GPT-4 level regional understanding capability. Specifically, we use 1.2M data for stage 2 finetuning, and use 26K data for the optional stage 3 finetuning. Dataset date: ViP-LLaVA Instruct was collected in November 2023, by using a mixture of academic dataset and GPT-4/GPT-4V instructed dataset. Paper or resources for more information: URL License: Apache-2.0; and it should abide by the policy of OpenAI: URL Where to send questions or comments about the model: URL ## Intended use Primary intended uses: The primary use of ViP-LLaVA is research on large multimodal models and chatbots. Primary intended users: The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence.
[ "# ViP-LLaVA Instruct Dataset Card", "## Dataset details\n\nDataset type:\nViP-LLaVA Instruct is composed of a mixture of LLaVA-1.5 instruction data and the region-level visual prompting data. \nIt is constructed for visual instruction tuning and for building large multimodal towards GPT-4 level regional understanding capability.\n\nSpecifically, we use 1.2M data for stage 2 finetuning, and use 26K data for the optional stage 3 finetuning. \n\nDataset date:\nViP-LLaVA Instruct was collected in November 2023, by using a mixture of academic dataset and GPT-4/GPT-4V instructed dataset.\n\nPaper or resources for more information:\nURL\n\nLicense:\nApache-2.0; and it should abide by the policy of OpenAI: URL\n\nWhere to send questions or comments about the model:\nURL", "## Intended use\nPrimary intended uses:\nThe primary use of ViP-LLaVA is research on large multimodal models and chatbots.\n\nPrimary intended users:\nThe primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence." ]
[ "TAGS\n#task_categories-visual-question-answering #task_categories-question-answering #size_categories-1M<n<10M #size_categories-10K<n<100K #language-English #license-apache-2.0 #region-us \n", "# ViP-LLaVA Instruct Dataset Card", "## Dataset details\n\nDataset type:\nViP-LLaVA Instruct is composed of a mixture of LLaVA-1.5 instruction data and the region-level visual prompting data. \nIt is constructed for visual instruction tuning and for building large multimodal towards GPT-4 level regional understanding capability.\n\nSpecifically, we use 1.2M data for stage 2 finetuning, and use 26K data for the optional stage 3 finetuning. \n\nDataset date:\nViP-LLaVA Instruct was collected in November 2023, by using a mixture of academic dataset and GPT-4/GPT-4V instructed dataset.\n\nPaper or resources for more information:\nURL\n\nLicense:\nApache-2.0; and it should abide by the policy of OpenAI: URL\n\nWhere to send questions or comments about the model:\nURL", "## Intended use\nPrimary intended uses:\nThe primary use of ViP-LLaVA is research on large multimodal models and chatbots.\n\nPrimary intended users:\nThe primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence." ]
159610c7d3a07ec7dffafe54f4faa52e8ab89367
This dataset contains the Czech subset of the [`wikimedia/wikipedia`](https://huggingface.co/datasets/wikimedia/wikipedia) dataset. Each page is divided into paragraphs, stored as a list in the `chunks` column. For every paragraph, embeddings are created using the [`intfloat/multilingual-e5-base`](https://huggingface.co/intfloat/multilingual-e5-base) model. ## Usage Load the dataset: ```python from datasets import load_dataset ds = load_dataset("karmiq/wikipedia-embeddings-cs-e5-base", split="train") ds[1] ``` ``` { 'id': '1', 'url': 'https://cs.wikipedia.org/wiki/Astronomie', 'title': 'Astronomie', 'chunks': [ 'Astronomie, řecky αστρονομία z άστρον ( astron ) hvězda a νόμος ( nomos )...', 'Myšlenky Aristotelovy rozvinul ve 2. století našeho letopočtu Klaudios Ptolemaios...', ..., ], 'embeddings': [ [0.09006806463003159, -0.009814552962779999, ...], [0.10767366737127304, ...], ... ] } ``` The structure makes it easy to use the dataset for implementing semantic search. <details> <summary>Load the data in Elasticsearch</summary> ```python def doc_generator(data, batch_size=1000): for batch in data.with_format("numpy").iter(batch_size): for i, id in enumerate(batch["id"]): output = {"id": id} output["title"] = batch["title"][i] output["url"] = batch["url"][i] output["parts"] = [ { "chunk": chunk, "embedding": embedding } for chunk, embedding in zip(batch["chunks"][i], batch["embeddings"][i]) ] yield output num_indexed, num_failed = 0, 0, progress = tqdm(total=ds.num_rows, unit="doc", desc="Indexing") for ok, info in parallel_bulk( es, index="wikipedia-search", actions=doc_generator(ds), raise_on_error=False, ): if not ok: print(f"ERROR {info['index']['status']}: " f"{info['index']['error']['type']}: {info['index']['error']['caused_by']['type']}: " f"{info['index']['error']['caused_by']['reason'][:250]}") progress.update(1) ``` </details> <details> <summary>Use <code>sentence_transformers.util.semantic_search</code></summary> ```python import sentence_transformers model = sentence_transformers.SentenceTransformer("intfloat/multilingual-e5-base") ds.set_format(type="torch", columns=["embeddings"], output_all_columns=True) # Flatten the dataset def explode_sequence(batch): output = { "id": [], "url": [], "title": [], "chunk": [], "embedding": [] } for id, url, title, chunks, embeddings in zip( batch["id"], batch["url"], batch["title"], batch["chunks"], batch["embeddings"] ): output["id"].extend([id for _ in range(len(chunks))]) output["url"].extend([url for _ in range(len(chunks))]) output["title"].extend([title for _ in range(len(chunks))]) output["chunk"].extend(chunks) output["embedding"].extend(embeddings) return output ds_flat = ds.map( explode_sequence, batched=True, remove_columns=ds.column_names, num_proc=min(os.cpu_count(), 32), desc="Flatten") ds_flat query = "Čím se zabývá fyzika?" hits = sentence_transformers.util.semantic_search( query_embeddings=model.encode(query), corpus_embeddings=ds_flat["embedding"], top_k=10) for hit in hits[0]: title = ds_flat[hit['corpus_id']]['title'] chunk = ds_flat[hit['corpus_id']]['chunk'] print(f"[{hit['score']:0.2f}] {textwrap.shorten(chunk, width=100, placeholder='…')} [{title}]") # [0.90] Fyzika částic ( též částicová fyzika ) je oblast fyziky, která se zabývá částicemi. V širším smyslu… [Fyzika částic] # [0.89] Fyzika ( z řeckého φυσικός ( fysikos ): přírodní, ze základu φύσις ( fysis ): příroda, archaicky… [Fyzika] # ... ``` </details> The embeddings generation took about 2 hours on an NVIDIA A100 80GB GPU. ## License See license of the original dataset: <https://huggingface.co/datasets/wikimedia/wikipedia>.
karmiq/wikipedia-embeddings-cs-e5-base
[ "task_categories:text-generation", "task_categories:fill-mask", "size_categories:100K<n<1M", "language:cs", "license:cc-by-sa-3.0", "license:gfdl", "region:us" ]
2024-01-22T11:57:02+00:00
{"language": ["cs"], "license": ["cc-by-sa-3.0", "gfdl"], "size_categories": ["100K<n<1M"], "task_categories": ["text-generation", "fill-mask"], "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "chunks", "sequence": "string"}, {"name": "embeddings", "sequence": {"sequence": "float32"}}], "splits": [{"name": "train", "num_bytes": 5021489124, "num_examples": 534044}], "download_size": 4750515911, "dataset_size": 5021489124}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-01-22T12:07:52+00:00
[]
[ "cs" ]
TAGS #task_categories-text-generation #task_categories-fill-mask #size_categories-100K<n<1M #language-Czech #license-cc-by-sa-3.0 #license-gfdl #region-us
This dataset contains the Czech subset of the 'wikimedia/wikipedia' dataset. Each page is divided into paragraphs, stored as a list in the 'chunks' column. For every paragraph, embeddings are created using the 'intfloat/multilingual-e5-base' model. ## Usage Load the dataset: The structure makes it easy to use the dataset for implementing semantic search. <details> <summary>Load the data in Elasticsearch</summary> </details> <details> <summary>Use <code>sentence_transformers.util.semantic_search</code></summary> </details> The embeddings generation took about 2 hours on an NVIDIA A100 80GB GPU. ## License See license of the original dataset: <URL
[ "## Usage\n\nLoad the dataset:\n\n\n\n\n\nThe structure makes it easy to use the dataset for implementing semantic search.\n\n<details>\n<summary>Load the data in Elasticsearch</summary>\n\n\n</details>\n\n<details>\n<summary>Use <code>sentence_transformers.util.semantic_search</code></summary>\n\n\n</details>\n\nThe embeddings generation took about 2 hours on an NVIDIA A100 80GB GPU.", "## License\n\nSee license of the original dataset: <URL" ]
[ "TAGS\n#task_categories-text-generation #task_categories-fill-mask #size_categories-100K<n<1M #language-Czech #license-cc-by-sa-3.0 #license-gfdl #region-us \n", "## Usage\n\nLoad the dataset:\n\n\n\n\n\nThe structure makes it easy to use the dataset for implementing semantic search.\n\n<details>\n<summary>Load the data in Elasticsearch</summary>\n\n\n</details>\n\n<details>\n<summary>Use <code>sentence_transformers.util.semantic_search</code></summary>\n\n\n</details>\n\nThe embeddings generation took about 2 hours on an NVIDIA A100 80GB GPU.", "## License\n\nSee license of the original dataset: <URL" ]
d6413ca115423ff04ea671fcd7bcaff2f219919a
This dataset is used on the paper ["Replicable Benchmarking of Neural Machine Translation (NMT) on Low-Resource Local Languages in Indonesia"](https://arxiv.org/abs/2311.00998). This repository contains two types of data: 1. Monolingual (*.txt) 2. Bilingual (*.tsv) If used, please cite ``` @misc{susanto2023replicable, title={Replicable Benchmarking of Neural Machine Translation (NMT) on Low-Resource Local Languages in Indonesia}, author={Lucky Susanto and Ryandito Diandaru and Adila Krisnadhi and Ayu Purwarianti and Derry Wijaya}, year={2023}, eprint={2311.00998}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## License This dataset is licensed under the [Creative Commons Attribution 4.0 International License (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/). You are free to: - Share: Copy and redistribute the material in any medium or format. - Adapt: Remix, transform, and build upon the material for any purpose, even commercially. Under the following terms: - Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. See the [full text of the license](https://creativecommons.org/licenses/by/4.0/) for more details.
Exqrch/IndonesianNMT
[ "task_categories:translation", "language:id", "language:jv", "language:su", "language:ban", "language:min", "arxiv:2311.00998", "region:us" ]
2024-01-22T13:35:57+00:00
{"language": ["id", "jv", "su", "ban", "min"], "task_categories": ["translation"]}
2024-01-22T14:05:37+00:00
[ "2311.00998" ]
[ "id", "jv", "su", "ban", "min" ]
TAGS #task_categories-translation #language-Indonesian #language-Javanese #language-Sundanese #language-Balinese #language-Minangkabau #arxiv-2311.00998 #region-us
This dataset is used on the paper "Replicable Benchmarking of Neural Machine Translation (NMT) on Low-Resource Local Languages in Indonesia". This repository contains two types of data: 1. Monolingual (*.txt) 2. Bilingual (*.tsv) If used, please cite ## License This dataset is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). You are free to: - Share: Copy and redistribute the material in any medium or format. - Adapt: Remix, transform, and build upon the material for any purpose, even commercially. Under the following terms: - Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. See the full text of the license for more details.
[ "## License\n\nThis dataset is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0).\n\nYou are free to:\n- Share: Copy and redistribute the material in any medium or format.\n- Adapt: Remix, transform, and build upon the material for any purpose, even commercially.\n\nUnder the following terms:\n- Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.\n\nSee the full text of the license for more details." ]
[ "TAGS\n#task_categories-translation #language-Indonesian #language-Javanese #language-Sundanese #language-Balinese #language-Minangkabau #arxiv-2311.00998 #region-us \n", "## License\n\nThis dataset is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0).\n\nYou are free to:\n- Share: Copy and redistribute the material in any medium or format.\n- Adapt: Remix, transform, and build upon the material for any purpose, even commercially.\n\nUnder the following terms:\n- Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.\n\nSee the full text of the license for more details." ]
0b83e62eab384c21e241c0953a70d0193c23cc88
# Dataset Card for Evaluation run of LordNoah/Alpaca_spin_tuned_gpt2_large <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [LordNoah/Alpaca_spin_tuned_gpt2_large](https://huggingface.co/LordNoah/Alpaca_spin_tuned_gpt2_large) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_LordNoah__Alpaca_spin_tuned_gpt2_large", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-22T13:42:11.763277](https://huggingface.co/datasets/open-llm-leaderboard/details_LordNoah__Alpaca_spin_tuned_gpt2_large/blob/main/results_2024-01-22T13-42-11.763277.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.27225604584142943, "acc_stderr": 0.03141590282455585, "acc_norm": 0.27399653003630087, "acc_norm_stderr": 0.03221603447267582, "mc1": 0.21909424724602203, "mc1_stderr": 0.014480038578757449, "mc2": 0.39429285512218326, "mc2_stderr": 0.01421822540176183 }, "harness|arc:challenge|25": { "acc": 0.2568259385665529, "acc_stderr": 0.0127669237941168, "acc_norm": 0.2790102389078498, "acc_norm_stderr": 0.013106784883601341 }, "harness|hellaswag|10": { "acc": 0.36297550288787095, "acc_stderr": 0.004798751281560822, "acc_norm": 0.45120493925512845, "acc_norm_stderr": 0.004965963647210318 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.25, "acc_stderr": 0.04351941398892446, "acc_norm": 0.25, "acc_norm_stderr": 0.04351941398892446 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.24444444444444444, "acc_stderr": 0.037125378336148665, "acc_norm": 0.24444444444444444, "acc_norm_stderr": 0.037125378336148665 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.3026315789473684, "acc_stderr": 0.03738520676119667, "acc_norm": 0.3026315789473684, "acc_norm_stderr": 0.03738520676119667 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.24, "acc_stderr": 0.04292346959909283, "acc_norm": 0.24, "acc_norm_stderr": 0.04292346959909283 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.3433962264150943, "acc_stderr": 0.02922452646912479, "acc_norm": 0.3433962264150943, "acc_norm_stderr": 0.02922452646912479 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.2569444444444444, "acc_stderr": 0.03653946969442099, "acc_norm": 0.2569444444444444, "acc_norm_stderr": 0.03653946969442099 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.15, "acc_stderr": 0.03588702812826368, "acc_norm": 0.15, "acc_norm_stderr": 0.03588702812826368 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.34, "acc_stderr": 0.04760952285695236, "acc_norm": 0.34, "acc_norm_stderr": 0.04760952285695236 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.32, "acc_stderr": 0.046882617226215034, "acc_norm": 0.32, "acc_norm_stderr": 0.046882617226215034 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.24277456647398843, "acc_stderr": 0.0326926380614177, "acc_norm": 0.24277456647398843, "acc_norm_stderr": 0.0326926380614177 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.24509803921568626, "acc_stderr": 0.042801058373643966, "acc_norm": 0.24509803921568626, "acc_norm_stderr": 0.042801058373643966 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.3, "acc_stderr": 0.046056618647183814, "acc_norm": 0.3, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.30638297872340425, "acc_stderr": 0.030135906478517563, "acc_norm": 0.30638297872340425, "acc_norm_stderr": 0.030135906478517563 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.21929824561403508, "acc_stderr": 0.03892431106518753, "acc_norm": 0.21929824561403508, "acc_norm_stderr": 0.03892431106518753 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.30344827586206896, "acc_stderr": 0.038312260488503336, "acc_norm": 0.30344827586206896, "acc_norm_stderr": 0.038312260488503336 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.2777777777777778, "acc_stderr": 0.023068188848261107, "acc_norm": 0.2777777777777778, "acc_norm_stderr": 0.023068188848261107 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.2619047619047619, "acc_stderr": 0.03932537680392871, "acc_norm": 0.2619047619047619, "acc_norm_stderr": 0.03932537680392871 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.31, "acc_stderr": 0.04648231987117316, "acc_norm": 0.31, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.25806451612903225, "acc_stderr": 0.02489246917246284, "acc_norm": 0.25806451612903225, "acc_norm_stderr": 0.02489246917246284 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.30049261083743845, "acc_stderr": 0.03225799476233484, "acc_norm": 0.30049261083743845, "acc_norm_stderr": 0.03225799476233484 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.3, "acc_stderr": 0.046056618647183814, "acc_norm": 0.3, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.30303030303030304, "acc_stderr": 0.035886248000917075, "acc_norm": 0.30303030303030304, "acc_norm_stderr": 0.035886248000917075 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.35858585858585856, "acc_stderr": 0.03416903640391521, "acc_norm": 0.35858585858585856, "acc_norm_stderr": 0.03416903640391521 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.31088082901554404, "acc_stderr": 0.033403619062765885, "acc_norm": 0.31088082901554404, "acc_norm_stderr": 0.033403619062765885 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.358974358974359, "acc_stderr": 0.024321738484602357, "acc_norm": 0.358974358974359, "acc_norm_stderr": 0.024321738484602357 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.26296296296296295, "acc_stderr": 0.02684205787383371, "acc_norm": 0.26296296296296295, "acc_norm_stderr": 0.02684205787383371 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.2184873949579832, "acc_stderr": 0.026841514322958955, "acc_norm": 0.2184873949579832, "acc_norm_stderr": 0.026841514322958955 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.271523178807947, "acc_stderr": 0.03631329803969653, "acc_norm": 0.271523178807947, "acc_norm_stderr": 0.03631329803969653 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.3339449541284404, "acc_stderr": 0.020220554196736403, "acc_norm": 0.3339449541284404, "acc_norm_stderr": 0.020220554196736403 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.2824074074074074, "acc_stderr": 0.030701372111510927, "acc_norm": 0.2824074074074074, "acc_norm_stderr": 0.030701372111510927 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.25980392156862747, "acc_stderr": 0.030778554678693264, "acc_norm": 0.25980392156862747, "acc_norm_stderr": 0.030778554678693264 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.270042194092827, "acc_stderr": 0.028900721906293426, "acc_norm": 0.270042194092827, "acc_norm_stderr": 0.028900721906293426 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.1031390134529148, "acc_stderr": 0.020412564289839272, "acc_norm": 0.1031390134529148, "acc_norm_stderr": 0.020412564289839272 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.2366412213740458, "acc_stderr": 0.037276735755969174, "acc_norm": 0.2366412213740458, "acc_norm_stderr": 0.037276735755969174 }, "harness|hendrycksTest-international_law|5": { "acc": 0.35537190082644626, "acc_stderr": 0.04369236326573981, "acc_norm": 0.35537190082644626, "acc_norm_stderr": 0.04369236326573981 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.25, "acc_stderr": 0.04186091791394607, "acc_norm": 0.25, "acc_norm_stderr": 0.04186091791394607 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.2883435582822086, "acc_stderr": 0.035590395316173425, "acc_norm": 0.2883435582822086, "acc_norm_stderr": 0.035590395316173425 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.23214285714285715, "acc_stderr": 0.04007341809755807, "acc_norm": 0.23214285714285715, "acc_norm_stderr": 0.04007341809755807 }, "harness|hendrycksTest-management|5": { "acc": 0.3786407766990291, "acc_stderr": 0.04802694698258972, "acc_norm": 0.3786407766990291, "acc_norm_stderr": 0.04802694698258972 }, "harness|hendrycksTest-marketing|5": { "acc": 0.2606837606837607, "acc_stderr": 0.028760348956523414, "acc_norm": 0.2606837606837607, "acc_norm_stderr": 0.028760348956523414 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.19, "acc_stderr": 0.03942772444036623, "acc_norm": 0.19, "acc_norm_stderr": 0.03942772444036623 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.20434227330779056, "acc_stderr": 0.0144191239809319, "acc_norm": 0.20434227330779056, "acc_norm_stderr": 0.0144191239809319 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.2976878612716763, "acc_stderr": 0.024617055388677, "acc_norm": 0.2976878612716763, "acc_norm_stderr": 0.024617055388677 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.2424581005586592, "acc_stderr": 0.014333522059217889, "acc_norm": 0.2424581005586592, "acc_norm_stderr": 0.014333522059217889 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.25163398692810457, "acc_stderr": 0.024848018263875195, "acc_norm": 0.25163398692810457, "acc_norm_stderr": 0.024848018263875195 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.3247588424437299, "acc_stderr": 0.026596782287697043, "acc_norm": 0.3247588424437299, "acc_norm_stderr": 0.026596782287697043 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.2222222222222222, "acc_stderr": 0.023132376234543346, "acc_norm": 0.2222222222222222, "acc_norm_stderr": 0.023132376234543346 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.2624113475177305, "acc_stderr": 0.026244920349843014, "acc_norm": 0.2624113475177305, "acc_norm_stderr": 0.026244920349843014 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.24445893089960888, "acc_stderr": 0.010976425013113893, "acc_norm": 0.24445893089960888, "acc_norm_stderr": 0.010976425013113893 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.26838235294117646, "acc_stderr": 0.02691748122437722, "acc_norm": 0.26838235294117646, "acc_norm_stderr": 0.02691748122437722 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.2434640522875817, "acc_stderr": 0.017362473762146623, "acc_norm": 0.2434640522875817, "acc_norm_stderr": 0.017362473762146623 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.2, "acc_stderr": 0.03831305140884603, "acc_norm": 0.2, "acc_norm_stderr": 0.03831305140884603 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.3224489795918367, "acc_stderr": 0.029923100563683903, "acc_norm": 0.3224489795918367, "acc_norm_stderr": 0.029923100563683903 }, "harness|hendrycksTest-sociology|5": { "acc": 0.24378109452736318, "acc_stderr": 0.03036049015401465, "acc_norm": 0.24378109452736318, "acc_norm_stderr": 0.03036049015401465 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.3, "acc_stderr": 0.046056618647183814, "acc_norm": 0.3, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-virology|5": { "acc": 0.21686746987951808, "acc_stderr": 0.03208284450356365, "acc_norm": 0.21686746987951808, "acc_norm_stderr": 0.03208284450356365 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.29239766081871343, "acc_stderr": 0.034886477134579215, "acc_norm": 0.29239766081871343, "acc_norm_stderr": 0.034886477134579215 }, "harness|truthfulqa:mc|0": { "mc1": 0.21909424724602203, "mc1_stderr": 0.014480038578757449, "mc2": 0.39429285512218326, "mc2_stderr": 0.01421822540176183 }, "harness|winogrande|5": { "acc": 0.5461720599842147, "acc_stderr": 0.013992441563707063 }, "harness|gsm8k|5": { "acc": 0.006065200909780136, "acc_stderr": 0.00213867030146048 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_LordNoah__Alpaca_spin_tuned_gpt2_large
[ "region:us" ]
2024-01-22T13:43:30+00:00
{"pretty_name": "Evaluation run of LordNoah/Alpaca_spin_tuned_gpt2_large", "dataset_summary": "Dataset automatically created during the evaluation run of model [LordNoah/Alpaca_spin_tuned_gpt2_large](https://huggingface.co/LordNoah/Alpaca_spin_tuned_gpt2_large) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_LordNoah__Alpaca_spin_tuned_gpt2_large\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-22T13:42:11.763277](https://huggingface.co/datasets/open-llm-leaderboard/details_LordNoah__Alpaca_spin_tuned_gpt2_large/blob/main/results_2024-01-22T13-42-11.763277.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.27225604584142943,\n \"acc_stderr\": 0.03141590282455585,\n \"acc_norm\": 0.27399653003630087,\n \"acc_norm_stderr\": 0.03221603447267582,\n \"mc1\": 0.21909424724602203,\n \"mc1_stderr\": 0.014480038578757449,\n \"mc2\": 0.39429285512218326,\n \"mc2_stderr\": 0.01421822540176183\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.2568259385665529,\n \"acc_stderr\": 0.0127669237941168,\n \"acc_norm\": 0.2790102389078498,\n \"acc_norm_stderr\": 0.013106784883601341\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.36297550288787095,\n \"acc_stderr\": 0.004798751281560822,\n \"acc_norm\": 0.45120493925512845,\n \"acc_norm_stderr\": 0.004965963647210318\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.25,\n \"acc_stderr\": 0.04351941398892446,\n \"acc_norm\": 0.25,\n \"acc_norm_stderr\": 0.04351941398892446\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.24444444444444444,\n \"acc_stderr\": 0.037125378336148665,\n \"acc_norm\": 0.24444444444444444,\n \"acc_norm_stderr\": 0.037125378336148665\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.3026315789473684,\n \"acc_stderr\": 0.03738520676119667,\n \"acc_norm\": 0.3026315789473684,\n \"acc_norm_stderr\": 0.03738520676119667\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.24,\n \"acc_stderr\": 0.04292346959909283,\n \"acc_norm\": 0.24,\n \"acc_norm_stderr\": 0.04292346959909283\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.3433962264150943,\n \"acc_stderr\": 0.02922452646912479,\n \"acc_norm\": 0.3433962264150943,\n \"acc_norm_stderr\": 0.02922452646912479\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.2569444444444444,\n \"acc_stderr\": 0.03653946969442099,\n \"acc_norm\": 0.2569444444444444,\n \"acc_norm_stderr\": 0.03653946969442099\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.15,\n \"acc_stderr\": 0.03588702812826368,\n \"acc_norm\": 0.15,\n \"acc_norm_stderr\": 0.03588702812826368\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.34,\n \"acc_stderr\": 0.04760952285695236,\n \"acc_norm\": 0.34,\n \"acc_norm_stderr\": 0.04760952285695236\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.32,\n \"acc_stderr\": 0.046882617226215034,\n \"acc_norm\": 0.32,\n \"acc_norm_stderr\": 0.046882617226215034\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.24277456647398843,\n \"acc_stderr\": 0.0326926380614177,\n \"acc_norm\": 0.24277456647398843,\n \"acc_norm_stderr\": 0.0326926380614177\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.24509803921568626,\n \"acc_stderr\": 0.042801058373643966,\n \"acc_norm\": 0.24509803921568626,\n \"acc_norm_stderr\": 0.042801058373643966\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.3,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.3,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.30638297872340425,\n \"acc_stderr\": 0.030135906478517563,\n \"acc_norm\": 0.30638297872340425,\n \"acc_norm_stderr\": 0.030135906478517563\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.21929824561403508,\n \"acc_stderr\": 0.03892431106518753,\n \"acc_norm\": 0.21929824561403508,\n \"acc_norm_stderr\": 0.03892431106518753\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.30344827586206896,\n \"acc_stderr\": 0.038312260488503336,\n \"acc_norm\": 0.30344827586206896,\n \"acc_norm_stderr\": 0.038312260488503336\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.2777777777777778,\n \"acc_stderr\": 0.023068188848261107,\n \"acc_norm\": 0.2777777777777778,\n \"acc_norm_stderr\": 0.023068188848261107\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.2619047619047619,\n \"acc_stderr\": 0.03932537680392871,\n \"acc_norm\": 0.2619047619047619,\n \"acc_norm_stderr\": 0.03932537680392871\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.31,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.25806451612903225,\n \"acc_stderr\": 0.02489246917246284,\n \"acc_norm\": 0.25806451612903225,\n \"acc_norm_stderr\": 0.02489246917246284\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.30049261083743845,\n \"acc_stderr\": 0.03225799476233484,\n \"acc_norm\": 0.30049261083743845,\n \"acc_norm_stderr\": 0.03225799476233484\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.3,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.3,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.30303030303030304,\n \"acc_stderr\": 0.035886248000917075,\n \"acc_norm\": 0.30303030303030304,\n \"acc_norm_stderr\": 0.035886248000917075\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.35858585858585856,\n \"acc_stderr\": 0.03416903640391521,\n \"acc_norm\": 0.35858585858585856,\n \"acc_norm_stderr\": 0.03416903640391521\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.31088082901554404,\n \"acc_stderr\": 0.033403619062765885,\n \"acc_norm\": 0.31088082901554404,\n \"acc_norm_stderr\": 0.033403619062765885\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.358974358974359,\n \"acc_stderr\": 0.024321738484602357,\n \"acc_norm\": 0.358974358974359,\n \"acc_norm_stderr\": 0.024321738484602357\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.26296296296296295,\n \"acc_stderr\": 0.02684205787383371,\n \"acc_norm\": 0.26296296296296295,\n \"acc_norm_stderr\": 0.02684205787383371\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.2184873949579832,\n \"acc_stderr\": 0.026841514322958955,\n \"acc_norm\": 0.2184873949579832,\n \"acc_norm_stderr\": 0.026841514322958955\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.271523178807947,\n \"acc_stderr\": 0.03631329803969653,\n \"acc_norm\": 0.271523178807947,\n \"acc_norm_stderr\": 0.03631329803969653\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.3339449541284404,\n \"acc_stderr\": 0.020220554196736403,\n \"acc_norm\": 0.3339449541284404,\n \"acc_norm_stderr\": 0.020220554196736403\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.2824074074074074,\n \"acc_stderr\": 0.030701372111510927,\n \"acc_norm\": 0.2824074074074074,\n \"acc_norm_stderr\": 0.030701372111510927\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.25980392156862747,\n \"acc_stderr\": 0.030778554678693264,\n \"acc_norm\": 0.25980392156862747,\n \"acc_norm_stderr\": 0.030778554678693264\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.270042194092827,\n \"acc_stderr\": 0.028900721906293426,\n \"acc_norm\": 0.270042194092827,\n \"acc_norm_stderr\": 0.028900721906293426\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.1031390134529148,\n \"acc_stderr\": 0.020412564289839272,\n \"acc_norm\": 0.1031390134529148,\n \"acc_norm_stderr\": 0.020412564289839272\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.2366412213740458,\n \"acc_stderr\": 0.037276735755969174,\n \"acc_norm\": 0.2366412213740458,\n \"acc_norm_stderr\": 0.037276735755969174\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.35537190082644626,\n \"acc_stderr\": 0.04369236326573981,\n \"acc_norm\": 0.35537190082644626,\n \"acc_norm_stderr\": 0.04369236326573981\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.25,\n \"acc_stderr\": 0.04186091791394607,\n \"acc_norm\": 0.25,\n \"acc_norm_stderr\": 0.04186091791394607\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.2883435582822086,\n \"acc_stderr\": 0.035590395316173425,\n \"acc_norm\": 0.2883435582822086,\n \"acc_norm_stderr\": 0.035590395316173425\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.23214285714285715,\n \"acc_stderr\": 0.04007341809755807,\n \"acc_norm\": 0.23214285714285715,\n \"acc_norm_stderr\": 0.04007341809755807\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.3786407766990291,\n \"acc_stderr\": 0.04802694698258972,\n \"acc_norm\": 0.3786407766990291,\n \"acc_norm_stderr\": 0.04802694698258972\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.2606837606837607,\n \"acc_stderr\": 0.028760348956523414,\n \"acc_norm\": 0.2606837606837607,\n \"acc_norm_stderr\": 0.028760348956523414\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.19,\n \"acc_stderr\": 0.03942772444036623,\n \"acc_norm\": 0.19,\n \"acc_norm_stderr\": 0.03942772444036623\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.20434227330779056,\n \"acc_stderr\": 0.0144191239809319,\n \"acc_norm\": 0.20434227330779056,\n \"acc_norm_stderr\": 0.0144191239809319\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.2976878612716763,\n \"acc_stderr\": 0.024617055388677,\n \"acc_norm\": 0.2976878612716763,\n \"acc_norm_stderr\": 0.024617055388677\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.2424581005586592,\n \"acc_stderr\": 0.014333522059217889,\n \"acc_norm\": 0.2424581005586592,\n \"acc_norm_stderr\": 0.014333522059217889\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.25163398692810457,\n \"acc_stderr\": 0.024848018263875195,\n \"acc_norm\": 0.25163398692810457,\n \"acc_norm_stderr\": 0.024848018263875195\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.3247588424437299,\n \"acc_stderr\": 0.026596782287697043,\n \"acc_norm\": 0.3247588424437299,\n \"acc_norm_stderr\": 0.026596782287697043\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.2222222222222222,\n \"acc_stderr\": 0.023132376234543346,\n \"acc_norm\": 0.2222222222222222,\n \"acc_norm_stderr\": 0.023132376234543346\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.2624113475177305,\n \"acc_stderr\": 0.026244920349843014,\n \"acc_norm\": 0.2624113475177305,\n \"acc_norm_stderr\": 0.026244920349843014\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.24445893089960888,\n \"acc_stderr\": 0.010976425013113893,\n \"acc_norm\": 0.24445893089960888,\n \"acc_norm_stderr\": 0.010976425013113893\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.26838235294117646,\n \"acc_stderr\": 0.02691748122437722,\n \"acc_norm\": 0.26838235294117646,\n \"acc_norm_stderr\": 0.02691748122437722\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.2434640522875817,\n \"acc_stderr\": 0.017362473762146623,\n \"acc_norm\": 0.2434640522875817,\n \"acc_norm_stderr\": 0.017362473762146623\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.2,\n \"acc_stderr\": 0.03831305140884603,\n \"acc_norm\": 0.2,\n \"acc_norm_stderr\": 0.03831305140884603\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.3224489795918367,\n \"acc_stderr\": 0.029923100563683903,\n \"acc_norm\": 0.3224489795918367,\n \"acc_norm_stderr\": 0.029923100563683903\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.24378109452736318,\n \"acc_stderr\": 0.03036049015401465,\n \"acc_norm\": 0.24378109452736318,\n \"acc_norm_stderr\": 0.03036049015401465\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.3,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.3,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.21686746987951808,\n \"acc_stderr\": 0.03208284450356365,\n \"acc_norm\": 0.21686746987951808,\n \"acc_norm_stderr\": 0.03208284450356365\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.29239766081871343,\n \"acc_stderr\": 0.034886477134579215,\n \"acc_norm\": 0.29239766081871343,\n \"acc_norm_stderr\": 0.034886477134579215\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.21909424724602203,\n \"mc1_stderr\": 0.014480038578757449,\n \"mc2\": 0.39429285512218326,\n \"mc2_stderr\": 0.01421822540176183\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.5461720599842147,\n \"acc_stderr\": 0.013992441563707063\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.006065200909780136,\n \"acc_stderr\": 0.00213867030146048\n }\n}\n```", "repo_url": "https://huggingface.co/LordNoah/Alpaca_spin_tuned_gpt2_large", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|arc:challenge|25_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|gsm8k|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hellaswag|10_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T13-42-11.763277.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["**/details_harness|winogrande|5_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-22T13-42-11.763277.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_22T13_42_11.763277", "path": ["results_2024-01-22T13-42-11.763277.parquet"]}, {"split": "latest", "path": ["results_2024-01-22T13-42-11.763277.parquet"]}]}]}
2024-01-22T13:43:52+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of LordNoah/Alpaca_spin_tuned_gpt2_large Dataset automatically created during the evaluation run of model LordNoah/Alpaca_spin_tuned_gpt2_large on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-22T13:42:11.763277(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of LordNoah/Alpaca_spin_tuned_gpt2_large\n\n\n\nDataset automatically created during the evaluation run of model LordNoah/Alpaca_spin_tuned_gpt2_large on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T13:42:11.763277(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of LordNoah/Alpaca_spin_tuned_gpt2_large\n\n\n\nDataset automatically created during the evaluation run of model LordNoah/Alpaca_spin_tuned_gpt2_large on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T13:42:11.763277(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
67f5a935f88be7634018ec3fa0924636be847a27
# Dataset Card for Evaluation run of LordNoah/Alpaca_refine_tuned_gpt2_large <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [LordNoah/Alpaca_refine_tuned_gpt2_large](https://huggingface.co/LordNoah/Alpaca_refine_tuned_gpt2_large) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_LordNoah__Alpaca_refine_tuned_gpt2_large", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-22T13:48:41.144585](https://huggingface.co/datasets/open-llm-leaderboard/details_LordNoah__Alpaca_refine_tuned_gpt2_large/blob/main/results_2024-01-22T13-48-41.144585.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.27073502428002855, "acc_stderr": 0.031357406847036265, "acc_norm": 0.27231339886188605, "acc_norm_stderr": 0.032151283377254807, "mc1": 0.21542227662178703, "mc1_stderr": 0.01439190265242768, "mc2": 0.3790988407554485, "mc2_stderr": 0.01414566169158044 }, "harness|arc:challenge|25": { "acc": 0.25426621160409557, "acc_stderr": 0.01272499994515774, "acc_norm": 0.27559726962457337, "acc_norm_stderr": 0.013057169655761838 }, "harness|hellaswag|10": { "acc": 0.36367257518422624, "acc_stderr": 0.004800728138792372, "acc_norm": 0.4509061939852619, "acc_norm_stderr": 0.004965670398127349 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.26, "acc_stderr": 0.0440844002276808, "acc_norm": 0.26, "acc_norm_stderr": 0.0440844002276808 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.23703703703703705, "acc_stderr": 0.03673731683969506, "acc_norm": 0.23703703703703705, "acc_norm_stderr": 0.03673731683969506 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.29605263157894735, "acc_stderr": 0.037150621549989056, "acc_norm": 0.29605263157894735, "acc_norm_stderr": 0.037150621549989056 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.23, "acc_stderr": 0.04229525846816506, "acc_norm": 0.23, "acc_norm_stderr": 0.04229525846816506 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.33584905660377357, "acc_stderr": 0.029067220146644826, "acc_norm": 0.33584905660377357, "acc_norm_stderr": 0.029067220146644826 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.2569444444444444, "acc_stderr": 0.03653946969442099, "acc_norm": 0.2569444444444444, "acc_norm_stderr": 0.03653946969442099 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.15, "acc_stderr": 0.03588702812826368, "acc_norm": 0.15, "acc_norm_stderr": 0.03588702812826368 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.34, "acc_stderr": 0.04760952285695236, "acc_norm": 0.34, "acc_norm_stderr": 0.04760952285695236 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.33, "acc_stderr": 0.04725815626252604, "acc_norm": 0.33, "acc_norm_stderr": 0.04725815626252604 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.26011560693641617, "acc_stderr": 0.033450369167889925, "acc_norm": 0.26011560693641617, "acc_norm_stderr": 0.033450369167889925 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.24509803921568626, "acc_stderr": 0.042801058373643966, "acc_norm": 0.24509803921568626, "acc_norm_stderr": 0.042801058373643966 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.29, "acc_stderr": 0.045604802157206845, "acc_norm": 0.29, "acc_norm_stderr": 0.045604802157206845 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.30638297872340425, "acc_stderr": 0.030135906478517563, "acc_norm": 0.30638297872340425, "acc_norm_stderr": 0.030135906478517563 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.22807017543859648, "acc_stderr": 0.03947152782669415, "acc_norm": 0.22807017543859648, "acc_norm_stderr": 0.03947152782669415 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.3103448275862069, "acc_stderr": 0.03855289616378949, "acc_norm": 0.3103448275862069, "acc_norm_stderr": 0.03855289616378949 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.2698412698412698, "acc_stderr": 0.02286083830923207, "acc_norm": 0.2698412698412698, "acc_norm_stderr": 0.02286083830923207 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.23809523809523808, "acc_stderr": 0.03809523809523811, "acc_norm": 0.23809523809523808, "acc_norm_stderr": 0.03809523809523811 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.34, "acc_stderr": 0.04760952285695236, "acc_norm": 0.34, "acc_norm_stderr": 0.04760952285695236 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.26129032258064516, "acc_stderr": 0.024993053397764822, "acc_norm": 0.26129032258064516, "acc_norm_stderr": 0.024993053397764822 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.3103448275862069, "acc_stderr": 0.032550867699701024, "acc_norm": 0.3103448275862069, "acc_norm_stderr": 0.032550867699701024 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.3, "acc_stderr": 0.046056618647183814, "acc_norm": 0.3, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.28484848484848485, "acc_stderr": 0.035243908445117836, "acc_norm": 0.28484848484848485, "acc_norm_stderr": 0.035243908445117836 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.35858585858585856, "acc_stderr": 0.03416903640391521, "acc_norm": 0.35858585858585856, "acc_norm_stderr": 0.03416903640391521 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.3005181347150259, "acc_stderr": 0.03308818594415751, "acc_norm": 0.3005181347150259, "acc_norm_stderr": 0.03308818594415751 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.358974358974359, "acc_stderr": 0.024321738484602357, "acc_norm": 0.358974358974359, "acc_norm_stderr": 0.024321738484602357 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.24814814814814815, "acc_stderr": 0.0263357394040558, "acc_norm": 0.24814814814814815, "acc_norm_stderr": 0.0263357394040558 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.2184873949579832, "acc_stderr": 0.026841514322958955, "acc_norm": 0.2184873949579832, "acc_norm_stderr": 0.026841514322958955 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.271523178807947, "acc_stderr": 0.03631329803969653, "acc_norm": 0.271523178807947, "acc_norm_stderr": 0.03631329803969653 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.3376146788990826, "acc_stderr": 0.020275265986638903, "acc_norm": 0.3376146788990826, "acc_norm_stderr": 0.020275265986638903 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.2824074074074074, "acc_stderr": 0.030701372111510927, "acc_norm": 0.2824074074074074, "acc_norm_stderr": 0.030701372111510927 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.25, "acc_stderr": 0.03039153369274154, "acc_norm": 0.25, "acc_norm_stderr": 0.03039153369274154 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.27848101265822783, "acc_stderr": 0.029178682304842538, "acc_norm": 0.27848101265822783, "acc_norm_stderr": 0.029178682304842538 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.10762331838565023, "acc_stderr": 0.020799400082879997, "acc_norm": 0.10762331838565023, "acc_norm_stderr": 0.020799400082879997 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.22137404580152673, "acc_stderr": 0.0364129708131373, "acc_norm": 0.22137404580152673, "acc_norm_stderr": 0.0364129708131373 }, "harness|hendrycksTest-international_law|5": { "acc": 0.35537190082644626, "acc_stderr": 0.04369236326573981, "acc_norm": 0.35537190082644626, "acc_norm_stderr": 0.04369236326573981 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.25, "acc_stderr": 0.04186091791394607, "acc_norm": 0.25, "acc_norm_stderr": 0.04186091791394607 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.294478527607362, "acc_stderr": 0.03581165790474082, "acc_norm": 0.294478527607362, "acc_norm_stderr": 0.03581165790474082 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.23214285714285715, "acc_stderr": 0.04007341809755807, "acc_norm": 0.23214285714285715, "acc_norm_stderr": 0.04007341809755807 }, "harness|hendrycksTest-management|5": { "acc": 0.3786407766990291, "acc_stderr": 0.04802694698258972, "acc_norm": 0.3786407766990291, "acc_norm_stderr": 0.04802694698258972 }, "harness|hendrycksTest-marketing|5": { "acc": 0.24786324786324787, "acc_stderr": 0.028286324075564404, "acc_norm": 0.24786324786324787, "acc_norm_stderr": 0.028286324075564404 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.19, "acc_stderr": 0.03942772444036623, "acc_norm": 0.19, "acc_norm_stderr": 0.03942772444036623 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.20178799489144317, "acc_stderr": 0.014351702181636873, "acc_norm": 0.20178799489144317, "acc_norm_stderr": 0.014351702181636873 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.2947976878612717, "acc_stderr": 0.024547617794803838, "acc_norm": 0.2947976878612717, "acc_norm_stderr": 0.024547617794803838 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.2424581005586592, "acc_stderr": 0.014333522059217889, "acc_norm": 0.2424581005586592, "acc_norm_stderr": 0.014333522059217889 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.25163398692810457, "acc_stderr": 0.024848018263875195, "acc_norm": 0.25163398692810457, "acc_norm_stderr": 0.024848018263875195 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.33762057877813506, "acc_stderr": 0.026858825879488544, "acc_norm": 0.33762057877813506, "acc_norm_stderr": 0.026858825879488544 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.2222222222222222, "acc_stderr": 0.02313237623454333, "acc_norm": 0.2222222222222222, "acc_norm_stderr": 0.02313237623454333 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.2695035460992908, "acc_stderr": 0.02646903681859063, "acc_norm": 0.2695035460992908, "acc_norm_stderr": 0.02646903681859063 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.2379400260756193, "acc_stderr": 0.010875700787694221, "acc_norm": 0.2379400260756193, "acc_norm_stderr": 0.010875700787694221 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.2647058823529412, "acc_stderr": 0.026799562024887674, "acc_norm": 0.2647058823529412, "acc_norm_stderr": 0.026799562024887674 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.238562091503268, "acc_stderr": 0.017242385828779603, "acc_norm": 0.238562091503268, "acc_norm_stderr": 0.017242385828779603 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.20909090909090908, "acc_stderr": 0.038950910157241364, "acc_norm": 0.20909090909090908, "acc_norm_stderr": 0.038950910157241364 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.3020408163265306, "acc_stderr": 0.029393609319879815, "acc_norm": 0.3020408163265306, "acc_norm_stderr": 0.029393609319879815 }, "harness|hendrycksTest-sociology|5": { "acc": 0.22388059701492538, "acc_stderr": 0.029475250236017197, "acc_norm": 0.22388059701492538, "acc_norm_stderr": 0.029475250236017197 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.29, "acc_stderr": 0.04560480215720684, "acc_norm": 0.29, "acc_norm_stderr": 0.04560480215720684 }, "harness|hendrycksTest-virology|5": { "acc": 0.19879518072289157, "acc_stderr": 0.03106939026078942, "acc_norm": 0.19879518072289157, "acc_norm_stderr": 0.03106939026078942 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.29239766081871343, "acc_stderr": 0.034886477134579215, "acc_norm": 0.29239766081871343, "acc_norm_stderr": 0.034886477134579215 }, "harness|truthfulqa:mc|0": { "mc1": 0.21542227662178703, "mc1_stderr": 0.01439190265242768, "mc2": 0.3790988407554485, "mc2_stderr": 0.01414566169158044 }, "harness|winogrande|5": { "acc": 0.5493291239147593, "acc_stderr": 0.013983928869040239 }, "harness|gsm8k|5": { "acc": 0.0075815011372251705, "acc_stderr": 0.0023892815120772 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_LordNoah__Alpaca_refine_tuned_gpt2_large
[ "region:us" ]
2024-01-22T13:50:02+00:00
{"pretty_name": "Evaluation run of LordNoah/Alpaca_refine_tuned_gpt2_large", "dataset_summary": "Dataset automatically created during the evaluation run of model [LordNoah/Alpaca_refine_tuned_gpt2_large](https://huggingface.co/LordNoah/Alpaca_refine_tuned_gpt2_large) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_LordNoah__Alpaca_refine_tuned_gpt2_large\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-22T13:48:41.144585](https://huggingface.co/datasets/open-llm-leaderboard/details_LordNoah__Alpaca_refine_tuned_gpt2_large/blob/main/results_2024-01-22T13-48-41.144585.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.27073502428002855,\n \"acc_stderr\": 0.031357406847036265,\n \"acc_norm\": 0.27231339886188605,\n \"acc_norm_stderr\": 0.032151283377254807,\n \"mc1\": 0.21542227662178703,\n \"mc1_stderr\": 0.01439190265242768,\n \"mc2\": 0.3790988407554485,\n \"mc2_stderr\": 0.01414566169158044\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.25426621160409557,\n \"acc_stderr\": 0.01272499994515774,\n \"acc_norm\": 0.27559726962457337,\n \"acc_norm_stderr\": 0.013057169655761838\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.36367257518422624,\n \"acc_stderr\": 0.004800728138792372,\n \"acc_norm\": 0.4509061939852619,\n \"acc_norm_stderr\": 0.004965670398127349\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.26,\n \"acc_stderr\": 0.0440844002276808,\n \"acc_norm\": 0.26,\n \"acc_norm_stderr\": 0.0440844002276808\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.23703703703703705,\n \"acc_stderr\": 0.03673731683969506,\n \"acc_norm\": 0.23703703703703705,\n \"acc_norm_stderr\": 0.03673731683969506\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.29605263157894735,\n \"acc_stderr\": 0.037150621549989056,\n \"acc_norm\": 0.29605263157894735,\n \"acc_norm_stderr\": 0.037150621549989056\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.23,\n \"acc_stderr\": 0.04229525846816506,\n \"acc_norm\": 0.23,\n \"acc_norm_stderr\": 0.04229525846816506\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.33584905660377357,\n \"acc_stderr\": 0.029067220146644826,\n \"acc_norm\": 0.33584905660377357,\n \"acc_norm_stderr\": 0.029067220146644826\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.2569444444444444,\n \"acc_stderr\": 0.03653946969442099,\n \"acc_norm\": 0.2569444444444444,\n \"acc_norm_stderr\": 0.03653946969442099\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.15,\n \"acc_stderr\": 0.03588702812826368,\n \"acc_norm\": 0.15,\n \"acc_norm_stderr\": 0.03588702812826368\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.34,\n \"acc_stderr\": 0.04760952285695236,\n \"acc_norm\": 0.34,\n \"acc_norm_stderr\": 0.04760952285695236\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.33,\n \"acc_stderr\": 0.04725815626252604,\n \"acc_norm\": 0.33,\n \"acc_norm_stderr\": 0.04725815626252604\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.26011560693641617,\n \"acc_stderr\": 0.033450369167889925,\n \"acc_norm\": 0.26011560693641617,\n \"acc_norm_stderr\": 0.033450369167889925\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.24509803921568626,\n \"acc_stderr\": 0.042801058373643966,\n \"acc_norm\": 0.24509803921568626,\n \"acc_norm_stderr\": 0.042801058373643966\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.29,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\": 0.29,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.30638297872340425,\n \"acc_stderr\": 0.030135906478517563,\n \"acc_norm\": 0.30638297872340425,\n \"acc_norm_stderr\": 0.030135906478517563\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.22807017543859648,\n \"acc_stderr\": 0.03947152782669415,\n \"acc_norm\": 0.22807017543859648,\n \"acc_norm_stderr\": 0.03947152782669415\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.3103448275862069,\n \"acc_stderr\": 0.03855289616378949,\n \"acc_norm\": 0.3103448275862069,\n \"acc_norm_stderr\": 0.03855289616378949\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.2698412698412698,\n \"acc_stderr\": 0.02286083830923207,\n \"acc_norm\": 0.2698412698412698,\n \"acc_norm_stderr\": 0.02286083830923207\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.23809523809523808,\n \"acc_stderr\": 0.03809523809523811,\n \"acc_norm\": 0.23809523809523808,\n \"acc_norm_stderr\": 0.03809523809523811\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.34,\n \"acc_stderr\": 0.04760952285695236,\n \"acc_norm\": 0.34,\n \"acc_norm_stderr\": 0.04760952285695236\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.26129032258064516,\n \"acc_stderr\": 0.024993053397764822,\n \"acc_norm\": 0.26129032258064516,\n \"acc_norm_stderr\": 0.024993053397764822\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.3103448275862069,\n \"acc_stderr\": 0.032550867699701024,\n \"acc_norm\": 0.3103448275862069,\n \"acc_norm_stderr\": 0.032550867699701024\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.3,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.3,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.28484848484848485,\n \"acc_stderr\": 0.035243908445117836,\n \"acc_norm\": 0.28484848484848485,\n \"acc_norm_stderr\": 0.035243908445117836\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.35858585858585856,\n \"acc_stderr\": 0.03416903640391521,\n \"acc_norm\": 0.35858585858585856,\n \"acc_norm_stderr\": 0.03416903640391521\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.3005181347150259,\n \"acc_stderr\": 0.03308818594415751,\n \"acc_norm\": 0.3005181347150259,\n \"acc_norm_stderr\": 0.03308818594415751\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.358974358974359,\n \"acc_stderr\": 0.024321738484602357,\n \"acc_norm\": 0.358974358974359,\n \"acc_norm_stderr\": 0.024321738484602357\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.24814814814814815,\n \"acc_stderr\": 0.0263357394040558,\n \"acc_norm\": 0.24814814814814815,\n \"acc_norm_stderr\": 0.0263357394040558\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.2184873949579832,\n \"acc_stderr\": 0.026841514322958955,\n \"acc_norm\": 0.2184873949579832,\n \"acc_norm_stderr\": 0.026841514322958955\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.271523178807947,\n \"acc_stderr\": 0.03631329803969653,\n \"acc_norm\": 0.271523178807947,\n \"acc_norm_stderr\": 0.03631329803969653\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.3376146788990826,\n \"acc_stderr\": 0.020275265986638903,\n \"acc_norm\": 0.3376146788990826,\n \"acc_norm_stderr\": 0.020275265986638903\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.2824074074074074,\n \"acc_stderr\": 0.030701372111510927,\n \"acc_norm\": 0.2824074074074074,\n \"acc_norm_stderr\": 0.030701372111510927\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.25,\n \"acc_stderr\": 0.03039153369274154,\n \"acc_norm\": 0.25,\n \"acc_norm_stderr\": 0.03039153369274154\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.27848101265822783,\n \"acc_stderr\": 0.029178682304842538,\n \"acc_norm\": 0.27848101265822783,\n \"acc_norm_stderr\": 0.029178682304842538\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.10762331838565023,\n \"acc_stderr\": 0.020799400082879997,\n \"acc_norm\": 0.10762331838565023,\n \"acc_norm_stderr\": 0.020799400082879997\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.22137404580152673,\n \"acc_stderr\": 0.0364129708131373,\n \"acc_norm\": 0.22137404580152673,\n \"acc_norm_stderr\": 0.0364129708131373\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.35537190082644626,\n \"acc_stderr\": 0.04369236326573981,\n \"acc_norm\": 0.35537190082644626,\n \"acc_norm_stderr\": 0.04369236326573981\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.25,\n \"acc_stderr\": 0.04186091791394607,\n \"acc_norm\": 0.25,\n \"acc_norm_stderr\": 0.04186091791394607\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.294478527607362,\n \"acc_stderr\": 0.03581165790474082,\n \"acc_norm\": 0.294478527607362,\n \"acc_norm_stderr\": 0.03581165790474082\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.23214285714285715,\n \"acc_stderr\": 0.04007341809755807,\n \"acc_norm\": 0.23214285714285715,\n \"acc_norm_stderr\": 0.04007341809755807\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.3786407766990291,\n \"acc_stderr\": 0.04802694698258972,\n \"acc_norm\": 0.3786407766990291,\n \"acc_norm_stderr\": 0.04802694698258972\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.24786324786324787,\n \"acc_stderr\": 0.028286324075564404,\n \"acc_norm\": 0.24786324786324787,\n \"acc_norm_stderr\": 0.028286324075564404\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.19,\n \"acc_stderr\": 0.03942772444036623,\n \"acc_norm\": 0.19,\n \"acc_norm_stderr\": 0.03942772444036623\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.20178799489144317,\n \"acc_stderr\": 0.014351702181636873,\n \"acc_norm\": 0.20178799489144317,\n \"acc_norm_stderr\": 0.014351702181636873\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.2947976878612717,\n \"acc_stderr\": 0.024547617794803838,\n \"acc_norm\": 0.2947976878612717,\n \"acc_norm_stderr\": 0.024547617794803838\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.2424581005586592,\n \"acc_stderr\": 0.014333522059217889,\n \"acc_norm\": 0.2424581005586592,\n \"acc_norm_stderr\": 0.014333522059217889\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.25163398692810457,\n \"acc_stderr\": 0.024848018263875195,\n \"acc_norm\": 0.25163398692810457,\n \"acc_norm_stderr\": 0.024848018263875195\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.33762057877813506,\n \"acc_stderr\": 0.026858825879488544,\n \"acc_norm\": 0.33762057877813506,\n \"acc_norm_stderr\": 0.026858825879488544\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.2222222222222222,\n \"acc_stderr\": 0.02313237623454333,\n \"acc_norm\": 0.2222222222222222,\n \"acc_norm_stderr\": 0.02313237623454333\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.2695035460992908,\n \"acc_stderr\": 0.02646903681859063,\n \"acc_norm\": 0.2695035460992908,\n \"acc_norm_stderr\": 0.02646903681859063\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.2379400260756193,\n \"acc_stderr\": 0.010875700787694221,\n \"acc_norm\": 0.2379400260756193,\n \"acc_norm_stderr\": 0.010875700787694221\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.2647058823529412,\n \"acc_stderr\": 0.026799562024887674,\n \"acc_norm\": 0.2647058823529412,\n \"acc_norm_stderr\": 0.026799562024887674\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.238562091503268,\n \"acc_stderr\": 0.017242385828779603,\n \"acc_norm\": 0.238562091503268,\n \"acc_norm_stderr\": 0.017242385828779603\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.20909090909090908,\n \"acc_stderr\": 0.038950910157241364,\n \"acc_norm\": 0.20909090909090908,\n \"acc_norm_stderr\": 0.038950910157241364\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.3020408163265306,\n \"acc_stderr\": 0.029393609319879815,\n \"acc_norm\": 0.3020408163265306,\n \"acc_norm_stderr\": 0.029393609319879815\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.22388059701492538,\n \"acc_stderr\": 0.029475250236017197,\n \"acc_norm\": 0.22388059701492538,\n \"acc_norm_stderr\": 0.029475250236017197\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.29,\n \"acc_stderr\": 0.04560480215720684,\n \"acc_norm\": 0.29,\n \"acc_norm_stderr\": 0.04560480215720684\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.19879518072289157,\n \"acc_stderr\": 0.03106939026078942,\n \"acc_norm\": 0.19879518072289157,\n \"acc_norm_stderr\": 0.03106939026078942\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.29239766081871343,\n \"acc_stderr\": 0.034886477134579215,\n \"acc_norm\": 0.29239766081871343,\n \"acc_norm_stderr\": 0.034886477134579215\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.21542227662178703,\n \"mc1_stderr\": 0.01439190265242768,\n \"mc2\": 0.3790988407554485,\n \"mc2_stderr\": 0.01414566169158044\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.5493291239147593,\n \"acc_stderr\": 0.013983928869040239\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.0075815011372251705,\n \"acc_stderr\": 0.0023892815120772\n }\n}\n```", "repo_url": "https://huggingface.co/LordNoah/Alpaca_refine_tuned_gpt2_large", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|arc:challenge|25_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|gsm8k|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hellaswag|10_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T13-48-41.144585.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["**/details_harness|winogrande|5_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-22T13-48-41.144585.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_22T13_48_41.144585", "path": ["results_2024-01-22T13-48-41.144585.parquet"]}, {"split": "latest", "path": ["results_2024-01-22T13-48-41.144585.parquet"]}]}]}
2024-01-22T13:50:26+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of LordNoah/Alpaca_refine_tuned_gpt2_large Dataset automatically created during the evaluation run of model LordNoah/Alpaca_refine_tuned_gpt2_large on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-22T13:48:41.144585(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of LordNoah/Alpaca_refine_tuned_gpt2_large\n\n\n\nDataset automatically created during the evaluation run of model LordNoah/Alpaca_refine_tuned_gpt2_large on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T13:48:41.144585(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of LordNoah/Alpaca_refine_tuned_gpt2_large\n\n\n\nDataset automatically created during the evaluation run of model LordNoah/Alpaca_refine_tuned_gpt2_large on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T13:48:41.144585(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
76b46352c2611fa5452f0a8ea713c772a189b537
# Dataset Card for Evaluation run of Kquant03/Buttercup-4x7B-bf16 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [Kquant03/Buttercup-4x7B-bf16](https://huggingface.co/Kquant03/Buttercup-4x7B-bf16) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_Kquant03__Buttercup-4x7B-bf16", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-22T13:49:42.612013](https://huggingface.co/datasets/open-llm-leaderboard/details_Kquant03__Buttercup-4x7B-bf16/blob/main/results_2024-01-22T13-49-42.612013.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.6511243311108075, "acc_stderr": 0.03209436877391809, "acc_norm": 0.6509529561946836, "acc_norm_stderr": 0.03275570222819912, "mc1": 0.5373317013463892, "mc1_stderr": 0.017454645150970588, "mc2": 0.672045395418692, "mc2_stderr": 0.01521737838329955 }, "harness|arc:challenge|25": { "acc": 0.6877133105802048, "acc_stderr": 0.013542598541688065, "acc_norm": 0.7209897610921502, "acc_norm_stderr": 0.01310678488360133 }, "harness|hellaswag|10": { "acc": 0.7055367456681936, "acc_stderr": 0.004548695749620959, "acc_norm": 0.877414857598088, "acc_norm_stderr": 0.00327290143493977 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.35, "acc_stderr": 0.0479372485441102, "acc_norm": 0.35, "acc_norm_stderr": 0.0479372485441102 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6592592592592592, "acc_stderr": 0.040943762699967926, "acc_norm": 0.6592592592592592, "acc_norm_stderr": 0.040943762699967926 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.6907894736842105, "acc_stderr": 0.037610708698674805, "acc_norm": 0.6907894736842105, "acc_norm_stderr": 0.037610708698674805 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.62, "acc_stderr": 0.048783173121456316, "acc_norm": 0.62, "acc_norm_stderr": 0.048783173121456316 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.720754716981132, "acc_stderr": 0.027611163402399715, "acc_norm": 0.720754716981132, "acc_norm_stderr": 0.027611163402399715 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.7638888888888888, "acc_stderr": 0.03551446610810826, "acc_norm": 0.7638888888888888, "acc_norm_stderr": 0.03551446610810826 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.48, "acc_stderr": 0.050211673156867795, "acc_norm": 0.48, "acc_norm_stderr": 0.050211673156867795 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.56, "acc_stderr": 0.049888765156985884, "acc_norm": 0.56, "acc_norm_stderr": 0.049888765156985884 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.3, "acc_stderr": 0.046056618647183814, "acc_norm": 0.3, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6820809248554913, "acc_stderr": 0.0355068398916558, "acc_norm": 0.6820809248554913, "acc_norm_stderr": 0.0355068398916558 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.4019607843137255, "acc_stderr": 0.04878608714466996, "acc_norm": 0.4019607843137255, "acc_norm_stderr": 0.04878608714466996 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.78, "acc_stderr": 0.04163331998932263, "acc_norm": 0.78, "acc_norm_stderr": 0.04163331998932263 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5659574468085107, "acc_stderr": 0.03240038086792747, "acc_norm": 0.5659574468085107, "acc_norm_stderr": 0.03240038086792747 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.5087719298245614, "acc_stderr": 0.04702880432049615, "acc_norm": 0.5087719298245614, "acc_norm_stderr": 0.04702880432049615 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.5655172413793104, "acc_stderr": 0.04130740879555497, "acc_norm": 0.5655172413793104, "acc_norm_stderr": 0.04130740879555497 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.40476190476190477, "acc_stderr": 0.025279850397404904, "acc_norm": 0.40476190476190477, "acc_norm_stderr": 0.025279850397404904 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.46825396825396826, "acc_stderr": 0.04463112720677172, "acc_norm": 0.46825396825396826, "acc_norm_stderr": 0.04463112720677172 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.33, "acc_stderr": 0.04725815626252604, "acc_norm": 0.33, "acc_norm_stderr": 0.04725815626252604 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.7903225806451613, "acc_stderr": 0.023157879349083525, "acc_norm": 0.7903225806451613, "acc_norm_stderr": 0.023157879349083525 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.4827586206896552, "acc_stderr": 0.035158955511656986, "acc_norm": 0.4827586206896552, "acc_norm_stderr": 0.035158955511656986 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.68, "acc_stderr": 0.04688261722621505, "acc_norm": 0.68, "acc_norm_stderr": 0.04688261722621505 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7757575757575758, "acc_stderr": 0.03256866661681102, "acc_norm": 0.7757575757575758, "acc_norm_stderr": 0.03256866661681102 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.7878787878787878, "acc_stderr": 0.029126522834586818, "acc_norm": 0.7878787878787878, "acc_norm_stderr": 0.029126522834586818 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.8963730569948186, "acc_stderr": 0.02199531196364424, "acc_norm": 0.8963730569948186, "acc_norm_stderr": 0.02199531196364424 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.6641025641025641, "acc_stderr": 0.023946724741563973, "acc_norm": 0.6641025641025641, "acc_norm_stderr": 0.023946724741563973 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.32222222222222224, "acc_stderr": 0.028493465091028593, "acc_norm": 0.32222222222222224, "acc_norm_stderr": 0.028493465091028593 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6512605042016807, "acc_stderr": 0.03095663632856654, "acc_norm": 0.6512605042016807, "acc_norm_stderr": 0.03095663632856654 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.3443708609271523, "acc_stderr": 0.038796870240733264, "acc_norm": 0.3443708609271523, "acc_norm_stderr": 0.038796870240733264 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8495412844036697, "acc_stderr": 0.015328563932669237, "acc_norm": 0.8495412844036697, "acc_norm_stderr": 0.015328563932669237 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.5185185185185185, "acc_stderr": 0.034076320938540516, "acc_norm": 0.5185185185185185, "acc_norm_stderr": 0.034076320938540516 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.8480392156862745, "acc_stderr": 0.025195658428931796, "acc_norm": 0.8480392156862745, "acc_norm_stderr": 0.025195658428931796 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7932489451476793, "acc_stderr": 0.0263616516683891, "acc_norm": 0.7932489451476793, "acc_norm_stderr": 0.0263616516683891 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6995515695067265, "acc_stderr": 0.03076935200822914, "acc_norm": 0.6995515695067265, "acc_norm_stderr": 0.03076935200822914 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.7786259541984732, "acc_stderr": 0.03641297081313729, "acc_norm": 0.7786259541984732, "acc_norm_stderr": 0.03641297081313729 }, "harness|hendrycksTest-international_law|5": { "acc": 0.7933884297520661, "acc_stderr": 0.03695980128098824, "acc_norm": 0.7933884297520661, "acc_norm_stderr": 0.03695980128098824 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.7685185185185185, "acc_stderr": 0.04077494709252627, "acc_norm": 0.7685185185185185, "acc_norm_stderr": 0.04077494709252627 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7791411042944786, "acc_stderr": 0.03259177392742178, "acc_norm": 0.7791411042944786, "acc_norm_stderr": 0.03259177392742178 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.4732142857142857, "acc_stderr": 0.047389751192741546, "acc_norm": 0.4732142857142857, "acc_norm_stderr": 0.047389751192741546 }, "harness|hendrycksTest-management|5": { "acc": 0.7572815533980582, "acc_stderr": 0.04245022486384495, "acc_norm": 0.7572815533980582, "acc_norm_stderr": 0.04245022486384495 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8760683760683761, "acc_stderr": 0.021586494001281372, "acc_norm": 0.8760683760683761, "acc_norm_stderr": 0.021586494001281372 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.66, "acc_stderr": 0.04760952285695237, "acc_norm": 0.66, "acc_norm_stderr": 0.04760952285695237 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.8301404853128991, "acc_stderr": 0.013428186370608311, "acc_norm": 0.8301404853128991, "acc_norm_stderr": 0.013428186370608311 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.7283236994219653, "acc_stderr": 0.02394851290546836, "acc_norm": 0.7283236994219653, "acc_norm_stderr": 0.02394851290546836 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.44581005586592176, "acc_stderr": 0.01662399851333311, "acc_norm": 0.44581005586592176, "acc_norm_stderr": 0.01662399851333311 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.7287581699346405, "acc_stderr": 0.02545775669666788, "acc_norm": 0.7287581699346405, "acc_norm_stderr": 0.02545775669666788 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.7138263665594855, "acc_stderr": 0.02567025924218893, "acc_norm": 0.7138263665594855, "acc_norm_stderr": 0.02567025924218893 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.75, "acc_stderr": 0.02409347123262133, "acc_norm": 0.75, "acc_norm_stderr": 0.02409347123262133 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.475177304964539, "acc_stderr": 0.02979071924382972, "acc_norm": 0.475177304964539, "acc_norm_stderr": 0.02979071924382972 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.47327249022164275, "acc_stderr": 0.012751977967676008, "acc_norm": 0.47327249022164275, "acc_norm_stderr": 0.012751977967676008 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.6617647058823529, "acc_stderr": 0.02873932851398357, "acc_norm": 0.6617647058823529, "acc_norm_stderr": 0.02873932851398357 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6617647058823529, "acc_stderr": 0.019139943748487036, "acc_norm": 0.6617647058823529, "acc_norm_stderr": 0.019139943748487036 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6545454545454545, "acc_stderr": 0.04554619617541054, "acc_norm": 0.6545454545454545, "acc_norm_stderr": 0.04554619617541054 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7428571428571429, "acc_stderr": 0.02797982353874455, "acc_norm": 0.7428571428571429, "acc_norm_stderr": 0.02797982353874455 }, "harness|hendrycksTest-sociology|5": { "acc": 0.8407960199004975, "acc_stderr": 0.025870646766169136, "acc_norm": 0.8407960199004975, "acc_norm_stderr": 0.025870646766169136 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.88, "acc_stderr": 0.03265986323710906, "acc_norm": 0.88, "acc_norm_stderr": 0.03265986323710906 }, "harness|hendrycksTest-virology|5": { "acc": 0.5481927710843374, "acc_stderr": 0.03874371556587953, "acc_norm": 0.5481927710843374, "acc_norm_stderr": 0.03874371556587953 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8304093567251462, "acc_stderr": 0.02878210810540171, "acc_norm": 0.8304093567251462, "acc_norm_stderr": 0.02878210810540171 }, "harness|truthfulqa:mc|0": { "mc1": 0.5373317013463892, "mc1_stderr": 0.017454645150970588, "mc2": 0.672045395418692, "mc2_stderr": 0.01521737838329955 }, "harness|winogrande|5": { "acc": 0.819258089976322, "acc_stderr": 0.010814911009613975 }, "harness|gsm8k|5": { "acc": 0.6982562547384382, "acc_stderr": 0.012643544762873358 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_Kquant03__Buttercup-4x7B-bf16
[ "region:us" ]
2024-01-22T13:52:02+00:00
{"pretty_name": "Evaluation run of Kquant03/Buttercup-4x7B-bf16", "dataset_summary": "Dataset automatically created during the evaluation run of model [Kquant03/Buttercup-4x7B-bf16](https://huggingface.co/Kquant03/Buttercup-4x7B-bf16) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_Kquant03__Buttercup-4x7B-bf16\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-22T13:49:42.612013](https://huggingface.co/datasets/open-llm-leaderboard/details_Kquant03__Buttercup-4x7B-bf16/blob/main/results_2024-01-22T13-49-42.612013.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6511243311108075,\n \"acc_stderr\": 0.03209436877391809,\n \"acc_norm\": 0.6509529561946836,\n \"acc_norm_stderr\": 0.03275570222819912,\n \"mc1\": 0.5373317013463892,\n \"mc1_stderr\": 0.017454645150970588,\n \"mc2\": 0.672045395418692,\n \"mc2_stderr\": 0.01521737838329955\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.6877133105802048,\n \"acc_stderr\": 0.013542598541688065,\n \"acc_norm\": 0.7209897610921502,\n \"acc_norm_stderr\": 0.01310678488360133\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.7055367456681936,\n \"acc_stderr\": 0.004548695749620959,\n \"acc_norm\": 0.877414857598088,\n \"acc_norm_stderr\": 0.00327290143493977\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.35,\n \"acc_stderr\": 0.0479372485441102,\n \"acc_norm\": 0.35,\n \"acc_norm_stderr\": 0.0479372485441102\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6592592592592592,\n \"acc_stderr\": 0.040943762699967926,\n \"acc_norm\": 0.6592592592592592,\n \"acc_norm_stderr\": 0.040943762699967926\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.6907894736842105,\n \"acc_stderr\": 0.037610708698674805,\n \"acc_norm\": 0.6907894736842105,\n \"acc_norm_stderr\": 0.037610708698674805\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.62,\n \"acc_stderr\": 0.048783173121456316,\n \"acc_norm\": 0.62,\n \"acc_norm_stderr\": 0.048783173121456316\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.720754716981132,\n \"acc_stderr\": 0.027611163402399715,\n \"acc_norm\": 0.720754716981132,\n \"acc_norm_stderr\": 0.027611163402399715\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7638888888888888,\n \"acc_stderr\": 0.03551446610810826,\n \"acc_norm\": 0.7638888888888888,\n \"acc_norm_stderr\": 0.03551446610810826\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.48,\n \"acc_stderr\": 0.050211673156867795,\n \"acc_norm\": 0.48,\n \"acc_norm_stderr\": 0.050211673156867795\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.56,\n \"acc_stderr\": 0.049888765156985884,\n \"acc_norm\": 0.56,\n \"acc_norm_stderr\": 0.049888765156985884\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.3,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.3,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6820809248554913,\n \"acc_stderr\": 0.0355068398916558,\n \"acc_norm\": 0.6820809248554913,\n \"acc_norm_stderr\": 0.0355068398916558\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.4019607843137255,\n \"acc_stderr\": 0.04878608714466996,\n \"acc_norm\": 0.4019607843137255,\n \"acc_norm_stderr\": 0.04878608714466996\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.78,\n \"acc_stderr\": 0.04163331998932263,\n \"acc_norm\": 0.78,\n \"acc_norm_stderr\": 0.04163331998932263\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5659574468085107,\n \"acc_stderr\": 0.03240038086792747,\n \"acc_norm\": 0.5659574468085107,\n \"acc_norm_stderr\": 0.03240038086792747\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.5087719298245614,\n \"acc_stderr\": 0.04702880432049615,\n \"acc_norm\": 0.5087719298245614,\n \"acc_norm_stderr\": 0.04702880432049615\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5655172413793104,\n \"acc_stderr\": 0.04130740879555497,\n \"acc_norm\": 0.5655172413793104,\n \"acc_norm_stderr\": 0.04130740879555497\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.40476190476190477,\n \"acc_stderr\": 0.025279850397404904,\n \"acc_norm\": 0.40476190476190477,\n \"acc_norm_stderr\": 0.025279850397404904\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.46825396825396826,\n \"acc_stderr\": 0.04463112720677172,\n \"acc_norm\": 0.46825396825396826,\n \"acc_norm_stderr\": 0.04463112720677172\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.33,\n \"acc_stderr\": 0.04725815626252604,\n \"acc_norm\": 0.33,\n \"acc_norm_stderr\": 0.04725815626252604\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7903225806451613,\n \"acc_stderr\": 0.023157879349083525,\n \"acc_norm\": 0.7903225806451613,\n \"acc_norm_stderr\": 0.023157879349083525\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.4827586206896552,\n \"acc_stderr\": 0.035158955511656986,\n \"acc_norm\": 0.4827586206896552,\n \"acc_norm_stderr\": 0.035158955511656986\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.68,\n \"acc_stderr\": 0.04688261722621505,\n \"acc_norm\": 0.68,\n \"acc_norm_stderr\": 0.04688261722621505\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7757575757575758,\n \"acc_stderr\": 0.03256866661681102,\n \"acc_norm\": 0.7757575757575758,\n \"acc_norm_stderr\": 0.03256866661681102\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7878787878787878,\n \"acc_stderr\": 0.029126522834586818,\n \"acc_norm\": 0.7878787878787878,\n \"acc_norm_stderr\": 0.029126522834586818\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8963730569948186,\n \"acc_stderr\": 0.02199531196364424,\n \"acc_norm\": 0.8963730569948186,\n \"acc_norm_stderr\": 0.02199531196364424\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6641025641025641,\n \"acc_stderr\": 0.023946724741563973,\n \"acc_norm\": 0.6641025641025641,\n \"acc_norm_stderr\": 0.023946724741563973\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.32222222222222224,\n \"acc_stderr\": 0.028493465091028593,\n \"acc_norm\": 0.32222222222222224,\n \"acc_norm_stderr\": 0.028493465091028593\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6512605042016807,\n \"acc_stderr\": 0.03095663632856654,\n \"acc_norm\": 0.6512605042016807,\n \"acc_norm_stderr\": 0.03095663632856654\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.3443708609271523,\n \"acc_stderr\": 0.038796870240733264,\n \"acc_norm\": 0.3443708609271523,\n \"acc_norm_stderr\": 0.038796870240733264\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8495412844036697,\n \"acc_stderr\": 0.015328563932669237,\n \"acc_norm\": 0.8495412844036697,\n \"acc_norm_stderr\": 0.015328563932669237\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.5185185185185185,\n \"acc_stderr\": 0.034076320938540516,\n \"acc_norm\": 0.5185185185185185,\n \"acc_norm_stderr\": 0.034076320938540516\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.8480392156862745,\n \"acc_stderr\": 0.025195658428931796,\n \"acc_norm\": 0.8480392156862745,\n \"acc_norm_stderr\": 0.025195658428931796\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7932489451476793,\n \"acc_stderr\": 0.0263616516683891,\n \"acc_norm\": 0.7932489451476793,\n \"acc_norm_stderr\": 0.0263616516683891\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6995515695067265,\n \"acc_stderr\": 0.03076935200822914,\n \"acc_norm\": 0.6995515695067265,\n \"acc_norm_stderr\": 0.03076935200822914\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7786259541984732,\n \"acc_stderr\": 0.03641297081313729,\n \"acc_norm\": 0.7786259541984732,\n \"acc_norm_stderr\": 0.03641297081313729\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.7933884297520661,\n \"acc_stderr\": 0.03695980128098824,\n \"acc_norm\": 0.7933884297520661,\n \"acc_norm_stderr\": 0.03695980128098824\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7685185185185185,\n \"acc_stderr\": 0.04077494709252627,\n \"acc_norm\": 0.7685185185185185,\n \"acc_norm_stderr\": 0.04077494709252627\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7791411042944786,\n \"acc_stderr\": 0.03259177392742178,\n \"acc_norm\": 0.7791411042944786,\n \"acc_norm_stderr\": 0.03259177392742178\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.4732142857142857,\n \"acc_stderr\": 0.047389751192741546,\n \"acc_norm\": 0.4732142857142857,\n \"acc_norm_stderr\": 0.047389751192741546\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7572815533980582,\n \"acc_stderr\": 0.04245022486384495,\n \"acc_norm\": 0.7572815533980582,\n \"acc_norm_stderr\": 0.04245022486384495\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8760683760683761,\n \"acc_stderr\": 0.021586494001281372,\n \"acc_norm\": 0.8760683760683761,\n \"acc_norm_stderr\": 0.021586494001281372\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.66,\n \"acc_stderr\": 0.04760952285695237,\n \"acc_norm\": 0.66,\n \"acc_norm_stderr\": 0.04760952285695237\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8301404853128991,\n \"acc_stderr\": 0.013428186370608311,\n \"acc_norm\": 0.8301404853128991,\n \"acc_norm_stderr\": 0.013428186370608311\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7283236994219653,\n \"acc_stderr\": 0.02394851290546836,\n \"acc_norm\": 0.7283236994219653,\n \"acc_norm_stderr\": 0.02394851290546836\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.44581005586592176,\n \"acc_stderr\": 0.01662399851333311,\n \"acc_norm\": 0.44581005586592176,\n \"acc_norm_stderr\": 0.01662399851333311\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7287581699346405,\n \"acc_stderr\": 0.02545775669666788,\n \"acc_norm\": 0.7287581699346405,\n \"acc_norm_stderr\": 0.02545775669666788\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.7138263665594855,\n \"acc_stderr\": 0.02567025924218893,\n \"acc_norm\": 0.7138263665594855,\n \"acc_norm_stderr\": 0.02567025924218893\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.75,\n \"acc_stderr\": 0.02409347123262133,\n \"acc_norm\": 0.75,\n \"acc_norm_stderr\": 0.02409347123262133\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.475177304964539,\n \"acc_stderr\": 0.02979071924382972,\n \"acc_norm\": 0.475177304964539,\n \"acc_norm_stderr\": 0.02979071924382972\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.47327249022164275,\n \"acc_stderr\": 0.012751977967676008,\n \"acc_norm\": 0.47327249022164275,\n \"acc_norm_stderr\": 0.012751977967676008\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6617647058823529,\n \"acc_stderr\": 0.02873932851398357,\n \"acc_norm\": 0.6617647058823529,\n \"acc_norm_stderr\": 0.02873932851398357\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6617647058823529,\n \"acc_stderr\": 0.019139943748487036,\n \"acc_norm\": 0.6617647058823529,\n \"acc_norm_stderr\": 0.019139943748487036\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6545454545454545,\n \"acc_stderr\": 0.04554619617541054,\n \"acc_norm\": 0.6545454545454545,\n \"acc_norm_stderr\": 0.04554619617541054\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7428571428571429,\n \"acc_stderr\": 0.02797982353874455,\n \"acc_norm\": 0.7428571428571429,\n \"acc_norm_stderr\": 0.02797982353874455\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8407960199004975,\n \"acc_stderr\": 0.025870646766169136,\n \"acc_norm\": 0.8407960199004975,\n \"acc_norm_stderr\": 0.025870646766169136\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.88,\n \"acc_stderr\": 0.03265986323710906,\n \"acc_norm\": 0.88,\n \"acc_norm_stderr\": 0.03265986323710906\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5481927710843374,\n \"acc_stderr\": 0.03874371556587953,\n \"acc_norm\": 0.5481927710843374,\n \"acc_norm_stderr\": 0.03874371556587953\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8304093567251462,\n \"acc_stderr\": 0.02878210810540171,\n \"acc_norm\": 0.8304093567251462,\n \"acc_norm_stderr\": 0.02878210810540171\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.5373317013463892,\n \"mc1_stderr\": 0.017454645150970588,\n \"mc2\": 0.672045395418692,\n \"mc2_stderr\": 0.01521737838329955\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.819258089976322,\n \"acc_stderr\": 0.010814911009613975\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.6982562547384382,\n \"acc_stderr\": 0.012643544762873358\n }\n}\n```", "repo_url": "https://huggingface.co/Kquant03/Buttercup-4x7B-bf16", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|arc:challenge|25_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|gsm8k|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hellaswag|10_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T13-49-42.612013.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["**/details_harness|winogrande|5_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-22T13-49-42.612013.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_22T13_49_42.612013", "path": ["results_2024-01-22T13-49-42.612013.parquet"]}, {"split": "latest", "path": ["results_2024-01-22T13-49-42.612013.parquet"]}]}]}
2024-01-22T13:52:24+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of Kquant03/Buttercup-4x7B-bf16 Dataset automatically created during the evaluation run of model Kquant03/Buttercup-4x7B-bf16 on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-22T13:49:42.612013(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of Kquant03/Buttercup-4x7B-bf16\n\n\n\nDataset automatically created during the evaluation run of model Kquant03/Buttercup-4x7B-bf16 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T13:49:42.612013(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of Kquant03/Buttercup-4x7B-bf16\n\n\n\nDataset automatically created during the evaluation run of model Kquant03/Buttercup-4x7B-bf16 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T13:49:42.612013(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
47445d12e55a3f38abe07f577a5d2eb247fb52a6
- **Curated by:** [Heigke](https://github.com/Heigke) - **Funded by:** [r3tex](https://github.com/r3tex) - **Shared by:** [Project Nephilim](https://github.com/r3tex/nephilim) - **Language(s) (NLP):** English - **License:** CC # Dataset Card for stanford-enigma-philosophy-chat dataset Roughly 27k questions and answers inspired by articles from [Stanford Encyclopedia of Philosophy](https://plato.stanford.edu/). The questions range all the way from Zombies to the concept of Abduction, from Metaphysics to Neuroethics and thus cover some of the essence of mathematics, logic and philosophy. ## Dataset Details The dataset is simple and is ready for use by eg. [Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) in [LLama-Factory](https://github.com/hiyouga/LLaMA-Factory) with its three entries: input, instruction and output. ### Dataset Description/How to use #### Format The dataset is a json file with the following format: ``` [ { "instruction": "You are an expert in philosophy.", "input": "How would you describe William Whewell's contribution to philosophy and science in the 19th century Britain?", "output": "William Whewell was a polymath who wrote extensively on various subjects including mechanics, mineralogy, geology, astronomy, political economy, theology, educational reform, internati> }, { "instruction": "You are an expert in philosophy.", "input": "What were the key influences and associations in William Whewell's life?", "output": "William Whewell was greatly influenced by his association with three of his fellow students at Cambridge: Charles Babbage, John Herschel, and Richard Jones." } ] ``` #### How to use with transformers dataset ``` from datasets import load_dataset dataset = load_dataset("Heigke/stanford-enigma-philosophy-chat") ``` #### How to use with LLama-Factory Alter the dataset_info.json at LLaMa-Factory/data with an extra entry like below: ``` { "stanford-enigma-philosophy-chat": { "hf_hub_url": "Heigke/stanford-enigma-philosophy-chat" }, "philosophy": { "file_name": "cleaned_philosophy_dataset.json", "file_sha1": "3a771f4d524d513be37d8d31166274d3a18a610d" }, "alpaca_en": { "file_name": "alpaca_data_en_52k.json", ... ``` Then use the flag ``` --dataset stanford-enigma-philosophy-chat``` Like this for example if you want to qlora train mixtral with flash attention: ``` CUDA_VISIBLE_DEVICES=2 python3 src/train_bash.py --stage sft --do_train --model_name_or_path mistralai/Mixtral-8x7B-Instruct-v0.1 --dataset stanford-enigma-philosophy-chat --template mistral --finetuning_type lora --lora_target q_proj,v_proj --output_dir path_to_sft_checkpoint_hf --overwrite_cache --per_device_train_batch_size 4 --gradient_accumulation_steps 4 --lr_scheduler_type cosine --logging_steps 10 --save_steps 1000 --learning_rate 5e-5 --num_train_epochs 3.0 --plot_loss --flash_attn --quantization_bit 4 --cache_dir /mnt/hdd1 ``` ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** - - **Paper [optional]:** Coming - **Demo [optional]:** Coming ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
Heigke/stanford-enigma-philosophy-chat
[ "license:cc", "region:us" ]
2024-01-22T13:57:41+00:00
{"license": "cc"}
2024-01-22T16:00:07+00:00
[]
[]
TAGS #license-cc #region-us
- Curated by: Heigke - Funded by: r3tex - Shared by: Project Nephilim - Language(s) (NLP): English - License: CC # Dataset Card for stanford-enigma-philosophy-chat dataset Roughly 27k questions and answers inspired by articles from Stanford Encyclopedia of Philosophy. The questions range all the way from Zombies to the concept of Abduction, from Metaphysics to Neuroethics and thus cover some of the essence of mathematics, logic and philosophy. ## Dataset Details The dataset is simple and is ready for use by eg. Mixtral 8x7B in LLama-Factory with its three entries: input, instruction and output. ### Dataset Description/How to use #### Format The dataset is a json file with the following format: #### How to use with transformers dataset #### How to use with LLama-Factory Alter the dataset_info.json at LLaMa-Factory/data with an extra entry like below: Then use the flag Like this for example if you want to qlora train mixtral with flash attention: ### Dataset Sources [optional] - Repository: - - Paper [optional]: Coming - Demo [optional]: Coming ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for stanford-enigma-philosophy-chat dataset\n\nRoughly 27k questions and answers inspired by articles from Stanford Encyclopedia of Philosophy.\nThe questions range all the way from Zombies to the concept of Abduction, from Metaphysics to Neuroethics and thus cover some of the essence of mathematics, logic and philosophy.", "## Dataset Details\nThe dataset is simple and is ready for use by eg. Mixtral 8x7B in LLama-Factory with its three entries: input, instruction and output.", "### Dataset Description/How to use", "#### Format\n\nThe dataset is a json file with the following format:", "#### How to use with transformers dataset", "#### How to use with LLama-Factory\nAlter the dataset_info.json at LLaMa-Factory/data with an extra entry like below:\n\nThen use the flag \nLike this for example if you want to qlora train mixtral with flash attention:", "### Dataset Sources [optional]\n\n\n\n- Repository: -\n- Paper [optional]: Coming\n- Demo [optional]: Coming", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#license-cc #region-us \n", "# Dataset Card for stanford-enigma-philosophy-chat dataset\n\nRoughly 27k questions and answers inspired by articles from Stanford Encyclopedia of Philosophy.\nThe questions range all the way from Zombies to the concept of Abduction, from Metaphysics to Neuroethics and thus cover some of the essence of mathematics, logic and philosophy.", "## Dataset Details\nThe dataset is simple and is ready for use by eg. Mixtral 8x7B in LLama-Factory with its three entries: input, instruction and output.", "### Dataset Description/How to use", "#### Format\n\nThe dataset is a json file with the following format:", "#### How to use with transformers dataset", "#### How to use with LLama-Factory\nAlter the dataset_info.json at LLaMa-Factory/data with an extra entry like below:\n\nThen use the flag \nLike this for example if you want to qlora train mixtral with flash attention:", "### Dataset Sources [optional]\n\n\n\n- Repository: -\n- Paper [optional]: Coming\n- Demo [optional]: Coming", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
b7f480fbd69a199315f5718b68171a7880bfc0a2
# Dataset Card for Evaluation run of Eurdem/megatron_1.1_MoE_2x7B <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [Eurdem/megatron_1.1_MoE_2x7B](https://huggingface.co/Eurdem/megatron_1.1_MoE_2x7B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_Eurdem__megatron_1.1_MoE_2x7B", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-22T14:00:29.163053](https://huggingface.co/datasets/open-llm-leaderboard/details_Eurdem__megatron_1.1_MoE_2x7B/blob/main/results_2024-01-22T14-00-29.163053.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.6536075619016702, "acc_stderr": 0.031835849880102456, "acc_norm": 0.6535987312796989, "acc_norm_stderr": 0.0324956769564807, "mc1": 0.3635250917992656, "mc1_stderr": 0.016838862883965838, "mc2": 0.5157817244014755, "mc2_stderr": 0.015241425184790871 }, "harness|arc:challenge|25": { "acc": 0.6245733788395904, "acc_stderr": 0.014150631435111726, "acc_norm": 0.6552901023890785, "acc_norm_stderr": 0.01388881628678211 }, "harness|hellaswag|10": { "acc": 0.6533559051981677, "acc_stderr": 0.004749286071559565, "acc_norm": 0.8451503684524995, "acc_norm_stderr": 0.0036102194130614605 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.29, "acc_stderr": 0.045604802157206845, "acc_norm": 0.29, "acc_norm_stderr": 0.045604802157206845 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6370370370370371, "acc_stderr": 0.04153948404742398, "acc_norm": 0.6370370370370371, "acc_norm_stderr": 0.04153948404742398 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.6973684210526315, "acc_stderr": 0.03738520676119669, "acc_norm": 0.6973684210526315, "acc_norm_stderr": 0.03738520676119669 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.65, "acc_stderr": 0.0479372485441102, "acc_norm": 0.65, "acc_norm_stderr": 0.0479372485441102 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.7018867924528301, "acc_stderr": 0.028152837942493878, "acc_norm": 0.7018867924528301, "acc_norm_stderr": 0.028152837942493878 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.7569444444444444, "acc_stderr": 0.03586879280080341, "acc_norm": 0.7569444444444444, "acc_norm_stderr": 0.03586879280080341 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.53, "acc_stderr": 0.05016135580465919, "acc_norm": 0.53, "acc_norm_stderr": 0.05016135580465919 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.59, "acc_stderr": 0.04943110704237102, "acc_norm": 0.59, "acc_norm_stderr": 0.04943110704237102 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.32, "acc_stderr": 0.04688261722621504, "acc_norm": 0.32, "acc_norm_stderr": 0.04688261722621504 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.7052023121387283, "acc_stderr": 0.03476599607516478, "acc_norm": 0.7052023121387283, "acc_norm_stderr": 0.03476599607516478 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.45098039215686275, "acc_stderr": 0.049512182523962625, "acc_norm": 0.45098039215686275, "acc_norm_stderr": 0.049512182523962625 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.77, "acc_stderr": 0.04229525846816505, "acc_norm": 0.77, "acc_norm_stderr": 0.04229525846816505 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5702127659574469, "acc_stderr": 0.03236214467715564, "acc_norm": 0.5702127659574469, "acc_norm_stderr": 0.03236214467715564 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.4649122807017544, "acc_stderr": 0.046920083813689104, "acc_norm": 0.4649122807017544, "acc_norm_stderr": 0.046920083813689104 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.6137931034482759, "acc_stderr": 0.04057324734419035, "acc_norm": 0.6137931034482759, "acc_norm_stderr": 0.04057324734419035 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.41534391534391535, "acc_stderr": 0.025379524910778408, "acc_norm": 0.41534391534391535, "acc_norm_stderr": 0.025379524910778408 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.5238095238095238, "acc_stderr": 0.04467062628403273, "acc_norm": 0.5238095238095238, "acc_norm_stderr": 0.04467062628403273 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.29, "acc_stderr": 0.045604802157206845, "acc_norm": 0.29, "acc_norm_stderr": 0.045604802157206845 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.7903225806451613, "acc_stderr": 0.023157879349083525, "acc_norm": 0.7903225806451613, "acc_norm_stderr": 0.023157879349083525 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.4827586206896552, "acc_stderr": 0.035158955511657, "acc_norm": 0.4827586206896552, "acc_norm_stderr": 0.035158955511657 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.67, "acc_stderr": 0.04725815626252609, "acc_norm": 0.67, "acc_norm_stderr": 0.04725815626252609 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7757575757575758, "acc_stderr": 0.032568666616811015, "acc_norm": 0.7757575757575758, "acc_norm_stderr": 0.032568666616811015 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.7828282828282829, "acc_stderr": 0.029376616484945633, "acc_norm": 0.7828282828282829, "acc_norm_stderr": 0.029376616484945633 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.8860103626943006, "acc_stderr": 0.022935144053919436, "acc_norm": 0.8860103626943006, "acc_norm_stderr": 0.022935144053919436 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.6615384615384615, "acc_stderr": 0.023991500500313036, "acc_norm": 0.6615384615384615, "acc_norm_stderr": 0.023991500500313036 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.3296296296296296, "acc_stderr": 0.028661201116524582, "acc_norm": 0.3296296296296296, "acc_norm_stderr": 0.028661201116524582 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6596638655462185, "acc_stderr": 0.030778057422931673, "acc_norm": 0.6596638655462185, "acc_norm_stderr": 0.030778057422931673 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.3576158940397351, "acc_stderr": 0.03913453431177258, "acc_norm": 0.3576158940397351, "acc_norm_stderr": 0.03913453431177258 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8385321100917431, "acc_stderr": 0.015776239256163248, "acc_norm": 0.8385321100917431, "acc_norm_stderr": 0.015776239256163248 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.48148148148148145, "acc_stderr": 0.03407632093854053, "acc_norm": 0.48148148148148145, "acc_norm_stderr": 0.03407632093854053 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.8235294117647058, "acc_stderr": 0.026756401538078962, "acc_norm": 0.8235294117647058, "acc_norm_stderr": 0.026756401538078962 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.8185654008438819, "acc_stderr": 0.025085961144579647, "acc_norm": 0.8185654008438819, "acc_norm_stderr": 0.025085961144579647 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6860986547085202, "acc_stderr": 0.031146796482972465, "acc_norm": 0.6860986547085202, "acc_norm_stderr": 0.031146796482972465 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.7709923664122137, "acc_stderr": 0.036853466317118506, "acc_norm": 0.7709923664122137, "acc_norm_stderr": 0.036853466317118506 }, "harness|hendrycksTest-international_law|5": { "acc": 0.8429752066115702, "acc_stderr": 0.03321244842547129, "acc_norm": 0.8429752066115702, "acc_norm_stderr": 0.03321244842547129 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.7592592592592593, "acc_stderr": 0.04133119440243839, "acc_norm": 0.7592592592592593, "acc_norm_stderr": 0.04133119440243839 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7668711656441718, "acc_stderr": 0.0332201579577674, "acc_norm": 0.7668711656441718, "acc_norm_stderr": 0.0332201579577674 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.4642857142857143, "acc_stderr": 0.04733667890053756, "acc_norm": 0.4642857142857143, "acc_norm_stderr": 0.04733667890053756 }, "harness|hendrycksTest-management|5": { "acc": 0.8446601941747572, "acc_stderr": 0.03586594738573974, "acc_norm": 0.8446601941747572, "acc_norm_stderr": 0.03586594738573974 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8846153846153846, "acc_stderr": 0.020930193185179326, "acc_norm": 0.8846153846153846, "acc_norm_stderr": 0.020930193185179326 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.75, "acc_stderr": 0.04351941398892446, "acc_norm": 0.75, "acc_norm_stderr": 0.04351941398892446 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.8301404853128991, "acc_stderr": 0.013428186370608304, "acc_norm": 0.8301404853128991, "acc_norm_stderr": 0.013428186370608304 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.7456647398843931, "acc_stderr": 0.023445826276545543, "acc_norm": 0.7456647398843931, "acc_norm_stderr": 0.023445826276545543 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.3396648044692737, "acc_stderr": 0.015839400406212487, "acc_norm": 0.3396648044692737, "acc_norm_stderr": 0.015839400406212487 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.7483660130718954, "acc_stderr": 0.0248480182638752, "acc_norm": 0.7483660130718954, "acc_norm_stderr": 0.0248480182638752 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.7266881028938906, "acc_stderr": 0.025311765975426122, "acc_norm": 0.7266881028938906, "acc_norm_stderr": 0.025311765975426122 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.7283950617283951, "acc_stderr": 0.02474862449053737, "acc_norm": 0.7283950617283951, "acc_norm_stderr": 0.02474862449053737 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.46808510638297873, "acc_stderr": 0.029766675075873866, "acc_norm": 0.46808510638297873, "acc_norm_stderr": 0.029766675075873866 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.4791395045632334, "acc_stderr": 0.01275911706651801, "acc_norm": 0.4791395045632334, "acc_norm_stderr": 0.01275911706651801 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.7095588235294118, "acc_stderr": 0.027576468622740533, "acc_norm": 0.7095588235294118, "acc_norm_stderr": 0.027576468622740533 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6633986928104575, "acc_stderr": 0.019117213911495148, "acc_norm": 0.6633986928104575, "acc_norm_stderr": 0.019117213911495148 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.7, "acc_stderr": 0.04389311454644286, "acc_norm": 0.7, "acc_norm_stderr": 0.04389311454644286 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7551020408163265, "acc_stderr": 0.027529637440174934, "acc_norm": 0.7551020408163265, "acc_norm_stderr": 0.027529637440174934 }, "harness|hendrycksTest-sociology|5": { "acc": 0.835820895522388, "acc_stderr": 0.026193923544454132, "acc_norm": 0.835820895522388, "acc_norm_stderr": 0.026193923544454132 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.86, "acc_stderr": 0.03487350880197768, "acc_norm": 0.86, "acc_norm_stderr": 0.03487350880197768 }, "harness|hendrycksTest-virology|5": { "acc": 0.5301204819277109, "acc_stderr": 0.03885425420866767, "acc_norm": 0.5301204819277109, "acc_norm_stderr": 0.03885425420866767 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8362573099415205, "acc_stderr": 0.028380919596145866, "acc_norm": 0.8362573099415205, "acc_norm_stderr": 0.028380919596145866 }, "harness|truthfulqa:mc|0": { "mc1": 0.3635250917992656, "mc1_stderr": 0.016838862883965838, "mc2": 0.5157817244014755, "mc2_stderr": 0.015241425184790871 }, "harness|winogrande|5": { "acc": 0.8153117600631413, "acc_stderr": 0.010905978112156873 }, "harness|gsm8k|5": { "acc": 0.7149355572403336, "acc_stderr": 0.01243504233490401 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_Eurdem__megatron_1.1_MoE_2x7B
[ "region:us" ]
2024-01-22T14:02:42+00:00
{"pretty_name": "Evaluation run of Eurdem/megatron_1.1_MoE_2x7B", "dataset_summary": "Dataset automatically created during the evaluation run of model [Eurdem/megatron_1.1_MoE_2x7B](https://huggingface.co/Eurdem/megatron_1.1_MoE_2x7B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_Eurdem__megatron_1.1_MoE_2x7B\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-22T14:00:29.163053](https://huggingface.co/datasets/open-llm-leaderboard/details_Eurdem__megatron_1.1_MoE_2x7B/blob/main/results_2024-01-22T14-00-29.163053.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6536075619016702,\n \"acc_stderr\": 0.031835849880102456,\n \"acc_norm\": 0.6535987312796989,\n \"acc_norm_stderr\": 0.0324956769564807,\n \"mc1\": 0.3635250917992656,\n \"mc1_stderr\": 0.016838862883965838,\n \"mc2\": 0.5157817244014755,\n \"mc2_stderr\": 0.015241425184790871\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.6245733788395904,\n \"acc_stderr\": 0.014150631435111726,\n \"acc_norm\": 0.6552901023890785,\n \"acc_norm_stderr\": 0.01388881628678211\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6533559051981677,\n \"acc_stderr\": 0.004749286071559565,\n \"acc_norm\": 0.8451503684524995,\n \"acc_norm_stderr\": 0.0036102194130614605\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.29,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\": 0.29,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6370370370370371,\n \"acc_stderr\": 0.04153948404742398,\n \"acc_norm\": 0.6370370370370371,\n \"acc_norm_stderr\": 0.04153948404742398\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.6973684210526315,\n \"acc_stderr\": 0.03738520676119669,\n \"acc_norm\": 0.6973684210526315,\n \"acc_norm_stderr\": 0.03738520676119669\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.65,\n \"acc_stderr\": 0.0479372485441102,\n \"acc_norm\": 0.65,\n \"acc_norm_stderr\": 0.0479372485441102\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.7018867924528301,\n \"acc_stderr\": 0.028152837942493878,\n \"acc_norm\": 0.7018867924528301,\n \"acc_norm_stderr\": 0.028152837942493878\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7569444444444444,\n \"acc_stderr\": 0.03586879280080341,\n \"acc_norm\": 0.7569444444444444,\n \"acc_norm_stderr\": 0.03586879280080341\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.53,\n \"acc_stderr\": 0.05016135580465919,\n \"acc_norm\": 0.53,\n \"acc_norm_stderr\": 0.05016135580465919\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.59,\n \"acc_stderr\": 0.04943110704237102,\n \"acc_norm\": 0.59,\n \"acc_norm_stderr\": 0.04943110704237102\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.32,\n \"acc_stderr\": 0.04688261722621504,\n \"acc_norm\": 0.32,\n \"acc_norm_stderr\": 0.04688261722621504\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.7052023121387283,\n \"acc_stderr\": 0.03476599607516478,\n \"acc_norm\": 0.7052023121387283,\n \"acc_norm_stderr\": 0.03476599607516478\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.45098039215686275,\n \"acc_stderr\": 0.049512182523962625,\n \"acc_norm\": 0.45098039215686275,\n \"acc_norm_stderr\": 0.049512182523962625\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.77,\n \"acc_stderr\": 0.04229525846816505,\n \"acc_norm\": 0.77,\n \"acc_norm_stderr\": 0.04229525846816505\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5702127659574469,\n \"acc_stderr\": 0.03236214467715564,\n \"acc_norm\": 0.5702127659574469,\n \"acc_norm_stderr\": 0.03236214467715564\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.4649122807017544,\n \"acc_stderr\": 0.046920083813689104,\n \"acc_norm\": 0.4649122807017544,\n \"acc_norm_stderr\": 0.046920083813689104\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.6137931034482759,\n \"acc_stderr\": 0.04057324734419035,\n \"acc_norm\": 0.6137931034482759,\n \"acc_norm_stderr\": 0.04057324734419035\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.41534391534391535,\n \"acc_stderr\": 0.025379524910778408,\n \"acc_norm\": 0.41534391534391535,\n \"acc_norm_stderr\": 0.025379524910778408\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.5238095238095238,\n \"acc_stderr\": 0.04467062628403273,\n \"acc_norm\": 0.5238095238095238,\n \"acc_norm_stderr\": 0.04467062628403273\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.29,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\": 0.29,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7903225806451613,\n \"acc_stderr\": 0.023157879349083525,\n \"acc_norm\": 0.7903225806451613,\n \"acc_norm_stderr\": 0.023157879349083525\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.4827586206896552,\n \"acc_stderr\": 0.035158955511657,\n \"acc_norm\": 0.4827586206896552,\n \"acc_norm_stderr\": 0.035158955511657\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.67,\n \"acc_stderr\": 0.04725815626252609,\n \"acc_norm\": 0.67,\n \"acc_norm_stderr\": 0.04725815626252609\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7757575757575758,\n \"acc_stderr\": 0.032568666616811015,\n \"acc_norm\": 0.7757575757575758,\n \"acc_norm_stderr\": 0.032568666616811015\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7828282828282829,\n \"acc_stderr\": 0.029376616484945633,\n \"acc_norm\": 0.7828282828282829,\n \"acc_norm_stderr\": 0.029376616484945633\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8860103626943006,\n \"acc_stderr\": 0.022935144053919436,\n \"acc_norm\": 0.8860103626943006,\n \"acc_norm_stderr\": 0.022935144053919436\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6615384615384615,\n \"acc_stderr\": 0.023991500500313036,\n \"acc_norm\": 0.6615384615384615,\n \"acc_norm_stderr\": 0.023991500500313036\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.3296296296296296,\n \"acc_stderr\": 0.028661201116524582,\n \"acc_norm\": 0.3296296296296296,\n \"acc_norm_stderr\": 0.028661201116524582\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6596638655462185,\n \"acc_stderr\": 0.030778057422931673,\n \"acc_norm\": 0.6596638655462185,\n \"acc_norm_stderr\": 0.030778057422931673\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.3576158940397351,\n \"acc_stderr\": 0.03913453431177258,\n \"acc_norm\": 0.3576158940397351,\n \"acc_norm_stderr\": 0.03913453431177258\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8385321100917431,\n \"acc_stderr\": 0.015776239256163248,\n \"acc_norm\": 0.8385321100917431,\n \"acc_norm_stderr\": 0.015776239256163248\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.48148148148148145,\n \"acc_stderr\": 0.03407632093854053,\n \"acc_norm\": 0.48148148148148145,\n \"acc_norm_stderr\": 0.03407632093854053\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.8235294117647058,\n \"acc_stderr\": 0.026756401538078962,\n \"acc_norm\": 0.8235294117647058,\n \"acc_norm_stderr\": 0.026756401538078962\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.8185654008438819,\n \"acc_stderr\": 0.025085961144579647,\n \"acc_norm\": 0.8185654008438819,\n \"acc_norm_stderr\": 0.025085961144579647\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6860986547085202,\n \"acc_stderr\": 0.031146796482972465,\n \"acc_norm\": 0.6860986547085202,\n \"acc_norm_stderr\": 0.031146796482972465\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7709923664122137,\n \"acc_stderr\": 0.036853466317118506,\n \"acc_norm\": 0.7709923664122137,\n \"acc_norm_stderr\": 0.036853466317118506\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8429752066115702,\n \"acc_stderr\": 0.03321244842547129,\n \"acc_norm\": 0.8429752066115702,\n \"acc_norm_stderr\": 0.03321244842547129\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7592592592592593,\n \"acc_stderr\": 0.04133119440243839,\n \"acc_norm\": 0.7592592592592593,\n \"acc_norm_stderr\": 0.04133119440243839\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7668711656441718,\n \"acc_stderr\": 0.0332201579577674,\n \"acc_norm\": 0.7668711656441718,\n \"acc_norm_stderr\": 0.0332201579577674\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.4642857142857143,\n \"acc_stderr\": 0.04733667890053756,\n \"acc_norm\": 0.4642857142857143,\n \"acc_norm_stderr\": 0.04733667890053756\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.8446601941747572,\n \"acc_stderr\": 0.03586594738573974,\n \"acc_norm\": 0.8446601941747572,\n \"acc_norm_stderr\": 0.03586594738573974\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8846153846153846,\n \"acc_stderr\": 0.020930193185179326,\n \"acc_norm\": 0.8846153846153846,\n \"acc_norm_stderr\": 0.020930193185179326\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.75,\n \"acc_stderr\": 0.04351941398892446,\n \"acc_norm\": 0.75,\n \"acc_norm_stderr\": 0.04351941398892446\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8301404853128991,\n \"acc_stderr\": 0.013428186370608304,\n \"acc_norm\": 0.8301404853128991,\n \"acc_norm_stderr\": 0.013428186370608304\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7456647398843931,\n \"acc_stderr\": 0.023445826276545543,\n \"acc_norm\": 0.7456647398843931,\n \"acc_norm_stderr\": 0.023445826276545543\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.3396648044692737,\n \"acc_stderr\": 0.015839400406212487,\n \"acc_norm\": 0.3396648044692737,\n \"acc_norm_stderr\": 0.015839400406212487\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7483660130718954,\n \"acc_stderr\": 0.0248480182638752,\n \"acc_norm\": 0.7483660130718954,\n \"acc_norm_stderr\": 0.0248480182638752\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.7266881028938906,\n \"acc_stderr\": 0.025311765975426122,\n \"acc_norm\": 0.7266881028938906,\n \"acc_norm_stderr\": 0.025311765975426122\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.7283950617283951,\n \"acc_stderr\": 0.02474862449053737,\n \"acc_norm\": 0.7283950617283951,\n \"acc_norm_stderr\": 0.02474862449053737\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.46808510638297873,\n \"acc_stderr\": 0.029766675075873866,\n \"acc_norm\": 0.46808510638297873,\n \"acc_norm_stderr\": 0.029766675075873866\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.4791395045632334,\n \"acc_stderr\": 0.01275911706651801,\n \"acc_norm\": 0.4791395045632334,\n \"acc_norm_stderr\": 0.01275911706651801\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.7095588235294118,\n \"acc_stderr\": 0.027576468622740533,\n \"acc_norm\": 0.7095588235294118,\n \"acc_norm_stderr\": 0.027576468622740533\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6633986928104575,\n \"acc_stderr\": 0.019117213911495148,\n \"acc_norm\": 0.6633986928104575,\n \"acc_norm_stderr\": 0.019117213911495148\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.7,\n \"acc_stderr\": 0.04389311454644286,\n \"acc_norm\": 0.7,\n \"acc_norm_stderr\": 0.04389311454644286\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7551020408163265,\n \"acc_stderr\": 0.027529637440174934,\n \"acc_norm\": 0.7551020408163265,\n \"acc_norm_stderr\": 0.027529637440174934\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.835820895522388,\n \"acc_stderr\": 0.026193923544454132,\n \"acc_norm\": 0.835820895522388,\n \"acc_norm_stderr\": 0.026193923544454132\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.86,\n \"acc_stderr\": 0.03487350880197768,\n \"acc_norm\": 0.86,\n \"acc_norm_stderr\": 0.03487350880197768\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5301204819277109,\n \"acc_stderr\": 0.03885425420866767,\n \"acc_norm\": 0.5301204819277109,\n \"acc_norm_stderr\": 0.03885425420866767\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8362573099415205,\n \"acc_stderr\": 0.028380919596145866,\n \"acc_norm\": 0.8362573099415205,\n \"acc_norm_stderr\": 0.028380919596145866\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.3635250917992656,\n \"mc1_stderr\": 0.016838862883965838,\n \"mc2\": 0.5157817244014755,\n \"mc2_stderr\": 0.015241425184790871\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.8153117600631413,\n \"acc_stderr\": 0.010905978112156873\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.7149355572403336,\n \"acc_stderr\": 0.01243504233490401\n }\n}\n```", "repo_url": "https://huggingface.co/Eurdem/megatron_1.1_MoE_2x7B", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|arc:challenge|25_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|gsm8k|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hellaswag|10_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T14-00-29.163053.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["**/details_harness|winogrande|5_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-22T14-00-29.163053.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_22T14_00_29.163053", "path": ["results_2024-01-22T14-00-29.163053.parquet"]}, {"split": "latest", "path": ["results_2024-01-22T14-00-29.163053.parquet"]}]}]}
2024-01-22T14:03:06+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of Eurdem/megatron_1.1_MoE_2x7B Dataset automatically created during the evaluation run of model Eurdem/megatron_1.1_MoE_2x7B on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-22T14:00:29.163053(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of Eurdem/megatron_1.1_MoE_2x7B\n\n\n\nDataset automatically created during the evaluation run of model Eurdem/megatron_1.1_MoE_2x7B on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T14:00:29.163053(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of Eurdem/megatron_1.1_MoE_2x7B\n\n\n\nDataset automatically created during the evaluation run of model Eurdem/megatron_1.1_MoE_2x7B on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T14:00:29.163053(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
58ef27c5bf8eb132c84cf78923e3d474b2a9e300
## Python Copilot Audio Training using Global Functions with Knowledge Graphs This dataset is a subset of the matlok python copilot datasets. Please refer to the [Multimodal Python Copilot Training Overview](https://huggingface.co/datasets/matlok/multimodal-python-copilot-training-overview) for more details on how to use this dataset. ### Details Each global function has a question and answer mp3 where one voice reads the question and another voice reads the answer. Both mp3s are stored in the parquet **dbytes** column and the associated source code **file_path** identifier. - Rows: 49910 - Size: 62.8 GB - Data type: mp3 - Format: narrated alpaca question and answers using two voices ### Schema ``` { "audio_path": "string", "audio_type": "string", "dbytes": "binary", "dbytes_len": "int64", "file_path": "string", "file_path_len": "int64", "lang": "string", "lang_len": "int64", "recsize": "int64" } ``` ### How to use the dataset ```python from datasets import load_dataset ds = load_dataset("matlok/python-audio-copilot-training-using-functions-knowledge-graphs", data_dir="files") ```
matlok/python-audio-copilot-training-using-function-knowledge-graphs
[ "task_categories:text-to-audio", "task_categories:audio-to-audio", "task_categories:question-answering", "task_ids:parsing", "size_categories:10K<n<100K", "license:other", "python-copilot", "python-coding", "python-architecture", "knowledge-graphs", "multimodal", "text-image-audio", "fine-tuning", "training", "question-answering", "image-knowledge-graph", "alpaca", "mp3", "png", "text", "instruct", "functions", "global-functions", "region:us" ]
2024-01-22T14:23:44+00:00
{"license": ["other"], "size_categories": ["10K<n<100K"], "task_categories": ["text-to-audio", "audio-to-audio", "question-answering"], "task_ids": ["parsing"], "pretty_name": "python copilot audio training using global functions with knowledge graphs", "dataset_info": [{"config_name": "view_schema", "splits": [{"name": "view_schema"}]}], "configs": [{"config_name": "view_schema", "data_files": [{"split": "view_schema", "path": "files/lok-python-copilot-audio.func-v1_00000095.parquet"}]}], "tags": ["python-copilot", "python-coding", "python-architecture", "knowledge-graphs", "multimodal", "text-image-audio", "fine-tuning", "training", "question-answering", "image-knowledge-graph", "alpaca", "mp3", "png", "text", "instruct", "functions", "global-functions"]}
2024-01-25T18:53:06+00:00
[]
[]
TAGS #task_categories-text-to-audio #task_categories-audio-to-audio #task_categories-question-answering #task_ids-parsing #size_categories-10K<n<100K #license-other #python-copilot #python-coding #python-architecture #knowledge-graphs #multimodal #text-image-audio #fine-tuning #training #question-answering #image-knowledge-graph #alpaca #mp3 #png #text #instruct #functions #global-functions #region-us
## Python Copilot Audio Training using Global Functions with Knowledge Graphs This dataset is a subset of the matlok python copilot datasets. Please refer to the Multimodal Python Copilot Training Overview for more details on how to use this dataset. ### Details Each global function has a question and answer mp3 where one voice reads the question and another voice reads the answer. Both mp3s are stored in the parquet dbytes column and the associated source code file_path identifier. - Rows: 49910 - Size: 62.8 GB - Data type: mp3 - Format: narrated alpaca question and answers using two voices ### Schema ### How to use the dataset
[ "## Python Copilot Audio Training using Global Functions with Knowledge Graphs\n\nThis dataset is a subset of the matlok python copilot datasets. Please refer to the Multimodal Python Copilot Training Overview for more details on how to use this dataset.", "### Details\n\nEach global function has a question and answer mp3 where one voice reads the question and another voice reads the answer. Both mp3s are stored in the parquet dbytes column and the associated source code file_path identifier.\n\n- Rows: 49910\n- Size: 62.8 GB\n- Data type: mp3\n- Format: narrated alpaca question and answers using two voices", "### Schema", "### How to use the dataset" ]
[ "TAGS\n#task_categories-text-to-audio #task_categories-audio-to-audio #task_categories-question-answering #task_ids-parsing #size_categories-10K<n<100K #license-other #python-copilot #python-coding #python-architecture #knowledge-graphs #multimodal #text-image-audio #fine-tuning #training #question-answering #image-knowledge-graph #alpaca #mp3 #png #text #instruct #functions #global-functions #region-us \n", "## Python Copilot Audio Training using Global Functions with Knowledge Graphs\n\nThis dataset is a subset of the matlok python copilot datasets. Please refer to the Multimodal Python Copilot Training Overview for more details on how to use this dataset.", "### Details\n\nEach global function has a question and answer mp3 where one voice reads the question and another voice reads the answer. Both mp3s are stored in the parquet dbytes column and the associated source code file_path identifier.\n\n- Rows: 49910\n- Size: 62.8 GB\n- Data type: mp3\n- Format: narrated alpaca question and answers using two voices", "### Schema", "### How to use the dataset" ]
2a276deda9adaefeddea7752ce7a5e6fe0034382
## Python Copilot Audio Training using Inheritance and Polymorphism Knowledge Graphs This dataset is a subset of the matlok python copilot datasets. Please refer to the [Multimodal Python Copilot Training Overview](https://huggingface.co/datasets/matlok/multimodal-python-copilot-training-overview) for more details on how to use this dataset. ### Details Each base class for each unique class in each module file has a question and answer mp3 where one voice reads the question and another voice reads the answer. Both mp3s are stored in the parquet **dbytes** column and the associated source code **file_path** identifier. - Rows: 96874 - Size: 29.9 GB - Data type: mp3 - Format: narrated alpaca question and answers using two voices ### Schema ``` { "audio_path": "string", "audio_type": "string", "dbytes": "binary", "dbytes_len": "int64", "file_path": "string", "file_path_len": "int64", "lang": "string", "lang_len": "int64", "recsize": "int64" } ``` ### How to use the dataset ```python from datasets import load_dataset ds = load_dataset("matlok/python-audio-copilot-training-using-inheritance-knowledge-graphs", data_dir="files") ```
matlok/python-audio-copilot-training-using-inheritance-knowledge-graphs
[ "task_categories:text-to-audio", "task_categories:audio-to-audio", "task_categories:question-answering", "task_ids:parsing", "size_categories:10K<n<100K", "license:other", "python-copilot", "python-coding", "python-architecture", "knowledge-graphs", "multimodal", "text-image-audio", "fine-tuning", "training", "question-answering", "image-knowledge-graph", "alpaca", "mp3", "png", "text", "instruct", "inheritance", "region:us" ]
2024-01-22T14:24:06+00:00
{"license": ["other"], "size_categories": ["10K<n<100K"], "task_categories": ["text-to-audio", "audio-to-audio", "question-answering"], "task_ids": ["parsing"], "pretty_name": "python copilot audio training using inheritance and polymorphism knowledge graphs", "dataset_info": [{"config_name": "view_schema", "splits": [{"name": "view_schema"}]}], "configs": [{"config_name": "view_schema", "data_files": [{"split": "view_schema", "path": "files/lok-python-copilot-audio.base-v1_00000291.parquet"}]}], "tags": ["python-copilot", "python-coding", "python-architecture", "knowledge-graphs", "multimodal", "text-image-audio", "fine-tuning", "training", "question-answering", "image-knowledge-graph", "alpaca", "mp3", "png", "text", "instruct", "inheritance"]}
2024-01-25T18:53:35+00:00
[]
[]
TAGS #task_categories-text-to-audio #task_categories-audio-to-audio #task_categories-question-answering #task_ids-parsing #size_categories-10K<n<100K #license-other #python-copilot #python-coding #python-architecture #knowledge-graphs #multimodal #text-image-audio #fine-tuning #training #question-answering #image-knowledge-graph #alpaca #mp3 #png #text #instruct #inheritance #region-us
## Python Copilot Audio Training using Inheritance and Polymorphism Knowledge Graphs This dataset is a subset of the matlok python copilot datasets. Please refer to the Multimodal Python Copilot Training Overview for more details on how to use this dataset. ### Details Each base class for each unique class in each module file has a question and answer mp3 where one voice reads the question and another voice reads the answer. Both mp3s are stored in the parquet dbytes column and the associated source code file_path identifier. - Rows: 96874 - Size: 29.9 GB - Data type: mp3 - Format: narrated alpaca question and answers using two voices ### Schema ### How to use the dataset
[ "## Python Copilot Audio Training using Inheritance and Polymorphism Knowledge Graphs\n\nThis dataset is a subset of the matlok python copilot datasets. Please refer to the Multimodal Python Copilot Training Overview for more details on how to use this dataset.", "### Details\n\nEach base class for each unique class in each module file has a question and answer mp3 where one voice reads the question and another voice reads the answer. Both mp3s are stored in the parquet dbytes column and the associated source code file_path identifier.\n\n- Rows: 96874\n- Size: 29.9 GB\n- Data type: mp3\n- Format: narrated alpaca question and answers using two voices", "### Schema", "### How to use the dataset" ]
[ "TAGS\n#task_categories-text-to-audio #task_categories-audio-to-audio #task_categories-question-answering #task_ids-parsing #size_categories-10K<n<100K #license-other #python-copilot #python-coding #python-architecture #knowledge-graphs #multimodal #text-image-audio #fine-tuning #training #question-answering #image-knowledge-graph #alpaca #mp3 #png #text #instruct #inheritance #region-us \n", "## Python Copilot Audio Training using Inheritance and Polymorphism Knowledge Graphs\n\nThis dataset is a subset of the matlok python copilot datasets. Please refer to the Multimodal Python Copilot Training Overview for more details on how to use this dataset.", "### Details\n\nEach base class for each unique class in each module file has a question and answer mp3 where one voice reads the question and another voice reads the answer. Both mp3s are stored in the parquet dbytes column and the associated source code file_path identifier.\n\n- Rows: 96874\n- Size: 29.9 GB\n- Data type: mp3\n- Format: narrated alpaca question and answers using two voices", "### Schema", "### How to use the dataset" ]
a4bfdb7dca02c9d96ea1c381e58559d565efe1fb
## Python Copilot Audio Training using Imports with Knowledge Graphs This dataset is a subset of the matlok python copilot datasets. Please refer to the [Multimodal Python Copilot Training Overview](https://huggingface.co/datasets/matlok/multimodal-python-copilot-training-overview) for more details on how to use this dataset. ### Details Each imported module for each unique class in each module file has a question and answer mp3 where one voice reads the question and another voice reads the answer. Both mp3s are stored in the parquet **dbytes** column and the associated source code **file_path** identifier. - Rows: 52086 - Size: 17.3 GB - Data type: mp3 - Format: narrated alpaca question and answers using two voices ### Schema ``` { "audio_path": "string", "audio_type": "string", "dbytes": "binary", "dbytes_len": "int64", "file_path": "string", "file_path_len": "int64", "lang": "string", "lang_len": "int64", "recsize": "int64" } ``` ### How to use the dataset ```python from datasets import load_dataset ds = load_dataset("matlok/python-audio-copilot-training-using-imports-knowledge-graphs", data_dir="files") ```
matlok/python-audio-copilot-training-using-import-knowledge-graphs
[ "task_categories:text-to-audio", "task_categories:audio-to-audio", "task_categories:question-answering", "task_ids:parsing", "size_categories:10K<n<100K", "license:other", "python-copilot", "python-coding", "python-architecture", "knowledge-graphs", "multimodal", "text-image-audio", "fine-tuning", "training", "question-answering", "image-knowledge-graph", "alpaca", "mp3", "png", "text", "instruct", "imports", "region:us" ]
2024-01-22T14:24:31+00:00
{"license": ["other"], "size_categories": ["10K<n<100K"], "task_categories": ["text-to-audio", "audio-to-audio", "question-answering"], "task_ids": ["parsing"], "pretty_name": "python copilot audio training using imports with knowledge graphs", "dataset_info": [{"config_name": "view_schema", "splits": [{"name": "view_schema"}]}], "configs": [{"config_name": "view_schema", "data_files": [{"split": "view_schema", "path": "files/lok-python-copilot-audio.import-v1_00000274.parquet"}]}], "tags": ["python-copilot", "python-coding", "python-architecture", "knowledge-graphs", "multimodal", "text-image-audio", "fine-tuning", "training", "question-answering", "image-knowledge-graph", "alpaca", "mp3", "png", "text", "instruct", "imports"]}
2024-01-25T18:53:20+00:00
[]
[]
TAGS #task_categories-text-to-audio #task_categories-audio-to-audio #task_categories-question-answering #task_ids-parsing #size_categories-10K<n<100K #license-other #python-copilot #python-coding #python-architecture #knowledge-graphs #multimodal #text-image-audio #fine-tuning #training #question-answering #image-knowledge-graph #alpaca #mp3 #png #text #instruct #imports #region-us
## Python Copilot Audio Training using Imports with Knowledge Graphs This dataset is a subset of the matlok python copilot datasets. Please refer to the Multimodal Python Copilot Training Overview for more details on how to use this dataset. ### Details Each imported module for each unique class in each module file has a question and answer mp3 where one voice reads the question and another voice reads the answer. Both mp3s are stored in the parquet dbytes column and the associated source code file_path identifier. - Rows: 52086 - Size: 17.3 GB - Data type: mp3 - Format: narrated alpaca question and answers using two voices ### Schema ### How to use the dataset
[ "## Python Copilot Audio Training using Imports with Knowledge Graphs\n\nThis dataset is a subset of the matlok python copilot datasets. Please refer to the Multimodal Python Copilot Training Overview for more details on how to use this dataset.", "### Details\n\nEach imported module for each unique class in each module file has a question and answer mp3 where one voice reads the question and another voice reads the answer. Both mp3s are stored in the parquet dbytes column and the associated source code file_path identifier.\n\n- Rows: 52086\n- Size: 17.3 GB\n- Data type: mp3\n- Format: narrated alpaca question and answers using two voices", "### Schema", "### How to use the dataset" ]
[ "TAGS\n#task_categories-text-to-audio #task_categories-audio-to-audio #task_categories-question-answering #task_ids-parsing #size_categories-10K<n<100K #license-other #python-copilot #python-coding #python-architecture #knowledge-graphs #multimodal #text-image-audio #fine-tuning #training #question-answering #image-knowledge-graph #alpaca #mp3 #png #text #instruct #imports #region-us \n", "## Python Copilot Audio Training using Imports with Knowledge Graphs\n\nThis dataset is a subset of the matlok python copilot datasets. Please refer to the Multimodal Python Copilot Training Overview for more details on how to use this dataset.", "### Details\n\nEach imported module for each unique class in each module file has a question and answer mp3 where one voice reads the question and another voice reads the answer. Both mp3s are stored in the parquet dbytes column and the associated source code file_path identifier.\n\n- Rows: 52086\n- Size: 17.3 GB\n- Data type: mp3\n- Format: narrated alpaca question and answers using two voices", "### Schema", "### How to use the dataset" ]
3356d1e4157acd011c6b28489b46b1acf43597e0
<h1 align="center"> DATASET-NAME: Code Reasoning, Understanding, and Execution Evaluation </h1> <p align="center"> <a href="https://crux-eval.github.io/">🏠 Home Page</a> • <a href="https://github.com/facebookresearch/cruxeval">💻 GitHub Repository </a> • <a href="https://crux-eval.github.io/leaderboard.html">🏆 Leaderboard</a> • <a href="https://crux-eval.github.io/demo.html">🔎 Sample Explorer</a> </p> ![image](https://github.com/facebookresearch/cruxeval/assets/7492257/4951c067-e6d0-489a-a445-37ff1c4ad1e4) DATASET-NAME (**C**ode **R**easoning, **U**nderstanding, and e**X**ecution **Eval**uation) is a benchmark of 800 Python functions and input-output pairs. The benchmark consists of two tasks, CRUXEval-I (input prediction) and CRUXEval-O (output prediction). The benchmark was constructed as follows ## Dataset Description - **Homepage:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Repository:** https://github.com/ - **Paper:** https://arxiv.org/ - **Point of Contact:** [NAME](mailto:EMAIL)
albertvillanova/test-dataset-card
[ "task_categories:text-classification", "task_ids:multi-label-classification", "region:us" ]
2024-01-22T15:05:43+00:00
{"task_categories": ["text-classification"], "task_ids": ["multi-label-classification", "toxic-comment-classification"]}
2024-01-25T08:15:40+00:00
[]
[]
TAGS #task_categories-text-classification #task_ids-multi-label-classification #region-us
<h1 align="center"> DATASET-NAME: Code Reasoning, Understanding, and Execution Evaluation </h1> <p align="center"> <a href="URL Home Page</a> • <a href="URL GitHub Repository </a> • <a href="URL Leaderboard</a> • <a href="URL Sample Explorer</a> </p> !image DATASET-NAME (Code Reasoning, Understanding, and eXecution Evaluation) is a benchmark of 800 Python functions and input-output pairs. The benchmark consists of two tasks, CRUXEval-I (input prediction) and CRUXEval-O (output prediction). The benchmark was constructed as follows ## Dataset Description - Homepage: - Repository: URL - Paper: URL - Point of Contact: NAME
[ "## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: URL\n- Point of Contact: NAME" ]
[ "TAGS\n#task_categories-text-classification #task_ids-multi-label-classification #region-us \n", "## Dataset Description\n\n- Homepage: \n- Repository: URL\n- Paper: URL\n- Point of Contact: NAME" ]
1af2f0ef96f32ba5ff8d9b82b8cb5fc4810430bd
# The Security Attack Pattern (TTP) Recognition or Mapping Task [![License](https://img.shields.io/badge/license-CC--BY--NC--SA--4.0-lightgrey)](https://creativecommons.org/licenses/by/4.0/) [![arXiv](https://img.shields.io/badge/arXiv-2109.05105-29d634.svg)](https://arxiv.org/abs/2401.10337) We share in this repo the MITRE ATT&amp;CK mapping datasets, with `training`, `validation` and `test` splits. The datasets can be considered as an emerging and challenging `multilabel classification` NLP task, with over 600 hierarchical classes. NOTE: due to their security nature, these datasets contain textual information about `malware` and other security aspects. ## Datasets ### TRAM This dataset belongs to [CTID](https://mitre-engenuity.org/cybersecurity/center-for-threat-informed-defense/), is originally provided in this [github link](https://github.com/center-for-threat-informed-defense/tram). We processed the original files (i.e., gather from all sources, remove duplicates, resolve noisy / too short text and noisy labels, remap to MITRE ATTACK 12.0) and split into training, dev and test splits. ### Procedure+ The dataset consists of two sub- datasets: - Procedures: belong to [MITRE](https://github.com/mitre/cti/tree/master). All procedure examples from v12.0 are gathered and processed (i.e., remove markups) and split into training, dev and test splits. - Derived procedures: we crawled the URL references for each procedure example, and extract original text from the articles that are determined to be relevant to the procedure examples. The text are processed and split into training, dev and test splits. ### Expert The dataset is constructed from a large pool of high-quality threat reports. The rich textual paragraphs are carefully selected and then annotated by seasoned security experts. The dataset is also pre-split into `training`, `dev` and `test` splits. There are ~4 labels per text in the `test` split, on average. ## Citations If you use the datasets in your research or want to refer to our work, please cite: ``` @inproceedings{nguyen-srndic-neth-ttpm, title = "Noise Contrastive Estimation-based Matching Framework for Low-resource Security Attack Pattern Recognition", author = "Nguyen, Tu and Šrndić, Nedim and Neth, Alexander", booktitle = "Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics", month = mar, year = "2024", publisher = "Association for Computational Linguistics", abstract = "Tactics, Techniques and Procedures (TTPs) represent sophisticated attack patterns in the cybersecurity domain, described encyclopedically in textual knowledge bases. Identifying TTPs in cybersecurity writing, often called TTP mapping, is an important and challenging task. Conventional learning approaches often target the problem in the classical multi-class or multilabel classification setting. This setting hinders the learning ability of the model due to a large number of classes (i.e., TTPs), the inevitable skewness of the label distribution and the complex hierarchical structure of the label space. We formulate the problem in a different learning paradigm, where the assignment of a text to a TTP label is decided by the direct semantic similarity between the two, thus reducing the complexity of competing solely over the large labeling space. To that end, we propose a neural matching architecture with an effective sampling-based learn-to-compare mechanism, facilitating the learning process of the matching model despite constrained resources.", } ``` ## License This project is licensed under the Creative Commons CC BY License, version 4.0.
tumeteor/MITRE-TTP-Mapping
[ "task_categories:text-classification", "task_categories:question-answering", "task_categories:zero-shot-classification", "task_categories:sentence-similarity", "size_categories:1K<n<10K", "language:en", "license:cc", "security", "ttp mapping", "mitre att&ck", "extreme multilabel ", "multilabel classification", "arxiv:2401.10337", "region:us" ]
2024-01-22T15:16:40+00:00
{"language": ["en"], "license": "cc", "size_categories": ["1K<n<10K"], "task_categories": ["text-classification", "question-answering", "zero-shot-classification", "sentence-similarity"], "pretty_name": "Security Attack Pattern Recognition Datasets", "tags": ["security", "ttp mapping", "mitre att&ck", "extreme multilabel ", "multilabel classification"]}
2024-01-23T09:52:13+00:00
[ "2401.10337" ]
[ "en" ]
TAGS #task_categories-text-classification #task_categories-question-answering #task_categories-zero-shot-classification #task_categories-sentence-similarity #size_categories-1K<n<10K #language-English #license-cc #security #ttp mapping #mitre att&ck #extreme multilabel #multilabel classification #arxiv-2401.10337 #region-us
# The Security Attack Pattern (TTP) Recognition or Mapping Task ![License](URL ![arXiv](URL We share in this repo the MITRE ATT&amp;CK mapping datasets, with 'training', 'validation' and 'test' splits. The datasets can be considered as an emerging and challenging 'multilabel classification' NLP task, with over 600 hierarchical classes. NOTE: due to their security nature, these datasets contain textual information about 'malware' and other security aspects. ## Datasets ### TRAM This dataset belongs to CTID, is originally provided in this github link. We processed the original files (i.e., gather from all sources, remove duplicates, resolve noisy / too short text and noisy labels, remap to MITRE ATTACK 12.0) and split into training, dev and test splits. ### Procedure+ The dataset consists of two sub- datasets: - Procedures: belong to MITRE. All procedure examples from v12.0 are gathered and processed (i.e., remove markups) and split into training, dev and test splits. - Derived procedures: we crawled the URL references for each procedure example, and extract original text from the articles that are determined to be relevant to the procedure examples. The text are processed and split into training, dev and test splits. ### Expert The dataset is constructed from a large pool of high-quality threat reports. The rich textual paragraphs are carefully selected and then annotated by seasoned security experts. The dataset is also pre-split into 'training', 'dev' and 'test' splits. There are ~4 labels per text in the 'test' split, on average. s If you use the datasets in your research or want to refer to our work, please cite: ## License This project is licensed under the Creative Commons CC BY License, version 4.0.
[ "# The Security Attack Pattern (TTP) Recognition or Mapping Task\n![License](URL\n![arXiv](URL\n\nWe share in this repo the MITRE ATT&amp;CK mapping datasets, with 'training', 'validation' and 'test' splits. \nThe datasets can be considered as an emerging and challenging 'multilabel classification' NLP task, with over 600 hierarchical classes.\n\nNOTE: due to their security nature, these datasets contain textual information about 'malware' and other security aspects.", "## Datasets", "### TRAM\n\nThis dataset belongs to CTID, is originally provided in this github link. \n\nWe processed the original files (i.e., gather from all sources, remove duplicates, resolve noisy / too short text and noisy labels, remap to MITRE ATTACK 12.0) and split into training, dev and test splits.", "### Procedure+\n\nThe dataset consists of two sub- datasets:\n- Procedures: belong to MITRE. All procedure examples from v12.0 are gathered and processed (i.e., remove markups) and split into training, dev and test splits.\n- Derived procedures: we crawled the URL references for each procedure example, and extract original text from the articles that are determined to be relevant to the procedure examples. The text are processed and split into training, dev and test splits.", "### Expert\n\nThe dataset is constructed from a large pool of high-quality threat reports. \nThe rich textual paragraphs are carefully selected and then annotated by seasoned security experts.\n\nThe dataset is also pre-split into 'training', 'dev' and 'test' splits. There are ~4 labels per text in the 'test' split, on average.\n\ns\nIf you use the datasets in your research or want to refer to our work, please cite:", "## License\nThis project is licensed under the Creative Commons CC BY License, version 4.0." ]
[ "TAGS\n#task_categories-text-classification #task_categories-question-answering #task_categories-zero-shot-classification #task_categories-sentence-similarity #size_categories-1K<n<10K #language-English #license-cc #security #ttp mapping #mitre att&ck #extreme multilabel #multilabel classification #arxiv-2401.10337 #region-us \n", "# The Security Attack Pattern (TTP) Recognition or Mapping Task\n![License](URL\n![arXiv](URL\n\nWe share in this repo the MITRE ATT&amp;CK mapping datasets, with 'training', 'validation' and 'test' splits. \nThe datasets can be considered as an emerging and challenging 'multilabel classification' NLP task, with over 600 hierarchical classes.\n\nNOTE: due to their security nature, these datasets contain textual information about 'malware' and other security aspects.", "## Datasets", "### TRAM\n\nThis dataset belongs to CTID, is originally provided in this github link. \n\nWe processed the original files (i.e., gather from all sources, remove duplicates, resolve noisy / too short text and noisy labels, remap to MITRE ATTACK 12.0) and split into training, dev and test splits.", "### Procedure+\n\nThe dataset consists of two sub- datasets:\n- Procedures: belong to MITRE. All procedure examples from v12.0 are gathered and processed (i.e., remove markups) and split into training, dev and test splits.\n- Derived procedures: we crawled the URL references for each procedure example, and extract original text from the articles that are determined to be relevant to the procedure examples. The text are processed and split into training, dev and test splits.", "### Expert\n\nThe dataset is constructed from a large pool of high-quality threat reports. \nThe rich textual paragraphs are carefully selected and then annotated by seasoned security experts.\n\nThe dataset is also pre-split into 'training', 'dev' and 'test' splits. There are ~4 labels per text in the 'test' split, on average.\n\ns\nIf you use the datasets in your research or want to refer to our work, please cite:", "## License\nThis project is licensed under the Creative Commons CC BY License, version 4.0." ]
fe0557b174c08ea0d566bdd60d72aaf944250f5b
# Dataset Card for Evaluation run of OpenBuddy/openbuddy-deepseek-10b-v17.1-4k <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [OpenBuddy/openbuddy-deepseek-10b-v17.1-4k](https://huggingface.co/OpenBuddy/openbuddy-deepseek-10b-v17.1-4k) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_OpenBuddy__openbuddy-deepseek-10b-v17.1-4k", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-22T15:20:55.890442](https://huggingface.co/datasets/open-llm-leaderboard/details_OpenBuddy__openbuddy-deepseek-10b-v17.1-4k/blob/main/results_2024-01-22T15-20-55.890442.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.5275033536344877, "acc_stderr": 0.03384069886094482, "acc_norm": 0.5358946325439762, "acc_norm_stderr": 0.034669341786001784, "mc1": 0.3182374541003672, "mc1_stderr": 0.016305988648920616, "mc2": 0.45957802308964574, "mc2_stderr": 0.015178526140313892 }, "harness|arc:challenge|25": { "acc": 0.507679180887372, "acc_stderr": 0.014609667440892567, "acc_norm": 0.5435153583617748, "acc_norm_stderr": 0.014555949760496442 }, "harness|hellaswag|10": { "acc": 0.579964150567616, "acc_stderr": 0.004925556104679422, "acc_norm": 0.7692690699063931, "acc_norm_stderr": 0.004204395478506433 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.34, "acc_stderr": 0.04760952285695235, "acc_norm": 0.34, "acc_norm_stderr": 0.04760952285695235 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.4444444444444444, "acc_stderr": 0.04292596718256981, "acc_norm": 0.4444444444444444, "acc_norm_stderr": 0.04292596718256981 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.5855263157894737, "acc_stderr": 0.04008973785779206, "acc_norm": 0.5855263157894737, "acc_norm_stderr": 0.04008973785779206 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.54, "acc_stderr": 0.05009082659620332, "acc_norm": 0.54, "acc_norm_stderr": 0.05009082659620332 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.5962264150943396, "acc_stderr": 0.03019761160019795, "acc_norm": 0.5962264150943396, "acc_norm_stderr": 0.03019761160019795 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.5833333333333334, "acc_stderr": 0.04122728707651283, "acc_norm": 0.5833333333333334, "acc_norm_stderr": 0.04122728707651283 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.36, "acc_stderr": 0.04824181513244218, "acc_norm": 0.36, "acc_norm_stderr": 0.04824181513244218 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.38, "acc_stderr": 0.048783173121456316, "acc_norm": 0.38, "acc_norm_stderr": 0.048783173121456316 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.44, "acc_stderr": 0.04988876515698589, "acc_norm": 0.44, "acc_norm_stderr": 0.04988876515698589 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.48554913294797686, "acc_stderr": 0.03810871630454764, "acc_norm": 0.48554913294797686, "acc_norm_stderr": 0.03810871630454764 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.2647058823529412, "acc_stderr": 0.04389869956808778, "acc_norm": 0.2647058823529412, "acc_norm_stderr": 0.04389869956808778 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.68, "acc_stderr": 0.04688261722621504, "acc_norm": 0.68, "acc_norm_stderr": 0.04688261722621504 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.44680851063829785, "acc_stderr": 0.0325005368436584, "acc_norm": 0.44680851063829785, "acc_norm_stderr": 0.0325005368436584 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.3333333333333333, "acc_stderr": 0.044346007015849245, "acc_norm": 0.3333333333333333, "acc_norm_stderr": 0.044346007015849245 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.45517241379310347, "acc_stderr": 0.04149886942192118, "acc_norm": 0.45517241379310347, "acc_norm_stderr": 0.04149886942192118 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.2777777777777778, "acc_stderr": 0.023068188848261117, "acc_norm": 0.2777777777777778, "acc_norm_stderr": 0.023068188848261117 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.3333333333333333, "acc_stderr": 0.04216370213557835, "acc_norm": 0.3333333333333333, "acc_norm_stderr": 0.04216370213557835 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.31, "acc_stderr": 0.04648231987117316, "acc_norm": 0.31, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.5870967741935483, "acc_stderr": 0.02800913812540039, "acc_norm": 0.5870967741935483, "acc_norm_stderr": 0.02800913812540039 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.4039408866995074, "acc_stderr": 0.03452453903822039, "acc_norm": 0.4039408866995074, "acc_norm_stderr": 0.03452453903822039 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.56, "acc_stderr": 0.04988876515698589, "acc_norm": 0.56, "acc_norm_stderr": 0.04988876515698589 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.6787878787878788, "acc_stderr": 0.03646204963253812, "acc_norm": 0.6787878787878788, "acc_norm_stderr": 0.03646204963253812 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.6767676767676768, "acc_stderr": 0.03332299921070645, "acc_norm": 0.6767676767676768, "acc_norm_stderr": 0.03332299921070645 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.7616580310880829, "acc_stderr": 0.03074890536390988, "acc_norm": 0.7616580310880829, "acc_norm_stderr": 0.03074890536390988 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.47692307692307695, "acc_stderr": 0.025323990861736118, "acc_norm": 0.47692307692307695, "acc_norm_stderr": 0.025323990861736118 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.2518518518518518, "acc_stderr": 0.026466117538959916, "acc_norm": 0.2518518518518518, "acc_norm_stderr": 0.026466117538959916 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.48739495798319327, "acc_stderr": 0.032468167657521745, "acc_norm": 0.48739495798319327, "acc_norm_stderr": 0.032468167657521745 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.271523178807947, "acc_stderr": 0.03631329803969654, "acc_norm": 0.271523178807947, "acc_norm_stderr": 0.03631329803969654 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.728440366972477, "acc_stderr": 0.019069098363191435, "acc_norm": 0.728440366972477, "acc_norm_stderr": 0.019069098363191435 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.375, "acc_stderr": 0.033016908987210894, "acc_norm": 0.375, "acc_norm_stderr": 0.033016908987210894 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.6666666666666666, "acc_stderr": 0.03308611113236436, "acc_norm": 0.6666666666666666, "acc_norm_stderr": 0.03308611113236436 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7130801687763713, "acc_stderr": 0.029443773022594693, "acc_norm": 0.7130801687763713, "acc_norm_stderr": 0.029443773022594693 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6188340807174888, "acc_stderr": 0.03259625118416827, "acc_norm": 0.6188340807174888, "acc_norm_stderr": 0.03259625118416827 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.5877862595419847, "acc_stderr": 0.04317171194870255, "acc_norm": 0.5877862595419847, "acc_norm_stderr": 0.04317171194870255 }, "harness|hendrycksTest-international_law|5": { "acc": 0.6694214876033058, "acc_stderr": 0.04294340845212094, "acc_norm": 0.6694214876033058, "acc_norm_stderr": 0.04294340845212094 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.6759259259259259, "acc_stderr": 0.04524596007030048, "acc_norm": 0.6759259259259259, "acc_norm_stderr": 0.04524596007030048 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.6687116564417178, "acc_stderr": 0.03697983910025588, "acc_norm": 0.6687116564417178, "acc_norm_stderr": 0.03697983910025588 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.35714285714285715, "acc_stderr": 0.04547960999764376, "acc_norm": 0.35714285714285715, "acc_norm_stderr": 0.04547960999764376 }, "harness|hendrycksTest-management|5": { "acc": 0.6893203883495146, "acc_stderr": 0.045821241601615506, "acc_norm": 0.6893203883495146, "acc_norm_stderr": 0.045821241601615506 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8076923076923077, "acc_stderr": 0.025819233256483717, "acc_norm": 0.8076923076923077, "acc_norm_stderr": 0.025819233256483717 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.58, "acc_stderr": 0.04960449637488583, "acc_norm": 0.58, "acc_norm_stderr": 0.04960449637488583 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.7075351213282248, "acc_stderr": 0.016267000684598642, "acc_norm": 0.7075351213282248, "acc_norm_stderr": 0.016267000684598642 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.5664739884393064, "acc_stderr": 0.026680134761679217, "acc_norm": 0.5664739884393064, "acc_norm_stderr": 0.026680134761679217 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.28044692737430166, "acc_stderr": 0.01502408388332289, "acc_norm": 0.28044692737430166, "acc_norm_stderr": 0.01502408388332289 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.6045751633986928, "acc_stderr": 0.027996723180631462, "acc_norm": 0.6045751633986928, "acc_norm_stderr": 0.027996723180631462 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.5787781350482315, "acc_stderr": 0.028043399858210635, "acc_norm": 0.5787781350482315, "acc_norm_stderr": 0.028043399858210635 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.5833333333333334, "acc_stderr": 0.027431623722415, "acc_norm": 0.5833333333333334, "acc_norm_stderr": 0.027431623722415 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.3829787234042553, "acc_stderr": 0.02899908090480617, "acc_norm": 0.3829787234042553, "acc_norm_stderr": 0.02899908090480617 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.3852672750977836, "acc_stderr": 0.012429485434955192, "acc_norm": 0.3852672750977836, "acc_norm_stderr": 0.012429485434955192 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.49264705882352944, "acc_stderr": 0.030369552523902173, "acc_norm": 0.49264705882352944, "acc_norm_stderr": 0.030369552523902173 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.5375816993464052, "acc_stderr": 0.020170614974969765, "acc_norm": 0.5375816993464052, "acc_norm_stderr": 0.020170614974969765 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6181818181818182, "acc_stderr": 0.046534298079135075, "acc_norm": 0.6181818181818182, "acc_norm_stderr": 0.046534298079135075 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.6408163265306123, "acc_stderr": 0.03071356045510849, "acc_norm": 0.6408163265306123, "acc_norm_stderr": 0.03071356045510849 }, "harness|hendrycksTest-sociology|5": { "acc": 0.746268656716418, "acc_stderr": 0.030769444967296018, "acc_norm": 0.746268656716418, "acc_norm_stderr": 0.030769444967296018 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.8, "acc_stderr": 0.04020151261036846, "acc_norm": 0.8, "acc_norm_stderr": 0.04020151261036846 }, "harness|hendrycksTest-virology|5": { "acc": 0.463855421686747, "acc_stderr": 0.03882310850890593, "acc_norm": 0.463855421686747, "acc_norm_stderr": 0.03882310850890593 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.7660818713450293, "acc_stderr": 0.03246721765117826, "acc_norm": 0.7660818713450293, "acc_norm_stderr": 0.03246721765117826 }, "harness|truthfulqa:mc|0": { "mc1": 0.3182374541003672, "mc1_stderr": 0.016305988648920616, "mc2": 0.45957802308964574, "mc2_stderr": 0.015178526140313892 }, "harness|winogrande|5": { "acc": 0.7403314917127072, "acc_stderr": 0.012322700705552673 }, "harness|gsm8k|5": { "acc": 0.04473085670962851, "acc_stderr": 0.005693886131407044 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_OpenBuddy__openbuddy-deepseek-10b-v17.1-4k
[ "region:us" ]
2024-01-22T15:23:11+00:00
{"pretty_name": "Evaluation run of OpenBuddy/openbuddy-deepseek-10b-v17.1-4k", "dataset_summary": "Dataset automatically created during the evaluation run of model [OpenBuddy/openbuddy-deepseek-10b-v17.1-4k](https://huggingface.co/OpenBuddy/openbuddy-deepseek-10b-v17.1-4k) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_OpenBuddy__openbuddy-deepseek-10b-v17.1-4k\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-22T15:20:55.890442](https://huggingface.co/datasets/open-llm-leaderboard/details_OpenBuddy__openbuddy-deepseek-10b-v17.1-4k/blob/main/results_2024-01-22T15-20-55.890442.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.5275033536344877,\n \"acc_stderr\": 0.03384069886094482,\n \"acc_norm\": 0.5358946325439762,\n \"acc_norm_stderr\": 0.034669341786001784,\n \"mc1\": 0.3182374541003672,\n \"mc1_stderr\": 0.016305988648920616,\n \"mc2\": 0.45957802308964574,\n \"mc2_stderr\": 0.015178526140313892\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.507679180887372,\n \"acc_stderr\": 0.014609667440892567,\n \"acc_norm\": 0.5435153583617748,\n \"acc_norm_stderr\": 0.014555949760496442\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.579964150567616,\n \"acc_stderr\": 0.004925556104679422,\n \"acc_norm\": 0.7692690699063931,\n \"acc_norm_stderr\": 0.004204395478506433\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.34,\n \"acc_stderr\": 0.04760952285695235,\n \"acc_norm\": 0.34,\n \"acc_norm_stderr\": 0.04760952285695235\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.4444444444444444,\n \"acc_stderr\": 0.04292596718256981,\n \"acc_norm\": 0.4444444444444444,\n \"acc_norm_stderr\": 0.04292596718256981\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.5855263157894737,\n \"acc_stderr\": 0.04008973785779206,\n \"acc_norm\": 0.5855263157894737,\n \"acc_norm_stderr\": 0.04008973785779206\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.54,\n \"acc_stderr\": 0.05009082659620332,\n \"acc_norm\": 0.54,\n \"acc_norm_stderr\": 0.05009082659620332\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.5962264150943396,\n \"acc_stderr\": 0.03019761160019795,\n \"acc_norm\": 0.5962264150943396,\n \"acc_norm_stderr\": 0.03019761160019795\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.5833333333333334,\n \"acc_stderr\": 0.04122728707651283,\n \"acc_norm\": 0.5833333333333334,\n \"acc_norm_stderr\": 0.04122728707651283\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.36,\n \"acc_stderr\": 0.04824181513244218,\n \"acc_norm\": 0.36,\n \"acc_norm_stderr\": 0.04824181513244218\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.38,\n \"acc_stderr\": 0.048783173121456316,\n \"acc_norm\": 0.38,\n \"acc_norm_stderr\": 0.048783173121456316\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.44,\n \"acc_stderr\": 0.04988876515698589,\n \"acc_norm\": 0.44,\n \"acc_norm_stderr\": 0.04988876515698589\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.48554913294797686,\n \"acc_stderr\": 0.03810871630454764,\n \"acc_norm\": 0.48554913294797686,\n \"acc_norm_stderr\": 0.03810871630454764\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.2647058823529412,\n \"acc_stderr\": 0.04389869956808778,\n \"acc_norm\": 0.2647058823529412,\n \"acc_norm_stderr\": 0.04389869956808778\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.68,\n \"acc_stderr\": 0.04688261722621504,\n \"acc_norm\": 0.68,\n \"acc_norm_stderr\": 0.04688261722621504\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.44680851063829785,\n \"acc_stderr\": 0.0325005368436584,\n \"acc_norm\": 0.44680851063829785,\n \"acc_norm_stderr\": 0.0325005368436584\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.3333333333333333,\n \"acc_stderr\": 0.044346007015849245,\n \"acc_norm\": 0.3333333333333333,\n \"acc_norm_stderr\": 0.044346007015849245\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.45517241379310347,\n \"acc_stderr\": 0.04149886942192118,\n \"acc_norm\": 0.45517241379310347,\n \"acc_norm_stderr\": 0.04149886942192118\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.2777777777777778,\n \"acc_stderr\": 0.023068188848261117,\n \"acc_norm\": 0.2777777777777778,\n \"acc_norm_stderr\": 0.023068188848261117\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.3333333333333333,\n \"acc_stderr\": 0.04216370213557835,\n \"acc_norm\": 0.3333333333333333,\n \"acc_norm_stderr\": 0.04216370213557835\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.31,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.5870967741935483,\n \"acc_stderr\": 0.02800913812540039,\n \"acc_norm\": 0.5870967741935483,\n \"acc_norm_stderr\": 0.02800913812540039\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.4039408866995074,\n \"acc_stderr\": 0.03452453903822039,\n \"acc_norm\": 0.4039408866995074,\n \"acc_norm_stderr\": 0.03452453903822039\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.56,\n \"acc_stderr\": 0.04988876515698589,\n \"acc_norm\": 0.56,\n \"acc_norm_stderr\": 0.04988876515698589\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.6787878787878788,\n \"acc_stderr\": 0.03646204963253812,\n \"acc_norm\": 0.6787878787878788,\n \"acc_norm_stderr\": 0.03646204963253812\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.6767676767676768,\n \"acc_stderr\": 0.03332299921070645,\n \"acc_norm\": 0.6767676767676768,\n \"acc_norm_stderr\": 0.03332299921070645\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.7616580310880829,\n \"acc_stderr\": 0.03074890536390988,\n \"acc_norm\": 0.7616580310880829,\n \"acc_norm_stderr\": 0.03074890536390988\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.47692307692307695,\n \"acc_stderr\": 0.025323990861736118,\n \"acc_norm\": 0.47692307692307695,\n \"acc_norm_stderr\": 0.025323990861736118\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.2518518518518518,\n \"acc_stderr\": 0.026466117538959916,\n \"acc_norm\": 0.2518518518518518,\n \"acc_norm_stderr\": 0.026466117538959916\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.48739495798319327,\n \"acc_stderr\": 0.032468167657521745,\n \"acc_norm\": 0.48739495798319327,\n \"acc_norm_stderr\": 0.032468167657521745\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.271523178807947,\n \"acc_stderr\": 0.03631329803969654,\n \"acc_norm\": 0.271523178807947,\n \"acc_norm_stderr\": 0.03631329803969654\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.728440366972477,\n \"acc_stderr\": 0.019069098363191435,\n \"acc_norm\": 0.728440366972477,\n \"acc_norm_stderr\": 0.019069098363191435\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.375,\n \"acc_stderr\": 0.033016908987210894,\n \"acc_norm\": 0.375,\n \"acc_norm_stderr\": 0.033016908987210894\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.6666666666666666,\n \"acc_stderr\": 0.03308611113236436,\n \"acc_norm\": 0.6666666666666666,\n \"acc_norm_stderr\": 0.03308611113236436\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7130801687763713,\n \"acc_stderr\": 0.029443773022594693,\n \"acc_norm\": 0.7130801687763713,\n \"acc_norm_stderr\": 0.029443773022594693\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6188340807174888,\n \"acc_stderr\": 0.03259625118416827,\n \"acc_norm\": 0.6188340807174888,\n \"acc_norm_stderr\": 0.03259625118416827\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.5877862595419847,\n \"acc_stderr\": 0.04317171194870255,\n \"acc_norm\": 0.5877862595419847,\n \"acc_norm_stderr\": 0.04317171194870255\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.6694214876033058,\n \"acc_stderr\": 0.04294340845212094,\n \"acc_norm\": 0.6694214876033058,\n \"acc_norm_stderr\": 0.04294340845212094\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.6759259259259259,\n \"acc_stderr\": 0.04524596007030048,\n \"acc_norm\": 0.6759259259259259,\n \"acc_norm_stderr\": 0.04524596007030048\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.6687116564417178,\n \"acc_stderr\": 0.03697983910025588,\n \"acc_norm\": 0.6687116564417178,\n \"acc_norm_stderr\": 0.03697983910025588\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.35714285714285715,\n \"acc_stderr\": 0.04547960999764376,\n \"acc_norm\": 0.35714285714285715,\n \"acc_norm_stderr\": 0.04547960999764376\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.6893203883495146,\n \"acc_stderr\": 0.045821241601615506,\n \"acc_norm\": 0.6893203883495146,\n \"acc_norm_stderr\": 0.045821241601615506\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8076923076923077,\n \"acc_stderr\": 0.025819233256483717,\n \"acc_norm\": 0.8076923076923077,\n \"acc_norm_stderr\": 0.025819233256483717\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.58,\n \"acc_stderr\": 0.04960449637488583,\n \"acc_norm\": 0.58,\n \"acc_norm_stderr\": 0.04960449637488583\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.7075351213282248,\n \"acc_stderr\": 0.016267000684598642,\n \"acc_norm\": 0.7075351213282248,\n \"acc_norm_stderr\": 0.016267000684598642\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.5664739884393064,\n \"acc_stderr\": 0.026680134761679217,\n \"acc_norm\": 0.5664739884393064,\n \"acc_norm_stderr\": 0.026680134761679217\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.28044692737430166,\n \"acc_stderr\": 0.01502408388332289,\n \"acc_norm\": 0.28044692737430166,\n \"acc_norm_stderr\": 0.01502408388332289\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.6045751633986928,\n \"acc_stderr\": 0.027996723180631462,\n \"acc_norm\": 0.6045751633986928,\n \"acc_norm_stderr\": 0.027996723180631462\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.5787781350482315,\n \"acc_stderr\": 0.028043399858210635,\n \"acc_norm\": 0.5787781350482315,\n \"acc_norm_stderr\": 0.028043399858210635\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.5833333333333334,\n \"acc_stderr\": 0.027431623722415,\n \"acc_norm\": 0.5833333333333334,\n \"acc_norm_stderr\": 0.027431623722415\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.3829787234042553,\n \"acc_stderr\": 0.02899908090480617,\n \"acc_norm\": 0.3829787234042553,\n \"acc_norm_stderr\": 0.02899908090480617\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.3852672750977836,\n \"acc_stderr\": 0.012429485434955192,\n \"acc_norm\": 0.3852672750977836,\n \"acc_norm_stderr\": 0.012429485434955192\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.49264705882352944,\n \"acc_stderr\": 0.030369552523902173,\n \"acc_norm\": 0.49264705882352944,\n \"acc_norm_stderr\": 0.030369552523902173\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.5375816993464052,\n \"acc_stderr\": 0.020170614974969765,\n \"acc_norm\": 0.5375816993464052,\n \"acc_norm_stderr\": 0.020170614974969765\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6181818181818182,\n \"acc_stderr\": 0.046534298079135075,\n \"acc_norm\": 0.6181818181818182,\n \"acc_norm_stderr\": 0.046534298079135075\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.6408163265306123,\n \"acc_stderr\": 0.03071356045510849,\n \"acc_norm\": 0.6408163265306123,\n \"acc_norm_stderr\": 0.03071356045510849\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.746268656716418,\n \"acc_stderr\": 0.030769444967296018,\n \"acc_norm\": 0.746268656716418,\n \"acc_norm_stderr\": 0.030769444967296018\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.8,\n \"acc_stderr\": 0.04020151261036846,\n \"acc_norm\": 0.8,\n \"acc_norm_stderr\": 0.04020151261036846\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.463855421686747,\n \"acc_stderr\": 0.03882310850890593,\n \"acc_norm\": 0.463855421686747,\n \"acc_norm_stderr\": 0.03882310850890593\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.7660818713450293,\n \"acc_stderr\": 0.03246721765117826,\n \"acc_norm\": 0.7660818713450293,\n \"acc_norm_stderr\": 0.03246721765117826\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.3182374541003672,\n \"mc1_stderr\": 0.016305988648920616,\n \"mc2\": 0.45957802308964574,\n \"mc2_stderr\": 0.015178526140313892\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.7403314917127072,\n \"acc_stderr\": 0.012322700705552673\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.04473085670962851,\n \"acc_stderr\": 0.005693886131407044\n }\n}\n```", "repo_url": "https://huggingface.co/OpenBuddy/openbuddy-deepseek-10b-v17.1-4k", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|arc:challenge|25_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|gsm8k|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hellaswag|10_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T15-20-55.890442.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["**/details_harness|winogrande|5_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-22T15-20-55.890442.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_22T15_20_55.890442", "path": ["results_2024-01-22T15-20-55.890442.parquet"]}, {"split": "latest", "path": ["results_2024-01-22T15-20-55.890442.parquet"]}]}]}
2024-01-22T15:23:36+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of OpenBuddy/openbuddy-deepseek-10b-v17.1-4k Dataset automatically created during the evaluation run of model OpenBuddy/openbuddy-deepseek-10b-v17.1-4k on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-22T15:20:55.890442(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of OpenBuddy/openbuddy-deepseek-10b-v17.1-4k\n\n\n\nDataset automatically created during the evaluation run of model OpenBuddy/openbuddy-deepseek-10b-v17.1-4k on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T15:20:55.890442(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of OpenBuddy/openbuddy-deepseek-10b-v17.1-4k\n\n\n\nDataset automatically created during the evaluation run of model OpenBuddy/openbuddy-deepseek-10b-v17.1-4k on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T15:20:55.890442(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
a457c3ce0f615874227f22a8e1b6c368eb87ea05
# Dataset Card for Evaluation run of LordNoah/Alpaca_spin_gpt2_e0_se1 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [LordNoah/Alpaca_spin_gpt2_e0_se1](https://huggingface.co/LordNoah/Alpaca_spin_gpt2_e0_se1) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_LordNoah__Alpaca_spin_gpt2_e0_se1", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-22T15:39:18.329884](https://huggingface.co/datasets/open-llm-leaderboard/details_LordNoah__Alpaca_spin_gpt2_e0_se1/blob/main/results_2024-01-22T15-39-18.329884.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.26633934320104735, "acc_stderr": 0.03117121319128777, "acc_norm": 0.267974422544881, "acc_norm_stderr": 0.031986920897447174, "mc1": 0.22643818849449204, "mc1_stderr": 0.01465133732460258, "mc2": 0.38883435647490394, "mc2_stderr": 0.014308709852398498 }, "harness|arc:challenge|25": { "acc": 0.2568259385665529, "acc_stderr": 0.0127669237941168, "acc_norm": 0.27986348122866894, "acc_norm_stderr": 0.013119040897725923 }, "harness|hellaswag|10": { "acc": 0.36516630153355906, "acc_stderr": 0.0048049276087731374, "acc_norm": 0.4583748257319259, "acc_norm_stderr": 0.0049724602068423026 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.25, "acc_stderr": 0.04351941398892446, "acc_norm": 0.25, "acc_norm_stderr": 0.04351941398892446 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.3037037037037037, "acc_stderr": 0.039725528847851375, "acc_norm": 0.3037037037037037, "acc_norm_stderr": 0.039725528847851375 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.3092105263157895, "acc_stderr": 0.03761070869867479, "acc_norm": 0.3092105263157895, "acc_norm_stderr": 0.03761070869867479 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.22, "acc_stderr": 0.041633319989322674, "acc_norm": 0.22, "acc_norm_stderr": 0.041633319989322674 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.32075471698113206, "acc_stderr": 0.028727502957880274, "acc_norm": 0.32075471698113206, "acc_norm_stderr": 0.028727502957880274 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.2569444444444444, "acc_stderr": 0.03653946969442099, "acc_norm": 0.2569444444444444, "acc_norm_stderr": 0.03653946969442099 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.18, "acc_stderr": 0.03861229196653694, "acc_norm": 0.18, "acc_norm_stderr": 0.03861229196653694 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.3, "acc_stderr": 0.046056618647183814, "acc_norm": 0.3, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.27, "acc_stderr": 0.04461960433384741, "acc_norm": 0.27, "acc_norm_stderr": 0.04461960433384741 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.2543352601156069, "acc_stderr": 0.0332055644308557, "acc_norm": 0.2543352601156069, "acc_norm_stderr": 0.0332055644308557 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.22549019607843138, "acc_stderr": 0.041583075330832865, "acc_norm": 0.22549019607843138, "acc_norm_stderr": 0.041583075330832865 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.27, "acc_stderr": 0.0446196043338474, "acc_norm": 0.27, "acc_norm_stderr": 0.0446196043338474 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.2765957446808511, "acc_stderr": 0.029241883869628817, "acc_norm": 0.2765957446808511, "acc_norm_stderr": 0.029241883869628817 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.21929824561403508, "acc_stderr": 0.03892431106518752, "acc_norm": 0.21929824561403508, "acc_norm_stderr": 0.03892431106518752 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.2827586206896552, "acc_stderr": 0.03752833958003336, "acc_norm": 0.2827586206896552, "acc_norm_stderr": 0.03752833958003336 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.2857142857142857, "acc_stderr": 0.023266512213730575, "acc_norm": 0.2857142857142857, "acc_norm_stderr": 0.023266512213730575 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.15079365079365079, "acc_stderr": 0.03200686497287394, "acc_norm": 0.15079365079365079, "acc_norm_stderr": 0.03200686497287394 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.33, "acc_stderr": 0.04725815626252604, "acc_norm": 0.33, "acc_norm_stderr": 0.04725815626252604 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.25161290322580643, "acc_stderr": 0.024685979286239956, "acc_norm": 0.25161290322580643, "acc_norm_stderr": 0.024685979286239956 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.33004926108374383, "acc_stderr": 0.033085304262282574, "acc_norm": 0.33004926108374383, "acc_norm_stderr": 0.033085304262282574 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.3, "acc_stderr": 0.046056618647183814, "acc_norm": 0.3, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.2787878787878788, "acc_stderr": 0.03501438706296781, "acc_norm": 0.2787878787878788, "acc_norm_stderr": 0.03501438706296781 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.3484848484848485, "acc_stderr": 0.033948539651564025, "acc_norm": 0.3484848484848485, "acc_norm_stderr": 0.033948539651564025 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.22797927461139897, "acc_stderr": 0.03027690994517826, "acc_norm": 0.22797927461139897, "acc_norm_stderr": 0.03027690994517826 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.36153846153846153, "acc_stderr": 0.024359581465396987, "acc_norm": 0.36153846153846153, "acc_norm_stderr": 0.024359581465396987 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.26296296296296295, "acc_stderr": 0.02684205787383371, "acc_norm": 0.26296296296296295, "acc_norm_stderr": 0.02684205787383371 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.21008403361344538, "acc_stderr": 0.026461398717471874, "acc_norm": 0.21008403361344538, "acc_norm_stderr": 0.026461398717471874 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.271523178807947, "acc_stderr": 0.03631329803969653, "acc_norm": 0.271523178807947, "acc_norm_stderr": 0.03631329803969653 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.3119266055045872, "acc_stderr": 0.019862967976707245, "acc_norm": 0.3119266055045872, "acc_norm_stderr": 0.019862967976707245 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.2175925925925926, "acc_stderr": 0.028139689444859697, "acc_norm": 0.2175925925925926, "acc_norm_stderr": 0.028139689444859697 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.27941176470588236, "acc_stderr": 0.031493281045079556, "acc_norm": 0.27941176470588236, "acc_norm_stderr": 0.031493281045079556 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.2869198312236287, "acc_stderr": 0.029443773022594693, "acc_norm": 0.2869198312236287, "acc_norm_stderr": 0.029443773022594693 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.13004484304932734, "acc_stderr": 0.02257451942417487, "acc_norm": 0.13004484304932734, "acc_norm_stderr": 0.02257451942417487 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.2366412213740458, "acc_stderr": 0.037276735755969195, "acc_norm": 0.2366412213740458, "acc_norm_stderr": 0.037276735755969195 }, "harness|hendrycksTest-international_law|5": { "acc": 0.34710743801652894, "acc_stderr": 0.043457245702925335, "acc_norm": 0.34710743801652894, "acc_norm_stderr": 0.043457245702925335 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.24074074074074073, "acc_stderr": 0.041331194402438376, "acc_norm": 0.24074074074074073, "acc_norm_stderr": 0.041331194402438376 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.3067484662576687, "acc_stderr": 0.036230899157241474, "acc_norm": 0.3067484662576687, "acc_norm_stderr": 0.036230899157241474 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.22321428571428573, "acc_stderr": 0.03952301967702511, "acc_norm": 0.22321428571428573, "acc_norm_stderr": 0.03952301967702511 }, "harness|hendrycksTest-management|5": { "acc": 0.3786407766990291, "acc_stderr": 0.04802694698258972, "acc_norm": 0.3786407766990291, "acc_norm_stderr": 0.04802694698258972 }, "harness|hendrycksTest-marketing|5": { "acc": 0.25213675213675213, "acc_stderr": 0.02844796547623102, "acc_norm": 0.25213675213675213, "acc_norm_stderr": 0.02844796547623102 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.2, "acc_stderr": 0.040201512610368445, "acc_norm": 0.2, "acc_norm_stderr": 0.040201512610368445 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.19923371647509577, "acc_stderr": 0.014283378044296415, "acc_norm": 0.19923371647509577, "acc_norm_stderr": 0.014283378044296415 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.28901734104046245, "acc_stderr": 0.02440517393578323, "acc_norm": 0.28901734104046245, "acc_norm_stderr": 0.02440517393578323 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.2446927374301676, "acc_stderr": 0.014378169884098407, "acc_norm": 0.2446927374301676, "acc_norm_stderr": 0.014378169884098407 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.24509803921568626, "acc_stderr": 0.02463004897982478, "acc_norm": 0.24509803921568626, "acc_norm_stderr": 0.02463004897982478 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.3054662379421222, "acc_stderr": 0.026160584450140488, "acc_norm": 0.3054662379421222, "acc_norm_stderr": 0.026160584450140488 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.24074074074074073, "acc_stderr": 0.023788583551658533, "acc_norm": 0.24074074074074073, "acc_norm_stderr": 0.023788583551658533 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.25886524822695034, "acc_stderr": 0.026129572527180848, "acc_norm": 0.25886524822695034, "acc_norm_stderr": 0.026129572527180848 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.2503259452411995, "acc_stderr": 0.011064151027165441, "acc_norm": 0.2503259452411995, "acc_norm_stderr": 0.011064151027165441 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.19852941176470587, "acc_stderr": 0.024231013370541114, "acc_norm": 0.19852941176470587, "acc_norm_stderr": 0.024231013370541114 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.2549019607843137, "acc_stderr": 0.017630827375148386, "acc_norm": 0.2549019607843137, "acc_norm_stderr": 0.017630827375148386 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.20909090909090908, "acc_stderr": 0.038950910157241364, "acc_norm": 0.20909090909090908, "acc_norm_stderr": 0.038950910157241364 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.27755102040816326, "acc_stderr": 0.02866685779027465, "acc_norm": 0.27755102040816326, "acc_norm_stderr": 0.02866685779027465 }, "harness|hendrycksTest-sociology|5": { "acc": 0.2835820895522388, "acc_stderr": 0.03187187537919797, "acc_norm": 0.2835820895522388, "acc_norm_stderr": 0.03187187537919797 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.31, "acc_stderr": 0.04648231987117316, "acc_norm": 0.31, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-virology|5": { "acc": 0.25301204819277107, "acc_stderr": 0.03384429155233134, "acc_norm": 0.25301204819277107, "acc_norm_stderr": 0.03384429155233134 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.29239766081871343, "acc_stderr": 0.034886477134579215, "acc_norm": 0.29239766081871343, "acc_norm_stderr": 0.034886477134579215 }, "harness|truthfulqa:mc|0": { "mc1": 0.22643818849449204, "mc1_stderr": 0.01465133732460258, "mc2": 0.38883435647490394, "mc2_stderr": 0.014308709852398498 }, "harness|winogrande|5": { "acc": 0.5516969218626677, "acc_stderr": 0.013977171307126343 }, "harness|gsm8k|5": { "acc": 0.000758150113722517, "acc_stderr": 0.0007581501137225394 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_LordNoah__Alpaca_spin_gpt2_e0_se1
[ "region:us" ]
2024-01-22T15:40:41+00:00
{"pretty_name": "Evaluation run of LordNoah/Alpaca_spin_gpt2_e0_se1", "dataset_summary": "Dataset automatically created during the evaluation run of model [LordNoah/Alpaca_spin_gpt2_e0_se1](https://huggingface.co/LordNoah/Alpaca_spin_gpt2_e0_se1) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_LordNoah__Alpaca_spin_gpt2_e0_se1\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-22T15:39:18.329884](https://huggingface.co/datasets/open-llm-leaderboard/details_LordNoah__Alpaca_spin_gpt2_e0_se1/blob/main/results_2024-01-22T15-39-18.329884.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.26633934320104735,\n \"acc_stderr\": 0.03117121319128777,\n \"acc_norm\": 0.267974422544881,\n \"acc_norm_stderr\": 0.031986920897447174,\n \"mc1\": 0.22643818849449204,\n \"mc1_stderr\": 0.01465133732460258,\n \"mc2\": 0.38883435647490394,\n \"mc2_stderr\": 0.014308709852398498\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.2568259385665529,\n \"acc_stderr\": 0.0127669237941168,\n \"acc_norm\": 0.27986348122866894,\n \"acc_norm_stderr\": 0.013119040897725923\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.36516630153355906,\n \"acc_stderr\": 0.0048049276087731374,\n \"acc_norm\": 0.4583748257319259,\n \"acc_norm_stderr\": 0.0049724602068423026\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.25,\n \"acc_stderr\": 0.04351941398892446,\n \"acc_norm\": 0.25,\n \"acc_norm_stderr\": 0.04351941398892446\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.3037037037037037,\n \"acc_stderr\": 0.039725528847851375,\n \"acc_norm\": 0.3037037037037037,\n \"acc_norm_stderr\": 0.039725528847851375\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.3092105263157895,\n \"acc_stderr\": 0.03761070869867479,\n \"acc_norm\": 0.3092105263157895,\n \"acc_norm_stderr\": 0.03761070869867479\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.22,\n \"acc_stderr\": 0.041633319989322674,\n \"acc_norm\": 0.22,\n \"acc_norm_stderr\": 0.041633319989322674\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.32075471698113206,\n \"acc_stderr\": 0.028727502957880274,\n \"acc_norm\": 0.32075471698113206,\n \"acc_norm_stderr\": 0.028727502957880274\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.2569444444444444,\n \"acc_stderr\": 0.03653946969442099,\n \"acc_norm\": 0.2569444444444444,\n \"acc_norm_stderr\": 0.03653946969442099\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.18,\n \"acc_stderr\": 0.03861229196653694,\n \"acc_norm\": 0.18,\n \"acc_norm_stderr\": 0.03861229196653694\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.3,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.3,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.27,\n \"acc_stderr\": 0.04461960433384741,\n \"acc_norm\": 0.27,\n \"acc_norm_stderr\": 0.04461960433384741\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.2543352601156069,\n \"acc_stderr\": 0.0332055644308557,\n \"acc_norm\": 0.2543352601156069,\n \"acc_norm_stderr\": 0.0332055644308557\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.22549019607843138,\n \"acc_stderr\": 0.041583075330832865,\n \"acc_norm\": 0.22549019607843138,\n \"acc_norm_stderr\": 0.041583075330832865\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.27,\n \"acc_stderr\": 0.0446196043338474,\n \"acc_norm\": 0.27,\n \"acc_norm_stderr\": 0.0446196043338474\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.2765957446808511,\n \"acc_stderr\": 0.029241883869628817,\n \"acc_norm\": 0.2765957446808511,\n \"acc_norm_stderr\": 0.029241883869628817\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.21929824561403508,\n \"acc_stderr\": 0.03892431106518752,\n \"acc_norm\": 0.21929824561403508,\n \"acc_norm_stderr\": 0.03892431106518752\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.2827586206896552,\n \"acc_stderr\": 0.03752833958003336,\n \"acc_norm\": 0.2827586206896552,\n \"acc_norm_stderr\": 0.03752833958003336\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.2857142857142857,\n \"acc_stderr\": 0.023266512213730575,\n \"acc_norm\": 0.2857142857142857,\n \"acc_norm_stderr\": 0.023266512213730575\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.15079365079365079,\n \"acc_stderr\": 0.03200686497287394,\n \"acc_norm\": 0.15079365079365079,\n \"acc_norm_stderr\": 0.03200686497287394\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.33,\n \"acc_stderr\": 0.04725815626252604,\n \"acc_norm\": 0.33,\n \"acc_norm_stderr\": 0.04725815626252604\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.25161290322580643,\n \"acc_stderr\": 0.024685979286239956,\n \"acc_norm\": 0.25161290322580643,\n \"acc_norm_stderr\": 0.024685979286239956\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.33004926108374383,\n \"acc_stderr\": 0.033085304262282574,\n \"acc_norm\": 0.33004926108374383,\n \"acc_norm_stderr\": 0.033085304262282574\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.3,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.3,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.2787878787878788,\n \"acc_stderr\": 0.03501438706296781,\n \"acc_norm\": 0.2787878787878788,\n \"acc_norm_stderr\": 0.03501438706296781\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.3484848484848485,\n \"acc_stderr\": 0.033948539651564025,\n \"acc_norm\": 0.3484848484848485,\n \"acc_norm_stderr\": 0.033948539651564025\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.22797927461139897,\n \"acc_stderr\": 0.03027690994517826,\n \"acc_norm\": 0.22797927461139897,\n \"acc_norm_stderr\": 0.03027690994517826\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.36153846153846153,\n \"acc_stderr\": 0.024359581465396987,\n \"acc_norm\": 0.36153846153846153,\n \"acc_norm_stderr\": 0.024359581465396987\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.26296296296296295,\n \"acc_stderr\": 0.02684205787383371,\n \"acc_norm\": 0.26296296296296295,\n \"acc_norm_stderr\": 0.02684205787383371\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.21008403361344538,\n \"acc_stderr\": 0.026461398717471874,\n \"acc_norm\": 0.21008403361344538,\n \"acc_norm_stderr\": 0.026461398717471874\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.271523178807947,\n \"acc_stderr\": 0.03631329803969653,\n \"acc_norm\": 0.271523178807947,\n \"acc_norm_stderr\": 0.03631329803969653\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.3119266055045872,\n \"acc_stderr\": 0.019862967976707245,\n \"acc_norm\": 0.3119266055045872,\n \"acc_norm_stderr\": 0.019862967976707245\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.2175925925925926,\n \"acc_stderr\": 0.028139689444859697,\n \"acc_norm\": 0.2175925925925926,\n \"acc_norm_stderr\": 0.028139689444859697\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.27941176470588236,\n \"acc_stderr\": 0.031493281045079556,\n \"acc_norm\": 0.27941176470588236,\n \"acc_norm_stderr\": 0.031493281045079556\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.2869198312236287,\n \"acc_stderr\": 0.029443773022594693,\n \"acc_norm\": 0.2869198312236287,\n \"acc_norm_stderr\": 0.029443773022594693\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.13004484304932734,\n \"acc_stderr\": 0.02257451942417487,\n \"acc_norm\": 0.13004484304932734,\n \"acc_norm_stderr\": 0.02257451942417487\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.2366412213740458,\n \"acc_stderr\": 0.037276735755969195,\n \"acc_norm\": 0.2366412213740458,\n \"acc_norm_stderr\": 0.037276735755969195\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.34710743801652894,\n \"acc_stderr\": 0.043457245702925335,\n \"acc_norm\": 0.34710743801652894,\n \"acc_norm_stderr\": 0.043457245702925335\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.24074074074074073,\n \"acc_stderr\": 0.041331194402438376,\n \"acc_norm\": 0.24074074074074073,\n \"acc_norm_stderr\": 0.041331194402438376\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.3067484662576687,\n \"acc_stderr\": 0.036230899157241474,\n \"acc_norm\": 0.3067484662576687,\n \"acc_norm_stderr\": 0.036230899157241474\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.22321428571428573,\n \"acc_stderr\": 0.03952301967702511,\n \"acc_norm\": 0.22321428571428573,\n \"acc_norm_stderr\": 0.03952301967702511\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.3786407766990291,\n \"acc_stderr\": 0.04802694698258972,\n \"acc_norm\": 0.3786407766990291,\n \"acc_norm_stderr\": 0.04802694698258972\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.25213675213675213,\n \"acc_stderr\": 0.02844796547623102,\n \"acc_norm\": 0.25213675213675213,\n \"acc_norm_stderr\": 0.02844796547623102\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.2,\n \"acc_stderr\": 0.040201512610368445,\n \"acc_norm\": 0.2,\n \"acc_norm_stderr\": 0.040201512610368445\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.19923371647509577,\n \"acc_stderr\": 0.014283378044296415,\n \"acc_norm\": 0.19923371647509577,\n \"acc_norm_stderr\": 0.014283378044296415\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.28901734104046245,\n \"acc_stderr\": 0.02440517393578323,\n \"acc_norm\": 0.28901734104046245,\n \"acc_norm_stderr\": 0.02440517393578323\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.2446927374301676,\n \"acc_stderr\": 0.014378169884098407,\n \"acc_norm\": 0.2446927374301676,\n \"acc_norm_stderr\": 0.014378169884098407\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.24509803921568626,\n \"acc_stderr\": 0.02463004897982478,\n \"acc_norm\": 0.24509803921568626,\n \"acc_norm_stderr\": 0.02463004897982478\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.3054662379421222,\n \"acc_stderr\": 0.026160584450140488,\n \"acc_norm\": 0.3054662379421222,\n \"acc_norm_stderr\": 0.026160584450140488\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.24074074074074073,\n \"acc_stderr\": 0.023788583551658533,\n \"acc_norm\": 0.24074074074074073,\n \"acc_norm_stderr\": 0.023788583551658533\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.25886524822695034,\n \"acc_stderr\": 0.026129572527180848,\n \"acc_norm\": 0.25886524822695034,\n \"acc_norm_stderr\": 0.026129572527180848\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.2503259452411995,\n \"acc_stderr\": 0.011064151027165441,\n \"acc_norm\": 0.2503259452411995,\n \"acc_norm_stderr\": 0.011064151027165441\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.19852941176470587,\n \"acc_stderr\": 0.024231013370541114,\n \"acc_norm\": 0.19852941176470587,\n \"acc_norm_stderr\": 0.024231013370541114\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.2549019607843137,\n \"acc_stderr\": 0.017630827375148386,\n \"acc_norm\": 0.2549019607843137,\n \"acc_norm_stderr\": 0.017630827375148386\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.20909090909090908,\n \"acc_stderr\": 0.038950910157241364,\n \"acc_norm\": 0.20909090909090908,\n \"acc_norm_stderr\": 0.038950910157241364\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.27755102040816326,\n \"acc_stderr\": 0.02866685779027465,\n \"acc_norm\": 0.27755102040816326,\n \"acc_norm_stderr\": 0.02866685779027465\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.2835820895522388,\n \"acc_stderr\": 0.03187187537919797,\n \"acc_norm\": 0.2835820895522388,\n \"acc_norm_stderr\": 0.03187187537919797\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.31,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.25301204819277107,\n \"acc_stderr\": 0.03384429155233134,\n \"acc_norm\": 0.25301204819277107,\n \"acc_norm_stderr\": 0.03384429155233134\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.29239766081871343,\n \"acc_stderr\": 0.034886477134579215,\n \"acc_norm\": 0.29239766081871343,\n \"acc_norm_stderr\": 0.034886477134579215\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.22643818849449204,\n \"mc1_stderr\": 0.01465133732460258,\n \"mc2\": 0.38883435647490394,\n \"mc2_stderr\": 0.014308709852398498\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.5516969218626677,\n \"acc_stderr\": 0.013977171307126343\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.000758150113722517,\n \"acc_stderr\": 0.0007581501137225394\n }\n}\n```", "repo_url": "https://huggingface.co/LordNoah/Alpaca_spin_gpt2_e0_se1", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|arc:challenge|25_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|gsm8k|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hellaswag|10_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T15-39-18.329884.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["**/details_harness|winogrande|5_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-22T15-39-18.329884.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_22T15_39_18.329884", "path": ["results_2024-01-22T15-39-18.329884.parquet"]}, {"split": "latest", "path": ["results_2024-01-22T15-39-18.329884.parquet"]}]}]}
2024-01-22T15:41:03+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of LordNoah/Alpaca_spin_gpt2_e0_se1 Dataset automatically created during the evaluation run of model LordNoah/Alpaca_spin_gpt2_e0_se1 on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-22T15:39:18.329884(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of LordNoah/Alpaca_spin_gpt2_e0_se1\n\n\n\nDataset automatically created during the evaluation run of model LordNoah/Alpaca_spin_gpt2_e0_se1 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T15:39:18.329884(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of LordNoah/Alpaca_spin_gpt2_e0_se1\n\n\n\nDataset automatically created during the evaluation run of model LordNoah/Alpaca_spin_gpt2_e0_se1 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T15:39:18.329884(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
db134dbc02461edb6139b1b4f94b07991d1f141b
Dataset created from the 20k_random_data.txt file linked by [kalomaze](https://github.com/kalomaze) here: [https://github.com/ggerganov/llama.cpp/discussions/5006](https://github.com/ggerganov/llama.cpp/discussions/5006#discussioncomment-8163190)
llmixer/20k_random_data
[ "20k", "random", "region:us" ]
2024-01-22T15:54:27+00:00
{"tags": ["20k", "random"]}
2024-01-22T15:58:11+00:00
[]
[]
TAGS #20k #random #region-us
Dataset created from the 20k_random_data.txt file linked by kalomaze here: URL
[]
[ "TAGS\n#20k #random #region-us \n" ]
a7d0cda6e629f7cc258da6e805271e577903c75d
# Dataset Card for Evaluation run of abdulrahman-nuzha/finetuned-Mistral-7B-Instruct-v0.2-5000-v2.0 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [abdulrahman-nuzha/finetuned-Mistral-7B-Instruct-v0.2-5000-v2.0](https://huggingface.co/abdulrahman-nuzha/finetuned-Mistral-7B-Instruct-v0.2-5000-v2.0) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_abdulrahman-nuzha__finetuned-Mistral-7B-Instruct-v0.2-5000-v2.0", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-22T15:53:57.776809](https://huggingface.co/datasets/open-llm-leaderboard/details_abdulrahman-nuzha__finetuned-Mistral-7B-Instruct-v0.2-5000-v2.0/blob/main/results_2024-01-22T15-53-57.776809.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.5840566611683854, "acc_stderr": 0.0336733702398527, "acc_norm": 0.5887774362139145, "acc_norm_stderr": 0.03437128171361439, "mc1": 0.42962056303549573, "mc1_stderr": 0.0173292345804091, "mc2": 0.5954200996176123, "mc2_stderr": 0.01553089056885833 }, "harness|arc:challenge|25": { "acc": 0.5418088737201365, "acc_stderr": 0.014560220308714702, "acc_norm": 0.5930034129692833, "acc_norm_stderr": 0.01435639941800912 }, "harness|hellaswag|10": { "acc": 0.630551682931687, "acc_stderr": 0.00481669012320976, "acc_norm": 0.8265285799641505, "acc_norm_stderr": 0.003778804474605908 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.31, "acc_stderr": 0.04648231987117316, "acc_norm": 0.31, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.5259259259259259, "acc_stderr": 0.04313531696750574, "acc_norm": 0.5259259259259259, "acc_norm_stderr": 0.04313531696750574 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.6118421052631579, "acc_stderr": 0.03965842097512744, "acc_norm": 0.6118421052631579, "acc_norm_stderr": 0.03965842097512744 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.56, "acc_stderr": 0.04988876515698589, "acc_norm": 0.56, "acc_norm_stderr": 0.04988876515698589 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.6264150943396226, "acc_stderr": 0.029773082713319875, "acc_norm": 0.6264150943396226, "acc_norm_stderr": 0.029773082713319875 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.6527777777777778, "acc_stderr": 0.039812405437178615, "acc_norm": 0.6527777777777778, "acc_norm_stderr": 0.039812405437178615 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.48, "acc_stderr": 0.050211673156867795, "acc_norm": 0.48, "acc_norm_stderr": 0.050211673156867795 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.51, "acc_stderr": 0.05024183937956911, "acc_norm": 0.51, "acc_norm_stderr": 0.05024183937956911 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.34, "acc_stderr": 0.04760952285695235, "acc_norm": 0.34, "acc_norm_stderr": 0.04760952285695235 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.5895953757225434, "acc_stderr": 0.03750757044895536, "acc_norm": 0.5895953757225434, "acc_norm_stderr": 0.03750757044895536 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.4411764705882353, "acc_stderr": 0.04940635630605659, "acc_norm": 0.4411764705882353, "acc_norm_stderr": 0.04940635630605659 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.71, "acc_stderr": 0.045604802157206845, "acc_norm": 0.71, "acc_norm_stderr": 0.045604802157206845 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.502127659574468, "acc_stderr": 0.032685726586674915, "acc_norm": 0.502127659574468, "acc_norm_stderr": 0.032685726586674915 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.3684210526315789, "acc_stderr": 0.04537815354939391, "acc_norm": 0.3684210526315789, "acc_norm_stderr": 0.04537815354939391 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.5793103448275863, "acc_stderr": 0.0411391498118926, "acc_norm": 0.5793103448275863, "acc_norm_stderr": 0.0411391498118926 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.35714285714285715, "acc_stderr": 0.024677862841332783, "acc_norm": 0.35714285714285715, "acc_norm_stderr": 0.024677862841332783 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.40476190476190477, "acc_stderr": 0.04390259265377562, "acc_norm": 0.40476190476190477, "acc_norm_stderr": 0.04390259265377562 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.38, "acc_stderr": 0.048783173121456316, "acc_norm": 0.38, "acc_norm_stderr": 0.048783173121456316 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.6806451612903226, "acc_stderr": 0.026522709674667768, "acc_norm": 0.6806451612903226, "acc_norm_stderr": 0.026522709674667768 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.47783251231527096, "acc_stderr": 0.03514528562175008, "acc_norm": 0.47783251231527096, "acc_norm_stderr": 0.03514528562175008 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.63, "acc_stderr": 0.04852365870939099, "acc_norm": 0.63, "acc_norm_stderr": 0.04852365870939099 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.696969696969697, "acc_stderr": 0.03588624800091706, "acc_norm": 0.696969696969697, "acc_norm_stderr": 0.03588624800091706 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.7474747474747475, "acc_stderr": 0.03095405547036589, "acc_norm": 0.7474747474747475, "acc_norm_stderr": 0.03095405547036589 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.8134715025906736, "acc_stderr": 0.02811209121011746, "acc_norm": 0.8134715025906736, "acc_norm_stderr": 0.02811209121011746 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.5358974358974359, "acc_stderr": 0.02528558599001786, "acc_norm": 0.5358974358974359, "acc_norm_stderr": 0.02528558599001786 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.34444444444444444, "acc_stderr": 0.02897264888484427, "acc_norm": 0.34444444444444444, "acc_norm_stderr": 0.02897264888484427 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.5840336134453782, "acc_stderr": 0.03201650100739611, "acc_norm": 0.5840336134453782, "acc_norm_stderr": 0.03201650100739611 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.3509933774834437, "acc_stderr": 0.038969819642573754, "acc_norm": 0.3509933774834437, "acc_norm_stderr": 0.038969819642573754 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.7724770642201835, "acc_stderr": 0.017974463578776502, "acc_norm": 0.7724770642201835, "acc_norm_stderr": 0.017974463578776502 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.46296296296296297, "acc_stderr": 0.03400603625538271, "acc_norm": 0.46296296296296297, "acc_norm_stderr": 0.03400603625538271 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.7303921568627451, "acc_stderr": 0.031145570659486782, "acc_norm": 0.7303921568627451, "acc_norm_stderr": 0.031145570659486782 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7426160337552743, "acc_stderr": 0.028458820991460305, "acc_norm": 0.7426160337552743, "acc_norm_stderr": 0.028458820991460305 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6098654708520179, "acc_stderr": 0.03273766725459156, "acc_norm": 0.6098654708520179, "acc_norm_stderr": 0.03273766725459156 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.6717557251908397, "acc_stderr": 0.04118438565806298, "acc_norm": 0.6717557251908397, "acc_norm_stderr": 0.04118438565806298 }, "harness|hendrycksTest-international_law|5": { "acc": 0.7355371900826446, "acc_stderr": 0.04026187527591207, "acc_norm": 0.7355371900826446, "acc_norm_stderr": 0.04026187527591207 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.6851851851851852, "acc_stderr": 0.04489931073591312, "acc_norm": 0.6851851851851852, "acc_norm_stderr": 0.04489931073591312 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7361963190184049, "acc_stderr": 0.03462419931615623, "acc_norm": 0.7361963190184049, "acc_norm_stderr": 0.03462419931615623 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.375, "acc_stderr": 0.04595091388086298, "acc_norm": 0.375, "acc_norm_stderr": 0.04595091388086298 }, "harness|hendrycksTest-management|5": { "acc": 0.6796116504854369, "acc_stderr": 0.04620284082280042, "acc_norm": 0.6796116504854369, "acc_norm_stderr": 0.04620284082280042 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8632478632478633, "acc_stderr": 0.022509033937077805, "acc_norm": 0.8632478632478633, "acc_norm_stderr": 0.022509033937077805 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.6, "acc_stderr": 0.049236596391733084, "acc_norm": 0.6, "acc_norm_stderr": 0.049236596391733084 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.7598978288633461, "acc_stderr": 0.015274685213734198, "acc_norm": 0.7598978288633461, "acc_norm_stderr": 0.015274685213734198 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.6416184971098265, "acc_stderr": 0.025816756791584197, "acc_norm": 0.6416184971098265, "acc_norm_stderr": 0.025816756791584197 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.3642458100558659, "acc_stderr": 0.016094338768474593, "acc_norm": 0.3642458100558659, "acc_norm_stderr": 0.016094338768474593 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.6339869281045751, "acc_stderr": 0.027582811415159607, "acc_norm": 0.6339869281045751, "acc_norm_stderr": 0.027582811415159607 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.6655948553054662, "acc_stderr": 0.026795422327893937, "acc_norm": 0.6655948553054662, "acc_norm_stderr": 0.026795422327893937 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.6481481481481481, "acc_stderr": 0.026571483480719964, "acc_norm": 0.6481481481481481, "acc_norm_stderr": 0.026571483480719964 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.4397163120567376, "acc_stderr": 0.029609912075594106, "acc_norm": 0.4397163120567376, "acc_norm_stderr": 0.029609912075594106 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.4061277705345502, "acc_stderr": 0.012543154588412932, "acc_norm": 0.4061277705345502, "acc_norm_stderr": 0.012543154588412932 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.5477941176470589, "acc_stderr": 0.030233758551596445, "acc_norm": 0.5477941176470589, "acc_norm_stderr": 0.030233758551596445 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6111111111111112, "acc_stderr": 0.019722058939618068, "acc_norm": 0.6111111111111112, "acc_norm_stderr": 0.019722058939618068 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6090909090909091, "acc_stderr": 0.04673752333670239, "acc_norm": 0.6090909090909091, "acc_norm_stderr": 0.04673752333670239 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.6979591836734694, "acc_stderr": 0.029393609319879804, "acc_norm": 0.6979591836734694, "acc_norm_stderr": 0.029393609319879804 }, "harness|hendrycksTest-sociology|5": { "acc": 0.7164179104477612, "acc_stderr": 0.03187187537919797, "acc_norm": 0.7164179104477612, "acc_norm_stderr": 0.03187187537919797 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.83, "acc_stderr": 0.03775251680686371, "acc_norm": 0.83, "acc_norm_stderr": 0.03775251680686371 }, "harness|hendrycksTest-virology|5": { "acc": 0.45180722891566266, "acc_stderr": 0.038743715565879536, "acc_norm": 0.45180722891566266, "acc_norm_stderr": 0.038743715565879536 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8187134502923976, "acc_stderr": 0.029547741687640038, "acc_norm": 0.8187134502923976, "acc_norm_stderr": 0.029547741687640038 }, "harness|truthfulqa:mc|0": { "mc1": 0.42962056303549573, "mc1_stderr": 0.0173292345804091, "mc2": 0.5954200996176123, "mc2_stderr": 0.01553089056885833 }, "harness|winogrande|5": { "acc": 0.77663772691397, "acc_stderr": 0.011705697565205207 }, "harness|gsm8k|5": { "acc": 0.3601213040181956, "acc_stderr": 0.013222559423250485 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_abdulrahman-nuzha__finetuned-Mistral-7B-Instruct-v0.2-5000-v2.0
[ "region:us" ]
2024-01-22T15:56:13+00:00
{"pretty_name": "Evaluation run of abdulrahman-nuzha/finetuned-Mistral-7B-Instruct-v0.2-5000-v2.0", "dataset_summary": "Dataset automatically created during the evaluation run of model [abdulrahman-nuzha/finetuned-Mistral-7B-Instruct-v0.2-5000-v2.0](https://huggingface.co/abdulrahman-nuzha/finetuned-Mistral-7B-Instruct-v0.2-5000-v2.0) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_abdulrahman-nuzha__finetuned-Mistral-7B-Instruct-v0.2-5000-v2.0\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-22T15:53:57.776809](https://huggingface.co/datasets/open-llm-leaderboard/details_abdulrahman-nuzha__finetuned-Mistral-7B-Instruct-v0.2-5000-v2.0/blob/main/results_2024-01-22T15-53-57.776809.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.5840566611683854,\n \"acc_stderr\": 0.0336733702398527,\n \"acc_norm\": 0.5887774362139145,\n \"acc_norm_stderr\": 0.03437128171361439,\n \"mc1\": 0.42962056303549573,\n \"mc1_stderr\": 0.0173292345804091,\n \"mc2\": 0.5954200996176123,\n \"mc2_stderr\": 0.01553089056885833\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.5418088737201365,\n \"acc_stderr\": 0.014560220308714702,\n \"acc_norm\": 0.5930034129692833,\n \"acc_norm_stderr\": 0.01435639941800912\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.630551682931687,\n \"acc_stderr\": 0.00481669012320976,\n \"acc_norm\": 0.8265285799641505,\n \"acc_norm_stderr\": 0.003778804474605908\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.31,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.5259259259259259,\n \"acc_stderr\": 0.04313531696750574,\n \"acc_norm\": 0.5259259259259259,\n \"acc_norm_stderr\": 0.04313531696750574\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.6118421052631579,\n \"acc_stderr\": 0.03965842097512744,\n \"acc_norm\": 0.6118421052631579,\n \"acc_norm_stderr\": 0.03965842097512744\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.56,\n \"acc_stderr\": 0.04988876515698589,\n \"acc_norm\": 0.56,\n \"acc_norm_stderr\": 0.04988876515698589\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.6264150943396226,\n \"acc_stderr\": 0.029773082713319875,\n \"acc_norm\": 0.6264150943396226,\n \"acc_norm_stderr\": 0.029773082713319875\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.6527777777777778,\n \"acc_stderr\": 0.039812405437178615,\n \"acc_norm\": 0.6527777777777778,\n \"acc_norm_stderr\": 0.039812405437178615\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.48,\n \"acc_stderr\": 0.050211673156867795,\n \"acc_norm\": 0.48,\n \"acc_norm_stderr\": 0.050211673156867795\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.51,\n \"acc_stderr\": 0.05024183937956911,\n \"acc_norm\": 0.51,\n \"acc_norm_stderr\": 0.05024183937956911\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.34,\n \"acc_stderr\": 0.04760952285695235,\n \"acc_norm\": 0.34,\n \"acc_norm_stderr\": 0.04760952285695235\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.5895953757225434,\n \"acc_stderr\": 0.03750757044895536,\n \"acc_norm\": 0.5895953757225434,\n \"acc_norm_stderr\": 0.03750757044895536\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.4411764705882353,\n \"acc_stderr\": 0.04940635630605659,\n \"acc_norm\": 0.4411764705882353,\n \"acc_norm_stderr\": 0.04940635630605659\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.71,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\": 0.71,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.502127659574468,\n \"acc_stderr\": 0.032685726586674915,\n \"acc_norm\": 0.502127659574468,\n \"acc_norm_stderr\": 0.032685726586674915\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.3684210526315789,\n \"acc_stderr\": 0.04537815354939391,\n \"acc_norm\": 0.3684210526315789,\n \"acc_norm_stderr\": 0.04537815354939391\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5793103448275863,\n \"acc_stderr\": 0.0411391498118926,\n \"acc_norm\": 0.5793103448275863,\n \"acc_norm_stderr\": 0.0411391498118926\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.35714285714285715,\n \"acc_stderr\": 0.024677862841332783,\n \"acc_norm\": 0.35714285714285715,\n \"acc_norm_stderr\": 0.024677862841332783\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.40476190476190477,\n \"acc_stderr\": 0.04390259265377562,\n \"acc_norm\": 0.40476190476190477,\n \"acc_norm_stderr\": 0.04390259265377562\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.38,\n \"acc_stderr\": 0.048783173121456316,\n \"acc_norm\": 0.38,\n \"acc_norm_stderr\": 0.048783173121456316\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.6806451612903226,\n \"acc_stderr\": 0.026522709674667768,\n \"acc_norm\": 0.6806451612903226,\n \"acc_norm_stderr\": 0.026522709674667768\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.47783251231527096,\n \"acc_stderr\": 0.03514528562175008,\n \"acc_norm\": 0.47783251231527096,\n \"acc_norm_stderr\": 0.03514528562175008\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.63,\n \"acc_stderr\": 0.04852365870939099,\n \"acc_norm\": 0.63,\n \"acc_norm_stderr\": 0.04852365870939099\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.696969696969697,\n \"acc_stderr\": 0.03588624800091706,\n \"acc_norm\": 0.696969696969697,\n \"acc_norm_stderr\": 0.03588624800091706\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7474747474747475,\n \"acc_stderr\": 0.03095405547036589,\n \"acc_norm\": 0.7474747474747475,\n \"acc_norm_stderr\": 0.03095405547036589\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8134715025906736,\n \"acc_stderr\": 0.02811209121011746,\n \"acc_norm\": 0.8134715025906736,\n \"acc_norm_stderr\": 0.02811209121011746\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.5358974358974359,\n \"acc_stderr\": 0.02528558599001786,\n \"acc_norm\": 0.5358974358974359,\n \"acc_norm_stderr\": 0.02528558599001786\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.34444444444444444,\n \"acc_stderr\": 0.02897264888484427,\n \"acc_norm\": 0.34444444444444444,\n \"acc_norm_stderr\": 0.02897264888484427\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.5840336134453782,\n \"acc_stderr\": 0.03201650100739611,\n \"acc_norm\": 0.5840336134453782,\n \"acc_norm_stderr\": 0.03201650100739611\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.3509933774834437,\n \"acc_stderr\": 0.038969819642573754,\n \"acc_norm\": 0.3509933774834437,\n \"acc_norm_stderr\": 0.038969819642573754\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.7724770642201835,\n \"acc_stderr\": 0.017974463578776502,\n \"acc_norm\": 0.7724770642201835,\n \"acc_norm_stderr\": 0.017974463578776502\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.46296296296296297,\n \"acc_stderr\": 0.03400603625538271,\n \"acc_norm\": 0.46296296296296297,\n \"acc_norm_stderr\": 0.03400603625538271\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.7303921568627451,\n \"acc_stderr\": 0.031145570659486782,\n \"acc_norm\": 0.7303921568627451,\n \"acc_norm_stderr\": 0.031145570659486782\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7426160337552743,\n \"acc_stderr\": 0.028458820991460305,\n \"acc_norm\": 0.7426160337552743,\n \"acc_norm_stderr\": 0.028458820991460305\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6098654708520179,\n \"acc_stderr\": 0.03273766725459156,\n \"acc_norm\": 0.6098654708520179,\n \"acc_norm_stderr\": 0.03273766725459156\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.6717557251908397,\n \"acc_stderr\": 0.04118438565806298,\n \"acc_norm\": 0.6717557251908397,\n \"acc_norm_stderr\": 0.04118438565806298\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.7355371900826446,\n \"acc_stderr\": 0.04026187527591207,\n \"acc_norm\": 0.7355371900826446,\n \"acc_norm_stderr\": 0.04026187527591207\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.6851851851851852,\n \"acc_stderr\": 0.04489931073591312,\n \"acc_norm\": 0.6851851851851852,\n \"acc_norm_stderr\": 0.04489931073591312\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7361963190184049,\n \"acc_stderr\": 0.03462419931615623,\n \"acc_norm\": 0.7361963190184049,\n \"acc_norm_stderr\": 0.03462419931615623\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.375,\n \"acc_stderr\": 0.04595091388086298,\n \"acc_norm\": 0.375,\n \"acc_norm_stderr\": 0.04595091388086298\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.6796116504854369,\n \"acc_stderr\": 0.04620284082280042,\n \"acc_norm\": 0.6796116504854369,\n \"acc_norm_stderr\": 0.04620284082280042\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8632478632478633,\n \"acc_stderr\": 0.022509033937077805,\n \"acc_norm\": 0.8632478632478633,\n \"acc_norm_stderr\": 0.022509033937077805\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.6,\n \"acc_stderr\": 0.049236596391733084,\n \"acc_norm\": 0.6,\n \"acc_norm_stderr\": 0.049236596391733084\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.7598978288633461,\n \"acc_stderr\": 0.015274685213734198,\n \"acc_norm\": 0.7598978288633461,\n \"acc_norm_stderr\": 0.015274685213734198\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.6416184971098265,\n \"acc_stderr\": 0.025816756791584197,\n \"acc_norm\": 0.6416184971098265,\n \"acc_norm_stderr\": 0.025816756791584197\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.3642458100558659,\n \"acc_stderr\": 0.016094338768474593,\n \"acc_norm\": 0.3642458100558659,\n \"acc_norm_stderr\": 0.016094338768474593\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.6339869281045751,\n \"acc_stderr\": 0.027582811415159607,\n \"acc_norm\": 0.6339869281045751,\n \"acc_norm_stderr\": 0.027582811415159607\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.6655948553054662,\n \"acc_stderr\": 0.026795422327893937,\n \"acc_norm\": 0.6655948553054662,\n \"acc_norm_stderr\": 0.026795422327893937\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.6481481481481481,\n \"acc_stderr\": 0.026571483480719964,\n \"acc_norm\": 0.6481481481481481,\n \"acc_norm_stderr\": 0.026571483480719964\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.4397163120567376,\n \"acc_stderr\": 0.029609912075594106,\n \"acc_norm\": 0.4397163120567376,\n \"acc_norm_stderr\": 0.029609912075594106\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.4061277705345502,\n \"acc_stderr\": 0.012543154588412932,\n \"acc_norm\": 0.4061277705345502,\n \"acc_norm_stderr\": 0.012543154588412932\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.5477941176470589,\n \"acc_stderr\": 0.030233758551596445,\n \"acc_norm\": 0.5477941176470589,\n \"acc_norm_stderr\": 0.030233758551596445\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6111111111111112,\n \"acc_stderr\": 0.019722058939618068,\n \"acc_norm\": 0.6111111111111112,\n \"acc_norm_stderr\": 0.019722058939618068\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6090909090909091,\n \"acc_stderr\": 0.04673752333670239,\n \"acc_norm\": 0.6090909090909091,\n \"acc_norm_stderr\": 0.04673752333670239\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.6979591836734694,\n \"acc_stderr\": 0.029393609319879804,\n \"acc_norm\": 0.6979591836734694,\n \"acc_norm_stderr\": 0.029393609319879804\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.7164179104477612,\n \"acc_stderr\": 0.03187187537919797,\n \"acc_norm\": 0.7164179104477612,\n \"acc_norm_stderr\": 0.03187187537919797\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.83,\n \"acc_stderr\": 0.03775251680686371,\n \"acc_norm\": 0.83,\n \"acc_norm_stderr\": 0.03775251680686371\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.45180722891566266,\n \"acc_stderr\": 0.038743715565879536,\n \"acc_norm\": 0.45180722891566266,\n \"acc_norm_stderr\": 0.038743715565879536\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8187134502923976,\n \"acc_stderr\": 0.029547741687640038,\n \"acc_norm\": 0.8187134502923976,\n \"acc_norm_stderr\": 0.029547741687640038\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.42962056303549573,\n \"mc1_stderr\": 0.0173292345804091,\n \"mc2\": 0.5954200996176123,\n \"mc2_stderr\": 0.01553089056885833\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.77663772691397,\n \"acc_stderr\": 0.011705697565205207\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.3601213040181956,\n \"acc_stderr\": 0.013222559423250485\n }\n}\n```", "repo_url": "https://huggingface.co/abdulrahman-nuzha/finetuned-Mistral-7B-Instruct-v0.2-5000-v2.0", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|arc:challenge|25_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|gsm8k|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hellaswag|10_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T15-53-57.776809.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["**/details_harness|winogrande|5_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-22T15-53-57.776809.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_22T15_53_57.776809", "path": ["results_2024-01-22T15-53-57.776809.parquet"]}, {"split": "latest", "path": ["results_2024-01-22T15-53-57.776809.parquet"]}]}]}
2024-01-22T15:56:38+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of abdulrahman-nuzha/finetuned-Mistral-7B-Instruct-v0.2-5000-v2.0 Dataset automatically created during the evaluation run of model abdulrahman-nuzha/finetuned-Mistral-7B-Instruct-v0.2-5000-v2.0 on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-22T15:53:57.776809(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of abdulrahman-nuzha/finetuned-Mistral-7B-Instruct-v0.2-5000-v2.0\n\n\n\nDataset automatically created during the evaluation run of model abdulrahman-nuzha/finetuned-Mistral-7B-Instruct-v0.2-5000-v2.0 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T15:53:57.776809(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of abdulrahman-nuzha/finetuned-Mistral-7B-Instruct-v0.2-5000-v2.0\n\n\n\nDataset automatically created during the evaluation run of model abdulrahman-nuzha/finetuned-Mistral-7B-Instruct-v0.2-5000-v2.0 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T15:53:57.776809(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
d4e1492ee5505d84df4f1de684f641830fcf2034
# Dataset Card for Evaluation run of LordNoah/Alpaca_refine_gpt2_e0_se1 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [LordNoah/Alpaca_refine_gpt2_e0_se1](https://huggingface.co/LordNoah/Alpaca_refine_gpt2_e0_se1) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_LordNoah__Alpaca_refine_gpt2_e0_se1", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-22T16:13:20.086955](https://huggingface.co/datasets/open-llm-leaderboard/details_LordNoah__Alpaca_refine_gpt2_e0_se1/blob/main/results_2024-01-22T16-13-20.086955.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.2707744494888737, "acc_stderr": 0.031386153673103406, "acc_norm": 0.272619145262433, "acc_norm_stderr": 0.03218390044538922, "mc1": 0.21664626682986537, "mc1_stderr": 0.014421468452506978, "mc2": 0.37888278063696673, "mc2_stderr": 0.014137600334109192 }, "harness|arc:challenge|25": { "acc": 0.2645051194539249, "acc_stderr": 0.012889272949313366, "acc_norm": 0.29180887372013653, "acc_norm_stderr": 0.013284525292403508 }, "harness|hellaswag|10": { "acc": 0.36367257518422624, "acc_stderr": 0.004800728138792374, "acc_norm": 0.4534953196574388, "acc_norm_stderr": 0.004968151878211051 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.26, "acc_stderr": 0.0440844002276808, "acc_norm": 0.26, "acc_norm_stderr": 0.0440844002276808 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.24444444444444444, "acc_stderr": 0.037125378336148665, "acc_norm": 0.24444444444444444, "acc_norm_stderr": 0.037125378336148665 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.3157894736842105, "acc_stderr": 0.037827289808654685, "acc_norm": 0.3157894736842105, "acc_norm_stderr": 0.037827289808654685 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.24, "acc_stderr": 0.04292346959909282, "acc_norm": 0.24, "acc_norm_stderr": 0.04292346959909282 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.3283018867924528, "acc_stderr": 0.028901593612411784, "acc_norm": 0.3283018867924528, "acc_norm_stderr": 0.028901593612411784 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.2569444444444444, "acc_stderr": 0.03653946969442099, "acc_norm": 0.2569444444444444, "acc_norm_stderr": 0.03653946969442099 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.16, "acc_stderr": 0.03684529491774707, "acc_norm": 0.16, "acc_norm_stderr": 0.03684529491774707 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.34, "acc_stderr": 0.04760952285695235, "acc_norm": 0.34, "acc_norm_stderr": 0.04760952285695235 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.35, "acc_stderr": 0.047937248544110196, "acc_norm": 0.35, "acc_norm_stderr": 0.047937248544110196 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.2543352601156069, "acc_stderr": 0.0332055644308557, "acc_norm": 0.2543352601156069, "acc_norm_stderr": 0.0332055644308557 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.22549019607843138, "acc_stderr": 0.04158307533083287, "acc_norm": 0.22549019607843138, "acc_norm_stderr": 0.04158307533083287 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.32, "acc_stderr": 0.046882617226215034, "acc_norm": 0.32, "acc_norm_stderr": 0.046882617226215034 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.30638297872340425, "acc_stderr": 0.030135906478517563, "acc_norm": 0.30638297872340425, "acc_norm_stderr": 0.030135906478517563 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.21929824561403508, "acc_stderr": 0.03892431106518753, "acc_norm": 0.21929824561403508, "acc_norm_stderr": 0.03892431106518753 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.2896551724137931, "acc_stderr": 0.03780019230438014, "acc_norm": 0.2896551724137931, "acc_norm_stderr": 0.03780019230438014 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.2724867724867725, "acc_stderr": 0.022930973071633356, "acc_norm": 0.2724867724867725, "acc_norm_stderr": 0.022930973071633356 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.24603174603174602, "acc_stderr": 0.038522733649243156, "acc_norm": 0.24603174603174602, "acc_norm_stderr": 0.038522733649243156 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.35, "acc_stderr": 0.047937248544110196, "acc_norm": 0.35, "acc_norm_stderr": 0.047937248544110196 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.2645161290322581, "acc_stderr": 0.02509189237885928, "acc_norm": 0.2645161290322581, "acc_norm_stderr": 0.02509189237885928 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.32019704433497537, "acc_stderr": 0.0328264938530415, "acc_norm": 0.32019704433497537, "acc_norm_stderr": 0.0328264938530415 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.29, "acc_stderr": 0.045604802157206845, "acc_norm": 0.29, "acc_norm_stderr": 0.045604802157206845 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.28484848484848485, "acc_stderr": 0.035243908445117836, "acc_norm": 0.28484848484848485, "acc_norm_stderr": 0.035243908445117836 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.35858585858585856, "acc_stderr": 0.03416903640391521, "acc_norm": 0.35858585858585856, "acc_norm_stderr": 0.03416903640391521 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.33678756476683935, "acc_stderr": 0.034107802518361825, "acc_norm": 0.33678756476683935, "acc_norm_stderr": 0.034107802518361825 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.358974358974359, "acc_stderr": 0.024321738484602357, "acc_norm": 0.358974358974359, "acc_norm_stderr": 0.024321738484602357 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.25555555555555554, "acc_stderr": 0.026593939101844065, "acc_norm": 0.25555555555555554, "acc_norm_stderr": 0.026593939101844065 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.21428571428571427, "acc_stderr": 0.026653531596715477, "acc_norm": 0.21428571428571427, "acc_norm_stderr": 0.026653531596715477 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.271523178807947, "acc_stderr": 0.03631329803969653, "acc_norm": 0.271523178807947, "acc_norm_stderr": 0.03631329803969653 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.3376146788990826, "acc_stderr": 0.020275265986638903, "acc_norm": 0.3376146788990826, "acc_norm_stderr": 0.020275265986638903 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.2916666666666667, "acc_stderr": 0.03099866630456053, "acc_norm": 0.2916666666666667, "acc_norm_stderr": 0.03099866630456053 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.25980392156862747, "acc_stderr": 0.030778554678693264, "acc_norm": 0.25980392156862747, "acc_norm_stderr": 0.030778554678693264 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.2742616033755274, "acc_stderr": 0.029041333510598018, "acc_norm": 0.2742616033755274, "acc_norm_stderr": 0.029041333510598018 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.10762331838565023, "acc_stderr": 0.020799400082879997, "acc_norm": 0.10762331838565023, "acc_norm_stderr": 0.020799400082879997 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.21374045801526717, "acc_stderr": 0.0359546161177469, "acc_norm": 0.21374045801526717, "acc_norm_stderr": 0.0359546161177469 }, "harness|hendrycksTest-international_law|5": { "acc": 0.33884297520661155, "acc_stderr": 0.0432076780753667, "acc_norm": 0.33884297520661155, "acc_norm_stderr": 0.0432076780753667 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.25, "acc_stderr": 0.04186091791394607, "acc_norm": 0.25, "acc_norm_stderr": 0.04186091791394607 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.294478527607362, "acc_stderr": 0.03581165790474082, "acc_norm": 0.294478527607362, "acc_norm_stderr": 0.03581165790474082 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.23214285714285715, "acc_stderr": 0.04007341809755805, "acc_norm": 0.23214285714285715, "acc_norm_stderr": 0.04007341809755805 }, "harness|hendrycksTest-management|5": { "acc": 0.3786407766990291, "acc_stderr": 0.04802694698258972, "acc_norm": 0.3786407766990291, "acc_norm_stderr": 0.04802694698258972 }, "harness|hendrycksTest-marketing|5": { "acc": 0.2606837606837607, "acc_stderr": 0.028760348956523414, "acc_norm": 0.2606837606837607, "acc_norm_stderr": 0.028760348956523414 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.2, "acc_stderr": 0.040201512610368445, "acc_norm": 0.2, "acc_norm_stderr": 0.040201512610368445 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.20051085568326948, "acc_stderr": 0.014317653708594207, "acc_norm": 0.20051085568326948, "acc_norm_stderr": 0.014317653708594207 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.2774566473988439, "acc_stderr": 0.024105712607754307, "acc_norm": 0.2774566473988439, "acc_norm_stderr": 0.024105712607754307 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.2424581005586592, "acc_stderr": 0.014333522059217889, "acc_norm": 0.2424581005586592, "acc_norm_stderr": 0.014333522059217889 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.24509803921568626, "acc_stderr": 0.02463004897982478, "acc_norm": 0.24509803921568626, "acc_norm_stderr": 0.02463004897982478 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.29260450160771706, "acc_stderr": 0.02583989833487798, "acc_norm": 0.29260450160771706, "acc_norm_stderr": 0.02583989833487798 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.23148148148148148, "acc_stderr": 0.023468429832451163, "acc_norm": 0.23148148148148148, "acc_norm_stderr": 0.023468429832451163 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.2695035460992908, "acc_stderr": 0.02646903681859063, "acc_norm": 0.2695035460992908, "acc_norm_stderr": 0.02646903681859063 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.23402868318122555, "acc_stderr": 0.010813585552659674, "acc_norm": 0.23402868318122555, "acc_norm_stderr": 0.010813585552659674 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.2426470588235294, "acc_stderr": 0.02604066247420126, "acc_norm": 0.2426470588235294, "acc_norm_stderr": 0.02604066247420126 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.24509803921568626, "acc_stderr": 0.01740181671142765, "acc_norm": 0.24509803921568626, "acc_norm_stderr": 0.01740181671142765 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.20909090909090908, "acc_stderr": 0.038950910157241364, "acc_norm": 0.20909090909090908, "acc_norm_stderr": 0.038950910157241364 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.2571428571428571, "acc_stderr": 0.027979823538744546, "acc_norm": 0.2571428571428571, "acc_norm_stderr": 0.027979823538744546 }, "harness|hendrycksTest-sociology|5": { "acc": 0.21890547263681592, "acc_stderr": 0.029239174636647, "acc_norm": 0.21890547263681592, "acc_norm_stderr": 0.029239174636647 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.29, "acc_stderr": 0.04560480215720684, "acc_norm": 0.29, "acc_norm_stderr": 0.04560480215720684 }, "harness|hendrycksTest-virology|5": { "acc": 0.21686746987951808, "acc_stderr": 0.03208284450356365, "acc_norm": 0.21686746987951808, "acc_norm_stderr": 0.03208284450356365 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.29239766081871343, "acc_stderr": 0.034886477134579215, "acc_norm": 0.29239766081871343, "acc_norm_stderr": 0.034886477134579215 }, "harness|truthfulqa:mc|0": { "mc1": 0.21664626682986537, "mc1_stderr": 0.014421468452506978, "mc2": 0.37888278063696673, "mc2_stderr": 0.014137600334109192 }, "harness|winogrande|5": { "acc": 0.5430149960536701, "acc_stderr": 0.01400038676159829 }, "harness|gsm8k|5": { "acc": 0.006823351023502654, "acc_stderr": 0.0022675371022545087 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_LordNoah__Alpaca_refine_gpt2_e0_se1
[ "region:us" ]
2024-01-22T16:14:40+00:00
{"pretty_name": "Evaluation run of LordNoah/Alpaca_refine_gpt2_e0_se1", "dataset_summary": "Dataset automatically created during the evaluation run of model [LordNoah/Alpaca_refine_gpt2_e0_se1](https://huggingface.co/LordNoah/Alpaca_refine_gpt2_e0_se1) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_LordNoah__Alpaca_refine_gpt2_e0_se1\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-22T16:13:20.086955](https://huggingface.co/datasets/open-llm-leaderboard/details_LordNoah__Alpaca_refine_gpt2_e0_se1/blob/main/results_2024-01-22T16-13-20.086955.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.2707744494888737,\n \"acc_stderr\": 0.031386153673103406,\n \"acc_norm\": 0.272619145262433,\n \"acc_norm_stderr\": 0.03218390044538922,\n \"mc1\": 0.21664626682986537,\n \"mc1_stderr\": 0.014421468452506978,\n \"mc2\": 0.37888278063696673,\n \"mc2_stderr\": 0.014137600334109192\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.2645051194539249,\n \"acc_stderr\": 0.012889272949313366,\n \"acc_norm\": 0.29180887372013653,\n \"acc_norm_stderr\": 0.013284525292403508\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.36367257518422624,\n \"acc_stderr\": 0.004800728138792374,\n \"acc_norm\": 0.4534953196574388,\n \"acc_norm_stderr\": 0.004968151878211051\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.26,\n \"acc_stderr\": 0.0440844002276808,\n \"acc_norm\": 0.26,\n \"acc_norm_stderr\": 0.0440844002276808\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.24444444444444444,\n \"acc_stderr\": 0.037125378336148665,\n \"acc_norm\": 0.24444444444444444,\n \"acc_norm_stderr\": 0.037125378336148665\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.3157894736842105,\n \"acc_stderr\": 0.037827289808654685,\n \"acc_norm\": 0.3157894736842105,\n \"acc_norm_stderr\": 0.037827289808654685\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.24,\n \"acc_stderr\": 0.04292346959909282,\n \"acc_norm\": 0.24,\n \"acc_norm_stderr\": 0.04292346959909282\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.3283018867924528,\n \"acc_stderr\": 0.028901593612411784,\n \"acc_norm\": 0.3283018867924528,\n \"acc_norm_stderr\": 0.028901593612411784\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.2569444444444444,\n \"acc_stderr\": 0.03653946969442099,\n \"acc_norm\": 0.2569444444444444,\n \"acc_norm_stderr\": 0.03653946969442099\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.16,\n \"acc_stderr\": 0.03684529491774707,\n \"acc_norm\": 0.16,\n \"acc_norm_stderr\": 0.03684529491774707\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.34,\n \"acc_stderr\": 0.04760952285695235,\n \"acc_norm\": 0.34,\n \"acc_norm_stderr\": 0.04760952285695235\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.35,\n \"acc_stderr\": 0.047937248544110196,\n \"acc_norm\": 0.35,\n \"acc_norm_stderr\": 0.047937248544110196\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.2543352601156069,\n \"acc_stderr\": 0.0332055644308557,\n \"acc_norm\": 0.2543352601156069,\n \"acc_norm_stderr\": 0.0332055644308557\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.22549019607843138,\n \"acc_stderr\": 0.04158307533083287,\n \"acc_norm\": 0.22549019607843138,\n \"acc_norm_stderr\": 0.04158307533083287\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.32,\n \"acc_stderr\": 0.046882617226215034,\n \"acc_norm\": 0.32,\n \"acc_norm_stderr\": 0.046882617226215034\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.30638297872340425,\n \"acc_stderr\": 0.030135906478517563,\n \"acc_norm\": 0.30638297872340425,\n \"acc_norm_stderr\": 0.030135906478517563\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.21929824561403508,\n \"acc_stderr\": 0.03892431106518753,\n \"acc_norm\": 0.21929824561403508,\n \"acc_norm_stderr\": 0.03892431106518753\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.2896551724137931,\n \"acc_stderr\": 0.03780019230438014,\n \"acc_norm\": 0.2896551724137931,\n \"acc_norm_stderr\": 0.03780019230438014\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.2724867724867725,\n \"acc_stderr\": 0.022930973071633356,\n \"acc_norm\": 0.2724867724867725,\n \"acc_norm_stderr\": 0.022930973071633356\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.24603174603174602,\n \"acc_stderr\": 0.038522733649243156,\n \"acc_norm\": 0.24603174603174602,\n \"acc_norm_stderr\": 0.038522733649243156\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.35,\n \"acc_stderr\": 0.047937248544110196,\n \"acc_norm\": 0.35,\n \"acc_norm_stderr\": 0.047937248544110196\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.2645161290322581,\n \"acc_stderr\": 0.02509189237885928,\n \"acc_norm\": 0.2645161290322581,\n \"acc_norm_stderr\": 0.02509189237885928\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.32019704433497537,\n \"acc_stderr\": 0.0328264938530415,\n \"acc_norm\": 0.32019704433497537,\n \"acc_norm_stderr\": 0.0328264938530415\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.29,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\": 0.29,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.28484848484848485,\n \"acc_stderr\": 0.035243908445117836,\n \"acc_norm\": 0.28484848484848485,\n \"acc_norm_stderr\": 0.035243908445117836\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.35858585858585856,\n \"acc_stderr\": 0.03416903640391521,\n \"acc_norm\": 0.35858585858585856,\n \"acc_norm_stderr\": 0.03416903640391521\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.33678756476683935,\n \"acc_stderr\": 0.034107802518361825,\n \"acc_norm\": 0.33678756476683935,\n \"acc_norm_stderr\": 0.034107802518361825\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.358974358974359,\n \"acc_stderr\": 0.024321738484602357,\n \"acc_norm\": 0.358974358974359,\n \"acc_norm_stderr\": 0.024321738484602357\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.25555555555555554,\n \"acc_stderr\": 0.026593939101844065,\n \"acc_norm\": 0.25555555555555554,\n \"acc_norm_stderr\": 0.026593939101844065\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.21428571428571427,\n \"acc_stderr\": 0.026653531596715477,\n \"acc_norm\": 0.21428571428571427,\n \"acc_norm_stderr\": 0.026653531596715477\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.271523178807947,\n \"acc_stderr\": 0.03631329803969653,\n \"acc_norm\": 0.271523178807947,\n \"acc_norm_stderr\": 0.03631329803969653\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.3376146788990826,\n \"acc_stderr\": 0.020275265986638903,\n \"acc_norm\": 0.3376146788990826,\n \"acc_norm_stderr\": 0.020275265986638903\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.2916666666666667,\n \"acc_stderr\": 0.03099866630456053,\n \"acc_norm\": 0.2916666666666667,\n \"acc_norm_stderr\": 0.03099866630456053\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.25980392156862747,\n \"acc_stderr\": 0.030778554678693264,\n \"acc_norm\": 0.25980392156862747,\n \"acc_norm_stderr\": 0.030778554678693264\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.2742616033755274,\n \"acc_stderr\": 0.029041333510598018,\n \"acc_norm\": 0.2742616033755274,\n \"acc_norm_stderr\": 0.029041333510598018\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.10762331838565023,\n \"acc_stderr\": 0.020799400082879997,\n \"acc_norm\": 0.10762331838565023,\n \"acc_norm_stderr\": 0.020799400082879997\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.21374045801526717,\n \"acc_stderr\": 0.0359546161177469,\n \"acc_norm\": 0.21374045801526717,\n \"acc_norm_stderr\": 0.0359546161177469\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.33884297520661155,\n \"acc_stderr\": 0.0432076780753667,\n \"acc_norm\": 0.33884297520661155,\n \"acc_norm_stderr\": 0.0432076780753667\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.25,\n \"acc_stderr\": 0.04186091791394607,\n \"acc_norm\": 0.25,\n \"acc_norm_stderr\": 0.04186091791394607\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.294478527607362,\n \"acc_stderr\": 0.03581165790474082,\n \"acc_norm\": 0.294478527607362,\n \"acc_norm_stderr\": 0.03581165790474082\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.23214285714285715,\n \"acc_stderr\": 0.04007341809755805,\n \"acc_norm\": 0.23214285714285715,\n \"acc_norm_stderr\": 0.04007341809755805\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.3786407766990291,\n \"acc_stderr\": 0.04802694698258972,\n \"acc_norm\": 0.3786407766990291,\n \"acc_norm_stderr\": 0.04802694698258972\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.2606837606837607,\n \"acc_stderr\": 0.028760348956523414,\n \"acc_norm\": 0.2606837606837607,\n \"acc_norm_stderr\": 0.028760348956523414\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.2,\n \"acc_stderr\": 0.040201512610368445,\n \"acc_norm\": 0.2,\n \"acc_norm_stderr\": 0.040201512610368445\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.20051085568326948,\n \"acc_stderr\": 0.014317653708594207,\n \"acc_norm\": 0.20051085568326948,\n \"acc_norm_stderr\": 0.014317653708594207\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.2774566473988439,\n \"acc_stderr\": 0.024105712607754307,\n \"acc_norm\": 0.2774566473988439,\n \"acc_norm_stderr\": 0.024105712607754307\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.2424581005586592,\n \"acc_stderr\": 0.014333522059217889,\n \"acc_norm\": 0.2424581005586592,\n \"acc_norm_stderr\": 0.014333522059217889\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.24509803921568626,\n \"acc_stderr\": 0.02463004897982478,\n \"acc_norm\": 0.24509803921568626,\n \"acc_norm_stderr\": 0.02463004897982478\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.29260450160771706,\n \"acc_stderr\": 0.02583989833487798,\n \"acc_norm\": 0.29260450160771706,\n \"acc_norm_stderr\": 0.02583989833487798\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.23148148148148148,\n \"acc_stderr\": 0.023468429832451163,\n \"acc_norm\": 0.23148148148148148,\n \"acc_norm_stderr\": 0.023468429832451163\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.2695035460992908,\n \"acc_stderr\": 0.02646903681859063,\n \"acc_norm\": 0.2695035460992908,\n \"acc_norm_stderr\": 0.02646903681859063\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.23402868318122555,\n \"acc_stderr\": 0.010813585552659674,\n \"acc_norm\": 0.23402868318122555,\n \"acc_norm_stderr\": 0.010813585552659674\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.2426470588235294,\n \"acc_stderr\": 0.02604066247420126,\n \"acc_norm\": 0.2426470588235294,\n \"acc_norm_stderr\": 0.02604066247420126\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.24509803921568626,\n \"acc_stderr\": 0.01740181671142765,\n \"acc_norm\": 0.24509803921568626,\n \"acc_norm_stderr\": 0.01740181671142765\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.20909090909090908,\n \"acc_stderr\": 0.038950910157241364,\n \"acc_norm\": 0.20909090909090908,\n \"acc_norm_stderr\": 0.038950910157241364\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.2571428571428571,\n \"acc_stderr\": 0.027979823538744546,\n \"acc_norm\": 0.2571428571428571,\n \"acc_norm_stderr\": 0.027979823538744546\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.21890547263681592,\n \"acc_stderr\": 0.029239174636647,\n \"acc_norm\": 0.21890547263681592,\n \"acc_norm_stderr\": 0.029239174636647\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.29,\n \"acc_stderr\": 0.04560480215720684,\n \"acc_norm\": 0.29,\n \"acc_norm_stderr\": 0.04560480215720684\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.21686746987951808,\n \"acc_stderr\": 0.03208284450356365,\n \"acc_norm\": 0.21686746987951808,\n \"acc_norm_stderr\": 0.03208284450356365\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.29239766081871343,\n \"acc_stderr\": 0.034886477134579215,\n \"acc_norm\": 0.29239766081871343,\n \"acc_norm_stderr\": 0.034886477134579215\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.21664626682986537,\n \"mc1_stderr\": 0.014421468452506978,\n \"mc2\": 0.37888278063696673,\n \"mc2_stderr\": 0.014137600334109192\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.5430149960536701,\n \"acc_stderr\": 0.01400038676159829\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.006823351023502654,\n \"acc_stderr\": 0.0022675371022545087\n }\n}\n```", "repo_url": "https://huggingface.co/LordNoah/Alpaca_refine_gpt2_e0_se1", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|arc:challenge|25_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|gsm8k|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hellaswag|10_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T16-13-20.086955.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["**/details_harness|winogrande|5_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-22T16-13-20.086955.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_22T16_13_20.086955", "path": ["results_2024-01-22T16-13-20.086955.parquet"]}, {"split": "latest", "path": ["results_2024-01-22T16-13-20.086955.parquet"]}]}]}
2024-01-22T16:15:05+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of LordNoah/Alpaca_refine_gpt2_e0_se1 Dataset automatically created during the evaluation run of model LordNoah/Alpaca_refine_gpt2_e0_se1 on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-22T16:13:20.086955(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of LordNoah/Alpaca_refine_gpt2_e0_se1\n\n\n\nDataset automatically created during the evaluation run of model LordNoah/Alpaca_refine_gpt2_e0_se1 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T16:13:20.086955(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of LordNoah/Alpaca_refine_gpt2_e0_se1\n\n\n\nDataset automatically created during the evaluation run of model LordNoah/Alpaca_refine_gpt2_e0_se1 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T16:13:20.086955(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
1fb8cdacb54a8a2393cc3cbf1078b2ec30ddc30c
#### Dataset: This is the data used for training [Snorkel model](https://huggingface.co/snorkelai/Snorkel-Mistral-PairRM-DPO) We use ONLY the prompts from [UltraFeedback](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized); **no external LLM responses used**. #### Methodology: 1. Generate 5 response variations for each prompt from a subset of 20,000 using the LLM - to start, we used [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2). 2. Apply [PairRM](https://huggingface.co/llm-blender/PairRM) for response reranking. 3. Update the LLM by applying Direct Preference Optimization (DPO) on the top (chosen) and bottom (rejected) responses. 4. Use this LLM as the base model for the next iteration and use a different set of 20,000 prompts, repeating three times in total. Please see the model page for more details on the methodology. Columns: - prompt: the current prompt - chosen: the list of messages for the chosen response - rejected: the list of messages for the rejected response - all_generated_responses: The 5 generated responses - all_rm_scores: The 5 corresponding reward model scores Splits: - train/test_iteration_{n}: The dataset used at the n_th iteration. We did 3 iterations in total. **Training recipe**: This data is formatted to be compatible with the Hugging Face's [Zephyr recipe](https://github.com/huggingface/alignment-handbook/tree/main/recipes/zephyr-7b-beta). We executed the n_th DPO iteration using the "train/test_iteration_{n}".
snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset
[ "task_categories:text-generation", "license:apache-2.0", "region:us" ]
2024-01-22T16:18:35+00:00
{"license": "apache-2.0", "task_categories": ["text-generation"], "dataset_info": {"features": [{"name": "prompt_id", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "chosen", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "rejected", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "all_generated_responses", "sequence": "string"}, {"name": "all_rm_scores", "sequence": "float64"}], "splits": [{"name": "train_iteration_1", "num_bytes": 276734865, "num_examples": 19766}, {"name": "test_iteration_1", "num_bytes": 13616124, "num_examples": 994}, {"name": "train_iteration_2", "num_bytes": 313248218, "num_examples": 19958}, {"name": "test_iteration_2", "num_bytes": 15553468, "num_examples": 1000}, {"name": "train_iteration_3", "num_bytes": 379805458, "num_examples": 19996}, {"name": "test_iteration_3", "num_bytes": 19111694, "num_examples": 1000}], "download_size": 485703305, "dataset_size": 1018069827}, "configs": [{"config_name": "default", "data_files": [{"split": "train_iteration_1", "path": "data/train_iteration_1-*"}, {"split": "test_iteration_1", "path": "data/test_iteration_1-*"}, {"split": "train_iteration_2", "path": "data/train_iteration_2-*"}, {"split": "test_iteration_2", "path": "data/test_iteration_2-*"}, {"split": "train_iteration_3", "path": "data/train_iteration_3-*"}, {"split": "test_iteration_3", "path": "data/test_iteration_3-*"}]}]}
2024-01-23T04:31:44+00:00
[]
[]
TAGS #task_categories-text-generation #license-apache-2.0 #region-us
#### Dataset: This is the data used for training Snorkel model We use ONLY the prompts from UltraFeedback; no external LLM responses used. #### Methodology: 1. Generate 5 response variations for each prompt from a subset of 20,000 using the LLM - to start, we used Mistral-7B-Instruct-v0.2. 2. Apply PairRM for response reranking. 3. Update the LLM by applying Direct Preference Optimization (DPO) on the top (chosen) and bottom (rejected) responses. 4. Use this LLM as the base model for the next iteration and use a different set of 20,000 prompts, repeating three times in total. Please see the model page for more details on the methodology. Columns: - prompt: the current prompt - chosen: the list of messages for the chosen response - rejected: the list of messages for the rejected response - all_generated_responses: The 5 generated responses - all_rm_scores: The 5 corresponding reward model scores Splits: - train/test_iteration_{n}: The dataset used at the n_th iteration. We did 3 iterations in total. Training recipe: This data is formatted to be compatible with the Hugging Face's Zephyr recipe. We executed the n_th DPO iteration using the "train/test_iteration_{n}".
[ "#### Dataset:\nThis is the data used for training Snorkel model\n\nWe use ONLY the prompts from UltraFeedback; no external LLM responses used.", "#### Methodology:\n 1. Generate 5 response variations for each prompt from a subset of 20,000 using the LLM - to start, we used Mistral-7B-Instruct-v0.2.\n 2. Apply PairRM for response reranking.\n 3. Update the LLM by applying Direct Preference Optimization (DPO) on the top (chosen) and bottom (rejected) responses.\n 4. Use this LLM as the base model for the next iteration and use a different set of 20,000 prompts, repeating three times in total.\n\nPlease see the model page for more details on the methodology.\n\nColumns:\n- prompt: the current prompt\n- chosen: the list of messages for the chosen response\n- rejected: the list of messages for the rejected response\n- all_generated_responses: The 5 generated responses\n- all_rm_scores: The 5 corresponding reward model scores\n\nSplits:\n- train/test_iteration_{n}: The dataset used at the n_th iteration. We did 3 iterations in total.\n\nTraining recipe: This data is formatted to be compatible with the Hugging Face's Zephyr recipe.\nWe executed the n_th DPO iteration using the \"train/test_iteration_{n}\"." ]
[ "TAGS\n#task_categories-text-generation #license-apache-2.0 #region-us \n", "#### Dataset:\nThis is the data used for training Snorkel model\n\nWe use ONLY the prompts from UltraFeedback; no external LLM responses used.", "#### Methodology:\n 1. Generate 5 response variations for each prompt from a subset of 20,000 using the LLM - to start, we used Mistral-7B-Instruct-v0.2.\n 2. Apply PairRM for response reranking.\n 3. Update the LLM by applying Direct Preference Optimization (DPO) on the top (chosen) and bottom (rejected) responses.\n 4. Use this LLM as the base model for the next iteration and use a different set of 20,000 prompts, repeating three times in total.\n\nPlease see the model page for more details on the methodology.\n\nColumns:\n- prompt: the current prompt\n- chosen: the list of messages for the chosen response\n- rejected: the list of messages for the rejected response\n- all_generated_responses: The 5 generated responses\n- all_rm_scores: The 5 corresponding reward model scores\n\nSplits:\n- train/test_iteration_{n}: The dataset used at the n_th iteration. We did 3 iterations in total.\n\nTraining recipe: This data is formatted to be compatible with the Hugging Face's Zephyr recipe.\nWe executed the n_th DPO iteration using the \"train/test_iteration_{n}\"." ]
843fc7f9d9471c1989a3f33a409123cf1c668244
# lilac/OpenOrca This dataset is a [Lilac](http://lilacml.com) processed dataset. Original dataset: [https://huggingface.co/datasets/Open-Orca/OpenOrca](https://huggingface.co/datasets/Open-Orca/OpenOrca) To download the dataset to a local directory: ```bash lilac download lilacai/lilac-OpenOrca ``` or from python with: ```py ll.download("lilacai/lilac-OpenOrca") ```
lilacai/lilac-OpenOrca
[ "Lilac", "region:us" ]
2024-01-22T16:45:29+00:00
{"tags": ["Lilac"]}
2024-01-22T17:02:56+00:00
[]
[]
TAGS #Lilac #region-us
# lilac/OpenOrca This dataset is a Lilac processed dataset. Original dataset: URL To download the dataset to a local directory: or from python with:
[ "# lilac/OpenOrca\nThis dataset is a Lilac processed dataset. Original dataset: URL\n\nTo download the dataset to a local directory:\n\n\n\nor from python with:" ]
[ "TAGS\n#Lilac #region-us \n", "# lilac/OpenOrca\nThis dataset is a Lilac processed dataset. Original dataset: URL\n\nTo download the dataset to a local directory:\n\n\n\nor from python with:" ]
cd186b9c100ca18fbed41bf33e63bdbd6cef37ca
from https://www.ffl.kanagawa-u.ac.jp/old/news/2015/img/news_2015060202_script_sp_dq.pdf
dmntrd/QuijoteDeLaMancha_RafaelGil
[ "region:us" ]
2024-01-22T16:45:32+00:00
{"dataset_info": {"features": [{"name": "chat", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 49141.81124497992, "num_examples": 199}, {"name": "test", "num_bytes": 12347.18875502008, "num_examples": 50}], "download_size": 41296, "dataset_size": 61489.0}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}]}
2024-01-22T16:49:43+00:00
[]
[]
TAGS #region-us
from URL
[]
[ "TAGS\n#region-us \n" ]
94942a03d1c6bad1113112499a1080f4dd5d3aec
# Dataset Card for Evaluation run of BarryFutureman/NeuralTurdusVariant1-7B <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [BarryFutureman/NeuralTurdusVariant1-7B](https://huggingface.co/BarryFutureman/NeuralTurdusVariant1-7B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_BarryFutureman__NeuralTurdusVariant1-7B", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-22T17:04:26.015836](https://huggingface.co/datasets/open-llm-leaderboard/details_BarryFutureman__NeuralTurdusVariant1-7B/blob/main/results_2024-01-22T17-04-26.015836.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.6537211968860746, "acc_stderr": 0.03201153964256497, "acc_norm": 0.6529568258973308, "acc_norm_stderr": 0.032683792409541605, "mc1": 0.5703794369645043, "mc1_stderr": 0.01732923458040909, "mc2": 0.6998714475811907, "mc2_stderr": 0.015140377928333039 }, "harness|arc:challenge|25": { "acc": 0.7201365187713311, "acc_stderr": 0.013119040897725922, "acc_norm": 0.7312286689419796, "acc_norm_stderr": 0.012955065963710696 }, "harness|hellaswag|10": { "acc": 0.7248556064528978, "acc_stderr": 0.004456743108170734, "acc_norm": 0.8860784704242183, "acc_norm_stderr": 0.0031706661225176552 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.33, "acc_stderr": 0.04725815626252605, "acc_norm": 0.33, "acc_norm_stderr": 0.04725815626252605 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6444444444444445, "acc_stderr": 0.04135176749720385, "acc_norm": 0.6444444444444445, "acc_norm_stderr": 0.04135176749720385 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.7105263157894737, "acc_stderr": 0.03690677986137283, "acc_norm": 0.7105263157894737, "acc_norm_stderr": 0.03690677986137283 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.65, "acc_stderr": 0.0479372485441102, "acc_norm": 0.65, "acc_norm_stderr": 0.0479372485441102 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.7245283018867924, "acc_stderr": 0.027495663683724057, "acc_norm": 0.7245283018867924, "acc_norm_stderr": 0.027495663683724057 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.7708333333333334, "acc_stderr": 0.03514697467862388, "acc_norm": 0.7708333333333334, "acc_norm_stderr": 0.03514697467862388 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.49, "acc_stderr": 0.05024183937956912, "acc_norm": 0.49, "acc_norm_stderr": 0.05024183937956912 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.54, "acc_stderr": 0.05009082659620333, "acc_norm": 0.54, "acc_norm_stderr": 0.05009082659620333 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.32, "acc_stderr": 0.04688261722621504, "acc_norm": 0.32, "acc_norm_stderr": 0.04688261722621504 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6589595375722543, "acc_stderr": 0.03614665424180826, "acc_norm": 0.6589595375722543, "acc_norm_stderr": 0.03614665424180826 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.4019607843137255, "acc_stderr": 0.04878608714466996, "acc_norm": 0.4019607843137255, "acc_norm_stderr": 0.04878608714466996 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.75, "acc_stderr": 0.04351941398892446, "acc_norm": 0.75, "acc_norm_stderr": 0.04351941398892446 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5957446808510638, "acc_stderr": 0.03208115750788684, "acc_norm": 0.5957446808510638, "acc_norm_stderr": 0.03208115750788684 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.5175438596491229, "acc_stderr": 0.04700708033551038, "acc_norm": 0.5175438596491229, "acc_norm_stderr": 0.04700708033551038 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.5724137931034483, "acc_stderr": 0.04122737111370333, "acc_norm": 0.5724137931034483, "acc_norm_stderr": 0.04122737111370333 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.41798941798941797, "acc_stderr": 0.025402555503260912, "acc_norm": 0.41798941798941797, "acc_norm_stderr": 0.025402555503260912 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.48412698412698413, "acc_stderr": 0.04469881854072606, "acc_norm": 0.48412698412698413, "acc_norm_stderr": 0.04469881854072606 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.33, "acc_stderr": 0.04725815626252604, "acc_norm": 0.33, "acc_norm_stderr": 0.04725815626252604 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.7774193548387097, "acc_stderr": 0.023664216671642518, "acc_norm": 0.7774193548387097, "acc_norm_stderr": 0.023664216671642518 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.5073891625615764, "acc_stderr": 0.035176035403610105, "acc_norm": 0.5073891625615764, "acc_norm_stderr": 0.035176035403610105 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.71, "acc_stderr": 0.045604802157206845, "acc_norm": 0.71, "acc_norm_stderr": 0.045604802157206845 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7878787878787878, "acc_stderr": 0.03192271569548301, "acc_norm": 0.7878787878787878, "acc_norm_stderr": 0.03192271569548301 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.797979797979798, "acc_stderr": 0.028606204289229865, "acc_norm": 0.797979797979798, "acc_norm_stderr": 0.028606204289229865 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.9119170984455959, "acc_stderr": 0.02045374660160103, "acc_norm": 0.9119170984455959, "acc_norm_stderr": 0.02045374660160103 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.6743589743589744, "acc_stderr": 0.02375966576741229, "acc_norm": 0.6743589743589744, "acc_norm_stderr": 0.02375966576741229 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.32222222222222224, "acc_stderr": 0.028493465091028593, "acc_norm": 0.32222222222222224, "acc_norm_stderr": 0.028493465091028593 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6680672268907563, "acc_stderr": 0.03058869701378364, "acc_norm": 0.6680672268907563, "acc_norm_stderr": 0.03058869701378364 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.31788079470198677, "acc_stderr": 0.038020397601079024, "acc_norm": 0.31788079470198677, "acc_norm_stderr": 0.038020397601079024 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8422018348623853, "acc_stderr": 0.015630022970092434, "acc_norm": 0.8422018348623853, "acc_norm_stderr": 0.015630022970092434 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.49537037037037035, "acc_stderr": 0.03409825519163572, "acc_norm": 0.49537037037037035, "acc_norm_stderr": 0.03409825519163572 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.8431372549019608, "acc_stderr": 0.02552472232455335, "acc_norm": 0.8431372549019608, "acc_norm_stderr": 0.02552472232455335 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7974683544303798, "acc_stderr": 0.026160568246601443, "acc_norm": 0.7974683544303798, "acc_norm_stderr": 0.026160568246601443 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6905829596412556, "acc_stderr": 0.03102441174057221, "acc_norm": 0.6905829596412556, "acc_norm_stderr": 0.03102441174057221 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.7862595419847328, "acc_stderr": 0.0359546161177469, "acc_norm": 0.7862595419847328, "acc_norm_stderr": 0.0359546161177469 }, "harness|hendrycksTest-international_law|5": { "acc": 0.7933884297520661, "acc_stderr": 0.03695980128098824, "acc_norm": 0.7933884297520661, "acc_norm_stderr": 0.03695980128098824 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.7962962962962963, "acc_stderr": 0.03893542518824847, "acc_norm": 0.7962962962962963, "acc_norm_stderr": 0.03893542518824847 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7668711656441718, "acc_stderr": 0.0332201579577674, "acc_norm": 0.7668711656441718, "acc_norm_stderr": 0.0332201579577674 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.4375, "acc_stderr": 0.04708567521880525, "acc_norm": 0.4375, "acc_norm_stderr": 0.04708567521880525 }, "harness|hendrycksTest-management|5": { "acc": 0.7669902912621359, "acc_stderr": 0.04185832598928315, "acc_norm": 0.7669902912621359, "acc_norm_stderr": 0.04185832598928315 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8931623931623932, "acc_stderr": 0.02023714900899093, "acc_norm": 0.8931623931623932, "acc_norm_stderr": 0.02023714900899093 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.71, "acc_stderr": 0.045604802157206845, "acc_norm": 0.71, "acc_norm_stderr": 0.045604802157206845 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.8275862068965517, "acc_stderr": 0.013507943909371802, "acc_norm": 0.8275862068965517, "acc_norm_stderr": 0.013507943909371802 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.7341040462427746, "acc_stderr": 0.02378620325550829, "acc_norm": 0.7341040462427746, "acc_norm_stderr": 0.02378620325550829 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.4435754189944134, "acc_stderr": 0.01661568040100372, "acc_norm": 0.4435754189944134, "acc_norm_stderr": 0.01661568040100372 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.7156862745098039, "acc_stderr": 0.02582916327275748, "acc_norm": 0.7156862745098039, "acc_norm_stderr": 0.02582916327275748 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.7106109324758842, "acc_stderr": 0.025755865922632945, "acc_norm": 0.7106109324758842, "acc_norm_stderr": 0.025755865922632945 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.75, "acc_stderr": 0.02409347123262133, "acc_norm": 0.75, "acc_norm_stderr": 0.02409347123262133 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.4858156028368794, "acc_stderr": 0.02981549448368206, "acc_norm": 0.4858156028368794, "acc_norm_stderr": 0.02981549448368206 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.4667535853976532, "acc_stderr": 0.012741974333897229, "acc_norm": 0.4667535853976532, "acc_norm_stderr": 0.012741974333897229 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.6507352941176471, "acc_stderr": 0.02895975519682487, "acc_norm": 0.6507352941176471, "acc_norm_stderr": 0.02895975519682487 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6781045751633987, "acc_stderr": 0.018901015322093092, "acc_norm": 0.6781045751633987, "acc_norm_stderr": 0.018901015322093092 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6727272727272727, "acc_stderr": 0.0449429086625209, "acc_norm": 0.6727272727272727, "acc_norm_stderr": 0.0449429086625209 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.726530612244898, "acc_stderr": 0.028535560337128448, "acc_norm": 0.726530612244898, "acc_norm_stderr": 0.028535560337128448 }, "harness|hendrycksTest-sociology|5": { "acc": 0.8407960199004975, "acc_stderr": 0.02587064676616914, "acc_norm": 0.8407960199004975, "acc_norm_stderr": 0.02587064676616914 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.84, "acc_stderr": 0.03684529491774709, "acc_norm": 0.84, "acc_norm_stderr": 0.03684529491774709 }, "harness|hendrycksTest-virology|5": { "acc": 0.536144578313253, "acc_stderr": 0.038823108508905954, "acc_norm": 0.536144578313253, "acc_norm_stderr": 0.038823108508905954 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8245614035087719, "acc_stderr": 0.029170885500727665, "acc_norm": 0.8245614035087719, "acc_norm_stderr": 0.029170885500727665 }, "harness|truthfulqa:mc|0": { "mc1": 0.5703794369645043, "mc1_stderr": 0.01732923458040909, "mc2": 0.6998714475811907, "mc2_stderr": 0.015140377928333039 }, "harness|winogrande|5": { "acc": 0.8516179952644041, "acc_stderr": 0.009990706005184135 }, "harness|gsm8k|5": { "acc": 0.6732373009855952, "acc_stderr": 0.01291940810865641 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_BarryFutureman__NeuralTurdusVariant1-7B
[ "region:us" ]
2024-01-22T17:06:47+00:00
{"pretty_name": "Evaluation run of BarryFutureman/NeuralTurdusVariant1-7B", "dataset_summary": "Dataset automatically created during the evaluation run of model [BarryFutureman/NeuralTurdusVariant1-7B](https://huggingface.co/BarryFutureman/NeuralTurdusVariant1-7B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_BarryFutureman__NeuralTurdusVariant1-7B\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-22T17:04:26.015836](https://huggingface.co/datasets/open-llm-leaderboard/details_BarryFutureman__NeuralTurdusVariant1-7B/blob/main/results_2024-01-22T17-04-26.015836.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6537211968860746,\n \"acc_stderr\": 0.03201153964256497,\n \"acc_norm\": 0.6529568258973308,\n \"acc_norm_stderr\": 0.032683792409541605,\n \"mc1\": 0.5703794369645043,\n \"mc1_stderr\": 0.01732923458040909,\n \"mc2\": 0.6998714475811907,\n \"mc2_stderr\": 0.015140377928333039\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.7201365187713311,\n \"acc_stderr\": 0.013119040897725922,\n \"acc_norm\": 0.7312286689419796,\n \"acc_norm_stderr\": 0.012955065963710696\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.7248556064528978,\n \"acc_stderr\": 0.004456743108170734,\n \"acc_norm\": 0.8860784704242183,\n \"acc_norm_stderr\": 0.0031706661225176552\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.33,\n \"acc_stderr\": 0.04725815626252605,\n \"acc_norm\": 0.33,\n \"acc_norm_stderr\": 0.04725815626252605\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6444444444444445,\n \"acc_stderr\": 0.04135176749720385,\n \"acc_norm\": 0.6444444444444445,\n \"acc_norm_stderr\": 0.04135176749720385\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.7105263157894737,\n \"acc_stderr\": 0.03690677986137283,\n \"acc_norm\": 0.7105263157894737,\n \"acc_norm_stderr\": 0.03690677986137283\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.65,\n \"acc_stderr\": 0.0479372485441102,\n \"acc_norm\": 0.65,\n \"acc_norm_stderr\": 0.0479372485441102\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.7245283018867924,\n \"acc_stderr\": 0.027495663683724057,\n \"acc_norm\": 0.7245283018867924,\n \"acc_norm_stderr\": 0.027495663683724057\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7708333333333334,\n \"acc_stderr\": 0.03514697467862388,\n \"acc_norm\": 0.7708333333333334,\n \"acc_norm_stderr\": 0.03514697467862388\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.49,\n \"acc_stderr\": 0.05024183937956912,\n \"acc_norm\": 0.49,\n \"acc_norm_stderr\": 0.05024183937956912\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.54,\n \"acc_stderr\": 0.05009082659620333,\n \"acc_norm\": 0.54,\n \"acc_norm_stderr\": 0.05009082659620333\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.32,\n \"acc_stderr\": 0.04688261722621504,\n \"acc_norm\": 0.32,\n \"acc_norm_stderr\": 0.04688261722621504\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6589595375722543,\n \"acc_stderr\": 0.03614665424180826,\n \"acc_norm\": 0.6589595375722543,\n \"acc_norm_stderr\": 0.03614665424180826\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.4019607843137255,\n \"acc_stderr\": 0.04878608714466996,\n \"acc_norm\": 0.4019607843137255,\n \"acc_norm_stderr\": 0.04878608714466996\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.75,\n \"acc_stderr\": 0.04351941398892446,\n \"acc_norm\": 0.75,\n \"acc_norm_stderr\": 0.04351941398892446\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5957446808510638,\n \"acc_stderr\": 0.03208115750788684,\n \"acc_norm\": 0.5957446808510638,\n \"acc_norm_stderr\": 0.03208115750788684\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.5175438596491229,\n \"acc_stderr\": 0.04700708033551038,\n \"acc_norm\": 0.5175438596491229,\n \"acc_norm_stderr\": 0.04700708033551038\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5724137931034483,\n \"acc_stderr\": 0.04122737111370333,\n \"acc_norm\": 0.5724137931034483,\n \"acc_norm_stderr\": 0.04122737111370333\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.41798941798941797,\n \"acc_stderr\": 0.025402555503260912,\n \"acc_norm\": 0.41798941798941797,\n \"acc_norm_stderr\": 0.025402555503260912\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.48412698412698413,\n \"acc_stderr\": 0.04469881854072606,\n \"acc_norm\": 0.48412698412698413,\n \"acc_norm_stderr\": 0.04469881854072606\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.33,\n \"acc_stderr\": 0.04725815626252604,\n \"acc_norm\": 0.33,\n \"acc_norm_stderr\": 0.04725815626252604\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7774193548387097,\n \"acc_stderr\": 0.023664216671642518,\n \"acc_norm\": 0.7774193548387097,\n \"acc_norm_stderr\": 0.023664216671642518\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.5073891625615764,\n \"acc_stderr\": 0.035176035403610105,\n \"acc_norm\": 0.5073891625615764,\n \"acc_norm_stderr\": 0.035176035403610105\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.71,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\": 0.71,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7878787878787878,\n \"acc_stderr\": 0.03192271569548301,\n \"acc_norm\": 0.7878787878787878,\n \"acc_norm_stderr\": 0.03192271569548301\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.797979797979798,\n \"acc_stderr\": 0.028606204289229865,\n \"acc_norm\": 0.797979797979798,\n \"acc_norm_stderr\": 0.028606204289229865\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.9119170984455959,\n \"acc_stderr\": 0.02045374660160103,\n \"acc_norm\": 0.9119170984455959,\n \"acc_norm_stderr\": 0.02045374660160103\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6743589743589744,\n \"acc_stderr\": 0.02375966576741229,\n \"acc_norm\": 0.6743589743589744,\n \"acc_norm_stderr\": 0.02375966576741229\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.32222222222222224,\n \"acc_stderr\": 0.028493465091028593,\n \"acc_norm\": 0.32222222222222224,\n \"acc_norm_stderr\": 0.028493465091028593\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6680672268907563,\n \"acc_stderr\": 0.03058869701378364,\n \"acc_norm\": 0.6680672268907563,\n \"acc_norm_stderr\": 0.03058869701378364\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.31788079470198677,\n \"acc_stderr\": 0.038020397601079024,\n \"acc_norm\": 0.31788079470198677,\n \"acc_norm_stderr\": 0.038020397601079024\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8422018348623853,\n \"acc_stderr\": 0.015630022970092434,\n \"acc_norm\": 0.8422018348623853,\n \"acc_norm_stderr\": 0.015630022970092434\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.49537037037037035,\n \"acc_stderr\": 0.03409825519163572,\n \"acc_norm\": 0.49537037037037035,\n \"acc_norm_stderr\": 0.03409825519163572\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.8431372549019608,\n \"acc_stderr\": 0.02552472232455335,\n \"acc_norm\": 0.8431372549019608,\n \"acc_norm_stderr\": 0.02552472232455335\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7974683544303798,\n \"acc_stderr\": 0.026160568246601443,\n \"acc_norm\": 0.7974683544303798,\n \"acc_norm_stderr\": 0.026160568246601443\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6905829596412556,\n \"acc_stderr\": 0.03102441174057221,\n \"acc_norm\": 0.6905829596412556,\n \"acc_norm_stderr\": 0.03102441174057221\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7862595419847328,\n \"acc_stderr\": 0.0359546161177469,\n \"acc_norm\": 0.7862595419847328,\n \"acc_norm_stderr\": 0.0359546161177469\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.7933884297520661,\n \"acc_stderr\": 0.03695980128098824,\n \"acc_norm\": 0.7933884297520661,\n \"acc_norm_stderr\": 0.03695980128098824\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7962962962962963,\n \"acc_stderr\": 0.03893542518824847,\n \"acc_norm\": 0.7962962962962963,\n \"acc_norm_stderr\": 0.03893542518824847\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7668711656441718,\n \"acc_stderr\": 0.0332201579577674,\n \"acc_norm\": 0.7668711656441718,\n \"acc_norm_stderr\": 0.0332201579577674\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.4375,\n \"acc_stderr\": 0.04708567521880525,\n \"acc_norm\": 0.4375,\n \"acc_norm_stderr\": 0.04708567521880525\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7669902912621359,\n \"acc_stderr\": 0.04185832598928315,\n \"acc_norm\": 0.7669902912621359,\n \"acc_norm_stderr\": 0.04185832598928315\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8931623931623932,\n \"acc_stderr\": 0.02023714900899093,\n \"acc_norm\": 0.8931623931623932,\n \"acc_norm_stderr\": 0.02023714900899093\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.71,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\": 0.71,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8275862068965517,\n \"acc_stderr\": 0.013507943909371802,\n \"acc_norm\": 0.8275862068965517,\n \"acc_norm_stderr\": 0.013507943909371802\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7341040462427746,\n \"acc_stderr\": 0.02378620325550829,\n \"acc_norm\": 0.7341040462427746,\n \"acc_norm_stderr\": 0.02378620325550829\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.4435754189944134,\n \"acc_stderr\": 0.01661568040100372,\n \"acc_norm\": 0.4435754189944134,\n \"acc_norm_stderr\": 0.01661568040100372\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7156862745098039,\n \"acc_stderr\": 0.02582916327275748,\n \"acc_norm\": 0.7156862745098039,\n \"acc_norm_stderr\": 0.02582916327275748\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.7106109324758842,\n \"acc_stderr\": 0.025755865922632945,\n \"acc_norm\": 0.7106109324758842,\n \"acc_norm_stderr\": 0.025755865922632945\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.75,\n \"acc_stderr\": 0.02409347123262133,\n \"acc_norm\": 0.75,\n \"acc_norm_stderr\": 0.02409347123262133\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.4858156028368794,\n \"acc_stderr\": 0.02981549448368206,\n \"acc_norm\": 0.4858156028368794,\n \"acc_norm_stderr\": 0.02981549448368206\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.4667535853976532,\n \"acc_stderr\": 0.012741974333897229,\n \"acc_norm\": 0.4667535853976532,\n \"acc_norm_stderr\": 0.012741974333897229\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6507352941176471,\n \"acc_stderr\": 0.02895975519682487,\n \"acc_norm\": 0.6507352941176471,\n \"acc_norm_stderr\": 0.02895975519682487\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6781045751633987,\n \"acc_stderr\": 0.018901015322093092,\n \"acc_norm\": 0.6781045751633987,\n \"acc_norm_stderr\": 0.018901015322093092\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6727272727272727,\n \"acc_stderr\": 0.0449429086625209,\n \"acc_norm\": 0.6727272727272727,\n \"acc_norm_stderr\": 0.0449429086625209\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.726530612244898,\n \"acc_stderr\": 0.028535560337128448,\n \"acc_norm\": 0.726530612244898,\n \"acc_norm_stderr\": 0.028535560337128448\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8407960199004975,\n \"acc_stderr\": 0.02587064676616914,\n \"acc_norm\": 0.8407960199004975,\n \"acc_norm_stderr\": 0.02587064676616914\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.84,\n \"acc_stderr\": 0.03684529491774709,\n \"acc_norm\": 0.84,\n \"acc_norm_stderr\": 0.03684529491774709\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.536144578313253,\n \"acc_stderr\": 0.038823108508905954,\n \"acc_norm\": 0.536144578313253,\n \"acc_norm_stderr\": 0.038823108508905954\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8245614035087719,\n \"acc_stderr\": 0.029170885500727665,\n \"acc_norm\": 0.8245614035087719,\n \"acc_norm_stderr\": 0.029170885500727665\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.5703794369645043,\n \"mc1_stderr\": 0.01732923458040909,\n \"mc2\": 0.6998714475811907,\n \"mc2_stderr\": 0.015140377928333039\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.8516179952644041,\n \"acc_stderr\": 0.009990706005184135\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.6732373009855952,\n \"acc_stderr\": 0.01291940810865641\n }\n}\n```", "repo_url": "https://huggingface.co/BarryFutureman/NeuralTurdusVariant1-7B", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|arc:challenge|25_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|gsm8k|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hellaswag|10_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T17-04-26.015836.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["**/details_harness|winogrande|5_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-22T17-04-26.015836.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_22T17_04_26.015836", "path": ["results_2024-01-22T17-04-26.015836.parquet"]}, {"split": "latest", "path": ["results_2024-01-22T17-04-26.015836.parquet"]}]}]}
2024-01-22T17:07:10+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of BarryFutureman/NeuralTurdusVariant1-7B Dataset automatically created during the evaluation run of model BarryFutureman/NeuralTurdusVariant1-7B on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-22T17:04:26.015836(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of BarryFutureman/NeuralTurdusVariant1-7B\n\n\n\nDataset automatically created during the evaluation run of model BarryFutureman/NeuralTurdusVariant1-7B on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T17:04:26.015836(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of BarryFutureman/NeuralTurdusVariant1-7B\n\n\n\nDataset automatically created during the evaluation run of model BarryFutureman/NeuralTurdusVariant1-7B on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T17:04:26.015836(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
be8c2f2199a67c37320e3098a4946bddcdd1a276
# Dataset Card for Evaluation run of silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e2 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e2](https://huggingface.co/silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e2) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_silvercoder45__Mistral-7b-instruct-v0.2-summ-dpo-e2", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-22T17:11:06.460582](https://huggingface.co/datasets/open-llm-leaderboard/details_silvercoder45__Mistral-7b-instruct-v0.2-summ-dpo-e2/blob/main/results_2024-01-22T17-11-06.460582.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.6071506593443939, "acc_stderr": 0.0331634697242051, "acc_norm": 0.6115566365296805, "acc_norm_stderr": 0.0338383460849818, "mc1": 0.5630354957160343, "mc1_stderr": 0.017363844503195957, "mc2": 0.7053630317411392, "mc2_stderr": 0.015058893752819909 }, "harness|arc:challenge|25": { "acc": 0.590443686006826, "acc_stderr": 0.014370358632472434, "acc_norm": 0.6254266211604096, "acc_norm_stderr": 0.014144193471893456 }, "harness|hellaswag|10": { "acc": 0.6752638916550487, "acc_stderr": 0.004673191423861211, "acc_norm": 0.8530173272256523, "acc_norm_stderr": 0.003533649851728494 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.31, "acc_stderr": 0.04648231987117316, "acc_norm": 0.31, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6, "acc_stderr": 0.04232073695151589, "acc_norm": 0.6, "acc_norm_stderr": 0.04232073695151589 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.618421052631579, "acc_stderr": 0.03953173377749194, "acc_norm": 0.618421052631579, "acc_norm_stderr": 0.03953173377749194 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.59, "acc_stderr": 0.04943110704237102, "acc_norm": 0.59, "acc_norm_stderr": 0.04943110704237102 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.6830188679245283, "acc_stderr": 0.02863723563980089, "acc_norm": 0.6830188679245283, "acc_norm_stderr": 0.02863723563980089 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.6875, "acc_stderr": 0.038760854559127644, "acc_norm": 0.6875, "acc_norm_stderr": 0.038760854559127644 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.39, "acc_stderr": 0.04902071300001975, "acc_norm": 0.39, "acc_norm_stderr": 0.04902071300001975 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.52, "acc_stderr": 0.050211673156867795, "acc_norm": 0.52, "acc_norm_stderr": 0.050211673156867795 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.38, "acc_stderr": 0.04878317312145632, "acc_norm": 0.38, "acc_norm_stderr": 0.04878317312145632 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.5895953757225434, "acc_stderr": 0.037507570448955356, "acc_norm": 0.5895953757225434, "acc_norm_stderr": 0.037507570448955356 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.4117647058823529, "acc_stderr": 0.04897104952726367, "acc_norm": 0.4117647058823529, "acc_norm_stderr": 0.04897104952726367 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.69, "acc_stderr": 0.04648231987117316, "acc_norm": 0.69, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5276595744680851, "acc_stderr": 0.03263597118409769, "acc_norm": 0.5276595744680851, "acc_norm_stderr": 0.03263597118409769 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.42105263157894735, "acc_stderr": 0.046446020912223177, "acc_norm": 0.42105263157894735, "acc_norm_stderr": 0.046446020912223177 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.6275862068965518, "acc_stderr": 0.04028731532947558, "acc_norm": 0.6275862068965518, "acc_norm_stderr": 0.04028731532947558 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.38095238095238093, "acc_stderr": 0.025010749116137595, "acc_norm": 0.38095238095238093, "acc_norm_stderr": 0.025010749116137595 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.42857142857142855, "acc_stderr": 0.0442626668137991, "acc_norm": 0.42857142857142855, "acc_norm_stderr": 0.0442626668137991 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.39, "acc_stderr": 0.04902071300001974, "acc_norm": 0.39, "acc_norm_stderr": 0.04902071300001974 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.6064516129032258, "acc_stderr": 0.027791878753132274, "acc_norm": 0.6064516129032258, "acc_norm_stderr": 0.027791878753132274 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.5123152709359606, "acc_stderr": 0.035169204442208966, "acc_norm": 0.5123152709359606, "acc_norm_stderr": 0.035169204442208966 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.61, "acc_stderr": 0.04902071300001974, "acc_norm": 0.61, "acc_norm_stderr": 0.04902071300001974 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7393939393939394, "acc_stderr": 0.034277431758165236, "acc_norm": 0.7393939393939394, "acc_norm_stderr": 0.034277431758165236 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.7575757575757576, "acc_stderr": 0.03053289223393202, "acc_norm": 0.7575757575757576, "acc_norm_stderr": 0.03053289223393202 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.8549222797927462, "acc_stderr": 0.02541634309630644, "acc_norm": 0.8549222797927462, "acc_norm_stderr": 0.02541634309630644 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.5769230769230769, "acc_stderr": 0.025049197876042345, "acc_norm": 0.5769230769230769, "acc_norm_stderr": 0.025049197876042345 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.3074074074074074, "acc_stderr": 0.02813325257881563, "acc_norm": 0.3074074074074074, "acc_norm_stderr": 0.02813325257881563 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6680672268907563, "acc_stderr": 0.03058869701378364, "acc_norm": 0.6680672268907563, "acc_norm_stderr": 0.03058869701378364 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.33774834437086093, "acc_stderr": 0.03861557546255169, "acc_norm": 0.33774834437086093, "acc_norm_stderr": 0.03861557546255169 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.7926605504587156, "acc_stderr": 0.017381415563608674, "acc_norm": 0.7926605504587156, "acc_norm_stderr": 0.017381415563608674 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.4351851851851852, "acc_stderr": 0.03381200005643525, "acc_norm": 0.4351851851851852, "acc_norm_stderr": 0.03381200005643525 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.7794117647058824, "acc_stderr": 0.02910225438967407, "acc_norm": 0.7794117647058824, "acc_norm_stderr": 0.02910225438967407 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7468354430379747, "acc_stderr": 0.028304657943035303, "acc_norm": 0.7468354430379747, "acc_norm_stderr": 0.028304657943035303 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6233183856502242, "acc_stderr": 0.032521134899291884, "acc_norm": 0.6233183856502242, "acc_norm_stderr": 0.032521134899291884 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.7175572519083969, "acc_stderr": 0.03948406125768361, "acc_norm": 0.7175572519083969, "acc_norm_stderr": 0.03948406125768361 }, "harness|hendrycksTest-international_law|5": { "acc": 0.8016528925619835, "acc_stderr": 0.03640118271990947, "acc_norm": 0.8016528925619835, "acc_norm_stderr": 0.03640118271990947 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.7407407407407407, "acc_stderr": 0.042365112580946336, "acc_norm": 0.7407407407407407, "acc_norm_stderr": 0.042365112580946336 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7484662576687117, "acc_stderr": 0.03408997886857529, "acc_norm": 0.7484662576687117, "acc_norm_stderr": 0.03408997886857529 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.4375, "acc_stderr": 0.04708567521880525, "acc_norm": 0.4375, "acc_norm_stderr": 0.04708567521880525 }, "harness|hendrycksTest-management|5": { "acc": 0.7475728155339806, "acc_stderr": 0.04301250399690879, "acc_norm": 0.7475728155339806, "acc_norm_stderr": 0.04301250399690879 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8589743589743589, "acc_stderr": 0.022801382534597552, "acc_norm": 0.8589743589743589, "acc_norm_stderr": 0.022801382534597552 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.69, "acc_stderr": 0.04648231987117316, "acc_norm": 0.69, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.7790549169859514, "acc_stderr": 0.01483620516733355, "acc_norm": 0.7790549169859514, "acc_norm_stderr": 0.01483620516733355 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.6907514450867052, "acc_stderr": 0.024883140570071762, "acc_norm": 0.6907514450867052, "acc_norm_stderr": 0.024883140570071762 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.3106145251396648, "acc_stderr": 0.015476515438005567, "acc_norm": 0.3106145251396648, "acc_norm_stderr": 0.015476515438005567 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.6830065359477124, "acc_stderr": 0.026643278474508755, "acc_norm": 0.6830065359477124, "acc_norm_stderr": 0.026643278474508755 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.6913183279742765, "acc_stderr": 0.02623696588115326, "acc_norm": 0.6913183279742765, "acc_norm_stderr": 0.02623696588115326 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.6975308641975309, "acc_stderr": 0.025557653981868045, "acc_norm": 0.6975308641975309, "acc_norm_stderr": 0.025557653981868045 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.4716312056737589, "acc_stderr": 0.029779450957303062, "acc_norm": 0.4716312056737589, "acc_norm_stderr": 0.029779450957303062 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.43741851368970014, "acc_stderr": 0.012669813464935729, "acc_norm": 0.43741851368970014, "acc_norm_stderr": 0.012669813464935729 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.6213235294117647, "acc_stderr": 0.02946513363977613, "acc_norm": 0.6213235294117647, "acc_norm_stderr": 0.02946513363977613 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6258169934640523, "acc_stderr": 0.01957695312208883, "acc_norm": 0.6258169934640523, "acc_norm_stderr": 0.01957695312208883 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.7181818181818181, "acc_stderr": 0.043091187099464585, "acc_norm": 0.7181818181818181, "acc_norm_stderr": 0.043091187099464585 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7061224489795919, "acc_stderr": 0.02916273841024977, "acc_norm": 0.7061224489795919, "acc_norm_stderr": 0.02916273841024977 }, "harness|hendrycksTest-sociology|5": { "acc": 0.6915422885572139, "acc_stderr": 0.03265819588512699, "acc_norm": 0.6915422885572139, "acc_norm_stderr": 0.03265819588512699 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.8, "acc_stderr": 0.04020151261036846, "acc_norm": 0.8, "acc_norm_stderr": 0.04020151261036846 }, "harness|hendrycksTest-virology|5": { "acc": 0.5060240963855421, "acc_stderr": 0.03892212195333045, "acc_norm": 0.5060240963855421, "acc_norm_stderr": 0.03892212195333045 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8362573099415205, "acc_stderr": 0.028380919596145866, "acc_norm": 0.8362573099415205, "acc_norm_stderr": 0.028380919596145866 }, "harness|truthfulqa:mc|0": { "mc1": 0.5630354957160343, "mc1_stderr": 0.017363844503195957, "mc2": 0.7053630317411392, "mc2_stderr": 0.015058893752819909 }, "harness|winogrande|5": { "acc": 0.77663772691397, "acc_stderr": 0.011705697565205201 }, "harness|gsm8k|5": { "acc": 0.3904473085670963, "acc_stderr": 0.013437829864668578 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_silvercoder45__Mistral-7b-instruct-v0.2-summ-dpo-e2
[ "region:us" ]
2024-01-22T17:13:26+00:00
{"pretty_name": "Evaluation run of silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e2", "dataset_summary": "Dataset automatically created during the evaluation run of model [silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e2](https://huggingface.co/silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e2) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_silvercoder45__Mistral-7b-instruct-v0.2-summ-dpo-e2\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-22T17:11:06.460582](https://huggingface.co/datasets/open-llm-leaderboard/details_silvercoder45__Mistral-7b-instruct-v0.2-summ-dpo-e2/blob/main/results_2024-01-22T17-11-06.460582.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6071506593443939,\n \"acc_stderr\": 0.0331634697242051,\n \"acc_norm\": 0.6115566365296805,\n \"acc_norm_stderr\": 0.0338383460849818,\n \"mc1\": 0.5630354957160343,\n \"mc1_stderr\": 0.017363844503195957,\n \"mc2\": 0.7053630317411392,\n \"mc2_stderr\": 0.015058893752819909\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.590443686006826,\n \"acc_stderr\": 0.014370358632472434,\n \"acc_norm\": 0.6254266211604096,\n \"acc_norm_stderr\": 0.014144193471893456\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6752638916550487,\n \"acc_stderr\": 0.004673191423861211,\n \"acc_norm\": 0.8530173272256523,\n \"acc_norm_stderr\": 0.003533649851728494\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.31,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6,\n \"acc_stderr\": 0.04232073695151589,\n \"acc_norm\": 0.6,\n \"acc_norm_stderr\": 0.04232073695151589\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.618421052631579,\n \"acc_stderr\": 0.03953173377749194,\n \"acc_norm\": 0.618421052631579,\n \"acc_norm_stderr\": 0.03953173377749194\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.59,\n \"acc_stderr\": 0.04943110704237102,\n \"acc_norm\": 0.59,\n \"acc_norm_stderr\": 0.04943110704237102\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.6830188679245283,\n \"acc_stderr\": 0.02863723563980089,\n \"acc_norm\": 0.6830188679245283,\n \"acc_norm_stderr\": 0.02863723563980089\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.6875,\n \"acc_stderr\": 0.038760854559127644,\n \"acc_norm\": 0.6875,\n \"acc_norm_stderr\": 0.038760854559127644\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.39,\n \"acc_stderr\": 0.04902071300001975,\n \"acc_norm\": 0.39,\n \"acc_norm_stderr\": 0.04902071300001975\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.52,\n \"acc_stderr\": 0.050211673156867795,\n \"acc_norm\": 0.52,\n \"acc_norm_stderr\": 0.050211673156867795\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.38,\n \"acc_stderr\": 0.04878317312145632,\n \"acc_norm\": 0.38,\n \"acc_norm_stderr\": 0.04878317312145632\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.5895953757225434,\n \"acc_stderr\": 0.037507570448955356,\n \"acc_norm\": 0.5895953757225434,\n \"acc_norm_stderr\": 0.037507570448955356\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.4117647058823529,\n \"acc_stderr\": 0.04897104952726367,\n \"acc_norm\": 0.4117647058823529,\n \"acc_norm_stderr\": 0.04897104952726367\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.69,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.69,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5276595744680851,\n \"acc_stderr\": 0.03263597118409769,\n \"acc_norm\": 0.5276595744680851,\n \"acc_norm_stderr\": 0.03263597118409769\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.42105263157894735,\n \"acc_stderr\": 0.046446020912223177,\n \"acc_norm\": 0.42105263157894735,\n \"acc_norm_stderr\": 0.046446020912223177\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.6275862068965518,\n \"acc_stderr\": 0.04028731532947558,\n \"acc_norm\": 0.6275862068965518,\n \"acc_norm_stderr\": 0.04028731532947558\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.38095238095238093,\n \"acc_stderr\": 0.025010749116137595,\n \"acc_norm\": 0.38095238095238093,\n \"acc_norm_stderr\": 0.025010749116137595\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.42857142857142855,\n \"acc_stderr\": 0.0442626668137991,\n \"acc_norm\": 0.42857142857142855,\n \"acc_norm_stderr\": 0.0442626668137991\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.39,\n \"acc_stderr\": 0.04902071300001974,\n \"acc_norm\": 0.39,\n \"acc_norm_stderr\": 0.04902071300001974\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.6064516129032258,\n \"acc_stderr\": 0.027791878753132274,\n \"acc_norm\": 0.6064516129032258,\n \"acc_norm_stderr\": 0.027791878753132274\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.5123152709359606,\n \"acc_stderr\": 0.035169204442208966,\n \"acc_norm\": 0.5123152709359606,\n \"acc_norm_stderr\": 0.035169204442208966\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.61,\n \"acc_stderr\": 0.04902071300001974,\n \"acc_norm\": 0.61,\n \"acc_norm_stderr\": 0.04902071300001974\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7393939393939394,\n \"acc_stderr\": 0.034277431758165236,\n \"acc_norm\": 0.7393939393939394,\n \"acc_norm_stderr\": 0.034277431758165236\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7575757575757576,\n \"acc_stderr\": 0.03053289223393202,\n \"acc_norm\": 0.7575757575757576,\n \"acc_norm_stderr\": 0.03053289223393202\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8549222797927462,\n \"acc_stderr\": 0.02541634309630644,\n \"acc_norm\": 0.8549222797927462,\n \"acc_norm_stderr\": 0.02541634309630644\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.5769230769230769,\n \"acc_stderr\": 0.025049197876042345,\n \"acc_norm\": 0.5769230769230769,\n \"acc_norm_stderr\": 0.025049197876042345\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.3074074074074074,\n \"acc_stderr\": 0.02813325257881563,\n \"acc_norm\": 0.3074074074074074,\n \"acc_norm_stderr\": 0.02813325257881563\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6680672268907563,\n \"acc_stderr\": 0.03058869701378364,\n \"acc_norm\": 0.6680672268907563,\n \"acc_norm_stderr\": 0.03058869701378364\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.33774834437086093,\n \"acc_stderr\": 0.03861557546255169,\n \"acc_norm\": 0.33774834437086093,\n \"acc_norm_stderr\": 0.03861557546255169\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.7926605504587156,\n \"acc_stderr\": 0.017381415563608674,\n \"acc_norm\": 0.7926605504587156,\n \"acc_norm_stderr\": 0.017381415563608674\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.4351851851851852,\n \"acc_stderr\": 0.03381200005643525,\n \"acc_norm\": 0.4351851851851852,\n \"acc_norm_stderr\": 0.03381200005643525\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.7794117647058824,\n \"acc_stderr\": 0.02910225438967407,\n \"acc_norm\": 0.7794117647058824,\n \"acc_norm_stderr\": 0.02910225438967407\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7468354430379747,\n \"acc_stderr\": 0.028304657943035303,\n \"acc_norm\": 0.7468354430379747,\n \"acc_norm_stderr\": 0.028304657943035303\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6233183856502242,\n \"acc_stderr\": 0.032521134899291884,\n \"acc_norm\": 0.6233183856502242,\n \"acc_norm_stderr\": 0.032521134899291884\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7175572519083969,\n \"acc_stderr\": 0.03948406125768361,\n \"acc_norm\": 0.7175572519083969,\n \"acc_norm_stderr\": 0.03948406125768361\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8016528925619835,\n \"acc_stderr\": 0.03640118271990947,\n \"acc_norm\": 0.8016528925619835,\n \"acc_norm_stderr\": 0.03640118271990947\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7407407407407407,\n \"acc_stderr\": 0.042365112580946336,\n \"acc_norm\": 0.7407407407407407,\n \"acc_norm_stderr\": 0.042365112580946336\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7484662576687117,\n \"acc_stderr\": 0.03408997886857529,\n \"acc_norm\": 0.7484662576687117,\n \"acc_norm_stderr\": 0.03408997886857529\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.4375,\n \"acc_stderr\": 0.04708567521880525,\n \"acc_norm\": 0.4375,\n \"acc_norm_stderr\": 0.04708567521880525\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7475728155339806,\n \"acc_stderr\": 0.04301250399690879,\n \"acc_norm\": 0.7475728155339806,\n \"acc_norm_stderr\": 0.04301250399690879\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8589743589743589,\n \"acc_stderr\": 0.022801382534597552,\n \"acc_norm\": 0.8589743589743589,\n \"acc_norm_stderr\": 0.022801382534597552\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.69,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.69,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.7790549169859514,\n \"acc_stderr\": 0.01483620516733355,\n \"acc_norm\": 0.7790549169859514,\n \"acc_norm_stderr\": 0.01483620516733355\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.6907514450867052,\n \"acc_stderr\": 0.024883140570071762,\n \"acc_norm\": 0.6907514450867052,\n \"acc_norm_stderr\": 0.024883140570071762\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.3106145251396648,\n \"acc_stderr\": 0.015476515438005567,\n \"acc_norm\": 0.3106145251396648,\n \"acc_norm_stderr\": 0.015476515438005567\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.6830065359477124,\n \"acc_stderr\": 0.026643278474508755,\n \"acc_norm\": 0.6830065359477124,\n \"acc_norm_stderr\": 0.026643278474508755\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.6913183279742765,\n \"acc_stderr\": 0.02623696588115326,\n \"acc_norm\": 0.6913183279742765,\n \"acc_norm_stderr\": 0.02623696588115326\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.6975308641975309,\n \"acc_stderr\": 0.025557653981868045,\n \"acc_norm\": 0.6975308641975309,\n \"acc_norm_stderr\": 0.025557653981868045\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.4716312056737589,\n \"acc_stderr\": 0.029779450957303062,\n \"acc_norm\": 0.4716312056737589,\n \"acc_norm_stderr\": 0.029779450957303062\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.43741851368970014,\n \"acc_stderr\": 0.012669813464935729,\n \"acc_norm\": 0.43741851368970014,\n \"acc_norm_stderr\": 0.012669813464935729\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6213235294117647,\n \"acc_stderr\": 0.02946513363977613,\n \"acc_norm\": 0.6213235294117647,\n \"acc_norm_stderr\": 0.02946513363977613\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6258169934640523,\n \"acc_stderr\": 0.01957695312208883,\n \"acc_norm\": 0.6258169934640523,\n \"acc_norm_stderr\": 0.01957695312208883\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.7181818181818181,\n \"acc_stderr\": 0.043091187099464585,\n \"acc_norm\": 0.7181818181818181,\n \"acc_norm_stderr\": 0.043091187099464585\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7061224489795919,\n \"acc_stderr\": 0.02916273841024977,\n \"acc_norm\": 0.7061224489795919,\n \"acc_norm_stderr\": 0.02916273841024977\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.6915422885572139,\n \"acc_stderr\": 0.03265819588512699,\n \"acc_norm\": 0.6915422885572139,\n \"acc_norm_stderr\": 0.03265819588512699\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.8,\n \"acc_stderr\": 0.04020151261036846,\n \"acc_norm\": 0.8,\n \"acc_norm_stderr\": 0.04020151261036846\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5060240963855421,\n \"acc_stderr\": 0.03892212195333045,\n \"acc_norm\": 0.5060240963855421,\n \"acc_norm_stderr\": 0.03892212195333045\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8362573099415205,\n \"acc_stderr\": 0.028380919596145866,\n \"acc_norm\": 0.8362573099415205,\n \"acc_norm_stderr\": 0.028380919596145866\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.5630354957160343,\n \"mc1_stderr\": 0.017363844503195957,\n \"mc2\": 0.7053630317411392,\n \"mc2_stderr\": 0.015058893752819909\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.77663772691397,\n \"acc_stderr\": 0.011705697565205201\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.3904473085670963,\n \"acc_stderr\": 0.013437829864668578\n }\n}\n```", "repo_url": "https://huggingface.co/silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e2", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|arc:challenge|25_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|gsm8k|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hellaswag|10_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T17-11-06.460582.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["**/details_harness|winogrande|5_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-22T17-11-06.460582.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_22T17_11_06.460582", "path": ["results_2024-01-22T17-11-06.460582.parquet"]}, {"split": "latest", "path": ["results_2024-01-22T17-11-06.460582.parquet"]}]}]}
2024-01-22T17:13:50+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e2 Dataset automatically created during the evaluation run of model silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e2 on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-22T17:11:06.460582(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e2\n\n\n\nDataset automatically created during the evaluation run of model silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e2 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T17:11:06.460582(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e2\n\n\n\nDataset automatically created during the evaluation run of model silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e2 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T17:11:06.460582(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
1f52286de2227ca734a8d490996fbd114f826032
# Dataset Card for "Calc-ape210k_selftrain" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
MU-NLPC/Calc-ape210k_selftrain
[ "region:us" ]
2024-01-22T17:14:57+00:00
{"dataset_info": {"config_name": "0-50k", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "question_chinese", "dtype": "string"}, {"name": "chain", "dtype": "string"}, {"name": "result", "dtype": "string"}, {"name": "result_float", "dtype": "float64"}, {"name": "equation", "dtype": "string"}, {"name": "template", "dtype": "string"}, {"name": "prediction", "sequence": "string"}, {"name": "model_checkpoint", "dtype": "string"}, {"name": "pred_result", "sequence": "string"}, {"name": "is_correct", "sequence": "bool"}], "splits": [{"name": "train", "num_bytes": 315968226, "num_examples": 50000}], "download_size": 94681038, "dataset_size": 315968226}, "configs": [{"config_name": "0-50k", "data_files": [{"split": "train", "path": "0-50k/train-*"}]}]}
2024-01-22T17:15:10+00:00
[]
[]
TAGS #region-us
# Dataset Card for "Calc-ape210k_selftrain" More Information needed
[ "# Dataset Card for \"Calc-ape210k_selftrain\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"Calc-ape210k_selftrain\"\n\nMore Information needed" ]
cbc9513d3ee9dfdba72a1404a9ff283528ad645e
# Dataset Card for Evaluation run of silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e3 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e3](https://huggingface.co/silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e3) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_silvercoder45__Mistral-7b-instruct-v0.2-summ-dpo-e3", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-01-22T17:17:10.255551](https://huggingface.co/datasets/open-llm-leaderboard/details_silvercoder45__Mistral-7b-instruct-v0.2-summ-dpo-e3/blob/main/results_2024-01-22T17-17-10.255551.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.6076374032172701, "acc_stderr": 0.0331629731019256, "acc_norm": 0.6120606501518099, "acc_norm_stderr": 0.03383578080966383, "mc1": 0.5581395348837209, "mc1_stderr": 0.01738476747898621, "mc2": 0.7059182813774988, "mc2_stderr": 0.01504259695078292 }, "harness|arc:challenge|25": { "acc": 0.5878839590443686, "acc_stderr": 0.014383915302225407, "acc_norm": 0.6262798634812287, "acc_norm_stderr": 0.014137708601759084 }, "harness|hellaswag|10": { "acc": 0.6750647281418044, "acc_stderr": 0.004673934837150448, "acc_norm": 0.8531169089822744, "acc_norm_stderr": 0.0035326587973575525 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.3, "acc_stderr": 0.046056618647183814, "acc_norm": 0.3, "acc_norm_stderr": 0.046056618647183814 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.5925925925925926, "acc_stderr": 0.04244633238353228, "acc_norm": 0.5925925925925926, "acc_norm_stderr": 0.04244633238353228 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.618421052631579, "acc_stderr": 0.03953173377749194, "acc_norm": 0.618421052631579, "acc_norm_stderr": 0.03953173377749194 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.6, "acc_stderr": 0.049236596391733084, "acc_norm": 0.6, "acc_norm_stderr": 0.049236596391733084 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.6792452830188679, "acc_stderr": 0.02872750295788027, "acc_norm": 0.6792452830188679, "acc_norm_stderr": 0.02872750295788027 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.6875, "acc_stderr": 0.038760854559127644, "acc_norm": 0.6875, "acc_norm_stderr": 0.038760854559127644 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.39, "acc_stderr": 0.04902071300001975, "acc_norm": 0.39, "acc_norm_stderr": 0.04902071300001975 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.52, "acc_stderr": 0.050211673156867795, "acc_norm": 0.52, "acc_norm_stderr": 0.050211673156867795 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.39, "acc_stderr": 0.04902071300001974, "acc_norm": 0.39, "acc_norm_stderr": 0.04902071300001974 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.5895953757225434, "acc_stderr": 0.037507570448955356, "acc_norm": 0.5895953757225434, "acc_norm_stderr": 0.037507570448955356 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.4117647058823529, "acc_stderr": 0.04897104952726367, "acc_norm": 0.4117647058823529, "acc_norm_stderr": 0.04897104952726367 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.69, "acc_stderr": 0.04648231987117316, "acc_norm": 0.69, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5276595744680851, "acc_stderr": 0.03263597118409769, "acc_norm": 0.5276595744680851, "acc_norm_stderr": 0.03263597118409769 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.42105263157894735, "acc_stderr": 0.046446020912223177, "acc_norm": 0.42105263157894735, "acc_norm_stderr": 0.046446020912223177 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.6137931034482759, "acc_stderr": 0.04057324734419035, "acc_norm": 0.6137931034482759, "acc_norm_stderr": 0.04057324734419035 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.3783068783068783, "acc_stderr": 0.02497695405315525, "acc_norm": 0.3783068783068783, "acc_norm_stderr": 0.02497695405315525 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.4365079365079365, "acc_stderr": 0.04435932892851466, "acc_norm": 0.4365079365079365, "acc_norm_stderr": 0.04435932892851466 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.38, "acc_stderr": 0.048783173121456316, "acc_norm": 0.38, "acc_norm_stderr": 0.048783173121456316 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.5935483870967742, "acc_stderr": 0.02794172734625631, "acc_norm": 0.5935483870967742, "acc_norm_stderr": 0.02794172734625631 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.5024630541871922, "acc_stderr": 0.035179450386910616, "acc_norm": 0.5024630541871922, "acc_norm_stderr": 0.035179450386910616 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.62, "acc_stderr": 0.04878317312145632, "acc_norm": 0.62, "acc_norm_stderr": 0.04878317312145632 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7393939393939394, "acc_stderr": 0.034277431758165236, "acc_norm": 0.7393939393939394, "acc_norm_stderr": 0.034277431758165236 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.7525252525252525, "acc_stderr": 0.030746300742124484, "acc_norm": 0.7525252525252525, "acc_norm_stderr": 0.030746300742124484 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.8549222797927462, "acc_stderr": 0.02541634309630644, "acc_norm": 0.8549222797927462, "acc_norm_stderr": 0.02541634309630644 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.5769230769230769, "acc_stderr": 0.025049197876042345, "acc_norm": 0.5769230769230769, "acc_norm_stderr": 0.025049197876042345 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.31851851851851853, "acc_stderr": 0.028406533090608456, "acc_norm": 0.31851851851851853, "acc_norm_stderr": 0.028406533090608456 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6680672268907563, "acc_stderr": 0.03058869701378364, "acc_norm": 0.6680672268907563, "acc_norm_stderr": 0.03058869701378364 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.3576158940397351, "acc_stderr": 0.03913453431177258, "acc_norm": 0.3576158940397351, "acc_norm_stderr": 0.03913453431177258 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.7944954128440367, "acc_stderr": 0.017324352325016012, "acc_norm": 0.7944954128440367, "acc_norm_stderr": 0.017324352325016012 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.4351851851851852, "acc_stderr": 0.03381200005643525, "acc_norm": 0.4351851851851852, "acc_norm_stderr": 0.03381200005643525 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.7745098039215687, "acc_stderr": 0.02933116229425174, "acc_norm": 0.7745098039215687, "acc_norm_stderr": 0.02933116229425174 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.7510548523206751, "acc_stderr": 0.028146970599422644, "acc_norm": 0.7510548523206751, "acc_norm_stderr": 0.028146970599422644 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.6233183856502242, "acc_stderr": 0.032521134899291884, "acc_norm": 0.6233183856502242, "acc_norm_stderr": 0.032521134899291884 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.7251908396946565, "acc_stderr": 0.03915345408847836, "acc_norm": 0.7251908396946565, "acc_norm_stderr": 0.03915345408847836 }, "harness|hendrycksTest-international_law|5": { "acc": 0.8099173553719008, "acc_stderr": 0.03581796951709282, "acc_norm": 0.8099173553719008, "acc_norm_stderr": 0.03581796951709282 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.7407407407407407, "acc_stderr": 0.042365112580946336, "acc_norm": 0.7407407407407407, "acc_norm_stderr": 0.042365112580946336 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7484662576687117, "acc_stderr": 0.03408997886857529, "acc_norm": 0.7484662576687117, "acc_norm_stderr": 0.03408997886857529 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.44642857142857145, "acc_stderr": 0.04718471485219588, "acc_norm": 0.44642857142857145, "acc_norm_stderr": 0.04718471485219588 }, "harness|hendrycksTest-management|5": { "acc": 0.7475728155339806, "acc_stderr": 0.04301250399690879, "acc_norm": 0.7475728155339806, "acc_norm_stderr": 0.04301250399690879 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8589743589743589, "acc_stderr": 0.022801382534597552, "acc_norm": 0.8589743589743589, "acc_norm_stderr": 0.022801382534597552 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.69, "acc_stderr": 0.04648231987117316, "acc_norm": 0.69, "acc_norm_stderr": 0.04648231987117316 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.7816091954022989, "acc_stderr": 0.014774358319934488, "acc_norm": 0.7816091954022989, "acc_norm_stderr": 0.014774358319934488 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.6878612716763006, "acc_stderr": 0.024946792225272314, "acc_norm": 0.6878612716763006, "acc_norm_stderr": 0.024946792225272314 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.30614525139664805, "acc_stderr": 0.015414494487903227, "acc_norm": 0.30614525139664805, "acc_norm_stderr": 0.015414494487903227 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.6797385620915033, "acc_stderr": 0.02671611838015685, "acc_norm": 0.6797385620915033, "acc_norm_stderr": 0.02671611838015685 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.6945337620578779, "acc_stderr": 0.02616058445014045, "acc_norm": 0.6945337620578779, "acc_norm_stderr": 0.02616058445014045 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.6975308641975309, "acc_stderr": 0.025557653981868045, "acc_norm": 0.6975308641975309, "acc_norm_stderr": 0.025557653981868045 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.4716312056737589, "acc_stderr": 0.029779450957303062, "acc_norm": 0.4716312056737589, "acc_norm_stderr": 0.029779450957303062 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.4380704041720991, "acc_stderr": 0.012671902782567657, "acc_norm": 0.4380704041720991, "acc_norm_stderr": 0.012671902782567657 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.6286764705882353, "acc_stderr": 0.029349803139765873, "acc_norm": 0.6286764705882353, "acc_norm_stderr": 0.029349803139765873 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.630718954248366, "acc_stderr": 0.019524316744866353, "acc_norm": 0.630718954248366, "acc_norm_stderr": 0.019524316744866353 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.7181818181818181, "acc_stderr": 0.043091187099464585, "acc_norm": 0.7181818181818181, "acc_norm_stderr": 0.043091187099464585 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7142857142857143, "acc_stderr": 0.0289205832206756, "acc_norm": 0.7142857142857143, "acc_norm_stderr": 0.0289205832206756 }, "harness|hendrycksTest-sociology|5": { "acc": 0.6965174129353234, "acc_stderr": 0.032510068164586174, "acc_norm": 0.6965174129353234, "acc_norm_stderr": 0.032510068164586174 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.8, "acc_stderr": 0.04020151261036846, "acc_norm": 0.8, "acc_norm_stderr": 0.04020151261036846 }, "harness|hendrycksTest-virology|5": { "acc": 0.5, "acc_stderr": 0.03892494720807614, "acc_norm": 0.5, "acc_norm_stderr": 0.03892494720807614 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8304093567251462, "acc_stderr": 0.02878210810540171, "acc_norm": 0.8304093567251462, "acc_norm_stderr": 0.02878210810540171 }, "harness|truthfulqa:mc|0": { "mc1": 0.5581395348837209, "mc1_stderr": 0.01738476747898621, "mc2": 0.7059182813774988, "mc2_stderr": 0.01504259695078292 }, "harness|winogrande|5": { "acc": 0.7734806629834254, "acc_stderr": 0.011764149054698338 }, "harness|gsm8k|5": { "acc": 0.39727065959059893, "acc_stderr": 0.013478659652337787 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_silvercoder45__Mistral-7b-instruct-v0.2-summ-dpo-e3
[ "region:us" ]
2024-01-22T17:19:36+00:00
{"pretty_name": "Evaluation run of silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e3", "dataset_summary": "Dataset automatically created during the evaluation run of model [silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e3](https://huggingface.co/silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e3) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_silvercoder45__Mistral-7b-instruct-v0.2-summ-dpo-e3\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-22T17:17:10.255551](https://huggingface.co/datasets/open-llm-leaderboard/details_silvercoder45__Mistral-7b-instruct-v0.2-summ-dpo-e3/blob/main/results_2024-01-22T17-17-10.255551.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6076374032172701,\n \"acc_stderr\": 0.0331629731019256,\n \"acc_norm\": 0.6120606501518099,\n \"acc_norm_stderr\": 0.03383578080966383,\n \"mc1\": 0.5581395348837209,\n \"mc1_stderr\": 0.01738476747898621,\n \"mc2\": 0.7059182813774988,\n \"mc2_stderr\": 0.01504259695078292\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.5878839590443686,\n \"acc_stderr\": 0.014383915302225407,\n \"acc_norm\": 0.6262798634812287,\n \"acc_norm_stderr\": 0.014137708601759084\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6750647281418044,\n \"acc_stderr\": 0.004673934837150448,\n \"acc_norm\": 0.8531169089822744,\n \"acc_norm_stderr\": 0.0035326587973575525\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.3,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.3,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.5925925925925926,\n \"acc_stderr\": 0.04244633238353228,\n \"acc_norm\": 0.5925925925925926,\n \"acc_norm_stderr\": 0.04244633238353228\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.618421052631579,\n \"acc_stderr\": 0.03953173377749194,\n \"acc_norm\": 0.618421052631579,\n \"acc_norm_stderr\": 0.03953173377749194\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.6,\n \"acc_stderr\": 0.049236596391733084,\n \"acc_norm\": 0.6,\n \"acc_norm_stderr\": 0.049236596391733084\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.6792452830188679,\n \"acc_stderr\": 0.02872750295788027,\n \"acc_norm\": 0.6792452830188679,\n \"acc_norm_stderr\": 0.02872750295788027\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.6875,\n \"acc_stderr\": 0.038760854559127644,\n \"acc_norm\": 0.6875,\n \"acc_norm_stderr\": 0.038760854559127644\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.39,\n \"acc_stderr\": 0.04902071300001975,\n \"acc_norm\": 0.39,\n \"acc_norm_stderr\": 0.04902071300001975\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.52,\n \"acc_stderr\": 0.050211673156867795,\n \"acc_norm\": 0.52,\n \"acc_norm_stderr\": 0.050211673156867795\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.39,\n \"acc_stderr\": 0.04902071300001974,\n \"acc_norm\": 0.39,\n \"acc_norm_stderr\": 0.04902071300001974\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.5895953757225434,\n \"acc_stderr\": 0.037507570448955356,\n \"acc_norm\": 0.5895953757225434,\n \"acc_norm_stderr\": 0.037507570448955356\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.4117647058823529,\n \"acc_stderr\": 0.04897104952726367,\n \"acc_norm\": 0.4117647058823529,\n \"acc_norm_stderr\": 0.04897104952726367\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.69,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.69,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5276595744680851,\n \"acc_stderr\": 0.03263597118409769,\n \"acc_norm\": 0.5276595744680851,\n \"acc_norm_stderr\": 0.03263597118409769\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.42105263157894735,\n \"acc_stderr\": 0.046446020912223177,\n \"acc_norm\": 0.42105263157894735,\n \"acc_norm_stderr\": 0.046446020912223177\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.6137931034482759,\n \"acc_stderr\": 0.04057324734419035,\n \"acc_norm\": 0.6137931034482759,\n \"acc_norm_stderr\": 0.04057324734419035\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.3783068783068783,\n \"acc_stderr\": 0.02497695405315525,\n \"acc_norm\": 0.3783068783068783,\n \"acc_norm_stderr\": 0.02497695405315525\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.4365079365079365,\n \"acc_stderr\": 0.04435932892851466,\n \"acc_norm\": 0.4365079365079365,\n \"acc_norm_stderr\": 0.04435932892851466\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.38,\n \"acc_stderr\": 0.048783173121456316,\n \"acc_norm\": 0.38,\n \"acc_norm_stderr\": 0.048783173121456316\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.5935483870967742,\n \"acc_stderr\": 0.02794172734625631,\n \"acc_norm\": 0.5935483870967742,\n \"acc_norm_stderr\": 0.02794172734625631\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.5024630541871922,\n \"acc_stderr\": 0.035179450386910616,\n \"acc_norm\": 0.5024630541871922,\n \"acc_norm_stderr\": 0.035179450386910616\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.62,\n \"acc_stderr\": 0.04878317312145632,\n \"acc_norm\": 0.62,\n \"acc_norm_stderr\": 0.04878317312145632\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7393939393939394,\n \"acc_stderr\": 0.034277431758165236,\n \"acc_norm\": 0.7393939393939394,\n \"acc_norm_stderr\": 0.034277431758165236\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7525252525252525,\n \"acc_stderr\": 0.030746300742124484,\n \"acc_norm\": 0.7525252525252525,\n \"acc_norm_stderr\": 0.030746300742124484\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8549222797927462,\n \"acc_stderr\": 0.02541634309630644,\n \"acc_norm\": 0.8549222797927462,\n \"acc_norm_stderr\": 0.02541634309630644\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.5769230769230769,\n \"acc_stderr\": 0.025049197876042345,\n \"acc_norm\": 0.5769230769230769,\n \"acc_norm_stderr\": 0.025049197876042345\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.31851851851851853,\n \"acc_stderr\": 0.028406533090608456,\n \"acc_norm\": 0.31851851851851853,\n \"acc_norm_stderr\": 0.028406533090608456\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6680672268907563,\n \"acc_stderr\": 0.03058869701378364,\n \"acc_norm\": 0.6680672268907563,\n \"acc_norm_stderr\": 0.03058869701378364\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.3576158940397351,\n \"acc_stderr\": 0.03913453431177258,\n \"acc_norm\": 0.3576158940397351,\n \"acc_norm_stderr\": 0.03913453431177258\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.7944954128440367,\n \"acc_stderr\": 0.017324352325016012,\n \"acc_norm\": 0.7944954128440367,\n \"acc_norm_stderr\": 0.017324352325016012\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.4351851851851852,\n \"acc_stderr\": 0.03381200005643525,\n \"acc_norm\": 0.4351851851851852,\n \"acc_norm_stderr\": 0.03381200005643525\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.7745098039215687,\n \"acc_stderr\": 0.02933116229425174,\n \"acc_norm\": 0.7745098039215687,\n \"acc_norm_stderr\": 0.02933116229425174\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7510548523206751,\n \"acc_stderr\": 0.028146970599422644,\n \"acc_norm\": 0.7510548523206751,\n \"acc_norm_stderr\": 0.028146970599422644\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6233183856502242,\n \"acc_stderr\": 0.032521134899291884,\n \"acc_norm\": 0.6233183856502242,\n \"acc_norm_stderr\": 0.032521134899291884\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7251908396946565,\n \"acc_stderr\": 0.03915345408847836,\n \"acc_norm\": 0.7251908396946565,\n \"acc_norm_stderr\": 0.03915345408847836\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8099173553719008,\n \"acc_stderr\": 0.03581796951709282,\n \"acc_norm\": 0.8099173553719008,\n \"acc_norm_stderr\": 0.03581796951709282\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7407407407407407,\n \"acc_stderr\": 0.042365112580946336,\n \"acc_norm\": 0.7407407407407407,\n \"acc_norm_stderr\": 0.042365112580946336\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7484662576687117,\n \"acc_stderr\": 0.03408997886857529,\n \"acc_norm\": 0.7484662576687117,\n \"acc_norm_stderr\": 0.03408997886857529\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.44642857142857145,\n \"acc_stderr\": 0.04718471485219588,\n \"acc_norm\": 0.44642857142857145,\n \"acc_norm_stderr\": 0.04718471485219588\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7475728155339806,\n \"acc_stderr\": 0.04301250399690879,\n \"acc_norm\": 0.7475728155339806,\n \"acc_norm_stderr\": 0.04301250399690879\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8589743589743589,\n \"acc_stderr\": 0.022801382534597552,\n \"acc_norm\": 0.8589743589743589,\n \"acc_norm_stderr\": 0.022801382534597552\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.69,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.69,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.7816091954022989,\n \"acc_stderr\": 0.014774358319934488,\n \"acc_norm\": 0.7816091954022989,\n \"acc_norm_stderr\": 0.014774358319934488\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.6878612716763006,\n \"acc_stderr\": 0.024946792225272314,\n \"acc_norm\": 0.6878612716763006,\n \"acc_norm_stderr\": 0.024946792225272314\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.30614525139664805,\n \"acc_stderr\": 0.015414494487903227,\n \"acc_norm\": 0.30614525139664805,\n \"acc_norm_stderr\": 0.015414494487903227\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.6797385620915033,\n \"acc_stderr\": 0.02671611838015685,\n \"acc_norm\": 0.6797385620915033,\n \"acc_norm_stderr\": 0.02671611838015685\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.6945337620578779,\n \"acc_stderr\": 0.02616058445014045,\n \"acc_norm\": 0.6945337620578779,\n \"acc_norm_stderr\": 0.02616058445014045\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.6975308641975309,\n \"acc_stderr\": 0.025557653981868045,\n \"acc_norm\": 0.6975308641975309,\n \"acc_norm_stderr\": 0.025557653981868045\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.4716312056737589,\n \"acc_stderr\": 0.029779450957303062,\n \"acc_norm\": 0.4716312056737589,\n \"acc_norm_stderr\": 0.029779450957303062\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.4380704041720991,\n \"acc_stderr\": 0.012671902782567657,\n \"acc_norm\": 0.4380704041720991,\n \"acc_norm_stderr\": 0.012671902782567657\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6286764705882353,\n \"acc_stderr\": 0.029349803139765873,\n \"acc_norm\": 0.6286764705882353,\n \"acc_norm_stderr\": 0.029349803139765873\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.630718954248366,\n \"acc_stderr\": 0.019524316744866353,\n \"acc_norm\": 0.630718954248366,\n \"acc_norm_stderr\": 0.019524316744866353\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.7181818181818181,\n \"acc_stderr\": 0.043091187099464585,\n \"acc_norm\": 0.7181818181818181,\n \"acc_norm_stderr\": 0.043091187099464585\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7142857142857143,\n \"acc_stderr\": 0.0289205832206756,\n \"acc_norm\": 0.7142857142857143,\n \"acc_norm_stderr\": 0.0289205832206756\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.6965174129353234,\n \"acc_stderr\": 0.032510068164586174,\n \"acc_norm\": 0.6965174129353234,\n \"acc_norm_stderr\": 0.032510068164586174\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.8,\n \"acc_stderr\": 0.04020151261036846,\n \"acc_norm\": 0.8,\n \"acc_norm_stderr\": 0.04020151261036846\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5,\n \"acc_stderr\": 0.03892494720807614,\n \"acc_norm\": 0.5,\n \"acc_norm_stderr\": 0.03892494720807614\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8304093567251462,\n \"acc_stderr\": 0.02878210810540171,\n \"acc_norm\": 0.8304093567251462,\n \"acc_norm_stderr\": 0.02878210810540171\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.5581395348837209,\n \"mc1_stderr\": 0.01738476747898621,\n \"mc2\": 0.7059182813774988,\n \"mc2_stderr\": 0.01504259695078292\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.7734806629834254,\n \"acc_stderr\": 0.011764149054698338\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.39727065959059893,\n \"acc_stderr\": 0.013478659652337787\n }\n}\n```", "repo_url": "https://huggingface.co/silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e3", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|arc:challenge|25_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|gsm8k|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hellaswag|10_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-22T17-17-10.255551.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["**/details_harness|winogrande|5_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-22T17-17-10.255551.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_22T17_17_10.255551", "path": ["results_2024-01-22T17-17-10.255551.parquet"]}, {"split": "latest", "path": ["results_2024-01-22T17-17-10.255551.parquet"]}]}]}
2024-01-22T17:20:01+00:00
[]
[]
TAGS #region-us
# Dataset Card for Evaluation run of silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e3 Dataset automatically created during the evaluation run of model silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e3 on the Open LLM Leaderboard. The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard). To load the details from a run, you can for instance do the following: ## Latest results These are the latest results from run 2024-01-22T17:17:10.255551(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ## Dataset Details ### Dataset Description - Curated by: - Funded by [optional]: - Shared by [optional]: - Language(s) (NLP): - License: ### Dataset Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Out-of-Scope Use ## Dataset Structure ## Dataset Creation ### Curation Rationale ### Source Data #### Data Collection and Processing #### Who are the source data producers? ### Annotations [optional] #### Annotation process #### Who are the annotators? #### Personal and Sensitive Information ## Bias, Risks, and Limitations ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Dataset Card Authors [optional] ## Dataset Card Contact
[ "# Dataset Card for Evaluation run of silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e3\n\n\n\nDataset automatically created during the evaluation run of model silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e3 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T17:17:10.255551(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]
[ "TAGS\n#region-us \n", "# Dataset Card for Evaluation run of silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e3\n\n\n\nDataset automatically created during the evaluation run of model silvercoder45/Mistral-7b-instruct-v0.2-summ-dpo-e3 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:", "## Latest results\n\nThese are the latest results from run 2024-01-22T17:17:10.255551(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):", "## Dataset Details", "### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:", "### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Out-of-Scope Use", "## Dataset Structure", "## Dataset Creation", "### Curation Rationale", "### Source Data", "#### Data Collection and Processing", "#### Who are the source data producers?", "### Annotations [optional]", "#### Annotation process", "#### Who are the annotators?", "#### Personal and Sensitive Information", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Dataset Card Authors [optional]", "## Dataset Card Contact" ]