sha
stringlengths 40
40
| text
stringlengths 1
13.4M
| id
stringlengths 2
117
| tags
sequencelengths 1
7.91k
| created_at
stringlengths 25
25
| metadata
stringlengths 2
875k
| last_modified
stringlengths 25
25
| arxiv
sequencelengths 0
25
| languages
sequencelengths 0
7.91k
| tags_str
stringlengths 17
159k
| text_str
stringlengths 1
447k
| text_lists
sequencelengths 0
352
| processed_texts
sequencelengths 1
353
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
081139f97250e0ad5dbb84acc238f8474df492a7 |
# Dataset of ymir (Fire Emblem)
This is the dataset of ymir (Fire Emblem), containing 21 images and their tags.
The core tags of this character are `blue_eyes, long_hair, blonde_hair, breasts, bangs, hair_ornament, very_long_hair, large_breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:-----------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 21 | 38.49 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ymir_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 21 | 20.28 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ymir_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 51 | 41.20 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ymir_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 21 | 32.99 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ymir_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 51 | 59.32 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ymir_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/ymir_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 7 |  |  |  |  |  | 1girl, hair_flower, solo, sun_hat, blush, cleavage, looking_at_viewer, smile, white_headwear, bracelet, green_bikini, navel, open_mouth, see-through, barefoot, coconut, collarbone, day, drinking_straw, halterneck, hat_bow, holding, outdoors |
| 1 | 12 |  |  |  |  |  | 1girl, flower, solo, looking_at_viewer, smile, bare_shoulders, butterfly, detached_sleeves, green_dress, wide_sleeves, bird, blush, closed_mouth |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | hair_flower | solo | sun_hat | blush | cleavage | looking_at_viewer | smile | white_headwear | bracelet | green_bikini | navel | open_mouth | see-through | barefoot | coconut | collarbone | day | drinking_straw | halterneck | hat_bow | holding | outdoors | flower | bare_shoulders | butterfly | detached_sleeves | green_dress | wide_sleeves | bird | closed_mouth |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------------|:-------|:----------|:--------|:-----------|:--------------------|:--------|:-----------------|:-----------|:---------------|:--------|:-------------|:--------------|:-----------|:----------|:-------------|:------|:-----------------|:-------------|:----------|:----------|:-----------|:---------|:-----------------|:------------|:-------------------|:--------------|:---------------|:-------|:---------------|
| 0 | 7 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | |
| 1 | 12 |  |  |  |  |  | X | | X | | X | | X | X | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X |
| CyberHarem/ymir_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-17T22:50:59+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-17T22:55:47+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of ymir (Fire Emblem)
=============================
This is the dataset of ymir (Fire Emblem), containing 21 images and their tags.
The core tags of this character are 'blue\_eyes, long\_hair, blonde\_hair, breasts, bangs, hair\_ornament, very\_long\_hair, large\_breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
6be8f96f48f29fc3b9efd9d5277cbac40cca13eb |
# Dataset of emerina (Fire Emblem)
This is the dataset of emerina (Fire Emblem), containing 18 images and their tags.
The core tags of this character are `blonde_hair, long_hair, facial_mark, breasts, drill_hair, green_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:--------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 18 | 17.98 MiB | [Download](https://huggingface.co/datasets/CyberHarem/emerina_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 18 | 12.73 MiB | [Download](https://huggingface.co/datasets/CyberHarem/emerina_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 29 | 20.35 MiB | [Download](https://huggingface.co/datasets/CyberHarem/emerina_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 18 | 17.66 MiB | [Download](https://huggingface.co/datasets/CyberHarem/emerina_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 29 | 26.87 MiB | [Download](https://huggingface.co/datasets/CyberHarem/emerina_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/emerina_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------|
| 0 | 18 |  |  |  |  |  | 1girl, cape, solo, forehead_mark, dress, looking_at_viewer, smile, white_background |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | cape | solo | forehead_mark | dress | looking_at_viewer | smile | white_background |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:-------|:----------------|:--------|:--------------------|:--------|:-------------------|
| 0 | 18 |  |  |  |  |  | X | X | X | X | X | X | X | X |
| CyberHarem/emerina_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-17T22:51:05+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-17T22:56:41+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of emerina (Fire Emblem)
================================
This is the dataset of emerina (Fire Emblem), containing 18 images and their tags.
The core tags of this character are 'blonde\_hair, long\_hair, facial\_mark, breasts, drill\_hair, green\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
d780110653229baae99cb5a3b23a2414efcbe39c |
# Dataset of lachesis (Fire Emblem)
This is the dataset of lachesis (Fire Emblem), containing 62 images and their tags.
The core tags of this character are `long_hair, blonde_hair, breasts, brown_eyes, bangs, yellow_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:---------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 62 | 67.76 MiB | [Download](https://huggingface.co/datasets/CyberHarem/lachesis_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 62 | 44.15 MiB | [Download](https://huggingface.co/datasets/CyberHarem/lachesis_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 127 | 81.41 MiB | [Download](https://huggingface.co/datasets/CyberHarem/lachesis_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 62 | 62.18 MiB | [Download](https://huggingface.co/datasets/CyberHarem/lachesis_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 127 | 104.46 MiB | [Download](https://huggingface.co/datasets/CyberHarem/lachesis_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/lachesis_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 6 |  |  |  |  |  | 1girl, looking_at_viewer, solo, hair_flower, red_dress, red_eyes, shiny_hair, bare_shoulders, hair_between_eyes, red_gloves, closed_mouth, elbow_gloves, jewelry, simple_background, smile, standing |
| 1 | 10 |  |  |  |  |  | 1girl, armor, cape, solo, thighhighs, skirt, sword, zettai_ryouiki, earrings, elbow_gloves, open_mouth, thigh_boots |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | looking_at_viewer | solo | hair_flower | red_dress | red_eyes | shiny_hair | bare_shoulders | hair_between_eyes | red_gloves | closed_mouth | elbow_gloves | jewelry | simple_background | smile | standing | armor | cape | thighhighs | skirt | sword | zettai_ryouiki | earrings | open_mouth | thigh_boots |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------------------|:-------|:--------------|:------------|:-----------|:-------------|:-----------------|:--------------------|:-------------|:---------------|:---------------|:----------|:--------------------|:--------|:-----------|:--------|:-------|:-------------|:--------|:--------|:-----------------|:-----------|:-------------|:--------------|
| 0 | 6 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | |
| 1 | 10 |  |  |  |  |  | X | | X | | | | | | | | | X | | | | | X | X | X | X | X | X | X | X | X |
| CyberHarem/lachesis_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-17T22:51:19+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-17T23:08:21+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of lachesis (Fire Emblem)
=================================
This is the dataset of lachesis (Fire Emblem), containing 62 images and their tags.
The core tags of this character are 'long\_hair, blonde\_hair, breasts, brown\_eyes, bangs, yellow\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
e8cc131692bbd43decf085d7d317fe951da29d28 |
# Dataset of wendy (Fire Emblem)
This is the dataset of wendy (Fire Emblem), containing 19 images and their tags.
The core tags of this character are `headband, short_hair, pink_hair, pink_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 19 | 16.45 MiB | [Download](https://huggingface.co/datasets/CyberHarem/wendy_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 19 | 10.68 MiB | [Download](https://huggingface.co/datasets/CyberHarem/wendy_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 33 | 17.91 MiB | [Download](https://huggingface.co/datasets/CyberHarem/wendy_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 19 | 15.09 MiB | [Download](https://huggingface.co/datasets/CyberHarem/wendy_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 33 | 23.03 MiB | [Download](https://huggingface.co/datasets/CyberHarem/wendy_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/wendy_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------|
| 0 | 19 |  |  |  |  |  | 1girl, solo, armor, gloves, open_mouth, simple_background, white_background, polearm, boots, shield |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | armor | gloves | open_mouth | simple_background | white_background | polearm | boots | shield |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------|:---------|:-------------|:--------------------|:-------------------|:----------|:--------|:---------|
| 0 | 19 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/wendy_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-17T23:04:50+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-17T23:08:39+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of wendy (Fire Emblem)
==============================
This is the dataset of wendy (Fire Emblem), containing 19 images and their tags.
The core tags of this character are 'headband, short\_hair, pink\_hair, pink\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
223343e5a75e61f981d02e6995b080e24921b49f |
# Dataset of leen (Fire Emblem)
This is the dataset of leen (Fire Emblem), containing 68 images and their tags.
The core tags of this character are `green_hair, green_eyes, breasts, ponytail, earrings, bow, long_hair, medium_breasts, hair_bow`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:-----------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 68 | 67.17 MiB | [Download](https://huggingface.co/datasets/CyberHarem/leen_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 68 | 44.94 MiB | [Download](https://huggingface.co/datasets/CyberHarem/leen_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 143 | 87.72 MiB | [Download](https://huggingface.co/datasets/CyberHarem/leen_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 68 | 60.85 MiB | [Download](https://huggingface.co/datasets/CyberHarem/leen_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 143 | 110.81 MiB | [Download](https://huggingface.co/datasets/CyberHarem/leen_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/leen_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 10 |  |  |  |  |  | 1girl, cleavage, dancer, navel, necklace, solo, looking_at_viewer, midriff, simple_background, pelvic_curtain, smile, white_background, blush, open_mouth, bangs, large_breasts, thigh_strap, bare_shoulders, pink_bow |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | cleavage | dancer | navel | necklace | solo | looking_at_viewer | midriff | simple_background | pelvic_curtain | smile | white_background | blush | open_mouth | bangs | large_breasts | thigh_strap | bare_shoulders | pink_bow |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-----------|:---------|:--------|:-----------|:-------|:--------------------|:----------|:--------------------|:-----------------|:--------|:-------------------|:--------|:-------------|:--------|:----------------|:--------------|:-----------------|:-----------|
| 0 | 10 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/leen_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-17T23:04:53+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-17T23:18:37+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of leen (Fire Emblem)
=============================
This is the dataset of leen (Fire Emblem), containing 68 images and their tags.
The core tags of this character are 'green\_hair, green\_eyes, breasts, ponytail, earrings, bow, long\_hair, medium\_breasts, hair\_bow', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
c11dc85a4d07dbae9340cdcca6d1116c9c745f97 |
# Dataset of tiltyu (Fire Emblem)
This is the dataset of tiltyu (Fire Emblem), containing 94 images and their tags.
The core tags of this character are `long_hair, ponytail, purple_hair, purple_eyes, breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:-------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 94 | 107.71 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tiltyu_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 94 | 67.50 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tiltyu_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 204 | 137.83 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tiltyu_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 94 | 99.99 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tiltyu_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 204 | 186.99 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tiltyu_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/tiltyu_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 23 |  |  |  |  |  | 1girl, solo, dress, looking_at_viewer, simple_background, smile, bare_shoulders, open_mouth, white_background, upper_body, detached_sleeves |
| 1 | 11 |  |  |  |  |  | 1girl, dress, smile, solo, side_slit, holding_book, open_mouth, belt, boots, bracelet, electricity, looking_at_viewer, magic, thighhighs, bridal_gauntlets, cape, earrings |
| 2 | 16 |  |  |  |  |  | 1girl, maid_headdress, solo, smile, enmaided, looking_at_viewer, maid_apron, open_mouth, short_sleeves, white_background, cake, simple_background, frills, full_body, puffy_sleeves, blue_dress, brown_footwear, cup, detached_sleeves |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | dress | looking_at_viewer | simple_background | smile | bare_shoulders | open_mouth | white_background | upper_body | detached_sleeves | side_slit | holding_book | belt | boots | bracelet | electricity | magic | thighhighs | bridal_gauntlets | cape | earrings | maid_headdress | enmaided | maid_apron | short_sleeves | cake | frills | full_body | puffy_sleeves | blue_dress | brown_footwear | cup |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------|:--------------------|:--------------------|:--------|:-----------------|:-------------|:-------------------|:-------------|:-------------------|:------------|:---------------|:-------|:--------|:-----------|:--------------|:--------|:-------------|:-------------------|:-------|:-----------|:-----------------|:-----------|:-------------|:----------------|:-------|:---------|:------------|:----------------|:-------------|:-----------------|:------|
| 0 | 23 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 11 |  |  |  |  |  | X | X | X | X | | X | | X | | | | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | |
| 2 | 16 |  |  |  |  |  | X | X | | X | X | X | | X | X | | X | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/tiltyu_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-17T23:05:01+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-17T23:21:30+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of tiltyu (Fire Emblem)
===============================
This is the dataset of tiltyu (Fire Emblem), containing 94 images and their tags.
The core tags of this character are 'long\_hair, ponytail, purple\_hair, purple\_eyes, breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
1f68665a33b4041bdd98aa9e4c207d51007c2dc2 |
# Dataset of malice (Fire Emblem)
This is the dataset of malice (Fire Emblem), containing 15 images and their tags.
The core tags of this character are `long_hair, purple_hair, breasts, eyepatch, large_breasts, dark-skinned_female, headband, dark_skin, muscular_female, bangs`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:-------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 15 | 20.13 MiB | [Download](https://huggingface.co/datasets/CyberHarem/malice_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 15 | 10.56 MiB | [Download](https://huggingface.co/datasets/CyberHarem/malice_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 29 | 19.34 MiB | [Download](https://huggingface.co/datasets/CyberHarem/malice_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 15 | 17.97 MiB | [Download](https://huggingface.co/datasets/CyberHarem/malice_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 29 | 30.29 MiB | [Download](https://huggingface.co/datasets/CyberHarem/malice_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/malice_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 15 |  |  |  |  |  | 1girl, solo, cleavage, belt, sword, gloves, shoulder_armor, bare_shoulders, holding_weapon, sheath, smile, strapless, dress, looking_at_viewer, muscular, thighs |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | cleavage | belt | sword | gloves | shoulder_armor | bare_shoulders | holding_weapon | sheath | smile | strapless | dress | looking_at_viewer | muscular | thighs |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:-----------|:-------|:--------|:---------|:-----------------|:-----------------|:-----------------|:---------|:--------|:------------|:--------|:--------------------|:-----------|:---------|
| 0 | 15 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/malice_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-17T23:05:13+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-17T23:08:47+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of malice (Fire Emblem)
===============================
This is the dataset of malice (Fire Emblem), containing 15 images and their tags.
The core tags of this character are 'long\_hair, purple\_hair, breasts, eyepatch, large\_breasts, dark-skinned\_female, headband, dark\_skin, muscular\_female, bangs', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
7b36f398333abb843aee8201a4fb37da70eeb824 |
# Phrase Detectives Version 3
- Project: https://github.com/dali-ambiguity/Phrase-Detectives-Corpus-3.0
- Data source: https://drive.google.com/file/d/1R72bY6gHyC3amy9VxLjKrougJUxhY_HK/view?usp=sharing
## Details
The Phrase Detectives Corpus v3. Publicly distributed. License: LDC User Agreement for Non-Members (v1 and v2)
## Citation
```
@inproceedings{yu-etal-2023-aggregating,
title = "Aggregating Crowdsourced and Automatic Judgments to Scale Up a Corpus of Anaphoric Reference for Fiction and {W}ikipedia Texts",
author = "Yu, Juntao and
Paun, Silviu and
Camilleri, Maris and
Garcia, Paloma and
Chamberlain, Jon and
Kruschwitz, Udo and
Poesio, Massimo",
editor = "Vlachos, Andreas and
Augenstein, Isabelle",
booktitle = "Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics",
month = may,
year = "2023",
address = "Dubrovnik, Croatia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.eacl-main.54",
doi = "10.18653/v1/2023.eacl-main.54",
pages = "767--781",
abstract = "Although several datasets annotated for anaphoric reference / coreference exist, even the largest such datasets have limitations in term of size, range of domains, coverage of anaphoric phenomena, and size of documents included. Yet, the approaches proposed to scale up anaphoric annotation haven{'}t so far resulted in datasets overcoming these limitations. In this paper, we introduce a new release of a corpus for anaphoric reference labelled via a game-with-a-purpose. This new release is comparable in size to the largest existing corpora for anaphoric reference due in part to substantial activity by the players, in part thanks to the use of a new resolve-and-aggregate paradigm to {`}complete{'} markable annotations through the combination of an anaphoric resolver and an aggregation method for anaphoric reference. The proposed method could be adopted to greatly speed up annotation time in other projects involving games-with-a-purpose. In addition, the corpus covers genres for which no comparable size datasets exist (Fiction and Wikipedia); it covers singletons and non-referring expressions; and it includes a substantial number of long documents ( 2K in length).",
}
``` | coref-data/phrase_detectives_raw | [
"license:other",
"region:us"
] | 2024-01-17T23:28:33+00:00 | {"license": "other", "configs": [{"config_name": "conll", "data_files": [{"split": "train", "path": "conll/train-*"}, {"split": "validation", "path": "conll/validation-*"}]}, {"config_name": "conll_singletons", "data_files": [{"split": "train", "path": "conll_singletons/train-*"}, {"split": "validation", "path": "conll_singletons/validation-*"}]}, {"config_name": "masxml", "data_files": [{"split": "train", "path": "masxml/train-*"}, {"split": "validation", "path": "masxml/validation-*"}]}]} | 2024-01-21T04:07:51+00:00 | [] | [] | TAGS
#license-other #region-us
|
# Phrase Detectives Version 3
- Project: URL
- Data source: URL
## Details
The Phrase Detectives Corpus v3. Publicly distributed. License: LDC User Agreement for Non-Members (v1 and v2)
| [
"# Phrase Detectives Version 3\n\n- Project: URL\n- Data source: URL",
"## Details\n\nThe Phrase Detectives Corpus v3. Publicly distributed. License: LDC User Agreement for Non-Members (v1 and v2)"
] | [
"TAGS\n#license-other #region-us \n",
"# Phrase Detectives Version 3\n\n- Project: URL\n- Data source: URL",
"## Details\n\nThe Phrase Detectives Corpus v3. Publicly distributed. License: LDC User Agreement for Non-Members (v1 and v2)"
] |
b33bd92ecc198da2aa3478eb96ea96b72de7c787 |
# Dataset of silk (Fire Emblem)
This is the dataset of silk (Fire Emblem), containing 107 images and their tags.
The core tags of this character are `blue_hair, short_hair, breasts, blue_eyes, bangs`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:-----------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 107 | 92.85 MiB | [Download](https://huggingface.co/datasets/CyberHarem/silk_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 107 | 62.85 MiB | [Download](https://huggingface.co/datasets/CyberHarem/silk_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 236 | 118.92 MiB | [Download](https://huggingface.co/datasets/CyberHarem/silk_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 107 | 85.12 MiB | [Download](https://huggingface.co/datasets/CyberHarem/silk_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 236 | 149.20 MiB | [Download](https://huggingface.co/datasets/CyberHarem/silk_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/silk_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 64 |  |  |  |  |  | 1girl, solo, dress, simple_background, smile, looking_at_viewer, veil, long_sleeves, white_background |
| 1 | 11 |  |  |  |  |  | hetero, solo_focus, 1girl, blush, vaginal, large_breasts, nipples, open_mouth, mosaic_censoring, multiple_boys, completely_nude, cum_in_pussy, multiple_penises, spread_legs, 1boy, sweat, double_handjob, gangbang, green_eyes, pregnant, tongue |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | dress | simple_background | smile | looking_at_viewer | veil | long_sleeves | white_background | hetero | solo_focus | blush | vaginal | large_breasts | nipples | open_mouth | mosaic_censoring | multiple_boys | completely_nude | cum_in_pussy | multiple_penises | spread_legs | 1boy | sweat | double_handjob | gangbang | green_eyes | pregnant | tongue |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------|:--------------------|:--------|:--------------------|:-------|:---------------|:-------------------|:---------|:-------------|:--------|:----------|:----------------|:----------|:-------------|:-------------------|:----------------|:------------------|:---------------|:-------------------|:--------------|:-------|:--------|:-----------------|:-----------|:-------------|:-----------|:---------|
| 0 | 64 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | |
| 1 | 11 |  |  |  |  |  | X | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/silk_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-17T23:30:19+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-17T23:49:18+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of silk (Fire Emblem)
=============================
This is the dataset of silk (Fire Emblem), containing 107 images and their tags.
The core tags of this character are 'blue\_hair, short\_hair, breasts, blue\_eyes, bangs', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
a59929c38b828069d30121b17b8ddda966f2b909 |
# Dataset of cecilia (Fire Emblem)
This is the dataset of cecilia (Fire Emblem), containing 183 images and their tags.
The core tags of this character are `green_hair, long_hair, green_eyes, breasts, large_breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:--------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 183 | 184.80 MiB | [Download](https://huggingface.co/datasets/CyberHarem/cecilia_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 183 | 119.62 MiB | [Download](https://huggingface.co/datasets/CyberHarem/cecilia_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 387 | 227.13 MiB | [Download](https://huggingface.co/datasets/CyberHarem/cecilia_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 183 | 168.43 MiB | [Download](https://huggingface.co/datasets/CyberHarem/cecilia_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 387 | 291.32 MiB | [Download](https://huggingface.co/datasets/CyberHarem/cecilia_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/cecilia_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 16 |  |  |  |  |  | bare_shoulders, 1girl, cleavage, elbow_gloves, flower, smile, wedding_dress, white_dress, bridal_veil, solo, white_gloves, bride, bangs, blush, simple_background, bouquet, looking_at_viewer, tiara, strapless_dress, holding, official_alternate_costume, open_mouth, white_background, detached_collar, full_body, shiny_hair |
| 1 | 34 |  |  |  |  |  | 1girl, solo, cape, smile, elbow_gloves, dress, boots, simple_background, breastplate, white_gloves, full_body, white_background |
| 2 | 7 |  |  |  |  |  | 1girl, female_pubic_hair, nipples, solo, blush, nude, pussy, censored, colored_pubic_hair, medium_breasts |
| 3 | 31 |  |  |  |  |  | 1boy, 1girl, hetero, solo_focus, nipples, blush, sex, penis, nude, open_mouth, mosaic_censoring, sweat, vaginal, cum, elbow_gloves |
| 4 | 7 |  |  |  |  |  | blush, hetero, nipples, 1girl, multiple_penises, solo_focus, vaginal, cum_in_pussy, cum_on_breasts, elbow_gloves, facial, gangbang, mosaic_censoring, rape, torn_clothes, 3boys, bukkake, cum_on_hair, handjob, nude, open_mouth, spread_legs, testicles, thighhighs, tongue_out, white_gloves |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | bare_shoulders | 1girl | cleavage | elbow_gloves | flower | smile | wedding_dress | white_dress | bridal_veil | solo | white_gloves | bride | bangs | blush | simple_background | bouquet | looking_at_viewer | tiara | strapless_dress | holding | official_alternate_costume | open_mouth | white_background | detached_collar | full_body | shiny_hair | cape | dress | boots | breastplate | female_pubic_hair | nipples | nude | pussy | censored | colored_pubic_hair | medium_breasts | 1boy | hetero | solo_focus | sex | penis | mosaic_censoring | sweat | vaginal | cum | multiple_penises | cum_in_pussy | cum_on_breasts | facial | gangbang | rape | torn_clothes | 3boys | bukkake | cum_on_hair | handjob | spread_legs | testicles | thighhighs | tongue_out |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------|:--------|:-----------|:---------------|:---------|:--------|:----------------|:--------------|:--------------|:-------|:---------------|:--------|:--------|:--------|:--------------------|:----------|:--------------------|:--------|:------------------|:----------|:-----------------------------|:-------------|:-------------------|:------------------|:------------|:-------------|:-------|:--------|:--------|:--------------|:--------------------|:----------|:-------|:--------|:-----------|:---------------------|:-----------------|:-------|:---------|:-------------|:------|:--------|:-------------------|:--------|:----------|:------|:-------------------|:---------------|:-----------------|:---------|:-----------|:-------|:---------------|:--------|:----------|:--------------|:----------|:--------------|:------------|:-------------|:-------------|
| 0 | 16 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 34 |  |  |  |  |  | | X | | X | | X | | | | X | X | | | | X | | | | | | | | X | | X | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 7 |  |  |  |  |  | | X | | | | | | | | X | | | | X | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 31 |  |  |  |  |  | | X | | X | | | | | | | | | | X | | | | | | | | X | | | | | | | | | | X | X | | | | | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | |
| 4 | 7 |  |  |  |  |  | | X | | X | | | | | | | X | | | X | | | | | | | | X | | | | | | | | | | X | X | | | | | | X | X | | | X | | X | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/cecilia_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-17T23:30:24+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T00:07:33+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of cecilia (Fire Emblem)
================================
This is the dataset of cecilia (Fire Emblem), containing 183 images and their tags.
The core tags of this character are 'green\_hair, long\_hair, green\_eyes, breasts, large\_breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
34085a032c123ca237f314a01a67909cdea35e34 | # Phishing Email Dataset
This dataset on Hugging Face is a direct copy of the 'Phishing Email Detection' dataset from Kaggle, shared under the [GNU Lesser General Public License 3.0](https://www.gnu.org/licenses/lgpl-3.0.html). The dataset was originally created by the user '[Cyber Cop](https://www.kaggle.com/subhajournal)' on Kaggle. For complete details, including licensing and usage information, please visit the [original Kaggle page](https://www.kaggle.com/datasets/subhajournal/phishingemails).
| zefang-liu/phishing-email-dataset | [
"task_categories:text-classification",
"size_categories:10K<n<100K",
"language:en",
"license:lgpl-3.0",
"region:us"
] | 2024-01-17T23:36:31+00:00 | {"language": ["en"], "license": "lgpl-3.0", "size_categories": ["10K<n<100K"], "task_categories": ["text-classification"]} | 2024-01-17T23:48:20+00:00 | [] | [
"en"
] | TAGS
#task_categories-text-classification #size_categories-10K<n<100K #language-English #license-lgpl-3.0 #region-us
| # Phishing Email Dataset
This dataset on Hugging Face is a direct copy of the 'Phishing Email Detection' dataset from Kaggle, shared under the GNU Lesser General Public License 3.0. The dataset was originally created by the user 'Cyber Cop' on Kaggle. For complete details, including licensing and usage information, please visit the original Kaggle page.
| [
"# Phishing Email Dataset\n\nThis dataset on Hugging Face is a direct copy of the 'Phishing Email Detection' dataset from Kaggle, shared under the GNU Lesser General Public License 3.0. The dataset was originally created by the user 'Cyber Cop' on Kaggle. For complete details, including licensing and usage information, please visit the original Kaggle page."
] | [
"TAGS\n#task_categories-text-classification #size_categories-10K<n<100K #language-English #license-lgpl-3.0 #region-us \n",
"# Phishing Email Dataset\n\nThis dataset on Hugging Face is a direct copy of the 'Phishing Email Detection' dataset from Kaggle, shared under the GNU Lesser General Public License 3.0. The dataset was originally created by the user 'Cyber Cop' on Kaggle. For complete details, including licensing and usage information, please visit the original Kaggle page."
] |
217d5f6742713982d018f96b799f8ba2b47c965f |
# Dataset of rebecca (Fire Emblem)
This is the dataset of rebecca (Fire Emblem), containing 163 images and their tags.
The core tags of this character are `green_hair, green_eyes, braid, twin_braids, long_hair, breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:--------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 163 | 156.39 MiB | [Download](https://huggingface.co/datasets/CyberHarem/rebecca_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 163 | 98.93 MiB | [Download](https://huggingface.co/datasets/CyberHarem/rebecca_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 331 | 189.45 MiB | [Download](https://huggingface.co/datasets/CyberHarem/rebecca_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 163 | 141.49 MiB | [Download](https://huggingface.co/datasets/CyberHarem/rebecca_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 331 | 254.29 MiB | [Download](https://huggingface.co/datasets/CyberHarem/rebecca_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/rebecca_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 5 |  |  |  |  |  | 1girl, arrow_(projectile), bandana, boots, bow_(weapon), fingerless_gloves, quiver, solo, full_body, white_background, armor, asymmetrical_gloves, simple_background, smile, twintails, miniskirt |
| 1 | 10 |  |  |  |  |  | 1girl, nipples, solo, medium_breasts, female_pubic_hair, blush, looking_at_viewer, navel, bandana, collarbone, completely_nude, simple_background, white_background, pussy, standing |
| 2 | 7 |  |  |  |  |  | 1boy, 1girl, hetero, nipples, solo_focus, blush, penis, vaginal, bandana, large_breasts, mosaic_censoring, completely_nude, cum_in_pussy, navel, open_mouth, sex_from_behind, faceless_male, medium_breasts |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | arrow_(projectile) | bandana | boots | bow_(weapon) | fingerless_gloves | quiver | solo | full_body | white_background | armor | asymmetrical_gloves | simple_background | smile | twintails | miniskirt | nipples | medium_breasts | female_pubic_hair | blush | looking_at_viewer | navel | collarbone | completely_nude | pussy | standing | 1boy | hetero | solo_focus | penis | vaginal | large_breasts | mosaic_censoring | cum_in_pussy | open_mouth | sex_from_behind | faceless_male |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:---------------------|:----------|:--------|:---------------|:--------------------|:---------|:-------|:------------|:-------------------|:--------|:----------------------|:--------------------|:--------|:------------|:------------|:----------|:-----------------|:--------------------|:--------|:--------------------|:--------|:-------------|:------------------|:--------|:-----------|:-------|:---------|:-------------|:--------|:----------|:----------------|:-------------------|:---------------|:-------------|:------------------|:----------------|
| 0 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | |
| 1 | 10 |  |  |  |  |  | X | | X | | | | | X | | X | | | X | | | | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | |
| 2 | 7 |  |  |  |  |  | X | | X | | | | | | | | | | | | | | X | X | | X | | X | | X | | | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/rebecca_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-17T23:40:23+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T00:11:23+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of rebecca (Fire Emblem)
================================
This is the dataset of rebecca (Fire Emblem), containing 163 images and their tags.
The core tags of this character are 'green\_hair, green\_eyes, braid, twin\_braids, long\_hair, breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
badec1f9dd81f4bcbded6e677371e645d924352b |
# Dataset of nanna (Fire Emblem)
This is the dataset of nanna (Fire Emblem), containing 82 images and their tags.
The core tags of this character are `blonde_hair, short_hair, green_eyes, hair_ornament`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 82 | 88.62 MiB | [Download](https://huggingface.co/datasets/CyberHarem/nanna_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 82 | 55.89 MiB | [Download](https://huggingface.co/datasets/CyberHarem/nanna_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 168 | 106.59 MiB | [Download](https://huggingface.co/datasets/CyberHarem/nanna_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 82 | 80.86 MiB | [Download](https://huggingface.co/datasets/CyberHarem/nanna_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 168 | 144.60 MiB | [Download](https://huggingface.co/datasets/CyberHarem/nanna_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/nanna_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 16 |  |  |  |  |  | 1girl, solo, cape, boots, breastplate, pauldrons, bangs, holding_sword, simple_background, white_gloves, elbow_gloves, full_body, smile, white_background, blue_eyes, looking_at_viewer, open_mouth, pink_dress, black_thighhighs, earrings, pelvic_curtain, wing_hair_ornament |
| 1 | 10 |  |  |  |  |  | hetero, open_mouth, penis, 1girl, sex, vaginal, 1boy, medium_breasts, nipples, solo_focus, blush, mosaic_censoring, cape, cum_in_pussy, jewelry, navel, nude, shoulder_armor, sweat, gloves, spread_legs |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | cape | boots | breastplate | pauldrons | bangs | holding_sword | simple_background | white_gloves | elbow_gloves | full_body | smile | white_background | blue_eyes | looking_at_viewer | open_mouth | pink_dress | black_thighhighs | earrings | pelvic_curtain | wing_hair_ornament | hetero | penis | sex | vaginal | 1boy | medium_breasts | nipples | solo_focus | blush | mosaic_censoring | cum_in_pussy | jewelry | navel | nude | shoulder_armor | sweat | gloves | spread_legs |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:-------|:--------|:--------------|:------------|:--------|:----------------|:--------------------|:---------------|:---------------|:------------|:--------|:-------------------|:------------|:--------------------|:-------------|:-------------|:-------------------|:-----------|:-----------------|:---------------------|:---------|:--------|:------|:----------|:-------|:-----------------|:----------|:-------------|:--------|:-------------------|:---------------|:----------|:--------|:-------|:-----------------|:--------|:---------|:--------------|
| 0 | 16 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | |
| 1 | 10 |  |  |  |  |  | X | | X | | | | | | | | | | | | | | X | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/nanna_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-17T23:40:26+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-17T23:58:09+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of nanna (Fire Emblem)
==============================
This is the dataset of nanna (Fire Emblem), containing 82 images and their tags.
The core tags of this character are 'blonde\_hair, short\_hair, green\_eyes, hair\_ornament', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
dd0168e456856845f72cab49e0b7b0e0acc216bf |
# Dataset of tethys (Fire Emblem)
This is the dataset of tethys (Fire Emblem), containing 20 images and their tags.
The core tags of this character are `braid, earrings, long_hair, red_hair, hoop_earrings, single_braid, red_eyes, breasts, facial_mark, bangs`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:-------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 20 | 17.96 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tethys_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 20 | 11.86 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tethys_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 36 | 19.96 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tethys_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 20 | 16.78 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tethys_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 36 | 27.03 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tethys_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/tethys_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 20 |  |  |  |  |  | 1girl, solo, armlet, midriff, navel, dancer, looking_at_viewer, forehead_mark, smile, bare_shoulders, bracelet, simple_background, pants, white_background |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | armlet | midriff | navel | dancer | looking_at_viewer | forehead_mark | smile | bare_shoulders | bracelet | simple_background | pants | white_background |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:---------|:----------|:--------|:---------|:--------------------|:----------------|:--------|:-----------------|:-----------|:--------------------|:--------|:-------------------|
| 0 | 20 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/tethys_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-17T23:40:28+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-17T23:44:44+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of tethys (Fire Emblem)
===============================
This is the dataset of tethys (Fire Emblem), containing 20 images and their tags.
The core tags of this character are 'braid, earrings, long\_hair, red\_hair, hoop\_earrings, single\_braid, red\_eyes, breasts, facial\_mark, bangs', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
610eeedd6f75cd8fbb22ae8fff4dfa544d9782b3 |
# Dataset of soiree (Fire Emblem)
This is the dataset of soiree (Fire Emblem), containing 48 images and their tags.
The core tags of this character are `short_hair, red_hair, red_eyes, breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:-------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 48 | 37.30 MiB | [Download](https://huggingface.co/datasets/CyberHarem/soiree_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 48 | 27.44 MiB | [Download](https://huggingface.co/datasets/CyberHarem/soiree_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 94 | 46.13 MiB | [Download](https://huggingface.co/datasets/CyberHarem/soiree_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 48 | 34.78 MiB | [Download](https://huggingface.co/datasets/CyberHarem/soiree_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 94 | 55.52 MiB | [Download](https://huggingface.co/datasets/CyberHarem/soiree_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/soiree_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------|
| 0 | 31 |  |  |  |  |  | 1girl, solo, armor, gloves, smile, weapon |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | armor | gloves | smile | weapon |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------|:---------|:--------|:---------|
| 0 | 31 |  |  |  |  |  | X | X | X | X | X | X |
| CyberHarem/soiree_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-17T23:40:33+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-17T23:52:16+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of soiree (Fire Emblem)
===============================
This is the dataset of soiree (Fire Emblem), containing 48 images and their tags.
The core tags of this character are 'short\_hair, red\_hair, red\_eyes, breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
8e550c053bea3b7bcfb5d6035541206296dd52ca |
# Dataset of sonia (Fire Emblem)
This is the dataset of sonia (Fire Emblem), containing 41 images and their tags.
The core tags of this character are `long_hair, breasts, yellow_eyes, large_breasts, black_hair, earrings, purple_hair`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 41 | 62.88 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sonia_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 41 | 33.78 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sonia_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 88 | 64.23 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sonia_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 41 | 55.47 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sonia_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 88 | 94.81 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sonia_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/sonia_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 5 |  |  |  |  |  | 1girl, bangs, bare_shoulders, black_dress, black_footwear, circlet, cleavage, collarbone, fingernails, full_body, high_heels, jewelry, lipstick, side_slit, simple_background, solo, belt, looking_at_viewer, plunging_neckline, shiny_hair, smile, standing, white_background, closed_mouth, holding_book, parted_lips, shiny_skin, thighs, armpits, center_opening, hand_on_hip, hand_up, nail_polish, red_lips |
| 1 | 8 |  |  |  |  |  | 1girl, bare_shoulders, cleavage, solo, jewelry, circlet, lipstick, looking_at_viewer, smile, black_dress, red_lips, detached_sleeves, nail_polish, bridal_gauntlets, red_nails, upper_body |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | bangs | bare_shoulders | black_dress | black_footwear | circlet | cleavage | collarbone | fingernails | full_body | high_heels | jewelry | lipstick | side_slit | simple_background | solo | belt | looking_at_viewer | plunging_neckline | shiny_hair | smile | standing | white_background | closed_mouth | holding_book | parted_lips | shiny_skin | thighs | armpits | center_opening | hand_on_hip | hand_up | nail_polish | red_lips | detached_sleeves | bridal_gauntlets | red_nails | upper_body |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------|:-----------------|:--------------|:-----------------|:----------|:-----------|:-------------|:--------------|:------------|:-------------|:----------|:-----------|:------------|:--------------------|:-------|:-------|:--------------------|:--------------------|:-------------|:--------|:-----------|:-------------------|:---------------|:---------------|:--------------|:-------------|:---------|:----------|:-----------------|:--------------|:----------|:--------------|:-----------|:-------------------|:-------------------|:------------|:-------------|
| 0 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | |
| 1 | 8 |  |  |  |  |  | X | | X | X | | X | X | | | | | X | X | | | X | | X | | | X | | | | | | | | | | | | X | X | X | X | X | X |
| CyberHarem/sonia_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-17T23:49:32+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-17T23:59:30+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of sonia (Fire Emblem)
==============================
This is the dataset of sonia (Fire Emblem), containing 41 images and their tags.
The core tags of this character are 'long\_hair, breasts, yellow\_eyes, large\_breasts, black\_hair, earrings, purple\_hair', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
6407abdfc2ef23c8673be5d29d8167c1edee4afb |
# Dataset of teeta (Fire Emblem)
This is the dataset of teeta (Fire Emblem), containing 26 images and their tags.
The core tags of this character are `green_hair, long_hair, green_eyes, hair_ornament, breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 26 | 33.73 MiB | [Download](https://huggingface.co/datasets/CyberHarem/teeta_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 26 | 19.15 MiB | [Download](https://huggingface.co/datasets/CyberHarem/teeta_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 54 | 34.21 MiB | [Download](https://huggingface.co/datasets/CyberHarem/teeta_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 26 | 29.24 MiB | [Download](https://huggingface.co/datasets/CyberHarem/teeta_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 54 | 48.20 MiB | [Download](https://huggingface.co/datasets/CyberHarem/teeta_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/teeta_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 26 |  |  |  |  |  | 1girl, solo, smile, bare_shoulders, white_gloves, dress, elbow_gloves, simple_background, looking_at_viewer, white_background, armor, open_mouth, circlet, sleeveless, upper_body |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | smile | bare_shoulders | white_gloves | dress | elbow_gloves | simple_background | looking_at_viewer | white_background | armor | open_mouth | circlet | sleeveless | upper_body |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------|:-----------------|:---------------|:--------|:---------------|:--------------------|:--------------------|:-------------------|:--------|:-------------|:----------|:-------------|:-------------|
| 0 | 26 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/teeta_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-17T23:49:35+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-17T23:54:44+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of teeta (Fire Emblem)
==============================
This is the dataset of teeta (Fire Emblem), containing 26 images and their tags.
The core tags of this character are 'green\_hair, long\_hair, green\_eyes, hair\_ornament, breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
c86a00fcbfdb496f140997440f5f46cccff72e8a |
# Dataset of leila (Fire Emblem)
This is the dataset of leila (Fire Emblem), containing 15 images and their tags.
The core tags of this character are `red_hair, short_hair, breasts, red_eyes, mole, hair_over_one_eye, mole_under_mouth, bangs, medium_breasts, shiny_hair, lips`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 15 | 17.24 MiB | [Download](https://huggingface.co/datasets/CyberHarem/leila_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 15 | 10.22 MiB | [Download](https://huggingface.co/datasets/CyberHarem/leila_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 29 | 18.53 MiB | [Download](https://huggingface.co/datasets/CyberHarem/leila_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 15 | 15.68 MiB | [Download](https://huggingface.co/datasets/CyberHarem/leila_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 29 | 24.63 MiB | [Download](https://huggingface.co/datasets/CyberHarem/leila_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/leila_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 15 |  |  |  |  |  | 1girl, cape, holding, solo, belt, looking_at_viewer, smile, elbow_gloves, thighhighs, mask, parted_lips, shiny, bracelet, full_body, purple_bodysuit, bare_shoulders, cleavage, fingerless_gloves, high_heel_boots, knife, simple_background, thigh_boots, weapon |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | cape | holding | solo | belt | looking_at_viewer | smile | elbow_gloves | thighhighs | mask | parted_lips | shiny | bracelet | full_body | purple_bodysuit | bare_shoulders | cleavage | fingerless_gloves | high_heel_boots | knife | simple_background | thigh_boots | weapon |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:----------|:-------|:-------|:--------------------|:--------|:---------------|:-------------|:-------|:--------------|:--------|:-----------|:------------|:------------------|:-----------------|:-----------|:--------------------|:------------------|:--------|:--------------------|:--------------|:---------|
| 0 | 15 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/leila_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-17T23:49:39+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-17T23:53:21+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of leila (Fire Emblem)
==============================
This is the dataset of leila (Fire Emblem), containing 15 images and their tags.
The core tags of this character are 'red\_hair, short\_hair, breasts, red\_eyes, mole, hair\_over\_one\_eye, mole\_under\_mouth, bangs, medium\_breasts, shiny\_hair, lips', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
c229bd8899b7b97e29797b8dcbad0aef8aa73f2f |
# Dataset of brigid (Fire Emblem)
This is the dataset of brigid (Fire Emblem), containing 105 images and their tags.
The core tags of this character are `blonde_hair, long_hair, headband, breasts, yellow_eyes, large_breasts, brown_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:-------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 105 | 135.20 MiB | [Download](https://huggingface.co/datasets/CyberHarem/brigid_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 105 | 72.90 MiB | [Download](https://huggingface.co/datasets/CyberHarem/brigid_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 235 | 155.55 MiB | [Download](https://huggingface.co/datasets/CyberHarem/brigid_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 105 | 114.67 MiB | [Download](https://huggingface.co/datasets/CyberHarem/brigid_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 235 | 220.58 MiB | [Download](https://huggingface.co/datasets/CyberHarem/brigid_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/brigid_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 5 |  |  |  |  |  | 1girl, cleavage, gloves, simple_background, solo, belt, black_headband, looking_at_viewer, wavy_hair, white_background, blush, closed_mouth, dress, choker, medium_breasts, open_mouth, smile, weapon |
| 1 | 23 |  |  |  |  |  | 1girl, solo, arrow_(projectile), bow_(weapon), dress, belt, holding_weapon, fingerless_gloves, armor, smile, thighhighs, very_long_hair, looking_at_viewer, low-tied_long_hair, elbow_gloves, quiver |
| 2 | 5 |  |  |  |  |  | 1girl, choker, cleavage, solo, belt, black_gloves, black_headband, black_thighhighs, thighs, wavy_hair, blush, dress, elbow_gloves, looking_at_viewer, simple_background, white_background, closed_mouth, grin |
| 3 | 5 |  |  |  |  |  | cleavage, navel, 1girl, solo, bare_shoulders, collarbone, looking_at_viewer, simple_background, white_background, alternate_costume, ass_visible_through_thighs, black_bikini, cowboy_shot, fingerless_gloves, low-tied_long_hair, stomach |
| 4 | 13 |  |  |  |  |  | 1girl, nipples, hetero, solo_focus, sex, sweat, vaginal, blush, open_mouth, penis, 1boy, medium_breasts, pubic_hair, pussy, breasts_out, completely_nude, mosaic_censoring, thighhighs |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | cleavage | gloves | simple_background | solo | belt | black_headband | looking_at_viewer | wavy_hair | white_background | blush | closed_mouth | dress | choker | medium_breasts | open_mouth | smile | weapon | arrow_(projectile) | bow_(weapon) | holding_weapon | fingerless_gloves | armor | thighhighs | very_long_hair | low-tied_long_hair | elbow_gloves | quiver | black_gloves | black_thighhighs | thighs | grin | navel | bare_shoulders | collarbone | alternate_costume | ass_visible_through_thighs | black_bikini | cowboy_shot | stomach | nipples | hetero | solo_focus | sex | sweat | vaginal | penis | 1boy | pubic_hair | pussy | breasts_out | completely_nude | mosaic_censoring |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-----------|:---------|:--------------------|:-------|:-------|:-----------------|:--------------------|:------------|:-------------------|:--------|:---------------|:--------|:---------|:-----------------|:-------------|:--------|:---------|:---------------------|:---------------|:-----------------|:--------------------|:--------|:-------------|:-----------------|:---------------------|:---------------|:---------|:---------------|:-------------------|:---------|:-------|:--------|:-----------------|:-------------|:--------------------|:-----------------------------|:---------------|:--------------|:----------|:----------|:---------|:-------------|:------|:--------|:----------|:--------|:-------|:-------------|:--------|:--------------|:------------------|:-------------------|
| 0 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 23 |  |  |  |  |  | X | | | | X | X | | X | | | | | X | | | | X | | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 5 |  |  |  |  |  | X | X | | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | X | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | |
| 3 | 5 |  |  |  |  |  | X | X | | X | X | | | X | | X | | | | | | | | | | | | X | | | | X | | | | | | | X | X | X | X | X | X | X | X | | | | | | | | | | | | | |
| 4 | 13 |  |  |  |  |  | X | | | | | | | | | | X | | | | X | X | | | | | | | | X | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/brigid_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-17T23:49:54+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T00:10:09+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of brigid (Fire Emblem)
===============================
This is the dataset of brigid (Fire Emblem), containing 105 images and their tags.
The core tags of this character are 'blonde\_hair, long\_hair, headband, breasts, yellow\_eyes, large\_breasts, brown\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
89e468befa6b62034d47ead1293dca34f6da4889 | # CVE and CWE Mapping Dataset
This Hugging Face dataset is a partial copy of the 'CVE and CWE mapping Dataset (2021)' from Kaggle, featuring 'Global_Dataset.csv' originally as 'Global_Dataset.xlsx'. Created by [Kirushikesh DB](https://www.kaggle.com/krooz0) and shared under [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/), it includes CVE data up to 2021 for cybersecurity research. For full details and licensing, visit the [original Kaggle page](https://www.kaggle.com/datasets/krooz0/cve-and-cwe-mapping-dataset).
For further information, please review the [CVE Terms of Use](https://www.cve.org/Legal/TermsOfUse) and the [NVD Terms of Use](https://nvd.nist.gov/developers/terms-of-use). | zefang-liu/cve-and-cwe-mapping-dataset | [
"task_categories:text-classification",
"size_categories:100K<n<1M",
"language:en",
"license:cc-by-nc-sa-4.0",
"region:us"
] | 2024-01-17T23:54:12+00:00 | {"language": ["en"], "license": "cc-by-nc-sa-4.0", "size_categories": ["100K<n<1M"], "task_categories": ["text-classification"]} | 2024-01-18T00:12:04+00:00 | [] | [
"en"
] | TAGS
#task_categories-text-classification #size_categories-100K<n<1M #language-English #license-cc-by-nc-sa-4.0 #region-us
| # CVE and CWE Mapping Dataset
This Hugging Face dataset is a partial copy of the 'CVE and CWE mapping Dataset (2021)' from Kaggle, featuring 'Global_Dataset.csv' originally as 'Global_Dataset.xlsx'. Created by Kirushikesh DB and shared under CC BY-NC-SA 4.0, it includes CVE data up to 2021 for cybersecurity research. For full details and licensing, visit the original Kaggle page.
For further information, please review the CVE Terms of Use and the NVD Terms of Use. | [
"# CVE and CWE Mapping Dataset\n\nThis Hugging Face dataset is a partial copy of the 'CVE and CWE mapping Dataset (2021)' from Kaggle, featuring 'Global_Dataset.csv' originally as 'Global_Dataset.xlsx'. Created by Kirushikesh DB and shared under CC BY-NC-SA 4.0, it includes CVE data up to 2021 for cybersecurity research. For full details and licensing, visit the original Kaggle page.\n\nFor further information, please review the CVE Terms of Use and the NVD Terms of Use."
] | [
"TAGS\n#task_categories-text-classification #size_categories-100K<n<1M #language-English #license-cc-by-nc-sa-4.0 #region-us \n",
"# CVE and CWE Mapping Dataset\n\nThis Hugging Face dataset is a partial copy of the 'CVE and CWE mapping Dataset (2021)' from Kaggle, featuring 'Global_Dataset.csv' originally as 'Global_Dataset.xlsx'. Created by Kirushikesh DB and shared under CC BY-NC-SA 4.0, it includes CVE data up to 2021 for cybersecurity research. For full details and licensing, visit the original Kaggle page.\n\nFor further information, please review the CVE Terms of Use and the NVD Terms of Use."
] |
326c8d1b0471973da275c8a5cb790dc053836ce2 |
# Dataset of beres (Fire Emblem)
This is the dataset of beres (Fire Emblem), containing 500 images and their tags.
The core tags of this character are `blue_eyes, blue_hair, breasts, bangs, long_hair, large_breasts, hair_between_eyes, medium_hair`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 699.14 MiB | [Download](https://huggingface.co/datasets/CyberHarem/beres_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 400.00 MiB | [Download](https://huggingface.co/datasets/CyberHarem/beres_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1230 | 839.44 MiB | [Download](https://huggingface.co/datasets/CyberHarem/beres_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 620.02 MiB | [Download](https://huggingface.co/datasets/CyberHarem/beres_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1230 | 1.16 GiB | [Download](https://huggingface.co/datasets/CyberHarem/beres_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/beres_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 9 |  |  |  |  |  | 1girl, christmas, santa_hat, solo, santa_costume, pantyhose, simple_background, smile, white_gloves, fur_trim, blush, character_doll, closed_mouth, navel, shorts, white_background |
| 1 | 25 |  |  |  |  |  | 1girl, solo, upper_body, closed_mouth, simple_background, looking_at_viewer, cape, white_background, shoulder_armor, tassel, turtleneck |
| 2 | 5 |  |  |  |  |  | 1girl, armlet, bodice, bustier, capelet, closed_mouth, dagger, navel_cutout, sheathed, shoulder_armor, solo, tassel, turtleneck, upper_body, vambraces, midriff, short_sleeves, simple_background, black_armor, black_shorts, looking_at_viewer, sword, white_background |
| 3 | 22 |  |  |  |  |  | 1girl, armlet, black_shorts, brown_pantyhose, bustier, capelet, floral_print, legwear_under_shorts, pantyhose_under_shorts, print_legwear, short_shorts, shoulder_armor, tassel, turtleneck, bodice, dagger, looking_at_viewer, midriff, navel_cutout, patterned_clothing, short_sleeves, solo, vambraces, coat, waist_cape, lace-trimmed_legwear, simple_background, cloak, white_background, sheathed, closed_mouth, standing, teacher, black_armor, cowboy_shot, holding_sword, smile, sidelocks |
| 4 | 7 |  |  |  |  |  | 1girl, cape, solo, upper_body, armor, holding_sword, looking_at_viewer, closed_mouth, tassel |
| 5 | 5 |  |  |  |  |  | 1girl, black_skirt, closed_mouth, long_sleeves, simple_background, white_background, black_gloves, garreg_mach_monastery_uniform, looking_at_viewer, solo, blush, pink_hairband, black_cape, hand_on_hip, holding |
| 6 | 9 |  |  |  |  |  | midriff, 1girl, black_shorts, navel, short_shorts, solo, crop_top, legwear_under_shorts, looking_at_viewer, pantyhose_under_shorts, short_sleeves, blush, simple_background, cleavage_cutout, shirt, closed_mouth, smile |
| 7 | 5 |  |  |  |  |  | 1girl, alternate_costume, armlet, dancer, looking_at_viewer, simple_background, solo, cleavage, dress, jewelry, smile, closed_mouth, thighs, white_background, bare_shoulders, blush, cowboy_shot, grey_background, shawl |
| 8 | 7 |  |  |  |  |  | 1girl, black_bikini, cleavage, dagger, hair_flower, looking_at_viewer, official_alternate_costume, sheathed, solo, navel, cape, hibiscus, closed_mouth, cowboy_shot, simple_background, smile, white_background |
| 9 | 5 |  |  |  |  |  | black_bikini, blue_sky, cleavage, cloud, cowboy_shot, dagger, day, hair_flower, looking_at_viewer, navel, official_alternate_costume, sheathed, 1girl, outdoors, parted_lips, solo, tassel, black_capelet, hibiscus, ocean, smile, artist_name, beach, groin, open_mouth, red_flower, sitting, water |
| 10 | 6 |  |  |  |  |  | 1girl, black_bikini, blue_sky, cleavage, hair_flower, looking_at_viewer, navel, official_alternate_costume, outdoors, smile, solo, tassel, closed_mouth, cloud, day, ocean, hibiscus, red_flower, beach, upper_body, water |
| 11 | 13 |  |  |  |  |  | 1girl, completely_nude, looking_at_viewer, ocean, outdoors, solo, beach, blue_sky, day, nipples, smile, blush, collarbone, navel, pussy, water, mosaic_censoring, ass_visible_through_thighs, green_hair, cloud, wet, closed_mouth |
| 12 | 7 |  |  |  |  |  | 1girl, armpits, arms_up, black_hair, blush, cleavage, glasses, looking_at_viewer, smile, solo, collarbone, huge_breasts, skindentation, black-framed_eyewear, upper_body, arms_behind_head, closed_mouth, navel, black_bikini, black_bra, choker, green_hair, indoors, semi-rimless_eyewear |
| 13 | 8 |  |  |  |  |  | 1girl, enmaided, maid_headdress, solo, simple_background, maid_apron, white_background, blush, looking_at_viewer, black_dress, closed_mouth, frills, glasses, holding, juliet_sleeves, red-framed_eyewear |
| 14 | 12 |  |  |  |  |  | fake_animal_ears, playboy_bunny, rabbit_ears, cleavage, detached_collar, looking_at_viewer, 1girl, simple_background, solo, alternate_costume, black_leotard, blush, wrist_cuffs, bare_shoulders, pantyhose, smile, closed_mouth, strapless_leotard, sitting, white_background |
| 15 | 5 |  |  |  |  |  | 1girl, bell, christmas, fake_animal_ears, fake_antlers, looking_at_viewer, solo, blush, fishnet_thighhighs, garter_straps, red_panties, alternate_costume, ass, collarbone, reindeer_antlers, simple_background, white_background, bare_shoulders, choker, cleavage, crossed_arms, from_behind, fur_trim, lingerie, looking_back, navel, smile, topless |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | christmas | santa_hat | solo | santa_costume | pantyhose | simple_background | smile | white_gloves | fur_trim | blush | character_doll | closed_mouth | navel | shorts | white_background | upper_body | looking_at_viewer | cape | shoulder_armor | tassel | turtleneck | armlet | bodice | bustier | capelet | dagger | navel_cutout | sheathed | vambraces | midriff | short_sleeves | black_armor | black_shorts | sword | brown_pantyhose | floral_print | legwear_under_shorts | pantyhose_under_shorts | print_legwear | short_shorts | patterned_clothing | coat | waist_cape | lace-trimmed_legwear | cloak | standing | teacher | cowboy_shot | holding_sword | sidelocks | armor | black_skirt | long_sleeves | black_gloves | garreg_mach_monastery_uniform | pink_hairband | black_cape | hand_on_hip | holding | crop_top | cleavage_cutout | shirt | alternate_costume | dancer | cleavage | dress | jewelry | thighs | bare_shoulders | grey_background | shawl | black_bikini | hair_flower | official_alternate_costume | hibiscus | blue_sky | cloud | day | outdoors | parted_lips | black_capelet | ocean | artist_name | beach | groin | open_mouth | red_flower | sitting | water | completely_nude | nipples | collarbone | pussy | mosaic_censoring | ass_visible_through_thighs | green_hair | wet | armpits | arms_up | black_hair | glasses | huge_breasts | skindentation | black-framed_eyewear | arms_behind_head | black_bra | choker | indoors | semi-rimless_eyewear | enmaided | maid_headdress | maid_apron | black_dress | frills | juliet_sleeves | red-framed_eyewear | fake_animal_ears | playboy_bunny | rabbit_ears | detached_collar | black_leotard | wrist_cuffs | strapless_leotard | bell | fake_antlers | fishnet_thighhighs | garter_straps | red_panties | ass | reindeer_antlers | crossed_arms | from_behind | lingerie | looking_back | topless |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:--------|:------------|:------------|:-------|:----------------|:------------|:--------------------|:--------|:---------------|:-----------|:--------|:-----------------|:---------------|:--------|:---------|:-------------------|:-------------|:--------------------|:-------|:-----------------|:---------|:-------------|:---------|:---------|:----------|:----------|:---------|:---------------|:-----------|:------------|:----------|:----------------|:--------------|:---------------|:--------|:------------------|:---------------|:-----------------------|:-------------------------|:----------------|:---------------|:---------------------|:-------|:-------------|:-----------------------|:--------|:-----------|:----------|:--------------|:----------------|:------------|:--------|:--------------|:---------------|:---------------|:--------------------------------|:----------------|:-------------|:--------------|:----------|:-----------|:------------------|:--------|:--------------------|:---------|:-----------|:--------|:----------|:---------|:-----------------|:------------------|:--------|:---------------|:--------------|:-----------------------------|:-----------|:-----------|:--------|:------|:-----------|:--------------|:----------------|:--------|:--------------|:--------|:--------|:-------------|:-------------|:----------|:--------|:------------------|:----------|:-------------|:--------|:-------------------|:-----------------------------|:-------------|:------|:----------|:----------|:-------------|:----------|:---------------|:----------------|:-----------------------|:-------------------|:------------|:---------|:----------|:-----------------------|:-----------|:-----------------|:-------------|:--------------|:---------|:-----------------|:---------------------|:-------------------|:----------------|:--------------|:------------------|:----------------|:--------------|:--------------------|:-------|:---------------|:---------------------|:----------------|:--------------|:------|:-------------------|:---------------|:--------------|:-----------|:---------------|:----------|
| 0 | 9 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 25 |  |  |  |  |  | X | | | X | | | X | | | | | | X | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 5 |  |  |  |  |  | X | | | X | | | X | | | | | | X | | | X | X | X | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 22 |  |  |  |  |  | X | | | X | | | X | X | | | | | X | | | X | | X | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 7 |  |  |  |  |  | X | | | X | | | | | | | | | X | | | | X | X | X | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 5 |  |  |  |  |  | X | | | X | | | X | | | | X | | X | | | X | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 9 |  |  |  |  |  | X | | | X | | | X | X | | | X | | X | X | | | | X | | | | | | | | | | | | | X | X | | X | | | | X | X | | X | | | | | | | | | | | | | | | | | | | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 7 | 5 |  |  |  |  |  | X | | | X | | | X | X | | | X | | X | | | X | | X | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 8 | 7 |  |  |  |  |  | X | | | X | | | X | X | | | | | X | X | | X | | X | X | | | | | | | | X | | X | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | X | | | | | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 9 | 5 |  |  |  |  |  | X | | | X | | | | X | | | | | | X | | | | X | | | X | | | | | | X | | X | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | X | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 10 | 6 |  |  |  |  |  | X | | | X | | | | X | | | | | X | X | | | X | X | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | X | X | X | X | X | X | X | X | | | X | | X | | | X | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 11 | 13 |  |  |  |  |  | X | | | X | | | | X | | | X | | X | X | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | | | X | | X | | | | | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 12 | 7 |  |  |  |  |  | X | | | X | | | | X | | | X | | X | X | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | X | | | | | | | | | | | | | | | | | | | | X | | | | X | | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 13 | 8 |  |  |  |  |  | X | | | X | | | X | | | | X | | X | | | X | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | |
| 14 | 12 |  |  |  |  |  | X | | | X | | X | X | X | | | X | | X | | | X | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | | X | | | | X | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | | | | | | | | | | | | |
| 15 | 5 |  |  |  |  |  | X | X | | X | | | X | X | | X | X | | | X | | X | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | | X | | | | X | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | X | | | | | | | | | | X | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/beres_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T00:03:55+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T02:01:08+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of beres (Fire Emblem)
==============================
This is the dataset of beres (Fire Emblem), containing 500 images and their tags.
The core tags of this character are 'blue\_eyes, blue\_hair, breasts, bangs, long\_hair, large\_breasts, hair\_between\_eyes, medium\_hair', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
b2f03ef24c800593c85816a05fcfeeb893392ec1 |
# Dataset of lysithea_von_cordelia (Fire Emblem)
This is the dataset of lysithea_von_cordelia (Fire Emblem), containing 500 images and their tags.
The core tags of this character are `long_hair, white_hair, pink_eyes, bangs`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:----------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 612.53 MiB | [Download](https://huggingface.co/datasets/CyberHarem/lysithea_von_cordelia_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 350.76 MiB | [Download](https://huggingface.co/datasets/CyberHarem/lysithea_von_cordelia_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1153 | 728.33 MiB | [Download](https://huggingface.co/datasets/CyberHarem/lysithea_von_cordelia_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 542.13 MiB | [Download](https://huggingface.co/datasets/CyberHarem/lysithea_von_cordelia_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1153 | 1.01 GiB | [Download](https://huggingface.co/datasets/CyberHarem/lysithea_von_cordelia_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/lysithea_von_cordelia_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 23 |  |  |  |  |  | 1girl, solo, hair_ornament, long_sleeves, closed_mouth, simple_background, upper_body, looking_at_viewer, white_background, smile, purple_dress |
| 1 | 13 |  |  |  |  |  | 1girl, closed_mouth, epaulettes, garreg_mach_monastery_uniform, simple_background, solo, upper_body, long_sleeves, white_background, smile, looking_at_viewer |
| 2 | 8 |  |  |  |  |  | 1girl, closed_mouth, garreg_mach_monastery_uniform, long_sleeves, simple_background, solo, blue_pantyhose, full_body, looking_at_viewer, white_background, knee_boots, white_footwear, smile |
| 3 | 12 |  |  |  |  |  | 1girl, dress, hair_ornament, hat, solo, fur_trim, white_gloves, closed_mouth, smile, holding_book, simple_background, upper_body |
| 4 | 7 |  |  |  |  |  | 1girl, hair_ornament, long_sleeves, solo, open_mouth, purple_dress, white_pantyhose, looking_at_viewer, breasts, full_body, simple_background |
| 5 | 7 |  |  |  |  |  | 1girl, long_sleeves, maid_headdress, simple_background, solo, alternate_costume, pantyhose, basket, full_body, holding, open_mouth, white_background, cookie |
| 6 | 16 |  |  |  |  |  | 1girl, solo, cookie, looking_at_viewer, maid_headdress, blush, holding_basket, puffy_sleeves, hair_ribbon, closed_mouth, holding_food, purple_ribbon, apron, official_alternate_costume, enmaided, eating, twin_braids, upper_body, open_mouth, short_over_long_sleeves, simple_background |
| 7 | 6 |  |  |  |  |  | 1girl, blush, small_breasts, solo, completely_nude, navel, nipples, looking_at_viewer, arms_behind_back, closed_mouth, collarbone |
| 8 | 6 |  |  |  |  |  | 1boy, 1girl, hetero, nipples, penis, pussy, sex, solo_focus, vaginal, open_mouth, spread_legs, completely_nude, navel, blush, heart-shaped_pupils, mosaic_censoring, on_back, small_breasts, uncensored |
| 9 | 5 |  |  |  |  |  | 1girl, fur-trimmed_capelet, hat_flower, looking_at_viewer, red_flower, solo, white_headwear, official_alternate_costume, simple_background, white_dress, belt, fur-trimmed_dress, long_sleeves, open_mouth, blush, christmas, closed_mouth, fur-trimmed_headwear, fur-trimmed_sleeves, red_bowtie, red_cape, smile |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | hair_ornament | long_sleeves | closed_mouth | simple_background | upper_body | looking_at_viewer | white_background | smile | purple_dress | epaulettes | garreg_mach_monastery_uniform | blue_pantyhose | full_body | knee_boots | white_footwear | dress | hat | fur_trim | white_gloves | holding_book | open_mouth | white_pantyhose | breasts | maid_headdress | alternate_costume | pantyhose | basket | holding | cookie | blush | holding_basket | puffy_sleeves | hair_ribbon | holding_food | purple_ribbon | apron | official_alternate_costume | enmaided | eating | twin_braids | short_over_long_sleeves | small_breasts | completely_nude | navel | nipples | arms_behind_back | collarbone | 1boy | hetero | penis | pussy | sex | solo_focus | vaginal | spread_legs | heart-shaped_pupils | mosaic_censoring | on_back | uncensored | fur-trimmed_capelet | hat_flower | red_flower | white_headwear | white_dress | belt | fur-trimmed_dress | christmas | fur-trimmed_headwear | fur-trimmed_sleeves | red_bowtie | red_cape |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:----------------|:---------------|:---------------|:--------------------|:-------------|:--------------------|:-------------------|:--------|:---------------|:-------------|:--------------------------------|:-----------------|:------------|:-------------|:-----------------|:--------|:------|:-----------|:---------------|:---------------|:-------------|:------------------|:----------|:-----------------|:--------------------|:------------|:---------|:----------|:---------|:--------|:-----------------|:----------------|:--------------|:---------------|:----------------|:--------|:-----------------------------|:-----------|:---------|:--------------|:--------------------------|:----------------|:------------------|:--------|:----------|:-------------------|:-------------|:-------|:---------|:--------|:--------|:------|:-------------|:----------|:--------------|:----------------------|:-------------------|:----------|:-------------|:----------------------|:-------------|:-------------|:-----------------|:--------------|:-------|:--------------------|:------------|:-----------------------|:----------------------|:-------------|:-----------|
| 0 | 23 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 13 |  |  |  |  |  | X | X | | X | X | X | X | X | X | X | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 8 |  |  |  |  |  | X | X | | X | X | X | | X | X | X | | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 12 |  |  |  |  |  | X | X | X | | X | X | X | | | X | | | | | | | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 7 |  |  |  |  |  | X | X | X | X | | X | | X | | | X | | | | X | | | | | | | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 7 |  |  |  |  |  | X | X | | X | | X | | | X | | | | | | X | | | | | | | | X | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 16 |  |  |  |  |  | X | X | | | X | X | X | X | | | | | | | | | | | | | | | X | | | X | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 7 | 6 |  |  |  |  |  | X | X | | | X | | | X | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | |
| 8 | 6 |  |  |  |  |  | X | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | X | | | | | | | | | | | | X | X | X | X | | | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | |
| 9 | 5 |  |  |  |  |  | X | X | | X | X | X | | X | | X | | | | | | | | | | | | | X | | | | | | | | | X | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/lysithea_von_cordelia_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T00:03:57+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T01:47:50+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of lysithea\_von\_cordelia (Fire Emblem)
================================================
This is the dataset of lysithea\_von\_cordelia (Fire Emblem), containing 500 images and their tags.
The core tags of this character are 'long\_hair, white\_hair, pink\_eyes, bangs', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
fd6d0a92b0c6c99ce3a59c15da360f6577e61145 |
# Dataset of feena (Fire Emblem)
This is the dataset of feena (Fire Emblem), containing 30 images and their tags.
The core tags of this character are `long_hair, pink_hair, bow, pink_eyes, ponytail, hair_bow, breasts, very_long_hair, side_ponytail`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 30 | 37.88 MiB | [Download](https://huggingface.co/datasets/CyberHarem/feena_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 30 | 23.24 MiB | [Download](https://huggingface.co/datasets/CyberHarem/feena_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 69 | 45.57 MiB | [Download](https://huggingface.co/datasets/CyberHarem/feena_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 30 | 35.24 MiB | [Download](https://huggingface.co/datasets/CyberHarem/feena_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 69 | 60.52 MiB | [Download](https://huggingface.co/datasets/CyberHarem/feena_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/feena_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 5 |  |  |  |  |  | 1girl, barefoot, full_body, jewelry, leg_up, short_sleeves, solo, holding_sword, open_mouth, short_dress, simple_background, bangs, shiny_hair, toes, white_background, company_name, copyright_name, grey_background, one_eye_closed, smile, sparkle, torn_clothes, transparent_background |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | barefoot | full_body | jewelry | leg_up | short_sleeves | solo | holding_sword | open_mouth | short_dress | simple_background | bangs | shiny_hair | toes | white_background | company_name | copyright_name | grey_background | one_eye_closed | smile | sparkle | torn_clothes | transparent_background |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-----------|:------------|:----------|:---------|:----------------|:-------|:----------------|:-------------|:--------------|:--------------------|:--------|:-------------|:-------|:-------------------|:---------------|:-----------------|:------------------|:-----------------|:--------|:----------|:---------------|:-------------------------|
| 0 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/feena_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T00:04:14+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T00:09:59+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of feena (Fire Emblem)
==============================
This is the dataset of feena (Fire Emblem), containing 30 images and their tags.
The core tags of this character are 'long\_hair, pink\_hair, bow, pink\_eyes, ponytail, hair\_bow, breasts, very\_long\_hair, side\_ponytail', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
7ee733e4f88e2b73c2df47db3072f87f044a2fe5 |
# Dataset of henriette (Fire Emblem)
This is the dataset of henriette (Fire Emblem), containing 22 images and their tags.
The core tags of this character are `blonde_hair, breasts, green_eyes, multicolored_hair, gradient_hair, pink_hair, large_breasts, bangs, hair_ornament, braid, sidelocks`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:----------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 22 | 29.44 MiB | [Download](https://huggingface.co/datasets/CyberHarem/henriette_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 22 | 15.84 MiB | [Download](https://huggingface.co/datasets/CyberHarem/henriette_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 49 | 31.55 MiB | [Download](https://huggingface.co/datasets/CyberHarem/henriette_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 22 | 25.14 MiB | [Download](https://huggingface.co/datasets/CyberHarem/henriette_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 49 | 45.32 MiB | [Download](https://huggingface.co/datasets/CyberHarem/henriette_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/henriette_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-------------------------------------------------------------------------------------------------------------|
| 0 | 22 |  |  |  |  |  | 1girl, solo, smile, looking_at_viewer, blush, circlet, cape, flower, white_dress, jewelry, simple_background |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | smile | looking_at_viewer | blush | circlet | cape | flower | white_dress | jewelry | simple_background |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------|:--------------------|:--------|:----------|:-------|:---------|:--------------|:----------|:--------------------|
| 0 | 22 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/henriette_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T00:04:49+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T00:09:34+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of henriette (Fire Emblem)
==================================
This is the dataset of henriette (Fire Emblem), containing 22 images and their tags.
The core tags of this character are 'blonde\_hair, breasts, green\_eyes, multicolored\_hair, gradient\_hair, pink\_hair, large\_breasts, bangs, hair\_ornament, braid, sidelocks', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
8e687fc547b8d03bdec0d4ec2be6e59d65ecf4d4 |
# Dataset Card for Evaluation run of freecs/ThetaWave-7B
<!-- Provide a quick summary of the dataset. -->
Dataset automatically created during the evaluation run of model [freecs/ThetaWave-7B](https://huggingface.co/freecs/ThetaWave-7B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset("open-llm-leaderboard/details_freecs__ThetaWave-7B",
"harness_winogrande_5",
split="train")
```
## Latest results
These are the [latest results from run 2024-01-18T00:35:27.497472](https://huggingface.co/datasets/open-llm-leaderboard/details_freecs__ThetaWave-7B/blob/main/results_2024-01-18T00-35-27.497472.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"acc": 0.6253257009672182,
"acc_stderr": 0.03270710367019723,
"acc_norm": 0.6274868169127613,
"acc_norm_stderr": 0.03336267879887999,
"mc1": 0.5006119951040392,
"mc1_stderr": 0.01750348793889251,
"mc2": 0.6525548503294953,
"mc2_stderr": 0.015542697143559287
},
"harness|arc:challenge|25": {
"acc": 0.6313993174061433,
"acc_stderr": 0.014097810678042196,
"acc_norm": 0.6749146757679181,
"acc_norm_stderr": 0.013688147309729122
},
"harness|hellaswag|10": {
"acc": 0.6756622186815375,
"acc_stderr": 0.00467170170556724,
"acc_norm": 0.8600876319458275,
"acc_norm_stderr": 0.003461871324067188
},
"harness|hendrycksTest-abstract_algebra|5": {
"acc": 0.34,
"acc_stderr": 0.04760952285695235,
"acc_norm": 0.34,
"acc_norm_stderr": 0.04760952285695235
},
"harness|hendrycksTest-anatomy|5": {
"acc": 0.5925925925925926,
"acc_stderr": 0.04244633238353228,
"acc_norm": 0.5925925925925926,
"acc_norm_stderr": 0.04244633238353228
},
"harness|hendrycksTest-astronomy|5": {
"acc": 0.7368421052631579,
"acc_stderr": 0.03583496176361074,
"acc_norm": 0.7368421052631579,
"acc_norm_stderr": 0.03583496176361074
},
"harness|hendrycksTest-business_ethics|5": {
"acc": 0.61,
"acc_stderr": 0.04902071300001974,
"acc_norm": 0.61,
"acc_norm_stderr": 0.04902071300001974
},
"harness|hendrycksTest-clinical_knowledge|5": {
"acc": 0.6867924528301886,
"acc_stderr": 0.028544793319055326,
"acc_norm": 0.6867924528301886,
"acc_norm_stderr": 0.028544793319055326
},
"harness|hendrycksTest-college_biology|5": {
"acc": 0.7291666666666666,
"acc_stderr": 0.03716177437566017,
"acc_norm": 0.7291666666666666,
"acc_norm_stderr": 0.03716177437566017
},
"harness|hendrycksTest-college_chemistry|5": {
"acc": 0.42,
"acc_stderr": 0.049604496374885836,
"acc_norm": 0.42,
"acc_norm_stderr": 0.049604496374885836
},
"harness|hendrycksTest-college_computer_science|5": {
"acc": 0.51,
"acc_stderr": 0.05024183937956912,
"acc_norm": 0.51,
"acc_norm_stderr": 0.05024183937956912
},
"harness|hendrycksTest-college_mathematics|5": {
"acc": 0.3,
"acc_stderr": 0.046056618647183814,
"acc_norm": 0.3,
"acc_norm_stderr": 0.046056618647183814
},
"harness|hendrycksTest-college_medicine|5": {
"acc": 0.630057803468208,
"acc_stderr": 0.0368122963339432,
"acc_norm": 0.630057803468208,
"acc_norm_stderr": 0.0368122963339432
},
"harness|hendrycksTest-college_physics|5": {
"acc": 0.38235294117647056,
"acc_stderr": 0.04835503696107224,
"acc_norm": 0.38235294117647056,
"acc_norm_stderr": 0.04835503696107224
},
"harness|hendrycksTest-computer_security|5": {
"acc": 0.73,
"acc_stderr": 0.044619604333847394,
"acc_norm": 0.73,
"acc_norm_stderr": 0.044619604333847394
},
"harness|hendrycksTest-conceptual_physics|5": {
"acc": 0.5234042553191489,
"acc_stderr": 0.032650194750335815,
"acc_norm": 0.5234042553191489,
"acc_norm_stderr": 0.032650194750335815
},
"harness|hendrycksTest-econometrics|5": {
"acc": 0.40350877192982454,
"acc_stderr": 0.04615186962583703,
"acc_norm": 0.40350877192982454,
"acc_norm_stderr": 0.04615186962583703
},
"harness|hendrycksTest-electrical_engineering|5": {
"acc": 0.5586206896551724,
"acc_stderr": 0.04137931034482757,
"acc_norm": 0.5586206896551724,
"acc_norm_stderr": 0.04137931034482757
},
"harness|hendrycksTest-elementary_mathematics|5": {
"acc": 0.42328042328042326,
"acc_stderr": 0.02544636563440678,
"acc_norm": 0.42328042328042326,
"acc_norm_stderr": 0.02544636563440678
},
"harness|hendrycksTest-formal_logic|5": {
"acc": 0.4365079365079365,
"acc_stderr": 0.04435932892851466,
"acc_norm": 0.4365079365079365,
"acc_norm_stderr": 0.04435932892851466
},
"harness|hendrycksTest-global_facts|5": {
"acc": 0.33,
"acc_stderr": 0.04725815626252605,
"acc_norm": 0.33,
"acc_norm_stderr": 0.04725815626252605
},
"harness|hendrycksTest-high_school_biology|5": {
"acc": 0.6193548387096774,
"acc_stderr": 0.027621717832907046,
"acc_norm": 0.6193548387096774,
"acc_norm_stderr": 0.027621717832907046
},
"harness|hendrycksTest-high_school_chemistry|5": {
"acc": 0.5123152709359606,
"acc_stderr": 0.035169204442208966,
"acc_norm": 0.5123152709359606,
"acc_norm_stderr": 0.035169204442208966
},
"harness|hendrycksTest-high_school_computer_science|5": {
"acc": 0.64,
"acc_stderr": 0.048241815132442176,
"acc_norm": 0.64,
"acc_norm_stderr": 0.048241815132442176
},
"harness|hendrycksTest-high_school_european_history|5": {
"acc": 0.7636363636363637,
"acc_stderr": 0.03317505930009182,
"acc_norm": 0.7636363636363637,
"acc_norm_stderr": 0.03317505930009182
},
"harness|hendrycksTest-high_school_geography|5": {
"acc": 0.7626262626262627,
"acc_stderr": 0.0303137105381989,
"acc_norm": 0.7626262626262627,
"acc_norm_stderr": 0.0303137105381989
},
"harness|hendrycksTest-high_school_government_and_politics|5": {
"acc": 0.8601036269430051,
"acc_stderr": 0.025033870583015178,
"acc_norm": 0.8601036269430051,
"acc_norm_stderr": 0.025033870583015178
},
"harness|hendrycksTest-high_school_macroeconomics|5": {
"acc": 0.6025641025641025,
"acc_stderr": 0.024811920017903836,
"acc_norm": 0.6025641025641025,
"acc_norm_stderr": 0.024811920017903836
},
"harness|hendrycksTest-high_school_mathematics|5": {
"acc": 0.32592592592592595,
"acc_stderr": 0.02857834836547308,
"acc_norm": 0.32592592592592595,
"acc_norm_stderr": 0.02857834836547308
},
"harness|hendrycksTest-high_school_microeconomics|5": {
"acc": 0.6470588235294118,
"acc_stderr": 0.031041941304059288,
"acc_norm": 0.6470588235294118,
"acc_norm_stderr": 0.031041941304059288
},
"harness|hendrycksTest-high_school_physics|5": {
"acc": 0.33112582781456956,
"acc_stderr": 0.038425817186598696,
"acc_norm": 0.33112582781456956,
"acc_norm_stderr": 0.038425817186598696
},
"harness|hendrycksTest-high_school_psychology|5": {
"acc": 0.8256880733944955,
"acc_stderr": 0.016265675632010333,
"acc_norm": 0.8256880733944955,
"acc_norm_stderr": 0.016265675632010333
},
"harness|hendrycksTest-high_school_statistics|5": {
"acc": 0.4537037037037037,
"acc_stderr": 0.033953227263757976,
"acc_norm": 0.4537037037037037,
"acc_norm_stderr": 0.033953227263757976
},
"harness|hendrycksTest-high_school_us_history|5": {
"acc": 0.7843137254901961,
"acc_stderr": 0.028867431449849313,
"acc_norm": 0.7843137254901961,
"acc_norm_stderr": 0.028867431449849313
},
"harness|hendrycksTest-high_school_world_history|5": {
"acc": 0.7932489451476793,
"acc_stderr": 0.02636165166838909,
"acc_norm": 0.7932489451476793,
"acc_norm_stderr": 0.02636165166838909
},
"harness|hendrycksTest-human_aging|5": {
"acc": 0.6591928251121076,
"acc_stderr": 0.0318114974705536,
"acc_norm": 0.6591928251121076,
"acc_norm_stderr": 0.0318114974705536
},
"harness|hendrycksTest-human_sexuality|5": {
"acc": 0.7862595419847328,
"acc_stderr": 0.0359546161177469,
"acc_norm": 0.7862595419847328,
"acc_norm_stderr": 0.0359546161177469
},
"harness|hendrycksTest-international_law|5": {
"acc": 0.8429752066115702,
"acc_stderr": 0.033212448425471275,
"acc_norm": 0.8429752066115702,
"acc_norm_stderr": 0.033212448425471275
},
"harness|hendrycksTest-jurisprudence|5": {
"acc": 0.7685185185185185,
"acc_stderr": 0.04077494709252627,
"acc_norm": 0.7685185185185185,
"acc_norm_stderr": 0.04077494709252627
},
"harness|hendrycksTest-logical_fallacies|5": {
"acc": 0.7300613496932515,
"acc_stderr": 0.03487825168497892,
"acc_norm": 0.7300613496932515,
"acc_norm_stderr": 0.03487825168497892
},
"harness|hendrycksTest-machine_learning|5": {
"acc": 0.5089285714285714,
"acc_stderr": 0.04745033255489122,
"acc_norm": 0.5089285714285714,
"acc_norm_stderr": 0.04745033255489122
},
"harness|hendrycksTest-management|5": {
"acc": 0.7475728155339806,
"acc_stderr": 0.04301250399690878,
"acc_norm": 0.7475728155339806,
"acc_norm_stderr": 0.04301250399690878
},
"harness|hendrycksTest-marketing|5": {
"acc": 0.8760683760683761,
"acc_stderr": 0.02158649400128138,
"acc_norm": 0.8760683760683761,
"acc_norm_stderr": 0.02158649400128138
},
"harness|hendrycksTest-medical_genetics|5": {
"acc": 0.7,
"acc_stderr": 0.046056618647183814,
"acc_norm": 0.7,
"acc_norm_stderr": 0.046056618647183814
},
"harness|hendrycksTest-miscellaneous|5": {
"acc": 0.8173690932311622,
"acc_stderr": 0.013816335389973136,
"acc_norm": 0.8173690932311622,
"acc_norm_stderr": 0.013816335389973136
},
"harness|hendrycksTest-moral_disputes|5": {
"acc": 0.7138728323699421,
"acc_stderr": 0.02433214677913413,
"acc_norm": 0.7138728323699421,
"acc_norm_stderr": 0.02433214677913413
},
"harness|hendrycksTest-moral_scenarios|5": {
"acc": 0.49273743016759775,
"acc_stderr": 0.016720737405179514,
"acc_norm": 0.49273743016759775,
"acc_norm_stderr": 0.016720737405179514
},
"harness|hendrycksTest-nutrition|5": {
"acc": 0.7156862745098039,
"acc_stderr": 0.025829163272757485,
"acc_norm": 0.7156862745098039,
"acc_norm_stderr": 0.025829163272757485
},
"harness|hendrycksTest-philosophy|5": {
"acc": 0.6752411575562701,
"acc_stderr": 0.026596782287697043,
"acc_norm": 0.6752411575562701,
"acc_norm_stderr": 0.026596782287697043
},
"harness|hendrycksTest-prehistory|5": {
"acc": 0.7283950617283951,
"acc_stderr": 0.02474862449053737,
"acc_norm": 0.7283950617283951,
"acc_norm_stderr": 0.02474862449053737
},
"harness|hendrycksTest-professional_accounting|5": {
"acc": 0.4858156028368794,
"acc_stderr": 0.02981549448368206,
"acc_norm": 0.4858156028368794,
"acc_norm_stderr": 0.02981549448368206
},
"harness|hendrycksTest-professional_law|5": {
"acc": 0.46479791395045633,
"acc_stderr": 0.01273854737130396,
"acc_norm": 0.46479791395045633,
"acc_norm_stderr": 0.01273854737130396
},
"harness|hendrycksTest-professional_medicine|5": {
"acc": 0.6470588235294118,
"acc_stderr": 0.0290294228156814,
"acc_norm": 0.6470588235294118,
"acc_norm_stderr": 0.0290294228156814
},
"harness|hendrycksTest-professional_psychology|5": {
"acc": 0.6650326797385621,
"acc_stderr": 0.01909422816700033,
"acc_norm": 0.6650326797385621,
"acc_norm_stderr": 0.01909422816700033
},
"harness|hendrycksTest-public_relations|5": {
"acc": 0.6818181818181818,
"acc_stderr": 0.04461272175910509,
"acc_norm": 0.6818181818181818,
"acc_norm_stderr": 0.04461272175910509
},
"harness|hendrycksTest-security_studies|5": {
"acc": 0.7306122448979592,
"acc_stderr": 0.02840125202902294,
"acc_norm": 0.7306122448979592,
"acc_norm_stderr": 0.02840125202902294
},
"harness|hendrycksTest-sociology|5": {
"acc": 0.5920398009950248,
"acc_stderr": 0.03475116365194092,
"acc_norm": 0.5920398009950248,
"acc_norm_stderr": 0.03475116365194092
},
"harness|hendrycksTest-us_foreign_policy|5": {
"acc": 0.82,
"acc_stderr": 0.038612291966536934,
"acc_norm": 0.82,
"acc_norm_stderr": 0.038612291966536934
},
"harness|hendrycksTest-virology|5": {
"acc": 0.5180722891566265,
"acc_stderr": 0.03889951252827216,
"acc_norm": 0.5180722891566265,
"acc_norm_stderr": 0.03889951252827216
},
"harness|hendrycksTest-world_religions|5": {
"acc": 0.8538011695906432,
"acc_stderr": 0.027097290118070806,
"acc_norm": 0.8538011695906432,
"acc_norm_stderr": 0.027097290118070806
},
"harness|truthfulqa:mc|0": {
"mc1": 0.5006119951040392,
"mc1_stderr": 0.01750348793889251,
"mc2": 0.6525548503294953,
"mc2_stderr": 0.015542697143559287
},
"harness|winogrande|5": {
"acc": 0.7900552486187845,
"acc_stderr": 0.01144628062926263
},
"harness|gsm8k|5": {
"acc": 0.5610310841546626,
"acc_stderr": 0.013669500369036205
}
}
```
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
[More Information Needed] | open-llm-leaderboard/details_freecs__ThetaWave-7B | [
"region:us"
] | 2024-01-18T00:37:47+00:00 | {"pretty_name": "Evaluation run of freecs/ThetaWave-7B", "dataset_summary": "Dataset automatically created during the evaluation run of model [freecs/ThetaWave-7B](https://huggingface.co/freecs/ThetaWave-7B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_freecs__ThetaWave-7B\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-18T00:35:27.497472](https://huggingface.co/datasets/open-llm-leaderboard/details_freecs__ThetaWave-7B/blob/main/results_2024-01-18T00-35-27.497472.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6253257009672182,\n \"acc_stderr\": 0.03270710367019723,\n \"acc_norm\": 0.6274868169127613,\n \"acc_norm_stderr\": 0.03336267879887999,\n \"mc1\": 0.5006119951040392,\n \"mc1_stderr\": 0.01750348793889251,\n \"mc2\": 0.6525548503294953,\n \"mc2_stderr\": 0.015542697143559287\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.6313993174061433,\n \"acc_stderr\": 0.014097810678042196,\n \"acc_norm\": 0.6749146757679181,\n \"acc_norm_stderr\": 0.013688147309729122\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6756622186815375,\n \"acc_stderr\": 0.00467170170556724,\n \"acc_norm\": 0.8600876319458275,\n \"acc_norm_stderr\": 0.003461871324067188\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.34,\n \"acc_stderr\": 0.04760952285695235,\n \"acc_norm\": 0.34,\n \"acc_norm_stderr\": 0.04760952285695235\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.5925925925925926,\n \"acc_stderr\": 0.04244633238353228,\n \"acc_norm\": 0.5925925925925926,\n \"acc_norm_stderr\": 0.04244633238353228\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.7368421052631579,\n \"acc_stderr\": 0.03583496176361074,\n \"acc_norm\": 0.7368421052631579,\n \"acc_norm_stderr\": 0.03583496176361074\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.61,\n \"acc_stderr\": 0.04902071300001974,\n \"acc_norm\": 0.61,\n \"acc_norm_stderr\": 0.04902071300001974\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.6867924528301886,\n \"acc_stderr\": 0.028544793319055326,\n \"acc_norm\": 0.6867924528301886,\n \"acc_norm_stderr\": 0.028544793319055326\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7291666666666666,\n \"acc_stderr\": 0.03716177437566017,\n \"acc_norm\": 0.7291666666666666,\n \"acc_norm_stderr\": 0.03716177437566017\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.42,\n \"acc_stderr\": 0.049604496374885836,\n \"acc_norm\": 0.42,\n \"acc_norm_stderr\": 0.049604496374885836\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.51,\n \"acc_stderr\": 0.05024183937956912,\n \"acc_norm\": 0.51,\n \"acc_norm_stderr\": 0.05024183937956912\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.3,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.3,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.630057803468208,\n \"acc_stderr\": 0.0368122963339432,\n \"acc_norm\": 0.630057803468208,\n \"acc_norm_stderr\": 0.0368122963339432\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.38235294117647056,\n \"acc_stderr\": 0.04835503696107224,\n \"acc_norm\": 0.38235294117647056,\n \"acc_norm_stderr\": 0.04835503696107224\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.73,\n \"acc_stderr\": 0.044619604333847394,\n \"acc_norm\": 0.73,\n \"acc_norm_stderr\": 0.044619604333847394\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5234042553191489,\n \"acc_stderr\": 0.032650194750335815,\n \"acc_norm\": 0.5234042553191489,\n \"acc_norm_stderr\": 0.032650194750335815\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.40350877192982454,\n \"acc_stderr\": 0.04615186962583703,\n \"acc_norm\": 0.40350877192982454,\n \"acc_norm_stderr\": 0.04615186962583703\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5586206896551724,\n \"acc_stderr\": 0.04137931034482757,\n \"acc_norm\": 0.5586206896551724,\n \"acc_norm_stderr\": 0.04137931034482757\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.42328042328042326,\n \"acc_stderr\": 0.02544636563440678,\n \"acc_norm\": 0.42328042328042326,\n \"acc_norm_stderr\": 0.02544636563440678\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.4365079365079365,\n \"acc_stderr\": 0.04435932892851466,\n \"acc_norm\": 0.4365079365079365,\n \"acc_norm_stderr\": 0.04435932892851466\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.33,\n \"acc_stderr\": 0.04725815626252605,\n \"acc_norm\": 0.33,\n \"acc_norm_stderr\": 0.04725815626252605\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.6193548387096774,\n \"acc_stderr\": 0.027621717832907046,\n \"acc_norm\": 0.6193548387096774,\n \"acc_norm_stderr\": 0.027621717832907046\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.5123152709359606,\n \"acc_stderr\": 0.035169204442208966,\n \"acc_norm\": 0.5123152709359606,\n \"acc_norm_stderr\": 0.035169204442208966\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.64,\n \"acc_stderr\": 0.048241815132442176,\n \"acc_norm\": 0.64,\n \"acc_norm_stderr\": 0.048241815132442176\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7636363636363637,\n \"acc_stderr\": 0.03317505930009182,\n \"acc_norm\": 0.7636363636363637,\n \"acc_norm_stderr\": 0.03317505930009182\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7626262626262627,\n \"acc_stderr\": 0.0303137105381989,\n \"acc_norm\": 0.7626262626262627,\n \"acc_norm_stderr\": 0.0303137105381989\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8601036269430051,\n \"acc_stderr\": 0.025033870583015178,\n \"acc_norm\": 0.8601036269430051,\n \"acc_norm_stderr\": 0.025033870583015178\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6025641025641025,\n \"acc_stderr\": 0.024811920017903836,\n \"acc_norm\": 0.6025641025641025,\n \"acc_norm_stderr\": 0.024811920017903836\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.32592592592592595,\n \"acc_stderr\": 0.02857834836547308,\n \"acc_norm\": 0.32592592592592595,\n \"acc_norm_stderr\": 0.02857834836547308\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6470588235294118,\n \"acc_stderr\": 0.031041941304059288,\n \"acc_norm\": 0.6470588235294118,\n \"acc_norm_stderr\": 0.031041941304059288\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.33112582781456956,\n \"acc_stderr\": 0.038425817186598696,\n \"acc_norm\": 0.33112582781456956,\n \"acc_norm_stderr\": 0.038425817186598696\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8256880733944955,\n \"acc_stderr\": 0.016265675632010333,\n \"acc_norm\": 0.8256880733944955,\n \"acc_norm_stderr\": 0.016265675632010333\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.4537037037037037,\n \"acc_stderr\": 0.033953227263757976,\n \"acc_norm\": 0.4537037037037037,\n \"acc_norm_stderr\": 0.033953227263757976\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.7843137254901961,\n \"acc_stderr\": 0.028867431449849313,\n \"acc_norm\": 0.7843137254901961,\n \"acc_norm_stderr\": 0.028867431449849313\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7932489451476793,\n \"acc_stderr\": 0.02636165166838909,\n \"acc_norm\": 0.7932489451476793,\n \"acc_norm_stderr\": 0.02636165166838909\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6591928251121076,\n \"acc_stderr\": 0.0318114974705536,\n \"acc_norm\": 0.6591928251121076,\n \"acc_norm_stderr\": 0.0318114974705536\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7862595419847328,\n \"acc_stderr\": 0.0359546161177469,\n \"acc_norm\": 0.7862595419847328,\n \"acc_norm_stderr\": 0.0359546161177469\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8429752066115702,\n \"acc_stderr\": 0.033212448425471275,\n \"acc_norm\": 0.8429752066115702,\n \"acc_norm_stderr\": 0.033212448425471275\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7685185185185185,\n \"acc_stderr\": 0.04077494709252627,\n \"acc_norm\": 0.7685185185185185,\n \"acc_norm_stderr\": 0.04077494709252627\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7300613496932515,\n \"acc_stderr\": 0.03487825168497892,\n \"acc_norm\": 0.7300613496932515,\n \"acc_norm_stderr\": 0.03487825168497892\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.5089285714285714,\n \"acc_stderr\": 0.04745033255489122,\n \"acc_norm\": 0.5089285714285714,\n \"acc_norm_stderr\": 0.04745033255489122\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7475728155339806,\n \"acc_stderr\": 0.04301250399690878,\n \"acc_norm\": 0.7475728155339806,\n \"acc_norm_stderr\": 0.04301250399690878\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8760683760683761,\n \"acc_stderr\": 0.02158649400128138,\n \"acc_norm\": 0.8760683760683761,\n \"acc_norm_stderr\": 0.02158649400128138\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.7,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.7,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8173690932311622,\n \"acc_stderr\": 0.013816335389973136,\n \"acc_norm\": 0.8173690932311622,\n \"acc_norm_stderr\": 0.013816335389973136\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7138728323699421,\n \"acc_stderr\": 0.02433214677913413,\n \"acc_norm\": 0.7138728323699421,\n \"acc_norm_stderr\": 0.02433214677913413\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.49273743016759775,\n \"acc_stderr\": 0.016720737405179514,\n \"acc_norm\": 0.49273743016759775,\n \"acc_norm_stderr\": 0.016720737405179514\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7156862745098039,\n \"acc_stderr\": 0.025829163272757485,\n \"acc_norm\": 0.7156862745098039,\n \"acc_norm_stderr\": 0.025829163272757485\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.6752411575562701,\n \"acc_stderr\": 0.026596782287697043,\n \"acc_norm\": 0.6752411575562701,\n \"acc_norm_stderr\": 0.026596782287697043\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.7283950617283951,\n \"acc_stderr\": 0.02474862449053737,\n \"acc_norm\": 0.7283950617283951,\n \"acc_norm_stderr\": 0.02474862449053737\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.4858156028368794,\n \"acc_stderr\": 0.02981549448368206,\n \"acc_norm\": 0.4858156028368794,\n \"acc_norm_stderr\": 0.02981549448368206\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.46479791395045633,\n \"acc_stderr\": 0.01273854737130396,\n \"acc_norm\": 0.46479791395045633,\n \"acc_norm_stderr\": 0.01273854737130396\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6470588235294118,\n \"acc_stderr\": 0.0290294228156814,\n \"acc_norm\": 0.6470588235294118,\n \"acc_norm_stderr\": 0.0290294228156814\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6650326797385621,\n \"acc_stderr\": 0.01909422816700033,\n \"acc_norm\": 0.6650326797385621,\n \"acc_norm_stderr\": 0.01909422816700033\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6818181818181818,\n \"acc_stderr\": 0.04461272175910509,\n \"acc_norm\": 0.6818181818181818,\n \"acc_norm_stderr\": 0.04461272175910509\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7306122448979592,\n \"acc_stderr\": 0.02840125202902294,\n \"acc_norm\": 0.7306122448979592,\n \"acc_norm_stderr\": 0.02840125202902294\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.5920398009950248,\n \"acc_stderr\": 0.03475116365194092,\n \"acc_norm\": 0.5920398009950248,\n \"acc_norm_stderr\": 0.03475116365194092\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.82,\n \"acc_stderr\": 0.038612291966536934,\n \"acc_norm\": 0.82,\n \"acc_norm_stderr\": 0.038612291966536934\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5180722891566265,\n \"acc_stderr\": 0.03889951252827216,\n \"acc_norm\": 0.5180722891566265,\n \"acc_norm_stderr\": 0.03889951252827216\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8538011695906432,\n \"acc_stderr\": 0.027097290118070806,\n \"acc_norm\": 0.8538011695906432,\n \"acc_norm_stderr\": 0.027097290118070806\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.5006119951040392,\n \"mc1_stderr\": 0.01750348793889251,\n \"mc2\": 0.6525548503294953,\n \"mc2_stderr\": 0.015542697143559287\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.7900552486187845,\n \"acc_stderr\": 0.01144628062926263\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.5610310841546626,\n \"acc_stderr\": 0.013669500369036205\n }\n}\n```", "repo_url": "https://huggingface.co/freecs/ThetaWave-7B", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|arc:challenge|25_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|gsm8k|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hellaswag|10_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-18T00-35-27.497472.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["**/details_harness|winogrande|5_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-18T00-35-27.497472.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_18T00_35_27.497472", "path": ["results_2024-01-18T00-35-27.497472.parquet"]}, {"split": "latest", "path": ["results_2024-01-18T00-35-27.497472.parquet"]}]}]} | 2024-01-18T00:38:12+00:00 | [] | [] | TAGS
#region-us
|
# Dataset Card for Evaluation run of freecs/ThetaWave-7B
Dataset automatically created during the evaluation run of model freecs/ThetaWave-7B on the Open LLM Leaderboard.
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).
To load the details from a run, you can for instance do the following:
## Latest results
These are the latest results from run 2024-01-18T00:35:27.497472(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
## Dataset Details
### Dataset Description
- Curated by:
- Funded by [optional]:
- Shared by [optional]:
- Language(s) (NLP):
- License:
### Dataset Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Out-of-Scope Use
## Dataset Structure
## Dataset Creation
### Curation Rationale
### Source Data
#### Data Collection and Processing
#### Who are the source data producers?
### Annotations [optional]
#### Annotation process
#### Who are the annotators?
#### Personal and Sensitive Information
## Bias, Risks, and Limitations
### Recommendations
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Dataset Card Authors [optional]
## Dataset Card Contact
| [
"# Dataset Card for Evaluation run of freecs/ThetaWave-7B\n\n\n\nDataset automatically created during the evaluation run of model freecs/ThetaWave-7B on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-18T00:35:27.497472(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for Evaluation run of freecs/ThetaWave-7B\n\n\n\nDataset automatically created during the evaluation run of model freecs/ThetaWave-7B on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-18T00:35:27.497472(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] |
3160889db5918e542ce6a3b6821e682a662a3df9 |
# Dataset Card for Evaluation run of chanwit/flux-7b-v0.2
<!-- Provide a quick summary of the dataset. -->
Dataset automatically created during the evaluation run of model [chanwit/flux-7b-v0.2](https://huggingface.co/chanwit/flux-7b-v0.2) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset("open-llm-leaderboard/details_chanwit__flux-7b-v0.2",
"harness_winogrande_5",
split="train")
```
## Latest results
These are the [latest results from run 2024-01-18T00:42:00.685036](https://huggingface.co/datasets/open-llm-leaderboard/details_chanwit__flux-7b-v0.2/blob/main/results_2024-01-18T00-42-00.685036.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"acc": 0.6573592496311628,
"acc_stderr": 0.031783424194298984,
"acc_norm": 0.6574655421284195,
"acc_norm_stderr": 0.03243446995426543,
"mc1": 0.3537331701346389,
"mc1_stderr": 0.016737814358846147,
"mc2": 0.5180401965777761,
"mc2_stderr": 0.015565981129474472
},
"harness|arc:challenge|25": {
"acc": 0.6331058020477816,
"acc_stderr": 0.014084133118104294,
"acc_norm": 0.6655290102389079,
"acc_norm_stderr": 0.013787460322441374
},
"harness|hellaswag|10": {
"acc": 0.6825333598884684,
"acc_stderr": 0.004645393477680678,
"acc_norm": 0.8611830312686716,
"acc_norm_stderr": 0.003450488042965005
},
"harness|hendrycksTest-abstract_algebra|5": {
"acc": 0.36,
"acc_stderr": 0.04824181513244218,
"acc_norm": 0.36,
"acc_norm_stderr": 0.04824181513244218
},
"harness|hendrycksTest-anatomy|5": {
"acc": 0.6074074074074074,
"acc_stderr": 0.0421850621536888,
"acc_norm": 0.6074074074074074,
"acc_norm_stderr": 0.0421850621536888
},
"harness|hendrycksTest-astronomy|5": {
"acc": 0.7039473684210527,
"acc_stderr": 0.03715062154998904,
"acc_norm": 0.7039473684210527,
"acc_norm_stderr": 0.03715062154998904
},
"harness|hendrycksTest-business_ethics|5": {
"acc": 0.63,
"acc_stderr": 0.04852365870939099,
"acc_norm": 0.63,
"acc_norm_stderr": 0.04852365870939099
},
"harness|hendrycksTest-clinical_knowledge|5": {
"acc": 0.6981132075471698,
"acc_stderr": 0.02825420034443866,
"acc_norm": 0.6981132075471698,
"acc_norm_stderr": 0.02825420034443866
},
"harness|hendrycksTest-college_biology|5": {
"acc": 0.7777777777777778,
"acc_stderr": 0.03476590104304134,
"acc_norm": 0.7777777777777778,
"acc_norm_stderr": 0.03476590104304134
},
"harness|hendrycksTest-college_chemistry|5": {
"acc": 0.49,
"acc_stderr": 0.05024183937956912,
"acc_norm": 0.49,
"acc_norm_stderr": 0.05024183937956912
},
"harness|hendrycksTest-college_computer_science|5": {
"acc": 0.56,
"acc_stderr": 0.049888765156985884,
"acc_norm": 0.56,
"acc_norm_stderr": 0.049888765156985884
},
"harness|hendrycksTest-college_mathematics|5": {
"acc": 0.32,
"acc_stderr": 0.04688261722621504,
"acc_norm": 0.32,
"acc_norm_stderr": 0.04688261722621504
},
"harness|hendrycksTest-college_medicine|5": {
"acc": 0.6936416184971098,
"acc_stderr": 0.03514942551267438,
"acc_norm": 0.6936416184971098,
"acc_norm_stderr": 0.03514942551267438
},
"harness|hendrycksTest-college_physics|5": {
"acc": 0.4215686274509804,
"acc_stderr": 0.04913595201274498,
"acc_norm": 0.4215686274509804,
"acc_norm_stderr": 0.04913595201274498
},
"harness|hendrycksTest-computer_security|5": {
"acc": 0.77,
"acc_stderr": 0.04229525846816507,
"acc_norm": 0.77,
"acc_norm_stderr": 0.04229525846816507
},
"harness|hendrycksTest-conceptual_physics|5": {
"acc": 0.5957446808510638,
"acc_stderr": 0.032081157507886836,
"acc_norm": 0.5957446808510638,
"acc_norm_stderr": 0.032081157507886836
},
"harness|hendrycksTest-econometrics|5": {
"acc": 0.5,
"acc_stderr": 0.047036043419179864,
"acc_norm": 0.5,
"acc_norm_stderr": 0.047036043419179864
},
"harness|hendrycksTest-electrical_engineering|5": {
"acc": 0.5448275862068965,
"acc_stderr": 0.04149886942192117,
"acc_norm": 0.5448275862068965,
"acc_norm_stderr": 0.04149886942192117
},
"harness|hendrycksTest-elementary_mathematics|5": {
"acc": 0.3994708994708995,
"acc_stderr": 0.02522545028406788,
"acc_norm": 0.3994708994708995,
"acc_norm_stderr": 0.02522545028406788
},
"harness|hendrycksTest-formal_logic|5": {
"acc": 0.4523809523809524,
"acc_stderr": 0.044518079590553275,
"acc_norm": 0.4523809523809524,
"acc_norm_stderr": 0.044518079590553275
},
"harness|hendrycksTest-global_facts|5": {
"acc": 0.36,
"acc_stderr": 0.048241815132442176,
"acc_norm": 0.36,
"acc_norm_stderr": 0.048241815132442176
},
"harness|hendrycksTest-high_school_biology|5": {
"acc": 0.7870967741935484,
"acc_stderr": 0.02328766512726854,
"acc_norm": 0.7870967741935484,
"acc_norm_stderr": 0.02328766512726854
},
"harness|hendrycksTest-high_school_chemistry|5": {
"acc": 0.4975369458128079,
"acc_stderr": 0.03517945038691063,
"acc_norm": 0.4975369458128079,
"acc_norm_stderr": 0.03517945038691063
},
"harness|hendrycksTest-high_school_computer_science|5": {
"acc": 0.72,
"acc_stderr": 0.045126085985421276,
"acc_norm": 0.72,
"acc_norm_stderr": 0.045126085985421276
},
"harness|hendrycksTest-high_school_european_history|5": {
"acc": 0.7818181818181819,
"acc_stderr": 0.03225078108306289,
"acc_norm": 0.7818181818181819,
"acc_norm_stderr": 0.03225078108306289
},
"harness|hendrycksTest-high_school_geography|5": {
"acc": 0.7777777777777778,
"acc_stderr": 0.029620227874790482,
"acc_norm": 0.7777777777777778,
"acc_norm_stderr": 0.029620227874790482
},
"harness|hendrycksTest-high_school_government_and_politics|5": {
"acc": 0.9119170984455959,
"acc_stderr": 0.02045374660160103,
"acc_norm": 0.9119170984455959,
"acc_norm_stderr": 0.02045374660160103
},
"harness|hendrycksTest-high_school_macroeconomics|5": {
"acc": 0.6666666666666666,
"acc_stderr": 0.023901157979402534,
"acc_norm": 0.6666666666666666,
"acc_norm_stderr": 0.023901157979402534
},
"harness|hendrycksTest-high_school_mathematics|5": {
"acc": 0.34444444444444444,
"acc_stderr": 0.02897264888484427,
"acc_norm": 0.34444444444444444,
"acc_norm_stderr": 0.02897264888484427
},
"harness|hendrycksTest-high_school_microeconomics|5": {
"acc": 0.7058823529411765,
"acc_stderr": 0.029597329730978086,
"acc_norm": 0.7058823529411765,
"acc_norm_stderr": 0.029597329730978086
},
"harness|hendrycksTest-high_school_physics|5": {
"acc": 0.33112582781456956,
"acc_stderr": 0.038425817186598696,
"acc_norm": 0.33112582781456956,
"acc_norm_stderr": 0.038425817186598696
},
"harness|hendrycksTest-high_school_psychology|5": {
"acc": 0.8495412844036697,
"acc_stderr": 0.015328563932669237,
"acc_norm": 0.8495412844036697,
"acc_norm_stderr": 0.015328563932669237
},
"harness|hendrycksTest-high_school_statistics|5": {
"acc": 0.5092592592592593,
"acc_stderr": 0.034093869469927006,
"acc_norm": 0.5092592592592593,
"acc_norm_stderr": 0.034093869469927006
},
"harness|hendrycksTest-high_school_us_history|5": {
"acc": 0.8431372549019608,
"acc_stderr": 0.025524722324553353,
"acc_norm": 0.8431372549019608,
"acc_norm_stderr": 0.025524722324553353
},
"harness|hendrycksTest-high_school_world_history|5": {
"acc": 0.810126582278481,
"acc_stderr": 0.025530100460233497,
"acc_norm": 0.810126582278481,
"acc_norm_stderr": 0.025530100460233497
},
"harness|hendrycksTest-human_aging|5": {
"acc": 0.7085201793721974,
"acc_stderr": 0.03050028317654585,
"acc_norm": 0.7085201793721974,
"acc_norm_stderr": 0.03050028317654585
},
"harness|hendrycksTest-human_sexuality|5": {
"acc": 0.8015267175572519,
"acc_stderr": 0.03498149385462472,
"acc_norm": 0.8015267175572519,
"acc_norm_stderr": 0.03498149385462472
},
"harness|hendrycksTest-international_law|5": {
"acc": 0.8347107438016529,
"acc_stderr": 0.03390780612972776,
"acc_norm": 0.8347107438016529,
"acc_norm_stderr": 0.03390780612972776
},
"harness|hendrycksTest-jurisprudence|5": {
"acc": 0.8148148148148148,
"acc_stderr": 0.03755265865037182,
"acc_norm": 0.8148148148148148,
"acc_norm_stderr": 0.03755265865037182
},
"harness|hendrycksTest-logical_fallacies|5": {
"acc": 0.7914110429447853,
"acc_stderr": 0.03192193448934724,
"acc_norm": 0.7914110429447853,
"acc_norm_stderr": 0.03192193448934724
},
"harness|hendrycksTest-machine_learning|5": {
"acc": 0.5089285714285714,
"acc_stderr": 0.04745033255489123,
"acc_norm": 0.5089285714285714,
"acc_norm_stderr": 0.04745033255489123
},
"harness|hendrycksTest-management|5": {
"acc": 0.8543689320388349,
"acc_stderr": 0.0349260647662379,
"acc_norm": 0.8543689320388349,
"acc_norm_stderr": 0.0349260647662379
},
"harness|hendrycksTest-marketing|5": {
"acc": 0.8504273504273504,
"acc_stderr": 0.023365051491753715,
"acc_norm": 0.8504273504273504,
"acc_norm_stderr": 0.023365051491753715
},
"harness|hendrycksTest-medical_genetics|5": {
"acc": 0.7,
"acc_stderr": 0.046056618647183814,
"acc_norm": 0.7,
"acc_norm_stderr": 0.046056618647183814
},
"harness|hendrycksTest-miscellaneous|5": {
"acc": 0.8301404853128991,
"acc_stderr": 0.013428186370608306,
"acc_norm": 0.8301404853128991,
"acc_norm_stderr": 0.013428186370608306
},
"harness|hendrycksTest-moral_disputes|5": {
"acc": 0.7427745664739884,
"acc_stderr": 0.023532925431044283,
"acc_norm": 0.7427745664739884,
"acc_norm_stderr": 0.023532925431044283
},
"harness|hendrycksTest-moral_scenarios|5": {
"acc": 0.3877094972067039,
"acc_stderr": 0.016295332328155818,
"acc_norm": 0.3877094972067039,
"acc_norm_stderr": 0.016295332328155818
},
"harness|hendrycksTest-nutrition|5": {
"acc": 0.7320261437908496,
"acc_stderr": 0.025360603796242553,
"acc_norm": 0.7320261437908496,
"acc_norm_stderr": 0.025360603796242553
},
"harness|hendrycksTest-philosophy|5": {
"acc": 0.7202572347266881,
"acc_stderr": 0.02549425935069491,
"acc_norm": 0.7202572347266881,
"acc_norm_stderr": 0.02549425935069491
},
"harness|hendrycksTest-prehistory|5": {
"acc": 0.7283950617283951,
"acc_stderr": 0.02474862449053737,
"acc_norm": 0.7283950617283951,
"acc_norm_stderr": 0.02474862449053737
},
"harness|hendrycksTest-professional_accounting|5": {
"acc": 0.4645390070921986,
"acc_stderr": 0.02975238965742705,
"acc_norm": 0.4645390070921986,
"acc_norm_stderr": 0.02975238965742705
},
"harness|hendrycksTest-professional_law|5": {
"acc": 0.4791395045632334,
"acc_stderr": 0.012759117066518012,
"acc_norm": 0.4791395045632334,
"acc_norm_stderr": 0.012759117066518012
},
"harness|hendrycksTest-professional_medicine|5": {
"acc": 0.7279411764705882,
"acc_stderr": 0.02703304115168146,
"acc_norm": 0.7279411764705882,
"acc_norm_stderr": 0.02703304115168146
},
"harness|hendrycksTest-professional_psychology|5": {
"acc": 0.6830065359477124,
"acc_stderr": 0.018824219512706207,
"acc_norm": 0.6830065359477124,
"acc_norm_stderr": 0.018824219512706207
},
"harness|hendrycksTest-public_relations|5": {
"acc": 0.6727272727272727,
"acc_stderr": 0.0449429086625209,
"acc_norm": 0.6727272727272727,
"acc_norm_stderr": 0.0449429086625209
},
"harness|hendrycksTest-security_studies|5": {
"acc": 0.7142857142857143,
"acc_stderr": 0.028920583220675602,
"acc_norm": 0.7142857142857143,
"acc_norm_stderr": 0.028920583220675602
},
"harness|hendrycksTest-sociology|5": {
"acc": 0.8407960199004975,
"acc_stderr": 0.025870646766169136,
"acc_norm": 0.8407960199004975,
"acc_norm_stderr": 0.025870646766169136
},
"harness|hendrycksTest-us_foreign_policy|5": {
"acc": 0.87,
"acc_stderr": 0.03379976689896308,
"acc_norm": 0.87,
"acc_norm_stderr": 0.03379976689896308
},
"harness|hendrycksTest-virology|5": {
"acc": 0.536144578313253,
"acc_stderr": 0.038823108508905954,
"acc_norm": 0.536144578313253,
"acc_norm_stderr": 0.038823108508905954
},
"harness|hendrycksTest-world_religions|5": {
"acc": 0.847953216374269,
"acc_stderr": 0.027539122889061463,
"acc_norm": 0.847953216374269,
"acc_norm_stderr": 0.027539122889061463
},
"harness|truthfulqa:mc|0": {
"mc1": 0.3537331701346389,
"mc1_stderr": 0.016737814358846147,
"mc2": 0.5180401965777761,
"mc2_stderr": 0.015565981129474472
},
"harness|winogrande|5": {
"acc": 0.7932123125493291,
"acc_stderr": 0.011382566829235798
},
"harness|gsm8k|5": {
"acc": 0.7263078089461713,
"acc_stderr": 0.012281003490963449
}
}
```
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
[More Information Needed] | open-llm-leaderboard/details_chanwit__flux-7b-v0.2 | [
"region:us"
] | 2024-01-18T00:44:21+00:00 | {"pretty_name": "Evaluation run of chanwit/flux-7b-v0.2", "dataset_summary": "Dataset automatically created during the evaluation run of model [chanwit/flux-7b-v0.2](https://huggingface.co/chanwit/flux-7b-v0.2) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_chanwit__flux-7b-v0.2\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-18T00:42:00.685036](https://huggingface.co/datasets/open-llm-leaderboard/details_chanwit__flux-7b-v0.2/blob/main/results_2024-01-18T00-42-00.685036.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6573592496311628,\n \"acc_stderr\": 0.031783424194298984,\n \"acc_norm\": 0.6574655421284195,\n \"acc_norm_stderr\": 0.03243446995426543,\n \"mc1\": 0.3537331701346389,\n \"mc1_stderr\": 0.016737814358846147,\n \"mc2\": 0.5180401965777761,\n \"mc2_stderr\": 0.015565981129474472\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.6331058020477816,\n \"acc_stderr\": 0.014084133118104294,\n \"acc_norm\": 0.6655290102389079,\n \"acc_norm_stderr\": 0.013787460322441374\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6825333598884684,\n \"acc_stderr\": 0.004645393477680678,\n \"acc_norm\": 0.8611830312686716,\n \"acc_norm_stderr\": 0.003450488042965005\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.36,\n \"acc_stderr\": 0.04824181513244218,\n \"acc_norm\": 0.36,\n \"acc_norm_stderr\": 0.04824181513244218\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6074074074074074,\n \"acc_stderr\": 0.0421850621536888,\n \"acc_norm\": 0.6074074074074074,\n \"acc_norm_stderr\": 0.0421850621536888\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.7039473684210527,\n \"acc_stderr\": 0.03715062154998904,\n \"acc_norm\": 0.7039473684210527,\n \"acc_norm_stderr\": 0.03715062154998904\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.63,\n \"acc_stderr\": 0.04852365870939099,\n \"acc_norm\": 0.63,\n \"acc_norm_stderr\": 0.04852365870939099\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.6981132075471698,\n \"acc_stderr\": 0.02825420034443866,\n \"acc_norm\": 0.6981132075471698,\n \"acc_norm_stderr\": 0.02825420034443866\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7777777777777778,\n \"acc_stderr\": 0.03476590104304134,\n \"acc_norm\": 0.7777777777777778,\n \"acc_norm_stderr\": 0.03476590104304134\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.49,\n \"acc_stderr\": 0.05024183937956912,\n \"acc_norm\": 0.49,\n \"acc_norm_stderr\": 0.05024183937956912\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.56,\n \"acc_stderr\": 0.049888765156985884,\n \"acc_norm\": 0.56,\n \"acc_norm_stderr\": 0.049888765156985884\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.32,\n \"acc_stderr\": 0.04688261722621504,\n \"acc_norm\": 0.32,\n \"acc_norm_stderr\": 0.04688261722621504\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6936416184971098,\n \"acc_stderr\": 0.03514942551267438,\n \"acc_norm\": 0.6936416184971098,\n \"acc_norm_stderr\": 0.03514942551267438\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.4215686274509804,\n \"acc_stderr\": 0.04913595201274498,\n \"acc_norm\": 0.4215686274509804,\n \"acc_norm_stderr\": 0.04913595201274498\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.77,\n \"acc_stderr\": 0.04229525846816507,\n \"acc_norm\": 0.77,\n \"acc_norm_stderr\": 0.04229525846816507\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5957446808510638,\n \"acc_stderr\": 0.032081157507886836,\n \"acc_norm\": 0.5957446808510638,\n \"acc_norm_stderr\": 0.032081157507886836\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.5,\n \"acc_stderr\": 0.047036043419179864,\n \"acc_norm\": 0.5,\n \"acc_norm_stderr\": 0.047036043419179864\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5448275862068965,\n \"acc_stderr\": 0.04149886942192117,\n \"acc_norm\": 0.5448275862068965,\n \"acc_norm_stderr\": 0.04149886942192117\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.3994708994708995,\n \"acc_stderr\": 0.02522545028406788,\n \"acc_norm\": 0.3994708994708995,\n \"acc_norm_stderr\": 0.02522545028406788\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.4523809523809524,\n \"acc_stderr\": 0.044518079590553275,\n \"acc_norm\": 0.4523809523809524,\n \"acc_norm_stderr\": 0.044518079590553275\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.36,\n \"acc_stderr\": 0.048241815132442176,\n \"acc_norm\": 0.36,\n \"acc_norm_stderr\": 0.048241815132442176\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7870967741935484,\n \"acc_stderr\": 0.02328766512726854,\n \"acc_norm\": 0.7870967741935484,\n \"acc_norm_stderr\": 0.02328766512726854\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.4975369458128079,\n \"acc_stderr\": 0.03517945038691063,\n \"acc_norm\": 0.4975369458128079,\n \"acc_norm_stderr\": 0.03517945038691063\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.72,\n \"acc_stderr\": 0.045126085985421276,\n \"acc_norm\": 0.72,\n \"acc_norm_stderr\": 0.045126085985421276\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7818181818181819,\n \"acc_stderr\": 0.03225078108306289,\n \"acc_norm\": 0.7818181818181819,\n \"acc_norm_stderr\": 0.03225078108306289\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7777777777777778,\n \"acc_stderr\": 0.029620227874790482,\n \"acc_norm\": 0.7777777777777778,\n \"acc_norm_stderr\": 0.029620227874790482\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.9119170984455959,\n \"acc_stderr\": 0.02045374660160103,\n \"acc_norm\": 0.9119170984455959,\n \"acc_norm_stderr\": 0.02045374660160103\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6666666666666666,\n \"acc_stderr\": 0.023901157979402534,\n \"acc_norm\": 0.6666666666666666,\n \"acc_norm_stderr\": 0.023901157979402534\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.34444444444444444,\n \"acc_stderr\": 0.02897264888484427,\n \"acc_norm\": 0.34444444444444444,\n \"acc_norm_stderr\": 0.02897264888484427\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.7058823529411765,\n \"acc_stderr\": 0.029597329730978086,\n \"acc_norm\": 0.7058823529411765,\n \"acc_norm_stderr\": 0.029597329730978086\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.33112582781456956,\n \"acc_stderr\": 0.038425817186598696,\n \"acc_norm\": 0.33112582781456956,\n \"acc_norm_stderr\": 0.038425817186598696\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8495412844036697,\n \"acc_stderr\": 0.015328563932669237,\n \"acc_norm\": 0.8495412844036697,\n \"acc_norm_stderr\": 0.015328563932669237\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.5092592592592593,\n \"acc_stderr\": 0.034093869469927006,\n \"acc_norm\": 0.5092592592592593,\n \"acc_norm_stderr\": 0.034093869469927006\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.8431372549019608,\n \"acc_stderr\": 0.025524722324553353,\n \"acc_norm\": 0.8431372549019608,\n \"acc_norm_stderr\": 0.025524722324553353\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.810126582278481,\n \"acc_stderr\": 0.025530100460233497,\n \"acc_norm\": 0.810126582278481,\n \"acc_norm_stderr\": 0.025530100460233497\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.7085201793721974,\n \"acc_stderr\": 0.03050028317654585,\n \"acc_norm\": 0.7085201793721974,\n \"acc_norm_stderr\": 0.03050028317654585\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.8015267175572519,\n \"acc_stderr\": 0.03498149385462472,\n \"acc_norm\": 0.8015267175572519,\n \"acc_norm_stderr\": 0.03498149385462472\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8347107438016529,\n \"acc_stderr\": 0.03390780612972776,\n \"acc_norm\": 0.8347107438016529,\n \"acc_norm_stderr\": 0.03390780612972776\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.8148148148148148,\n \"acc_stderr\": 0.03755265865037182,\n \"acc_norm\": 0.8148148148148148,\n \"acc_norm_stderr\": 0.03755265865037182\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7914110429447853,\n \"acc_stderr\": 0.03192193448934724,\n \"acc_norm\": 0.7914110429447853,\n \"acc_norm_stderr\": 0.03192193448934724\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.5089285714285714,\n \"acc_stderr\": 0.04745033255489123,\n \"acc_norm\": 0.5089285714285714,\n \"acc_norm_stderr\": 0.04745033255489123\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.8543689320388349,\n \"acc_stderr\": 0.0349260647662379,\n \"acc_norm\": 0.8543689320388349,\n \"acc_norm_stderr\": 0.0349260647662379\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8504273504273504,\n \"acc_stderr\": 0.023365051491753715,\n \"acc_norm\": 0.8504273504273504,\n \"acc_norm_stderr\": 0.023365051491753715\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.7,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.7,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8301404853128991,\n \"acc_stderr\": 0.013428186370608306,\n \"acc_norm\": 0.8301404853128991,\n \"acc_norm_stderr\": 0.013428186370608306\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7427745664739884,\n \"acc_stderr\": 0.023532925431044283,\n \"acc_norm\": 0.7427745664739884,\n \"acc_norm_stderr\": 0.023532925431044283\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.3877094972067039,\n \"acc_stderr\": 0.016295332328155818,\n \"acc_norm\": 0.3877094972067039,\n \"acc_norm_stderr\": 0.016295332328155818\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7320261437908496,\n \"acc_stderr\": 0.025360603796242553,\n \"acc_norm\": 0.7320261437908496,\n \"acc_norm_stderr\": 0.025360603796242553\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.7202572347266881,\n \"acc_stderr\": 0.02549425935069491,\n \"acc_norm\": 0.7202572347266881,\n \"acc_norm_stderr\": 0.02549425935069491\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.7283950617283951,\n \"acc_stderr\": 0.02474862449053737,\n \"acc_norm\": 0.7283950617283951,\n \"acc_norm_stderr\": 0.02474862449053737\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.4645390070921986,\n \"acc_stderr\": 0.02975238965742705,\n \"acc_norm\": 0.4645390070921986,\n \"acc_norm_stderr\": 0.02975238965742705\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.4791395045632334,\n \"acc_stderr\": 0.012759117066518012,\n \"acc_norm\": 0.4791395045632334,\n \"acc_norm_stderr\": 0.012759117066518012\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.7279411764705882,\n \"acc_stderr\": 0.02703304115168146,\n \"acc_norm\": 0.7279411764705882,\n \"acc_norm_stderr\": 0.02703304115168146\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6830065359477124,\n \"acc_stderr\": 0.018824219512706207,\n \"acc_norm\": 0.6830065359477124,\n \"acc_norm_stderr\": 0.018824219512706207\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6727272727272727,\n \"acc_stderr\": 0.0449429086625209,\n \"acc_norm\": 0.6727272727272727,\n \"acc_norm_stderr\": 0.0449429086625209\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7142857142857143,\n \"acc_stderr\": 0.028920583220675602,\n \"acc_norm\": 0.7142857142857143,\n \"acc_norm_stderr\": 0.028920583220675602\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8407960199004975,\n \"acc_stderr\": 0.025870646766169136,\n \"acc_norm\": 0.8407960199004975,\n \"acc_norm_stderr\": 0.025870646766169136\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.87,\n \"acc_stderr\": 0.03379976689896308,\n \"acc_norm\": 0.87,\n \"acc_norm_stderr\": 0.03379976689896308\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.536144578313253,\n \"acc_stderr\": 0.038823108508905954,\n \"acc_norm\": 0.536144578313253,\n \"acc_norm_stderr\": 0.038823108508905954\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.847953216374269,\n \"acc_stderr\": 0.027539122889061463,\n \"acc_norm\": 0.847953216374269,\n \"acc_norm_stderr\": 0.027539122889061463\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.3537331701346389,\n \"mc1_stderr\": 0.016737814358846147,\n \"mc2\": 0.5180401965777761,\n \"mc2_stderr\": 0.015565981129474472\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.7932123125493291,\n \"acc_stderr\": 0.011382566829235798\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.7263078089461713,\n \"acc_stderr\": 0.012281003490963449\n }\n}\n```", "repo_url": "https://huggingface.co/chanwit/flux-7b-v0.2", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|arc:challenge|25_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|gsm8k|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hellaswag|10_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-18T00-42-00.685036.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["**/details_harness|winogrande|5_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-18T00-42-00.685036.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_18T00_42_00.685036", "path": ["results_2024-01-18T00-42-00.685036.parquet"]}, {"split": "latest", "path": ["results_2024-01-18T00-42-00.685036.parquet"]}]}]} | 2024-01-18T00:44:44+00:00 | [] | [] | TAGS
#region-us
|
# Dataset Card for Evaluation run of chanwit/flux-7b-v0.2
Dataset automatically created during the evaluation run of model chanwit/flux-7b-v0.2 on the Open LLM Leaderboard.
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).
To load the details from a run, you can for instance do the following:
## Latest results
These are the latest results from run 2024-01-18T00:42:00.685036(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
## Dataset Details
### Dataset Description
- Curated by:
- Funded by [optional]:
- Shared by [optional]:
- Language(s) (NLP):
- License:
### Dataset Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Out-of-Scope Use
## Dataset Structure
## Dataset Creation
### Curation Rationale
### Source Data
#### Data Collection and Processing
#### Who are the source data producers?
### Annotations [optional]
#### Annotation process
#### Who are the annotators?
#### Personal and Sensitive Information
## Bias, Risks, and Limitations
### Recommendations
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Dataset Card Authors [optional]
## Dataset Card Contact
| [
"# Dataset Card for Evaluation run of chanwit/flux-7b-v0.2\n\n\n\nDataset automatically created during the evaluation run of model chanwit/flux-7b-v0.2 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-18T00:42:00.685036(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for Evaluation run of chanwit/flux-7b-v0.2\n\n\n\nDataset automatically created during the evaluation run of model chanwit/flux-7b-v0.2 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-18T00:42:00.685036(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] |
84db57c6cb0b45c90e10b67c129387559f1e6a25 | <!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Data Card</title>
<link href="https://fonts.googleapis.com/css2?family=Quicksand:wght@400;500;600&display=swap" rel="stylesheet">
<style>
body {
font-family: 'Quicksand', sans-serif;
background-color: #1A202C;
color: #D8DEE9;
margin: 0;
padding: 0; /* Remove default padding */
font-size: 16px;
background: linear-gradient(135deg, #2E3440 0%, #1A202C 100%);
}
p {
padding-left: 10px
}
.container {
width: 100%;
margin: auto;
background-color: rgb(255 255 255 / 1%);
padding: 20px 30px 40px; /* Add padding below the image only */
padding-right: 32px;
border-radius: 12px;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.2);
backdrop-filter: blur(10px);
border: 1px solid rgba(255, 255, 255, 0.05);
}
.header {
display: flex;
align-items: center;
justify-content: space-between;
gap: 20px;
}
img {
border-radius: 10px 10px 0 0!important;
padding-left: 0px !important;
}
.header h1 {
font-size: 28px;
color: #ECEFF4;
margin: 0;
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3);
}
.info {
background-color: rgba(255, 255, 255, 0.05);
color: #AEBAC7;
border-radius: 12px;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
font-size: 14px;
line-height: 1.6;
margin-left: 5px;
overflow-x: auto;
margin-top: 20px; /* Adjusted margin */
border: 1px solid rgba(255, 255, 255, 0.05);
transition: background-color 0.6s ease; /* Smooth transition over 0.5 seconds */
}
.info:hover {
}
.info img {
width: 100%;
border-radius: 10px 10px 0 0;
margin-top: -20px; /* Negative margin to overlap container margin */
}
a {
color: #88C0D0;
text-decoration: none;
transition: color 0.3s ease;
position: relative;
}
a:hover {
color: #A3BE8C;
text-decoration: none;
}
a::before {
content: '';
position: absolute;
width: 100%;
height: 2px;
bottom: 0;
left: 0;
background-color: #A3BE8C;
visibility: hidden;
transform: scaleX(0);
transition: all 0.3s ease-in-out;
}
a:hover::before {
visibility: visible;
transform: scaleX(1);
}
.button {
display: inline-block;
background-color: #5E81AC;
color: #E5E9F0;
padding: 10px 20px;
border-radius: 5px;
cursor: pointer;
text-decoration: none;
transition: background-color 0.3s ease;
}
.button:hover {
background-color: #81A1C1;
}
</style>
</head>
<body>
<div class="container">
<div class="header">
<h1>Neural-DPO</h1>
</div>
<div class="info">
<img src="https://cdn-uploads.huggingface.co/production/uploads/645cfe4603fc86c46b3e46d1/9owhcr6AAO5p_friHpjPV.png" style="border-radius: 10px;">
<p><strong>Creator:</strong> <a href="https://huggingface.co/NeuralNovel" target="_blank">NeuralNovel</a></p>
<p><strong>Community Organization:</strong> <a href="https://huggingface.co/ConvexAI" target="_blank">ConvexAI</a></p>
<p><strong>Discord:</strong> <a href="https://discord.gg/yYqmNmg7Wj" target="_blank">Join us on Discord</a></p>
</head>
<body>
<div>
<div>
<p><strong>About Neural-DPO:</strong> The Neural-DPO dataset, inspired by orca_dpo_pairs, comprehensive questions and answers with a focus on neural networks.</p>
<p>It encompasses a rich array of subjects, drawing from diverse domains such as literature, scientific research, and theoretical inquiries.</p>
<p>This diversity fosters a wide spectrum of applications, including natural language understanding, contextual comprehension, and educational enrichment.</p>
<p><strong>Source Datasets:</strong></p>
<ul>
<li>orca_dpo_pairs (Inspiration)</li>
<li>Academic Papers Corpus</li>
<li>Novel Collections</li>
<li>General Q&A</li>
</ul>
<p><strong>Phrases Removed:</strong></p>
<p>To enhance the dataset's coherence and relevance across varied contexts, certain phrases have been selectively omitted.</p>
<ul>
<li>Couldn't help but</li>
<li>Can't resist</li>
<li>I'm sorry, but</li>
<li>As an AI</li>
<li>However, it is important to</li>
<li>Cannot provide</li>
<li>And others</li>
</ul>
</div>
</div>
</body> | NeuralNovel/Neural-DPO | [
"license:apache-2.0",
"region:us"
] | 2024-01-18T00:53:07+00:00 | {"license": "apache-2.0"} | 2024-02-14T15:13:39+00:00 | [] | [] | TAGS
#license-apache-2.0 #region-us
| <!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Data Card</title>
<link href="URL rel="stylesheet">
<style>
body {
font-family: 'Quicksand', sans-serif;
background-color: #1A202C;
color: #D8DEE9;
margin: 0;
padding: 0; /* Remove default padding */
font-size: 16px;
background: linear-gradient(135deg, #2E3440 0%, #1A202C 100%);
}
p {
padding-left: 10px
}
.container {
width: 100%;
margin: auto;
background-color: rgb(255 255 255 / 1%);
padding: 20px 30px 40px; /* Add padding below the image only */
padding-right: 32px;
border-radius: 12px;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.2);
backdrop-filter: blur(10px);
border: 1px solid rgba(255, 255, 255, 0.05);
}
.header {
display: flex;
align-items: center;
justify-content: space-between;
gap: 20px;
}
img {
border-radius: 10px 10px 0 0!important;
padding-left: 0px !important;
}
.header h1 {
font-size: 28px;
color: #ECEFF4;
margin: 0;
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3);
}
.info {
background-color: rgba(255, 255, 255, 0.05);
color: #AEBAC7;
border-radius: 12px;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
font-size: 14px;
line-height: 1.6;
margin-left: 5px;
overflow-x: auto;
margin-top: 20px; /* Adjusted margin */
border: 1px solid rgba(255, 255, 255, 0.05);
transition: background-color 0.6s ease; /* Smooth transition over 0.5 seconds */
}
.info:hover {
}
.info img {
width: 100%;
border-radius: 10px 10px 0 0;
margin-top: -20px; /* Negative margin to overlap container margin */
}
a {
color: #88C0D0;
text-decoration: none;
transition: color 0.3s ease;
position: relative;
}
a:hover {
color: #A3BE8C;
text-decoration: none;
}
a::before {
content: '';
position: absolute;
width: 100%;
height: 2px;
bottom: 0;
left: 0;
background-color: #A3BE8C;
visibility: hidden;
transform: scaleX(0);
transition: all 0.3s ease-in-out;
}
a:hover::before {
visibility: visible;
transform: scaleX(1);
}
.button {
display: inline-block;
background-color: #5E81AC;
color: #E5E9F0;
padding: 10px 20px;
border-radius: 5px;
cursor: pointer;
text-decoration: none;
transition: background-color 0.3s ease;
}
.button:hover {
background-color: #81A1C1;
}
</style>
</head>
<body>
<div class="container">
<div class="header">
<h1>Neural-DPO</h1>
</div>
<div class="info">
<img src="URL style="border-radius: 10px;">
<p><strong>Creator:</strong> <a href="URL target="_blank">NeuralNovel</a></p>
<p><strong>Community Organization:</strong> <a href="URL target="_blank">ConvexAI</a></p>
<p><strong>Discord:</strong> <a href="URL target="_blank">Join us on Discord</a></p>
</head>
<body>
<div>
<div>
<p><strong>About Neural-DPO:</strong> The Neural-DPO dataset, inspired by orca_dpo_pairs, comprehensive questions and answers with a focus on neural networks.</p>
<p>It encompasses a rich array of subjects, drawing from diverse domains such as literature, scientific research, and theoretical inquiries.</p>
<p>This diversity fosters a wide spectrum of applications, including natural language understanding, contextual comprehension, and educational enrichment.</p>
<p><strong>Source Datasets:</strong></p>
<ul>
<li>orca_dpo_pairs (Inspiration)</li>
<li>Academic Papers Corpus</li>
<li>Novel Collections</li>
<li>General Q&A</li>
</ul>
<p><strong>Phrases Removed:</strong></p>
<p>To enhance the dataset's coherence and relevance across varied contexts, certain phrases have been selectively omitted.</p>
<ul>
<li>Couldn't help but</li>
<li>Can't resist</li>
<li>I'm sorry, but</li>
<li>As an AI</li>
<li>However, it is important to</li>
<li>Cannot provide</li>
<li>And others</li>
</ul>
</div>
</div>
</body> | [] | [
"TAGS\n#license-apache-2.0 #region-us \n"
] |
d2cf56f85786f774542845e148f1aa1d7bb87a75 |
# Dataset of fiora (Fire Emblem)
This is the dataset of fiora (Fire Emblem), containing 98 images and their tags.
The core tags of this character are `long_hair, blue_eyes, breasts, aqua_hair, blue_hair, large_breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 98 | 98.08 MiB | [Download](https://huggingface.co/datasets/CyberHarem/fiora_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 98 | 63.34 MiB | [Download](https://huggingface.co/datasets/CyberHarem/fiora_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 186 | 117.09 MiB | [Download](https://huggingface.co/datasets/CyberHarem/fiora_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 98 | 89.40 MiB | [Download](https://huggingface.co/datasets/CyberHarem/fiora_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 186 | 154.26 MiB | [Download](https://huggingface.co/datasets/CyberHarem/fiora_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/fiora_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 24 |  |  |  |  |  | 1girl, solo, breastplate, fingerless_gloves, thighhighs, belt, smile, looking_at_viewer, spear, thigh_boots, pegasus_knight_uniform_(fire_emblem), holding |
| 1 | 23 |  |  |  |  |  | 1girl, hair_flower, bikini, solo, cleavage, navel, smile, looking_at_viewer, open_mouth, umbrella, bare_shoulders, holding, blue_sky, cloud, day, medium_breasts, simple_background, blush, outdoors |
| 2 | 17 |  |  |  |  |  | hetero, blush, nipples, open_mouth, solo_focus, 1girl, penis, vaginal, nude, 1boy, navel, sweat, girl_on_top, mosaic_censoring, thighhighs, cum_in_pussy, fingerless_gloves, headband, straddling, female_pubic_hair, group_sex, medium_breasts |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | breastplate | fingerless_gloves | thighhighs | belt | smile | looking_at_viewer | spear | thigh_boots | pegasus_knight_uniform_(fire_emblem) | holding | hair_flower | bikini | cleavage | navel | open_mouth | umbrella | bare_shoulders | blue_sky | cloud | day | medium_breasts | simple_background | blush | outdoors | hetero | nipples | solo_focus | penis | vaginal | nude | 1boy | sweat | girl_on_top | mosaic_censoring | cum_in_pussy | headband | straddling | female_pubic_hair | group_sex |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------------|:--------------------|:-------------|:-------|:--------|:--------------------|:--------|:--------------|:---------------------------------------|:----------|:--------------|:---------|:-----------|:--------|:-------------|:-----------|:-----------------|:-----------|:--------|:------|:-----------------|:--------------------|:--------|:-----------|:---------|:----------|:-------------|:--------|:----------|:-------|:-------|:--------|:--------------|:-------------------|:---------------|:-----------|:-------------|:--------------------|:------------|
| 0 | 24 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 23 |  |  |  |  |  | X | X | | | | | X | X | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | |
| 2 | 17 |  |  |  |  |  | X | | | X | X | | | | | | | | | | | X | X | | | | | | X | | X | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/fiora_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T01:32:31+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T01:50:46+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of fiora (Fire Emblem)
==============================
This is the dataset of fiora (Fire Emblem), containing 98 images and their tags.
The core tags of this character are 'long\_hair, blue\_eyes, breasts, aqua\_hair, blue\_hair, large\_breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
45dafbbee84704367c423d5f5ec4a3a3db1286f8 |
# Dataset of marianne_von_edmund (Fire Emblem)
This is the dataset of marianne_von_edmund (Fire Emblem), containing 500 images and their tags.
The core tags of this character are `blue_hair, brown_eyes, braid, crown_braid, breasts, bangs, large_breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:--------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 705.71 MiB | [Download](https://huggingface.co/datasets/CyberHarem/marianne_von_edmund_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 390.08 MiB | [Download](https://huggingface.co/datasets/CyberHarem/marianne_von_edmund_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1168 | 823.34 MiB | [Download](https://huggingface.co/datasets/CyberHarem/marianne_von_edmund_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 615.70 MiB | [Download](https://huggingface.co/datasets/CyberHarem/marianne_von_edmund_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1168 | 1.15 GiB | [Download](https://huggingface.co/datasets/CyberHarem/marianne_von_edmund_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/marianne_von_edmund_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 12 |  |  |  |  |  | 1girl, blunt_bangs, long_hair, looking_at_viewer, official_alternate_costume, official_alternate_hairstyle, solo, wavy_hair, blue_dress, closed_mouth, upper_body, center_frills, simple_background, blue_cape, long_sleeves, blush, lips, smile, blue_hairband, own_hands_together |
| 1 | 29 |  |  |  |  |  | 1girl, garreg_mach_monastery_uniform, solo, epaulettes, closed_mouth, upper_body, simple_background, long_sleeves, looking_at_viewer, short_hair, sidelocks, white_background |
| 2 | 5 |  |  |  |  |  | 1girl, bags_under_eyes, epaulettes, garreg_mach_monastery_uniform, long_sleeves, sidelocks, simple_background, upper_body, blush, grey_background, short_hair, solo, blunt_bangs, buttons, parted_lips, open_mouth |
| 3 | 11 |  |  |  |  |  | 1girl, blue_bikini, cleavage, solo, looking_at_viewer, bare_shoulders, navel, sarong, sidelocks, smile, blush, official_alternate_costume, parted_lips, blunt_bangs, collarbone, short_hair, water, closed_mouth, simple_background, white_background |
| 4 | 8 |  |  |  |  |  | blue_bikini, official_alternate_costume, 1girl, bare_shoulders, day, looking_at_viewer, sidelocks, smile, solo, beach, blunt_bangs, cleavage, outdoors, sarong, blue_sky, blush, closed_mouth, cloud, navel, thighs, ocean, short_hair, sitting, ass, blue_nails, cowboy_shot, holding_umbrella, parasol |
| 5 | 11 |  |  |  |  |  | 1girl, bracelet, dancer, solo, armlet, earrings, blue_dress, looking_at_viewer, official_alternate_costume, short_hair, bare_shoulders, shawl, blush, smile, open_mouth, pelvic_curtain, simple_background, book, necklace, official_alternate_hairstyle, parted_lips, thighlet, thighs |
| 6 | 6 |  |  |  |  |  | cleavage, fake_animal_ears, looking_at_viewer, pantyhose, playboy_bunny, rabbit_ears, smile, 1girl, alternate_costume, frills, simple_background, solo, black_gloves, blush, choker, short_sleeves, thighs, white_background, closed_mouth, leotard, short_hair |
| 7 | 13 |  |  |  |  |  | fake_animal_ears, playboy_bunny, rabbit_ears, 1girl, alternate_costume, pantyhose, detached_collar, looking_at_viewer, solo, bare_shoulders, blush, bowtie, cleavage, wrist_cuffs, short_hair, black_leotard, simple_background, closed_mouth, rabbit_tail, sitting, smile, strapless_leotard |
| 8 | 6 |  |  |  |  |  | 1girl, blush, solo, looking_at_viewer, simple_background, white_panties, cleavage, closed_mouth, garter_belt, navel, smile, white_background, white_bra, white_thighhighs, sitting, thighs |
| 9 | 18 |  |  |  |  |  | 1girl, nipples, 1boy, hetero, blush, open_mouth, penis, solo_focus, navel, sex, censored, completely_nude, cum_in_pussy, vaginal, on_back, pov |
| 10 | 8 |  |  |  |  |  | 1girl, alternate_costume, looking_at_viewer, solo, black_skirt, blush, closed_mouth, pencil_skirt, smile, cleavage, long_sleeves, office_lady, white_shirt, blunt_bangs, collared_shirt, long_hair, sitting, black_hairband, blue_hairband, official_alternate_hairstyle, pantyhose, thighs |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | blunt_bangs | long_hair | looking_at_viewer | official_alternate_costume | official_alternate_hairstyle | solo | wavy_hair | blue_dress | closed_mouth | upper_body | center_frills | simple_background | blue_cape | long_sleeves | blush | lips | smile | blue_hairband | own_hands_together | garreg_mach_monastery_uniform | epaulettes | short_hair | sidelocks | white_background | bags_under_eyes | grey_background | buttons | parted_lips | open_mouth | blue_bikini | cleavage | bare_shoulders | navel | sarong | collarbone | water | day | beach | outdoors | blue_sky | cloud | thighs | ocean | sitting | ass | blue_nails | cowboy_shot | holding_umbrella | parasol | bracelet | dancer | armlet | earrings | shawl | pelvic_curtain | book | necklace | thighlet | fake_animal_ears | pantyhose | playboy_bunny | rabbit_ears | alternate_costume | frills | black_gloves | choker | short_sleeves | leotard | detached_collar | bowtie | wrist_cuffs | black_leotard | rabbit_tail | strapless_leotard | white_panties | garter_belt | white_bra | white_thighhighs | nipples | 1boy | hetero | penis | solo_focus | sex | censored | completely_nude | cum_in_pussy | vaginal | on_back | pov | black_skirt | pencil_skirt | office_lady | white_shirt | collared_shirt | black_hairband |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:--------|:--------------|:------------|:--------------------|:-----------------------------|:-------------------------------|:-------|:------------|:-------------|:---------------|:-------------|:----------------|:--------------------|:------------|:---------------|:--------|:-------|:--------|:----------------|:---------------------|:--------------------------------|:-------------|:-------------|:------------|:-------------------|:------------------|:------------------|:----------|:--------------|:-------------|:--------------|:-----------|:-----------------|:--------|:---------|:-------------|:--------|:------|:--------|:-----------|:-----------|:--------|:---------|:--------|:----------|:------|:-------------|:--------------|:-------------------|:----------|:-----------|:---------|:---------|:-----------|:--------|:-----------------|:-------|:-----------|:-----------|:-------------------|:------------|:----------------|:--------------|:--------------------|:---------|:---------------|:---------|:----------------|:----------|:------------------|:---------|:--------------|:----------------|:--------------|:--------------------|:----------------|:--------------|:------------|:-------------------|:----------|:-------|:---------|:--------|:-------------|:------|:-----------|:------------------|:---------------|:----------|:----------|:------|:--------------|:---------------|:--------------|:--------------|:-----------------|:-----------------|
| 0 | 12 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 29 |  |  |  |  |  | X | | | X | | | X | | | X | X | | X | | X | | | | | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 5 |  |  |  |  |  | X | X | | | | | X | | | | X | | X | | X | X | | | | | X | X | X | X | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 11 |  |  |  |  |  | X | X | | X | X | | X | | | X | | | X | | | X | | X | | | | | X | X | X | | | | X | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 8 |  |  |  |  |  | X | X | | X | X | | X | | | X | | | | | | X | | X | | | | | X | X | | | | | | | X | X | X | X | X | | | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 11 |  |  |  |  |  | X | | | X | X | X | X | | X | | | | X | | | X | | X | | | | | X | | | | | | X | X | | | X | | | | | | | | | | X | | | | | | | | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 6 |  |  |  |  |  | X | | | X | | | X | | | X | | | X | | | X | | X | | | | | X | | X | | | | | | | X | | | | | | | | | | | X | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 7 | 13 |  |  |  |  |  | X | | | X | | | X | | | X | | | X | | | X | | X | | | | | X | | | | | | | | | X | X | | | | | | | | | | | | X | | | | | | | | | | | | | | | X | X | X | X | X | | | | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | |
| 8 | 6 |  |  |  |  |  | X | | | X | | | X | | | X | | | X | | | X | | X | | | | | | | X | | | | | | | X | | X | | | | | | | | | X | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | | | | | | | | | | | | | | | | | | |
| 9 | 18 |  |  |  |  |  | X | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | X | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | |
| 10 | 8 |  |  |  |  |  | X | X | X | X | | X | X | | | X | | | | | X | X | | X | X | | | | | | | | | | | | | X | | | | | | | | | | | X | | X | | | | | | | | | | | | | | | | X | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X |
| CyberHarem/marianne_von_edmund_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T01:32:36+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T03:29:21+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of marianne\_von\_edmund (Fire Emblem)
==============================================
This is the dataset of marianne\_von\_edmund (Fire Emblem), containing 500 images and their tags.
The core tags of this character are 'blue\_hair, brown\_eyes, braid, crown\_braid, breasts, bangs, large\_breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
af0647d2d5be50c2e9d6cd586c72636bbd35b6d7 |
# Dataset of louise (Fire Emblem)
This is the dataset of louise (Fire Emblem), containing 85 images and their tags.
The core tags of this character are `blonde_hair, long_hair, purple_eyes, breasts, braid, large_breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:-------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 85 | 75.80 MiB | [Download](https://huggingface.co/datasets/CyberHarem/louise_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 85 | 51.76 MiB | [Download](https://huggingface.co/datasets/CyberHarem/louise_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 168 | 94.02 MiB | [Download](https://huggingface.co/datasets/CyberHarem/louise_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 85 | 71.10 MiB | [Download](https://huggingface.co/datasets/CyberHarem/louise_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 168 | 116.67 MiB | [Download](https://huggingface.co/datasets/CyberHarem/louise_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/louise_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 23 |  |  |  |  |  | 1girl, hetero, 1boy, nipples, solo_focus, sex, mosaic_censoring, nude, penis, blush, sweat, vaginal, gloves, open_mouth, thighhighs |
| 1 | 7 |  |  |  |  |  | 1girl, hetero, multiple_penises, nipples, solo_focus, gangbang, thighhighs, 3boys, cum_on_breasts, elbow_gloves, gloved_handjob, mosaic_censoring, 4boys, blush, cum_in_pussy, double_handjob, facial, nude, open_mouth, spread_legs, thigh_boots, vaginal |
| 2 | 21 |  |  |  |  |  | 1girl, solo, cape, elbow_gloves, thighhighs, smile, arrow_(projectile), single_braid, skirt, white_gloves, looking_at_viewer, open_mouth, zettai_ryouiki, asymmetrical_gloves, bangs, quiver, shoulder_armor, thigh_boots, dress, full_body, holding_bow_(weapon), shiny_hair, white_footwear |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | hetero | 1boy | nipples | solo_focus | sex | mosaic_censoring | nude | penis | blush | sweat | vaginal | gloves | open_mouth | thighhighs | multiple_penises | gangbang | 3boys | cum_on_breasts | elbow_gloves | gloved_handjob | 4boys | cum_in_pussy | double_handjob | facial | spread_legs | thigh_boots | solo | cape | smile | arrow_(projectile) | single_braid | skirt | white_gloves | looking_at_viewer | zettai_ryouiki | asymmetrical_gloves | bangs | quiver | shoulder_armor | dress | full_body | holding_bow_(weapon) | shiny_hair | white_footwear |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:---------|:-------|:----------|:-------------|:------|:-------------------|:-------|:--------|:--------|:--------|:----------|:---------|:-------------|:-------------|:-------------------|:-----------|:--------|:-----------------|:---------------|:-----------------|:--------|:---------------|:-----------------|:---------|:--------------|:--------------|:-------|:-------|:--------|:---------------------|:---------------|:--------|:---------------|:--------------------|:-----------------|:----------------------|:--------|:---------|:-----------------|:--------|:------------|:-----------------------|:-------------|:-----------------|
| 0 | 23 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 7 |  |  |  |  |  | X | X | | X | X | | X | X | | X | | X | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | |
| 2 | 21 |  |  |  |  |  | X | | | | | | | | | | | | | X | X | | | | | X | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/louise_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T01:32:42+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T01:48:38+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of louise (Fire Emblem)
===============================
This is the dataset of louise (Fire Emblem), containing 85 images and their tags.
The core tags of this character are 'blonde\_hair, long\_hair, purple\_eyes, breasts, braid, large\_breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
e80725cffa1dfe4eb8f114a0135263b9ef711bfb |
# Dataset of hilda_valentine_goneril (Fire Emblem)
This is the dataset of hilda_valentine_goneril (Fire Emblem), containing 500 images and their tags.
The core tags of this character are `pink_hair, long_hair, pink_eyes, breasts, twintails, bangs, large_breasts, blunt_bangs`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 668.90 MiB | [Download](https://huggingface.co/datasets/CyberHarem/hilda_valentine_goneril_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 371.18 MiB | [Download](https://huggingface.co/datasets/CyberHarem/hilda_valentine_goneril_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1223 | 803.83 MiB | [Download](https://huggingface.co/datasets/CyberHarem/hilda_valentine_goneril_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 587.37 MiB | [Download](https://huggingface.co/datasets/CyberHarem/hilda_valentine_goneril_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1223 | 1.13 GiB | [Download](https://huggingface.co/datasets/CyberHarem/hilda_valentine_goneril_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/hilda_valentine_goneril_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 22 |  |  |  |  |  | 1girl, garreg_mach_monastery_uniform, smile, solo, simple_background, upper_body, closed_mouth, looking_at_viewer, white_background, blush |
| 1 | 6 |  |  |  |  |  | 1girl, belt, blue_thighhighs, closed_mouth, garreg_mach_monastery_uniform, looking_at_viewer, smile, solo, zettai_ryouiki, simple_background, white_background, heart, one_eye_closed |
| 2 | 10 |  |  |  |  |  | 1girl, black_footwear, full_body, garreg_mach_monastery_uniform, simple_background, solo, white_background, belt, zettai_ryouiki, high_heel_boots, holding_axe, looking_at_viewer, blue_thighhighs, knee_boots, sleeves_rolled_up, smile, thigh_boots, weapon, one_eye_closed, thighhighs_under_boots |
| 3 | 16 |  |  |  |  |  | cleavage, looking_at_viewer, 1girl, eyewear_on_head, pink_bikini, smile, solo, sunglasses, navel, official_alternate_costume, outdoors, day, ocean, one_eye_closed, open_mouth, blush, collarbone, off-shoulder_bikini, blue_sky, beach |
| 4 | 9 |  |  |  |  |  | 1girl, eyewear_on_head, looking_at_viewer, smile, solo, sunglasses, cleavage, simple_background, official_alternate_costume, pink_bikini, bare_shoulders, off-shoulder_bikini, closed_mouth, tinted_eyewear, white_background |
| 5 | 6 |  |  |  |  |  | 1girl, hoop_earrings, simple_background, solo, upper_body, ponytail, white_background, cleavage_cutout, closed_mouth, smile, dress, gloves, looking_at_viewer |
| 6 | 5 |  |  |  |  |  | 1girl, dress, earrings, looking_at_viewer, official_alternate_costume, official_alternate_hairstyle, ponytail, solo, cleavage, one_eye_closed, red_gloves, simple_background, single_hair_bun, smile, ;d, open_mouth, thighhighs, upper_body, white_background |
| 7 | 13 |  |  |  |  |  | 1boy, hetero, 1girl, nipples, solo_focus, penis, sex, artist_name, vaginal, open_mouth, blush, completely_nude, earrings, navel, ponytail, spread_legs, tongue, uncensored, cum_in_pussy, cowgirl_position, heart, pov, simple_background |
| 8 | 7 |  |  |  |  |  | 1girl, christmas, cleavage, hair_flower, looking_at_viewer, red_dress, santa_costume, solo, white_gloves, bare_shoulders, blush, clothing_cutout, smile, official_alternate_costume, thighhighs, one_eye_closed, rose, simple_background, sitting, box, closed_mouth, fur-trimmed_dress, fur-trimmed_headwear, fur_collar, gift, open_mouth, santa_hat, white_background |
| 9 | 7 |  |  |  |  |  | 1boy, 1girl, blush, fellatio, hetero, solo_focus, penis, blue_background, cum_in_mouth, grabbing_another's_hair, looking_at_viewer, nude, pov, pubic_hair, uncensored, open_mouth, simple_background, tears, tongue_out |
| 10 | 5 |  |  |  |  |  | 1boy, cum_in_pussy, hetero, penis, vaginal, 1girl, beach, bikini_bottom_aside, day, eyewear_on_head, nipples, official_alternate_costume, open_mouth, outdoors, solo_focus, sunglasses, uncensored, blush, cloud, heart, overflow, pink_bikini, sex_from_behind, sky, spread_legs, breasts_out, dark-skinned_male, looking_back, ocean, patreon_username, straddling, web_address |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | garreg_mach_monastery_uniform | smile | solo | simple_background | upper_body | closed_mouth | looking_at_viewer | white_background | blush | belt | blue_thighhighs | zettai_ryouiki | heart | one_eye_closed | black_footwear | full_body | high_heel_boots | holding_axe | knee_boots | sleeves_rolled_up | thigh_boots | weapon | thighhighs_under_boots | cleavage | eyewear_on_head | pink_bikini | sunglasses | navel | official_alternate_costume | outdoors | day | ocean | open_mouth | collarbone | off-shoulder_bikini | blue_sky | beach | bare_shoulders | tinted_eyewear | hoop_earrings | ponytail | cleavage_cutout | dress | gloves | earrings | official_alternate_hairstyle | red_gloves | single_hair_bun | ;d | thighhighs | 1boy | hetero | nipples | solo_focus | penis | sex | artist_name | vaginal | completely_nude | spread_legs | tongue | uncensored | cum_in_pussy | cowgirl_position | pov | christmas | hair_flower | red_dress | santa_costume | white_gloves | clothing_cutout | rose | sitting | box | fur-trimmed_dress | fur-trimmed_headwear | fur_collar | gift | santa_hat | fellatio | blue_background | cum_in_mouth | grabbing_another's_hair | nude | pubic_hair | tears | tongue_out | bikini_bottom_aside | cloud | overflow | sex_from_behind | sky | breasts_out | dark-skinned_male | looking_back | patreon_username | straddling | web_address |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:--------|:--------------------------------|:--------|:-------|:--------------------|:-------------|:---------------|:--------------------|:-------------------|:--------|:-------|:------------------|:-----------------|:--------|:-----------------|:-----------------|:------------|:------------------|:--------------|:-------------|:--------------------|:--------------|:---------|:-------------------------|:-----------|:------------------|:--------------|:-------------|:--------|:-----------------------------|:-----------|:------|:--------|:-------------|:-------------|:----------------------|:-----------|:--------|:-----------------|:-----------------|:----------------|:-----------|:------------------|:--------|:---------|:-----------|:-------------------------------|:-------------|:------------------|:-----|:-------------|:-------|:---------|:----------|:-------------|:--------|:------|:--------------|:----------|:------------------|:--------------|:---------|:-------------|:---------------|:-------------------|:------|:------------|:--------------|:------------|:----------------|:---------------|:------------------|:-------|:----------|:------|:--------------------|:-----------------------|:-------------|:-------|:------------|:-----------|:------------------|:---------------|:--------------------------|:-------|:-------------|:--------|:-------------|:----------------------|:--------|:-----------|:------------------|:------|:--------------|:--------------------|:---------------|:-------------------|:-------------|:--------------|
| 0 | 22 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 6 |  |  |  |  |  | X | X | X | X | X | | X | X | X | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 10 |  |  |  |  |  | X | X | X | X | X | | | X | X | | X | X | X | | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 16 |  |  |  |  |  | X | | X | X | | | | X | | X | | | | | X | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 9 |  |  |  |  |  | X | | X | X | X | | X | X | X | | | | | | | | | | | | | | | | X | X | X | X | | X | | | | | | X | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 6 |  |  |  |  |  | X | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 5 |  |  |  |  |  | X | | X | X | X | X | | X | X | | | | | | X | | | | | | | | | | X | | | | | X | | | | X | | | | | | | | X | | X | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 7 | 13 |  |  |  |  |  | X | | | | X | | | | | X | | | | X | | | | | | | | | | | | | | | X | | | | | X | | | | | | | | X | | | | X | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 8 | 7 |  |  |  |  |  | X | | X | X | X | | X | X | X | X | | | | | X | | | | | | | | | | X | | | | | X | | | | X | | | | | X | | | | | | | | | | | | X | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | |
| 9 | 7 |  |  |  |  |  | X | | | | X | | | X | | X | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | X | X | | X | X | | | | | | | X | | | X | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | | | | | | | | | | | |
| 10 | 5 |  |  |  |  |  | X | | | | | | | | | X | | | | X | | | | | | | | | | | | X | X | X | | X | X | X | X | X | | | | X | | | | | | | | | | | | | | X | X | X | X | X | | | X | | X | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/hilda_valentine_goneril_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T01:33:42+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T03:27:43+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of hilda\_valentine\_goneril (Fire Emblem)
==================================================
This is the dataset of hilda\_valentine\_goneril (Fire Emblem), containing 500 images and their tags.
The core tags of this character are 'pink\_hair, long\_hair, pink\_eyes, breasts, twintails, bangs, large\_breasts, blunt\_bangs', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
52ab38a85c509cfe68c19d93eade344743fd3a52 |
# 用于ChatHaruhi-Zero Extend的训练数据
目前还不知道数据规模 知道的话回头会更名为Haruhi-Zero-XXX K
目前只放出每个source的sample,完整的数据将在模型放出之后发布
主项目链接 https://github.com/LC1332/Chat-Haruhi-Suzumiya
如果有兴趣加入我们的训练请联系[email protected]
计划加入的数据源
数据源
- [x] 中文小说数据
- [x] erotics小说数据
- [x] ChatHaruhi 52K, (转了message格式)
- [x] Chinese 13.2k, 转了message格式)
- [x] Waifu-extended 0.2K, 看看方不方便转成message格式,不行就简单的user-AI
- [x] Claude-Baize数据 7.2K
- [x] PIPPA数据 1.68K
- [x] JanitorAI数据
- [ ] PIPPA翻译数据
- [x] RoleLLM 1.6K, 看看方不方便转成message格式,不行就简单的user-AI
## 赞助
求捐助Claude API 求捐助OpenAI企业API
求赞助资源计算资源中。。。
| silk-road/Haruhi-Zero | [
"license:cc-by-4.0",
"region:us"
] | 2024-01-18T01:40:39+00:00 | {"license": "cc-by-4.0"} | 2024-01-18T08:36:50+00:00 | [] | [] | TAGS
#license-cc-by-4.0 #region-us
|
# 用于ChatHaruhi-Zero Extend的训练数据
目前还不知道数据规模 知道的话回头会更名为Haruhi-Zero-XXX K
目前只放出每个source的sample,完整的数据将在模型放出之后发布
主项目链接 URL
如果有兴趣加入我们的训练请联系chengli.thu@URL
计划加入的数据源
数据源
- [x] 中文小说数据
- [x] erotics小说数据
- [x] ChatHaruhi 52K, (转了message格式)
- [x] Chinese 13.2k, 转了message格式)
- [x] Waifu-extended 0.2K, 看看方不方便转成message格式,不行就简单的user-AI
- [x] Claude-Baize数据 7.2K
- [x] PIPPA数据 1.68K
- [x] JanitorAI数据
- [ ] PIPPA翻译数据
- [x] RoleLLM 1.6K, 看看方不方便转成message格式,不行就简单的user-AI
## 赞助
求捐助Claude API 求捐助OpenAI企业API
求赞助资源计算资源中。。。
| [
"# 用于ChatHaruhi-Zero Extend的训练数据\n\n目前还不知道数据规模 知道的话回头会更名为Haruhi-Zero-XXX K\n\n目前只放出每个source的sample,完整的数据将在模型放出之后发布\n\n主项目链接 URL\n\n如果有兴趣加入我们的训练请联系chengli.thu@URL\n\n计划加入的数据源\n\n数据源\n- [x] 中文小说数据\n- [x] erotics小说数据\n- [x] ChatHaruhi 52K, (转了message格式)\n- [x] Chinese 13.2k, 转了message格式)\n- [x] Waifu-extended 0.2K, 看看方不方便转成message格式,不行就简单的user-AI\n- [x] Claude-Baize数据 7.2K\n- [x] PIPPA数据 1.68K\n- [x] JanitorAI数据\n- [ ] PIPPA翻译数据\n- [x] RoleLLM 1.6K, 看看方不方便转成message格式,不行就简单的user-AI",
"## 赞助\n\n求捐助Claude API 求捐助OpenAI企业API\n\n求赞助资源计算资源中。。。"
] | [
"TAGS\n#license-cc-by-4.0 #region-us \n",
"# 用于ChatHaruhi-Zero Extend的训练数据\n\n目前还不知道数据规模 知道的话回头会更名为Haruhi-Zero-XXX K\n\n目前只放出每个source的sample,完整的数据将在模型放出之后发布\n\n主项目链接 URL\n\n如果有兴趣加入我们的训练请联系chengli.thu@URL\n\n计划加入的数据源\n\n数据源\n- [x] 中文小说数据\n- [x] erotics小说数据\n- [x] ChatHaruhi 52K, (转了message格式)\n- [x] Chinese 13.2k, 转了message格式)\n- [x] Waifu-extended 0.2K, 看看方不方便转成message格式,不行就简单的user-AI\n- [x] Claude-Baize数据 7.2K\n- [x] PIPPA数据 1.68K\n- [x] JanitorAI数据\n- [ ] PIPPA翻译数据\n- [x] RoleLLM 1.6K, 看看方不方便转成message格式,不行就简单的user-AI",
"## 赞助\n\n求捐助Claude API 求捐助OpenAI企业API\n\n求赞助资源计算资源中。。。"
] |
de24eafc5cc124f8bdf5e7c6810cf1a8806ed340 |
# Dataset card for MeltPoolChordsSingleCelled
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset description](#dataset-description)
- [Dataset categories](#dataset-categories)
## Dataset description
- **Homepage:** https://segments.ai/CodingGod/MeltPoolChordsSingleCelled
hand labeled meltpools
This dataset was created using [Segments.ai](https://segments.ai). It can be found [here](https://segments.ai/CodingGod/MeltPoolChordsSingleCelled).
## Dataset categories
| Id | Name | Description |
| --- | ---- | ----------- |
| 1 | chord | - |
| 2 | background | - |
| 3 | seperator | - |
| 4 | meltpool | - |
| MottsCoding/Meltpools | [
"task_categories:image-segmentation",
"region:us"
] | 2024-01-18T01:49:24+00:00 | {"task_categories": ["image-segmentation"]} | 2024-01-25T00:46:16+00:00 | [] | [] | TAGS
#task_categories-image-segmentation #region-us
| Dataset card for MeltPoolChordsSingleCelled
===========================================
Table of Contents
-----------------
* Table of Contents
* Dataset description
* Dataset categories
Dataset description
-------------------
* Homepage: URL
hand labeled meltpools
This dataset was created using URL. It can be found here.
Dataset categories
------------------
Id: 1, Name: chord, Description: -
Id: 2, Name: background, Description: -
Id: 3, Name: seperator, Description: -
Id: 4, Name: meltpool, Description: -
| [] | [
"TAGS\n#task_categories-image-segmentation #region-us \n"
] |
728e559caad501403b4f3dc14fa89b2d6cb43085 |
# Dataset Card for Evaluation run of h2m/mhm-8x7B-FrankenMoE-v1.0
<!-- Provide a quick summary of the dataset. -->
Dataset automatically created during the evaluation run of model [h2m/mhm-8x7B-FrankenMoE-v1.0](https://huggingface.co/h2m/mhm-8x7B-FrankenMoE-v1.0) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset("open-llm-leaderboard/details_h2m__mhm-8x7B-FrankenMoE-v1.0",
"harness_winogrande_5",
split="train")
```
## Latest results
These are the [latest results from run 2024-01-18T01:56:46.516613](https://huggingface.co/datasets/open-llm-leaderboard/details_h2m__mhm-8x7B-FrankenMoE-v1.0/blob/main/results_2024-01-18T01-56-46.516613.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"acc": 0.6524319157954335,
"acc_stderr": 0.03201058753040403,
"acc_norm": 0.6519554679600496,
"acc_norm_stderr": 0.03267445615257483,
"mc1": 0.5336597307221542,
"mc1_stderr": 0.017463793867168103,
"mc2": 0.671045397063713,
"mc2_stderr": 0.0152031229592527
},
"harness|arc:challenge|25": {
"acc": 0.681740614334471,
"acc_stderr": 0.013611993916971453,
"acc_norm": 0.7090443686006825,
"acc_norm_stderr": 0.013273077865907593
},
"harness|hellaswag|10": {
"acc": 0.702051384186417,
"acc_stderr": 0.004564220870531565,
"acc_norm": 0.8775144393547102,
"acc_norm_stderr": 0.0032717574453291565
},
"harness|hendrycksTest-abstract_algebra|5": {
"acc": 0.33,
"acc_stderr": 0.04725815626252606,
"acc_norm": 0.33,
"acc_norm_stderr": 0.04725815626252606
},
"harness|hendrycksTest-anatomy|5": {
"acc": 0.6592592592592592,
"acc_stderr": 0.040943762699967926,
"acc_norm": 0.6592592592592592,
"acc_norm_stderr": 0.040943762699967926
},
"harness|hendrycksTest-astronomy|5": {
"acc": 0.6842105263157895,
"acc_stderr": 0.0378272898086547,
"acc_norm": 0.6842105263157895,
"acc_norm_stderr": 0.0378272898086547
},
"harness|hendrycksTest-business_ethics|5": {
"acc": 0.63,
"acc_stderr": 0.04852365870939099,
"acc_norm": 0.63,
"acc_norm_stderr": 0.04852365870939099
},
"harness|hendrycksTest-clinical_knowledge|5": {
"acc": 0.7169811320754716,
"acc_stderr": 0.027724236492700918,
"acc_norm": 0.7169811320754716,
"acc_norm_stderr": 0.027724236492700918
},
"harness|hendrycksTest-college_biology|5": {
"acc": 0.7708333333333334,
"acc_stderr": 0.03514697467862388,
"acc_norm": 0.7708333333333334,
"acc_norm_stderr": 0.03514697467862388
},
"harness|hendrycksTest-college_chemistry|5": {
"acc": 0.46,
"acc_stderr": 0.05009082659620332,
"acc_norm": 0.46,
"acc_norm_stderr": 0.05009082659620332
},
"harness|hendrycksTest-college_computer_science|5": {
"acc": 0.54,
"acc_stderr": 0.05009082659620333,
"acc_norm": 0.54,
"acc_norm_stderr": 0.05009082659620333
},
"harness|hendrycksTest-college_mathematics|5": {
"acc": 0.29,
"acc_stderr": 0.04560480215720684,
"acc_norm": 0.29,
"acc_norm_stderr": 0.04560480215720684
},
"harness|hendrycksTest-college_medicine|5": {
"acc": 0.6878612716763006,
"acc_stderr": 0.035331333893236574,
"acc_norm": 0.6878612716763006,
"acc_norm_stderr": 0.035331333893236574
},
"harness|hendrycksTest-college_physics|5": {
"acc": 0.4215686274509804,
"acc_stderr": 0.04913595201274498,
"acc_norm": 0.4215686274509804,
"acc_norm_stderr": 0.04913595201274498
},
"harness|hendrycksTest-computer_security|5": {
"acc": 0.76,
"acc_stderr": 0.04292346959909283,
"acc_norm": 0.76,
"acc_norm_stderr": 0.04292346959909283
},
"harness|hendrycksTest-conceptual_physics|5": {
"acc": 0.5617021276595745,
"acc_stderr": 0.03243618636108101,
"acc_norm": 0.5617021276595745,
"acc_norm_stderr": 0.03243618636108101
},
"harness|hendrycksTest-econometrics|5": {
"acc": 0.49122807017543857,
"acc_stderr": 0.04702880432049615,
"acc_norm": 0.49122807017543857,
"acc_norm_stderr": 0.04702880432049615
},
"harness|hendrycksTest-electrical_engineering|5": {
"acc": 0.5586206896551724,
"acc_stderr": 0.04137931034482757,
"acc_norm": 0.5586206896551724,
"acc_norm_stderr": 0.04137931034482757
},
"harness|hendrycksTest-elementary_mathematics|5": {
"acc": 0.3994708994708995,
"acc_stderr": 0.02522545028406788,
"acc_norm": 0.3994708994708995,
"acc_norm_stderr": 0.02522545028406788
},
"harness|hendrycksTest-formal_logic|5": {
"acc": 0.49206349206349204,
"acc_stderr": 0.044715725362943486,
"acc_norm": 0.49206349206349204,
"acc_norm_stderr": 0.044715725362943486
},
"harness|hendrycksTest-global_facts|5": {
"acc": 0.34,
"acc_stderr": 0.04760952285695235,
"acc_norm": 0.34,
"acc_norm_stderr": 0.04760952285695235
},
"harness|hendrycksTest-high_school_biology|5": {
"acc": 0.7903225806451613,
"acc_stderr": 0.023157879349083525,
"acc_norm": 0.7903225806451613,
"acc_norm_stderr": 0.023157879349083525
},
"harness|hendrycksTest-high_school_chemistry|5": {
"acc": 0.4975369458128079,
"acc_stderr": 0.03517945038691063,
"acc_norm": 0.4975369458128079,
"acc_norm_stderr": 0.03517945038691063
},
"harness|hendrycksTest-high_school_computer_science|5": {
"acc": 0.71,
"acc_stderr": 0.045604802157206845,
"acc_norm": 0.71,
"acc_norm_stderr": 0.045604802157206845
},
"harness|hendrycksTest-high_school_european_history|5": {
"acc": 0.7757575757575758,
"acc_stderr": 0.03256866661681102,
"acc_norm": 0.7757575757575758,
"acc_norm_stderr": 0.03256866661681102
},
"harness|hendrycksTest-high_school_geography|5": {
"acc": 0.7929292929292929,
"acc_stderr": 0.028869778460267042,
"acc_norm": 0.7929292929292929,
"acc_norm_stderr": 0.028869778460267042
},
"harness|hendrycksTest-high_school_government_and_politics|5": {
"acc": 0.9067357512953368,
"acc_stderr": 0.02098685459328973,
"acc_norm": 0.9067357512953368,
"acc_norm_stderr": 0.02098685459328973
},
"harness|hendrycksTest-high_school_macroeconomics|5": {
"acc": 0.6717948717948717,
"acc_stderr": 0.023807633198657266,
"acc_norm": 0.6717948717948717,
"acc_norm_stderr": 0.023807633198657266
},
"harness|hendrycksTest-high_school_mathematics|5": {
"acc": 0.3333333333333333,
"acc_stderr": 0.02874204090394848,
"acc_norm": 0.3333333333333333,
"acc_norm_stderr": 0.02874204090394848
},
"harness|hendrycksTest-high_school_microeconomics|5": {
"acc": 0.6680672268907563,
"acc_stderr": 0.03058869701378364,
"acc_norm": 0.6680672268907563,
"acc_norm_stderr": 0.03058869701378364
},
"harness|hendrycksTest-high_school_physics|5": {
"acc": 0.33774834437086093,
"acc_stderr": 0.038615575462551684,
"acc_norm": 0.33774834437086093,
"acc_norm_stderr": 0.038615575462551684
},
"harness|hendrycksTest-high_school_psychology|5": {
"acc": 0.8513761467889909,
"acc_stderr": 0.015251253773660834,
"acc_norm": 0.8513761467889909,
"acc_norm_stderr": 0.015251253773660834
},
"harness|hendrycksTest-high_school_statistics|5": {
"acc": 0.5324074074074074,
"acc_stderr": 0.03402801581358966,
"acc_norm": 0.5324074074074074,
"acc_norm_stderr": 0.03402801581358966
},
"harness|hendrycksTest-high_school_us_history|5": {
"acc": 0.8529411764705882,
"acc_stderr": 0.024857478080250447,
"acc_norm": 0.8529411764705882,
"acc_norm_stderr": 0.024857478080250447
},
"harness|hendrycksTest-high_school_world_history|5": {
"acc": 0.8016877637130801,
"acc_stderr": 0.025955020841621115,
"acc_norm": 0.8016877637130801,
"acc_norm_stderr": 0.025955020841621115
},
"harness|hendrycksTest-human_aging|5": {
"acc": 0.6860986547085202,
"acc_stderr": 0.031146796482972465,
"acc_norm": 0.6860986547085202,
"acc_norm_stderr": 0.031146796482972465
},
"harness|hendrycksTest-human_sexuality|5": {
"acc": 0.7862595419847328,
"acc_stderr": 0.0359546161177469,
"acc_norm": 0.7862595419847328,
"acc_norm_stderr": 0.0359546161177469
},
"harness|hendrycksTest-international_law|5": {
"acc": 0.7768595041322314,
"acc_stderr": 0.03800754475228732,
"acc_norm": 0.7768595041322314,
"acc_norm_stderr": 0.03800754475228732
},
"harness|hendrycksTest-jurisprudence|5": {
"acc": 0.7777777777777778,
"acc_stderr": 0.0401910747255735,
"acc_norm": 0.7777777777777778,
"acc_norm_stderr": 0.0401910747255735
},
"harness|hendrycksTest-logical_fallacies|5": {
"acc": 0.7668711656441718,
"acc_stderr": 0.0332201579577674,
"acc_norm": 0.7668711656441718,
"acc_norm_stderr": 0.0332201579577674
},
"harness|hendrycksTest-machine_learning|5": {
"acc": 0.44642857142857145,
"acc_stderr": 0.04718471485219588,
"acc_norm": 0.44642857142857145,
"acc_norm_stderr": 0.04718471485219588
},
"harness|hendrycksTest-management|5": {
"acc": 0.7864077669902912,
"acc_stderr": 0.040580420156460344,
"acc_norm": 0.7864077669902912,
"acc_norm_stderr": 0.040580420156460344
},
"harness|hendrycksTest-marketing|5": {
"acc": 0.8803418803418803,
"acc_stderr": 0.021262719400406964,
"acc_norm": 0.8803418803418803,
"acc_norm_stderr": 0.021262719400406964
},
"harness|hendrycksTest-medical_genetics|5": {
"acc": 0.69,
"acc_stderr": 0.04648231987117316,
"acc_norm": 0.69,
"acc_norm_stderr": 0.04648231987117316
},
"harness|hendrycksTest-miscellaneous|5": {
"acc": 0.8288633461047255,
"acc_stderr": 0.0134682016140663,
"acc_norm": 0.8288633461047255,
"acc_norm_stderr": 0.0134682016140663
},
"harness|hendrycksTest-moral_disputes|5": {
"acc": 0.7398843930635838,
"acc_stderr": 0.023618678310069363,
"acc_norm": 0.7398843930635838,
"acc_norm_stderr": 0.023618678310069363
},
"harness|hendrycksTest-moral_scenarios|5": {
"acc": 0.43798882681564244,
"acc_stderr": 0.01659339422756484,
"acc_norm": 0.43798882681564244,
"acc_norm_stderr": 0.01659339422756484
},
"harness|hendrycksTest-nutrition|5": {
"acc": 0.7189542483660131,
"acc_stderr": 0.025738854797818737,
"acc_norm": 0.7189542483660131,
"acc_norm_stderr": 0.025738854797818737
},
"harness|hendrycksTest-philosophy|5": {
"acc": 0.7041800643086816,
"acc_stderr": 0.025922371788818763,
"acc_norm": 0.7041800643086816,
"acc_norm_stderr": 0.025922371788818763
},
"harness|hendrycksTest-prehistory|5": {
"acc": 0.7407407407407407,
"acc_stderr": 0.024383665531035454,
"acc_norm": 0.7407407407407407,
"acc_norm_stderr": 0.024383665531035454
},
"harness|hendrycksTest-professional_accounting|5": {
"acc": 0.48936170212765956,
"acc_stderr": 0.02982074719142248,
"acc_norm": 0.48936170212765956,
"acc_norm_stderr": 0.02982074719142248
},
"harness|hendrycksTest-professional_law|5": {
"acc": 0.46936114732724904,
"acc_stderr": 0.012746237711716634,
"acc_norm": 0.46936114732724904,
"acc_norm_stderr": 0.012746237711716634
},
"harness|hendrycksTest-professional_medicine|5": {
"acc": 0.6727941176470589,
"acc_stderr": 0.028501452860396553,
"acc_norm": 0.6727941176470589,
"acc_norm_stderr": 0.028501452860396553
},
"harness|hendrycksTest-professional_psychology|5": {
"acc": 0.6715686274509803,
"acc_stderr": 0.018999707383162673,
"acc_norm": 0.6715686274509803,
"acc_norm_stderr": 0.018999707383162673
},
"harness|hendrycksTest-public_relations|5": {
"acc": 0.6636363636363637,
"acc_stderr": 0.04525393596302506,
"acc_norm": 0.6636363636363637,
"acc_norm_stderr": 0.04525393596302506
},
"harness|hendrycksTest-security_studies|5": {
"acc": 0.7387755102040816,
"acc_stderr": 0.028123429335142773,
"acc_norm": 0.7387755102040816,
"acc_norm_stderr": 0.028123429335142773
},
"harness|hendrycksTest-sociology|5": {
"acc": 0.8407960199004975,
"acc_stderr": 0.025870646766169136,
"acc_norm": 0.8407960199004975,
"acc_norm_stderr": 0.025870646766169136
},
"harness|hendrycksTest-us_foreign_policy|5": {
"acc": 0.87,
"acc_stderr": 0.033799766898963086,
"acc_norm": 0.87,
"acc_norm_stderr": 0.033799766898963086
},
"harness|hendrycksTest-virology|5": {
"acc": 0.5421686746987951,
"acc_stderr": 0.0387862677100236,
"acc_norm": 0.5421686746987951,
"acc_norm_stderr": 0.0387862677100236
},
"harness|hendrycksTest-world_religions|5": {
"acc": 0.8362573099415205,
"acc_stderr": 0.028380919596145866,
"acc_norm": 0.8362573099415205,
"acc_norm_stderr": 0.028380919596145866
},
"harness|truthfulqa:mc|0": {
"mc1": 0.5336597307221542,
"mc1_stderr": 0.017463793867168103,
"mc2": 0.671045397063713,
"mc2_stderr": 0.0152031229592527
},
"harness|winogrande|5": {
"acc": 0.8200473559589582,
"acc_stderr": 0.01079646868806868
},
"harness|gsm8k|5": {
"acc": 0.7156937073540561,
"acc_stderr": 0.012425078188395985
}
}
```
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
[More Information Needed] | open-llm-leaderboard/details_h2m__mhm-8x7B-FrankenMoE-v1.0 | [
"region:us"
] | 2024-01-18T01:59:08+00:00 | {"pretty_name": "Evaluation run of h2m/mhm-8x7B-FrankenMoE-v1.0", "dataset_summary": "Dataset automatically created during the evaluation run of model [h2m/mhm-8x7B-FrankenMoE-v1.0](https://huggingface.co/h2m/mhm-8x7B-FrankenMoE-v1.0) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_h2m__mhm-8x7B-FrankenMoE-v1.0\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-18T01:56:46.516613](https://huggingface.co/datasets/open-llm-leaderboard/details_h2m__mhm-8x7B-FrankenMoE-v1.0/blob/main/results_2024-01-18T01-56-46.516613.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6524319157954335,\n \"acc_stderr\": 0.03201058753040403,\n \"acc_norm\": 0.6519554679600496,\n \"acc_norm_stderr\": 0.03267445615257483,\n \"mc1\": 0.5336597307221542,\n \"mc1_stderr\": 0.017463793867168103,\n \"mc2\": 0.671045397063713,\n \"mc2_stderr\": 0.0152031229592527\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.681740614334471,\n \"acc_stderr\": 0.013611993916971453,\n \"acc_norm\": 0.7090443686006825,\n \"acc_norm_stderr\": 0.013273077865907593\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.702051384186417,\n \"acc_stderr\": 0.004564220870531565,\n \"acc_norm\": 0.8775144393547102,\n \"acc_norm_stderr\": 0.0032717574453291565\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.33,\n \"acc_stderr\": 0.04725815626252606,\n \"acc_norm\": 0.33,\n \"acc_norm_stderr\": 0.04725815626252606\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6592592592592592,\n \"acc_stderr\": 0.040943762699967926,\n \"acc_norm\": 0.6592592592592592,\n \"acc_norm_stderr\": 0.040943762699967926\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.6842105263157895,\n \"acc_stderr\": 0.0378272898086547,\n \"acc_norm\": 0.6842105263157895,\n \"acc_norm_stderr\": 0.0378272898086547\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.63,\n \"acc_stderr\": 0.04852365870939099,\n \"acc_norm\": 0.63,\n \"acc_norm_stderr\": 0.04852365870939099\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.7169811320754716,\n \"acc_stderr\": 0.027724236492700918,\n \"acc_norm\": 0.7169811320754716,\n \"acc_norm_stderr\": 0.027724236492700918\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7708333333333334,\n \"acc_stderr\": 0.03514697467862388,\n \"acc_norm\": 0.7708333333333334,\n \"acc_norm_stderr\": 0.03514697467862388\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.46,\n \"acc_stderr\": 0.05009082659620332,\n \"acc_norm\": 0.46,\n \"acc_norm_stderr\": 0.05009082659620332\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.54,\n \"acc_stderr\": 0.05009082659620333,\n \"acc_norm\": 0.54,\n \"acc_norm_stderr\": 0.05009082659620333\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.29,\n \"acc_stderr\": 0.04560480215720684,\n \"acc_norm\": 0.29,\n \"acc_norm_stderr\": 0.04560480215720684\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6878612716763006,\n \"acc_stderr\": 0.035331333893236574,\n \"acc_norm\": 0.6878612716763006,\n \"acc_norm_stderr\": 0.035331333893236574\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.4215686274509804,\n \"acc_stderr\": 0.04913595201274498,\n \"acc_norm\": 0.4215686274509804,\n \"acc_norm_stderr\": 0.04913595201274498\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.76,\n \"acc_stderr\": 0.04292346959909283,\n \"acc_norm\": 0.76,\n \"acc_norm_stderr\": 0.04292346959909283\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5617021276595745,\n \"acc_stderr\": 0.03243618636108101,\n \"acc_norm\": 0.5617021276595745,\n \"acc_norm_stderr\": 0.03243618636108101\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.49122807017543857,\n \"acc_stderr\": 0.04702880432049615,\n \"acc_norm\": 0.49122807017543857,\n \"acc_norm_stderr\": 0.04702880432049615\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5586206896551724,\n \"acc_stderr\": 0.04137931034482757,\n \"acc_norm\": 0.5586206896551724,\n \"acc_norm_stderr\": 0.04137931034482757\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.3994708994708995,\n \"acc_stderr\": 0.02522545028406788,\n \"acc_norm\": 0.3994708994708995,\n \"acc_norm_stderr\": 0.02522545028406788\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.49206349206349204,\n \"acc_stderr\": 0.044715725362943486,\n \"acc_norm\": 0.49206349206349204,\n \"acc_norm_stderr\": 0.044715725362943486\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.34,\n \"acc_stderr\": 0.04760952285695235,\n \"acc_norm\": 0.34,\n \"acc_norm_stderr\": 0.04760952285695235\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7903225806451613,\n \"acc_stderr\": 0.023157879349083525,\n \"acc_norm\": 0.7903225806451613,\n \"acc_norm_stderr\": 0.023157879349083525\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.4975369458128079,\n \"acc_stderr\": 0.03517945038691063,\n \"acc_norm\": 0.4975369458128079,\n \"acc_norm_stderr\": 0.03517945038691063\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.71,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\": 0.71,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7757575757575758,\n \"acc_stderr\": 0.03256866661681102,\n \"acc_norm\": 0.7757575757575758,\n \"acc_norm_stderr\": 0.03256866661681102\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7929292929292929,\n \"acc_stderr\": 0.028869778460267042,\n \"acc_norm\": 0.7929292929292929,\n \"acc_norm_stderr\": 0.028869778460267042\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.9067357512953368,\n \"acc_stderr\": 0.02098685459328973,\n \"acc_norm\": 0.9067357512953368,\n \"acc_norm_stderr\": 0.02098685459328973\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6717948717948717,\n \"acc_stderr\": 0.023807633198657266,\n \"acc_norm\": 0.6717948717948717,\n \"acc_norm_stderr\": 0.023807633198657266\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.3333333333333333,\n \"acc_stderr\": 0.02874204090394848,\n \"acc_norm\": 0.3333333333333333,\n \"acc_norm_stderr\": 0.02874204090394848\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6680672268907563,\n \"acc_stderr\": 0.03058869701378364,\n \"acc_norm\": 0.6680672268907563,\n \"acc_norm_stderr\": 0.03058869701378364\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.33774834437086093,\n \"acc_stderr\": 0.038615575462551684,\n \"acc_norm\": 0.33774834437086093,\n \"acc_norm_stderr\": 0.038615575462551684\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8513761467889909,\n \"acc_stderr\": 0.015251253773660834,\n \"acc_norm\": 0.8513761467889909,\n \"acc_norm_stderr\": 0.015251253773660834\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.5324074074074074,\n \"acc_stderr\": 0.03402801581358966,\n \"acc_norm\": 0.5324074074074074,\n \"acc_norm_stderr\": 0.03402801581358966\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.8529411764705882,\n \"acc_stderr\": 0.024857478080250447,\n \"acc_norm\": 0.8529411764705882,\n \"acc_norm_stderr\": 0.024857478080250447\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.8016877637130801,\n \"acc_stderr\": 0.025955020841621115,\n \"acc_norm\": 0.8016877637130801,\n \"acc_norm_stderr\": 0.025955020841621115\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6860986547085202,\n \"acc_stderr\": 0.031146796482972465,\n \"acc_norm\": 0.6860986547085202,\n \"acc_norm_stderr\": 0.031146796482972465\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7862595419847328,\n \"acc_stderr\": 0.0359546161177469,\n \"acc_norm\": 0.7862595419847328,\n \"acc_norm_stderr\": 0.0359546161177469\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.7768595041322314,\n \"acc_stderr\": 0.03800754475228732,\n \"acc_norm\": 0.7768595041322314,\n \"acc_norm_stderr\": 0.03800754475228732\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7777777777777778,\n \"acc_stderr\": 0.0401910747255735,\n \"acc_norm\": 0.7777777777777778,\n \"acc_norm_stderr\": 0.0401910747255735\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7668711656441718,\n \"acc_stderr\": 0.0332201579577674,\n \"acc_norm\": 0.7668711656441718,\n \"acc_norm_stderr\": 0.0332201579577674\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.44642857142857145,\n \"acc_stderr\": 0.04718471485219588,\n \"acc_norm\": 0.44642857142857145,\n \"acc_norm_stderr\": 0.04718471485219588\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7864077669902912,\n \"acc_stderr\": 0.040580420156460344,\n \"acc_norm\": 0.7864077669902912,\n \"acc_norm_stderr\": 0.040580420156460344\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8803418803418803,\n \"acc_stderr\": 0.021262719400406964,\n \"acc_norm\": 0.8803418803418803,\n \"acc_norm_stderr\": 0.021262719400406964\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.69,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.69,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8288633461047255,\n \"acc_stderr\": 0.0134682016140663,\n \"acc_norm\": 0.8288633461047255,\n \"acc_norm_stderr\": 0.0134682016140663\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7398843930635838,\n \"acc_stderr\": 0.023618678310069363,\n \"acc_norm\": 0.7398843930635838,\n \"acc_norm_stderr\": 0.023618678310069363\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.43798882681564244,\n \"acc_stderr\": 0.01659339422756484,\n \"acc_norm\": 0.43798882681564244,\n \"acc_norm_stderr\": 0.01659339422756484\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7189542483660131,\n \"acc_stderr\": 0.025738854797818737,\n \"acc_norm\": 0.7189542483660131,\n \"acc_norm_stderr\": 0.025738854797818737\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.7041800643086816,\n \"acc_stderr\": 0.025922371788818763,\n \"acc_norm\": 0.7041800643086816,\n \"acc_norm_stderr\": 0.025922371788818763\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.7407407407407407,\n \"acc_stderr\": 0.024383665531035454,\n \"acc_norm\": 0.7407407407407407,\n \"acc_norm_stderr\": 0.024383665531035454\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.48936170212765956,\n \"acc_stderr\": 0.02982074719142248,\n \"acc_norm\": 0.48936170212765956,\n \"acc_norm_stderr\": 0.02982074719142248\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.46936114732724904,\n \"acc_stderr\": 0.012746237711716634,\n \"acc_norm\": 0.46936114732724904,\n \"acc_norm_stderr\": 0.012746237711716634\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6727941176470589,\n \"acc_stderr\": 0.028501452860396553,\n \"acc_norm\": 0.6727941176470589,\n \"acc_norm_stderr\": 0.028501452860396553\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6715686274509803,\n \"acc_stderr\": 0.018999707383162673,\n \"acc_norm\": 0.6715686274509803,\n \"acc_norm_stderr\": 0.018999707383162673\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6636363636363637,\n \"acc_stderr\": 0.04525393596302506,\n \"acc_norm\": 0.6636363636363637,\n \"acc_norm_stderr\": 0.04525393596302506\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7387755102040816,\n \"acc_stderr\": 0.028123429335142773,\n \"acc_norm\": 0.7387755102040816,\n \"acc_norm_stderr\": 0.028123429335142773\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8407960199004975,\n \"acc_stderr\": 0.025870646766169136,\n \"acc_norm\": 0.8407960199004975,\n \"acc_norm_stderr\": 0.025870646766169136\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.87,\n \"acc_stderr\": 0.033799766898963086,\n \"acc_norm\": 0.87,\n \"acc_norm_stderr\": 0.033799766898963086\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5421686746987951,\n \"acc_stderr\": 0.0387862677100236,\n \"acc_norm\": 0.5421686746987951,\n \"acc_norm_stderr\": 0.0387862677100236\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8362573099415205,\n \"acc_stderr\": 0.028380919596145866,\n \"acc_norm\": 0.8362573099415205,\n \"acc_norm_stderr\": 0.028380919596145866\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.5336597307221542,\n \"mc1_stderr\": 0.017463793867168103,\n \"mc2\": 0.671045397063713,\n \"mc2_stderr\": 0.0152031229592527\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.8200473559589582,\n \"acc_stderr\": 0.01079646868806868\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.7156937073540561,\n \"acc_stderr\": 0.012425078188395985\n }\n}\n```", "repo_url": "https://huggingface.co/h2m/mhm-8x7B-FrankenMoE-v1.0", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|arc:challenge|25_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|gsm8k|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hellaswag|10_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-18T01-56-46.516613.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["**/details_harness|winogrande|5_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-18T01-56-46.516613.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_18T01_56_46.516613", "path": ["results_2024-01-18T01-56-46.516613.parquet"]}, {"split": "latest", "path": ["results_2024-01-18T01-56-46.516613.parquet"]}]}]} | 2024-01-18T01:59:29+00:00 | [] | [] | TAGS
#region-us
|
# Dataset Card for Evaluation run of h2m/mhm-8x7B-FrankenMoE-v1.0
Dataset automatically created during the evaluation run of model h2m/mhm-8x7B-FrankenMoE-v1.0 on the Open LLM Leaderboard.
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).
To load the details from a run, you can for instance do the following:
## Latest results
These are the latest results from run 2024-01-18T01:56:46.516613(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
## Dataset Details
### Dataset Description
- Curated by:
- Funded by [optional]:
- Shared by [optional]:
- Language(s) (NLP):
- License:
### Dataset Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Out-of-Scope Use
## Dataset Structure
## Dataset Creation
### Curation Rationale
### Source Data
#### Data Collection and Processing
#### Who are the source data producers?
### Annotations [optional]
#### Annotation process
#### Who are the annotators?
#### Personal and Sensitive Information
## Bias, Risks, and Limitations
### Recommendations
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Dataset Card Authors [optional]
## Dataset Card Contact
| [
"# Dataset Card for Evaluation run of h2m/mhm-8x7B-FrankenMoE-v1.0\n\n\n\nDataset automatically created during the evaluation run of model h2m/mhm-8x7B-FrankenMoE-v1.0 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-18T01:56:46.516613(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for Evaluation run of h2m/mhm-8x7B-FrankenMoE-v1.0\n\n\n\nDataset automatically created during the evaluation run of model h2m/mhm-8x7B-FrankenMoE-v1.0 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-18T01:56:46.516613(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] |
129b4c2eca21bdea5724d324149fd0de98b4e14c |
# Dataset of sue (Fire Emblem)
This is the dataset of sue (Fire Emblem), containing 28 images and their tags.
The core tags of this character are `headband, long_hair, green_hair, green_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:----------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 28 | 23.10 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sue_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 28 | 16.82 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sue_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 45 | 26.53 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sue_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 28 | 21.44 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sue_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 45 | 32.40 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sue_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/sue_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-------------------------------------------------------------|
| 0 | 28 |  |  |  |  |  | 1girl, solo, fingerless_gloves, bow_(weapon), holding_weapon |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | fingerless_gloves | bow_(weapon) | holding_weapon |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------------------|:---------------|:-----------------|
| 0 | 28 |  |  |  |  |  | X | X | X | X | X |
| CyberHarem/sue_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T02:25:03+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T02:30:45+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of sue (Fire Emblem)
============================
This is the dataset of sue (Fire Emblem), containing 28 images and their tags.
The core tags of this character are 'headband, long\_hair, green\_hair, green\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
b74cd381b1660acc9a4b6b242499f6b2de174484 |
# Dataset of farina (Fire Emblem)
This is the dataset of farina (Fire Emblem), containing 16 images and their tags.
The core tags of this character are `blue_hair, short_hair, blue_eyes, headband`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:-------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 16 | 12.09 MiB | [Download](https://huggingface.co/datasets/CyberHarem/farina_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 16 | 8.14 MiB | [Download](https://huggingface.co/datasets/CyberHarem/farina_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 24 | 12.53 MiB | [Download](https://huggingface.co/datasets/CyberHarem/farina_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 16 | 11.08 MiB | [Download](https://huggingface.co/datasets/CyberHarem/farina_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 24 | 16.61 MiB | [Download](https://huggingface.co/datasets/CyberHarem/farina_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/farina_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 16 |  |  |  |  |  | 1girl, belt, open_mouth, solo, fingerless_gloves, shoulder_armor, smile, thighhighs, boots, breastplate, dress, spear, blush, short_sleeves, zettai_ryouiki |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | belt | open_mouth | solo | fingerless_gloves | shoulder_armor | smile | thighhighs | boots | breastplate | dress | spear | blush | short_sleeves | zettai_ryouiki |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:-------------|:-------|:--------------------|:-----------------|:--------|:-------------|:--------|:--------------|:--------|:--------|:--------|:----------------|:-----------------|
| 0 | 16 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/farina_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T02:25:04+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T02:28:56+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of farina (Fire Emblem)
===============================
This is the dataset of farina (Fire Emblem), containing 16 images and their tags.
The core tags of this character are 'blue\_hair, short\_hair, blue\_eyes, headband', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
cc61cb6626bc9513e8d30cd90f2e3109a55d688c |
# Dataset of clarine (Fire Emblem)
This is the dataset of clarine (Fire Emblem), containing 70 images and their tags.
The core tags of this character are `blonde_hair, purple_eyes, long_hair, ponytail, bangs`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:--------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 70 | 54.10 MiB | [Download](https://huggingface.co/datasets/CyberHarem/clarine_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 70 | 42.40 MiB | [Download](https://huggingface.co/datasets/CyberHarem/clarine_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 131 | 75.61 MiB | [Download](https://huggingface.co/datasets/CyberHarem/clarine_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 70 | 51.91 MiB | [Download](https://huggingface.co/datasets/CyberHarem/clarine_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 131 | 88.61 MiB | [Download](https://huggingface.co/datasets/CyberHarem/clarine_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/clarine_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 5 |  |  |  |  |  | 1girl, holding_staff, simple_background, solo, thigh_boots, white_skirt, miniskirt, pleated_skirt, short_sleeves, white_footwear, white_thighhighs, zettai_ryouiki, full_body, open_mouth, purple_shirt, white_background, :d, collarbone, looking_at_viewer, sidelocks, white_capelet, white_gloves |
| 1 | 6 |  |  |  |  |  | 1girl, skirt, solo, gloves, staff, thighhighs, smile, thigh_boots, blush, open_mouth |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | holding_staff | simple_background | solo | thigh_boots | white_skirt | miniskirt | pleated_skirt | short_sleeves | white_footwear | white_thighhighs | zettai_ryouiki | full_body | open_mouth | purple_shirt | white_background | :d | collarbone | looking_at_viewer | sidelocks | white_capelet | white_gloves | skirt | gloves | staff | thighhighs | smile | blush |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:----------------|:--------------------|:-------|:--------------|:--------------|:------------|:----------------|:----------------|:-----------------|:-------------------|:-----------------|:------------|:-------------|:---------------|:-------------------|:-----|:-------------|:--------------------|:------------|:----------------|:---------------|:--------|:---------|:--------|:-------------|:--------|:--------|
| 0 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | |
| 1 | 6 |  |  |  |  |  | X | | | X | X | | | | | | | | | X | | | | | | | | | X | X | X | X | X | X |
| CyberHarem/clarine_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T02:25:15+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T02:36:22+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of clarine (Fire Emblem)
================================
This is the dataset of clarine (Fire Emblem), containing 70 images and their tags.
The core tags of this character are 'blonde\_hair, purple\_eyes, long\_hair, ponytail, bangs', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
467097bbebc5eb495174efb6a9520fd598e529f5 |
## Dataset Details
### Dataset Description
This is a curated parallel dataset from the Official Gazette of the Republic of Rwanda. It has been curated to extract corresponding English and Kinyarwanda text and in the future we shall add French to the mix
- **Curated by:** Digital Umuganda
- **Language(s) (NLP):** Kinyarwanda and English
- **License:** cc-by-4.0
### Dataset Sources [optional]
The dataset original content was retrieved from the Rwandan ministry of Justice [website](https://www.minijust.gov.rw/official-gazette)
<!-- Provide the basic links for the dataset. -->
## Uses
The dataset is mainly used for machine translation, however it can be used for other NLP tasks such as text generation and NER
| DigitalUmuganda/NMT_Rwandan-Gazette_parallel_data_en_kin | [
"task_categories:translation",
"size_categories:100K<n<1M",
"language:rw",
"language:en",
"license:cc",
"kinyarwanda",
"english",
"machine-translation",
"low-ressourced languages",
"region:us"
] | 2024-01-18T02:33:14+00:00 | {"language": ["rw", "en"], "license": "cc", "size_categories": ["100K<n<1M"], "task_categories": ["translation"], "pretty_name": "NMT Rwanda Gazette parallel data ", "tags": ["kinyarwanda", "english", "machine-translation", "low-ressourced languages"]} | 2024-01-26T08:49:35+00:00 | [] | [
"rw",
"en"
] | TAGS
#task_categories-translation #size_categories-100K<n<1M #language-Kinyarwanda #language-English #license-cc #kinyarwanda #english #machine-translation #low-ressourced languages #region-us
|
## Dataset Details
### Dataset Description
This is a curated parallel dataset from the Official Gazette of the Republic of Rwanda. It has been curated to extract corresponding English and Kinyarwanda text and in the future we shall add French to the mix
- Curated by: Digital Umuganda
- Language(s) (NLP): Kinyarwanda and English
- License: cc-by-4.0
### Dataset Sources [optional]
The dataset original content was retrieved from the Rwandan ministry of Justice website
## Uses
The dataset is mainly used for machine translation, however it can be used for other NLP tasks such as text generation and NER
| [
"## Dataset Details",
"### Dataset Description\n\nThis is a curated parallel dataset from the Official Gazette of the Republic of Rwanda. It has been curated to extract corresponding English and Kinyarwanda text and in the future we shall add French to the mix\n\n\n\n- Curated by: Digital Umuganda\n- Language(s) (NLP): Kinyarwanda and English\n- License: cc-by-4.0",
"### Dataset Sources [optional]\n\nThe dataset original content was retrieved from the Rwandan ministry of Justice website",
"## Uses\n\nThe dataset is mainly used for machine translation, however it can be used for other NLP tasks such as text generation and NER"
] | [
"TAGS\n#task_categories-translation #size_categories-100K<n<1M #language-Kinyarwanda #language-English #license-cc #kinyarwanda #english #machine-translation #low-ressourced languages #region-us \n",
"## Dataset Details",
"### Dataset Description\n\nThis is a curated parallel dataset from the Official Gazette of the Republic of Rwanda. It has been curated to extract corresponding English and Kinyarwanda text and in the future we shall add French to the mix\n\n\n\n- Curated by: Digital Umuganda\n- Language(s) (NLP): Kinyarwanda and English\n- License: cc-by-4.0",
"### Dataset Sources [optional]\n\nThe dataset original content was retrieved from the Rwandan ministry of Justice website",
"## Uses\n\nThe dataset is mainly used for machine translation, however it can be used for other NLP tasks such as text generation and NER"
] |
69726db2434125c46b7dfff40e40438e5f15a190 |
# Dataset of athene (Fire Emblem)
This is the dataset of athene (Fire Emblem), containing 16 images and their tags.
The core tags of this character are `long_hair, blue_hair, breasts, brown_eyes, braid, yellow_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:-------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 16 | 17.24 MiB | [Download](https://huggingface.co/datasets/CyberHarem/athene_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 16 | 11.58 MiB | [Download](https://huggingface.co/datasets/CyberHarem/athene_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 32 | 20.15 MiB | [Download](https://huggingface.co/datasets/CyberHarem/athene_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 16 | 15.83 MiB | [Download](https://huggingface.co/datasets/CyberHarem/athene_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 32 | 25.96 MiB | [Download](https://huggingface.co/datasets/CyberHarem/athene_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/athene_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------------------------------------------------------------------------------------------------------|
| 0 | 16 |  |  |  |  |  | 1girl, solo, bare_shoulders, simple_background, thighhighs, boots, white_background, detached_sleeves, looking_at_viewer, sword |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | bare_shoulders | simple_background | thighhighs | boots | white_background | detached_sleeves | looking_at_viewer | sword |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:-----------------|:--------------------|:-------------|:--------|:-------------------|:-------------------|:--------------------|:--------|
| 0 | 16 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/athene_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T02:46:32+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T02:50:08+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of athene (Fire Emblem)
===============================
This is the dataset of athene (Fire Emblem), containing 16 images and their tags.
The core tags of this character are 'long\_hair, blue\_hair, breasts, brown\_eyes, braid, yellow\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
a23bb99664d3a13c5b721c434b36656e9ad87c7f |
# Dataset of laura (Fire Emblem)
This is the dataset of laura (Fire Emblem), containing 30 images and their tags.
The core tags of this character are `brown_eyes, short_hair, black_hair, brown_hair, ahoge`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 30 | 22.99 MiB | [Download](https://huggingface.co/datasets/CyberHarem/laura_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 30 | 14.90 MiB | [Download](https://huggingface.co/datasets/CyberHarem/laura_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 39 | 21.30 MiB | [Download](https://huggingface.co/datasets/CyberHarem/laura_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 30 | 20.12 MiB | [Download](https://huggingface.co/datasets/CyberHarem/laura_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 39 | 27.40 MiB | [Download](https://huggingface.co/datasets/CyberHarem/laura_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/laura_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-------------------------------------------------------|
| 0 | 30 |  |  |  |  |  | 1girl, solo, smile, dress, necklace, open_mouth, staff |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | smile | dress | necklace | open_mouth | staff |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------|:--------|:-----------|:-------------|:--------|
| 0 | 30 |  |  |  |  |  | X | X | X | X | X | X | X |
| CyberHarem/laura_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T02:46:32+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T02:51:33+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of laura (Fire Emblem)
==============================
This is the dataset of laura (Fire Emblem), containing 30 images and their tags.
The core tags of this character are 'brown\_eyes, short\_hair, black\_hair, brown\_hair, ahoge', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
1355e747f809c00490991fbd02588360b5dfa0ce |
# Dataset of nott (Fire Emblem)
This is the dataset of nott (Fire Emblem), containing 18 images and their tags.
The core tags of this character are `long_hair, breasts, green_hair, large_breasts, braid, mole, mole_under_eye, hair_ornament`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:-----------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 18 | 17.90 MiB | [Download](https://huggingface.co/datasets/CyberHarem/nott_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 18 | 12.51 MiB | [Download](https://huggingface.co/datasets/CyberHarem/nott_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 32 | 20.24 MiB | [Download](https://huggingface.co/datasets/CyberHarem/nott_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 18 | 16.69 MiB | [Download](https://huggingface.co/datasets/CyberHarem/nott_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 32 | 25.32 MiB | [Download](https://huggingface.co/datasets/CyberHarem/nott_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/nott_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 5 |  |  |  |  |  | 1girl, cleavage, closed_mouth, hair_flower, holding_weapon, kimono, obi, sword, black_gloves, circlet, collarbone, official_alternate_costume, smile, wide_sleeves, 1boy, bangs, cape, green_theme, grey_background, looking_at_viewer, monochrome, sarashi, solo_focus, unsheathing |
| 1 | 9 |  |  |  |  |  | 1girl, cape, cleavage, armor, solo, circlet, sandals, gauntlets, jewelry, muscular_female, sword, white_dress, holding_weapon, lips, polearm, sleeveless_dress, smile |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | cleavage | closed_mouth | hair_flower | holding_weapon | kimono | obi | sword | black_gloves | circlet | collarbone | official_alternate_costume | smile | wide_sleeves | 1boy | bangs | cape | green_theme | grey_background | looking_at_viewer | monochrome | sarashi | solo_focus | unsheathing | armor | solo | sandals | gauntlets | jewelry | muscular_female | white_dress | lips | polearm | sleeveless_dress |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-----------|:---------------|:--------------|:-----------------|:---------|:------|:--------|:---------------|:----------|:-------------|:-----------------------------|:--------|:---------------|:-------|:--------|:-------|:--------------|:------------------|:--------------------|:-------------|:----------|:-------------|:--------------|:--------|:-------|:----------|:------------|:----------|:------------------|:--------------|:-------|:----------|:-------------------|
| 0 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | |
| 1 | 9 |  |  |  |  |  | X | X | | | X | | | X | | X | | | X | | | | X | | | | | | | | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/nott_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T02:46:36+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T02:49:53+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of nott (Fire Emblem)
=============================
This is the dataset of nott (Fire Emblem), containing 18 images and their tags.
The core tags of this character are 'long\_hair, breasts, green\_hair, large\_breasts, braid, mole, mole\_under\_eye, hair\_ornament', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
c93d693de4120d971d700631ca553c017d6f3444 |
# Dataset of thorr (Fire Emblem)
This is the dataset of thorr (Fire Emblem), containing 39 images and their tags.
The core tags of this character are `green_hair, breasts, braid, large_breasts, long_hair, yellow_eyes, bangs, single_braid, hair_between_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 39 | 56.42 MiB | [Download](https://huggingface.co/datasets/CyberHarem/thorr_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 39 | 30.55 MiB | [Download](https://huggingface.co/datasets/CyberHarem/thorr_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 92 | 60.82 MiB | [Download](https://huggingface.co/datasets/CyberHarem/thorr_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 39 | 48.82 MiB | [Download](https://huggingface.co/datasets/CyberHarem/thorr_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 92 | 88.74 MiB | [Download](https://huggingface.co/datasets/CyberHarem/thorr_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/thorr_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 12 |  |  |  |  |  | 1girl, bare_shoulders, cleavage, solo, white_bikini, looking_at_viewer, official_alternate_costume, collarbone, hair_flower, navel, smile, blush, holding, jewelry, parted_lips, thighs |
| 1 | 13 |  |  |  |  |  | 1girl, circlet, solo, cleavage, looking_at_viewer, white_dress, thighs, smile, holding_weapon, simple_background, closed_mouth, white_background, bridal_gauntlets, knee_boots, long_sleeves, white_footwear, battle_axe, braided_ponytail, brown_eyes, high_heel_boots, shiny_hair |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | bare_shoulders | cleavage | solo | white_bikini | looking_at_viewer | official_alternate_costume | collarbone | hair_flower | navel | smile | blush | holding | jewelry | parted_lips | thighs | circlet | white_dress | holding_weapon | simple_background | closed_mouth | white_background | bridal_gauntlets | knee_boots | long_sleeves | white_footwear | battle_axe | braided_ponytail | brown_eyes | high_heel_boots | shiny_hair |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-----------------|:-----------|:-------|:---------------|:--------------------|:-----------------------------|:-------------|:--------------|:--------|:--------|:--------|:----------|:----------|:--------------|:---------|:----------|:--------------|:-----------------|:--------------------|:---------------|:-------------------|:-------------------|:-------------|:---------------|:-----------------|:-------------|:-------------------|:-------------|:------------------|:-------------|
| 0 | 12 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | |
| 1 | 13 |  |  |  |  |  | X | | X | X | | X | | | | | X | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/thorr_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T02:46:40+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T02:55:26+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of thorr (Fire Emblem)
==============================
This is the dataset of thorr (Fire Emblem), containing 39 images and their tags.
The core tags of this character are 'green\_hair, breasts, braid, large\_breasts, long\_hair, yellow\_eyes, bangs, single\_braid, hair\_between\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
b82995b2bd261e76fa5c78aefa6066d10859e8b1 |
# Dataset of mariabell (Fire Emblem)
This is the dataset of mariabell (Fire Emblem), containing 45 images and their tags.
The core tags of this character are `blonde_hair, bow, hair_bow, long_hair, drill_hair, earrings, breasts, brown_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:----------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 45 | 37.41 MiB | [Download](https://huggingface.co/datasets/CyberHarem/mariabell_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 45 | 27.57 MiB | [Download](https://huggingface.co/datasets/CyberHarem/mariabell_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 88 | 50.14 MiB | [Download](https://huggingface.co/datasets/CyberHarem/mariabell_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 45 | 35.87 MiB | [Download](https://huggingface.co/datasets/CyberHarem/mariabell_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 88 | 61.58 MiB | [Download](https://huggingface.co/datasets/CyberHarem/mariabell_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/mariabell_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------|
| 0 | 12 |  |  |  |  |  | 1girl, solo, jewelry, looking_at_viewer, open_mouth, ascot, pink_gloves, smile, umbrella |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | jewelry | looking_at_viewer | open_mouth | ascot | pink_gloves | smile | umbrella |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:----------|:--------------------|:-------------|:--------|:--------------|:--------|:-----------|
| 0 | 12 |  |  |  |  |  | X | X | X | X | X | X | X | X | X |
| CyberHarem/mariabell_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T03:07:18+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T03:17:53+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of mariabell (Fire Emblem)
==================================
This is the dataset of mariabell (Fire Emblem), containing 45 images and their tags.
The core tags of this character are 'blonde\_hair, bow, hair\_bow, long\_hair, drill\_hair, earrings, breasts, brown\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
6ba8476f0c37c841c4c2025dd4d42b04e71bd41f |
# Dataset of marica (Fire Emblem)
This is the dataset of marica (Fire Emblem), containing 51 images and their tags.
The core tags of this character are `long_hair, breasts, ponytail, pink_hair, large_breasts, purple_eyes, purple_hair, pink_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:-------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 51 | 62.23 MiB | [Download](https://huggingface.co/datasets/CyberHarem/marica_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 51 | 36.44 MiB | [Download](https://huggingface.co/datasets/CyberHarem/marica_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 117 | 74.66 MiB | [Download](https://huggingface.co/datasets/CyberHarem/marica_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 51 | 55.04 MiB | [Download](https://huggingface.co/datasets/CyberHarem/marica_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 117 | 100.80 MiB | [Download](https://huggingface.co/datasets/CyberHarem/marica_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/marica_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 5 |  |  |  |  |  | 1girl, dress, fingerless_gloves, blush, looking_at_viewer, solo, cleavage, white_panties, armlet, gladiator_sandals, holding_sword, pantyshot |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | dress | fingerless_gloves | blush | looking_at_viewer | solo | cleavage | white_panties | armlet | gladiator_sandals | holding_sword | pantyshot |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------|:--------------------|:--------|:--------------------|:-------|:-----------|:----------------|:---------|:--------------------|:----------------|:------------|
| 0 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/marica_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T03:07:23+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T03:24:57+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of marica (Fire Emblem)
===============================
This is the dataset of marica (Fire Emblem), containing 51 images and their tags.
The core tags of this character are 'long\_hair, breasts, ponytail, pink\_hair, large\_breasts, purple\_eyes, purple\_hair, pink\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
c668b23bf27b56513865f471e8f27ca83680834b |
# Dataset of linde (Fire Emblem)
This is the dataset of linde (Fire Emblem), containing 168 images and their tags.
The core tags of this character are `brown_hair, long_hair, ponytail, brown_eyes, breasts, very_long_hair, large_breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 168 | 187.80 MiB | [Download](https://huggingface.co/datasets/CyberHarem/linde_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 168 | 116.00 MiB | [Download](https://huggingface.co/datasets/CyberHarem/linde_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 378 | 232.24 MiB | [Download](https://huggingface.co/datasets/CyberHarem/linde_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 168 | 170.99 MiB | [Download](https://huggingface.co/datasets/CyberHarem/linde_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 378 | 310.53 MiB | [Download](https://huggingface.co/datasets/CyberHarem/linde_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/linde_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 26 |  |  |  |  |  | 1girl, solo, circlet, looking_at_viewer, cleavage, navel, smile, blush, hair_ornament, pink_bikini, open_mouth, simple_background |
| 1 | 5 |  |  |  |  |  | 1girl, circlet, earrings, solo, blush, open_mouth, smile, looking_at_viewer, nipples, one_eye_closed |
| 2 | 9 |  |  |  |  |  | 1girl, circlet, solo, smile, looking_at_viewer, bare_shoulders, blush, armlet, cleavage, open_mouth, pink_dress, medium_breasts |
| 3 | 5 |  |  |  |  |  | 1girl, bare_shoulders, belt, full_body, hair_ornament, knee_boots, medium_breasts, side_slit, solo, white_dress, white_footwear, absurdly_long_hair, bangs, blush, collarbone, jewelry, long_dress, open_mouth, simple_background, sleeveless_dress, thighs, white_background, circlet, holding_book, leg_up, :d, armpits, hand_up, looking_at_viewer, open_book, pelvic_curtain |
| 4 | 25 |  |  |  |  |  | 1girl, hetero, nipples, solo_focus, penis, blush, 1boy, sex, open_mouth, vaginal, circlet, mosaic_censoring, cum_in_pussy, spread_legs, nude, cum_on_body, facial, navel, tears |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | circlet | looking_at_viewer | cleavage | navel | smile | blush | hair_ornament | pink_bikini | open_mouth | simple_background | earrings | nipples | one_eye_closed | bare_shoulders | armlet | pink_dress | medium_breasts | belt | full_body | knee_boots | side_slit | white_dress | white_footwear | absurdly_long_hair | bangs | collarbone | jewelry | long_dress | sleeveless_dress | thighs | white_background | holding_book | leg_up | :d | armpits | hand_up | open_book | pelvic_curtain | hetero | solo_focus | penis | 1boy | sex | vaginal | mosaic_censoring | cum_in_pussy | spread_legs | nude | cum_on_body | facial | tears |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:----------|:--------------------|:-----------|:--------|:--------|:--------|:----------------|:--------------|:-------------|:--------------------|:-----------|:----------|:-----------------|:-----------------|:---------|:-------------|:-----------------|:-------|:------------|:-------------|:------------|:--------------|:-----------------|:---------------------|:--------|:-------------|:----------|:-------------|:-------------------|:---------|:-------------------|:---------------|:---------|:-----|:----------|:----------|:------------|:-----------------|:---------|:-------------|:--------|:-------|:------|:----------|:-------------------|:---------------|:--------------|:-------|:--------------|:---------|:--------|
| 0 | 26 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 5 |  |  |  |  |  | X | X | X | X | | | X | X | | | X | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 9 |  |  |  |  |  | X | X | X | X | X | | X | X | | | X | | | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 5 |  |  |  |  |  | X | X | X | X | | | | X | X | | X | X | | | | X | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | |
| 4 | 25 |  |  |  |  |  | X | | X | | | X | | X | | | X | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/linde_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T03:07:23+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T03:41:41+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of linde (Fire Emblem)
==============================
This is the dataset of linde (Fire Emblem), containing 168 images and their tags.
The core tags of this character are 'brown\_hair, long\_hair, ponytail, brown\_eyes, breasts, very\_long\_hair, large\_breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
facc443cd713bff389c807222f418ea3f6241fd3 |
# Dataset of sariya (Fire Emblem)
This is the dataset of sariya (Fire Emblem), containing 500 images and their tags.
The core tags of this character are `black_hair, long_hair, breasts, bangs, two_side_up, blunt_bangs, large_breasts, purple_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:-------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 727.99 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sariya_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 381.37 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sariya_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1275 | 821.66 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sariya_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 626.19 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sariya_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1275 | 1.17 GiB | [Download](https://huggingface.co/datasets/CyberHarem/sariya_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/sariya_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 13 |  |  |  |  |  | 1girl, completely_nude, solo, blush, looking_at_viewer, nipples, navel, circlet, pussy, black_eyes, collarbone, indoors, parted_lips, cowboy_shot, stomach, tiara, uncensored |
| 1 | 5 |  |  |  |  |  | 1girl, ass, bodystocking, bracelet, cape, looking_at_viewer, solo, tiara, bridal_gauntlets, medium_breasts, smile, hand_on_hip, high_heels, looking_back |
| 2 | 25 |  |  |  |  |  | 1girl, cape, cleavage, solo, tiara, bracelet, bodystocking, bridal_gauntlets, medium_breasts, covered_navel, looking_at_viewer, holding_book, simple_background |
| 3 | 6 |  |  |  |  |  | 1girl, black_eyes, bracelet, bridal_gauntlets, cleavage, looking_at_viewer, official_alternate_costume, smile, tiara, bodystocking, covered_navel, feather_hair_ornament, solo, magic, parted_lips, skin_tight, circlet, witch |
| 4 | 7 |  |  |  |  |  | 1girl, bouquet, cleavage, flower, looking_at_viewer, tiara, wedding_dress, bodystocking, bridal_gauntlets, bride, jewelry, smile, solo, alternate_costume, covered_navel, simple_background, grey_background |
| 5 | 8 |  |  |  |  |  | 1girl, anklet, bodystocking, solo, toe_ring, toeless_legwear, alternate_costume, bridal_gauntlets, cleavage, feet, looking_at_viewer, toes, smile, tiara, bracelet, barefoot, bridal_legwear, feather_hair_ornament, toenail_polish, ass, bare_shoulders, circlet, covered_navel, dress, makeup, sitting |
| 6 | 7 |  |  |  |  |  | 1girl, bracelet, cape, cleavage, hair_flower, looking_at_viewer, official_alternate_costume, red_bikini, solo, tiara, circlet, collarbone, navel, parted_lips, simple_background, smile, white_background, o-ring_bikini, side-tie_bikini_bottom |
| 7 | 17 |  |  |  |  |  | 1girl, smile, navel, solo, cleavage, looking_at_viewer, thighhighs, fake_antlers, reindeer_antlers, tiara, bridal_gauntlets, red_bikini, boots, bow, neck_bell, simple_background, christmas_ornaments, fur-trimmed_cape |
| 8 | 17 |  |  |  |  |  | 1boy, 1girl, hetero, penis, solo_focus, blush, tiara, sex, black_eyes, nipples, vaginal, ass, nude, bodystocking, looking_at_viewer, torn_clothes, uncensored, smile, testicles, bracelet, cape, circlet, cum_in_pussy, open_mouth |
| 9 | 10 |  |  |  |  |  | 1girl, fake_animal_ears, playboy_bunny, rabbit_ears, gloves, leotard, solo, looking_at_viewer, official_alternate_costume, cleavage, hair_ornament, detached_collar, high_heels, cape, purple_pantyhose, simple_background, white_background, blush, flower, medium_breasts, rabbit_tail, strapless |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | completely_nude | solo | blush | looking_at_viewer | nipples | navel | circlet | pussy | black_eyes | collarbone | indoors | parted_lips | cowboy_shot | stomach | tiara | uncensored | ass | bodystocking | bracelet | cape | bridal_gauntlets | medium_breasts | smile | hand_on_hip | high_heels | looking_back | cleavage | covered_navel | holding_book | simple_background | official_alternate_costume | feather_hair_ornament | magic | skin_tight | witch | bouquet | flower | wedding_dress | bride | jewelry | alternate_costume | grey_background | anklet | toe_ring | toeless_legwear | feet | toes | barefoot | bridal_legwear | toenail_polish | bare_shoulders | dress | makeup | sitting | hair_flower | red_bikini | white_background | o-ring_bikini | side-tie_bikini_bottom | thighhighs | fake_antlers | reindeer_antlers | boots | bow | neck_bell | christmas_ornaments | fur-trimmed_cape | 1boy | hetero | penis | solo_focus | sex | vaginal | nude | torn_clothes | testicles | cum_in_pussy | open_mouth | fake_animal_ears | playboy_bunny | rabbit_ears | gloves | leotard | hair_ornament | detached_collar | purple_pantyhose | rabbit_tail | strapless |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:------------------|:-------|:--------|:--------------------|:----------|:--------|:----------|:--------|:-------------|:-------------|:----------|:--------------|:--------------|:----------|:--------|:-------------|:------|:---------------|:-----------|:-------|:-------------------|:-----------------|:--------|:--------------|:-------------|:---------------|:-----------|:----------------|:---------------|:--------------------|:-----------------------------|:------------------------|:--------|:-------------|:--------|:----------|:---------|:----------------|:--------|:----------|:--------------------|:------------------|:---------|:-----------|:------------------|:-------|:-------|:-----------|:-----------------|:-----------------|:-----------------|:--------|:---------|:----------|:--------------|:-------------|:-------------------|:----------------|:-------------------------|:-------------|:---------------|:-------------------|:--------|:------|:------------|:----------------------|:-------------------|:-------|:---------|:--------|:-------------|:------|:----------|:-------|:---------------|:------------|:---------------|:-------------|:-------------------|:----------------|:--------------|:---------|:----------|:----------------|:------------------|:-------------------|:--------------|:------------|
| 0 | 13 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 5 |  |  |  |  |  | X | | X | | X | | | | | | | | | | | X | | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 25 |  |  |  |  |  | X | | X | | X | | | | | | | | | | | X | | | X | X | X | X | X | | | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 6 |  |  |  |  |  | X | | X | | X | | | X | | X | | | X | | | X | | | X | X | | X | | X | | | | X | X | | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 7 |  |  |  |  |  | X | | X | | X | | | | | | | | | | | X | | | X | | | X | | X | | | | X | X | | X | | | | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 8 |  |  |  |  |  | X | | X | | X | | | X | | | | | | | | X | | X | X | X | | X | | X | | | | X | X | | | | X | | | | | | | | | X | | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 7 |  |  |  |  |  | X | | X | | X | | X | X | | | X | | X | | | X | | | | X | X | | | X | | | | X | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 7 | 17 |  |  |  |  |  | X | | X | | X | | X | | | | | | | | | X | | | | | | X | | X | | | | X | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | X | | | | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | |
| 8 | 17 |  |  |  |  |  | X | | | X | X | X | | X | | X | | | | | | X | X | X | X | X | X | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | |
| 9 | 10 |  |  |  |  |  | X | | X | X | X | | | | | | | | | | | | | | | | X | | X | | | X | | X | | | X | X | | | | | | X | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/sariya_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T03:07:24+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T05:11:40+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of sariya (Fire Emblem)
===============================
This is the dataset of sariya (Fire Emblem), containing 500 images and their tags.
The core tags of this character are 'black\_hair, long\_hair, breasts, bangs, two\_side\_up, blunt\_bangs, large\_breasts, purple\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
694b94da63909f258a81e59f99e3177c25abe22d |
## Dataset Card for "squad"
This truncated dataset is derived from the Stanford Question Answering Dataset (SQuAD) for reading comprehension. Its primary aim is to extract instances from the original SQuAD dataset that align with the context length of BERT, RoBERTa, OPT, and T5 models.
### Preprocessing and Filtering
Preprocessing involves tokenization using the BertTokenizer (WordPiece), RoBertaTokenizer (Byte-level BPE), OPTTokenizer (Byte-Pair Encoding), and T5Tokenizer (Sentence Piece). Each sample is then checked to ensure that the length of the tokenized input is within the specified model_max_length for each tokenizer.
| varun-v-rao/newsqa | [
"region:us"
] | 2024-01-18T03:21:18+00:00 | {"dataset_info": {"features": [{"name": "context", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answers", "struct": [{"name": "answer_start", "sequence": "int64"}, {"name": "text", "sequence": "string"}]}, {"name": "id", "dtype": "string"}, {"name": "labels", "list": [{"name": "end", "sequence": "int64"}, {"name": "start", "sequence": "int64"}]}], "splits": [{"name": "train", "num_bytes": 57635506.94441748, "num_examples": 18142}, {"name": "validation", "num_bytes": 3374870.9449192784, "num_examples": 1070}], "download_size": 4666280, "dataset_size": 61010377.88933676}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}]}]} | 2024-02-08T07:44:58+00:00 | [] | [] | TAGS
#region-us
|
## Dataset Card for "squad"
This truncated dataset is derived from the Stanford Question Answering Dataset (SQuAD) for reading comprehension. Its primary aim is to extract instances from the original SQuAD dataset that align with the context length of BERT, RoBERTa, OPT, and T5 models.
### Preprocessing and Filtering
Preprocessing involves tokenization using the BertTokenizer (WordPiece), RoBertaTokenizer (Byte-level BPE), OPTTokenizer (Byte-Pair Encoding), and T5Tokenizer (Sentence Piece). Each sample is then checked to ensure that the length of the tokenized input is within the specified model_max_length for each tokenizer.
| [
"## Dataset Card for \"squad\"\n\nThis truncated dataset is derived from the Stanford Question Answering Dataset (SQuAD) for reading comprehension. Its primary aim is to extract instances from the original SQuAD dataset that align with the context length of BERT, RoBERTa, OPT, and T5 models.",
"### Preprocessing and Filtering\n\nPreprocessing involves tokenization using the BertTokenizer (WordPiece), RoBertaTokenizer (Byte-level BPE), OPTTokenizer (Byte-Pair Encoding), and T5Tokenizer (Sentence Piece). Each sample is then checked to ensure that the length of the tokenized input is within the specified model_max_length for each tokenizer."
] | [
"TAGS\n#region-us \n",
"## Dataset Card for \"squad\"\n\nThis truncated dataset is derived from the Stanford Question Answering Dataset (SQuAD) for reading comprehension. Its primary aim is to extract instances from the original SQuAD dataset that align with the context length of BERT, RoBERTa, OPT, and T5 models.",
"### Preprocessing and Filtering\n\nPreprocessing involves tokenization using the BertTokenizer (WordPiece), RoBertaTokenizer (Byte-level BPE), OPTTokenizer (Byte-Pair Encoding), and T5Tokenizer (Sentence Piece). Each sample is then checked to ensure that the length of the tokenized input is within the specified model_max_length for each tokenizer."
] |
9770416815fa423eeefdb9f4d72d8b03d36af2a9 |
# Dataset of marcia (Fire Emblem)
This is the dataset of marcia (Fire Emblem), containing 76 images and their tags.
The core tags of this character are `short_hair, pink_hair, blue_eyes, headband`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:-------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 76 | 53.01 MiB | [Download](https://huggingface.co/datasets/CyberHarem/marcia_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 76 | 41.89 MiB | [Download](https://huggingface.co/datasets/CyberHarem/marcia_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 109 | 57.69 MiB | [Download](https://huggingface.co/datasets/CyberHarem/marcia_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 76 | 51.57 MiB | [Download](https://huggingface.co/datasets/CyberHarem/marcia_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 109 | 68.94 MiB | [Download](https://huggingface.co/datasets/CyberHarem/marcia_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/marcia_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 14 |  |  |  |  |  | 1girl, hetero, solo_focus, nipples, thighhighs, penis, 1boy, blush, mosaic_censoring, sex, medium_breasts, pussy, cum, vaginal, elbow_gloves, fingerless_gloves, large_breasts, sweat, armor, pegasus_knight_uniform_(fire_emblem), thigh_boots |
| 1 | 22 |  |  |  |  |  | 1girl, elbow_gloves, fingerless_gloves, solo, thighhighs, pegasus_knight_uniform_(fire_emblem), smile, open_mouth, thigh_boots, belt, breastplate, spear, shoulder_armor, looking_at_viewer, dress, zettai_ryouiki |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | hetero | solo_focus | nipples | thighhighs | penis | 1boy | blush | mosaic_censoring | sex | medium_breasts | pussy | cum | vaginal | elbow_gloves | fingerless_gloves | large_breasts | sweat | armor | pegasus_knight_uniform_(fire_emblem) | thigh_boots | solo | smile | open_mouth | belt | breastplate | spear | shoulder_armor | looking_at_viewer | dress | zettai_ryouiki |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:---------|:-------------|:----------|:-------------|:--------|:-------|:--------|:-------------------|:------|:-----------------|:--------|:------|:----------|:---------------|:--------------------|:----------------|:--------|:--------|:---------------------------------------|:--------------|:-------|:--------|:-------------|:-------|:--------------|:--------|:-----------------|:--------------------|:--------|:-----------------|
| 0 | 14 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | |
| 1 | 22 |  |  |  |  |  | X | | | | X | | | | | | | | | | X | X | | | | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/marcia_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T03:28:32+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T03:40:28+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of marcia (Fire Emblem)
===============================
This is the dataset of marcia (Fire Emblem), containing 76 images and their tags.
The core tags of this character are 'short\_hair, pink\_hair, blue\_eyes, headband', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
176ef54898dad960c7467a7990bb2f3fc86cb37f |
# Dataset of tiamat (Fire Emblem)
This is the dataset of tiamat (Fire Emblem), containing 55 images and their tags.
The core tags of this character are `long_hair, red_hair, green_eyes, braid, very_long_hair, single_braid`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:-------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 55 | 58.54 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tiamat_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 55 | 36.85 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tiamat_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 94 | 61.02 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tiamat_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 55 | 52.16 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tiamat_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 94 | 82.25 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tiamat_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/tiamat_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 5 |  |  |  |  |  | 1girl, large_breasts, looking_at_viewer, solo, beach, cleavage, day, ocean, outdoors, smile, ass, blush, one-piece_swimsuit, sky, white_bikini |
| 1 | 24 |  |  |  |  |  | 1girl, solo, breastplate, white_background, looking_at_viewer, gauntlets, smile, spear |
| 2 | 9 |  |  |  |  |  | 1girl, necklace, smile, solo, dress, head_wreath, hair_flower, holding_staff, long_sleeves, boots, full_body, looking_at_viewer, simple_background |
| 3 | 5 |  |  |  |  |  | 1girl, 1boy, blush, hetero, large_breasts, nipples, censored, cum_in_pussy, female_pubic_hair, penis, sex, completely_nude, heart, navel, open_mouth, solo_focus, vaginal |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | large_breasts | looking_at_viewer | solo | beach | cleavage | day | ocean | outdoors | smile | ass | blush | one-piece_swimsuit | sky | white_bikini | breastplate | white_background | gauntlets | spear | necklace | dress | head_wreath | hair_flower | holding_staff | long_sleeves | boots | full_body | simple_background | 1boy | hetero | nipples | censored | cum_in_pussy | female_pubic_hair | penis | sex | completely_nude | heart | navel | open_mouth | solo_focus | vaginal |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:----------------|:--------------------|:-------|:--------|:-----------|:------|:--------|:-----------|:--------|:------|:--------|:---------------------|:------|:---------------|:--------------|:-------------------|:------------|:--------|:-----------|:--------|:--------------|:--------------|:----------------|:---------------|:--------|:------------|:--------------------|:-------|:---------|:----------|:-----------|:---------------|:--------------------|:--------|:------|:------------------|:--------|:--------|:-------------|:-------------|:----------|
| 0 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 24 |  |  |  |  |  | X | | X | X | | | | | | X | | | | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 9 |  |  |  |  |  | X | | X | X | | | | | | X | | | | | | | | | | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | |
| 3 | 5 |  |  |  |  |  | X | X | | | | | | | | | | X | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/tiamat_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T03:28:34+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T03:39:03+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of tiamat (Fire Emblem)
===============================
This is the dataset of tiamat (Fire Emblem), containing 55 images and their tags.
The core tags of this character are 'long\_hair, red\_hair, green\_eyes, braid, very\_long\_hair, single\_braid', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
7af706d4259fc247f48410b9342a425c48874ca7 |
# Dataset of olwen (Fire Emblem)
This is the dataset of olwen (Fire Emblem), containing 47 images and their tags.
The core tags of this character are `short_hair, breasts, black_hair, medium_breasts, blue_eyes, blue_hair`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 47 | 32.39 MiB | [Download](https://huggingface.co/datasets/CyberHarem/olwen_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 47 | 22.02 MiB | [Download](https://huggingface.co/datasets/CyberHarem/olwen_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 77 | 35.97 MiB | [Download](https://huggingface.co/datasets/CyberHarem/olwen_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 47 | 29.64 MiB | [Download](https://huggingface.co/datasets/CyberHarem/olwen_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 77 | 45.34 MiB | [Download](https://huggingface.co/datasets/CyberHarem/olwen_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/olwen_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 9 |  |  |  |  |  | 1girl, nipples, solo, completely_nude, female_pubic_hair, blush |
| 1 | 6 |  |  |  |  |  | 1girl, hetero, nipples, penis, solo_focus, completely_nude, sex, vaginal, 1boy, female_pubic_hair, mosaic_censoring, sweat, cum, pussy, tears |
| 2 | 14 |  |  |  |  |  | 1girl, cape, solo, thighhighs, book, elbow_gloves, thigh_boots, necklace |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | nipples | solo | completely_nude | female_pubic_hair | blush | hetero | penis | solo_focus | sex | vaginal | 1boy | mosaic_censoring | sweat | cum | pussy | tears | cape | thighhighs | book | elbow_gloves | thigh_boots | necklace |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:----------|:-------|:------------------|:--------------------|:--------|:---------|:--------|:-------------|:------|:----------|:-------|:-------------------|:--------|:------|:--------|:--------|:-------|:-------------|:-------|:---------------|:--------------|:-----------|
| 0 | 9 |  |  |  |  |  | X | X | X | X | X | X | | | | | | | | | | | | | | | | | |
| 1 | 6 |  |  |  |  |  | X | X | | X | X | | X | X | X | X | X | X | X | X | X | X | X | | | | | | |
| 2 | 14 |  |  |  |  |  | X | | X | | | | | | | | | | | | | | | X | X | X | X | X | X |
| CyberHarem/olwen_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T03:28:38+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T03:37:57+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of olwen (Fire Emblem)
==============================
This is the dataset of olwen (Fire Emblem), containing 47 images and their tags.
The core tags of this character are 'short\_hair, breasts, black\_hair, medium\_breasts, blue\_eyes, blue\_hair', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
395055dc589cf0e14127608f89308987e365d961 |
# Dataset of thany (Fire Emblem)
This is the dataset of thany (Fire Emblem), containing 102 images and their tags.
The core tags of this character are `blue_hair, short_hair, blue_eyes, headband, breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 102 | 80.30 MiB | [Download](https://huggingface.co/datasets/CyberHarem/thany_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 102 | 57.76 MiB | [Download](https://huggingface.co/datasets/CyberHarem/thany_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 187 | 101.56 MiB | [Download](https://huggingface.co/datasets/CyberHarem/thany_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 102 | 74.88 MiB | [Download](https://huggingface.co/datasets/CyberHarem/thany_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 187 | 123.43 MiB | [Download](https://huggingface.co/datasets/CyberHarem/thany_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/thany_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 8 |  |  |  |  |  | 1girl, thighhighs, breastplate, pegasus_knight_uniform_(fire_emblem), skirt, solo, belt, fingerless_gloves, thigh_boots, zettai_ryouiki, open_mouth, spear, full_body, white_background |
| 1 | 6 |  |  |  |  |  | 1girl, hair_ornament, solo, strapless_dress, white_dress, bangs, detached_collar, feather_trim, flower, full_body, holding_bow_(weapon), medium_breasts, open_mouth, shiny_hair, thigh_boots, thighhighs, wedding_dress, white_footwear, high_heel_boots, layered_skirt, smile, bare_shoulders, circlet, earrings, looking_at_viewer, looking_away, simple_background, white_background |
| 2 | 28 |  |  |  |  |  | 1girl, blush, open_mouth, hetero, solo_focus, nipples, sex, penis, 1boy, nude, medium_breasts, mosaic_censoring, vaginal, cum, pussy, sweat, thighhighs |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | thighhighs | breastplate | pegasus_knight_uniform_(fire_emblem) | skirt | solo | belt | fingerless_gloves | thigh_boots | zettai_ryouiki | open_mouth | spear | full_body | white_background | hair_ornament | strapless_dress | white_dress | bangs | detached_collar | feather_trim | flower | holding_bow_(weapon) | medium_breasts | shiny_hair | wedding_dress | white_footwear | high_heel_boots | layered_skirt | smile | bare_shoulders | circlet | earrings | looking_at_viewer | looking_away | simple_background | blush | hetero | solo_focus | nipples | sex | penis | 1boy | nude | mosaic_censoring | vaginal | cum | pussy | sweat |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------------|:--------------|:---------------------------------------|:--------|:-------|:-------|:--------------------|:--------------|:-----------------|:-------------|:--------|:------------|:-------------------|:----------------|:------------------|:--------------|:--------|:------------------|:---------------|:---------|:-----------------------|:-----------------|:-------------|:----------------|:-----------------|:------------------|:----------------|:--------|:-----------------|:----------|:-----------|:--------------------|:---------------|:--------------------|:--------|:---------|:-------------|:----------|:------|:--------|:-------|:-------|:-------------------|:----------|:------|:--------|:--------|
| 0 | 8 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 6 |  |  |  |  |  | X | X | | | | X | | | X | | X | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | |
| 2 | 28 |  |  |  |  |  | X | X | | | | | | | | | X | | | | | | | | | | | | X | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/thany_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T03:28:41+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T03:48:13+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of thany (Fire Emblem)
==============================
This is the dataset of thany (Fire Emblem), containing 102 images and their tags.
The core tags of this character are 'blue\_hair, short\_hair, blue\_eyes, headband, breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
d300d8b07e81ef2342c58f10b73293e41bd3969a |
# Dataset of celina (Fire Emblem)
This is the dataset of celina (Fire Emblem), containing 20 images and their tags.
The core tags of this character are `blonde_hair, earrings, blue_eyes, breasts, long_hair, medium_breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:-------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 20 | 22.37 MiB | [Download](https://huggingface.co/datasets/CyberHarem/celina_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 20 | 13.96 MiB | [Download](https://huggingface.co/datasets/CyberHarem/celina_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 41 | 26.58 MiB | [Download](https://huggingface.co/datasets/CyberHarem/celina_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 20 | 20.87 MiB | [Download](https://huggingface.co/datasets/CyberHarem/celina_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 41 | 35.71 MiB | [Download](https://huggingface.co/datasets/CyberHarem/celina_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/celina_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 14 |  |  |  |  |  | jewelry, solo, 1girl, cape, elbow_gloves, simple_background, thighhighs, belt, book, thigh_boots, white_gloves, cleavage, collarbone, full_body, green_eyes, looking_at_viewer, smile, white_background |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | jewelry | solo | 1girl | cape | elbow_gloves | simple_background | thighhighs | belt | book | thigh_boots | white_gloves | cleavage | collarbone | full_body | green_eyes | looking_at_viewer | smile | white_background |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------|:-------|:--------|:-------|:---------------|:--------------------|:-------------|:-------|:-------|:--------------|:---------------|:-----------|:-------------|:------------|:-------------|:--------------------|:--------|:-------------------|
| 0 | 14 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/celina_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T03:38:41+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T03:42:58+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of celina (Fire Emblem)
===============================
This is the dataset of celina (Fire Emblem), containing 20 images and their tags.
The core tags of this character are 'blonde\_hair, earrings, blue\_eyes, breasts, long\_hair, medium\_breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
9e17a2dc395ef77da4ae9f5c759368a5aada601a |
# Dataset of mila (Fire Emblem)
This is the dataset of mila (Fire Emblem), containing 27 images and their tags.
The core tags of this character are `green_hair, long_hair, pointy_ears, horns, single_horn, very_long_hair, green_eyes, wings, tail, breasts, earrings`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:-----------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 27 | 44.93 MiB | [Download](https://huggingface.co/datasets/CyberHarem/mila_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 27 | 23.53 MiB | [Download](https://huggingface.co/datasets/CyberHarem/mila_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 58 | 44.26 MiB | [Download](https://huggingface.co/datasets/CyberHarem/mila_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 27 | 37.96 MiB | [Download](https://huggingface.co/datasets/CyberHarem/mila_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 58 | 62.93 MiB | [Download](https://huggingface.co/datasets/CyberHarem/mila_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/mila_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------------------------------------------------------------------------------------------|
| 0 | 5 |  |  |  |  |  | 1girl, solo, bracelet, dress, looking_at_viewer, brown_eyes, white_background, simple_background, smile, upper_body |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | bracelet | dress | looking_at_viewer | brown_eyes | white_background | simple_background | smile | upper_body |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:-----------|:--------|:--------------------|:-------------|:-------------------|:--------------------|:--------|:-------------|
| 0 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/mila_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T03:38:46+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T03:44:52+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of mila (Fire Emblem)
=============================
This is the dataset of mila (Fire Emblem), containing 27 images and their tags.
The core tags of this character are 'green\_hair, long\_hair, pointy\_ears, horns, single\_horn, very\_long\_hair, green\_eyes, wings, tail, breasts, earrings', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
2edfce088c116993cf3cb8a62bd2be512baa6d3a |
# Dataset of priscilla (Fire Emblem)
This is the dataset of priscilla (Fire Emblem), containing 61 images and their tags.
The core tags of this character are `red_hair, short_hair, green_eyes, hair_ornament`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:----------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 61 | 57.57 MiB | [Download](https://huggingface.co/datasets/CyberHarem/priscilla_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 61 | 38.13 MiB | [Download](https://huggingface.co/datasets/CyberHarem/priscilla_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 124 | 73.49 MiB | [Download](https://huggingface.co/datasets/CyberHarem/priscilla_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 61 | 51.38 MiB | [Download](https://huggingface.co/datasets/CyberHarem/priscilla_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 124 | 90.93 MiB | [Download](https://huggingface.co/datasets/CyberHarem/priscilla_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/priscilla_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 17 |  |  |  |  |  | 1girl, solo, elbow_gloves, smile, cape, looking_at_viewer, white_gloves, dress, simple_background, white_background, full_body, holding_staff, skirt, knee_boots |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | elbow_gloves | smile | cape | looking_at_viewer | white_gloves | dress | simple_background | white_background | full_body | holding_staff | skirt | knee_boots |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:---------------|:--------|:-------|:--------------------|:---------------|:--------|:--------------------|:-------------------|:------------|:----------------|:--------|:-------------|
| 0 | 17 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/priscilla_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T03:40:35+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T03:51:10+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of priscilla (Fire Emblem)
==================================
This is the dataset of priscilla (Fire Emblem), containing 61 images and their tags.
The core tags of this character are 'red\_hair, short\_hair, green\_eyes, hair\_ornament', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
d12d5e91bcbb0e4d2e91a9cdcceb70f63b4edec5 | # Dataset Card for "mC4-Hindi-Cleaned"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | zicsx/mC4-Hindi-Cleaned | [
"size_categories:10M<n<100M",
"language:hi",
"license:apache-2.0",
"mC4",
"region:us"
] | 2024-01-18T03:42:57+00:00 | {"language": ["hi"], "license": "apache-2.0", "size_categories": ["10M<n<100M"], "dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 24677697357.760128, "num_examples": 5251576}], "download_size": 9175340652, "dataset_size": 24677697357.760128}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "tags": ["mC4"]} | 2024-02-01T12:01:15+00:00 | [] | [
"hi"
] | TAGS
#size_categories-10M<n<100M #language-Hindi #license-apache-2.0 #mC4 #region-us
| # Dataset Card for "mC4-Hindi-Cleaned"
More Information needed | [
"# Dataset Card for \"mC4-Hindi-Cleaned\"\n\nMore Information needed"
] | [
"TAGS\n#size_categories-10M<n<100M #language-Hindi #license-apache-2.0 #mC4 #region-us \n",
"# Dataset Card for \"mC4-Hindi-Cleaned\"\n\nMore Information needed"
] |
3bf4acd7decd50bc88c004c51b91d559a253bae5 |
# Dataset of ema (Fire Emblem)
This is the dataset of ema (Fire Emblem), containing 11 images and their tags.
The core tags of this character are `braid, long_hair, yellow_eyes, brown_hair, ponytail, twin_braids, ahoge, bow, blonde_hair, brown_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:----------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 11 | 9.20 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ema_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 11 | 6.97 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ema_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 15 | 9.26 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ema_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 11 | 8.70 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ema_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 15 | 13.25 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ema_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/ema_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 11 |  |  |  |  |  | 1girl, open_mouth, solo, gloves, armor, boots, smile, spear, thighhighs, company_name, copyright_name, pegasus_knight_uniform_(fire_emblem), sky, day, feathers, looking_at_viewer, riding |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | open_mouth | solo | gloves | armor | boots | smile | spear | thighhighs | company_name | copyright_name | pegasus_knight_uniform_(fire_emblem) | sky | day | feathers | looking_at_viewer | riding |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------------|:-------|:---------|:--------|:--------|:--------|:--------|:-------------|:---------------|:-----------------|:---------------------------------------|:------|:------|:-----------|:--------------------|:---------|
| 0 | 11 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/ema_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T03:48:24+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T03:50:16+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of ema (Fire Emblem)
============================
This is the dataset of ema (Fire Emblem), containing 11 images and their tags.
The core tags of this character are 'braid, long\_hair, yellow\_eyes, brown\_hair, ponytail, twin\_braids, ahoge, bow, blonde\_hair, brown\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
330d39229514bf61ccb21d2fa94b44bcc199cb96 |
# Dataset of altenna (Fire Emblem)
This is the dataset of altenna (Fire Emblem), containing 23 images and their tags.
The core tags of this character are `long_hair, brown_eyes, brown_hair, headband, very_long_hair`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:--------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 23 | 26.34 MiB | [Download](https://huggingface.co/datasets/CyberHarem/altenna_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 23 | 16.44 MiB | [Download](https://huggingface.co/datasets/CyberHarem/altenna_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 44 | 27.57 MiB | [Download](https://huggingface.co/datasets/CyberHarem/altenna_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 23 | 23.96 MiB | [Download](https://huggingface.co/datasets/CyberHarem/altenna_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 44 | 37.19 MiB | [Download](https://huggingface.co/datasets/CyberHarem/altenna_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/altenna_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------------------------------------------------------------------------------------------------------|
| 0 | 23 |  |  |  |  |  | 1girl, solo, gloves, thighhighs, breastplate, spear, looking_at_viewer, red_armor, shoulder_armor, boots, dress, holding_weapon |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | gloves | thighhighs | breastplate | spear | looking_at_viewer | red_armor | shoulder_armor | boots | dress | holding_weapon |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:---------|:-------------|:--------------|:--------|:--------------------|:------------|:-----------------|:--------|:--------|:-----------------|
| 0 | 23 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/altenna_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T03:48:29+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T03:54:19+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of altenna (Fire Emblem)
================================
This is the dataset of altenna (Fire Emblem), containing 23 images and their tags.
The core tags of this character are 'long\_hair, brown\_eyes, brown\_hair, headband, very\_long\_hair', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
fef0945efde9a50d6ed3f33478170d56f72ffe72 |
# Dataset of karin (Fire Emblem)
This is the dataset of karin (Fire Emblem), containing 16 images and their tags.
The core tags of this character are `green_hair, green_eyes, short_hair, bangs`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 16 | 8.76 MiB | [Download](https://huggingface.co/datasets/CyberHarem/karin_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 16 | 8.04 MiB | [Download](https://huggingface.co/datasets/CyberHarem/karin_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 21 | 9.65 MiB | [Download](https://huggingface.co/datasets/CyberHarem/karin_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 16 | 8.55 MiB | [Download](https://huggingface.co/datasets/CyberHarem/karin_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 21 | 10.17 MiB | [Download](https://huggingface.co/datasets/CyberHarem/karin_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/karin_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 16 |  |  |  |  |  | 1girl, smile, solo, breastplate, shoulder_armor, open_mouth, shiny, spear, thigh_boots, thighhighs, belt, fingerless_gloves, looking_at_viewer, short_sleeves, simple_background, elbow_gloves, green_dress, holding |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | smile | solo | breastplate | shoulder_armor | open_mouth | shiny | spear | thigh_boots | thighhighs | belt | fingerless_gloves | looking_at_viewer | short_sleeves | simple_background | elbow_gloves | green_dress | holding |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------|:-------|:--------------|:-----------------|:-------------|:--------|:--------|:--------------|:-------------|:-------|:--------------------|:--------------------|:----------------|:--------------------|:---------------|:--------------|:----------|
| 0 | 16 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/karin_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T03:48:31+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T03:51:22+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of karin (Fire Emblem)
==============================
This is the dataset of karin (Fire Emblem), containing 16 images and their tags.
The core tags of this character are 'green\_hair, green\_eyes, short\_hair, bangs', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
05621b295306a29e7a7fdd9fd60eedec8c868d8b | github: https://github.com/yunpeili/iprobiotics | liyunpei/probiotic_sequence | [
"region:us"
] | 2024-01-18T03:59:34+00:00 | {} | 2024-01-19T09:52:49+00:00 | [] | [] | TAGS
#region-us
| github: URL | [] | [
"TAGS\n#region-us \n"
] |
f38b3aece059bfeaba3b85bdc8ba9dda47c18b09 |
# Dataset of juno (Fire Emblem)
This is the dataset of juno (Fire Emblem), containing 17 images and their tags.
The core tags of this character are `purple_hair, long_hair, purple_eyes, breasts, bangs, medium_breasts, low_ponytail, shiny_hair`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:-----------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 17 | 17.77 MiB | [Download](https://huggingface.co/datasets/CyberHarem/juno_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 17 | 9.74 MiB | [Download](https://huggingface.co/datasets/CyberHarem/juno_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 27 | 16.10 MiB | [Download](https://huggingface.co/datasets/CyberHarem/juno_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 17 | 15.19 MiB | [Download](https://huggingface.co/datasets/CyberHarem/juno_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 27 | 22.04 MiB | [Download](https://huggingface.co/datasets/CyberHarem/juno_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/juno_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 6 |  |  |  |  |  | 1girl, bare_shoulders, flower, solo, bouquet, detached_collar, feather_trim, hair_ornament, holding, shiny, smile, strapless_dress, wedding_dress, white_dress, bride, circlet, earrings, full_body, closed_mouth, looking_at_viewer, looking_away, simple_background, standing, transparent_background |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | bare_shoulders | flower | solo | bouquet | detached_collar | feather_trim | hair_ornament | holding | shiny | smile | strapless_dress | wedding_dress | white_dress | bride | circlet | earrings | full_body | closed_mouth | looking_at_viewer | looking_away | simple_background | standing | transparent_background |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-----------------|:---------|:-------|:----------|:------------------|:---------------|:----------------|:----------|:--------|:--------|:------------------|:----------------|:--------------|:--------|:----------|:-----------|:------------|:---------------|:--------------------|:---------------|:--------------------|:-----------|:-------------------------|
| 0 | 6 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/juno_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T04:03:38+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T04:07:04+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of juno (Fire Emblem)
=============================
This is the dataset of juno (Fire Emblem), containing 17 images and their tags.
The core tags of this character are 'purple\_hair, long\_hair, purple\_eyes, breasts, bangs, medium\_breasts, low\_ponytail, shiny\_hair', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
1e56a6c6dcfd6549b99c6b4b7cbeb7e001040d87 |
# Dataset of natasha (Fire Emblem)
This is the dataset of natasha (Fire Emblem), containing 25 images and their tags.
The core tags of this character are `blonde_hair, long_hair, blue_eyes, breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:--------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 25 | 28.80 MiB | [Download](https://huggingface.co/datasets/CyberHarem/natasha_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 25 | 17.59 MiB | [Download](https://huggingface.co/datasets/CyberHarem/natasha_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 52 | 33.46 MiB | [Download](https://huggingface.co/datasets/CyberHarem/natasha_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 25 | 26.43 MiB | [Download](https://huggingface.co/datasets/CyberHarem/natasha_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 52 | 46.61 MiB | [Download](https://huggingface.co/datasets/CyberHarem/natasha_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/natasha_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 9 |  |  |  |  |  | 1girl, hood, solo, cape, long_sleeves, medium_breasts, parted_bangs, white_dress, holding_staff, jewelry, long_dress, looking_at_viewer, simple_background, smile, closed_mouth, full_body, open_mouth, shiny_hair, white_footwear |
| 1 | 5 |  |  |  |  |  | 1girl, jewelry, cape, hood, 1boy, white_dress, red_hair, smile, solo_focus |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | hood | solo | cape | long_sleeves | medium_breasts | parted_bangs | white_dress | holding_staff | jewelry | long_dress | looking_at_viewer | simple_background | smile | closed_mouth | full_body | open_mouth | shiny_hair | white_footwear | 1boy | red_hair | solo_focus |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:-------|:-------|:---------------|:-----------------|:---------------|:--------------|:----------------|:----------|:-------------|:--------------------|:--------------------|:--------|:---------------|:------------|:-------------|:-------------|:-----------------|:-------|:-----------|:-------------|
| 0 | 9 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | |
| 1 | 5 |  |  |  |  |  | X | X | | X | | | | X | | X | | | | X | | | | | | X | X | X |
| CyberHarem/natasha_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T04:03:38+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T04:09:06+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of natasha (Fire Emblem)
================================
This is the dataset of natasha (Fire Emblem), containing 25 images and their tags.
The core tags of this character are 'blonde\_hair, long\_hair, blue\_eyes, breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
c78d04a41bff315df472eee62ca72a377b8c0ecb |
# Dataset of vanessa (Fire Emblem)
This is the dataset of vanessa (Fire Emblem), containing 40 images and their tags.
The core tags of this character are `green_hair, green_eyes, long_hair, braid`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:--------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 40 | 26.85 MiB | [Download](https://huggingface.co/datasets/CyberHarem/vanessa_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 40 | 21.92 MiB | [Download](https://huggingface.co/datasets/CyberHarem/vanessa_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 58 | 34.51 MiB | [Download](https://huggingface.co/datasets/CyberHarem/vanessa_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 40 | 26.30 MiB | [Download](https://huggingface.co/datasets/CyberHarem/vanessa_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 58 | 41.69 MiB | [Download](https://huggingface.co/datasets/CyberHarem/vanessa_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/vanessa_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 18 |  |  |  |  |  | 1girl, elbow_gloves, solo, thighhighs, breastplate, spear, fingerless_gloves, belt, dress, shoulder_armor, white_gloves, holding_weapon, open_mouth, zettai_ryouiki, pegasus_knight_uniform_(fire_emblem), thigh_boots |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | elbow_gloves | solo | thighhighs | breastplate | spear | fingerless_gloves | belt | dress | shoulder_armor | white_gloves | holding_weapon | open_mouth | zettai_ryouiki | pegasus_knight_uniform_(fire_emblem) | thigh_boots |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:---------------|:-------|:-------------|:--------------|:--------|:--------------------|:-------|:--------|:-----------------|:---------------|:-----------------|:-------------|:-----------------|:---------------------------------------|:--------------|
| 0 | 18 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/vanessa_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T04:03:40+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T04:09:51+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of vanessa (Fire Emblem)
================================
This is the dataset of vanessa (Fire Emblem), containing 40 images and their tags.
The core tags of this character are 'green\_hair, green\_eyes, long\_hair, braid', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
81b3723fe1eed34f06fae12d6f2347c56b9b9151 |
# Dataset of neimi (Fire Emblem)
This is the dataset of neimi (Fire Emblem), containing 20 images and their tags.
The core tags of this character are `headband, pink_hair, short_hair, pink_eyes, breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 20 | 14.88 MiB | [Download](https://huggingface.co/datasets/CyberHarem/neimi_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 20 | 10.83 MiB | [Download](https://huggingface.co/datasets/CyberHarem/neimi_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 32 | 16.32 MiB | [Download](https://huggingface.co/datasets/CyberHarem/neimi_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 20 | 14.20 MiB | [Download](https://huggingface.co/datasets/CyberHarem/neimi_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 32 | 20.98 MiB | [Download](https://huggingface.co/datasets/CyberHarem/neimi_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/neimi_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 20 |  |  |  |  |  | 1girl, solo, fingerless_gloves, arrow_(projectile), elbow_gloves, simple_background, armor, bow_(weapon), capri_pants, hood, quiver, closed_mouth, looking_at_viewer, white_background, full_body, holding, smile, tears |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | fingerless_gloves | arrow_(projectile) | elbow_gloves | simple_background | armor | bow_(weapon) | capri_pants | hood | quiver | closed_mouth | looking_at_viewer | white_background | full_body | holding | smile | tears |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------------------|:---------------------|:---------------|:--------------------|:--------|:---------------|:--------------|:-------|:---------|:---------------|:--------------------|:-------------------|:------------|:----------|:--------|:--------|
| 0 | 20 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/neimi_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T04:03:53+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T04:07:41+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of neimi (Fire Emblem)
==============================
This is the dataset of neimi (Fire Emblem), containing 20 images and their tags.
The core tags of this character are 'headband, pink\_hair, short\_hair, pink\_eyes, breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
bdc8139140d02212af43277f9b94bde0be30ba45 | Instruction based dataset used to instruct-tune Codellama model for APR based tasks
Three fields:
- Instruction: One of the chosen 5 instructions
- Context: The context/input supplied along with the instruction. In this case, it consists of `<PRE>` PREFIX CODE `<SUF>` SUFFIX CODE `<MID>` which are the prefix, suffix and middle tokens for Codellama but can be replaced with other tokens as well depending on model.
- Response: The predicted response (which is the middle missing part in the code)
The instructions supplied with the prompt are usually one of these:
1. Given a code snippet with context (prefix) and expected outcome (suffix), predict and complete the missing part to ensure a seamless integration between the provided context and expected outcome.
2. Insert the missing logic between the provided context (prefix) and the expected outcome (suffix) to ensure a smooth transition and logical flow in the code.
3. Implement the missing functionality in the code snippet, considering the provided context and the desired outcome. Ensure that the function aligns with the overall goal indicated by the context and expected outcome.
4. Continue the flow of the code by providing the missing lines that logically follow from the established context (prefix) and lead to the expected outcome (suffix).
5. Integrate the missing code to ensure coherence and logical flow between the provided context and expected outcome. Consider variables, data structures, or conditions established in the context and ensure their appropriate utilization in the missing part. | sarthak247/instruct-apr | [
"task_categories:fill-mask",
"size_categories:100K<n<1M",
"language:en",
"code",
"region:us"
] | 2024-01-18T04:14:12+00:00 | {"language": ["en"], "size_categories": ["100K<n<1M"], "task_categories": ["fill-mask"], "pretty_name": "APR", "tags": ["code"]} | 2024-01-18T04:17:17+00:00 | [] | [
"en"
] | TAGS
#task_categories-fill-mask #size_categories-100K<n<1M #language-English #code #region-us
| Instruction based dataset used to instruct-tune Codellama model for APR based tasks
Three fields:
- Instruction: One of the chosen 5 instructions
- Context: The context/input supplied along with the instruction. In this case, it consists of '<PRE>' PREFIX CODE '<SUF>' SUFFIX CODE '<MID>' which are the prefix, suffix and middle tokens for Codellama but can be replaced with other tokens as well depending on model.
- Response: The predicted response (which is the middle missing part in the code)
The instructions supplied with the prompt are usually one of these:
1. Given a code snippet with context (prefix) and expected outcome (suffix), predict and complete the missing part to ensure a seamless integration between the provided context and expected outcome.
2. Insert the missing logic between the provided context (prefix) and the expected outcome (suffix) to ensure a smooth transition and logical flow in the code.
3. Implement the missing functionality in the code snippet, considering the provided context and the desired outcome. Ensure that the function aligns with the overall goal indicated by the context and expected outcome.
4. Continue the flow of the code by providing the missing lines that logically follow from the established context (prefix) and lead to the expected outcome (suffix).
5. Integrate the missing code to ensure coherence and logical flow between the provided context and expected outcome. Consider variables, data structures, or conditions established in the context and ensure their appropriate utilization in the missing part. | [] | [
"TAGS\n#task_categories-fill-mask #size_categories-100K<n<1M #language-English #code #region-us \n"
] |
9d26eeecf77907621d3847cbee9c4b3e5cf71f01 |
# Dataset of eremiya (Fire Emblem)
This is the dataset of eremiya (Fire Emblem), containing 11 images and their tags.
The core tags of this character are `hat, purple_hair, breasts, long_hair, bangs, blue_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:--------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 11 | 14.29 MiB | [Download](https://huggingface.co/datasets/CyberHarem/eremiya_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 11 | 8.75 MiB | [Download](https://huggingface.co/datasets/CyberHarem/eremiya_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 26 | 17.49 MiB | [Download](https://huggingface.co/datasets/CyberHarem/eremiya_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 11 | 13.01 MiB | [Download](https://huggingface.co/datasets/CyberHarem/eremiya_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 26 | 23.84 MiB | [Download](https://huggingface.co/datasets/CyberHarem/eremiya_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/eremiya_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------------------------------|
| 0 | 11 |  |  |  |  |  | 1girl, solo, long_sleeves, smile, looking_at_viewer, open_mouth, purple_dress, simple_background, holding_staff, white_background |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | long_sleeves | smile | looking_at_viewer | open_mouth | purple_dress | simple_background | holding_staff | white_background |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:---------------|:--------|:--------------------|:-------------|:---------------|:--------------------|:----------------|:-------------------|
| 0 | 11 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/eremiya_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T04:32:04+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T04:35:53+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of eremiya (Fire Emblem)
================================
This is the dataset of eremiya (Fire Emblem), containing 11 images and their tags.
The core tags of this character are 'hat, purple\_hair, breasts, long\_hair, bangs, blue\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
7cc408cc9dc74da0c7dc0f7488fef2ad5024fc6e |
# Dataset of lana (Fire Emblem)
This is the dataset of lana (Fire Emblem), containing 22 images and their tags.
The core tags of this character are `short_hair, brown_eyes, orange_hair, brown_hair, blonde_hair`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:-----------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 22 | 20.96 MiB | [Download](https://huggingface.co/datasets/CyberHarem/lana_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 22 | 14.93 MiB | [Download](https://huggingface.co/datasets/CyberHarem/lana_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 41 | 26.05 MiB | [Download](https://huggingface.co/datasets/CyberHarem/lana_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 22 | 20.31 MiB | [Download](https://huggingface.co/datasets/CyberHarem/lana_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 41 | 33.10 MiB | [Download](https://huggingface.co/datasets/CyberHarem/lana_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/lana_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------|
| 0 | 22 |  |  |  |  |  | 1girl, smile, solo, open_mouth, blush, dress, staff |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | smile | solo | open_mouth | blush | dress | staff |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------|:-------|:-------------|:--------|:--------|:--------|
| 0 | 22 |  |  |  |  |  | X | X | X | X | X | X | X |
| CyberHarem/lana_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T04:32:05+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T04:39:45+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of lana (Fire Emblem)
=============================
This is the dataset of lana (Fire Emblem), containing 22 images and their tags.
The core tags of this character are 'short\_hair, brown\_eyes, orange\_hair, brown\_hair, blonde\_hair', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
524c48d33df75947f96ea7c6138907acc676c45e |
# Dataset Card for Dataset Name
<!-- Provide a quick summary of the dataset. -->
Welcome to [LumaticAI's](https://lumaticai.com/) BongChat Dataset!
We understand the challenges of non-English language models, so we're introducing [lumatic-ai/BongLlama-1.1B-Chat-alpha-v0-dataset](https://huggingface.co/datasets/lumatic-ai/BongLlama-1.1B-Chat-alpha-v0-dataset) set of 10,000 instructions for better language understanding. It covers various categories like Generation, Open QA, Brainstorm, Chat, and more. Ideal for improving models in Bangla, it's a valuable resource for efficient instruction-based training. Unleash the potential of your models with [LumaticAI's ](https://lumaticai.com/)Bengali Chat dataset!
LumaticAI
https://lumaticai.com/
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** LumaticAI
- **Language(s) (NLP):** Bengali
- **License:** mit
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
For training LLM's or building any ML model using Conversational dataset in Instruction, Input and Response format
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
Instruction | Input | Output
## Dataset Card Authors
LumaticAI
## Dataset Card Contact
Email : [email protected] | lumatic-ai/BongChat-v1-253k | [
"task_categories:question-answering",
"task_categories:text-generation",
"task_categories:text2text-generation",
"size_categories:100K<n<1M",
"language:bn",
"license:mit",
"region:us"
] | 2024-01-18T04:41:15+00:00 | {"language": ["bn"], "license": "mit", "size_categories": ["100K<n<1M"], "task_categories": ["question-answering", "text-generation", "text2text-generation"], "pretty_name": "BongChat", "dataset_info": {"features": [{"name": "instruction", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 286962935, "num_examples": 252622}], "download_size": 106463023, "dataset_size": 286962935}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2024-01-18T08:55:42+00:00 | [] | [
"bn"
] | TAGS
#task_categories-question-answering #task_categories-text-generation #task_categories-text2text-generation #size_categories-100K<n<1M #language-Bengali #license-mit #region-us
|
# Dataset Card for Dataset Name
Welcome to LumaticAI's BongChat Dataset!
We understand the challenges of non-English language models, so we're introducing lumatic-ai/BongLlama-1.1B-Chat-alpha-v0-dataset set of 10,000 instructions for better language understanding. It covers various categories like Generation, Open QA, Brainstorm, Chat, and more. Ideal for improving models in Bangla, it's a valuable resource for efficient instruction-based training. Unleash the potential of your models with LumaticAI's Bengali Chat dataset!
LumaticAI
URL
## Dataset Details
### Dataset Description
- Curated by: LumaticAI
- Language(s) (NLP): Bengali
- License: mit
## Uses
### Direct Use
For training LLM's or building any ML model using Conversational dataset in Instruction, Input and Response format
## Dataset Structure
Instruction | Input | Output
## Dataset Card Authors
LumaticAI
## Dataset Card Contact
Email : contact@URL | [
"# Dataset Card for Dataset Name\n\n\n\nWelcome to LumaticAI's BongChat Dataset! \n\nWe understand the challenges of non-English language models, so we're introducing lumatic-ai/BongLlama-1.1B-Chat-alpha-v0-dataset set of 10,000 instructions for better language understanding. It covers various categories like Generation, Open QA, Brainstorm, Chat, and more. Ideal for improving models in Bangla, it's a valuable resource for efficient instruction-based training. Unleash the potential of your models with LumaticAI's Bengali Chat dataset!\n\nLumaticAI\nURL",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: LumaticAI\n- Language(s) (NLP): Bengali\n- License: mit",
"## Uses",
"### Direct Use\n\n\n\nFor training LLM's or building any ML model using Conversational dataset in Instruction, Input and Response format",
"## Dataset Structure\n\n\n\nInstruction | Input | Output",
"## Dataset Card Authors \n\nLumaticAI",
"## Dataset Card Contact\n\nEmail : contact@URL"
] | [
"TAGS\n#task_categories-question-answering #task_categories-text-generation #task_categories-text2text-generation #size_categories-100K<n<1M #language-Bengali #license-mit #region-us \n",
"# Dataset Card for Dataset Name\n\n\n\nWelcome to LumaticAI's BongChat Dataset! \n\nWe understand the challenges of non-English language models, so we're introducing lumatic-ai/BongLlama-1.1B-Chat-alpha-v0-dataset set of 10,000 instructions for better language understanding. It covers various categories like Generation, Open QA, Brainstorm, Chat, and more. Ideal for improving models in Bangla, it's a valuable resource for efficient instruction-based training. Unleash the potential of your models with LumaticAI's Bengali Chat dataset!\n\nLumaticAI\nURL",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: LumaticAI\n- Language(s) (NLP): Bengali\n- License: mit",
"## Uses",
"### Direct Use\n\n\n\nFor training LLM's or building any ML model using Conversational dataset in Instruction, Input and Response format",
"## Dataset Structure\n\n\n\nInstruction | Input | Output",
"## Dataset Card Authors \n\nLumaticAI",
"## Dataset Card Contact\n\nEmail : contact@URL"
] |
5f05b60a913b76462046e04039412d32dff29c30 |
# Dataset of kamui_female_fire_emblem (Fire Emblem)
This is the dataset of kamui_female_fire_emblem (Fire Emblem), containing 500 images and their tags.
The core tags of this character are `long_hair, red_eyes, pointy_ears, hairband, breasts, white_hair, hair_between_eyes, grey_hair, large_breasts, black_hairband`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:-------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 759.20 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kamui_female_fire_emblem_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 410.19 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kamui_female_fire_emblem_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1248 | 871.09 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kamui_female_fire_emblem_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 662.30 MiB | [Download](https://huggingface.co/datasets/CyberHarem/kamui_female_fire_emblem_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1248 | 1.24 GiB | [Download](https://huggingface.co/datasets/CyberHarem/kamui_female_fire_emblem_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/kamui_female_fire_emblem_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 17 |  |  |  |  |  | 1girl, armor, juliet_sleeves, looking_at_viewer, solo, simple_background, bangs, blue_cape, white_background, black_gloves, holding_sword, closed_mouth, upper_body, open_mouth |
| 1 | 22 |  |  |  |  |  | 1girl, armor, cape, cleavage, solo, looking_at_viewer, smile, official_alternate_costume, gloves, simple_background, medium_breasts, closed_mouth |
| 2 | 6 |  |  |  |  |  | 1girl, bangs, medium_breasts, official_alternate_costume, solo, stone, torn_cape, armor, shiny_hair, toes, barefoot, black_leotard, feet, floating_object, gloves, open_mouth, toeless_legwear, ass, cleavage, full_body, grey_background, looking_at_viewer, simple_background, soles, thighhighs, thighs |
| 3 | 11 |  |  |  |  |  | 1girl, smile, solo, looking_at_viewer, cleavage, navel, shell_bikini, simple_background, seashell, open_mouth, jewelry, white_background |
| 4 | 6 |  |  |  |  |  | 1girl, hair_flower, official_alternate_costume, smile, solo, white_bikini, cleavage, looking_at_viewer, navel, jewelry, underwater |
| 5 | 8 |  |  |  |  |  | 1girl, cleavage, flower_necklace, hair_flower, navel, official_alternate_costume, smile, white_bikini, looking_at_viewer, medium_breasts, solo, bikini_skirt, jewelry, collarbone, simple_background, wreath, open_mouth, white_background, twitter_username |
| 6 | 9 |  |  |  |  |  | 1girl, cleavage, cloud, hair_flower, looking_at_viewer, official_alternate_costume, blue_sky, day, navel, outdoors, smile, solo, white_bikini, blush, collarbone, flower_necklace, wreath, parted_lips, bangs, bikini_skirt, ocean |
| 7 | 9 |  |  |  |  |  | 1girl, cleavage, looking_at_viewer, navel, solo, smile, collarbone, underwear_only, blue_bra, blue_panties, blush, lingerie |
| 8 | 30 |  |  |  |  |  | 1girl, halloween_costume, official_alternate_costume, witch_hat, cleavage, looking_at_viewer, solo, smile, bare_shoulders, medium_breasts, earrings, bangs, black_dress, open_mouth, hat_ornament, simple_background, lantern |
| 9 | 7 |  |  |  |  |  | 1girl, simple_background, solo, veil, white_dress, barefoot, butterfly, smile, full_body, open_mouth, single_glove, white_background, white_gloves, anklet, armlet, asymmetrical_clothes, bangs, choker, collarbone, official_alternate_costume, shiny, single_elbow_glove, thighhighs |
| 10 | 13 |  |  |  |  |  | 1girl, fake_animal_ears, playboy_bunny, rabbit_ears, solo, cleavage, alternate_costume, black_leotard, blush, looking_at_viewer, smile, detached_collar, pantyhose, bare_shoulders, wrist_cuffs, strapless, bow, open_mouth, simple_background |
| 11 | 5 |  |  |  |  |  | blush, open_mouth, penis, 2girls, nipples, nude, tongue_out, vaginal, 1boy, hetero, multiple_boys, navel, pussy_juice, solo_focus, sweat, blonde_hair, futa_with_female, saliva, spread_legs, threesome, uncensored |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | armor | juliet_sleeves | looking_at_viewer | solo | simple_background | bangs | blue_cape | white_background | black_gloves | holding_sword | closed_mouth | upper_body | open_mouth | cape | cleavage | smile | official_alternate_costume | gloves | medium_breasts | stone | torn_cape | shiny_hair | toes | barefoot | black_leotard | feet | floating_object | toeless_legwear | ass | full_body | grey_background | soles | thighhighs | thighs | navel | shell_bikini | seashell | jewelry | hair_flower | white_bikini | underwater | flower_necklace | bikini_skirt | collarbone | wreath | twitter_username | cloud | blue_sky | day | outdoors | blush | parted_lips | ocean | underwear_only | blue_bra | blue_panties | lingerie | halloween_costume | witch_hat | bare_shoulders | earrings | black_dress | hat_ornament | lantern | veil | white_dress | butterfly | single_glove | white_gloves | anklet | armlet | asymmetrical_clothes | choker | shiny | single_elbow_glove | fake_animal_ears | playboy_bunny | rabbit_ears | alternate_costume | detached_collar | pantyhose | wrist_cuffs | strapless | bow | penis | 2girls | nipples | nude | tongue_out | vaginal | 1boy | hetero | multiple_boys | pussy_juice | solo_focus | sweat | blonde_hair | futa_with_female | saliva | spread_legs | threesome | uncensored |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:--------|:--------|:-----------------|:--------------------|:-------|:--------------------|:--------|:------------|:-------------------|:---------------|:----------------|:---------------|:-------------|:-------------|:-------|:-----------|:--------|:-----------------------------|:---------|:-----------------|:--------|:------------|:-------------|:-------|:-----------|:----------------|:-------|:------------------|:------------------|:------|:------------|:------------------|:--------|:-------------|:---------|:--------|:---------------|:-----------|:----------|:--------------|:---------------|:-------------|:------------------|:---------------|:-------------|:---------|:-------------------|:--------|:-----------|:------|:-----------|:--------|:--------------|:--------|:-----------------|:-----------|:---------------|:-----------|:--------------------|:------------|:-----------------|:-----------|:--------------|:---------------|:----------|:-------|:--------------|:------------|:---------------|:---------------|:---------|:---------|:-----------------------|:---------|:--------|:---------------------|:-------------------|:----------------|:--------------|:--------------------|:------------------|:------------|:--------------|:------------|:------|:--------|:---------|:----------|:-------|:-------------|:----------|:-------|:---------|:----------------|:--------------|:-------------|:--------|:--------------|:-------------------|:---------|:--------------|:------------|:-------------|
| 0 | 17 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 22 |  |  |  |  |  | X | X | | X | X | X | | | | | | X | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 6 |  |  |  |  |  | X | X | | X | X | X | X | | | | | | | X | | X | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 11 |  |  |  |  |  | X | | | X | X | X | | | X | | | | | X | | X | X | | | | | | | | | | | | | | | | | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 6 |  |  |  |  |  | X | | | X | X | | | | | | | | | | | X | X | X | | | | | | | | | | | | | | | | | | X | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 8 |  |  |  |  |  | X | | | X | X | X | | | X | | | | | X | | X | X | X | | X | | | | | | | | | | | | | | | | X | | | X | X | X | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 9 |  |  |  |  |  | X | | | X | X | | X | | | | | | | | | X | X | X | | | | | | | | | | | | | | | | | | X | | | | X | X | | X | X | X | X | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 7 | 9 |  |  |  |  |  | X | | | X | X | | | | | | | | | | | X | X | | | | | | | | | | | | | | | | | | | X | | | | | | | | | X | | | | | | | X | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 8 | 30 |  |  |  |  |  | X | | | X | X | X | X | | | | | | | X | | X | X | X | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 9 | 7 |  |  |  |  |  | X | | | | X | X | X | | X | | | | | X | | | X | X | | | | | | | X | | | | | | X | | | X | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 10 | 13 |  |  |  |  |  | X | | | X | X | X | | | | | | | | X | | X | X | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | X | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | |
| 11 | 5 |  |  |  |  |  | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/kamui_female_fire_emblem_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T04:51:04+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T08:51:47+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of kamui\_female\_fire\_emblem (Fire Emblem)
====================================================
This is the dataset of kamui\_female\_fire\_emblem (Fire Emblem), containing 500 images and their tags.
The core tags of this character are 'long\_hair, red\_eyes, pointy\_ears, hairband, breasts, white\_hair, hair\_between\_eyes, grey\_hair, large\_breasts, black\_hairband', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
398cb08234563afa126c8fae627dad30fc46f32c |
# Dataset of edelgard_von_hraesvelgr (Fire Emblem)
This is the dataset of edelgard_von_hraesvelgr (Fire Emblem), containing 500 images and their tags.
The core tags of this character are `long_hair, purple_eyes, white_hair, hair_ornament, hair_ribbon, ribbon, blonde_hair`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 770.23 MiB | [Download](https://huggingface.co/datasets/CyberHarem/edelgard_von_hraesvelgr_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 407.69 MiB | [Download](https://huggingface.co/datasets/CyberHarem/edelgard_von_hraesvelgr_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1160 | 845.84 MiB | [Download](https://huggingface.co/datasets/CyberHarem/edelgard_von_hraesvelgr_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 668.08 MiB | [Download](https://huggingface.co/datasets/CyberHarem/edelgard_von_hraesvelgr_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1160 | 1.21 GiB | [Download](https://huggingface.co/datasets/CyberHarem/edelgard_von_hraesvelgr_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/edelgard_von_hraesvelgr_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 20 |  |  |  |  |  | 1girl, ascot, garreg_mach_monastery_uniform, red_cape, solo, looking_at_viewer, simple_background, axe, long_sleeves, red_pantyhose, weapon, white_gloves, blue_eyes, holding, white_background, smile, closed_mouth |
| 1 | 15 |  |  |  |  |  | 1girl, ascot, garreg_mach_monastery_uniform, looking_at_viewer, simple_background, solo, red_cape, gloves, upper_body, white_background, blue_eyes, smile, closed_mouth |
| 2 | 5 |  |  |  |  |  | 1girl, ascot, garreg_mach_monastery_uniform, long_sleeves, looking_at_viewer, red_cape, solo, upper_body, white_gloves, simple_background, smile, red_background, closed_mouth, purple_ribbon |
| 3 | 5 |  |  |  |  |  | 1girl, garreg_mach_monastery_uniform, long_sleeves, looking_at_viewer, red_cape, solo, white_gloves, ascot, closed_mouth, smile, red_pantyhose |
| 4 | 12 |  |  |  |  |  | 1girl, armor, horns, simple_background, solo, gloves, red_cape, looking_at_viewer, crown, double_bun, full_body, breasts, holding_axe, red_dress, weapon, white_background |
| 5 | 23 |  |  |  |  |  | 1girl, horns, solo, looking_at_viewer, simple_background, crown, breasts, blue_eyes, hair_bun, aged_up, closed_mouth, red_cape, white_background, upper_body |
| 6 | 5 |  |  |  |  |  | 1girl, breastplate, closed_mouth, gloves, looking_at_viewer, official_alternate_costume, official_alternate_hairstyle, red_cape, simple_background, solo, weapon, breasts, holding_axe, long_sleeves, skirt, boobplate |
| 7 | 9 |  |  |  |  |  | 1girl, official_alternate_costume, solo, casual_one-piece_swimsuit, hair_flower, looking_at_viewer, red_one-piece_swimsuit, cape, blush, cleavage, closed_mouth, medium_breasts, smile, covered_navel, necklace, large_breasts, purple_ribbon |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | ascot | garreg_mach_monastery_uniform | red_cape | solo | looking_at_viewer | simple_background | axe | long_sleeves | red_pantyhose | weapon | white_gloves | blue_eyes | holding | white_background | smile | closed_mouth | gloves | upper_body | red_background | purple_ribbon | armor | horns | crown | double_bun | full_body | breasts | holding_axe | red_dress | hair_bun | aged_up | breastplate | official_alternate_costume | official_alternate_hairstyle | skirt | boobplate | casual_one-piece_swimsuit | hair_flower | red_one-piece_swimsuit | cape | blush | cleavage | medium_breasts | covered_navel | necklace | large_breasts |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------|:--------------------------------|:-----------|:-------|:--------------------|:--------------------|:------|:---------------|:----------------|:---------|:---------------|:------------|:----------|:-------------------|:--------|:---------------|:---------|:-------------|:-----------------|:----------------|:--------|:--------|:--------|:-------------|:------------|:----------|:--------------|:------------|:-----------|:----------|:--------------|:-----------------------------|:-------------------------------|:--------|:------------|:----------------------------|:--------------|:-------------------------|:-------|:--------|:-----------|:-----------------|:----------------|:-----------|:----------------|
| 0 | 20 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 15 |  |  |  |  |  | X | X | X | X | X | X | X | | | | | | X | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | | X | | | X | | | | X | X | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 5 |  |  |  |  |  | X | X | X | X | X | X | | | X | X | | X | | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 12 |  |  |  |  |  | X | | | X | X | X | X | | | | X | | | | X | | | X | | | | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | |
| 5 | 23 |  |  |  |  |  | X | | | X | X | X | X | | | | | | X | | X | | X | | X | | | | X | X | | | X | | | X | X | | | | | | | | | | | | | | | |
| 6 | 5 |  |  |  |  |  | X | | | X | X | X | X | | X | | X | | | | | | X | X | | | | | | | | | X | X | | | | X | X | X | X | X | | | | | | | | | | |
| 7 | 9 |  |  |  |  |  | X | | | | X | X | | | | | | | | | | X | X | | | | X | | | | | | | | | | | | X | | | | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/edelgard_von_hraesvelgr_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T04:51:04+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T06:30:52+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of edelgard\_von\_hraesvelgr (Fire Emblem)
==================================================
This is the dataset of edelgard\_von\_hraesvelgr (Fire Emblem), containing 500 images and their tags.
The core tags of this character are 'long\_hair, purple\_eyes, white\_hair, hair\_ornament, hair\_ribbon, ribbon, blonde\_hair', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
1b8025fe8949d371a3f2e3f3ab70024e22a72b72 |
# Dataset of vika (Fire Emblem)
This is the dataset of vika (Fire Emblem), containing 19 images and their tags.
The core tags of this character are `wings, long_hair, breasts, blue_eyes, green_hair, medium_breasts, black_wings, feathered_wings, black_hair`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:-----------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 19 | 22.00 MiB | [Download](https://huggingface.co/datasets/CyberHarem/vika_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 19 | 13.56 MiB | [Download](https://huggingface.co/datasets/CyberHarem/vika_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 35 | 23.00 MiB | [Download](https://huggingface.co/datasets/CyberHarem/vika_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 19 | 19.50 MiB | [Download](https://huggingface.co/datasets/CyberHarem/vika_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 35 | 32.54 MiB | [Download](https://huggingface.co/datasets/CyberHarem/vika_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/vika_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------|
| 0 | 19 |  |  |  |  |  | 1girl, solo, bare_shoulders, cleavage, o-ring |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | bare_shoulders | cleavage | o-ring |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:-----------------|:-----------|:---------|
| 0 | 19 |  |  |  |  |  | X | X | X | X | X |
| CyberHarem/vika_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T04:51:17+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T04:55:48+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of vika (Fire Emblem)
=============================
This is the dataset of vika (Fire Emblem), containing 19 images and their tags.
The core tags of this character are 'wings, long\_hair, breasts, blue\_eyes, green\_hair, medium\_breasts, black\_wings, feathered\_wings, black\_hair', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
aeb8314eab0bee6c6e2766251187bf4e6be2c71e |
# Dataset of bernadetta_von_varley (Fire Emblem)
This is the dataset of bernadetta_von_varley (Fire Emblem), containing 354 images and their tags.
The core tags of this character are `purple_hair, short_hair, grey_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:----------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 354 | 356.47 MiB | [Download](https://huggingface.co/datasets/CyberHarem/bernadetta_von_varley_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 354 | 218.74 MiB | [Download](https://huggingface.co/datasets/CyberHarem/bernadetta_von_varley_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 708 | 435.91 MiB | [Download](https://huggingface.co/datasets/CyberHarem/bernadetta_von_varley_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 354 | 322.10 MiB | [Download](https://huggingface.co/datasets/CyberHarem/bernadetta_von_varley_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 708 | 601.26 MiB | [Download](https://huggingface.co/datasets/CyberHarem/bernadetta_von_varley_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/bernadetta_von_varley_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 15 |  |  |  |  |  | 1girl, garreg_mach_monastery_uniform, hood_down, open_mouth, simple_background, upper_body, long_sleeves, solo, wavy_mouth, white_background, ahoge, blush |
| 1 | 12 |  |  |  |  |  | 1girl, garreg_mach_monastery_uniform, holding_stuffed_toy, long_sleeves, simple_background, solo, teddy_bear, hood_down, upper_body, closed_mouth, blush, white_background, open_mouth |
| 2 | 13 |  |  |  |  |  | 1girl, garreg_mach_monastery_uniform, long_sleeves, solo, arrow_(projectile), holding_bow_(weapon), quiver, bike_shorts, boots, simple_background, white_background, open_mouth, closed_mouth, full_body, hood_down |
| 3 | 11 |  |  |  |  |  | 1girl, earrings, long_sleeves, solo, bike_shorts, hair_ornament, short_dress, simple_background, cleavage, open_mouth, white_background, yellow_gloves, quiver, arrow_(projectile), closed_mouth, holding_bow_(weapon), medium_breasts, small_breasts |
| 4 | 6 |  |  |  |  |  | 1girl, earrings, long_sleeves, solo, closed_mouth, dress, simple_background, blush, upper_body, white_background |
| 5 | 11 |  |  |  |  |  | 1girl, rabbit_ears, solo, blush, fake_animal_ears, hair_flower, looking_at_viewer, white_gloves, open_mouth, simple_background, official_alternate_costume, short_sleeves, white_background, dress, tail |
| 6 | 7 |  |  |  |  |  | maid_headdress, 1girl, long_sleeves, maid_apron, simple_background, blush, solo, enmaided, open_mouth |
| 7 | 10 |  |  |  |  |  | 1girl, nipples, hetero, open_mouth, penis, solo_focus, 1boy, blush, purple_eyes, vaginal, sex, small_breasts, cum_in_pussy, spread_legs, bar_censor, garreg_mach_monastery_uniform, long_sleeves, navel, nude, sweat |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | garreg_mach_monastery_uniform | hood_down | open_mouth | simple_background | upper_body | long_sleeves | solo | wavy_mouth | white_background | ahoge | blush | holding_stuffed_toy | teddy_bear | closed_mouth | arrow_(projectile) | holding_bow_(weapon) | quiver | bike_shorts | boots | full_body | earrings | hair_ornament | short_dress | cleavage | yellow_gloves | medium_breasts | small_breasts | dress | rabbit_ears | fake_animal_ears | hair_flower | looking_at_viewer | white_gloves | official_alternate_costume | short_sleeves | tail | maid_headdress | maid_apron | enmaided | nipples | hetero | penis | solo_focus | 1boy | purple_eyes | vaginal | sex | cum_in_pussy | spread_legs | bar_censor | navel | nude | sweat |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------------------------------|:------------|:-------------|:--------------------|:-------------|:---------------|:-------|:-------------|:-------------------|:--------|:--------|:----------------------|:-------------|:---------------|:---------------------|:-----------------------|:---------|:--------------|:--------|:------------|:-----------|:----------------|:--------------|:-----------|:----------------|:-----------------|:----------------|:--------|:--------------|:-------------------|:--------------|:--------------------|:---------------|:-----------------------------|:----------------|:-------|:-----------------|:-------------|:-----------|:----------|:---------|:--------|:-------------|:-------|:--------------|:----------|:------|:---------------|:--------------|:-------------|:--------|:-------|:--------|
| 0 | 15 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 12 |  |  |  |  |  | X | X | X | X | X | X | X | X | | X | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 13 |  |  |  |  |  | X | X | X | X | X | | X | X | | X | | | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 11 |  |  |  |  |  | X | | | X | X | | X | X | | X | | | | | X | X | X | X | X | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 6 |  |  |  |  |  | X | | | | X | X | X | X | | X | | X | | | X | | | | | | | X | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 11 |  |  |  |  |  | X | | | X | X | | | X | | X | | X | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | |
| 6 | 7 |  |  |  |  |  | X | | | X | X | | X | X | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | | | | | | | | | | | | | | |
| 7 | 10 |  |  |  |  |  | X | X | | X | | | X | | | | | X | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/bernadetta_von_varley_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T04:52:22+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T06:01:51+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of bernadetta\_von\_varley (Fire Emblem)
================================================
This is the dataset of bernadetta\_von\_varley (Fire Emblem), containing 354 images and their tags.
The core tags of this character are 'purple\_hair, short\_hair, grey\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
eeb26ba03d246d66ca89d92ef675ba96879b3c00 |
# Dataset of dorothea_arnold (Fire Emblem)
This is the dataset of dorothea_arnold (Fire Emblem), containing 22 images and their tags.
The core tags of this character are `brown_hair, green_eyes, long_hair, breasts, earrings, large_breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:----------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 22 | 38.78 MiB | [Download](https://huggingface.co/datasets/CyberHarem/dorothea_arnold_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 22 | 18.81 MiB | [Download](https://huggingface.co/datasets/CyberHarem/dorothea_arnold_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 55 | 41.56 MiB | [Download](https://huggingface.co/datasets/CyberHarem/dorothea_arnold_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 22 | 32.65 MiB | [Download](https://huggingface.co/datasets/CyberHarem/dorothea_arnold_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 55 | 64.03 MiB | [Download](https://huggingface.co/datasets/CyberHarem/dorothea_arnold_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/dorothea_arnold_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 22 |  |  |  |  |  | 1girl, solo, jewelry, cleavage, looking_at_viewer, smile, red_dress, detached_sleeves, long_sleeves, simple_background, bare_shoulders, white_background, upper_body, artist_name, closed_mouth, parted_lips |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | jewelry | cleavage | looking_at_viewer | smile | red_dress | detached_sleeves | long_sleeves | simple_background | bare_shoulders | white_background | upper_body | artist_name | closed_mouth | parted_lips |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:----------|:-----------|:--------------------|:--------|:------------|:-------------------|:---------------|:--------------------|:-----------------|:-------------------|:-------------|:--------------|:---------------|:--------------|
| 0 | 22 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/dorothea_arnold_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T05:04:01+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T05:09:46+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of dorothea\_arnold (Fire Emblem)
=========================================
This is the dataset of dorothea\_arnold (Fire Emblem), containing 22 images and their tags.
The core tags of this character are 'brown\_hair, green\_eyes, long\_hair, breasts, earrings, large\_breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
c60a2906cff5eb0c4bbe126aea5387d07e8565b2 |
# Dataset of shamia_nevrant (Fire Emblem)
This is the dataset of shamia_nevrant (Fire Emblem), containing 500 images and their tags.
The core tags of this character are `short_hair, breasts, purple_eyes, large_breasts, blue_hair, purple_hair`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:---------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 556.13 MiB | [Download](https://huggingface.co/datasets/CyberHarem/shamia_nevrant_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 326.48 MiB | [Download](https://huggingface.co/datasets/CyberHarem/shamia_nevrant_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1143 | 663.14 MiB | [Download](https://huggingface.co/datasets/CyberHarem/shamia_nevrant_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 492.49 MiB | [Download](https://huggingface.co/datasets/CyberHarem/shamia_nevrant_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1143 | 908.20 MiB | [Download](https://huggingface.co/datasets/CyberHarem/shamia_nevrant_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/shamia_nevrant_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 5 |  |  |  |  |  | 1boy, 1girl, hetero, nipples, penis, sex, solo_focus, vaginal, completely_nude, straddling, choker, cum_in_pussy, girl_on_top, looking_at_viewer, navel, open_mouth, artist_name, black_hair, mosaic_censoring, spread_legs, uncensored |
| 1 | 12 |  |  |  |  |  | 1girl, hetero, solo_focus, 1boy, nipples, penis, uncensored, choker, paizuri, nude, cum, blush, oral |
| 2 | 12 |  |  |  |  |  | 1girl, looking_at_viewer, navel, nipples, solo, nude, choker, collarbone, smile, blush |
| 3 | 11 |  |  |  |  |  | 1girl, black_pants, choker, open_jacket, black_gloves, cleavage, solo, closed_mouth, collarbone, looking_at_viewer, simple_background, bodice, green_belt, green_jacket, shoulder_armor, smile, hand_on_hip, white_background, asymmetrical_hair, bangs, black_hair, cowboy_shot |
| 4 | 8 |  |  |  |  |  | 1girl, choker, cleavage, simple_background, solo, green_jacket, looking_at_viewer, open_jacket, upper_body, collarbone, white_background, closed_mouth, shoulder_armor, smile, asymmetrical_hair, black_gloves, bodice, medium_breasts, black_hair |
| 5 | 17 |  |  |  |  |  | hair_flower, cleavage, looking_at_viewer, 1girl, solo, official_alternate_costume, black_one-piece_swimsuit, bare_shoulders, choker, collarbone, smile, black_gloves, closed_mouth |
| 6 | 5 |  |  |  |  |  | 1girl, alternate_costume, black_bikini, cleavage, looking_at_viewer, navel, solo, beach, collarbone, ocean, asymmetrical_hair, bare_shoulders, black_hair, outdoors, blue_sky, blush, choker, day, parted_lips, sitting, smile |
| 7 | 5 |  |  |  |  |  | 1girl, black_gloves, blush, choker, clothed_sex, hetero, penis, pussy, vaginal, 1boy, girl_on_top, looking_at_viewer, open_jacket, solo_focus, bangs, boots, clothed_female_nude_male, collarbone, green_jacket, mosaic_censoring, nipples, pov, squatting_cowgirl_position, thighhighs, asymmetrical_hair, black_hair, breasts_out, cleavage, cropped_jacket, cum, female_pubic_hair, green_belt, indoors, long_sleeves, open_mouth, potted_plant |
| 8 | 16 |  |  |  |  |  | 1girl, cleavage, headband, ninja, solo, looking_at_viewer, shoulder_armor, bodice, fishnets, official_alternate_costume, black_choker, closed_mouth, fingerless_gloves, bangs, japanese_clothes, obi, asymmetrical_legwear, collarbone, belt, black_shorts, holding_weapon, shuriken, simple_background, white_background, black_gloves, sword, kunai, lips, single_thighhigh, sleeveless |
| 9 | 6 |  |  |  |  |  | fake_animal_ears, looking_at_viewer, playboy_bunny, rabbit_ears, 1girl, black_leotard, bowtie, cleavage, detached_collar, pantyhose, simple_background, solo, bare_shoulders, smile, strapless_leotard, alternate_costume, fishnets, hand_on_hip, white_background, wrist_cuffs |
| 10 | 11 |  |  |  |  |  | 2girls, yuri, open_mouth, tongue_out, closed_eyes, cunnilingus, nipples, pussy, black_hair, blush, completely_nude, medium_breasts |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1boy | 1girl | hetero | nipples | penis | sex | solo_focus | vaginal | completely_nude | straddling | choker | cum_in_pussy | girl_on_top | looking_at_viewer | navel | open_mouth | artist_name | black_hair | mosaic_censoring | spread_legs | uncensored | paizuri | nude | cum | blush | oral | solo | collarbone | smile | black_pants | open_jacket | black_gloves | cleavage | closed_mouth | simple_background | bodice | green_belt | green_jacket | shoulder_armor | hand_on_hip | white_background | asymmetrical_hair | bangs | cowboy_shot | upper_body | medium_breasts | hair_flower | official_alternate_costume | black_one-piece_swimsuit | bare_shoulders | alternate_costume | black_bikini | beach | ocean | outdoors | blue_sky | day | parted_lips | sitting | clothed_sex | pussy | boots | clothed_female_nude_male | pov | squatting_cowgirl_position | thighhighs | breasts_out | cropped_jacket | female_pubic_hair | indoors | long_sleeves | potted_plant | headband | ninja | fishnets | black_choker | fingerless_gloves | japanese_clothes | obi | asymmetrical_legwear | belt | black_shorts | holding_weapon | shuriken | sword | kunai | lips | single_thighhigh | sleeveless | fake_animal_ears | playboy_bunny | rabbit_ears | black_leotard | bowtie | detached_collar | pantyhose | strapless_leotard | wrist_cuffs | 2girls | yuri | tongue_out | closed_eyes | cunnilingus |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:-------|:--------|:---------|:----------|:--------|:------|:-------------|:----------|:------------------|:-------------|:---------|:---------------|:--------------|:--------------------|:--------|:-------------|:--------------|:-------------|:-------------------|:--------------|:-------------|:----------|:-------|:------|:--------|:-------|:-------|:-------------|:--------|:--------------|:--------------|:---------------|:-----------|:---------------|:--------------------|:---------|:-------------|:---------------|:-----------------|:--------------|:-------------------|:--------------------|:--------|:--------------|:-------------|:-----------------|:--------------|:-----------------------------|:---------------------------|:-----------------|:--------------------|:---------------|:--------|:--------|:-----------|:-----------|:------|:--------------|:----------|:--------------|:--------|:--------|:---------------------------|:------|:-----------------------------|:-------------|:--------------|:-----------------|:--------------------|:----------|:---------------|:---------------|:-----------|:--------|:-----------|:---------------|:--------------------|:-------------------|:------|:-----------------------|:-------|:---------------|:-----------------|:-----------|:--------|:--------|:-------|:-------------------|:-------------|:-------------------|:----------------|:--------------|:----------------|:---------|:------------------|:------------|:--------------------|:--------------|:---------|:-------|:-------------|:--------------|:--------------|
| 0 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 12 |  |  |  |  |  | X | X | X | X | X | | X | | | | X | | | | | | | | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 12 |  |  |  |  |  | | X | | X | | | | | | | X | | | X | X | | | | | | | | X | | X | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 11 |  |  |  |  |  | | X | | | | | | | | | X | | | X | | | | X | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 8 |  |  |  |  |  | | X | | | | | | | | | X | | | X | | | | X | | | | | | | | | X | X | X | | X | X | X | X | X | X | | X | X | | X | X | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 17 |  |  |  |  |  | | X | | | | | | | | | X | | | X | | | | | | | | | | | | | X | X | X | | | X | X | X | | | | | | | | | | | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 5 |  |  |  |  |  | | X | | | | | | | | | X | | | X | X | | | X | | | | | | | X | | X | X | X | | | | X | | | | | | | | | X | | | | | | | | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 7 | 5 |  |  |  |  |  | X | X | X | X | X | | X | X | | | X | | X | X | | X | | X | X | | | | | X | X | | | X | | | X | X | X | | | | X | X | | | | X | X | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 8 | 16 |  |  |  |  |  | | X | | | | | | | | | | | | X | | | | | | | | | | | | | X | X | | | | X | X | X | X | X | | | X | | X | | X | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | |
| 9 | 6 |  |  |  |  |  | | X | | | | | | | | | | | | X | | | | | | | | | | | | | X | | X | | | | X | | X | | | | | X | X | | | | | | | | | X | X | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | | | | | |
| 10 | 11 |  |  |  |  |  | | | | X | | | | | X | | | | | | | X | | X | | | | | | | X | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X |
| CyberHarem/shamia_nevrant_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T05:04:03+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T06:53:31+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of shamia\_nevrant (Fire Emblem)
========================================
This is the dataset of shamia\_nevrant (Fire Emblem), containing 500 images and their tags.
The core tags of this character are 'short\_hair, breasts, purple\_eyes, large\_breasts, blue\_hair, purple\_hair', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
db317cc1c36a0c011835d2256a4058bcbd317cf3 |
# Dataset of ingrid_brandol_galatea (Fire Emblem)
This is the dataset of ingrid_brandol_galatea (Fire Emblem), containing 12 images and their tags.
The core tags of this character are `blonde_hair, green_eyes, long_hair, bangs, braid, breasts, medium_breasts, single_braid`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:-----------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 12 | 18.79 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ingrid_brandol_galatea_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 12 | 10.13 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ingrid_brandol_galatea_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 28 | 23.57 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ingrid_brandol_galatea_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 12 | 16.93 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ingrid_brandol_galatea_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 28 | 33.97 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ingrid_brandol_galatea_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/ingrid_brandol_galatea_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 8 |  |  |  |  |  | 1girl, garreg_mach_monastery_uniform, long_sleeves, black_skirt, black_jacket, looking_at_viewer, open_mouth, pantyhose, solo, 1boy, blush, holding_polearm |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | garreg_mach_monastery_uniform | long_sleeves | black_skirt | black_jacket | looking_at_viewer | open_mouth | pantyhose | solo | 1boy | blush | holding_polearm |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------------------------------|:---------------|:--------------|:---------------|:--------------------|:-------------|:------------|:-------|:-------|:--------|:------------------|
| 0 | 8 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/ingrid_brandol_galatea_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T05:04:08+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T05:08:35+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of ingrid\_brandol\_galatea (Fire Emblem)
=================================================
This is the dataset of ingrid\_brandol\_galatea (Fire Emblem), containing 12 images and their tags.
The core tags of this character are 'blonde\_hair, green\_eyes, long\_hair, bangs, braid, breasts, medium\_breasts, single\_braid', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
64b70709c75027a9f3d1ac50948f69a77cf789b2 |
# Dataset of mercedes_von_martlitz (Fire Emblem)
This is the dataset of mercedes_von_martlitz (Fire Emblem), containing 57 images and their tags.
The core tags of this character are `long_hair, blonde_hair, breasts, large_breasts, blue_eyes, bow, hair_bow, hat, straw_hat`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:----------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 57 | 84.91 MiB | [Download](https://huggingface.co/datasets/CyberHarem/mercedes_von_martlitz_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 57 | 44.59 MiB | [Download](https://huggingface.co/datasets/CyberHarem/mercedes_von_martlitz_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 138 | 91.98 MiB | [Download](https://huggingface.co/datasets/CyberHarem/mercedes_von_martlitz_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 57 | 72.73 MiB | [Download](https://huggingface.co/datasets/CyberHarem/mercedes_von_martlitz_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 138 | 135.79 MiB | [Download](https://huggingface.co/datasets/CyberHarem/mercedes_von_martlitz_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/mercedes_von_martlitz_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 6 |  |  |  |  |  | 1girl, blush, cleavage, looking_at_viewer, navel, sarong, smile, solo, black_bikini, collarbone, sun_hat, thighs, frilled_bikini, simple_background, bare_shoulders, brown_bikini, hand_on_headwear, official_alternate_costume, parted_lips, purple_eyes, sitting, white_background |
| 1 | 5 |  |  |  |  |  | 1girl, bare_shoulders, bikini, bracelet, cleavage, cup, food, full_body, navel, sandals, simple_background, solo, blush, frills, nail_polish, collarbone, holding, sarong, white_background, grey_background, legs, one_eye_closed, open_mouth, parted_lips, see-through, smile, spoon, stomach, thighs, toes, torn_clothes |
| 2 | 5 |  |  |  |  |  | 1girl, collarbone, hair_over_shoulder, looking_at_viewer, nipples, solo, blush, completely_nude, parted_bangs, smile, thighs, navel, side_ponytail, simple_background, closed_mouth, sitting |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | blush | cleavage | looking_at_viewer | navel | sarong | smile | solo | black_bikini | collarbone | sun_hat | thighs | frilled_bikini | simple_background | bare_shoulders | brown_bikini | hand_on_headwear | official_alternate_costume | parted_lips | purple_eyes | sitting | white_background | bikini | bracelet | cup | food | full_body | sandals | frills | nail_polish | holding | grey_background | legs | one_eye_closed | open_mouth | see-through | spoon | stomach | toes | torn_clothes | hair_over_shoulder | nipples | completely_nude | parted_bangs | side_ponytail | closed_mouth |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------|:-----------|:--------------------|:--------|:---------|:--------|:-------|:---------------|:-------------|:----------|:---------|:-----------------|:--------------------|:-----------------|:---------------|:-------------------|:-----------------------------|:--------------|:--------------|:----------|:-------------------|:---------|:-----------|:------|:-------|:------------|:----------|:---------|:--------------|:----------|:------------------|:-------|:-----------------|:-------------|:--------------|:--------|:----------|:-------|:---------------|:---------------------|:----------|:------------------|:---------------|:----------------|:---------------|
| 0 | 6 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 5 |  |  |  |  |  | X | X | X | | X | X | X | X | | X | | X | | X | X | | | | X | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | |
| 2 | 5 |  |  |  |  |  | X | X | | X | X | | X | X | | X | | X | | X | | | | | | | X | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X |
| CyberHarem/mercedes_von_martlitz_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T05:04:10+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T05:18:17+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of mercedes\_von\_martlitz (Fire Emblem)
================================================
This is the dataset of mercedes\_von\_martlitz (Fire Emblem), containing 57 images and their tags.
The core tags of this character are 'long\_hair, blonde\_hair, breasts, large\_breasts, blue\_eyes, bow, hair\_bow, hat, straw\_hat', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
4f9667c5dd3c957c28916b4d48dfd69ff0e2702b |
# Dataset of petra_mcnairy (Fire Emblem)
This is the dataset of petra_mcnairy (Fire Emblem), containing 180 images and their tags.
The core tags of this character are `long_hair, purple_hair, facial_mark, braid, dark_skin, breasts, brown_eyes, ponytail, dark-skinned_female, earrings`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:--------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 180 | 187.67 MiB | [Download](https://huggingface.co/datasets/CyberHarem/petra_mcnairy_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 180 | 118.90 MiB | [Download](https://huggingface.co/datasets/CyberHarem/petra_mcnairy_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 373 | 231.42 MiB | [Download](https://huggingface.co/datasets/CyberHarem/petra_mcnairy_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 180 | 170.26 MiB | [Download](https://huggingface.co/datasets/CyberHarem/petra_mcnairy_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 373 | 310.89 MiB | [Download](https://huggingface.co/datasets/CyberHarem/petra_mcnairy_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/petra_mcnairy_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 6 |  |  |  |  |  | 1girl, garreg_mach_monastery_uniform, solo, simple_background, upper_body, white_background, closed_mouth, looking_at_viewer, braided_ponytail, long_sleeves |
| 1 | 7 |  |  |  |  |  | full_body, garreg_mach_monastery_uniform, high_heel_boots, knee_boots, long_sleeves, 1girl, hair_pulled_back, simple_background, solo, sword, black_footwear, braided_ponytail, closed_mouth, looking_at_viewer, sheath, skirt, white_background, medium_breasts |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | garreg_mach_monastery_uniform | solo | simple_background | upper_body | white_background | closed_mouth | looking_at_viewer | braided_ponytail | long_sleeves | full_body | high_heel_boots | knee_boots | hair_pulled_back | sword | black_footwear | sheath | skirt | medium_breasts |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------------------------------|:-------|:--------------------|:-------------|:-------------------|:---------------|:--------------------|:-------------------|:---------------|:------------|:------------------|:-------------|:-------------------|:--------|:-----------------|:---------|:--------|:-----------------|
| 0 | 6 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | | | | | | | | | |
| 1 | 7 |  |  |  |  |  | X | X | X | X | | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/petra_mcnairy_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T05:29:06+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T06:05:50+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of petra\_mcnairy (Fire Emblem)
=======================================
This is the dataset of petra\_mcnairy (Fire Emblem), containing 180 images and their tags.
The core tags of this character are 'long\_hair, purple\_hair, facial\_mark, braid, dark\_skin, breasts, brown\_eyes, ponytail, dark-skinned\_female, earrings', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
5d33d9005a5a0027297d2ba66eb03c91521065ba |
# Dataset of turner (Fire Emblem)
This is the dataset of turner (Fire Emblem), containing 155 images and their tags.
The core tags of this character are `long_hair, blue_hair, braid, blue_eyes, ponytail, twin_braids, breasts, very_long_hair`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:-------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 155 | 182.12 MiB | [Download](https://huggingface.co/datasets/CyberHarem/turner_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 155 | 116.64 MiB | [Download](https://huggingface.co/datasets/CyberHarem/turner_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 350 | 234.14 MiB | [Download](https://huggingface.co/datasets/CyberHarem/turner_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 155 | 167.85 MiB | [Download](https://huggingface.co/datasets/CyberHarem/turner_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 350 | 310.51 MiB | [Download](https://huggingface.co/datasets/CyberHarem/turner_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/turner_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 21 |  |  |  |  |  | 1girl, cleavage, solo, one-piece_swimsuit, smile, covered_navel, open_mouth, looking_at_viewer, medium_breasts, collarbone, day, holding, towel, blue_sky, blush, large_breasts, bangs, cloud, outdoors, side_braids |
| 1 | 7 |  |  |  |  |  | 1girl, pauldrons, solo, looking_at_viewer, simple_background, smile, upper_body, side_braid, choker, closed_mouth, twitter_username |
| 2 | 24 |  |  |  |  |  | 1girl, gloves, solo, armor, thighhighs, smile, zettai_ryouiki, open_mouth, pegasus_knight_uniform_(fire_emblem), skirt, dress |
| 3 | 10 |  |  |  |  |  | 1girl, bangs, full_body, solo, white_gloves, simple_background, open_mouth, short_dress, shiny_hair, zettai_ryouiki, looking_away, medium_breasts, white_thighhighs, cape, cleavage, fingerless_gloves, holding_bow_(weapon), shoulder_armor, skirt, smile, white_footwear, arrow_(projectile), choker, grey_background, puffy_short_sleeves, ribbon, spear, thigh_boots, white_background |
| 4 | 18 |  |  |  |  |  | 1girl, hetero, blush, nipples, solo_focus, 1boy, open_mouth, sex, large_breasts, vaginal, penis, cum_in_pussy, spread_legs, tears, rape, breast_grab, grabbing, mosaic_censoring, thighhighs |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | cleavage | solo | one-piece_swimsuit | smile | covered_navel | open_mouth | looking_at_viewer | medium_breasts | collarbone | day | holding | towel | blue_sky | blush | large_breasts | bangs | cloud | outdoors | side_braids | pauldrons | simple_background | upper_body | side_braid | choker | closed_mouth | twitter_username | gloves | armor | thighhighs | zettai_ryouiki | pegasus_knight_uniform_(fire_emblem) | skirt | dress | full_body | white_gloves | short_dress | shiny_hair | looking_away | white_thighhighs | cape | fingerless_gloves | holding_bow_(weapon) | shoulder_armor | white_footwear | arrow_(projectile) | grey_background | puffy_short_sleeves | ribbon | spear | thigh_boots | white_background | hetero | nipples | solo_focus | 1boy | sex | vaginal | penis | cum_in_pussy | spread_legs | tears | rape | breast_grab | grabbing | mosaic_censoring |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-----------|:-------|:---------------------|:--------|:----------------|:-------------|:--------------------|:-----------------|:-------------|:------|:----------|:--------|:-----------|:--------|:----------------|:--------|:--------|:-----------|:--------------|:------------|:--------------------|:-------------|:-------------|:---------|:---------------|:-------------------|:---------|:--------|:-------------|:-----------------|:---------------------------------------|:--------|:--------|:------------|:---------------|:--------------|:-------------|:---------------|:-------------------|:-------|:--------------------|:-----------------------|:-----------------|:-----------------|:---------------------|:------------------|:----------------------|:---------|:--------|:--------------|:-------------------|:---------|:----------|:-------------|:-------|:------|:----------|:--------|:---------------|:--------------|:--------|:-------|:--------------|:-----------|:-------------------|
| 0 | 21 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 7 |  |  |  |  |  | X | | X | | X | | | X | | | | | | | | | | | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 24 |  |  |  |  |  | X | | X | | X | | X | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 10 |  |  |  |  |  | X | X | X | | X | | X | | X | | | | | | | | X | | | | | X | | | X | | | | | | X | | X | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | |
| 4 | 18 |  |  |  |  |  | X | | | | | | X | | | | | | | | X | X | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/turner_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T05:29:10+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T07:34:37+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of turner (Fire Emblem)
===============================
This is the dataset of turner (Fire Emblem), containing 155 images and their tags.
The core tags of this character are 'long\_hair, blue\_hair, braid, blue\_eyes, ponytail, twin\_braids, breasts, very\_long\_hair', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
09b18c6dbb76b970f610f1cdd09318c7d615da6d |
# Dataset of erincia_ridell_crimea (Fire Emblem)
This is the dataset of erincia_ridell_crimea (Fire Emblem), containing 218 images and their tags.
The core tags of this character are `green_hair, long_hair, breasts, brown_eyes, hair_ornament, large_breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:----------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 218 | 287.90 MiB | [Download](https://huggingface.co/datasets/CyberHarem/erincia_ridell_crimea_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 218 | 164.51 MiB | [Download](https://huggingface.co/datasets/CyberHarem/erincia_ridell_crimea_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 495 | 334.88 MiB | [Download](https://huggingface.co/datasets/CyberHarem/erincia_ridell_crimea_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 218 | 255.00 MiB | [Download](https://huggingface.co/datasets/CyberHarem/erincia_ridell_crimea_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 495 | 466.74 MiB | [Download](https://huggingface.co/datasets/CyberHarem/erincia_ridell_crimea_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/erincia_ridell_crimea_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 12 |  |  |  |  |  | 1girl, smile, solo, circlet, earrings, long_sleeves, single_hair_bun, orange_dress |
| 1 | 27 |  |  |  |  |  | solo, 1girl, thighhighs, cape, thigh_boots, tiara, holding_sword, simple_background, full_body, fingerless_gloves, shoulder_armor, bangs, breastplate, dress, white_background |
| 2 | 14 |  |  |  |  |  | 1girl, smile, solo, kimono, looking_at_viewer, hair_flower, obi, simple_background, hand_fan, holding, wide_sleeves, floral_print, full_body, open_mouth, sandals |
| 3 | 32 |  |  |  |  |  | 1girl, hair_flower, orange_bikini, bare_shoulders, navel, bangs, off-shoulder_bikini, official_alternate_costume, smile, solo, necklace, hair_bun, looking_at_viewer, cleavage, collarbone, stomach, outdoors, puffy_short_sleeves, sarong, thighs, day, hibiscus, red_flower, beads, bracelet, water, blue_sky, blush, medium_breasts, beach |
| 4 | 10 |  |  |  |  |  | 1girl, blush, hetero, nipples, solo_focus, cum_in_pussy, penis, vaginal, open_mouth, 1boy, mosaic_censoring, navel, spread_legs, completely_nude, cum_on_breasts, on_back, 2boys, group_sex, hair_bun |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | smile | solo | circlet | earrings | long_sleeves | single_hair_bun | orange_dress | thighhighs | cape | thigh_boots | tiara | holding_sword | simple_background | full_body | fingerless_gloves | shoulder_armor | bangs | breastplate | dress | white_background | kimono | looking_at_viewer | hair_flower | obi | hand_fan | holding | wide_sleeves | floral_print | open_mouth | sandals | orange_bikini | bare_shoulders | navel | off-shoulder_bikini | official_alternate_costume | necklace | hair_bun | cleavage | collarbone | stomach | outdoors | puffy_short_sleeves | sarong | thighs | day | hibiscus | red_flower | beads | bracelet | water | blue_sky | blush | medium_breasts | beach | hetero | nipples | solo_focus | cum_in_pussy | penis | vaginal | 1boy | mosaic_censoring | spread_legs | completely_nude | cum_on_breasts | on_back | 2boys | group_sex |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------|:-------|:----------|:-----------|:---------------|:------------------|:---------------|:-------------|:-------|:--------------|:--------|:----------------|:--------------------|:------------|:--------------------|:-----------------|:--------|:--------------|:--------|:-------------------|:---------|:--------------------|:--------------|:------|:-----------|:----------|:---------------|:---------------|:-------------|:----------|:----------------|:-----------------|:--------|:----------------------|:-----------------------------|:-----------|:-----------|:-----------|:-------------|:----------|:-----------|:----------------------|:---------|:---------|:------|:-----------|:-------------|:--------|:-----------|:--------|:-----------|:--------|:-----------------|:--------|:---------|:----------|:-------------|:---------------|:--------|:----------|:-------|:-------------------|:--------------|:------------------|:-----------------|:----------|:--------|:------------|
| 0 | 12 |  |  |  |  |  | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 27 |  |  |  |  |  | X | | X | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 14 |  |  |  |  |  | X | X | X | | | | | | | | | | | X | X | | | | | | | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 32 |  |  |  |  |  | X | X | X | | | | | | | | | | | | | | | X | | | | | X | X | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | |
| 4 | 10 |  |  |  |  |  | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | | | | X | | | | X | | | | | | | | | | | | | | | X | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/erincia_ridell_crimea_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T05:29:12+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T07:49:55+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of erincia\_ridell\_crimea (Fire Emblem)
================================================
This is the dataset of erincia\_ridell\_crimea (Fire Emblem), containing 218 images and their tags.
The core tags of this character are 'green\_hair, long\_hair, breasts, brown\_eyes, hair\_ornament, large\_breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
d42058852c9671c00f076efb4dc3d3fd7c6d765d |
# Dataset of sofiya (Fire Emblem)
This is the dataset of sofiya (Fire Emblem), containing 329 images and their tags.
The core tags of this character are `purple_hair, long_hair, purple_eyes, very_long_hair, breasts, braid`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:-------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 329 | 498.15 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sofiya_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 329 | 242.70 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sofiya_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 750 | 504.92 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sofiya_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 329 | 415.61 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sofiya_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 750 | 753.99 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sofiya_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/sofiya_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 8 |  |  |  |  |  | 1girl, blush, solo, nipples, collarbone, large_breasts, nude, simple_background, navel, embarrassed, looking_at_viewer, upper_body, white_background |
| 1 | 15 |  |  |  |  |  | 1girl, simple_background, solo, cleavage, collarbone, looking_at_viewer, white_background, blush, navel, large_breasts, string_bikini, absurdly_long_hair, black_bikini, alternate_costume, embarrassed, halterneck, side-tie_bikini_bottom |
| 2 | 8 |  |  |  |  |  | 1girl, alternate_costume, blush, cleavage, large_breasts, looking_at_viewer, solo, black_bikini, blue_sky, day, navel, outdoors, collarbone, ocean, smile, beach, halterneck, side-tie_bikini_bottom, string_bikini, cloudy_sky, sunlight, wet |
| 3 | 21 |  |  |  |  |  | 1girl, belly_chain, blue_dress, cloak, solo, cape, long_sleeves, simple_background, holding_book, white_background, absurdly_long_hair, collarbone |
| 4 | 5 |  |  |  |  |  | 1girl, belly_chain, blue_dress, cape, cloak, long_sleeves, solo, blush, looking_at_viewer, smile |
| 5 | 8 |  |  |  |  |  | 1girl, blue_dress, cloak, french_braid, solo, transparent_background, holding, looking_at_viewer, expressionless |
| 6 | 25 |  |  |  |  |  | 1girl, hetero, blush, penis, solo_focus, 1boy, nipples, sex, open_mouth, sweat, vaginal, mosaic_censoring, navel, large_breasts, cum_in_pussy, french_braid, cloak, completely_nude, dress, medium_breasts |
| 7 | 7 |  |  |  |  |  | 1girl, bare_shoulders, black_dress, solo, bangs, frilled_dress, long_sleeves, necklace, looking_at_viewer, official_alternate_costume, stuffed_animal, veil, collarbone, halloween_costume, lolita_fashion, white_background, absurdly_long_hair, black_footwear, closed_mouth, long_dress, off-shoulder_dress, puffy_sleeves, purple_dress, spider_web |
| 8 | 9 |  |  |  |  |  | 1girl, blush, looking_at_viewer, solo, white_shirt, french_braid, large_breasts, open_shirt, navel, bangs, collared_shirt, long_sleeves, no_bra, smile |
| 9 | 6 |  |  |  |  |  | bare_shoulders, fake_animal_ears, playboy_bunny, rabbit_ears, 1girl, black_leotard, blush, detached_collar, large_breasts, simple_background, white_background, alternate_costume, bowtie, cleavage, looking_at_viewer, rabbit_tail, strapless_leotard, wrist_cuffs, bare_legs, black_hairband, collarbone, covered_navel, fake_tail, pantyhose, solo |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | blush | solo | nipples | collarbone | large_breasts | nude | simple_background | navel | embarrassed | looking_at_viewer | upper_body | white_background | cleavage | string_bikini | absurdly_long_hair | black_bikini | alternate_costume | halterneck | side-tie_bikini_bottom | blue_sky | day | outdoors | ocean | smile | beach | cloudy_sky | sunlight | wet | belly_chain | blue_dress | cloak | cape | long_sleeves | holding_book | french_braid | transparent_background | holding | expressionless | hetero | penis | solo_focus | 1boy | sex | open_mouth | sweat | vaginal | mosaic_censoring | cum_in_pussy | completely_nude | dress | medium_breasts | bare_shoulders | black_dress | bangs | frilled_dress | necklace | official_alternate_costume | stuffed_animal | veil | halloween_costume | lolita_fashion | black_footwear | closed_mouth | long_dress | off-shoulder_dress | puffy_sleeves | purple_dress | spider_web | white_shirt | open_shirt | collared_shirt | no_bra | fake_animal_ears | playboy_bunny | rabbit_ears | black_leotard | detached_collar | bowtie | rabbit_tail | strapless_leotard | wrist_cuffs | bare_legs | black_hairband | covered_navel | fake_tail | pantyhose |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------|:-------|:----------|:-------------|:----------------|:-------|:--------------------|:--------|:--------------|:--------------------|:-------------|:-------------------|:-----------|:----------------|:---------------------|:---------------|:--------------------|:-------------|:-------------------------|:-----------|:------|:-----------|:--------|:--------|:--------|:-------------|:-----------|:------|:--------------|:-------------|:--------|:-------|:---------------|:---------------|:---------------|:-------------------------|:----------|:-----------------|:---------|:--------|:-------------|:-------|:------|:-------------|:--------|:----------|:-------------------|:---------------|:------------------|:--------|:-----------------|:-----------------|:--------------|:--------|:----------------|:-----------|:-----------------------------|:-----------------|:-------|:--------------------|:-----------------|:-----------------|:---------------|:-------------|:---------------------|:----------------|:---------------|:-------------|:--------------|:-------------|:-----------------|:---------|:-------------------|:----------------|:--------------|:----------------|:------------------|:---------|:--------------|:--------------------|:--------------|:------------|:-----------------|:----------------|:------------|:------------|
| 0 | 8 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 15 |  |  |  |  |  | X | X | X | | X | X | | X | X | X | X | | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 8 |  |  |  |  |  | X | X | X | | X | X | | | X | | X | | | X | X | | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 21 |  |  |  |  |  | X | | X | | X | | | X | | | | | X | | | X | | | | | | | | | | | | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 5 |  |  |  |  |  | X | X | X | | | | | | | | X | | | | | | | | | | | | | | X | | | | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 8 |  |  |  |  |  | X | | X | | | | | | | | X | | | | | | | | | | | | | | | | | | | | X | X | | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 25 |  |  |  |  |  | X | X | | X | | X | | | X | | | | | | | | | | | | | | | | | | | | | | | X | | | | X | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 7 | 7 |  |  |  |  |  | X | | X | | X | | | | | | X | | X | | | X | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | |
| 8 | 9 |  |  |  |  |  | X | X | X | | | X | | | X | | X | | | | | | | | | | | | | | X | | | | | | | | | X | | X | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | X | X | X | X | | | | | | | | | | | | | | |
| 9 | 6 |  |  |  |  |  | X | X | X | | X | X | | X | | | X | | X | X | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/sofiya_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T05:29:14+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T08:22:14+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of sofiya (Fire Emblem)
===============================
This is the dataset of sofiya (Fire Emblem), containing 329 images and their tags.
The core tags of this character are 'purple\_hair, long\_hair, purple\_eyes, very\_long\_hair, breasts, braid', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
a92f9b3707d3d225c034a1d6cf3fceb93c69ff49 |
# Dataset of marc_female_fire_emblem (Fire Emblem)
This is the dataset of marc_female_fire_emblem (Fire Emblem), containing 23 images and their tags.
The core tags of this character are `black_hair, short_hair, purple_eyes, ahoge, red_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:------------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 23 | 24.49 MiB | [Download](https://huggingface.co/datasets/CyberHarem/marc_female_fire_emblem_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 23 | 16.01 MiB | [Download](https://huggingface.co/datasets/CyberHarem/marc_female_fire_emblem_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 47 | 28.30 MiB | [Download](https://huggingface.co/datasets/CyberHarem/marc_female_fire_emblem_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 23 | 23.49 MiB | [Download](https://huggingface.co/datasets/CyberHarem/marc_female_fire_emblem_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 47 | 36.36 MiB | [Download](https://huggingface.co/datasets/CyberHarem/marc_female_fire_emblem_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/marc_female_fire_emblem_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 8 |  |  |  |  |  | hood_down, long_sleeves, simple_background, solo, 1girl, holding_book, open_mouth, smile, full_body, looking_at_viewer, knee_boots, open_book, white_background, 1boy, bangs, black_gloves, brown_footwear, male_focus, thighhighs |
| 1 | 5 |  |  |  |  |  | long_sleeves, 1girl, hood_down, looking_at_viewer, open_mouth, 1boy, :d, black_gloves, solo, balloon, bangs, belt, blush, robe, upper_body |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | hood_down | long_sleeves | simple_background | solo | 1girl | holding_book | open_mouth | smile | full_body | looking_at_viewer | knee_boots | open_book | white_background | 1boy | bangs | black_gloves | brown_footwear | male_focus | thighhighs | :d | balloon | belt | blush | robe | upper_body |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------|:---------------|:--------------------|:-------|:--------|:---------------|:-------------|:--------|:------------|:--------------------|:-------------|:------------|:-------------------|:-------|:--------|:---------------|:-----------------|:-------------|:-------------|:-----|:----------|:-------|:--------|:-------|:-------------|
| 0 | 8 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | |
| 1 | 5 |  |  |  |  |  | X | X | | X | X | | X | | | X | | | | X | X | X | | | | X | X | X | X | X | X |
| CyberHarem/marc_female_fire_emblem_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T05:41:49+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T07:10:30+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of marc\_female\_fire\_emblem (Fire Emblem)
===================================================
This is the dataset of marc\_female\_fire\_emblem (Fire Emblem), containing 23 images and their tags.
The core tags of this character are 'black\_hair, short\_hair, purple\_eyes, ahoge, red\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
050c99bc25405f24c4256e9f3982b225638ba3a4 |
# Dataset of freya (Fire Emblem)
This is the dataset of freya (Fire Emblem), containing 231 images and their tags.
The core tags of this character are `long_hair, horns, breasts, red_eyes, red_horns, large_breasts, multicolored_hair, goat_horns, bangs, curled_horns, hair_ornament, blue_hair, grey_hair, hair_flower, white_hair`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 231 | 397.41 MiB | [Download](https://huggingface.co/datasets/CyberHarem/freya_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 231 | 207.59 MiB | [Download](https://huggingface.co/datasets/CyberHarem/freya_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 568 | 441.45 MiB | [Download](https://huggingface.co/datasets/CyberHarem/freya_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 231 | 345.01 MiB | [Download](https://huggingface.co/datasets/CyberHarem/freya_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 568 | 646.41 MiB | [Download](https://huggingface.co/datasets/CyberHarem/freya_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/freya_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 14 |  |  |  |  |  | 1girl, looking_at_viewer, solo, upper_body, cleavage, thorns, blue_rose, bodystocking, dress, parted_lips, hair_between_eyes, simple_background, smile, twitter_username, vines, white_background |
| 1 | 6 |  |  |  |  |  | 1girl, cleavage, flower, looking_at_viewer, solo, official_alternate_costume, smile, white_gloves, blush, dress, simple_background, very_long_hair, white_background |
| 2 | 29 |  |  |  |  |  | 1girl, solo, armlet, white_bikini, looking_at_viewer, official_alternate_costume, outdoors, day, flower_necklace, ocean, sky, cleavage, beach, collarbone, navel, blush, thighs, smile, cloud, two-tone_hair |
| 3 | 6 |  |  |  |  |  | 1girl, armlet, cleavage, flower_necklace, looking_at_viewer, official_alternate_costume, pelvic_curtain, showgirl_skirt, solo, white_bikini, armpits, gradient_hair, navel, collarbone, smile, thighs, arm_up, stomach |
| 4 | 14 |  |  |  |  |  | 1girl, nipples, nude, solo, looking_at_viewer, navel, blush, collarbone, flower, open_mouth, pussy, huge_breasts |
| 5 | 7 |  |  |  |  |  | 1boy, 1girl, blush, hetero, nipples, sex, navel, pussy, spread_legs, sweat, vaginal, penis, smile, cowgirl_position, girl_on_top, mosaic_censoring, solo_focus, collarbone, completely_nude, looking_at_viewer, open_mouth, saliva, very_long_hair |
| 6 | 6 |  |  |  |  |  | 1girl, hetero, looking_at_viewer, penis, solo_focus, 1boy, blush, fellatio, bar_censor, simple_background, white_background, brown_eyes, cum_in_mouth, cum_on_hair, facial, flower, paizuri, tongue_out |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | looking_at_viewer | solo | upper_body | cleavage | thorns | blue_rose | bodystocking | dress | parted_lips | hair_between_eyes | simple_background | smile | twitter_username | vines | white_background | flower | official_alternate_costume | white_gloves | blush | very_long_hair | armlet | white_bikini | outdoors | day | flower_necklace | ocean | sky | beach | collarbone | navel | thighs | cloud | two-tone_hair | pelvic_curtain | showgirl_skirt | armpits | gradient_hair | arm_up | stomach | nipples | nude | open_mouth | pussy | huge_breasts | 1boy | hetero | sex | spread_legs | sweat | vaginal | penis | cowgirl_position | girl_on_top | mosaic_censoring | solo_focus | completely_nude | saliva | fellatio | bar_censor | brown_eyes | cum_in_mouth | cum_on_hair | facial | paizuri | tongue_out |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------------------|:-------|:-------------|:-----------|:---------|:------------|:---------------|:--------|:--------------|:--------------------|:--------------------|:--------|:-------------------|:--------|:-------------------|:---------|:-----------------------------|:---------------|:--------|:-----------------|:---------|:---------------|:-----------|:------|:------------------|:--------|:------|:--------|:-------------|:--------|:---------|:--------|:----------------|:-----------------|:-----------------|:----------|:----------------|:---------|:----------|:----------|:-------|:-------------|:--------|:---------------|:-------|:---------|:------|:--------------|:--------|:----------|:--------|:-------------------|:--------------|:-------------------|:-------------|:------------------|:---------|:-----------|:-------------|:-------------|:---------------|:--------------|:---------|:----------|:-------------|
| 0 | 14 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 6 |  |  |  |  |  | X | X | X | | X | | | | X | | | X | X | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 29 |  |  |  |  |  | X | X | X | | X | | | | | | | | X | | | | | X | | X | | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 6 |  |  |  |  |  | X | X | X | | X | | | | | | | | X | | | | | X | | | | X | X | | | X | | | | X | X | X | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 14 |  |  |  |  |  | X | X | X | | | | | | | | | | | | | | X | | | X | | | | | | | | | | X | X | | | | | | | | | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | |
| 5 | 7 |  |  |  |  |  | X | X | | | | | | | | | | | X | | | | | | | X | X | | | | | | | | | X | X | | | | | | | | | | X | | X | X | | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | |
| 6 | 6 |  |  |  |  |  | X | X | | | | | | | | | | X | | | | X | X | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | X | X | | | | | X | | | | X | | | X | X | X | X | X | X | X | X |
| CyberHarem/freya_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T05:41:52+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T08:01:18+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of freya (Fire Emblem)
==============================
This is the dataset of freya (Fire Emblem), containing 231 images and their tags.
The core tags of this character are 'long\_hair, horns, breasts, red\_eyes, red\_horns, large\_breasts, multicolored\_hair, goat\_horns, bangs, curled\_horns, hair\_ornament, blue\_hair, grey\_hair, hair\_flower, white\_hair', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
169bb02d552b1a911aa13e9179980e336a7d3de7 |
# Dataset of sanaki_kirsch_altina (Fire Emblem)
This is the dataset of sanaki_kirsch_altina (Fire Emblem), containing 167 images and their tags.
The core tags of this character are `purple_hair, headband, yellow_eyes, long_hair, red_headband`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:---------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 167 | 164.30 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sanaki_kirsch_altina_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 167 | 107.84 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sanaki_kirsch_altina_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 343 | 205.43 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sanaki_kirsch_altina_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 167 | 150.73 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sanaki_kirsch_altina_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 343 | 266.39 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sanaki_kirsch_altina_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/sanaki_kirsch_altina_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 8 |  |  |  |  |  | 1girl, nipples, blush, cum_in_pussy, mosaic_censoring, after_sex, flat_chest, hetero, loli, 1boy, completely_nude, cumdrip, medium_breasts, penis, simple_background, solo_focus, white_background |
| 1 | 5 |  |  |  |  |  | 1girl, bare_shoulders, looking_at_viewer, simple_background, solo, white_background, blush, closed_mouth, white_dress, upper_body |
| 2 | 6 |  |  |  |  |  | 1girl, simple_background, solo, white_background, bare_shoulders, robe |
| 3 | 10 |  |  |  |  |  | 1girl, bride, solo, wedding_dress, white_dress, gloves, medium_hair, holding_bouquet, looking_at_viewer, petals, simple_background, bare_shoulders, blue_rose, closed_mouth, smile, white_background |
| 4 | 10 |  |  |  |  |  | 1girl, fingerless_gloves, smile, white_background, looking_at_viewer, ponytail, simple_background, katana, thighhighs, 2girls, holding, kimono, solo_focus |
| 5 | 6 |  |  |  |  |  | 1girl, blush, nude, restrained, solo, blue_hair, nipples, pussy, tentacle_sex, anal, breasts, loli, spread_legs, uncensored, vaginal |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | nipples | blush | cum_in_pussy | mosaic_censoring | after_sex | flat_chest | hetero | loli | 1boy | completely_nude | cumdrip | medium_breasts | penis | simple_background | solo_focus | white_background | bare_shoulders | looking_at_viewer | solo | closed_mouth | white_dress | upper_body | robe | bride | wedding_dress | gloves | medium_hair | holding_bouquet | petals | blue_rose | smile | fingerless_gloves | ponytail | katana | thighhighs | 2girls | holding | kimono | nude | restrained | blue_hair | pussy | tentacle_sex | anal | breasts | spread_legs | uncensored | vaginal |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:----------|:--------|:---------------|:-------------------|:------------|:-------------|:---------|:-------|:-------|:------------------|:----------|:-----------------|:--------|:--------------------|:-------------|:-------------------|:-----------------|:--------------------|:-------|:---------------|:--------------|:-------------|:-------|:--------|:----------------|:---------|:--------------|:------------------|:---------|:------------|:--------|:--------------------|:-----------|:---------|:-------------|:---------|:----------|:---------|:-------|:-------------|:------------|:--------|:---------------|:-------|:----------|:--------------|:-------------|:----------|
| 0 | 8 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 5 |  |  |  |  |  | X | | X | | | | | | | | | | | | X | | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 6 |  |  |  |  |  | X | | | | | | | | | | | | | | X | | X | X | | X | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 10 |  |  |  |  |  | X | | | | | | | | | | | | | | X | | X | X | X | X | X | X | | | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | |
| 4 | 10 |  |  |  |  |  | X | | | | | | | | | | | | | | X | X | X | | X | | | | | | | | | | | | | X | X | X | X | X | X | X | X | | | | | | | | | | |
| 5 | 6 |  |  |  |  |  | X | X | X | | | | | | X | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/sanaki_kirsch_altina_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T05:41:53+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T06:13:48+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of sanaki\_kirsch\_altina (Fire Emblem)
===============================================
This is the dataset of sanaki\_kirsch\_altina (Fire Emblem), containing 167 images and their tags.
The core tags of this character are 'purple\_hair, headband, yellow\_eyes, long\_hair, red\_headband', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
711b108caf8b44440783a7f49be6b6afa57ec33b |
# Dataset of larchel (Fire Emblem)
This is the dataset of larchel (Fire Emblem), containing 75 images and their tags.
The core tags of this character are `green_hair, green_eyes, breasts, long_hair, large_breasts, bangs, hair_ornament, hair_flower`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:--------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 75 | 80.90 MiB | [Download](https://huggingface.co/datasets/CyberHarem/larchel_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 75 | 52.17 MiB | [Download](https://huggingface.co/datasets/CyberHarem/larchel_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 156 | 101.84 MiB | [Download](https://huggingface.co/datasets/CyberHarem/larchel_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 75 | 73.82 MiB | [Download](https://huggingface.co/datasets/CyberHarem/larchel_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 156 | 135.20 MiB | [Download](https://huggingface.co/datasets/CyberHarem/larchel_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/larchel_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 6 |  |  |  |  |  | 1girl, open_mouth, white_gloves, armor, dress, elbow_gloves, ponytail, :d, cape, circlet |
| 1 | 6 |  |  |  |  |  | 1girl, bare_shoulders, blush, flower, solo, thighs, circlet, parted_bangs, parted_lips, highleg, looking_at_viewer, smile, swimsuit, ass, collarbone |
| 2 | 7 |  |  |  |  |  | 1girl, blush, circlet, collarbone, crop_top, looking_at_viewer, navel, parted_bangs, thighs, flower, smile, solo, white_shirt, bare_shoulders, cleavage, long_sleeves, tassel, closed_mouth, off-shoulder_shirt, white_panties, high-waist_pants, midriff, simple_background, tight_pants |
| 3 | 6 |  |  |  |  |  | 1girl, solo, coke-bottle_glasses, earrings, eyewear_on_head, gloves, looking_at_viewer, halloween_costume, alternate_costume, holding_lollipop, labcoat, ponytail, round-bottom_flask, smile, thighhighs |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | open_mouth | white_gloves | armor | dress | elbow_gloves | ponytail | :d | cape | circlet | bare_shoulders | blush | flower | solo | thighs | parted_bangs | parted_lips | highleg | looking_at_viewer | smile | swimsuit | ass | collarbone | crop_top | navel | white_shirt | cleavage | long_sleeves | tassel | closed_mouth | off-shoulder_shirt | white_panties | high-waist_pants | midriff | simple_background | tight_pants | coke-bottle_glasses | earrings | eyewear_on_head | gloves | halloween_costume | alternate_costume | holding_lollipop | labcoat | round-bottom_flask | thighhighs |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------------|:---------------|:--------|:--------|:---------------|:-----------|:-----|:-------|:----------|:-----------------|:--------|:---------|:-------|:---------|:---------------|:--------------|:----------|:--------------------|:--------|:-----------|:------|:-------------|:-----------|:--------|:--------------|:-----------|:---------------|:---------|:---------------|:---------------------|:----------------|:-------------------|:----------|:--------------------|:--------------|:----------------------|:-----------|:------------------|:---------|:--------------------|:--------------------|:-------------------|:----------|:---------------------|:-------------|
| 0 | 6 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 6 |  |  |  |  |  | X | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 7 |  |  |  |  |  | X | | | | | | | | | X | X | X | X | X | X | X | | | X | X | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | |
| 3 | 6 |  |  |  |  |  | X | | | | | | X | | | | | | | X | | | | | X | X | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/larchel_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T05:46:34+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T06:08:25+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of larchel (Fire Emblem)
================================
This is the dataset of larchel (Fire Emblem), containing 75 images and their tags.
The core tags of this character are 'green\_hair, green\_eyes, breasts, long\_hair, large\_breasts, bangs, hair\_ornament, hair\_flower', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
3e326b948220063313117e3fe80f1bdb311ce25d |
# Historia
This dataset assists LLM in improving the ability to narrate a tale depending on the prompts provided.
#### Name Derived From
The Greek word historia originally meant inquiry, the act of seeking knowledge, as well as the knowledge that results from inquiry. | neeraj-gloify/historia | [
"language:en",
"license:mit",
"Storyteller",
"narrator",
"short story",
"region:us"
] | 2024-01-18T06:00:07+00:00 | {"language": ["en"], "license": "mit", "tags": ["Storyteller", "narrator", "short story"]} | 2024-01-18T08:17:13+00:00 | [] | [
"en"
] | TAGS
#language-English #license-mit #Storyteller #narrator #short story #region-us
|
# Historia
This dataset assists LLM in improving the ability to narrate a tale depending on the prompts provided.
#### Name Derived From
The Greek word historia originally meant inquiry, the act of seeking knowledge, as well as the knowledge that results from inquiry. | [
"# Historia\n\nThis dataset assists LLM in improving the ability to narrate a tale depending on the prompts provided.",
"#### Name Derived From\nThe Greek word historia originally meant inquiry, the act of seeking knowledge, as well as the knowledge that results from inquiry."
] | [
"TAGS\n#language-English #license-mit #Storyteller #narrator #short story #region-us \n",
"# Historia\n\nThis dataset assists LLM in improving the ability to narrate a tale depending on the prompts provided.",
"#### Name Derived From\nThe Greek word historia originally meant inquiry, the act of seeking knowledge, as well as the knowledge that results from inquiry."
] |
e0ac3e7fef3d7350f38b047e42066ef5e32f676f |
# Indic Instruct Data v0.1
A collection of different instruction datasets spanning English and Hindi languages. The collection consists of:
- Anudesh
- [wikiHow](https://www.wikihow.com/Main-Page)
- [Flan v2](https://github.com/google-research/FLAN/blob/main/flan/v2/README.md) (67k sample subset)
- [Dolly](https://huggingface.co/datasets/databricks/databricks-dolly-15k)
- [Anthropic-HHH](https://huggingface.co/datasets/Anthropic/hh-rlhf) (5k sample subset)
- [OpenAssistant v1](https://huggingface.co/datasets/OpenAssistant/oasst1)
- [LymSys-Chat](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) (50k sample subset)
We translate the English subset of specific datasets using IndicTrans2 ([Gala et al., 2023](https://openreview.net/forum?id=vfT4YuzAYA)). The chrF++ scores of the back-translated example and the corresponding example is provided for quality assessment of the translated datasets.
We create and release two native Hindi instruction datasets:
- wikiHow: wikiHow is an online wiki-style platform that serves as a valuable resource for a diverse array of how-to articles spanning numerous topics.
- Anudesh: Anudesh is a crowd-sourced collection of prompts accompanied by responses generated from the Llama 2 70B model.
We recommend the readers to check out our [official blog post](https://ai4bharat.github.io/airavata) for more details on the dataset curation process.
## Citation
```bibtex
@article{gala2024airavata,
title = {Airavata: Introducing Hindi Instruction-tuned LLM},
author = {Jay Gala and Thanmay Jayakumar and Jaavid Aktar Husain and Aswanth Kumar M and Mohammed Safi Ur Rahman Khan and Diptesh Kanojia and Ratish Puduppully and Mitesh M. Khapra and Raj Dabre and Rudra Murthy and Anoop Kunchukuttan},
year = {2024},
journal = {arXiv preprint arXiv: 2401.15006}
}
```
| ai4bharat/indic-instruct-data-v0.1 | [
"annotations_creators:found",
"language_creators:found",
"multilinguality:multilingual",
"size_categories:5K<n<400K",
"language:en",
"language:hi",
"region:us"
] | 2024-01-18T06:08:49+00:00 | {"annotations_creators": ["found"], "language_creators": ["found"], "language": ["en", "hi"], "multilinguality": ["multilingual"], "size_categories": ["5K<n<400K"], "language_bcp47": ["en-US", "hi-IN"], "dataset_info": [{"config_name": "dolly", "features": [{"name": "id", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "instruction", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "backtranslated_instruction", "dtype": "string"}, {"name": "backtranslated_context", "dtype": "string"}, {"name": "backtranslated_response", "dtype": "string"}, {"name": "quality_metrics", "struct": [{"name": "chrF", "dtype": "double"}, {"name": "chrF++", "dtype": "double"}, {"name": "sacreBLEU", "dtype": "double"}]}], "splits": [{"name": "en", "num_bytes": 12955675, "num_examples": 15011}, {"name": "hi", "num_bytes": 43020098, "num_examples": 15011}]}, {"config_name": "flan_v2", "features": [{"name": "id", "dtype": "string"}, {"name": "inputs", "dtype": "string"}, {"name": "targets", "dtype": "string"}, {"name": "backtranslated_inputs", "dtype": "string"}, {"name": "backtranslated_targets", "dtype": "string"}, {"name": "quality_metrics", "struct": [{"name": "chrF", "dtype": "double"}, {"name": "chrF++", "dtype": "double"}, {"name": "sacreBLEU", "dtype": "double"}]}, {"name": "metadata", "struct": [{"name": "_task_name", "dtype": "string"}, {"name": "_task_source", "dtype": "string"}, {"name": "_template_idx", "dtype": "int64"}, {"name": "_template_type", "dtype": "string"}]}], "splits": [{"name": "en", "num_bytes": 139835406, "num_examples": 67463}, {"name": "hi", "num_bytes": 692609723, "num_examples": 67463}]}, {"config_name": "anudesh", "features": [{"name": "id", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "num_turns", "dtype": "int64"}, {"name": "model", "dtype": "string"}], "splits": [{"name": "en", "num_bytes": 16957645, "num_examples": 5234}, {"name": "hi", "num_bytes": 37608562, "num_examples": 7577}]}, {"config_name": "oasst1", "features": [{"name": "id", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "backtranslated_content", "dtype": "string"}, {"name": "created_date", "dtype": "string"}, {"name": "deleted", "dtype": "bool"}, {"name": "detoxify", "struct": [{"name": "identity_attack", "dtype": "float64"}, {"name": "insult", "dtype": "float64"}, {"name": "obscene", "dtype": "float64"}, {"name": "severe_toxicity", "dtype": "float64"}, {"name": "sexual_explicit", "dtype": "float64"}, {"name": "threat", "dtype": "float64"}, {"name": "toxicity", "dtype": "float64"}]}, {"name": "emojis", "struct": [{"name": "+1", "dtype": "float64"}, {"name": "-1", "dtype": "float64"}, {"name": "_skip_labeling", "dtype": "float64"}, {"name": "_skip_ranking", "dtype": "float64"}, {"name": "_skip_reply", "dtype": "float64"}, {"name": "red_flag", "dtype": "float64"}]}, {"name": "labels", "struct": [{"name": "creativity", "struct": [{"name": "count", "dtype": "int64"}, {"name": "value", "dtype": "float64"}]}, {"name": "fails_task", "struct": [{"name": "count", "dtype": "int64"}, {"name": "value", "dtype": "float64"}]}, {"name": "hate_speech", "struct": [{"name": "count", "dtype": "int64"}, {"name": "value", "dtype": "float64"}]}, {"name": "helpfulness", "struct": [{"name": "count", "dtype": "int64"}, {"name": "value", "dtype": "float64"}]}, {"name": "humor", "struct": [{"name": "count", "dtype": "int64"}, {"name": "value", "dtype": "float64"}]}, {"name": "lang_mismatch", "struct": [{"name": "count", "dtype": "int64"}, {"name": "value", "dtype": "float64"}]}, {"name": "moral_judgement", "struct": [{"name": "count", "dtype": "int64"}, {"name": "value", "dtype": "float64"}]}, {"name": "not_appropriate", "struct": [{"name": "count", "dtype": "int64"}, {"name": "value", "dtype": "float64"}]}, {"name": "pii", "struct": [{"name": "count", "dtype": "int64"}, {"name": "value", "dtype": "float64"}]}, {"name": "political_content", "struct": [{"name": "count", "dtype": "int64"}, {"name": "value", "dtype": "float64"}]}, {"name": "quality", "struct": [{"name": "count", "dtype": "int64"}, {"name": "value", "dtype": "float64"}]}, {"name": "sexual_content", "struct": [{"name": "count", "dtype": "int64"}, {"name": "value", "dtype": "float64"}]}, {"name": "spam", "struct": [{"name": "count", "dtype": "int64"}, {"name": "value", "dtype": "float64"}]}, {"name": "toxicity", "struct": [{"name": "count", "dtype": "int64"}, {"name": "value", "dtype": "float64"}]}, {"name": "violence", "struct": [{"name": "count", "dtype": "int64"}, {"name": "value", "dtype": "float64"}]}]}, {"name": "message_id", "dtype": "string"}, {"name": "parent_id", "dtype": "string"}, {"name": "rank", "dtype": "float64"}, {"name": "review_count", "dtype": "int64"}, {"name": "review_result", "dtype": "bool"}, {"name": "role", "dtype": "string"}, {"name": "synthetic", "dtype": "bool"}, {"name": "text", "dtype": "string"}, {"name": "user_id", "dtype": "string"}]}, {"name": "quality_metrics", "struct": [{"name": "chrF", "dtype": "double"}, {"name": "chrF++", "dtype": "double"}, {"name": "sacreBLEU", "dtype": "double"}]}], "splits": [{"name": "en", "num_bytes": 102808820, "num_examples": 19945}, {"name": "hi", "num_bytes": 234040644, "num_examples": 20128}]}, {"config_name": "hh-rlhf", "features": [{"name": "id", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "num_turns", "dtype": "int64"}, {"name": "quality_metrics", "struct": [{"name": "chrF", "dtype": "double"}, {"name": "chrF++", "dtype": "double"}, {"name": "sacreBLEU", "dtype": "double"}]}], "splits": [{"name": "en", "num_bytes": 5196642, "num_examples": 5000}, {"name": "hi", "num_bytes": 12725636, "num_examples": 5000}]}, {"config_name": "nmt-seed", "features": [{"name": "id", "dtype": "string"}, {"name": "input_text", "dtype": "string"}, {"name": "output_text", "dtype": "string"}, {"name": "input_language", "dtype": "string"}, {"name": "output_language", "dtype": "string"}, {"name": "bucket", "dtype": "string"}], "splits": [{"name": "hi", "num_bytes": 20519477, "num_examples": 50000}]}, {"config_name": "wikihow", "features": [{"name": "id", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "intro", "dtype": "string"}, {"name": "n_steps", "dtype": "int64"}, {"name": "steps", "list": [{"name": "description", "dtype": "string"}, {"name": "number", "dtype": "int64"}, {"name": "picture", "dtype": "string"}, {"name": "summary", "dtype": "string"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "en", "num_bytes": 262392614, "num_examples": 20400}, {"name": "hi", "num_bytes": 172318437, "num_examples": 6055}]}, {"config_name": "lm_sys", "features": [{"name": "id", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "backtranslated_content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "quality_metrics", "struct": [{"name": "chrF++", "dtype": "double"}]}], "splits": [{"name": "en", "num_bytes": 113785744, "num_examples": 50000}, {"name": "hi", "num_bytes": 381591698, "num_examples": 50000}]}], "configs": [{"config_name": "dolly", "data_files": [{"split": "en", "path": "dolly/en-*"}, {"split": "hi", "path": "dolly/hi-*"}]}, {"config_name": "flan_v2", "data_files": [{"split": "en", "path": "flan_v2/en-*"}, {"split": "hi", "path": "flan_v2/hi-*"}]}, {"config_name": "anudesh", "data_files": [{"split": "en", "path": "anudesh/en-*"}, {"split": "hi", "path": "anudesh/hi-*"}]}, {"config_name": "oasst1", "data_files": [{"split": "en", "path": "oasst1/en-*"}, {"split": "hi", "path": "oasst1/hi-*"}]}, {"config_name": "hh-rlhf", "data_files": [{"split": "en", "path": "hh-rlhf/en-*"}, {"split": "hi", "path": "hh-rlhf/hi-*"}]}, {"config_name": "nmt-seed", "data_files": [{"split": "hi", "path": "nmt/en-hi-*"}]}, {"config_name": "wikihow", "data_files": [{"split": "en", "path": "wikihow/en-*"}, {"split": "hi", "path": "wikihow/hi-*"}]}, {"config_name": "lm_sys", "data_files": [{"split": "en", "path": "lm_sys/en-*"}, {"split": "hi", "path": "lm_sys/hi-*"}]}]} | 2024-01-29T11:48:00+00:00 | [] | [
"en",
"hi"
] | TAGS
#annotations_creators-found #language_creators-found #multilinguality-multilingual #size_categories-5K<n<400K #language-English #language-Hindi #region-us
|
# Indic Instruct Data v0.1
A collection of different instruction datasets spanning English and Hindi languages. The collection consists of:
- Anudesh
- wikiHow
- Flan v2 (67k sample subset)
- Dolly
- Anthropic-HHH (5k sample subset)
- OpenAssistant v1
- LymSys-Chat (50k sample subset)
We translate the English subset of specific datasets using IndicTrans2 (Gala et al., 2023). The chrF++ scores of the back-translated example and the corresponding example is provided for quality assessment of the translated datasets.
We create and release two native Hindi instruction datasets:
- wikiHow: wikiHow is an online wiki-style platform that serves as a valuable resource for a diverse array of how-to articles spanning numerous topics.
- Anudesh: Anudesh is a crowd-sourced collection of prompts accompanied by responses generated from the Llama 2 70B model.
We recommend the readers to check out our official blog post for more details on the dataset curation process.
| [
"# Indic Instruct Data v0.1\n\nA collection of different instruction datasets spanning English and Hindi languages. The collection consists of:\n- Anudesh\n- wikiHow\n- Flan v2 (67k sample subset)\n- Dolly\n- Anthropic-HHH (5k sample subset)\n- OpenAssistant v1\n- LymSys-Chat (50k sample subset)\n\nWe translate the English subset of specific datasets using IndicTrans2 (Gala et al., 2023). The chrF++ scores of the back-translated example and the corresponding example is provided for quality assessment of the translated datasets. \n\nWe create and release two native Hindi instruction datasets:\n- wikiHow: wikiHow is an online wiki-style platform that serves as a valuable resource for a diverse array of how-to articles spanning numerous topics.\n- Anudesh: Anudesh is a crowd-sourced collection of prompts accompanied by responses generated from the Llama 2 70B model.\n\nWe recommend the readers to check out our official blog post for more details on the dataset curation process."
] | [
"TAGS\n#annotations_creators-found #language_creators-found #multilinguality-multilingual #size_categories-5K<n<400K #language-English #language-Hindi #region-us \n",
"# Indic Instruct Data v0.1\n\nA collection of different instruction datasets spanning English and Hindi languages. The collection consists of:\n- Anudesh\n- wikiHow\n- Flan v2 (67k sample subset)\n- Dolly\n- Anthropic-HHH (5k sample subset)\n- OpenAssistant v1\n- LymSys-Chat (50k sample subset)\n\nWe translate the English subset of specific datasets using IndicTrans2 (Gala et al., 2023). The chrF++ scores of the back-translated example and the corresponding example is provided for quality assessment of the translated datasets. \n\nWe create and release two native Hindi instruction datasets:\n- wikiHow: wikiHow is an online wiki-style platform that serves as a valuable resource for a diverse array of how-to articles spanning numerous topics.\n- Anudesh: Anudesh is a crowd-sourced collection of prompts accompanied by responses generated from the Llama 2 70B model.\n\nWe recommend the readers to check out our official blog post for more details on the dataset curation process."
] |
d8fb65bc5b1680e2d431ca4f58e792cce28e15c3 |
# Dataset of belka (Fire Emblem)
This is the dataset of belka (Fire Emblem), containing 106 images and their tags.
The core tags of this character are `blue_hair, short_hair, headband, breasts, purple_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 106 | 110.08 MiB | [Download](https://huggingface.co/datasets/CyberHarem/belka_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 106 | 63.08 MiB | [Download](https://huggingface.co/datasets/CyberHarem/belka_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 231 | 124.44 MiB | [Download](https://huggingface.co/datasets/CyberHarem/belka_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 106 | 98.44 MiB | [Download](https://huggingface.co/datasets/CyberHarem/belka_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 231 | 173.64 MiB | [Download](https://huggingface.co/datasets/CyberHarem/belka_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/belka_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 5 |  |  |  |  |  | 1girl, solo, armor, cape, looking_at_viewer, simple_background, upper_body, closed_mouth, holding_weapon, torn_clothes, white_background |
| 1 | 9 |  |  |  |  |  | 1girl, solo, armor, scarf, upper_body, gauntlets, weapon, white_background |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | armor | cape | looking_at_viewer | simple_background | upper_body | closed_mouth | holding_weapon | torn_clothes | white_background | scarf | gauntlets | weapon |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------|:-------|:--------------------|:--------------------|:-------------|:---------------|:-----------------|:---------------|:-------------------|:--------|:------------|:---------|
| 0 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | | | |
| 1 | 9 |  |  |  |  |  | X | X | X | | | | X | | | | X | X | X | X |
| CyberHarem/belka_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T06:33:41+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T06:55:14+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of belka (Fire Emblem)
==============================
This is the dataset of belka (Fire Emblem), containing 106 images and their tags.
The core tags of this character are 'blue\_hair, short\_hair, headband, breasts, purple\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
11a96e5dd38dcb42f2f920e946cd8637fa04530b |
# Dataset of manuela_casagranda (Fire Emblem)
This is the dataset of manuela_casagranda (Fire Emblem), containing 324 images and their tags.
The core tags of this character are `short_hair, breasts, brown_hair, mole, brown_eyes, mole_under_eye, large_breasts, eyeshadow, mature_female`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:-------------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 324 | 403.83 MiB | [Download](https://huggingface.co/datasets/CyberHarem/manuela_casagranda_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 324 | 217.05 MiB | [Download](https://huggingface.co/datasets/CyberHarem/manuela_casagranda_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 786 | 458.95 MiB | [Download](https://huggingface.co/datasets/CyberHarem/manuela_casagranda_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 324 | 349.07 MiB | [Download](https://huggingface.co/datasets/CyberHarem/manuela_casagranda_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 786 | 660.03 MiB | [Download](https://huggingface.co/datasets/CyberHarem/manuela_casagranda_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/manuela_casagranda_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 33 |  |  |  |  |  | 1girl, solo, choker, lipstick, cleavage, hair_slicked_back, looking_at_viewer, smile, dress, simple_background |
| 1 | 11 |  |  |  |  |  | 1girl, bell, christmas, cleavage, fake_animal_ears, fake_antlers, hair_slicked_back, lipstick, official_alternate_costume, reindeer_antlers, solo, fishnet_pantyhose, looking_at_viewer, smile, gloves, blush, cape, one_eye_closed, choker, reindeer_costume |
| 2 | 9 |  |  |  |  |  | 1girl, nipples, solo, navel, looking_at_viewer, smile, barefoot, completely_nude, lipstick, simple_background, sitting, white_background |
| 3 | 14 |  |  |  |  |  | 1boy, 1girl, hetero, solo_focus, lipstick, nipples, uncensored, blush, nude, paizuri, hair_slicked_back, choker, huge_breasts, large_penis, smile, cum_on_breasts, facial, heart |
| 4 | 6 |  |  |  |  |  | 1girl, nipples, pussy, solo, spread_legs, anus, nude, smile, uncensored, blush, looking_at_viewer, navel, thighhighs, hair_slicked_back, lipstick |
| 5 | 10 |  |  |  |  |  | 1boy, 1girl, hetero, nipples, penis, vaginal, completely_nude, lipstick, solo_focus, blush, uncensored, pussy, girl_on_top, hair_slicked_back, navel, open_mouth, sex_from_behind, smile, straddling, ass, choker, male_pubic_hair, spread_legs |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | choker | lipstick | cleavage | hair_slicked_back | looking_at_viewer | smile | dress | simple_background | bell | christmas | fake_animal_ears | fake_antlers | official_alternate_costume | reindeer_antlers | fishnet_pantyhose | gloves | blush | cape | one_eye_closed | reindeer_costume | nipples | navel | barefoot | completely_nude | sitting | white_background | 1boy | hetero | solo_focus | uncensored | nude | paizuri | huge_breasts | large_penis | cum_on_breasts | facial | heart | pussy | spread_legs | anus | thighhighs | penis | vaginal | girl_on_top | open_mouth | sex_from_behind | straddling | ass | male_pubic_hair |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:---------|:-----------|:-----------|:--------------------|:--------------------|:--------|:--------|:--------------------|:-------|:------------|:-------------------|:---------------|:-----------------------------|:-------------------|:--------------------|:---------|:--------|:-------|:-----------------|:-------------------|:----------|:--------|:-----------|:------------------|:----------|:-------------------|:-------|:---------|:-------------|:-------------|:-------|:----------|:---------------|:--------------|:-----------------|:---------|:--------|:--------|:--------------|:-------|:-------------|:--------|:----------|:--------------|:-------------|:------------------|:-------------|:------|:------------------|
| 0 | 33 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 11 |  |  |  |  |  | X | X | X | X | X | X | X | X | | | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 9 |  |  |  |  |  | X | X | | X | | | X | X | | X | | | | | | | | | | | | | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 14 |  |  |  |  |  | X | | X | X | | X | | X | | | | | | | | | | | X | | | | X | | | | | | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | |
| 4 | 6 |  |  |  |  |  | X | X | | X | | X | X | X | | | | | | | | | | | X | | | | X | X | | | | | | | | X | X | | | | | | | X | X | X | X | | | | | | | | |
| 5 | 10 |  |  |  |  |  | X | | X | X | | X | | X | | | | | | | | | | | X | | | | X | X | | X | | | X | X | X | X | | | | | | | | X | X | | | X | X | X | X | X | X | X | X |
| CyberHarem/manuela_casagranda_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T06:34:00+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T08:22:58+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of manuela\_casagranda (Fire Emblem)
============================================
This is the dataset of manuela\_casagranda (Fire Emblem), containing 324 images and their tags.
The core tags of this character are 'short\_hair, breasts, brown\_hair, mole, brown\_eyes, mole\_under\_eye, large\_breasts, eyeshadow, mature\_female', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
adace1b4253a96fdd15c87a99f30de36c37a91bf |
# Dataset of linea (Fire Emblem)
This is the dataset of linea (Fire Emblem), containing 34 images and their tags.
The core tags of this character are `blue_hair, braid, hair_ornament, long_hair, blue_eyes, crown_braid, hair_flower, bow`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 34 | 42.33 MiB | [Download](https://huggingface.co/datasets/CyberHarem/linea_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 34 | 24.81 MiB | [Download](https://huggingface.co/datasets/CyberHarem/linea_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 72 | 48.66 MiB | [Download](https://huggingface.co/datasets/CyberHarem/linea_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 34 | 37.72 MiB | [Download](https://huggingface.co/datasets/CyberHarem/linea_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 72 | 69.39 MiB | [Download](https://huggingface.co/datasets/CyberHarem/linea_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/linea_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:---------------------------------------------------------------------------------------------------------------------------------|
| 0 | 34 |  |  |  |  |  | 1girl, solo, fur_trim, flower, smile, dress, long_sleeves, simple_background, upper_body, capelet, looking_at_viewer, open_mouth |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | fur_trim | flower | smile | dress | long_sleeves | simple_background | upper_body | capelet | looking_at_viewer | open_mouth |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:-----------|:---------|:--------|:--------|:---------------|:--------------------|:-------------|:----------|:--------------------|:-------------|
| 0 | 34 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/linea_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T06:34:47+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T06:42:04+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of linea (Fire Emblem)
==============================
This is the dataset of linea (Fire Emblem), containing 34 images and their tags.
The core tags of this character are 'blue\_hair, braid, hair\_ornament, long\_hair, blue\_eyes, crown\_braid, hair\_flower, bow', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
04fbf66704449d7f31bf5514250fb4d1e73c241d |
# Dataset of lueur (Fire Emblem)
This is the dataset of lueur (Fire Emblem), containing 500 images and their tags.
The core tags of this character are `red_hair, long_hair, blue_hair, multicolored_hair, two-tone_hair, bangs, very_long_hair, crossed_bangs, breasts, heterochromia, red_eyes, blue_eyes, braid, split-color_hair, crown_braid, medium_breasts, large_breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 500 | 831.59 MiB | [Download](https://huggingface.co/datasets/CyberHarem/lueur_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 500 | 432.91 MiB | [Download](https://huggingface.co/datasets/CyberHarem/lueur_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 1242 | 940.34 MiB | [Download](https://huggingface.co/datasets/CyberHarem/lueur_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 500 | 717.03 MiB | [Download](https://huggingface.co/datasets/CyberHarem/lueur_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 1242 | 1.38 GiB | [Download](https://huggingface.co/datasets/CyberHarem/lueur_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/lueur_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 9 |  |  |  |  |  | 1girl, armor, smile, solo, tiara, blush, looking_at_viewer, white_bow, gloves, open_mouth, jewelry |
| 1 | 16 |  |  |  |  |  | 1girl, armor, looking_at_viewer, solo, tiara, smile, thigh_strap, thighhighs, blush, thighs, jewelry, gloves |
| 2 | 18 |  |  |  |  |  | 1girl, armor, solo, tiara, looking_at_viewer, smile, blush, jewelry |
| 3 | 11 |  |  |  |  |  | 1girl, armor, jewelry, looking_at_viewer, solo, sword, tiara, gloves, smile, thigh_strap, thighhighs, thighs |
| 4 | 8 |  |  |  |  |  | 1girl, armor, jewelry, looking_at_viewer, thigh_strap, tiara, holding_sword, solo, thighhighs, gloves, smile, thighs |
| 5 | 19 |  |  |  |  |  | 1girl, navel, blush, solo, looking_at_viewer, cleavage, two-tone_bikini, thighs, smile, thigh_strap, tiara, white_bikini, jewelry, open_mouth |
| 6 | 5 |  |  |  |  |  | 1girl, ponytail, blush, looking_at_viewer, open_mouth, shirt, solo, smile, sweat, pants |
| 7 | 6 |  |  |  |  |  | 1girl, looking_at_viewer, ponytail, solo, alternate_costume, blush, alternate_hairstyle, blue_shirt |
| 8 | 15 |  |  |  |  |  | 1girl, blush, completely_nude, looking_at_viewer, navel, nipples, solo, pussy, smile, thighs, tiara |
| 9 | 10 |  |  |  |  |  | 1girl, playboy_bunny, rabbit_ears, solo, fake_animal_ears, cleavage, looking_at_viewer, pantyhose, leotard, smile, blush, wrist_cuffs, thighs, bow, detached_collar, open_mouth, tail |
| 10 | 5 |  |  |  |  |  | 1boy, 1girl, blush, hetero, nipples, solo_focus, thighhighs, breast_grab, grabbing, jewelry, navel, open_mouth, penis, sex, spread_legs, thigh_strap, vaginal, cum_in_pussy, cum_on_body, gloves, mosaic_censoring, torn_clothes, ahegao, closed_eyes, ejaculation, lactation, missionary, nude, overflow, thick_thighs |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | armor | smile | solo | tiara | blush | looking_at_viewer | white_bow | gloves | open_mouth | jewelry | thigh_strap | thighhighs | thighs | sword | holding_sword | navel | cleavage | two-tone_bikini | white_bikini | ponytail | shirt | sweat | pants | alternate_costume | alternate_hairstyle | blue_shirt | completely_nude | nipples | pussy | playboy_bunny | rabbit_ears | fake_animal_ears | pantyhose | leotard | wrist_cuffs | bow | detached_collar | tail | 1boy | hetero | solo_focus | breast_grab | grabbing | penis | sex | spread_legs | vaginal | cum_in_pussy | cum_on_body | mosaic_censoring | torn_clothes | ahegao | closed_eyes | ejaculation | lactation | missionary | nude | overflow | thick_thighs |
|----:|----------:|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:----------------------------------|:--------|:--------|:--------|:-------|:--------|:--------|:--------------------|:------------|:---------|:-------------|:----------|:--------------|:-------------|:---------|:--------|:----------------|:--------|:-----------|:------------------|:---------------|:-----------|:--------|:--------|:--------|:--------------------|:----------------------|:-------------|:------------------|:----------|:--------|:----------------|:--------------|:-------------------|:------------|:----------|:--------------|:------|:------------------|:-------|:-------|:---------|:-------------|:--------------|:-----------|:--------|:------|:--------------|:----------|:---------------|:--------------|:-------------------|:---------------|:---------|:--------------|:--------------|:------------|:-------------|:-------|:-----------|:---------------|
| 0 | 9 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 16 |  |  |  |  |  | X | X | X | X | X | X | X | | X | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 18 |  |  |  |  |  | X | X | X | X | X | X | X | | | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | 11 |  |  |  |  |  | X | X | X | X | X | | X | | X | | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | 8 |  |  |  |  |  | X | X | X | X | X | | X | | X | | X | X | X | X | | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | 19 |  |  |  |  |  | X | | X | X | X | X | X | | | X | X | X | | X | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | 5 |  |  |  |  |  | X | | X | X | | X | X | | | X | | | | | | | | | | | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 7 | 6 |  |  |  |  |  | X | | | X | | X | X | | | | | | | | | | | | | | X | | | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 8 | 15 |  |  |  |  |  | X | | X | X | X | X | X | | | | | | | X | | | X | | | | | | | | | | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 9 | 10 |  |  |  |  |  | X | | X | X | | X | X | | | X | | | | X | | | | X | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | |
| 10 | 5 |  |  |  |  |  | X | | | | | X | | | X | X | X | X | X | | | | X | | | | | | | | | | | | X | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/lueur_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T06:35:02+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T08:43:39+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of lueur (Fire Emblem)
==============================
This is the dataset of lueur (Fire Emblem), containing 500 images and their tags.
The core tags of this character are 'red\_hair, long\_hair, blue\_hair, multicolored\_hair, two-tone\_hair, bangs, very\_long\_hair, crossed\_bangs, breasts, heterochromia, red\_eyes, blue\_eyes, braid, split-color\_hair, crown\_braid, medium\_breasts, large\_breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
f9b31b44c9a693eddcc9c93a247ad30c3005ea07 | # Dataset for Reading Analog Dial
dataset found at [Synanthropic/reading-analog-dial](https://huggingface.co/datasets/Synanthropic/reading-analog-dial)
This is the dataset used to train the model for reading analog dial found at: [demo](https://huggingface.co/spaces/Synanthropic/reading-analog-dial)
# Setup dataset for model training
- there are two datasets, corner and keypoint
1. download dataset
2. unzip one of (corner, keypoint)
3. edit make-dataset.py and set variable *srcdir* to one of corner or keypoint
- run script
4. train your model
| Synanthropic/reading-analog-gauge | [
"region:us"
] | 2024-01-18T06:42:02+00:00 | {} | 2024-01-24T01:55:26+00:00 | [] | [] | TAGS
#region-us
| # Dataset for Reading Analog Dial
dataset found at Synanthropic/reading-analog-dial
This is the dataset used to train the model for reading analog dial found at: demo
# Setup dataset for model training
- there are two datasets, corner and keypoint
1. download dataset
2. unzip one of (corner, keypoint)
3. edit URL and set variable *srcdir* to one of corner or keypoint
- run script
4. train your model
| [
"# Dataset for Reading Analog Dial\n\ndataset found at Synanthropic/reading-analog-dial\n\nThis is the dataset used to train the model for reading analog dial found at: demo",
"# Setup dataset for model training\n- there are two datasets, corner and keypoint\n1. download dataset\n2. unzip one of (corner, keypoint)\n3. edit URL and set variable *srcdir* to one of corner or keypoint\n - run script\n4. train your model"
] | [
"TAGS\n#region-us \n",
"# Dataset for Reading Analog Dial\n\ndataset found at Synanthropic/reading-analog-dial\n\nThis is the dataset used to train the model for reading analog dial found at: demo",
"# Setup dataset for model training\n- there are two datasets, corner and keypoint\n1. download dataset\n2. unzip one of (corner, keypoint)\n3. edit URL and set variable *srcdir* to one of corner or keypoint\n - run script\n4. train your model"
] |
68bc3cb24275327ef62a294d6f485272a1a0078d |
# Dataset of learne (Fire Emblem)
This is the dataset of learne (Fire Emblem), containing 75 images and their tags.
The core tags of this character are `long_hair, blonde_hair, wings, green_eyes, angel_wings, feathered_wings, very_long_hair, breasts, white_wings`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:-------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 75 | 98.56 MiB | [Download](https://huggingface.co/datasets/CyberHarem/learne_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 75 | 55.59 MiB | [Download](https://huggingface.co/datasets/CyberHarem/learne_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 155 | 104.65 MiB | [Download](https://huggingface.co/datasets/CyberHarem/learne_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 75 | 85.38 MiB | [Download](https://huggingface.co/datasets/CyberHarem/learne_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 155 | 143.95 MiB | [Download](https://huggingface.co/datasets/CyberHarem/learne_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/learne_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 34 |  |  |  |  |  | 1girl, solo, white_dress, long_sleeves, smile, looking_at_viewer, collarbone, braid, bangs |
| 1 | 7 |  |  |  |  |  | 1girl, looking_at_viewer, solo, medium_breasts, navel, smile, nipples, angel, completely_nude, sitting |
| 2 | 8 |  |  |  |  |  | 1boy, 1girl, blush, hetero, nipples, sex, completely_nude, large_breasts, navel, medium_breasts, open_mouth, pussy, solo_focus, spread_legs, censored, collarbone, simple_background, straddling, vaginal, white_background |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | white_dress | long_sleeves | smile | looking_at_viewer | collarbone | braid | bangs | medium_breasts | navel | nipples | angel | completely_nude | sitting | 1boy | blush | hetero | sex | large_breasts | open_mouth | pussy | solo_focus | spread_legs | censored | simple_background | straddling | vaginal | white_background |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------------|:---------------|:--------|:--------------------|:-------------|:--------|:--------|:-----------------|:--------|:----------|:--------|:------------------|:----------|:-------|:--------|:---------|:------|:----------------|:-------------|:--------|:-------------|:--------------|:-----------|:--------------------|:-------------|:----------|:-------------------|
| 0 | 34 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | |
| 1 | 7 |  |  |  |  |  | X | X | | | X | X | | | | X | X | X | X | X | X | | | | | | | | | | | | | | |
| 2 | 8 |  |  |  |  |  | X | | | | | | X | | | X | X | X | | X | | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/learne_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T06:49:44+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T07:07:28+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of learne (Fire Emblem)
===============================
This is the dataset of learne (Fire Emblem), containing 75 images and their tags.
The core tags of this character are 'long\_hair, blonde\_hair, wings, green\_eyes, angel\_wings, feathered\_wings, very\_long\_hair, breasts, white\_wings', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
c899ec10d924cf6b6b9ebeb35d12f29eeef5ec9f |
# Dataset of lalum (Fire Emblem)
This is the dataset of lalum (Fire Emblem), containing 38 images and their tags.
The core tags of this character are `hair_bun, double_bun, green_eyes, orange_hair, breasts, ribbon, short_hair`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 38 | 35.52 MiB | [Download](https://huggingface.co/datasets/CyberHarem/lalum_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 38 | 23.57 MiB | [Download](https://huggingface.co/datasets/CyberHarem/lalum_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 83 | 43.62 MiB | [Download](https://huggingface.co/datasets/CyberHarem/lalum_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 38 | 32.83 MiB | [Download](https://huggingface.co/datasets/CyberHarem/lalum_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 83 | 55.13 MiB | [Download](https://huggingface.co/datasets/CyberHarem/lalum_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/lalum_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 9 |  |  |  |  |  | 1girl, hetero, penis, sex, solo_focus, vaginal, sweat, 1boy, nipples, blush, cum_in_pussy, medium_breasts, girl_on_top, hair_ribbon, mosaic_censoring, nude, straddling, tears |
| 1 | 24 |  |  |  |  |  | 1girl, navel, solo, midriff, smile, open_mouth, jewelry, white_background, blush, simple_background, dancer, hair_ornament, looking_at_viewer |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | hetero | penis | sex | solo_focus | vaginal | sweat | 1boy | nipples | blush | cum_in_pussy | medium_breasts | girl_on_top | hair_ribbon | mosaic_censoring | nude | straddling | tears | navel | solo | midriff | smile | open_mouth | jewelry | white_background | simple_background | dancer | hair_ornament | looking_at_viewer |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:---------|:--------|:------|:-------------|:----------|:--------|:-------|:----------|:--------|:---------------|:-----------------|:--------------|:--------------|:-------------------|:-------|:-------------|:--------|:--------|:-------|:----------|:--------|:-------------|:----------|:-------------------|:--------------------|:---------|:----------------|:--------------------|
| 0 | 9 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | |
| 1 | 24 |  |  |  |  |  | X | | | | | | | | | X | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/lalum_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T06:50:58+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T07:10:56+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of lalum (Fire Emblem)
==============================
This is the dataset of lalum (Fire Emblem), containing 38 images and their tags.
The core tags of this character are 'hair\_bun, double\_bun, green\_eyes, orange\_hair, breasts, ribbon, short\_hair', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
3bfda762865f4e93d3f1aa3cd9d3c8bd16c5776a |
# Dataset Card for [TCMLM/TCM_Humanities]
<!-- Provide a quick summary of the dataset. -->
This dataset, curated by the Traditional Chinese Medicine Language Model Team, comprises a comprehensive collection of multiple-choice questions (both single and multiple answers) from the Chinese Medical Practitioner Examination. It's designed to aid in understanding and assessing knowledge in Chinese humanities medicine, medical ethics, and legal regulations for physicians.
## Dataset Details
### Dataset Description
- **Curated by:** Traditional Chinese Medicine Language Model Team.
- **Funded by:** Sponsored by family parental funds.
- **Language(s) (NLP):** Primarily in Chinese.
- **License:** MIT License.
## Uses
### Direct Use
This dataset is primarily intended for academic research, educational purposes, and training models in the field of medical humanities, ethics, and law. It can be used to develop AI models that understand and interpret questions related to these fields, aiding in the preparation for medical licensing exams in China.
### Out-of-Scope Use
The dataset is not designed for clinical decision-making or patient care. It should not be used as a standalone resource for legal or ethical advice in medical practices. Commercial use and use in medical scenarios require explicit authorization from the author. Unauthorized use, and any resulting ethical, medical safety, or legal issues, are the responsibility of the user.
## Dataset Structure
### Source Data
The dataset comprises a curated selection of questions from the Chinese Medical Practitioner Examination. These questions encompass various aspects of medical ethics, legal regulations, and humanities in medicine. Each entry in the dataset includes a question number, the question text, multiple choice options, the correct answer, and an explanation for the answer.
For example:
| 题目序号 | 题干 | 选项 | 答案 | 解析 |
| ------- | ---- | ---- | ---- | ---- |
| 1 | 根据《处方管理办法》规定,处方保存期满后,经()批准、登记备案,方可销毁 | "A.医疗机构主要负责人<br>B.卫生行政主管部门医政管理科室<br>C.卫生行政主管部门负责人<br>D.药品监督管理部门" | A | 《处方管理办法》第五十条规定:处方保存期满后,经医疗机构主要负责人批准、登记备案,方可销毁。 |
## Bias, Risks, and Limitations
### Bias
- **Cultural and Regional Specificity:** This dataset is specifically derived from the Chinese Medical Practitioner Examination and hence, is deeply rooted in the context of Chinese medical practice, law, and ethics. This focus may not accurately represent the diversity of medical practices, ethical standards, and legal frameworks found in other countries and regions. As a result, the dataset may not be suitable for global generalizations about medical practices.
- **Content Limitation:** The dataset's focus on multiple-choice questions may limit the depth and complexity of understanding that can be conveyed about each topic. Real-world medical, ethical, and legal scenarios are often more nuanced than what can be captured in a standardized test format.
### Risks
- **Misinterpretation:** Users of this dataset, especially those not familiar with the Chinese medical system, might misinterpret the information due to differences in medical practices and regulations across countries. This could lead to incorrect applications of the knowledge in different medical or legal contexts.
- **Educational Use Limitation:** While the dataset can be an excellent resource for educational purposes, it should not be relied upon as the sole source of information for critical decision-making in medical practice or legal advice. Users should consult a variety of resources and professional advice for such purposes.
### Limitations
- **Question Quantity:** The dataset's utility may be limited by the number of questions it contains. A larger number of questions would provide a more comprehensive overview of the various aspects of medical humanities, ethics, and laws in China.
- **Language Barrier:** The dataset is primarily in Chinese, which may limit its accessibility to non-Chinese speaking users. This could hinder its use in international research or educational settings.
- **Commercial and Medical Scenario Use:** The dataset is not authorized for commercial use or medical scenarios without explicit permission from the author. Unauthorized use in these contexts may lead to ethical, medical safety, or legal issues.
### Ethical Considerations
- **Sensitive Content:** Some questions in the dataset might involve sensitive ethical dilemmas or legal issues. Users must approach these topics with the appropriate level of sensitivity and understanding of the cultural context.
- **Respect for Intellectual Property:** The dataset is based on questions from an official examination. Users should respect the intellectual property rights associated with the content and adhere to the provided usage guidelines.
In summary, while the "Chinese Medical Humanities Dataset" provides valuable insights into Chinese medical humanities, ethics, and law, users should be aware of its cultural specificity, content limitations, and potential risks. It is important to use this dataset responsibly, keeping in mind its limitations and the need for a broad, culturally sensitive approach to medical humanities and legal education.
### Recommendations
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation
**BibTeX:**
@misc{TCM_Humanities,
author = {Paris Kang},
title = {Chinese Medical Humanities Dataset},
year = {2024},
howpublished = {Hugging Face Dataset Hub},
url = {https://huggingface.co/datasets/TCMLM/TCM_Humanities/}
}
ruby
Copy code
**APA:**
Kang, P. (2024). *Chinese Medical Humanities Dataset*. Retrieved from https://huggingface.co/datasets/TCMLM/TCM_Humanities/
## Dataset Card Authors
**Author:** Paris Kang, a poet, a practicing physician in oncology with a background in both traditional Chinese and Western medicine, and a doctoral candidate in Electronic Information.
**Contact Email:** [email protected] | TCMLM/TCM_Humanities | [
"task_categories:text-classification",
"size_categories:n<1K",
"language:zh",
"license:mit",
"medical",
"safety",
"region:us"
] | 2024-01-18T06:58:01+00:00 | {"language": ["zh"], "license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-classification"], "tags": ["medical", "safety"]} | 2024-01-28T02:38:50+00:00 | [] | [
"zh"
] | TAGS
#task_categories-text-classification #size_categories-n<1K #language-Chinese #license-mit #medical #safety #region-us
| Dataset Card for [TCMLM/TCM\_Humanities]
========================================
This dataset, curated by the Traditional Chinese Medicine Language Model Team, comprises a comprehensive collection of multiple-choice questions (both single and multiple answers) from the Chinese Medical Practitioner Examination. It's designed to aid in understanding and assessing knowledge in Chinese humanities medicine, medical ethics, and legal regulations for physicians.
Dataset Details
---------------
### Dataset Description
* Curated by: Traditional Chinese Medicine Language Model Team.
* Funded by: Sponsored by family parental funds.
* Language(s) (NLP): Primarily in Chinese.
* License: MIT License.
Uses
----
### Direct Use
This dataset is primarily intended for academic research, educational purposes, and training models in the field of medical humanities, ethics, and law. It can be used to develop AI models that understand and interpret questions related to these fields, aiding in the preparation for medical licensing exams in China.
### Out-of-Scope Use
The dataset is not designed for clinical decision-making or patient care. It should not be used as a standalone resource for legal or ethical advice in medical practices. Commercial use and use in medical scenarios require explicit authorization from the author. Unauthorized use, and any resulting ethical, medical safety, or legal issues, are the responsibility of the user.
Dataset Structure
-----------------
### Source Data
The dataset comprises a curated selection of questions from the Chinese Medical Practitioner Examination. These questions encompass various aspects of medical ethics, legal regulations, and humanities in medicine. Each entry in the dataset includes a question number, the question text, multiple choice options, the correct answer, and an explanation for the answer.
For example:
Bias, Risks, and Limitations
----------------------------
### Bias
* Cultural and Regional Specificity: This dataset is specifically derived from the Chinese Medical Practitioner Examination and hence, is deeply rooted in the context of Chinese medical practice, law, and ethics. This focus may not accurately represent the diversity of medical practices, ethical standards, and legal frameworks found in other countries and regions. As a result, the dataset may not be suitable for global generalizations about medical practices.
* Content Limitation: The dataset's focus on multiple-choice questions may limit the depth and complexity of understanding that can be conveyed about each topic. Real-world medical, ethical, and legal scenarios are often more nuanced than what can be captured in a standardized test format.
### Risks
* Misinterpretation: Users of this dataset, especially those not familiar with the Chinese medical system, might misinterpret the information due to differences in medical practices and regulations across countries. This could lead to incorrect applications of the knowledge in different medical or legal contexts.
* Educational Use Limitation: While the dataset can be an excellent resource for educational purposes, it should not be relied upon as the sole source of information for critical decision-making in medical practice or legal advice. Users should consult a variety of resources and professional advice for such purposes.
### Limitations
* Question Quantity: The dataset's utility may be limited by the number of questions it contains. A larger number of questions would provide a more comprehensive overview of the various aspects of medical humanities, ethics, and laws in China.
* Language Barrier: The dataset is primarily in Chinese, which may limit its accessibility to non-Chinese speaking users. This could hinder its use in international research or educational settings.
* Commercial and Medical Scenario Use: The dataset is not authorized for commercial use or medical scenarios without explicit permission from the author. Unauthorized use in these contexts may lead to ethical, medical safety, or legal issues.
### Ethical Considerations
* Sensitive Content: Some questions in the dataset might involve sensitive ethical dilemmas or legal issues. Users must approach these topics with the appropriate level of sensitivity and understanding of the cultural context.
* Respect for Intellectual Property: The dataset is based on questions from an official examination. Users should respect the intellectual property rights associated with the content and adhere to the provided usage guidelines.
In summary, while the "Chinese Medical Humanities Dataset" provides valuable insights into Chinese medical humanities, ethics, and law, users should be aware of its cultural specificity, content limitations, and potential risks. It is important to use this dataset responsibly, keeping in mind its limitations and the need for a broad, culturally sensitive approach to medical humanities and legal education.
### Recommendations
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
BibTeX:
@misc{TCM\_Humanities,
author = {Paris Kang},
title = {Chinese Medical Humanities Dataset},
year = {2024},
howpublished = {Hugging Face Dataset Hub},
url = {URL
}
ruby
Copy code
APA:
Kang, P. (2024). *Chinese Medical Humanities Dataset*. Retrieved from URL
Dataset Card Authors
--------------------
Author: Paris Kang, a poet, a practicing physician in oncology with a background in both traditional Chinese and Western medicine, and a doctoral candidate in Electronic Information.
Contact Email: 1641866831@URL
| [
"### Dataset Description\n\n\n* Curated by: Traditional Chinese Medicine Language Model Team.\n* Funded by: Sponsored by family parental funds.\n* Language(s) (NLP): Primarily in Chinese.\n* License: MIT License.\n\n\nUses\n----",
"### Direct Use\n\n\nThis dataset is primarily intended for academic research, educational purposes, and training models in the field of medical humanities, ethics, and law. It can be used to develop AI models that understand and interpret questions related to these fields, aiding in the preparation for medical licensing exams in China.",
"### Out-of-Scope Use\n\n\nThe dataset is not designed for clinical decision-making or patient care. It should not be used as a standalone resource for legal or ethical advice in medical practices. Commercial use and use in medical scenarios require explicit authorization from the author. Unauthorized use, and any resulting ethical, medical safety, or legal issues, are the responsibility of the user.\n\n\nDataset Structure\n-----------------",
"### Source Data\n\n\nThe dataset comprises a curated selection of questions from the Chinese Medical Practitioner Examination. These questions encompass various aspects of medical ethics, legal regulations, and humanities in medicine. Each entry in the dataset includes a question number, the question text, multiple choice options, the correct answer, and an explanation for the answer.\n\n\nFor example:\n\n\n\nBias, Risks, and Limitations\n----------------------------",
"### Bias\n\n\n* Cultural and Regional Specificity: This dataset is specifically derived from the Chinese Medical Practitioner Examination and hence, is deeply rooted in the context of Chinese medical practice, law, and ethics. This focus may not accurately represent the diversity of medical practices, ethical standards, and legal frameworks found in other countries and regions. As a result, the dataset may not be suitable for global generalizations about medical practices.\n* Content Limitation: The dataset's focus on multiple-choice questions may limit the depth and complexity of understanding that can be conveyed about each topic. Real-world medical, ethical, and legal scenarios are often more nuanced than what can be captured in a standardized test format.",
"### Risks\n\n\n* Misinterpretation: Users of this dataset, especially those not familiar with the Chinese medical system, might misinterpret the information due to differences in medical practices and regulations across countries. This could lead to incorrect applications of the knowledge in different medical or legal contexts.\n* Educational Use Limitation: While the dataset can be an excellent resource for educational purposes, it should not be relied upon as the sole source of information for critical decision-making in medical practice or legal advice. Users should consult a variety of resources and professional advice for such purposes.",
"### Limitations\n\n\n* Question Quantity: The dataset's utility may be limited by the number of questions it contains. A larger number of questions would provide a more comprehensive overview of the various aspects of medical humanities, ethics, and laws in China.\n* Language Barrier: The dataset is primarily in Chinese, which may limit its accessibility to non-Chinese speaking users. This could hinder its use in international research or educational settings.\n* Commercial and Medical Scenario Use: The dataset is not authorized for commercial use or medical scenarios without explicit permission from the author. Unauthorized use in these contexts may lead to ethical, medical safety, or legal issues.",
"### Ethical Considerations\n\n\n* Sensitive Content: Some questions in the dataset might involve sensitive ethical dilemmas or legal issues. Users must approach these topics with the appropriate level of sensitivity and understanding of the cultural context.\n* Respect for Intellectual Property: The dataset is based on questions from an official examination. Users should respect the intellectual property rights associated with the content and adhere to the provided usage guidelines.\n\n\nIn summary, while the \"Chinese Medical Humanities Dataset\" provides valuable insights into Chinese medical humanities, ethics, and law, users should be aware of its cultural specificity, content limitations, and potential risks. It is important to use this dataset responsibly, keeping in mind its limitations and the need for a broad, culturally sensitive approach to medical humanities and legal education.",
"### Recommendations\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n\nBibTeX:\n\n\n@misc{TCM\\_Humanities,\nauthor = {Paris Kang},\ntitle = {Chinese Medical Humanities Dataset},\nyear = {2024},\nhowpublished = {Hugging Face Dataset Hub},\nurl = {URL\n}\n\n\nruby\nCopy code\n\n\nAPA:\n\n\nKang, P. (2024). *Chinese Medical Humanities Dataset*. Retrieved from URL\n\n\nDataset Card Authors\n--------------------\n\n\nAuthor: Paris Kang, a poet, a practicing physician in oncology with a background in both traditional Chinese and Western medicine, and a doctoral candidate in Electronic Information.\n\n\nContact Email: 1641866831@URL"
] | [
"TAGS\n#task_categories-text-classification #size_categories-n<1K #language-Chinese #license-mit #medical #safety #region-us \n",
"### Dataset Description\n\n\n* Curated by: Traditional Chinese Medicine Language Model Team.\n* Funded by: Sponsored by family parental funds.\n* Language(s) (NLP): Primarily in Chinese.\n* License: MIT License.\n\n\nUses\n----",
"### Direct Use\n\n\nThis dataset is primarily intended for academic research, educational purposes, and training models in the field of medical humanities, ethics, and law. It can be used to develop AI models that understand and interpret questions related to these fields, aiding in the preparation for medical licensing exams in China.",
"### Out-of-Scope Use\n\n\nThe dataset is not designed for clinical decision-making or patient care. It should not be used as a standalone resource for legal or ethical advice in medical practices. Commercial use and use in medical scenarios require explicit authorization from the author. Unauthorized use, and any resulting ethical, medical safety, or legal issues, are the responsibility of the user.\n\n\nDataset Structure\n-----------------",
"### Source Data\n\n\nThe dataset comprises a curated selection of questions from the Chinese Medical Practitioner Examination. These questions encompass various aspects of medical ethics, legal regulations, and humanities in medicine. Each entry in the dataset includes a question number, the question text, multiple choice options, the correct answer, and an explanation for the answer.\n\n\nFor example:\n\n\n\nBias, Risks, and Limitations\n----------------------------",
"### Bias\n\n\n* Cultural and Regional Specificity: This dataset is specifically derived from the Chinese Medical Practitioner Examination and hence, is deeply rooted in the context of Chinese medical practice, law, and ethics. This focus may not accurately represent the diversity of medical practices, ethical standards, and legal frameworks found in other countries and regions. As a result, the dataset may not be suitable for global generalizations about medical practices.\n* Content Limitation: The dataset's focus on multiple-choice questions may limit the depth and complexity of understanding that can be conveyed about each topic. Real-world medical, ethical, and legal scenarios are often more nuanced than what can be captured in a standardized test format.",
"### Risks\n\n\n* Misinterpretation: Users of this dataset, especially those not familiar with the Chinese medical system, might misinterpret the information due to differences in medical practices and regulations across countries. This could lead to incorrect applications of the knowledge in different medical or legal contexts.\n* Educational Use Limitation: While the dataset can be an excellent resource for educational purposes, it should not be relied upon as the sole source of information for critical decision-making in medical practice or legal advice. Users should consult a variety of resources and professional advice for such purposes.",
"### Limitations\n\n\n* Question Quantity: The dataset's utility may be limited by the number of questions it contains. A larger number of questions would provide a more comprehensive overview of the various aspects of medical humanities, ethics, and laws in China.\n* Language Barrier: The dataset is primarily in Chinese, which may limit its accessibility to non-Chinese speaking users. This could hinder its use in international research or educational settings.\n* Commercial and Medical Scenario Use: The dataset is not authorized for commercial use or medical scenarios without explicit permission from the author. Unauthorized use in these contexts may lead to ethical, medical safety, or legal issues.",
"### Ethical Considerations\n\n\n* Sensitive Content: Some questions in the dataset might involve sensitive ethical dilemmas or legal issues. Users must approach these topics with the appropriate level of sensitivity and understanding of the cultural context.\n* Respect for Intellectual Property: The dataset is based on questions from an official examination. Users should respect the intellectual property rights associated with the content and adhere to the provided usage guidelines.\n\n\nIn summary, while the \"Chinese Medical Humanities Dataset\" provides valuable insights into Chinese medical humanities, ethics, and law, users should be aware of its cultural specificity, content limitations, and potential risks. It is important to use this dataset responsibly, keeping in mind its limitations and the need for a broad, culturally sensitive approach to medical humanities and legal education.",
"### Recommendations\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n\nBibTeX:\n\n\n@misc{TCM\\_Humanities,\nauthor = {Paris Kang},\ntitle = {Chinese Medical Humanities Dataset},\nyear = {2024},\nhowpublished = {Hugging Face Dataset Hub},\nurl = {URL\n}\n\n\nruby\nCopy code\n\n\nAPA:\n\n\nKang, P. (2024). *Chinese Medical Humanities Dataset*. Retrieved from URL\n\n\nDataset Card Authors\n--------------------\n\n\nAuthor: Paris Kang, a poet, a practicing physician in oncology with a background in both traditional Chinese and Western medicine, and a doctoral candidate in Electronic Information.\n\n\nContact Email: 1641866831@URL"
] |
8a7941a22521b9bde6cfb4e9317c1a639ef4be5e |
# Dataset of tanis (Fire Emblem)
This is the dataset of tanis (Fire Emblem), containing 20 images and their tags.
The core tags of this character are `brown_hair, short_hair, blue_eyes, bangs, headband, breasts, hair_ornament`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 20 | 16.89 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tanis_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 20 | 11.08 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tanis_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 33 | 16.96 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tanis_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 20 | 15.17 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tanis_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 33 | 21.02 MiB | [Download](https://huggingface.co/datasets/CyberHarem/tanis_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/tanis_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 6 |  |  |  |  |  | 1girl, belt, elbow_gloves, solo, breastplate, cape, fingerless_gloves, shoulder_armor, white_gloves, black_pants, closed_mouth, gold_trim, knee_boots, looking_at_viewer, shiny_hair, sleeveless, sword, white_dress, white_footwear |
| 1 | 6 |  |  |  |  |  | wedding_dress, white_dress, 1girl, solo, bare_shoulders, bride, full_body, hair_flower, looking_at_viewer, medium_breasts, open_mouth, detached_sleeves, high_heels, holding, petals, shiny_hair |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | belt | elbow_gloves | solo | breastplate | cape | fingerless_gloves | shoulder_armor | white_gloves | black_pants | closed_mouth | gold_trim | knee_boots | looking_at_viewer | shiny_hair | sleeveless | sword | white_dress | white_footwear | wedding_dress | bare_shoulders | bride | full_body | hair_flower | medium_breasts | open_mouth | detached_sleeves | high_heels | holding | petals |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:---------------|:-------|:--------------|:-------|:--------------------|:-----------------|:---------------|:--------------|:---------------|:------------|:-------------|:--------------------|:-------------|:-------------|:--------|:--------------|:-----------------|:----------------|:-----------------|:--------|:------------|:--------------|:-----------------|:-------------|:-------------------|:-------------|:----------|:---------|
| 0 | 6 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | |
| 1 | 6 |  |  |  |  |  | X | | | X | | | | | | | | | | X | X | | | X | | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/tanis_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T07:03:47+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T07:08:59+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of tanis (Fire Emblem)
==============================
This is the dataset of tanis (Fire Emblem), containing 20 images and their tags.
The core tags of this character are 'brown\_hair, short\_hair, blue\_eyes, bangs, headband, breasts, hair\_ornament', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
717c6c6d0ab0ef959de393a9e0fe697dd7d712d5 |
hello world | fivewords/test | [
"language:zh",
"license:apache-2.0",
"region:us"
] | 2024-01-18T07:03:49+00:00 | {"language": ["zh"], "license": "apache-2.0"} | 2024-01-18T07:04:50+00:00 | [] | [
"zh"
] | TAGS
#language-Chinese #license-apache-2.0 #region-us
|
hello world | [] | [
"TAGS\n#language-Chinese #license-apache-2.0 #region-us \n"
] |
4ee0d71966d2fa5fb3654125e8eeb4f6eb26f24c |
# Dataset of idenn (Fire Emblem)
This is the dataset of idenn (Fire Emblem), containing 80 images and their tags.
The core tags of this character are `long_hair, green_eyes, heterochromia, purple_hair, red_eyes, pointy_ears, breasts`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:-----------|:------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 80 | 104.26 MiB | [Download](https://huggingface.co/datasets/CyberHarem/idenn_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 80 | 58.88 MiB | [Download](https://huggingface.co/datasets/CyberHarem/idenn_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 173 | 118.01 MiB | [Download](https://huggingface.co/datasets/CyberHarem/idenn_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 80 | 92.61 MiB | [Download](https://huggingface.co/datasets/CyberHarem/idenn_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 173 | 166.99 MiB | [Download](https://huggingface.co/datasets/CyberHarem/idenn_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/idenn_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 5 |  |  |  |  |  | 1girl, closed_mouth, collarbone, dress, head_wreath, looking_at_viewer, smile, solo, bare_shoulders, blush, hair_flower, official_alternate_costume, upper_body, long_sleeves, simple_background, white_background |
| 1 | 7 |  |  |  |  |  | 1girl, purple_dress, solo, closed_mouth, collarbone, looking_at_viewer, upper_body, long_sleeves, purple_eyes, bare_shoulders, wide_sleeves |
| 2 | 7 |  |  |  |  |  | 1girl, solo, full_body, long_dress, parted_bangs, simple_background, toes, white_background, wide_sleeves, floating_object, fruit, hood_down, basket, closed_mouth, flower, hair_ornament, head_wreath, sandals, shiny_hair, stone, cape, looking_at_viewer, smile |
| 3 | 17 |  |  |  |  |  | nipples, 1girl, blush, hetero, 1boy, solo_focus, completely_nude, large_breasts, penis, sex, sweat, vaginal, pov, smile, cowgirl_position, girl_on_top, looking_at_viewer, navel, medium_breasts, mosaic_censoring, cum_in_pussy, sidelocks |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | closed_mouth | collarbone | dress | head_wreath | looking_at_viewer | smile | solo | bare_shoulders | blush | hair_flower | official_alternate_costume | upper_body | long_sleeves | simple_background | white_background | purple_dress | purple_eyes | wide_sleeves | full_body | long_dress | parted_bangs | toes | floating_object | fruit | hood_down | basket | flower | hair_ornament | sandals | shiny_hair | stone | cape | nipples | hetero | 1boy | solo_focus | completely_nude | large_breasts | penis | sex | sweat | vaginal | pov | cowgirl_position | girl_on_top | navel | medium_breasts | mosaic_censoring | cum_in_pussy | sidelocks |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:---------------|:-------------|:--------|:--------------|:--------------------|:--------|:-------|:-----------------|:--------|:--------------|:-----------------------------|:-------------|:---------------|:--------------------|:-------------------|:---------------|:--------------|:---------------|:------------|:-------------|:---------------|:-------|:------------------|:--------|:------------|:---------|:---------|:----------------|:----------|:-------------|:--------|:-------|:----------|:---------|:-------|:-------------|:------------------|:----------------|:--------|:------|:--------|:----------|:------|:-------------------|:--------------|:--------|:-----------------|:-------------------|:---------------|:------------|
| 0 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 7 |  |  |  |  |  | X | X | X | | | X | | X | X | | | | X | X | | | X | X | X | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | 7 |  |  |  |  |  | X | X | | | X | X | X | X | | | | | | | X | X | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | |
| 3 | 17 |  |  |  |  |  | X | | | | | X | X | | | X | | | | | | | | | | | | | | | | | | | | | | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/idenn_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T07:04:01+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T07:20:02+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of idenn (Fire Emblem)
==============================
This is the dataset of idenn (Fire Emblem), containing 80 images and their tags.
The core tags of this character are 'long\_hair, green\_eyes, heterochromia, purple\_hair, red\_eyes, pointy\_ears, breasts', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
330833443642272fb08133c8a1237ad6f73ccd29 |
# Dataset of jill_fizzart (Fire Emblem)
This is the dataset of jill_fizzart (Fire Emblem), containing 37 images and their tags.
The core tags of this character are `long_hair, ponytail, red_hair, red_eyes`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:-------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 37 | 38.79 MiB | [Download](https://huggingface.co/datasets/CyberHarem/jill_fizzart_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 37 | 24.39 MiB | [Download](https://huggingface.co/datasets/CyberHarem/jill_fizzart_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 63 | 41.54 MiB | [Download](https://huggingface.co/datasets/CyberHarem/jill_fizzart_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 37 | 35.26 MiB | [Download](https://huggingface.co/datasets/CyberHarem/jill_fizzart_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 63 | 58.08 MiB | [Download](https://huggingface.co/datasets/CyberHarem/jill_fizzart_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/jill_fizzart_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------|
| 0 | 37 |  |  |  |  |  | 1girl, solo, gloves, polearm, shoulder_armor, belt, breastplate, smile, holding_weapon, looking_at_viewer |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | gloves | polearm | shoulder_armor | belt | breastplate | smile | holding_weapon | looking_at_viewer |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:---------|:----------|:-----------------|:-------|:--------------|:--------|:-----------------|:--------------------|
| 0 | 37 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/jill_fizzart_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T07:31:01+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T07:38:05+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of jill\_fizzart (Fire Emblem)
======================================
This is the dataset of jill\_fizzart (Fire Emblem), containing 37 images and their tags.
The core tags of this character are 'long\_hair, ponytail, red\_hair, red\_eyes', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
6a490a3feb76a2e8e077708ad337885874b865d5 |
# Dataset of cath (Fire Emblem)
This is the dataset of cath (Fire Emblem), containing 33 images and their tags.
The core tags of this character are `breasts, brown_eyes, long_hair, orange_hair, brown_hair, ponytail`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:-----------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 33 | 30.22 MiB | [Download](https://huggingface.co/datasets/CyberHarem/cath_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 33 | 19.29 MiB | [Download](https://huggingface.co/datasets/CyberHarem/cath_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 66 | 36.25 MiB | [Download](https://huggingface.co/datasets/CyberHarem/cath_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 33 | 27.48 MiB | [Download](https://huggingface.co/datasets/CyberHarem/cath_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 66 | 48.42 MiB | [Download](https://huggingface.co/datasets/CyberHarem/cath_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/cath_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 12 |  |  |  |  |  | 1girl, elbow_gloves, scarf, solo, fingerless_gloves, belt, smile, weapon |
| 1 | 5 |  |  |  |  |  | 1girl, green_scarf, solo, belt, blush, braided_ponytail, elbow_gloves, looking_at_viewer, parted_bangs, simple_background, white_background, bare_shoulders, fingerless_gloves, green_gloves, green_sleeves, large_breasts, open_mouth, pouch, shirt, :d, armpits, arms_up, cowboy_shot, jewelry, sleeveless_dress, upper_body, white_dress, yellow_eyes |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | elbow_gloves | scarf | solo | fingerless_gloves | belt | smile | weapon | green_scarf | blush | braided_ponytail | looking_at_viewer | parted_bangs | simple_background | white_background | bare_shoulders | green_gloves | green_sleeves | large_breasts | open_mouth | pouch | shirt | :d | armpits | arms_up | cowboy_shot | jewelry | sleeveless_dress | upper_body | white_dress | yellow_eyes |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:---------------|:--------|:-------|:--------------------|:-------|:--------|:---------|:--------------|:--------|:-------------------|:--------------------|:---------------|:--------------------|:-------------------|:-----------------|:---------------|:----------------|:----------------|:-------------|:--------|:--------|:-----|:----------|:----------|:--------------|:----------|:-------------------|:-------------|:--------------|:--------------|
| 0 | 12 |  |  |  |  |  | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | | | | | | | |
| 1 | 5 |  |  |  |  |  | X | X | | X | X | X | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/cath_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T07:31:04+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T07:37:27+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of cath (Fire Emblem)
=============================
This is the dataset of cath (Fire Emblem), containing 33 images and their tags.
The core tags of this character are 'breasts, brown\_eyes, long\_hair, orange\_hair, brown\_hair, ponytail', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
99aaac0f3826a0cf6217784e440bfc59af060baf |
# Dataset of stella (Fire Emblem)
This is the dataset of stella (Fire Emblem), containing 31 images and their tags.
The core tags of this character are `long_hair, black_hair, brown_eyes, orange_eyes, bangs`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:-------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 31 | 28.09 MiB | [Download](https://huggingface.co/datasets/CyberHarem/stella_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 31 | 19.06 MiB | [Download](https://huggingface.co/datasets/CyberHarem/stella_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 56 | 31.68 MiB | [Download](https://huggingface.co/datasets/CyberHarem/stella_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 31 | 25.64 MiB | [Download](https://huggingface.co/datasets/CyberHarem/stella_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 56 | 39.08 MiB | [Download](https://huggingface.co/datasets/CyberHarem/stella_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/stella_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 5 |  |  |  |  |  | 1girl, nipples, hetero, medium_breasts, mosaic_censoring, solo_focus, vaginal, multiple_penises, 2boys, blush, completely_nude, cum_in_pussy, large_breasts, mmf_threesome, rape, sweat, tears |
| 1 | 11 |  |  |  |  |  | 1girl, fingerless_gloves, breastplate, solo, belt, looking_at_viewer, smile, blush, closed_mouth, pauldrons, upper_body |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | nipples | hetero | medium_breasts | mosaic_censoring | solo_focus | vaginal | multiple_penises | 2boys | blush | completely_nude | cum_in_pussy | large_breasts | mmf_threesome | rape | sweat | tears | fingerless_gloves | breastplate | solo | belt | looking_at_viewer | smile | closed_mouth | pauldrons | upper_body |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:----------|:---------|:-----------------|:-------------------|:-------------|:----------|:-------------------|:--------|:--------|:------------------|:---------------|:----------------|:----------------|:-------|:--------|:--------|:--------------------|:--------------|:-------|:-------|:--------------------|:--------|:---------------|:------------|:-------------|
| 0 | 5 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | | | | | | | | |
| 1 | 11 |  |  |  |  |  | X | | | | | | | | | X | | | | | | | | X | X | X | X | X | X | X | X | X |
| CyberHarem/stella_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T07:31:09+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T07:36:39+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of stella (Fire Emblem)
===============================
This is the dataset of stella (Fire Emblem), containing 31 images and their tags.
The core tags of this character are 'long\_hair, black\_hair, brown\_eyes, orange\_eyes, bangs', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
8d48eac1ec01a466fab093bb03ed2c56ac8004a5 |
# Dataset of ena (Fire Emblem)
This is the dataset of ena (Fire Emblem), containing 14 images and their tags.
The core tags of this character are `blue_eyes, pink_hair, earrings, long_hair, facial_mark, pointy_ears, breasts, ponytail, dark_skin, hat`, which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
## List of Packages
| Name | Images | Size | Download | Type | Description |
|:-----------------|---------:|:----------|:----------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------|
| raw | 14 | 10.47 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ena_fireemblem/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). |
| 800 | 14 | 7.50 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ena_fireemblem/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. |
| stage3-p480-800 | 20 | 10.64 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ena_fireemblem/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
| 1200 | 14 | 9.83 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ena_fireemblem/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. |
| stage3-p480-1200 | 20 | 13.07 MiB | [Download](https://huggingface.co/datasets/CyberHarem/ena_fireemblem/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. |
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code
```python
import os
import zipfile
from huggingface_hub import hf_hub_download
from waifuc.source import LocalSource
# download raw archive file
zip_file = hf_hub_download(
repo_id='CyberHarem/ena_fireemblem',
repo_type='dataset',
filename='dataset-raw.zip',
)
# extract files to your directory
dataset_dir = 'dataset_dir'
os.makedirs(dataset_dir, exist_ok=True)
with zipfile.ZipFile(zip_file, 'r') as zf:
zf.extractall(dataset_dir)
# load the dataset with waifuc
source = LocalSource(dataset_dir)
for item in source:
print(item.image, item.meta['filename'], item.meta['tags'])
```
## List of Clusters
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:---------------------------------------------------------------------------------------------------------------------------------|
| 0 | 14 |  |  |  |  |  | 1girl, jewelry, solo, long_sleeves, forehead_mark, halloween, ofuda, open_mouth, qing_guanmao, sleeves_past_wrists, wide_sleeves |
### Table Version
| # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | jewelry | solo | long_sleeves | forehead_mark | halloween | ofuda | open_mouth | qing_guanmao | sleeves_past_wrists | wide_sleeves |
|----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:----------|:-------|:---------------|:----------------|:------------|:--------|:-------------|:---------------|:----------------------|:---------------|
| 0 | 14 |  |  |  |  |  | X | X | X | X | X | X | X | X | X | X | X |
| CyberHarem/ena_fireemblem | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-18T07:31:10+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-18T07:33:54+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of ena (Fire Emblem)
============================
This is the dataset of ena (Fire Emblem), containing 14 images and their tags.
The core tags of this character are 'blue\_eyes, pink\_hair, earrings, long\_hair, facial\_mark, pointy\_ears, breasts, ponytail, dark\_skin, hat', which are pruned in this dataset.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
List of Packages
----------------
### Load Raw Dataset with Waifuc
We provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code
List of Clusters
----------------
List of tag clustering result, maybe some outfits can be mined here.
### Raw Text Version
### Table Version
| [
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n",
"### Load Raw Dataset with Waifuc\n\n\nWe provide raw dataset (including tagged images) for waifuc loading. If you need this, just run the following code\n\n\nList of Clusters\n----------------\n\n\nList of tag clustering result, maybe some outfits can be mined here.",
"### Raw Text Version",
"### Table Version"
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.