sha
stringlengths 40
40
| text
stringlengths 1
13.4M
| id
stringlengths 2
117
| tags
sequencelengths 1
7.91k
| created_at
stringlengths 25
25
| metadata
stringlengths 2
875k
| last_modified
stringlengths 25
25
| arxiv
sequencelengths 0
25
| languages
sequencelengths 0
7.91k
| tags_str
stringlengths 17
159k
| text_str
stringlengths 1
447k
| text_lists
sequencelengths 0
352
| processed_texts
sequencelengths 1
353
| tokens_length
sequencelengths 1
353
| input_texts
sequencelengths 1
40
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3d07b2a5db483486870fcdf5ef33bad028bedc43 |
# Dataset Card for Dataset Name
<!-- Provide a quick summary of the dataset. -->
Converted the AnnoMI motivational interviewing dataset into sharegpt format.
It is the first public collection of expert-annotated MI transcripts. [Source](https://github.com/uccollab/AnnoMI).
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
AnnoMI, containing 133 faithfully transcribed and expert-annotated demonstrations of high- and low-quality motivational interviewing (MI), an effective therapy strategy that evokes client motivation for positive change.
Sample conversation number 40, regarding drug use:
```
client
Pretty good. It's been three months now.
therapist
Nice.
client
Um, and—
therapist
Since the-- since you used, uh-- since the last time you used meth, right?
client
Right.
therapist
Okay.
client
Right. It's been three months, and I've been doing pretty well.
therapist
Good.
client
Um, and I met a couple new friends.
therapist
Nice.
client
So—
therapist
So-so, uh, have-- last time we talked, you know, you were kind of cutting the-the ex-boyfriend out. This is because he was your dealer, so--
client
Right.
therapist
And how is that going for you?
client
Right. It's been good. I haven't answered the phone when he's called-
therapist
Okay.
client
-and a couple of my other friends have tried to call me as well, and I haven't answered the phone. Um, so it's been good for me to just reach out and like, meet a couple of new people, um, in the neigh-neighborhood that I'm living in.
therapist
So it sounds like you've made some good changes. The change in your environment, and some of your behaviors, and, uh, and these new friends.
client
Yeah, the new friends, and I've been using the, you know, the breathing exercises you taught me, when I get-- start to feel a little stressed out, and I've been- I've been using those and it helps me. I go for a walk and do my breathing exercises, and it calms me down and kind of gets me through that time.
therapist
So it sounds like--
```
### Dataset Sources
<!-- Provide the basic links for the dataset. -->
- **Repository:** [https://github.com/uccollab/AnnoMI]
- **Paper [optional]:** [https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9746035]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
Training on longer conversations and medical advice.
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
Sharegpt format to allow for long conversations back and forth.
therapist is gpt
client is human
id is a concatenation of:
- transcript_id: the unique numerical identifier of the conversation/transcript where this utterance belongs. Note that this identifier is NOT used for ordering, and it is only to distinguish between different conversations in the dataset.
- video_url: the URL of the original video of the conversation/transcript where this utterance belongs.
- topic: the topic(s) of the conversation/transcript where this utterance belongs.
```
[
{
"id": "40_https://www.youtube.com/watch?v=wcu8oqHIsbc_reducing drug use",
"conversations": [
{
"from": "human",
"value": "Pretty good. It's been three months now"
},
{
"from": "gpt",
"value": "Nice."
},
{
"from": "human",
"value": "Right. It's been three months, and I've been doing pretty well."
},
{
"from": "gpt",
"value": "So-so, uh, have-- last time we talked, you know, you were kind of cutting the-the ex-boyfriend out. This is because he was your dealer, so--"
},
...
]
```
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
Despite the remarkable growth of research in recent years on the analysis of counselling conversations through natural language processing methods, the potential of this field has been greatly limited by the lack of access to publicly available therapy dialogues, especially those with expert annotations.
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
It is anonymized.
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
@INPROCEEDINGS{9746035,
author={Wu, Zixiu and Balloccu, Simone and Kumar, Vivek and Helaoui, Rim and Reiter, Ehud and Reforgiato Recupero, Diego and Riboni, Daniele},
booktitle={ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
title={Anno-MI: A Dataset of Expert-Annotated Counselling Dialogues},
year={2022},
volume={},
number={},
pages={6177-6181},
doi={10.1109/ICASSP43922.2022.9746035}}
}
## Dataset Card Contact
Toon Beerten ([email protected]) | to-be/annomi-motivational-interviewing-therapy-conversations | [
"task_categories:conversational",
"size_categories:n<1K",
"language:en",
"license:openrail",
"medical",
"therapy",
"conversations",
"counseling",
"dialogues",
"region:us"
] | 2024-01-06T09:54:30+00:00 | {"language": ["en"], "license": "openrail", "size_categories": ["n<1K"], "task_categories": ["conversational"], "pretty_name": "annomi", "tags": ["medical", "therapy", "conversations", "counseling", "dialogues"]} | 2024-01-06T12:04:10+00:00 | [] | [
"en"
] | TAGS
#task_categories-conversational #size_categories-n<1K #language-English #license-openrail #medical #therapy #conversations #counseling #dialogues #region-us
|
# Dataset Card for Dataset Name
Converted the AnnoMI motivational interviewing dataset into sharegpt format.
It is the first public collection of expert-annotated MI transcripts. Source.
## Dataset Details
### Dataset Description
AnnoMI, containing 133 faithfully transcribed and expert-annotated demonstrations of high- and low-quality motivational interviewing (MI), an effective therapy strategy that evokes client motivation for positive change.
Sample conversation number 40, regarding drug use:
### Dataset Sources
- Repository: [URL
- Paper [optional]: [URL
## Uses
Training on longer conversations and medical advice.
### Direct Use
### Out-of-Scope Use
## Dataset Structure
Sharegpt format to allow for long conversations back and forth.
therapist is gpt
client is human
id is a concatenation of:
- transcript_id: the unique numerical identifier of the conversation/transcript where this utterance belongs. Note that this identifier is NOT used for ordering, and it is only to distinguish between different conversations in the dataset.
- video_url: the URL of the original video of the conversation/transcript where this utterance belongs.
- topic: the topic(s) of the conversation/transcript where this utterance belongs.
## Dataset Creation
### Curation Rationale
Despite the remarkable growth of research in recent years on the analysis of counselling conversations through natural language processing methods, the potential of this field has been greatly limited by the lack of access to publicly available therapy dialogues, especially those with expert annotations.
#### Personal and Sensitive Information
It is anonymized.
## Bias, Risks, and Limitations
### Recommendations
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
[optional]
@INPROCEEDINGS{9746035,
author={Wu, Zixiu and Balloccu, Simone and Kumar, Vivek and Helaoui, Rim and Reiter, Ehud and Reforgiato Recupero, Diego and Riboni, Daniele},
booktitle={ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
title={Anno-MI: A Dataset of Expert-Annotated Counselling Dialogues},
year={2022},
volume={},
number={},
pages={6177-6181},
doi={10.1109/ICASSP43922.2022.9746035}}
}
## Dataset Card Contact
Toon Beerten (toon@URL) | [
"# Dataset Card for Dataset Name\n\n\n\nConverted the AnnoMI motivational interviewing dataset into sharegpt format. \nIt is the first public collection of expert-annotated MI transcripts. Source.",
"## Dataset Details",
"### Dataset Description\n\n\nAnnoMI, containing 133 faithfully transcribed and expert-annotated demonstrations of high- and low-quality motivational interviewing (MI), an effective therapy strategy that evokes client motivation for positive change.\n\nSample conversation number 40, regarding drug use:",
"### Dataset Sources\n\n\n\n- Repository: [URL\n- Paper [optional]: [URL",
"## Uses\n\n\nTraining on longer conversations and medical advice.",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure\n\n\nSharegpt format to allow for long conversations back and forth.\n\ntherapist is gpt\n\nclient is human\n\nid is a concatenation of:\n\n- transcript_id: the unique numerical identifier of the conversation/transcript where this utterance belongs. Note that this identifier is NOT used for ordering, and it is only to distinguish between different conversations in the dataset.\n- video_url: the URL of the original video of the conversation/transcript where this utterance belongs.\n- topic: the topic(s) of the conversation/transcript where this utterance belongs.",
"## Dataset Creation",
"### Curation Rationale\n\n\n\nDespite the remarkable growth of research in recent years on the analysis of counselling conversations through natural language processing methods, the potential of this field has been greatly limited by the lack of access to publicly available therapy dialogues, especially those with expert annotations.",
"#### Personal and Sensitive Information\n\n\n\nIt is anonymized.",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\n@INPROCEEDINGS{9746035,\n author={Wu, Zixiu and Balloccu, Simone and Kumar, Vivek and Helaoui, Rim and Reiter, Ehud and Reforgiato Recupero, Diego and Riboni, Daniele},\n booktitle={ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, \n title={Anno-MI: A Dataset of Expert-Annotated Counselling Dialogues}, \n year={2022},\n volume={},\n number={},\n pages={6177-6181},\n doi={10.1109/ICASSP43922.2022.9746035}}\n}",
"## Dataset Card Contact\n\nToon Beerten (toon@URL)"
] | [
"TAGS\n#task_categories-conversational #size_categories-n<1K #language-English #license-openrail #medical #therapy #conversations #counseling #dialogues #region-us \n",
"# Dataset Card for Dataset Name\n\n\n\nConverted the AnnoMI motivational interviewing dataset into sharegpt format. \nIt is the first public collection of expert-annotated MI transcripts. Source.",
"## Dataset Details",
"### Dataset Description\n\n\nAnnoMI, containing 133 faithfully transcribed and expert-annotated demonstrations of high- and low-quality motivational interviewing (MI), an effective therapy strategy that evokes client motivation for positive change.\n\nSample conversation number 40, regarding drug use:",
"### Dataset Sources\n\n\n\n- Repository: [URL\n- Paper [optional]: [URL",
"## Uses\n\n\nTraining on longer conversations and medical advice.",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure\n\n\nSharegpt format to allow for long conversations back and forth.\n\ntherapist is gpt\n\nclient is human\n\nid is a concatenation of:\n\n- transcript_id: the unique numerical identifier of the conversation/transcript where this utterance belongs. Note that this identifier is NOT used for ordering, and it is only to distinguish between different conversations in the dataset.\n- video_url: the URL of the original video of the conversation/transcript where this utterance belongs.\n- topic: the topic(s) of the conversation/transcript where this utterance belongs.",
"## Dataset Creation",
"### Curation Rationale\n\n\n\nDespite the remarkable growth of research in recent years on the analysis of counselling conversations through natural language processing methods, the potential of this field has been greatly limited by the lack of access to publicly available therapy dialogues, especially those with expert annotations.",
"#### Personal and Sensitive Information\n\n\n\nIt is anonymized.",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\n@INPROCEEDINGS{9746035,\n author={Wu, Zixiu and Balloccu, Simone and Kumar, Vivek and Helaoui, Rim and Reiter, Ehud and Reforgiato Recupero, Diego and Riboni, Daniele},\n booktitle={ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, \n title={Anno-MI: A Dataset of Expert-Annotated Counselling Dialogues}, \n year={2022},\n volume={},\n number={},\n pages={6177-6181},\n doi={10.1109/ICASSP43922.2022.9746035}}\n}",
"## Dataset Card Contact\n\nToon Beerten (toon@URL)"
] | [
53,
45,
4,
62,
22,
12,
4,
9,
145,
5,
66,
13,
10,
202,
14
] | [
"passage: TAGS\n#task_categories-conversational #size_categories-n<1K #language-English #license-openrail #medical #therapy #conversations #counseling #dialogues #region-us \n# Dataset Card for Dataset Name\n\n\n\nConverted the AnnoMI motivational interviewing dataset into sharegpt format. \nIt is the first public collection of expert-annotated MI transcripts. Source.## Dataset Details### Dataset Description\n\n\nAnnoMI, containing 133 faithfully transcribed and expert-annotated demonstrations of high- and low-quality motivational interviewing (MI), an effective therapy strategy that evokes client motivation for positive change.\n\nSample conversation number 40, regarding drug use:### Dataset Sources\n\n\n\n- Repository: [URL\n- Paper [optional]: [URL## Uses\n\n\nTraining on longer conversations and medical advice.### Direct Use### Out-of-Scope Use## Dataset Structure\n\n\nSharegpt format to allow for long conversations back and forth.\n\ntherapist is gpt\n\nclient is human\n\nid is a concatenation of:\n\n- transcript_id: the unique numerical identifier of the conversation/transcript where this utterance belongs. Note that this identifier is NOT used for ordering, and it is only to distinguish between different conversations in the dataset.\n- video_url: the URL of the original video of the conversation/transcript where this utterance belongs.\n- topic: the topic(s) of the conversation/transcript where this utterance belongs.## Dataset Creation### Curation Rationale\n\n\n\nDespite the remarkable growth of research in recent years on the analysis of counselling conversations through natural language processing methods, the potential of this field has been greatly limited by the lack of access to publicly available therapy dialogues, especially those with expert annotations.#### Personal and Sensitive Information\n\n\n\nIt is anonymized.## Bias, Risks, and Limitations"
] |
0044a0cc3b7708c66f1e5f5369830e917ce47128 |
# Dataset Card for Evaluation run of Deathsquad10/TinyLlama-repeat
<!-- Provide a quick summary of the dataset. -->
Dataset automatically created during the evaluation run of model [Deathsquad10/TinyLlama-repeat](https://huggingface.co/Deathsquad10/TinyLlama-repeat) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset("open-llm-leaderboard/details_Deathsquad10__TinyLlama-repeat",
"harness_winogrande_5",
split="train")
```
## Latest results
These are the [latest results from run 2024-01-06T16:33:40.382294](https://huggingface.co/datasets/open-llm-leaderboard/details_Deathsquad10__TinyLlama-repeat/blob/main/results_2024-01-06T16-33-40.382294.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"acc": 0.2668612836089348,
"acc_stderr": 0.031138191401929655,
"acc_norm": 0.26805657616203815,
"acc_norm_stderr": 0.03189989577745546,
"mc1": 0.23378212974296206,
"mc1_stderr": 0.01481619599193158,
"mc2": 0.387823193354249,
"mc2_stderr": 0.01401744646877844
},
"harness|arc:challenge|25": {
"acc": 0.34215017064846415,
"acc_stderr": 0.01386415215917728,
"acc_norm": 0.35238907849829354,
"acc_norm_stderr": 0.013960142600598682
},
"harness|hellaswag|10": {
"acc": 0.4538936466839275,
"acc_stderr": 0.004968521608065469,
"acc_norm": 0.6024696275642303,
"acc_norm_stderr": 0.004883871774350606
},
"harness|hendrycksTest-abstract_algebra|5": {
"acc": 0.23,
"acc_stderr": 0.04229525846816505,
"acc_norm": 0.23,
"acc_norm_stderr": 0.04229525846816505
},
"harness|hendrycksTest-anatomy|5": {
"acc": 0.2222222222222222,
"acc_stderr": 0.03591444084196968,
"acc_norm": 0.2222222222222222,
"acc_norm_stderr": 0.03591444084196968
},
"harness|hendrycksTest-astronomy|5": {
"acc": 0.18421052631578946,
"acc_stderr": 0.0315469804508223,
"acc_norm": 0.18421052631578946,
"acc_norm_stderr": 0.0315469804508223
},
"harness|hendrycksTest-business_ethics|5": {
"acc": 0.22,
"acc_stderr": 0.041633319989322695,
"acc_norm": 0.22,
"acc_norm_stderr": 0.041633319989322695
},
"harness|hendrycksTest-clinical_knowledge|5": {
"acc": 0.27547169811320754,
"acc_stderr": 0.027495663683724064,
"acc_norm": 0.27547169811320754,
"acc_norm_stderr": 0.027495663683724064
},
"harness|hendrycksTest-college_biology|5": {
"acc": 0.2847222222222222,
"acc_stderr": 0.03773809990686936,
"acc_norm": 0.2847222222222222,
"acc_norm_stderr": 0.03773809990686936
},
"harness|hendrycksTest-college_chemistry|5": {
"acc": 0.29,
"acc_stderr": 0.045604802157206845,
"acc_norm": 0.29,
"acc_norm_stderr": 0.045604802157206845
},
"harness|hendrycksTest-college_computer_science|5": {
"acc": 0.34,
"acc_stderr": 0.04760952285695235,
"acc_norm": 0.34,
"acc_norm_stderr": 0.04760952285695235
},
"harness|hendrycksTest-college_mathematics|5": {
"acc": 0.32,
"acc_stderr": 0.046882617226215034,
"acc_norm": 0.32,
"acc_norm_stderr": 0.046882617226215034
},
"harness|hendrycksTest-college_medicine|5": {
"acc": 0.23699421965317918,
"acc_stderr": 0.03242414757483099,
"acc_norm": 0.23699421965317918,
"acc_norm_stderr": 0.03242414757483099
},
"harness|hendrycksTest-college_physics|5": {
"acc": 0.21568627450980393,
"acc_stderr": 0.04092563958237656,
"acc_norm": 0.21568627450980393,
"acc_norm_stderr": 0.04092563958237656
},
"harness|hendrycksTest-computer_security|5": {
"acc": 0.26,
"acc_stderr": 0.044084400227680794,
"acc_norm": 0.26,
"acc_norm_stderr": 0.044084400227680794
},
"harness|hendrycksTest-conceptual_physics|5": {
"acc": 0.2765957446808511,
"acc_stderr": 0.02924188386962882,
"acc_norm": 0.2765957446808511,
"acc_norm_stderr": 0.02924188386962882
},
"harness|hendrycksTest-econometrics|5": {
"acc": 0.20175438596491227,
"acc_stderr": 0.03775205013583639,
"acc_norm": 0.20175438596491227,
"acc_norm_stderr": 0.03775205013583639
},
"harness|hendrycksTest-electrical_engineering|5": {
"acc": 0.21379310344827587,
"acc_stderr": 0.034165204477475494,
"acc_norm": 0.21379310344827587,
"acc_norm_stderr": 0.034165204477475494
},
"harness|hendrycksTest-elementary_mathematics|5": {
"acc": 0.26455026455026454,
"acc_stderr": 0.022717467897708614,
"acc_norm": 0.26455026455026454,
"acc_norm_stderr": 0.022717467897708614
},
"harness|hendrycksTest-formal_logic|5": {
"acc": 0.2857142857142857,
"acc_stderr": 0.0404061017820884,
"acc_norm": 0.2857142857142857,
"acc_norm_stderr": 0.0404061017820884
},
"harness|hendrycksTest-global_facts|5": {
"acc": 0.31,
"acc_stderr": 0.04648231987117316,
"acc_norm": 0.31,
"acc_norm_stderr": 0.04648231987117316
},
"harness|hendrycksTest-high_school_biology|5": {
"acc": 0.23548387096774193,
"acc_stderr": 0.024137632429337707,
"acc_norm": 0.23548387096774193,
"acc_norm_stderr": 0.024137632429337707
},
"harness|hendrycksTest-high_school_chemistry|5": {
"acc": 0.24630541871921183,
"acc_stderr": 0.03031509928561774,
"acc_norm": 0.24630541871921183,
"acc_norm_stderr": 0.03031509928561774
},
"harness|hendrycksTest-high_school_computer_science|5": {
"acc": 0.23,
"acc_stderr": 0.04229525846816505,
"acc_norm": 0.23,
"acc_norm_stderr": 0.04229525846816505
},
"harness|hendrycksTest-high_school_european_history|5": {
"acc": 0.3090909090909091,
"acc_stderr": 0.03608541011573967,
"acc_norm": 0.3090909090909091,
"acc_norm_stderr": 0.03608541011573967
},
"harness|hendrycksTest-high_school_geography|5": {
"acc": 0.2222222222222222,
"acc_stderr": 0.029620227874790486,
"acc_norm": 0.2222222222222222,
"acc_norm_stderr": 0.029620227874790486
},
"harness|hendrycksTest-high_school_government_and_politics|5": {
"acc": 0.25906735751295334,
"acc_stderr": 0.03161877917935411,
"acc_norm": 0.25906735751295334,
"acc_norm_stderr": 0.03161877917935411
},
"harness|hendrycksTest-high_school_macroeconomics|5": {
"acc": 0.28205128205128205,
"acc_stderr": 0.022815813098896603,
"acc_norm": 0.28205128205128205,
"acc_norm_stderr": 0.022815813098896603
},
"harness|hendrycksTest-high_school_mathematics|5": {
"acc": 0.24074074074074073,
"acc_stderr": 0.026067159222275805,
"acc_norm": 0.24074074074074073,
"acc_norm_stderr": 0.026067159222275805
},
"harness|hendrycksTest-high_school_microeconomics|5": {
"acc": 0.23529411764705882,
"acc_stderr": 0.0275536144678638,
"acc_norm": 0.23529411764705882,
"acc_norm_stderr": 0.0275536144678638
},
"harness|hendrycksTest-high_school_physics|5": {
"acc": 0.2185430463576159,
"acc_stderr": 0.03374235550425694,
"acc_norm": 0.2185430463576159,
"acc_norm_stderr": 0.03374235550425694
},
"harness|hendrycksTest-high_school_psychology|5": {
"acc": 0.23302752293577983,
"acc_stderr": 0.0181256691808615,
"acc_norm": 0.23302752293577983,
"acc_norm_stderr": 0.0181256691808615
},
"harness|hendrycksTest-high_school_statistics|5": {
"acc": 0.4398148148148148,
"acc_stderr": 0.033851779760448106,
"acc_norm": 0.4398148148148148,
"acc_norm_stderr": 0.033851779760448106
},
"harness|hendrycksTest-high_school_us_history|5": {
"acc": 0.25980392156862747,
"acc_stderr": 0.03077855467869326,
"acc_norm": 0.25980392156862747,
"acc_norm_stderr": 0.03077855467869326
},
"harness|hendrycksTest-high_school_world_history|5": {
"acc": 0.24472573839662448,
"acc_stderr": 0.02798569938703642,
"acc_norm": 0.24472573839662448,
"acc_norm_stderr": 0.02798569938703642
},
"harness|hendrycksTest-human_aging|5": {
"acc": 0.3632286995515695,
"acc_stderr": 0.03227790442850499,
"acc_norm": 0.3632286995515695,
"acc_norm_stderr": 0.03227790442850499
},
"harness|hendrycksTest-human_sexuality|5": {
"acc": 0.2366412213740458,
"acc_stderr": 0.037276735755969195,
"acc_norm": 0.2366412213740458,
"acc_norm_stderr": 0.037276735755969195
},
"harness|hendrycksTest-international_law|5": {
"acc": 0.256198347107438,
"acc_stderr": 0.03984979653302871,
"acc_norm": 0.256198347107438,
"acc_norm_stderr": 0.03984979653302871
},
"harness|hendrycksTest-jurisprudence|5": {
"acc": 0.23148148148148148,
"acc_stderr": 0.04077494709252627,
"acc_norm": 0.23148148148148148,
"acc_norm_stderr": 0.04077494709252627
},
"harness|hendrycksTest-logical_fallacies|5": {
"acc": 0.25766871165644173,
"acc_stderr": 0.03436150827846917,
"acc_norm": 0.25766871165644173,
"acc_norm_stderr": 0.03436150827846917
},
"harness|hendrycksTest-machine_learning|5": {
"acc": 0.30357142857142855,
"acc_stderr": 0.04364226155841044,
"acc_norm": 0.30357142857142855,
"acc_norm_stderr": 0.04364226155841044
},
"harness|hendrycksTest-management|5": {
"acc": 0.2524271844660194,
"acc_stderr": 0.04301250399690875,
"acc_norm": 0.2524271844660194,
"acc_norm_stderr": 0.04301250399690875
},
"harness|hendrycksTest-marketing|5": {
"acc": 0.2692307692307692,
"acc_stderr": 0.02905858830374884,
"acc_norm": 0.2692307692307692,
"acc_norm_stderr": 0.02905858830374884
},
"harness|hendrycksTest-medical_genetics|5": {
"acc": 0.27,
"acc_stderr": 0.04461960433384741,
"acc_norm": 0.27,
"acc_norm_stderr": 0.04461960433384741
},
"harness|hendrycksTest-miscellaneous|5": {
"acc": 0.2720306513409962,
"acc_stderr": 0.015913367447500524,
"acc_norm": 0.2720306513409962,
"acc_norm_stderr": 0.015913367447500524
},
"harness|hendrycksTest-moral_disputes|5": {
"acc": 0.23410404624277456,
"acc_stderr": 0.022797110278071138,
"acc_norm": 0.23410404624277456,
"acc_norm_stderr": 0.022797110278071138
},
"harness|hendrycksTest-moral_scenarios|5": {
"acc": 0.24581005586592178,
"acc_stderr": 0.014400296429225627,
"acc_norm": 0.24581005586592178,
"acc_norm_stderr": 0.014400296429225627
},
"harness|hendrycksTest-nutrition|5": {
"acc": 0.23202614379084968,
"acc_stderr": 0.024170840879341016,
"acc_norm": 0.23202614379084968,
"acc_norm_stderr": 0.024170840879341016
},
"harness|hendrycksTest-philosophy|5": {
"acc": 0.28938906752411575,
"acc_stderr": 0.025755865922632938,
"acc_norm": 0.28938906752411575,
"acc_norm_stderr": 0.025755865922632938
},
"harness|hendrycksTest-prehistory|5": {
"acc": 0.25617283950617287,
"acc_stderr": 0.0242885336377261,
"acc_norm": 0.25617283950617287,
"acc_norm_stderr": 0.0242885336377261
},
"harness|hendrycksTest-professional_accounting|5": {
"acc": 0.2695035460992908,
"acc_stderr": 0.02646903681859062,
"acc_norm": 0.2695035460992908,
"acc_norm_stderr": 0.02646903681859062
},
"harness|hendrycksTest-professional_law|5": {
"acc": 0.23663624511082137,
"acc_stderr": 0.010855137351572742,
"acc_norm": 0.23663624511082137,
"acc_norm_stderr": 0.010855137351572742
},
"harness|hendrycksTest-professional_medicine|5": {
"acc": 0.4007352941176471,
"acc_stderr": 0.029768263528933105,
"acc_norm": 0.4007352941176471,
"acc_norm_stderr": 0.029768263528933105
},
"harness|hendrycksTest-professional_psychology|5": {
"acc": 0.25326797385620914,
"acc_stderr": 0.01759348689536683,
"acc_norm": 0.25326797385620914,
"acc_norm_stderr": 0.01759348689536683
},
"harness|hendrycksTest-public_relations|5": {
"acc": 0.2727272727272727,
"acc_stderr": 0.04265792110940588,
"acc_norm": 0.2727272727272727,
"acc_norm_stderr": 0.04265792110940588
},
"harness|hendrycksTest-security_studies|5": {
"acc": 0.1510204081632653,
"acc_stderr": 0.022923004094736868,
"acc_norm": 0.1510204081632653,
"acc_norm_stderr": 0.022923004094736868
},
"harness|hendrycksTest-sociology|5": {
"acc": 0.23383084577114427,
"acc_stderr": 0.02992941540834839,
"acc_norm": 0.23383084577114427,
"acc_norm_stderr": 0.02992941540834839
},
"harness|hendrycksTest-us_foreign_policy|5": {
"acc": 0.22,
"acc_stderr": 0.041633319989322695,
"acc_norm": 0.22,
"acc_norm_stderr": 0.041633319989322695
},
"harness|hendrycksTest-virology|5": {
"acc": 0.3192771084337349,
"acc_stderr": 0.03629335329947861,
"acc_norm": 0.3192771084337349,
"acc_norm_stderr": 0.03629335329947861
},
"harness|hendrycksTest-world_religions|5": {
"acc": 0.24561403508771928,
"acc_stderr": 0.0330140594698725,
"acc_norm": 0.24561403508771928,
"acc_norm_stderr": 0.0330140594698725
},
"harness|truthfulqa:mc|0": {
"mc1": 0.23378212974296206,
"mc1_stderr": 0.01481619599193158,
"mc2": 0.387823193354249,
"mc2_stderr": 0.01401744646877844
},
"harness|winogrande|5": {
"acc": 0.6045777426992897,
"acc_stderr": 0.013741678387545347
},
"harness|gsm8k|5": {
"acc": 0.017437452615617893,
"acc_stderr": 0.0036054868679982395
}
}
```
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
[More Information Needed] | open-llm-leaderboard/details_Deathsquad10__TinyLlama-repeat | [
"region:us"
] | 2024-01-06T10:05:06+00:00 | {"pretty_name": "Evaluation run of Deathsquad10/TinyLlama-repeat", "dataset_summary": "Dataset automatically created during the evaluation run of model [Deathsquad10/TinyLlama-repeat](https://huggingface.co/Deathsquad10/TinyLlama-repeat) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_Deathsquad10__TinyLlama-repeat\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-06T16:33:40.382294](https://huggingface.co/datasets/open-llm-leaderboard/details_Deathsquad10__TinyLlama-repeat/blob/main/results_2024-01-06T16-33-40.382294.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.2668612836089348,\n \"acc_stderr\": 0.031138191401929655,\n \"acc_norm\": 0.26805657616203815,\n \"acc_norm_stderr\": 0.03189989577745546,\n \"mc1\": 0.23378212974296206,\n \"mc1_stderr\": 0.01481619599193158,\n \"mc2\": 0.387823193354249,\n \"mc2_stderr\": 0.01401744646877844\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.34215017064846415,\n \"acc_stderr\": 0.01386415215917728,\n \"acc_norm\": 0.35238907849829354,\n \"acc_norm_stderr\": 0.013960142600598682\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.4538936466839275,\n \"acc_stderr\": 0.004968521608065469,\n \"acc_norm\": 0.6024696275642303,\n \"acc_norm_stderr\": 0.004883871774350606\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.23,\n \"acc_stderr\": 0.04229525846816505,\n \"acc_norm\": 0.23,\n \"acc_norm_stderr\": 0.04229525846816505\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.2222222222222222,\n \"acc_stderr\": 0.03591444084196968,\n \"acc_norm\": 0.2222222222222222,\n \"acc_norm_stderr\": 0.03591444084196968\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.18421052631578946,\n \"acc_stderr\": 0.0315469804508223,\n \"acc_norm\": 0.18421052631578946,\n \"acc_norm_stderr\": 0.0315469804508223\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.22,\n \"acc_stderr\": 0.041633319989322695,\n \"acc_norm\": 0.22,\n \"acc_norm_stderr\": 0.041633319989322695\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.27547169811320754,\n \"acc_stderr\": 0.027495663683724064,\n \"acc_norm\": 0.27547169811320754,\n \"acc_norm_stderr\": 0.027495663683724064\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.2847222222222222,\n \"acc_stderr\": 0.03773809990686936,\n \"acc_norm\": 0.2847222222222222,\n \"acc_norm_stderr\": 0.03773809990686936\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.29,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\": 0.29,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.34,\n \"acc_stderr\": 0.04760952285695235,\n \"acc_norm\": 0.34,\n \"acc_norm_stderr\": 0.04760952285695235\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.32,\n \"acc_stderr\": 0.046882617226215034,\n \"acc_norm\": 0.32,\n \"acc_norm_stderr\": 0.046882617226215034\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.23699421965317918,\n \"acc_stderr\": 0.03242414757483099,\n \"acc_norm\": 0.23699421965317918,\n \"acc_norm_stderr\": 0.03242414757483099\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.21568627450980393,\n \"acc_stderr\": 0.04092563958237656,\n \"acc_norm\": 0.21568627450980393,\n \"acc_norm_stderr\": 0.04092563958237656\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.26,\n \"acc_stderr\": 0.044084400227680794,\n \"acc_norm\": 0.26,\n \"acc_norm_stderr\": 0.044084400227680794\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.2765957446808511,\n \"acc_stderr\": 0.02924188386962882,\n \"acc_norm\": 0.2765957446808511,\n \"acc_norm_stderr\": 0.02924188386962882\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.20175438596491227,\n \"acc_stderr\": 0.03775205013583639,\n \"acc_norm\": 0.20175438596491227,\n \"acc_norm_stderr\": 0.03775205013583639\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.21379310344827587,\n \"acc_stderr\": 0.034165204477475494,\n \"acc_norm\": 0.21379310344827587,\n \"acc_norm_stderr\": 0.034165204477475494\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.26455026455026454,\n \"acc_stderr\": 0.022717467897708614,\n \"acc_norm\": 0.26455026455026454,\n \"acc_norm_stderr\": 0.022717467897708614\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.2857142857142857,\n \"acc_stderr\": 0.0404061017820884,\n \"acc_norm\": 0.2857142857142857,\n \"acc_norm_stderr\": 0.0404061017820884\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.31,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.23548387096774193,\n \"acc_stderr\": 0.024137632429337707,\n \"acc_norm\": 0.23548387096774193,\n \"acc_norm_stderr\": 0.024137632429337707\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.24630541871921183,\n \"acc_stderr\": 0.03031509928561774,\n \"acc_norm\": 0.24630541871921183,\n \"acc_norm_stderr\": 0.03031509928561774\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.23,\n \"acc_stderr\": 0.04229525846816505,\n \"acc_norm\": 0.23,\n \"acc_norm_stderr\": 0.04229525846816505\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.3090909090909091,\n \"acc_stderr\": 0.03608541011573967,\n \"acc_norm\": 0.3090909090909091,\n \"acc_norm_stderr\": 0.03608541011573967\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.2222222222222222,\n \"acc_stderr\": 0.029620227874790486,\n \"acc_norm\": 0.2222222222222222,\n \"acc_norm_stderr\": 0.029620227874790486\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.25906735751295334,\n \"acc_stderr\": 0.03161877917935411,\n \"acc_norm\": 0.25906735751295334,\n \"acc_norm_stderr\": 0.03161877917935411\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.28205128205128205,\n \"acc_stderr\": 0.022815813098896603,\n \"acc_norm\": 0.28205128205128205,\n \"acc_norm_stderr\": 0.022815813098896603\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.24074074074074073,\n \"acc_stderr\": 0.026067159222275805,\n \"acc_norm\": 0.24074074074074073,\n \"acc_norm_stderr\": 0.026067159222275805\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.23529411764705882,\n \"acc_stderr\": 0.0275536144678638,\n \"acc_norm\": 0.23529411764705882,\n \"acc_norm_stderr\": 0.0275536144678638\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.2185430463576159,\n \"acc_stderr\": 0.03374235550425694,\n \"acc_norm\": 0.2185430463576159,\n \"acc_norm_stderr\": 0.03374235550425694\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.23302752293577983,\n \"acc_stderr\": 0.0181256691808615,\n \"acc_norm\": 0.23302752293577983,\n \"acc_norm_stderr\": 0.0181256691808615\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.4398148148148148,\n \"acc_stderr\": 0.033851779760448106,\n \"acc_norm\": 0.4398148148148148,\n \"acc_norm_stderr\": 0.033851779760448106\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.25980392156862747,\n \"acc_stderr\": 0.03077855467869326,\n \"acc_norm\": 0.25980392156862747,\n \"acc_norm_stderr\": 0.03077855467869326\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.24472573839662448,\n \"acc_stderr\": 0.02798569938703642,\n \"acc_norm\": 0.24472573839662448,\n \"acc_norm_stderr\": 0.02798569938703642\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.3632286995515695,\n \"acc_stderr\": 0.03227790442850499,\n \"acc_norm\": 0.3632286995515695,\n \"acc_norm_stderr\": 0.03227790442850499\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.2366412213740458,\n \"acc_stderr\": 0.037276735755969195,\n \"acc_norm\": 0.2366412213740458,\n \"acc_norm_stderr\": 0.037276735755969195\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.256198347107438,\n \"acc_stderr\": 0.03984979653302871,\n \"acc_norm\": 0.256198347107438,\n \"acc_norm_stderr\": 0.03984979653302871\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.23148148148148148,\n \"acc_stderr\": 0.04077494709252627,\n \"acc_norm\": 0.23148148148148148,\n \"acc_norm_stderr\": 0.04077494709252627\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.25766871165644173,\n \"acc_stderr\": 0.03436150827846917,\n \"acc_norm\": 0.25766871165644173,\n \"acc_norm_stderr\": 0.03436150827846917\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.30357142857142855,\n \"acc_stderr\": 0.04364226155841044,\n \"acc_norm\": 0.30357142857142855,\n \"acc_norm_stderr\": 0.04364226155841044\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.2524271844660194,\n \"acc_stderr\": 0.04301250399690875,\n \"acc_norm\": 0.2524271844660194,\n \"acc_norm_stderr\": 0.04301250399690875\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.2692307692307692,\n \"acc_stderr\": 0.02905858830374884,\n \"acc_norm\": 0.2692307692307692,\n \"acc_norm_stderr\": 0.02905858830374884\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.27,\n \"acc_stderr\": 0.04461960433384741,\n \"acc_norm\": 0.27,\n \"acc_norm_stderr\": 0.04461960433384741\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.2720306513409962,\n \"acc_stderr\": 0.015913367447500524,\n \"acc_norm\": 0.2720306513409962,\n \"acc_norm_stderr\": 0.015913367447500524\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.23410404624277456,\n \"acc_stderr\": 0.022797110278071138,\n \"acc_norm\": 0.23410404624277456,\n \"acc_norm_stderr\": 0.022797110278071138\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.24581005586592178,\n \"acc_stderr\": 0.014400296429225627,\n \"acc_norm\": 0.24581005586592178,\n \"acc_norm_stderr\": 0.014400296429225627\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.23202614379084968,\n \"acc_stderr\": 0.024170840879341016,\n \"acc_norm\": 0.23202614379084968,\n \"acc_norm_stderr\": 0.024170840879341016\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.28938906752411575,\n \"acc_stderr\": 0.025755865922632938,\n \"acc_norm\": 0.28938906752411575,\n \"acc_norm_stderr\": 0.025755865922632938\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.25617283950617287,\n \"acc_stderr\": 0.0242885336377261,\n \"acc_norm\": 0.25617283950617287,\n \"acc_norm_stderr\": 0.0242885336377261\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.2695035460992908,\n \"acc_stderr\": 0.02646903681859062,\n \"acc_norm\": 0.2695035460992908,\n \"acc_norm_stderr\": 0.02646903681859062\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.23663624511082137,\n \"acc_stderr\": 0.010855137351572742,\n \"acc_norm\": 0.23663624511082137,\n \"acc_norm_stderr\": 0.010855137351572742\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.4007352941176471,\n \"acc_stderr\": 0.029768263528933105,\n \"acc_norm\": 0.4007352941176471,\n \"acc_norm_stderr\": 0.029768263528933105\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.25326797385620914,\n \"acc_stderr\": 0.01759348689536683,\n \"acc_norm\": 0.25326797385620914,\n \"acc_norm_stderr\": 0.01759348689536683\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.2727272727272727,\n \"acc_stderr\": 0.04265792110940588,\n \"acc_norm\": 0.2727272727272727,\n \"acc_norm_stderr\": 0.04265792110940588\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.1510204081632653,\n \"acc_stderr\": 0.022923004094736868,\n \"acc_norm\": 0.1510204081632653,\n \"acc_norm_stderr\": 0.022923004094736868\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.23383084577114427,\n \"acc_stderr\": 0.02992941540834839,\n \"acc_norm\": 0.23383084577114427,\n \"acc_norm_stderr\": 0.02992941540834839\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.22,\n \"acc_stderr\": 0.041633319989322695,\n \"acc_norm\": 0.22,\n \"acc_norm_stderr\": 0.041633319989322695\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.3192771084337349,\n \"acc_stderr\": 0.03629335329947861,\n \"acc_norm\": 0.3192771084337349,\n \"acc_norm_stderr\": 0.03629335329947861\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.24561403508771928,\n \"acc_stderr\": 0.0330140594698725,\n \"acc_norm\": 0.24561403508771928,\n \"acc_norm_stderr\": 0.0330140594698725\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.23378212974296206,\n \"mc1_stderr\": 0.01481619599193158,\n \"mc2\": 0.387823193354249,\n \"mc2_stderr\": 0.01401744646877844\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.6045777426992897,\n \"acc_stderr\": 0.013741678387545347\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.017437452615617893,\n \"acc_stderr\": 0.0036054868679982395\n }\n}\n```", "repo_url": "https://huggingface.co/Deathsquad10/TinyLlama-repeat", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|arc:challenge|25_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|arc:challenge|25_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|gsm8k|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|gsm8k|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hellaswag|10_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hellaswag|10_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-06T10-03-15.978095.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-06T16-33-40.382294.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["**/details_harness|winogrande|5_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["**/details_harness|winogrande|5_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-06T16-33-40.382294.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_06T10_03_15.978095", "path": ["results_2024-01-06T10-03-15.978095.parquet"]}, {"split": "2024_01_06T16_33_40.382294", "path": ["results_2024-01-06T16-33-40.382294.parquet"]}, {"split": "latest", "path": ["results_2024-01-06T16-33-40.382294.parquet"]}]}]} | 2024-01-06T16:35:34+00:00 | [] | [] | TAGS
#region-us
|
# Dataset Card for Evaluation run of Deathsquad10/TinyLlama-repeat
Dataset automatically created during the evaluation run of model Deathsquad10/TinyLlama-repeat on the Open LLM Leaderboard.
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).
To load the details from a run, you can for instance do the following:
## Latest results
These are the latest results from run 2024-01-06T16:33:40.382294(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
## Dataset Details
### Dataset Description
- Curated by:
- Funded by [optional]:
- Shared by [optional]:
- Language(s) (NLP):
- License:
### Dataset Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Out-of-Scope Use
## Dataset Structure
## Dataset Creation
### Curation Rationale
### Source Data
#### Data Collection and Processing
#### Who are the source data producers?
### Annotations [optional]
#### Annotation process
#### Who are the annotators?
#### Personal and Sensitive Information
## Bias, Risks, and Limitations
### Recommendations
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Dataset Card Authors [optional]
## Dataset Card Contact
| [
"# Dataset Card for Evaluation run of Deathsquad10/TinyLlama-repeat\n\n\n\nDataset automatically created during the evaluation run of model Deathsquad10/TinyLlama-repeat on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-06T16:33:40.382294(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for Evaluation run of Deathsquad10/TinyLlama-repeat\n\n\n\nDataset automatically created during the evaluation run of model Deathsquad10/TinyLlama-repeat on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-06T16:33:40.382294(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
6,
187,
68,
4,
40,
29,
3,
4,
9,
6,
5,
7,
4,
7,
10,
9,
5,
9,
8,
10,
46,
8,
7,
10,
5
] | [
"passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of Deathsquad10/TinyLlama-repeat\n\n\n\nDataset automatically created during the evaluation run of model Deathsquad10/TinyLlama-repeat on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2024-01-06T16:33:40.382294(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):## Dataset Details### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Out-of-Scope Use## Dataset Structure## Dataset Creation### Curation Rationale### Source Data#### Data Collection and Processing#### Who are the source data producers?### Annotations [optional]#### Annotation process#### Who are the annotators?#### Personal and Sensitive Information## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Dataset Card Authors [optional]## Dataset Card Contact"
] |
88fcaa2ef214ecb509d8bb83a9cf0e6093a2a64f | <p><strong><a href="https://dentatonic-review.company.site/">{DentaTonic UPDATED 2024}</a> -</strong>In a world where bright smiles and healthy teeth are more than just a part of personal aesthetics, understanding the essentials of dental health becomes paramount. The journey to maintaining a radiant smile is often fraught with challenges, as dental issues can sneak up on us, impacting not just our appearance but also our overall well-being.</p>
<p>As we delve into the complexities of oral health, it becomes evident that proactive care is not just a choice but a necessity. Amidst the plethora of options, one name emerges with a promise of innovation – <a href="https://groups.google.com/g/dentatonic-review/c/j_JXq-9f8JE"><strong>DentaTonic</strong></a>. This carefully formulated supplement brings to the fore the significance of lactoperoxidase, an enzyme in our saliva that plays a crucial role in safeguarding our teeth and gums against bacterial onslaughts.</p>
<h2><a href="https://www.globalfitnessmart.com/get-dentatonic"><strong><span style="-webkit-text-stroke-width: 0px; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">DentaTonic — Official Website Link — Click Here</span></strong></a></h2>
<h2><strong><span style="-webkit-text-stroke-width: 0px; display: inline; float: none; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">➥</span>➡️<span style="-webkit-text-stroke-width: 0px; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">Product Name: <a href="https://www.globalfitnessmart.com/get-dentatonic">{DentaTonic}</a></span></strong><br style="-webkit-text-stroke-width: 0px; background-color: white; color: #222222; font-family: Arial, Helvetica, sans-serif; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px;" /><strong><span style="-webkit-text-stroke-width: 0px; display: inline; float: none; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">➥</span>➡️<span style="-webkit-text-stroke-width: 0px; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">Official Website: <a href="https://www.globalfitnessmart.com/get-dentatonic">https//dentatonic.com</a></span></strong><br style="-webkit-text-stroke-width: 0px; background-color: white; color: #222222; font-family: Arial, Helvetica, sans-serif; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px;" /><strong><span style="-webkit-text-stroke-width: 0px; display: inline; float: none; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">➥</span>➡️<span style="-webkit-text-stroke-width: 0px; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">Rating: ★★★★☆ (4.5/5.0)</span></strong><br style="-webkit-text-stroke-width: 0px; background-color: white; color: #222222; font-family: Arial, Helvetica, sans-serif; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px;" /><strong><span style="-webkit-text-stroke-width: 0px; display: inline; float: none; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">➥</span>➡️<span style="-webkit-text-stroke-width: 0px; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">Offer: 60-Day Money Back Guarantee</span></strong><br style="-webkit-text-stroke-width: 0px; background-color: white; color: #222222; font-family: Arial, Helvetica, sans-serif; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px;" /><strong><span style="-webkit-text-stroke-width: 0px; display: inline; float: none; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">➥</span>➡️<span style="-webkit-text-stroke-width: 0px; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">Availability: <a href="https://www.globalfitnessmart.com/get-dentatonic">In Stock Voted #1 Product in the USA</a></span></strong></h2>
<p>But why does this matter? And how does <a href="https://sites.google.com/view/dentatonic-review-price/home"><strong>DentaTonic</strong></a> fit into this narrative? As we embark on this exploration, we aim to unravel the science behind lactoperoxidase, and how <a href="https://lookerstudio.google.com/u/0/reporting/5b2c9008-5e9c-44d4-96c8-f19d212e2d2d/page/rdpmD"><strong>DentaTonic</strong></a> could be a subtle yet potent ally in our quest for impeccable dental health. So, let’s take a closer look at the burgeoning field of dental supplements and understand how <a href="https://colab.research.google.com/drive/1Y_QEEY1pfraBh7Lyl6SmxVeyUnDdW5xh"><strong>DentaTonic</strong></a> could be more than just a supplement – it could be a game-changer in oral health care.</p>
<h2 style="text-align: center;"><span style="background-color: #ff0000; color: #ffcc00;"><a style="background-color: #ff0000; color: #ffcc00;" href="https://www.globalfitnessmart.com/get-dentatonic"><strong>👉🧿👉 Order DentaTonic From USA 👉🧿👉 “OFFICIAL WEBSITE”</strong></a></span></h2>
<h2><strong>What is <a href="https://www.scoop.it/topic/dentatonic-by-dentatonic-us">DentaTonic</a>?</strong></h2>
<p>In the dynamic world of dental health, where the battle against tooth decay and gum problems is ever-present, <a href="https://dentatonic-review.hashnode.dev/dentatonic-reviews-does-it-worknew-updated-2024"><strong>DentaTonic</strong></a> emerges as a revolutionary solution. It stands out as a pioneering dental filtration breakthrough, a term that encapsulates its role in promoting the health of our teeth and gums. This innovative product is not just a supplement; it’s a synergistic blend of nature’s best defenses against oral ailments.</p>
<p>At the heart of <a href="https://www.scoop.it/topic/dentatonic-reviews-usa"><strong>DentaTonic’</strong></a>s formula lies the essence of natural ingredients, each meticulously chosen for their proven benefits in oral health care. The key lies in its unique ability to bolster the levels of lactoperoxidase in our saliva. This enzyme is a natural guardian, playing a critical role in defending our oral cavity against the bacterial adversaries that threaten our dental well-being.</p>
<p>But <a href="https://gamma.app/docs/DentaTonic-Reviews-Does-It-WorkNEW-UPDATED-2024-6c291cyzapx5efd?mode=doc"><strong>DentaTonic</strong></a>’s efficacy doesn’t stop there. It’s designed to tackle a range of oral health challenges. For instance, it addresses the harmful effects of compounds like hydrogen cyanide, which can be detrimental to our oral environment. By enhancing the action of certain enzymes, <a href="https://dentatonic-2.jimdosite.com/"><strong>DentaTonic</strong> </a>works tirelessly to combat the bacteria and plaque that are the bane of our dental health.</p>
<p>Furthermore, <a href="https://forum.mmm.ucar.edu/threads/dentatonic-reviews-%E2%80%93-does-it-work-%E3%80%90-new-updated-2024%E3%80%91.15173/"><strong>DentaTonic’</strong></a>s blend of enzymes and minerals is not just about defense. It’s about creating a balance, ensuring that our mouth remains a fortress against oral health issues. The natural ingredients within are like sentinels, each playing a vital role in maintaining the delicate ecosystem of our mouth.</p>
<h2 style="text-align: center;"><span style="background-color: #ffff00; color: #0000ff;"><a style="background-color: #ffff00; color: #0000ff;" href="https://www.globalfitnessmart.com/get-dentatonic"><strong>SPECIAL PROMO: Get *DentaTonic* at the Lowest Discounted Price Online</strong></a></span></h2>
<h2><strong>How <a href="https://bitbucket.org/dentatonic/dentatonic/issues/1/dentatonic-reviews-does-it-work-new">DentaTonic</a> Works: Unveiling the Mechanism</strong></h2>
<p>Unraveling the workings of <a href="https://dentatonic-review.hashnode.dev/dentatonic-reviews-clinically-researched-ingredients-dentatonic-effective-oral-health-formula"><strong>DentaTonic</strong></a> brings us to an intriguing intersection of science and oral health. The effectiveness of this supplement, often highlighted in numerous <a href="https://forum.mmm.ucar.edu/threads/dentatonic-reviews-%E3%80%90-clinically-researched%E3%80%91-ingredients-dentatonic-effective-oral-health-formula.15174/"><strong>DentaTonic</strong></a> reviews, lies in its ability to enhance the natural defenses of our oral ecosystem. Central to this is the elevation of lactoperoxidase levels in our saliva, a crucial enzyme that acts as a protective shield for our teeth and gums.</p>
<p>The mechanism of<a href="https://bitbucket.org/dentatonic/dentatonic/issues/2/dentatonic-reviews-clinically-researched"><strong> DentaTonic</strong></a> is a finely tuned symphony of ingredients working in harmony. While lactoperoxidase is the conductor, other elements play equally vital roles. Ingredients such as Dextranase and Lysozyme are akin to skilled warriors in this battle, targeting plaque and oral bacteria with precision. These components break down the unwanted build-up and neutralize bacterial threats, ensuring a cleaner, healthier oral environment.</p>
<p>As per several <a href="https://medium.com/@dentatonicus/dentatonic-reviews-does-it-work-new-updated-2024-3b76d0a77484"><strong>DentaTonic</strong></a> reviews, the inclusion of Microcrystalline Hydroxyapatite is particularly noteworthy. This ingredient isn’t just filler; it’s a remineralization champion, contributing significantly to the restoration and strengthening of our teeth. This aspect of <a href="https://followme.tribe.so/post/dentatonic-reviews---does-it-work-new-updated-2024-6598fee4bef02efa7862eefd"><strong>DentaTonic</strong></a>’s working mechanism is akin to repairing the ramparts of a fortress, ensuring that our teeth are not just clean but also robust and resistant to decay.</p>
<p>In essence, the way <strong><a href="https://medium.com/@dentatonicus/dentatonic-reviews-usa-is-it-legit-read-this-before-buy-ab0241f7b388">DentaTonic</a></strong> works is by creating a robust, multi-layered defense system within our mouths. Each ingredient plays a strategic role, culminating in a supplement that doesn’t just promise oral health improvements but delivers them in a tangible, effective manner.</p>
<h2><strong>The Ingredients of <a href="https://followme.tribe.so/post/dentatonic-reviews-usa-is-it-legit-read-this-before-buy-6598ff419e33ef6ee9dd9bc3">DentaTonic</a>: A Deep Dive into Dental Protection</strong></h2>
<p><a href="https://medium.com/@dentatonicus/dentatonic-reviews-usa-is-it-legit-read-this-before-buy-7e4573cc6cc7"><strong>DentaTonic</strong></a>’s blend of ingredients is a meticulously crafted arsenal aimed at fortifying dental health. Each component brings a specific benefit to the table, working in unison to ensure a holistic approach to oral care. Here’s an exploration of these ingredients and their roles in dental protection:</p>
<p><strong>Lactoperoxidase</strong></p>
<p>The cornerstone of <a href="https://followme.tribe.so/post/dentatonic-reviews-usa-is-it-legit-read-this-before-buy-6599024d93542a5589edc1f7"><strong>DentaTonic</strong></a>’s formula, lactoperoxidase is a naturally occurring enzyme in saliva. Its primary function is to act as a first line of defense against oral bacteria. By enhancing the levels of this enzyme, <a href="https://soundcloud.com/dentatonicus/dentatonic-reviews-usa-is-it-legit-read-this-before-buy"><strong>DentaTonic</strong></a> helps in maintaining a balanced oral microbiome, effectively keeping bacterial growth in check and reducing the risk of dental caries and gum diseases.</p>
<p><strong>Dextranase</strong></p>
<p>This enzyme plays a crucial role in breaking down plaque. Plaque, a sticky film of bacteria and sugars, is a primary culprit in tooth decay and gum disease. Dextranase targets the polysaccharides in plaque, disrupting its structure and making it easier to remove. This action helps in preventing the accumulation of harmful bacteria and maintains oral hygiene.</p>
<p><strong>Lysozyme</strong></p>
<p>As a natural antibacterial agent found in saliva, lysozyme contributes significantly to oral health. It attacks and breaks down the cell walls of bacteria, thereby reducing their ability to colonize and cause dental issues. By boosting lysozyme levels, <a href="https://pdfhost.io/v/lYa.T9dlY_DentaTonic_Reviews_Does_It_WorkNEW_UPDATED_2024"><strong>DentaTonic</strong></a> ensures an extra layer of protection against oral infections.</p>
<p><strong>Lactoferrin</strong></p>
<p>This ingredient is renowned for its anti-inflammatory properties. Inflammation is a key factor in many dental problems, including periodontitis. Lactoferrin helps in reducing inflammation, thereby aiding in the prevention and management of gum diseases.</p>
<p><strong>Microcrystalline Hydroxyapatite</strong></p>
<p>A standout ingredient for remineralization, this form of hydroxyapatite is crucial in rebuilding and strengthening tooth enamel. It mimics the natural composition of teeth, providing essential minerals directly to the enamel, helping in reversing minor decay and preventing further damage.</p>
<p><strong>Beta-Glucanase</strong></p>
<p>This enzyme assists in breaking down glucans, compounds often found in sticky foods that adhere to teeth and contribute to plaque formation. By mitigating the formation of these glucans, Beta-Glucanase plays a vital role in maintaining a clean and healthy oral environment.</p>
<p><strong>Amylase</strong></p>
<p>Typically known for its role in digesting starches, amylase in <a href="https://community.thebatraanumerology.com/post/dentatonic-reviews---does-it-work-new-updated-2024-6599090593542a9f45edc27b"><strong>DentaTonic</strong></a> contributes to oral hygiene by breaking down food particles trapped in the teeth. This process reduces the food source for harmful bacteria, thereby lowering the risk of tooth decay and gum disease.</p>
<p>Each of these ingredients is carefully selected not just for their individual benefits but for their synergistic effect when combined. Together, they create a powerful blend that addresses various aspects of dental health, from strengthening enamel to reducing bacterial growth and inflammation. This comprehensive approach to oral care is what sets <a href="https://leetcode.com/discuss/interview-question/4516162/DentaTonic-Reviews-Does-It-Work(NEW-UPDATED-2024!"><strong>DentaTonic</strong></a> apart, making it a valuable ally in maintaining dental wellness.</p>
<h2 style="text-align: center;"><span style="background-color: #008000; color: #ff9900;"><a style="background-color: #008000; color: #ff9900;" href="https://www.globalfitnessmart.com/get-dentatonic"><strong>👉🌈👉 Order DentaTonic From USA 👉🌈👉 “OFFICIAL WEBSITE”</strong></a></span></h2>
<h2><strong><a href="https://www.click4r.com/posts/g/13971705/">DentaTonic</a> Benefits</strong></h2>
<p>Let’s zoom in on the potential Denta Tonic benefits users might anticipate from incorporating <a href="https://wandering.flarum.cloud/d/36073-dentatonic-reviews-does-it-worknew-updated-2024"><strong>DentaTonic</strong></a> into their daily oral care routine. While we’re not donning the cap of enthusiastic endorsers, we can certainly shed light on the promises laid out by this dental defense system.</p>
<p><strong>Oral Health Reinforcement:</strong> At the forefront of <a href="https://community.thebatraanumerology.com/post/dentatonic-viral-scam-or-legit-is-it-work-or-not-6599094df8a17b373310f394"><strong>DentaTonic</strong></a>’s pitch is reinforcing lactoperoxidase levels in saliva. This is positioned as a frontline defense, a guardian angel for your teeth and gums, standing resilient against the onslaught of bacteria. The potential result? Strengthen oral health, with fewer chances of succumbing to decay or gum irritation.</p>
<p><strong>Mitigation of Hydrogen Cyanide Effects:</strong> <a href="https://wandering.flarum.cloud/d/36075-dentatonic-viralscam-or-legit-is-it-work-or-not"><strong>DentaTonic</strong></a> doesn’t shy away from tackling hydrogen cyanide, aiming to mitigate its negative effects. By doing so, it aspires to create a safer haven for your dental landscape, addressing concerns that might linger beneath the surface of traditional oral care solutions.</p>
<p><strong>Enzymatic Warfare Against Bacteria and Plaque:</strong> The blend of enzymes and proteins, from dextranase to lysozyme, gears up for a relentless battle against the notorious duo – bacteria and plaque. This enzymatic warfare is a key element in the formula’s strategy, aiming to create an environment where these elements are kept in check for optimal dental health.</p>
<p><strong>Comprehensive Approach to Oral Well-Being:</strong> <a href="https://leetcode.com/discuss/interview-question/4516178/DentaTonic-Viral%3A*SCAM-or-LEGIT*-Is-It-Work-or-Not"><strong>DentaTonic</strong></a> positions itself as a bacteria-banishing agent and a comprehensive solution for oral well-being. Its approach seeks to create an environment where your teeth and gums don’t just survive but thrive.</p>
<p><strong>Ease of Integration into Daily Routine:</strong> A benefit for those who favor simplicity, <a href="https://www.eventcreate.com/e/dentatonic-reviews-504758"><strong>DentaTonic</strong></a>’s easy-to-swallow tablets make it a hassle-free addition to your daily routine. With just one tablet and a glass of water, it becomes a seamless part of your oral care practices.</p>
<p><strong>Bonus Guides for Added Value:</strong> Opting for the larger packs saves you some dollars and throws in two bonus guides – VIP Smile and Mouth to Gut Detox. The former shares insights for achieving sparkling white teeth at home, while the latter delves into the broader realm of cleansing your digestive system.</p>
<p>While these benefits paint an intriguing picture, individual experiences may vary. The real litmus test lies in the daily rituals of those who embrace <a href="https://www.deviantart.com/dentatonicus/art/DentaTonic-Reviews-Does-It-Work-NEW-UPDATED-2024-1008583926"><strong>DentaTonic</strong></a> as a companion in their oral health journey.</p>
<h2><strong><a href="https://www.weddingwire.com/wedding-forums/dentatonic-reviews-does-it-worknew-updated-2024/0de463499ede5c63.html">DentaTonic</a> Dosage and Usage</strong></h2>
<p>While we’re not here to dictate habits, we can certainly show how to incorporate <a href="https://www.deviantart.com/dentatonicus/art/DentaTonic-Reviews-CLINICALLY-RESEARCHED-1008584244"><strong>DentaTonic</strong></a> seamlessly.</p>
<p><a href="https://www.weddingwire.com/wedding-forums/dentatonic-reviews-legit-2024-its-really-works/239cb45026b63f76.html"><strong>DentaTonic</strong> </a>keeps things straightforward with a simple daily ritual. The prescribed dosage involves taking one tablet daily, accompanied by a glass of water. This uncomplicated routine is designed for ease of integration into your existing daily habits.</p>
<p>The easy-to-swallow tablets contribute to the user-friendly nature of <a href="https://www.styleforum.net/threads/dentatonic-reviews-%E2%80%93-does-it-work-%E3%80%90-new-updated-2024%E3%80%91.741555/"><strong>DentaTonic</strong></a>. This feature caters to those who prefer a hassle-free approach to their health regimen, eliminating potential barriers to consistent use.</p>
<p>The absence of strict timing requirements provides flexibility for users. Whether you prefer to take the tablet with breakfast, before bedtime, or at any other convenient time, DentaTonic’s dosage instructions accommodate a variety of schedules.While the dosage may be simple, the emphasis lies in consistency. Incorporating <a href="https://roggle-delivery.tribe.so/post/dentatonic-reviews---does-it-work-new-updated-2024-659920b3656ea12debbfed38"><strong>DentaTonic</strong></a> into your routine daily ensures a regular supply of the formulation’s key ingredients, fostering an environment that supports the health of your teeth and gums over time.</p>
<h2 style="text-align: center;"><span style="background-color: #ffff00; color: #0000ff;"><a style="background-color: #ffff00; color: #0000ff;" href="https://www.globalfitnessmart.com/get-dentatonic"><strong>(EXCLUSIVE OFFER)Click Here : "*DentaTonic* USA"Official Website!</strong></a></span></h2>
<h2><strong>FAQ’s</strong></h2>
<p><strong>What is <a href="https://glonet.com/forum/thread/28859/dentatonic-reviews-%E2%80%93-does-it-work-%E3%80%90-new-updated-2024%E3%80%91/">DentaTonic</a> and how does it support dental health?</strong></p>
<p><a href="https://thankyou.tribe.so/post/dentatonic-reviews-usa-is-it-legit-read-this-before-buy-65991dde2c4791c27a293ce9"><strong>DentaTonic</strong></a> is a natural supplement designed to enhance oral health by supporting lactoperoxidase levels in saliva, combating bacteria, and aiding in plaque reduction.</p>
<p><strong>How should <a href="https://rapbeatsforum.com/viewtopic.php?t=74612">DentaTonic</a> be taken for optimal results?</strong></p>
<p>For best results, it’s recommended to take one to two capsules of <a href="https://oqqur.tribe.so/post/dentatonic-viral-scam-or-legit-is-it-work-or-not-65991b57f5c6c21556aba352"><strong>DentaTonic</strong></a> daily with water, preferably in the morning.</p>
<p><strong>Are there any additional benefits of using <a href="https://forum.teknofest.az/d/13733-dentatonic-viralscam-or-legit-is-it-work-or-not">DentaTonic </a>apart from dental health?</strong></p>
<p>Yes, besides improving dental health, <a href="http://kaymakgames.com/forum/index.php?thread/41029-dentatonic-reviews-does-it-work-new-updated-2024/"><strong>DentaTonic</strong></a> also contributes to better respiratory health, strengthens the immune system, and improves digestion.</p>
<p><strong>Is <a href="https://rapbeatsforum.com/viewtopic.php?t=74610">DentaTonic</a> safe and where is it manufactured?</strong></p>
<p><a href="https://forum.teknofest.az/d/13732-dentatonic-reviews-does-it-worknew-updated-2024"><strong>DentaTonic</strong></a> is manufactured in an FDA-approved facility, ensuring its safety and quality.</p>
<p><strong>What if I’m not satisfied with <a href="https://www.styleforum.net/threads/dentatonic-reviews-%E2%80%93-does-it-work-%E3%80%90-new-updated-2024%E3%80%91.741555/">DentaTonic</a>?</strong></p>
<p><a href="https://www.deviantart.com/dentatonicus/art/DentaTonic-Reviews-Does-It-Work-NEW-UPDATED-2024-1008583926"><strong>DentaTonic</strong></a> offers a 60-day 100% money-back guarantee, providing assurance and confidence in its effectiveness.</p>
<h2><strong>Prices and 60-day Guarantee</strong></h2>
<p><a href="https://leetcode.com/discuss/interview-question/4516178/DentaTonic-Viral%3A*SCAM-or-LEGIT*-Is-It-Work-or-Not"><strong>DentaTonic</strong> </a>can be purchased on the official website at the following pricing options.</p>
<ul>
<li><strong>One bottle $69.00 + Free Shipping</strong></li>
<li><strong>Three bottles $59.00 each + 2 free books + Free Shipping</strong></li>
<li><strong>Six Bottles $49.00 + 2 free books + Free Shipping</strong></li>
</ul>
<h2><strong>Included Free Bonuses</strong></h2>
<p><strong>Bonus #1 – VIP Smile: Get Sparkling White Teeth From The Comfort of Your Own Home</strong></p>
<p><strong>Bonus #2 – Mouth to Gut Detox – A Comprehensive Guide to Cleansing Your Digestive System</strong></p>
<h2 style="text-align: center;"><span style="background-color: #ff0000; color: #ffcc00;"><a style="background-color: #ff0000; color: #ffcc00;" href="https://www.globalfitnessmart.com/get-dentatonic"><strong>👉🧿👉 Order DentaTonic From USA 👉🧿👉 “OFFICIAL WEBSITE”</strong></a></span></h2>
<h2><strong>Conclusion</strong></h2>
<p>In summary, <a href="https://wandering.flarum.cloud/d/36075-dentatonic-viralscam-or-legit-is-it-work-or-not"><strong>DentaTonic</strong></a> stands as a beacon of hope in the quest for optimal oral health. Its unique blend of ingredients, user-friendly purchasing options, and reassuring satisfaction guarantee make it more than just a supplement; it’s a comprehensive dental health ally. As we’ve explored, <a href="https://community.thebatraanumerology.com/post/dentatonic-viral-scam-or-legit-is-it-work-or-not-6599094df8a17b373310f394"><strong>DentaTonic</strong></a> not only promises improved dental well-being but also extends its benefits to overall health. It’s a testament to the power of proactive oral care, blending science and nature in each capsule. So, as you consider your dental health journey, remember that <a href="https://wandering.flarum.cloud/d/36073-dentatonic-reviews-does-it-worknew-updated-2024"><strong>DentaTonic</strong></a> could be the key to unlocking a healthier, more confident smile.</p>
<h2 style="text-align: center;"><span style="background-color: #ffff00; color: #0000ff;"><a style="background-color: #ffff00; color: #0000ff;" href="https://www.globalfitnessmart.com/get-dentatonic"><strong>[ACT NOW] Don’t miss out on this amazing offer! Advantage of DentaTonic</strong></a></span></h2>
<h2>@ READ MORE</h2>
<p><a href="https://dentatonic-review.company.site/">https://dentatonic-review.company.site/</a></p>
<p><a href="https://groups.google.com/g/dentatonic-review/c/j_JXq-9f8JE">https://groups.google.com/g/dentatonic-review/c/j_JXq-9f8JE</a></p>
<p><a href="https://colab.research.google.com/drive/1Y_QEEY1pfraBh7Lyl6SmxVeyUnDdW5xh">https://colab.research.google.com/drive/1Y_QEEY1pfraBh7Lyl6SmxVeyUnDdW5xh</a></p>
<p><a href="https://lookerstudio.google.com/u/0/reporting/5b2c9008-5e9c-44d4-96c8-f19d212e2d2d/page/rdpmD">https://lookerstudio.google.com/u/0/reporting/5b2c9008-5e9c-44d4-96c8-f19d212e2d2d/page/rdpmD</a></p>
<p><a href="https://sites.google.com/view/dentatonic-review-price/home">https://sites.google.com/view/dentatonic-review-price/home</a></p>
<p><a href="https://www.scoop.it/topic/dentatonic-by-dentatonic-us">https://www.scoop.it/topic/dentatonic-by-dentatonic-us</a></p>
<p><a href="https://dentatonic-2.jimdosite.com/">https://dentatonic-2.jimdosite.com/</a></p>
<p><a href="https://www.scoop.it/topic/dentatonic-reviews-usa">https://www.scoop.it/topic/dentatonic-reviews-usa</a></p>
<p><a href="https://bitbucket.org/dentatonic/dentatonic/issues/2/dentatonic-reviews-clinically-researched">https://bitbucket.org/dentatonic/dentatonic/issues/2/dentatonic-reviews-clinically-researched</a></p>
<p><a href="https://forum.mmm.ucar.edu/threads/dentatonic-reviews-%E3%80%90-clinically-researched%E3%80%91-ingredients-dentatonic-effective-oral-health-formula.15174/">https://forum.mmm.ucar.edu/threads/dentatonic-reviews-%E3%80%90-clinically-researched%E3%80%91-ingredients-dentatonic-effective-oral-health-formula.15174/</a></p>
<p><a href="https://dentatonic-review.hashnode.dev/dentatonic-reviews-clinically-researched-ingredients-dentatonic-effective-oral-health-formula">https://dentatonic-review.hashnode.dev/dentatonic-reviews-clinically-researched-ingredients-dentatonic-effective-oral-health-formula</a></p>
<p><a href="https://gamma.app/docs/DentaTonic-Reviews-Does-It-WorkNEW-UPDATED-2024-6c291cyzapx5efd?mode=doc">https://gamma.app/docs/DentaTonic-Reviews-Does-It-WorkNEW-UPDATED-2024-6c291cyzapx5efd?mode=doc</a></p>
<p><a href="https://dentatonic-review.hashnode.dev/dentatonic-reviews-does-it-worknew-updated-2024">https://dentatonic-review.hashnode.dev/dentatonic-reviews-does-it-worknew-updated-2024</a></p>
<p><a href="https://medium.com/@dentatonicus/dentatonic-reviews-does-it-work-new-updated-2024-3b76d0a77484">https://medium.com/@dentatonicus/dentatonic-reviews-does-it-work-new-updated-2024-3b76d0a77484</a></p>
<p><a href="https://followme.tribe.so/post/dentatonic-reviews---does-it-work-new-updated-2024-6598fee4bef02efa7862eefd">https://followme.tribe.so/post/dentatonic-reviews---does-it-work-new-updated-2024-6598fee4bef02efa7862eefd</a></p>
<p><a href="https://soundcloud.com/dentatonicus/dentatonic-reviews-usa-is-it-legit-read-this-before-buy">https://soundcloud.com/dentatonicus/dentatonic-reviews-usa-is-it-legit-read-this-before-buy</a></p>
<p><a href="https://dentatonic1.bandcamp.com/track/dentatonic-reviews-usa-is-it-legit-read-this-before-buy">https://dentatonic1.bandcamp.com/track/dentatonic-reviews-usa-is-it-legit-read-this-before-buy</a></p>
<p><a href="https://www.styleforum.net/threads/dentatonic-reviews-%E2%80%93-does-it-work-%E3%80%90-new-updated-2024%E3%80%91.741555/">https://www.styleforum.net/threads/dentatonic-reviews-%E2%80%93-does-it-work-%E3%80%90-new-updated-2024%E3%80%91.741555/</a></p>
<p><a href="https://www.weddingwire.com/wedding-forums/dentatonic-reviews-legit-2024-its-really-works/239cb45026b63f76.html">https://www.weddingwire.com/wedding-forums/dentatonic-reviews-legit-2024-its-really-works/239cb45026b63f76.html</a></p>
<p><a href="https://www.deviantart.com/dentatonicus/art/DentaTonic-Reviews-CLINICALLY-RESEARCHED-1008584244">https://www.deviantart.com/dentatonicus/art/DentaTonic-Reviews-CLINICALLY-RESEARCHED-1008584244</a></p>
<p><a href="https://leetcode.com/discuss/interview-question/4516178/DentaTonic-Viral%3A*SCAM-or-LEGIT*-Is-It-Work-or-Not">https://leetcode.com/discuss/interview-question/4516178/DentaTonic-Viral%3A*SCAM-or-LEGIT*-Is-It-Work-or-Not</a></p>
<p><a href="https://wandering.flarum.cloud/d/36075-dentatonic-viralscam-or-legit-is-it-work-or-not">https://wandering.flarum.cloud/d/36075-dentatonic-viralscam-or-legit-is-it-work-or-not</a></p>
<p><a href="https://community.thebatraanumerology.com/post/dentatonic-viral-scam-or-legit-is-it-work-or-not-6599094df8a17b373310f394">https://community.thebatraanumerology.com/post/dentatonic-viral-scam-or-legit-is-it-work-or-not-6599094df8a17b373310f394</a></p>
<p><a href="https://pdfhost.io/v/lYa.T9dlY_DentaTonic_Reviews_Does_It_WorkNEW_UPDATED_2024">https://pdfhost.io/v/lYa.T9dlY_DentaTonic_Reviews_Does_It_WorkNEW_UPDATED_2024</a></p> | dentatonicus/dentatonic | [
"region:us"
] | 2024-01-06T10:11:36+00:00 | {} | 2024-01-06T10:11:53+00:00 | [] | [] | TAGS
#region-us
| <p><strong><a href="URL UPDATED 2024}</a> -</strong>In a world where bright smiles and healthy teeth are more than just a part of personal aesthetics, understanding the essentials of dental health becomes paramount. The journey to maintaining a radiant smile is often fraught with challenges, as dental issues can sneak up on us, impacting not just our appearance but also our overall well-being.</p>
<p>As we delve into the complexities of oral health, it becomes evident that proactive care is not just a choice but a necessity. Amidst the plethora of options, one name emerges with a promise of innovation – <a href="URL This carefully formulated supplement brings to the fore the significance of lactoperoxidase, an enzyme in our saliva that plays a crucial role in safeguarding our teeth and gums against bacterial onslaughts.</p>
<h2><a href="URL style="-webkit-text-stroke-width: 0px; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">DentaTonic — Official Website Link — Click Here</span></strong></a></h2>
<h2><strong><span style="-webkit-text-stroke-width: 0px; display: inline; float: none; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;"></span>️<span style="-webkit-text-stroke-width: 0px; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">Product Name: <a href="URL style="-webkit-text-stroke-width: 0px; background-color: white; color: #222222; font-family: Arial, Helvetica, sans-serif; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px;" /><strong><span style="-webkit-text-stroke-width: 0px; display: inline; float: none; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;"></span>️<span style="-webkit-text-stroke-width: 0px; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">Official Website: <a href="URL/URL</a></span></strong><br style="-webkit-text-stroke-width: 0px; background-color: white; color: #222222; font-family: Arial, Helvetica, sans-serif; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px;" /><strong><span style="-webkit-text-stroke-width: 0px; display: inline; float: none; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;"></span>️<span style="-webkit-text-stroke-width: 0px; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">Rating: (4.5/5.0)</span></strong><br style="-webkit-text-stroke-width: 0px; background-color: white; color: #222222; font-family: Arial, Helvetica, sans-serif; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px;" /><strong><span style="-webkit-text-stroke-width: 0px; display: inline; float: none; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;"></span>️<span style="-webkit-text-stroke-width: 0px; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">Offer: 60-Day Money Back Guarantee</span></strong><br style="-webkit-text-stroke-width: 0px; background-color: white; color: #222222; font-family: Arial, Helvetica, sans-serif; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px;" /><strong><span style="-webkit-text-stroke-width: 0px; display: inline; float: none; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;"></span>️<span style="-webkit-text-stroke-width: 0px; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">Availability: <a href="URL Stock Voted #1 Product in the USA</a></span></strong></h2>
<p>But why does this matter? And how does <a href="URL fit into this narrative? As we embark on this exploration, we aim to unravel the science behind lactoperoxidase, and how <a href="URL could be a subtle yet potent ally in our quest for impeccable dental health. So, let’s take a closer look at the burgeoning field of dental supplements and understand how <a href="URL could be more than just a supplement – it could be a game-changer in oral health care.</p>
<h2 style="text-align: center;"><span style="background-color: #ff0000; color: #ffcc00;"><a style="background-color: #ff0000; color: #ffcc00;" href="URL Order DentaTonic From USA “OFFICIAL WEBSITE”</strong></a></span></h2>
<h2><strong>What is <a href="URL
<p>In the dynamic world of dental health, where the battle against tooth decay and gum problems is ever-present, <a href="URL emerges as a revolutionary solution. It stands out as a pioneering dental filtration breakthrough, a term that encapsulates its role in promoting the health of our teeth and gums. This innovative product is not just a supplement; it’s a synergistic blend of nature’s best defenses against oral ailments.</p>
<p>At the heart of <a href="URL formula lies the essence of natural ingredients, each meticulously chosen for their proven benefits in oral health care. The key lies in its unique ability to bolster the levels of lactoperoxidase in our saliva. This enzyme is a natural guardian, playing a critical role in defending our oral cavity against the bacterial adversaries that threaten our dental well-being.</p>
<p>But <a href="URL efficacy doesn’t stop there. It’s designed to tackle a range of oral health challenges. For instance, it addresses the harmful effects of compounds like hydrogen cyanide, which can be detrimental to our oral environment. By enhancing the action of certain enzymes, <a href="URL </a>works tirelessly to combat the bacteria and plaque that are the bane of our dental health.</p>
<p>Furthermore, <a href="URL blend of enzymes and minerals is not just about defense. It’s about creating a balance, ensuring that our mouth remains a fortress against oral health issues. The natural ingredients within are like sentinels, each playing a vital role in maintaining the delicate ecosystem of our mouth.</p>
<h2 style="text-align: center;"><span style="background-color: #ffff00; color: #0000ff;"><a style="background-color: #ffff00; color: #0000ff;" href="URL PROMO: Get *DentaTonic* at the Lowest Discounted Price Online</strong></a></span></h2>
<h2><strong>How <a href="URL Works: Unveiling the Mechanism</strong></h2>
<p>Unraveling the workings of <a href="URL brings us to an intriguing intersection of science and oral health. The effectiveness of this supplement, often highlighted in numerous <a href="URL reviews, lies in its ability to enhance the natural defenses of our oral ecosystem. Central to this is the elevation of lactoperoxidase levels in our saliva, a crucial enzyme that acts as a protective shield for our teeth and gums.</p>
<p>The mechanism of<a href="URL DentaTonic</strong></a> is a finely tuned symphony of ingredients working in harmony. While lactoperoxidase is the conductor, other elements play equally vital roles. Ingredients such as Dextranase and Lysozyme are akin to skilled warriors in this battle, targeting plaque and oral bacteria with precision. These components break down the unwanted build-up and neutralize bacterial threats, ensuring a cleaner, healthier oral environment.</p>
<p>As per several <a href="URL reviews, the inclusion of Microcrystalline Hydroxyapatite is particularly noteworthy. This ingredient isn’t just filler; it’s a remineralization champion, contributing significantly to the restoration and strengthening of our teeth. This aspect of <a href="URL working mechanism is akin to repairing the ramparts of a fortress, ensuring that our teeth are not just clean but also robust and resistant to decay.</p>
<p>In essence, the way <strong><a href="URL works is by creating a robust, multi-layered defense system within our mouths. Each ingredient plays a strategic role, culminating in a supplement that doesn’t just promise oral health improvements but delivers them in a tangible, effective manner.</p>
<h2><strong>The Ingredients of <a href="URL A Deep Dive into Dental Protection</strong></h2>
<p><a href="URL blend of ingredients is a meticulously crafted arsenal aimed at fortifying dental health. Each component brings a specific benefit to the table, working in unison to ensure a holistic approach to oral care. Here’s an exploration of these ingredients and their roles in dental protection:</p>
<p><strong>Lactoperoxidase</strong></p>
<p>The cornerstone of <a href="URL formula, lactoperoxidase is a naturally occurring enzyme in saliva. Its primary function is to act as a first line of defense against oral bacteria. By enhancing the levels of this enzyme, <a href="URL helps in maintaining a balanced oral microbiome, effectively keeping bacterial growth in check and reducing the risk of dental caries and gum diseases.</p>
<p><strong>Dextranase</strong></p>
<p>This enzyme plays a crucial role in breaking down plaque. Plaque, a sticky film of bacteria and sugars, is a primary culprit in tooth decay and gum disease. Dextranase targets the polysaccharides in plaque, disrupting its structure and making it easier to remove. This action helps in preventing the accumulation of harmful bacteria and maintains oral hygiene.</p>
<p><strong>Lysozyme</strong></p>
<p>As a natural antibacterial agent found in saliva, lysozyme contributes significantly to oral health. It attacks and breaks down the cell walls of bacteria, thereby reducing their ability to colonize and cause dental issues. By boosting lysozyme levels, <a href="URL ensures an extra layer of protection against oral infections.</p>
<p><strong>Lactoferrin</strong></p>
<p>This ingredient is renowned for its anti-inflammatory properties. Inflammation is a key factor in many dental problems, including periodontitis. Lactoferrin helps in reducing inflammation, thereby aiding in the prevention and management of gum diseases.</p>
<p><strong>Microcrystalline Hydroxyapatite</strong></p>
<p>A standout ingredient for remineralization, this form of hydroxyapatite is crucial in rebuilding and strengthening tooth enamel. It mimics the natural composition of teeth, providing essential minerals directly to the enamel, helping in reversing minor decay and preventing further damage.</p>
<p><strong>Beta-Glucanase</strong></p>
<p>This enzyme assists in breaking down glucans, compounds often found in sticky foods that adhere to teeth and contribute to plaque formation. By mitigating the formation of these glucans, Beta-Glucanase plays a vital role in maintaining a clean and healthy oral environment.</p>
<p><strong>Amylase</strong></p>
<p>Typically known for its role in digesting starches, amylase in <a href="URL contributes to oral hygiene by breaking down food particles trapped in the teeth. This process reduces the food source for harmful bacteria, thereby lowering the risk of tooth decay and gum disease.</p>
<p>Each of these ingredients is carefully selected not just for their individual benefits but for their synergistic effect when combined. Together, they create a powerful blend that addresses various aspects of dental health, from strengthening enamel to reducing bacterial growth and inflammation. This comprehensive approach to oral care is what sets <a href="URL apart, making it a valuable ally in maintaining dental wellness.</p>
<h2 style="text-align: center;"><span style="background-color: #008000; color: #ff9900;"><a style="background-color: #008000; color: #ff9900;" href="URL Order DentaTonic From USA “OFFICIAL WEBSITE”</strong></a></span></h2>
<h2><strong><a href="URL Benefits</strong></h2>
<p>Let’s zoom in on the potential Denta Tonic benefits users might anticipate from incorporating <a href="URL into their daily oral care routine. While we’re not donning the cap of enthusiastic endorsers, we can certainly shed light on the promises laid out by this dental defense system.</p>
<p><strong>Oral Health Reinforcement:</strong> At the forefront of <a href="URL pitch is reinforcing lactoperoxidase levels in saliva. This is positioned as a frontline defense, a guardian angel for your teeth and gums, standing resilient against the onslaught of bacteria. The potential result? Strengthen oral health, with fewer chances of succumbing to decay or gum irritation.</p>
<p><strong>Mitigation of Hydrogen Cyanide Effects:</strong> <a href="URL doesn’t shy away from tackling hydrogen cyanide, aiming to mitigate its negative effects. By doing so, it aspires to create a safer haven for your dental landscape, addressing concerns that might linger beneath the surface of traditional oral care solutions.</p>
<p><strong>Enzymatic Warfare Against Bacteria and Plaque:</strong> The blend of enzymes and proteins, from dextranase to lysozyme, gears up for a relentless battle against the notorious duo – bacteria and plaque. This enzymatic warfare is a key element in the formula’s strategy, aiming to create an environment where these elements are kept in check for optimal dental health.</p>
<p><strong>Comprehensive Approach to Oral Well-Being:</strong> <a href="URL positions itself as a bacteria-banishing agent and a comprehensive solution for oral well-being. Its approach seeks to create an environment where your teeth and gums don’t just survive but thrive.</p>
<p><strong>Ease of Integration into Daily Routine:</strong> A benefit for those who favor simplicity, <a href="URL easy-to-swallow tablets make it a hassle-free addition to your daily routine. With just one tablet and a glass of water, it becomes a seamless part of your oral care practices.</p>
<p><strong>Bonus Guides for Added Value:</strong> Opting for the larger packs saves you some dollars and throws in two bonus guides – VIP Smile and Mouth to Gut Detox. The former shares insights for achieving sparkling white teeth at home, while the latter delves into the broader realm of cleansing your digestive system.</p>
<p>While these benefits paint an intriguing picture, individual experiences may vary. The real litmus test lies in the daily rituals of those who embrace <a href="URL as a companion in their oral health journey.</p>
<h2><strong><a href="URL Dosage and Usage</strong></h2>
<p>While we’re not here to dictate habits, we can certainly show how to incorporate <a href="URL seamlessly.</p>
<p><a href="URL </a>keeps things straightforward with a simple daily ritual. The prescribed dosage involves taking one tablet daily, accompanied by a glass of water. This uncomplicated routine is designed for ease of integration into your existing daily habits.</p>
<p>The easy-to-swallow tablets contribute to the user-friendly nature of <a href="URL This feature caters to those who prefer a hassle-free approach to their health regimen, eliminating potential barriers to consistent use.</p>
<p>The absence of strict timing requirements provides flexibility for users. Whether you prefer to take the tablet with breakfast, before bedtime, or at any other convenient time, DentaTonic’s dosage instructions accommodate a variety of schedules.While the dosage may be simple, the emphasis lies in consistency. Incorporating <a href="URL into your routine daily ensures a regular supply of the formulation’s key ingredients, fostering an environment that supports the health of your teeth and gums over time.</p>
<h2 style="text-align: center;"><span style="background-color: #ffff00; color: #0000ff;"><a style="background-color: #ffff00; color: #0000ff;" href="URL OFFER)Click Here : "*DentaTonic* USA"Official Website!</strong></a></span></h2>
<h2><strong>FAQ’s</strong></h2>
<p><strong>What is <a href="URL and how does it support dental health?</strong></p>
<p><a href="URL is a natural supplement designed to enhance oral health by supporting lactoperoxidase levels in saliva, combating bacteria, and aiding in plaque reduction.</p>
<p><strong>How should <a href="URL be taken for optimal results?</strong></p>
<p>For best results, it’s recommended to take one to two capsules of <a href="URL daily with water, preferably in the morning.</p>
<p><strong>Are there any additional benefits of using <a href="URL </a>apart from dental health?</strong></p>
<p>Yes, besides improving dental health, <a href="URL also contributes to better respiratory health, strengthens the immune system, and improves digestion.</p>
<p><strong>Is <a href="URL safe and where is it manufactured?</strong></p>
<p><a href="URL is manufactured in an FDA-approved facility, ensuring its safety and quality.</p>
<p><strong>What if I’m not satisfied with <a href="URL
<p><a href="URL offers a 60-day 100% money-back guarantee, providing assurance and confidence in its effectiveness.</p>
<h2><strong>Prices and 60-day Guarantee</strong></h2>
<p><a href="URL </a>can be purchased on the official website at the following pricing options.</p>
<ul>
<li><strong>One bottle $69.00 + Free Shipping</strong></li>
<li><strong>Three bottles $59.00 each + 2 free books + Free Shipping</strong></li>
<li><strong>Six Bottles $49.00 + 2 free books + Free Shipping</strong></li>
</ul>
<h2><strong>Included Free Bonuses</strong></h2>
<p><strong>Bonus #1 – VIP Smile: Get Sparkling White Teeth From The Comfort of Your Own Home</strong></p>
<p><strong>Bonus #2 – Mouth to Gut Detox – A Comprehensive Guide to Cleansing Your Digestive System</strong></p>
<h2 style="text-align: center;"><span style="background-color: #ff0000; color: #ffcc00;"><a style="background-color: #ff0000; color: #ffcc00;" href="URL Order DentaTonic From USA “OFFICIAL WEBSITE”</strong></a></span></h2>
<h2><strong>Conclusion</strong></h2>
<p>In summary, <a href="URL stands as a beacon of hope in the quest for optimal oral health. Its unique blend of ingredients, user-friendly purchasing options, and reassuring satisfaction guarantee make it more than just a supplement; it’s a comprehensive dental health ally. As we’ve explored, <a href="URL not only promises improved dental well-being but also extends its benefits to overall health. It’s a testament to the power of proactive oral care, blending science and nature in each capsule. So, as you consider your dental health journey, remember that <a href="URL could be the key to unlocking a healthier, more confident smile.</p>
<h2 style="text-align: center;"><span style="background-color: #ffff00; color: #0000ff;"><a style="background-color: #ffff00; color: #0000ff;" href="URL NOW] Don’t miss out on this amazing offer! Advantage of DentaTonic</strong></a></span></h2>
<h2>@ READ MORE</h2>
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL | [] | [
"TAGS\n#region-us \n"
] | [
6
] | [
"passage: TAGS\n#region-us \n"
] |
0e8cd5e9e36409ebe82d4dca102bca00ef5ccde9 |
# Dataset of Hana Shirosaki
This is the dataset of Hana Shirosaki, containing 567 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
| Name | Images | Download | Description |
|:----------------|---------:|:----------------------------------------|:-----------------------------------------------------------------------------------------|
| raw | 567 | [Download](dataset-raw.zip) | Raw data with meta information. |
| raw-stage3 | 1276 | [Download](dataset-raw-stage3.zip) | 3-stage cropped raw data with meta information. |
| raw-stage3-eyes | 1407 | [Download](dataset-raw-stage3-eyes.zip) | 3-stage cropped (with eye-focus) raw data with meta information. |
| 384x512 | 567 | [Download](dataset-384x512.zip) | 384x512 aligned dataset. |
| 512x704 | 567 | [Download](dataset-512x704.zip) | 512x704 aligned dataset. |
| 640x880 | 567 | [Download](dataset-640x880.zip) | 640x880 aligned dataset. |
| stage3-640 | 1276 | [Download](dataset-stage3-640.zip) | 3-stage cropped dataset with the shorter side not exceeding 640 pixels. |
| stage3-800 | 1276 | [Download](dataset-stage3-800.zip) | 3-stage cropped dataset with the shorter side not exceeding 800 pixels. |
| stage3-p512-640 | 974 | [Download](dataset-stage3-p512-640.zip) | 3-stage cropped dataset with the area not less than 512x512 pixels. |
| stage3-eyes-640 | 1407 | [Download](dataset-stage3-eyes-640.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 640 pixels. |
| stage3-eyes-800 | 1407 | [Download](dataset-stage3-eyes-800.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 800 pixels. |
| CyberHarem/hana_shirosaki_watashinitenshigamaiorita | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-06T10:21:54+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-06T10:24:05+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of Hana Shirosaki
=========================
This is the dataset of Hana Shirosaki, containing 567 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
| [] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] | [
44
] | [
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] |
5f850e13cbdd73ad708d956927d37f93de4d442f |
# Dataset of Kanon Konomori
This is the dataset of Kanon Konomori, containing 176 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
| Name | Images | Download | Description |
|:----------------|---------:|:----------------------------------------|:-----------------------------------------------------------------------------------------|
| raw | 176 | [Download](dataset-raw.zip) | Raw data with meta information. |
| raw-stage3 | 421 | [Download](dataset-raw-stage3.zip) | 3-stage cropped raw data with meta information. |
| raw-stage3-eyes | 449 | [Download](dataset-raw-stage3-eyes.zip) | 3-stage cropped (with eye-focus) raw data with meta information. |
| 384x512 | 176 | [Download](dataset-384x512.zip) | 384x512 aligned dataset. |
| 512x704 | 176 | [Download](dataset-512x704.zip) | 512x704 aligned dataset. |
| 640x880 | 176 | [Download](dataset-640x880.zip) | 640x880 aligned dataset. |
| stage3-640 | 421 | [Download](dataset-stage3-640.zip) | 3-stage cropped dataset with the shorter side not exceeding 640 pixels. |
| stage3-800 | 421 | [Download](dataset-stage3-800.zip) | 3-stage cropped dataset with the shorter side not exceeding 800 pixels. |
| stage3-p512-640 | 309 | [Download](dataset-stage3-p512-640.zip) | 3-stage cropped dataset with the area not less than 512x512 pixels. |
| stage3-eyes-640 | 449 | [Download](dataset-stage3-eyes-640.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 640 pixels. |
| stage3-eyes-800 | 449 | [Download](dataset-stage3-eyes-800.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 800 pixels. |
| CyberHarem/kanon_konomori_watashinitenshigamaiorita | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-06T10:36:49+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-06T10:37:42+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of Kanon Konomori
=========================
This is the dataset of Kanon Konomori, containing 176 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
| [] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] | [
44
] | [
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] |
ade53bce5266d61f0251df6a1ee570fbd7d66278 |
# Dataset Card for Evaluation run of notbdq/alooowso
<!-- Provide a quick summary of the dataset. -->
Dataset automatically created during the evaluation run of model [notbdq/alooowso](https://huggingface.co/notbdq/alooowso) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset("open-llm-leaderboard/details_notbdq__alooowso",
"harness_winogrande_5",
split="train")
```
## Latest results
These are the [latest results from run 2024-01-06T10:34:49.723168](https://huggingface.co/datasets/open-llm-leaderboard/details_notbdq__alooowso/blob/main/results_2024-01-06T10-34-49.723168.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"acc": 0.6077129668591679,
"acc_stderr": 0.03313759643296399,
"acc_norm": 0.6122333030969852,
"acc_norm_stderr": 0.033809885574250256,
"mc1": 0.5275397796817626,
"mc1_stderr": 0.01747693019071219,
"mc2": 0.6818016198570045,
"mc2_stderr": 0.015193257324657346
},
"harness|arc:challenge|25": {
"acc": 0.5887372013651877,
"acc_stderr": 0.014379441068522084,
"acc_norm": 0.6296928327645052,
"acc_norm_stderr": 0.01411129875167495
},
"harness|hellaswag|10": {
"acc": 0.6683927504481179,
"acc_stderr": 0.004698285350019217,
"acc_norm": 0.8487353116908982,
"acc_norm_stderr": 0.0035757440987799444
},
"harness|hendrycksTest-abstract_algebra|5": {
"acc": 0.31,
"acc_stderr": 0.04648231987117316,
"acc_norm": 0.31,
"acc_norm_stderr": 0.04648231987117316
},
"harness|hendrycksTest-anatomy|5": {
"acc": 0.5777777777777777,
"acc_stderr": 0.04266763404099582,
"acc_norm": 0.5777777777777777,
"acc_norm_stderr": 0.04266763404099582
},
"harness|hendrycksTest-astronomy|5": {
"acc": 0.631578947368421,
"acc_stderr": 0.03925523381052932,
"acc_norm": 0.631578947368421,
"acc_norm_stderr": 0.03925523381052932
},
"harness|hendrycksTest-business_ethics|5": {
"acc": 0.6,
"acc_stderr": 0.04923659639173309,
"acc_norm": 0.6,
"acc_norm_stderr": 0.04923659639173309
},
"harness|hendrycksTest-clinical_knowledge|5": {
"acc": 0.6679245283018868,
"acc_stderr": 0.02898545565233439,
"acc_norm": 0.6679245283018868,
"acc_norm_stderr": 0.02898545565233439
},
"harness|hendrycksTest-college_biology|5": {
"acc": 0.6875,
"acc_stderr": 0.038760854559127644,
"acc_norm": 0.6875,
"acc_norm_stderr": 0.038760854559127644
},
"harness|hendrycksTest-college_chemistry|5": {
"acc": 0.4,
"acc_stderr": 0.04923659639173309,
"acc_norm": 0.4,
"acc_norm_stderr": 0.04923659639173309
},
"harness|hendrycksTest-college_computer_science|5": {
"acc": 0.52,
"acc_stderr": 0.050211673156867795,
"acc_norm": 0.52,
"acc_norm_stderr": 0.050211673156867795
},
"harness|hendrycksTest-college_mathematics|5": {
"acc": 0.39,
"acc_stderr": 0.04902071300001974,
"acc_norm": 0.39,
"acc_norm_stderr": 0.04902071300001974
},
"harness|hendrycksTest-college_medicine|5": {
"acc": 0.5838150289017341,
"acc_stderr": 0.03758517775404948,
"acc_norm": 0.5838150289017341,
"acc_norm_stderr": 0.03758517775404948
},
"harness|hendrycksTest-college_physics|5": {
"acc": 0.4215686274509804,
"acc_stderr": 0.04913595201274498,
"acc_norm": 0.4215686274509804,
"acc_norm_stderr": 0.04913595201274498
},
"harness|hendrycksTest-computer_security|5": {
"acc": 0.69,
"acc_stderr": 0.04648231987117316,
"acc_norm": 0.69,
"acc_norm_stderr": 0.04648231987117316
},
"harness|hendrycksTest-conceptual_physics|5": {
"acc": 0.5361702127659574,
"acc_stderr": 0.032600385118357715,
"acc_norm": 0.5361702127659574,
"acc_norm_stderr": 0.032600385118357715
},
"harness|hendrycksTest-econometrics|5": {
"acc": 0.41228070175438597,
"acc_stderr": 0.04630653203366596,
"acc_norm": 0.41228070175438597,
"acc_norm_stderr": 0.04630653203366596
},
"harness|hendrycksTest-electrical_engineering|5": {
"acc": 0.6137931034482759,
"acc_stderr": 0.04057324734419035,
"acc_norm": 0.6137931034482759,
"acc_norm_stderr": 0.04057324734419035
},
"harness|hendrycksTest-elementary_mathematics|5": {
"acc": 0.3783068783068783,
"acc_stderr": 0.024976954053155254,
"acc_norm": 0.3783068783068783,
"acc_norm_stderr": 0.024976954053155254
},
"harness|hendrycksTest-formal_logic|5": {
"acc": 0.42063492063492064,
"acc_stderr": 0.04415438226743744,
"acc_norm": 0.42063492063492064,
"acc_norm_stderr": 0.04415438226743744
},
"harness|hendrycksTest-global_facts|5": {
"acc": 0.36,
"acc_stderr": 0.04824181513244218,
"acc_norm": 0.36,
"acc_norm_stderr": 0.04824181513244218
},
"harness|hendrycksTest-high_school_biology|5": {
"acc": 0.632258064516129,
"acc_stderr": 0.02743086657997347,
"acc_norm": 0.632258064516129,
"acc_norm_stderr": 0.02743086657997347
},
"harness|hendrycksTest-high_school_chemistry|5": {
"acc": 0.5073891625615764,
"acc_stderr": 0.0351760354036101,
"acc_norm": 0.5073891625615764,
"acc_norm_stderr": 0.0351760354036101
},
"harness|hendrycksTest-high_school_computer_science|5": {
"acc": 0.65,
"acc_stderr": 0.047937248544110196,
"acc_norm": 0.65,
"acc_norm_stderr": 0.047937248544110196
},
"harness|hendrycksTest-high_school_european_history|5": {
"acc": 0.7393939393939394,
"acc_stderr": 0.034277431758165236,
"acc_norm": 0.7393939393939394,
"acc_norm_stderr": 0.034277431758165236
},
"harness|hendrycksTest-high_school_geography|5": {
"acc": 0.7626262626262627,
"acc_stderr": 0.030313710538198896,
"acc_norm": 0.7626262626262627,
"acc_norm_stderr": 0.030313710538198896
},
"harness|hendrycksTest-high_school_government_and_politics|5": {
"acc": 0.8549222797927462,
"acc_stderr": 0.025416343096306443,
"acc_norm": 0.8549222797927462,
"acc_norm_stderr": 0.025416343096306443
},
"harness|hendrycksTest-high_school_macroeconomics|5": {
"acc": 0.558974358974359,
"acc_stderr": 0.025174048384000745,
"acc_norm": 0.558974358974359,
"acc_norm_stderr": 0.025174048384000745
},
"harness|hendrycksTest-high_school_mathematics|5": {
"acc": 0.3037037037037037,
"acc_stderr": 0.028037929969114993,
"acc_norm": 0.3037037037037037,
"acc_norm_stderr": 0.028037929969114993
},
"harness|hendrycksTest-high_school_microeconomics|5": {
"acc": 0.6554621848739496,
"acc_stderr": 0.030868682604121626,
"acc_norm": 0.6554621848739496,
"acc_norm_stderr": 0.030868682604121626
},
"harness|hendrycksTest-high_school_physics|5": {
"acc": 0.3509933774834437,
"acc_stderr": 0.038969819642573754,
"acc_norm": 0.3509933774834437,
"acc_norm_stderr": 0.038969819642573754
},
"harness|hendrycksTest-high_school_psychology|5": {
"acc": 0.7944954128440367,
"acc_stderr": 0.01732435232501601,
"acc_norm": 0.7944954128440367,
"acc_norm_stderr": 0.01732435232501601
},
"harness|hendrycksTest-high_school_statistics|5": {
"acc": 0.4537037037037037,
"acc_stderr": 0.03395322726375797,
"acc_norm": 0.4537037037037037,
"acc_norm_stderr": 0.03395322726375797
},
"harness|hendrycksTest-high_school_us_history|5": {
"acc": 0.7647058823529411,
"acc_stderr": 0.029771775228145624,
"acc_norm": 0.7647058823529411,
"acc_norm_stderr": 0.029771775228145624
},
"harness|hendrycksTest-high_school_world_history|5": {
"acc": 0.7552742616033755,
"acc_stderr": 0.027985699387036423,
"acc_norm": 0.7552742616033755,
"acc_norm_stderr": 0.027985699387036423
},
"harness|hendrycksTest-human_aging|5": {
"acc": 0.6188340807174888,
"acc_stderr": 0.03259625118416827,
"acc_norm": 0.6188340807174888,
"acc_norm_stderr": 0.03259625118416827
},
"harness|hendrycksTest-human_sexuality|5": {
"acc": 0.732824427480916,
"acc_stderr": 0.038808483010823944,
"acc_norm": 0.732824427480916,
"acc_norm_stderr": 0.038808483010823944
},
"harness|hendrycksTest-international_law|5": {
"acc": 0.8016528925619835,
"acc_stderr": 0.03640118271990947,
"acc_norm": 0.8016528925619835,
"acc_norm_stderr": 0.03640118271990947
},
"harness|hendrycksTest-jurisprudence|5": {
"acc": 0.7407407407407407,
"acc_stderr": 0.042365112580946336,
"acc_norm": 0.7407407407407407,
"acc_norm_stderr": 0.042365112580946336
},
"harness|hendrycksTest-logical_fallacies|5": {
"acc": 0.7300613496932515,
"acc_stderr": 0.034878251684978906,
"acc_norm": 0.7300613496932515,
"acc_norm_stderr": 0.034878251684978906
},
"harness|hendrycksTest-machine_learning|5": {
"acc": 0.44642857142857145,
"acc_stderr": 0.047184714852195886,
"acc_norm": 0.44642857142857145,
"acc_norm_stderr": 0.047184714852195886
},
"harness|hendrycksTest-management|5": {
"acc": 0.7475728155339806,
"acc_stderr": 0.04301250399690879,
"acc_norm": 0.7475728155339806,
"acc_norm_stderr": 0.04301250399690879
},
"harness|hendrycksTest-marketing|5": {
"acc": 0.8589743589743589,
"acc_stderr": 0.022801382534597552,
"acc_norm": 0.8589743589743589,
"acc_norm_stderr": 0.022801382534597552
},
"harness|hendrycksTest-medical_genetics|5": {
"acc": 0.67,
"acc_stderr": 0.04725815626252609,
"acc_norm": 0.67,
"acc_norm_stderr": 0.04725815626252609
},
"harness|hendrycksTest-miscellaneous|5": {
"acc": 0.7816091954022989,
"acc_stderr": 0.014774358319934486,
"acc_norm": 0.7816091954022989,
"acc_norm_stderr": 0.014774358319934486
},
"harness|hendrycksTest-moral_disputes|5": {
"acc": 0.6936416184971098,
"acc_stderr": 0.024818350129436593,
"acc_norm": 0.6936416184971098,
"acc_norm_stderr": 0.024818350129436593
},
"harness|hendrycksTest-moral_scenarios|5": {
"acc": 0.31843575418994413,
"acc_stderr": 0.015581008080360276,
"acc_norm": 0.31843575418994413,
"acc_norm_stderr": 0.015581008080360276
},
"harness|hendrycksTest-nutrition|5": {
"acc": 0.6862745098039216,
"acc_stderr": 0.026568921015457138,
"acc_norm": 0.6862745098039216,
"acc_norm_stderr": 0.026568921015457138
},
"harness|hendrycksTest-philosophy|5": {
"acc": 0.7009646302250804,
"acc_stderr": 0.02600330111788514,
"acc_norm": 0.7009646302250804,
"acc_norm_stderr": 0.02600330111788514
},
"harness|hendrycksTest-prehistory|5": {
"acc": 0.7037037037037037,
"acc_stderr": 0.025407197798890172,
"acc_norm": 0.7037037037037037,
"acc_norm_stderr": 0.025407197798890172
},
"harness|hendrycksTest-professional_accounting|5": {
"acc": 0.45390070921985815,
"acc_stderr": 0.02970045324729146,
"acc_norm": 0.45390070921985815,
"acc_norm_stderr": 0.02970045324729146
},
"harness|hendrycksTest-professional_law|5": {
"acc": 0.43415906127770537,
"acc_stderr": 0.012659033237067248,
"acc_norm": 0.43415906127770537,
"acc_norm_stderr": 0.012659033237067248
},
"harness|hendrycksTest-professional_medicine|5": {
"acc": 0.6176470588235294,
"acc_stderr": 0.02952009569768776,
"acc_norm": 0.6176470588235294,
"acc_norm_stderr": 0.02952009569768776
},
"harness|hendrycksTest-professional_psychology|5": {
"acc": 0.6356209150326797,
"acc_stderr": 0.019469518221573705,
"acc_norm": 0.6356209150326797,
"acc_norm_stderr": 0.019469518221573705
},
"harness|hendrycksTest-public_relations|5": {
"acc": 0.7181818181818181,
"acc_stderr": 0.043091187099464585,
"acc_norm": 0.7181818181818181,
"acc_norm_stderr": 0.043091187099464585
},
"harness|hendrycksTest-security_studies|5": {
"acc": 0.710204081632653,
"acc_stderr": 0.029043088683304328,
"acc_norm": 0.710204081632653,
"acc_norm_stderr": 0.029043088683304328
},
"harness|hendrycksTest-sociology|5": {
"acc": 0.7164179104477612,
"acc_stderr": 0.03187187537919797,
"acc_norm": 0.7164179104477612,
"acc_norm_stderr": 0.03187187537919797
},
"harness|hendrycksTest-us_foreign_policy|5": {
"acc": 0.81,
"acc_stderr": 0.03942772444036625,
"acc_norm": 0.81,
"acc_norm_stderr": 0.03942772444036625
},
"harness|hendrycksTest-virology|5": {
"acc": 0.4939759036144578,
"acc_stderr": 0.03892212195333047,
"acc_norm": 0.4939759036144578,
"acc_norm_stderr": 0.03892212195333047
},
"harness|hendrycksTest-world_religions|5": {
"acc": 0.8362573099415205,
"acc_stderr": 0.028380919596145866,
"acc_norm": 0.8362573099415205,
"acc_norm_stderr": 0.028380919596145866
},
"harness|truthfulqa:mc|0": {
"mc1": 0.5275397796817626,
"mc1_stderr": 0.01747693019071219,
"mc2": 0.6818016198570045,
"mc2_stderr": 0.015193257324657346
},
"harness|winogrande|5": {
"acc": 0.7742699289660616,
"acc_stderr": 0.011749626260902547
},
"harness|gsm8k|5": {
"acc": 0.3957543593631539,
"acc_stderr": 0.013469823701048808
}
}
```
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
[More Information Needed] | open-llm-leaderboard/details_notbdq__alooowso | [
"region:us"
] | 2024-01-06T10:37:07+00:00 | {"pretty_name": "Evaluation run of notbdq/alooowso", "dataset_summary": "Dataset automatically created during the evaluation run of model [notbdq/alooowso](https://huggingface.co/notbdq/alooowso) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_notbdq__alooowso\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-06T10:34:49.723168](https://huggingface.co/datasets/open-llm-leaderboard/details_notbdq__alooowso/blob/main/results_2024-01-06T10-34-49.723168.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6077129668591679,\n \"acc_stderr\": 0.03313759643296399,\n \"acc_norm\": 0.6122333030969852,\n \"acc_norm_stderr\": 0.033809885574250256,\n \"mc1\": 0.5275397796817626,\n \"mc1_stderr\": 0.01747693019071219,\n \"mc2\": 0.6818016198570045,\n \"mc2_stderr\": 0.015193257324657346\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.5887372013651877,\n \"acc_stderr\": 0.014379441068522084,\n \"acc_norm\": 0.6296928327645052,\n \"acc_norm_stderr\": 0.01411129875167495\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6683927504481179,\n \"acc_stderr\": 0.004698285350019217,\n \"acc_norm\": 0.8487353116908982,\n \"acc_norm_stderr\": 0.0035757440987799444\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.31,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.5777777777777777,\n \"acc_stderr\": 0.04266763404099582,\n \"acc_norm\": 0.5777777777777777,\n \"acc_norm_stderr\": 0.04266763404099582\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.631578947368421,\n \"acc_stderr\": 0.03925523381052932,\n \"acc_norm\": 0.631578947368421,\n \"acc_norm_stderr\": 0.03925523381052932\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.6,\n \"acc_stderr\": 0.04923659639173309,\n \"acc_norm\": 0.6,\n \"acc_norm_stderr\": 0.04923659639173309\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.6679245283018868,\n \"acc_stderr\": 0.02898545565233439,\n \"acc_norm\": 0.6679245283018868,\n \"acc_norm_stderr\": 0.02898545565233439\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.6875,\n \"acc_stderr\": 0.038760854559127644,\n \"acc_norm\": 0.6875,\n \"acc_norm_stderr\": 0.038760854559127644\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.4,\n \"acc_stderr\": 0.04923659639173309,\n \"acc_norm\": 0.4,\n \"acc_norm_stderr\": 0.04923659639173309\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.52,\n \"acc_stderr\": 0.050211673156867795,\n \"acc_norm\": 0.52,\n \"acc_norm_stderr\": 0.050211673156867795\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.39,\n \"acc_stderr\": 0.04902071300001974,\n \"acc_norm\": 0.39,\n \"acc_norm_stderr\": 0.04902071300001974\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.5838150289017341,\n \"acc_stderr\": 0.03758517775404948,\n \"acc_norm\": 0.5838150289017341,\n \"acc_norm_stderr\": 0.03758517775404948\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.4215686274509804,\n \"acc_stderr\": 0.04913595201274498,\n \"acc_norm\": 0.4215686274509804,\n \"acc_norm_stderr\": 0.04913595201274498\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.69,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.69,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5361702127659574,\n \"acc_stderr\": 0.032600385118357715,\n \"acc_norm\": 0.5361702127659574,\n \"acc_norm_stderr\": 0.032600385118357715\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.41228070175438597,\n \"acc_stderr\": 0.04630653203366596,\n \"acc_norm\": 0.41228070175438597,\n \"acc_norm_stderr\": 0.04630653203366596\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.6137931034482759,\n \"acc_stderr\": 0.04057324734419035,\n \"acc_norm\": 0.6137931034482759,\n \"acc_norm_stderr\": 0.04057324734419035\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.3783068783068783,\n \"acc_stderr\": 0.024976954053155254,\n \"acc_norm\": 0.3783068783068783,\n \"acc_norm_stderr\": 0.024976954053155254\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.42063492063492064,\n \"acc_stderr\": 0.04415438226743744,\n \"acc_norm\": 0.42063492063492064,\n \"acc_norm_stderr\": 0.04415438226743744\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.36,\n \"acc_stderr\": 0.04824181513244218,\n \"acc_norm\": 0.36,\n \"acc_norm_stderr\": 0.04824181513244218\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.632258064516129,\n \"acc_stderr\": 0.02743086657997347,\n \"acc_norm\": 0.632258064516129,\n \"acc_norm_stderr\": 0.02743086657997347\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.5073891625615764,\n \"acc_stderr\": 0.0351760354036101,\n \"acc_norm\": 0.5073891625615764,\n \"acc_norm_stderr\": 0.0351760354036101\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.65,\n \"acc_stderr\": 0.047937248544110196,\n \"acc_norm\": 0.65,\n \"acc_norm_stderr\": 0.047937248544110196\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7393939393939394,\n \"acc_stderr\": 0.034277431758165236,\n \"acc_norm\": 0.7393939393939394,\n \"acc_norm_stderr\": 0.034277431758165236\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7626262626262627,\n \"acc_stderr\": 0.030313710538198896,\n \"acc_norm\": 0.7626262626262627,\n \"acc_norm_stderr\": 0.030313710538198896\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8549222797927462,\n \"acc_stderr\": 0.025416343096306443,\n \"acc_norm\": 0.8549222797927462,\n \"acc_norm_stderr\": 0.025416343096306443\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.558974358974359,\n \"acc_stderr\": 0.025174048384000745,\n \"acc_norm\": 0.558974358974359,\n \"acc_norm_stderr\": 0.025174048384000745\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.3037037037037037,\n \"acc_stderr\": 0.028037929969114993,\n \"acc_norm\": 0.3037037037037037,\n \"acc_norm_stderr\": 0.028037929969114993\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6554621848739496,\n \"acc_stderr\": 0.030868682604121626,\n \"acc_norm\": 0.6554621848739496,\n \"acc_norm_stderr\": 0.030868682604121626\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.3509933774834437,\n \"acc_stderr\": 0.038969819642573754,\n \"acc_norm\": 0.3509933774834437,\n \"acc_norm_stderr\": 0.038969819642573754\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.7944954128440367,\n \"acc_stderr\": 0.01732435232501601,\n \"acc_norm\": 0.7944954128440367,\n \"acc_norm_stderr\": 0.01732435232501601\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.4537037037037037,\n \"acc_stderr\": 0.03395322726375797,\n \"acc_norm\": 0.4537037037037037,\n \"acc_norm_stderr\": 0.03395322726375797\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.7647058823529411,\n \"acc_stderr\": 0.029771775228145624,\n \"acc_norm\": 0.7647058823529411,\n \"acc_norm_stderr\": 0.029771775228145624\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7552742616033755,\n \"acc_stderr\": 0.027985699387036423,\n \"acc_norm\": 0.7552742616033755,\n \"acc_norm_stderr\": 0.027985699387036423\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6188340807174888,\n \"acc_stderr\": 0.03259625118416827,\n \"acc_norm\": 0.6188340807174888,\n \"acc_norm_stderr\": 0.03259625118416827\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.732824427480916,\n \"acc_stderr\": 0.038808483010823944,\n \"acc_norm\": 0.732824427480916,\n \"acc_norm_stderr\": 0.038808483010823944\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8016528925619835,\n \"acc_stderr\": 0.03640118271990947,\n \"acc_norm\": 0.8016528925619835,\n \"acc_norm_stderr\": 0.03640118271990947\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7407407407407407,\n \"acc_stderr\": 0.042365112580946336,\n \"acc_norm\": 0.7407407407407407,\n \"acc_norm_stderr\": 0.042365112580946336\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7300613496932515,\n \"acc_stderr\": 0.034878251684978906,\n \"acc_norm\": 0.7300613496932515,\n \"acc_norm_stderr\": 0.034878251684978906\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.44642857142857145,\n \"acc_stderr\": 0.047184714852195886,\n \"acc_norm\": 0.44642857142857145,\n \"acc_norm_stderr\": 0.047184714852195886\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7475728155339806,\n \"acc_stderr\": 0.04301250399690879,\n \"acc_norm\": 0.7475728155339806,\n \"acc_norm_stderr\": 0.04301250399690879\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8589743589743589,\n \"acc_stderr\": 0.022801382534597552,\n \"acc_norm\": 0.8589743589743589,\n \"acc_norm_stderr\": 0.022801382534597552\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.67,\n \"acc_stderr\": 0.04725815626252609,\n \"acc_norm\": 0.67,\n \"acc_norm_stderr\": 0.04725815626252609\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.7816091954022989,\n \"acc_stderr\": 0.014774358319934486,\n \"acc_norm\": 0.7816091954022989,\n \"acc_norm_stderr\": 0.014774358319934486\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.6936416184971098,\n \"acc_stderr\": 0.024818350129436593,\n \"acc_norm\": 0.6936416184971098,\n \"acc_norm_stderr\": 0.024818350129436593\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.31843575418994413,\n \"acc_stderr\": 0.015581008080360276,\n \"acc_norm\": 0.31843575418994413,\n \"acc_norm_stderr\": 0.015581008080360276\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.6862745098039216,\n \"acc_stderr\": 0.026568921015457138,\n \"acc_norm\": 0.6862745098039216,\n \"acc_norm_stderr\": 0.026568921015457138\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.7009646302250804,\n \"acc_stderr\": 0.02600330111788514,\n \"acc_norm\": 0.7009646302250804,\n \"acc_norm_stderr\": 0.02600330111788514\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.7037037037037037,\n \"acc_stderr\": 0.025407197798890172,\n \"acc_norm\": 0.7037037037037037,\n \"acc_norm_stderr\": 0.025407197798890172\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.45390070921985815,\n \"acc_stderr\": 0.02970045324729146,\n \"acc_norm\": 0.45390070921985815,\n \"acc_norm_stderr\": 0.02970045324729146\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.43415906127770537,\n \"acc_stderr\": 0.012659033237067248,\n \"acc_norm\": 0.43415906127770537,\n \"acc_norm_stderr\": 0.012659033237067248\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6176470588235294,\n \"acc_stderr\": 0.02952009569768776,\n \"acc_norm\": 0.6176470588235294,\n \"acc_norm_stderr\": 0.02952009569768776\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6356209150326797,\n \"acc_stderr\": 0.019469518221573705,\n \"acc_norm\": 0.6356209150326797,\n \"acc_norm_stderr\": 0.019469518221573705\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.7181818181818181,\n \"acc_stderr\": 0.043091187099464585,\n \"acc_norm\": 0.7181818181818181,\n \"acc_norm_stderr\": 0.043091187099464585\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.710204081632653,\n \"acc_stderr\": 0.029043088683304328,\n \"acc_norm\": 0.710204081632653,\n \"acc_norm_stderr\": 0.029043088683304328\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.7164179104477612,\n \"acc_stderr\": 0.03187187537919797,\n \"acc_norm\": 0.7164179104477612,\n \"acc_norm_stderr\": 0.03187187537919797\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.81,\n \"acc_stderr\": 0.03942772444036625,\n \"acc_norm\": 0.81,\n \"acc_norm_stderr\": 0.03942772444036625\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.4939759036144578,\n \"acc_stderr\": 0.03892212195333047,\n \"acc_norm\": 0.4939759036144578,\n \"acc_norm_stderr\": 0.03892212195333047\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8362573099415205,\n \"acc_stderr\": 0.028380919596145866,\n \"acc_norm\": 0.8362573099415205,\n \"acc_norm_stderr\": 0.028380919596145866\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.5275397796817626,\n \"mc1_stderr\": 0.01747693019071219,\n \"mc2\": 0.6818016198570045,\n \"mc2_stderr\": 0.015193257324657346\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.7742699289660616,\n \"acc_stderr\": 0.011749626260902547\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.3957543593631539,\n \"acc_stderr\": 0.013469823701048808\n }\n}\n```", "repo_url": "https://huggingface.co/notbdq/alooowso", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|arc:challenge|25_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|gsm8k|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hellaswag|10_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-06T10-34-49.723168.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["**/details_harness|winogrande|5_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-06T10-34-49.723168.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_06T10_34_49.723168", "path": ["results_2024-01-06T10-34-49.723168.parquet"]}, {"split": "latest", "path": ["results_2024-01-06T10-34-49.723168.parquet"]}]}]} | 2024-01-06T10:37:38+00:00 | [] | [] | TAGS
#region-us
|
# Dataset Card for Evaluation run of notbdq/alooowso
Dataset automatically created during the evaluation run of model notbdq/alooowso on the Open LLM Leaderboard.
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).
To load the details from a run, you can for instance do the following:
## Latest results
These are the latest results from run 2024-01-06T10:34:49.723168(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
## Dataset Details
### Dataset Description
- Curated by:
- Funded by [optional]:
- Shared by [optional]:
- Language(s) (NLP):
- License:
### Dataset Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Out-of-Scope Use
## Dataset Structure
## Dataset Creation
### Curation Rationale
### Source Data
#### Data Collection and Processing
#### Who are the source data producers?
### Annotations [optional]
#### Annotation process
#### Who are the annotators?
#### Personal and Sensitive Information
## Bias, Risks, and Limitations
### Recommendations
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Dataset Card Authors [optional]
## Dataset Card Contact
| [
"# Dataset Card for Evaluation run of notbdq/alooowso\n\n\n\nDataset automatically created during the evaluation run of model notbdq/alooowso on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-06T10:34:49.723168(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for Evaluation run of notbdq/alooowso\n\n\n\nDataset automatically created during the evaluation run of model notbdq/alooowso on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-06T10:34:49.723168(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
6,
177,
68,
4,
40,
29,
3,
4,
9,
6,
5,
7,
4,
7,
10,
9,
5,
9,
8,
10,
46,
8,
7,
10,
5
] | [
"passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of notbdq/alooowso\n\n\n\nDataset automatically created during the evaluation run of model notbdq/alooowso on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2024-01-06T10:34:49.723168(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):## Dataset Details### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Out-of-Scope Use## Dataset Structure## Dataset Creation### Curation Rationale### Source Data#### Data Collection and Processing#### Who are the source data producers?### Annotations [optional]#### Annotation process#### Who are the annotators?#### Personal and Sensitive Information## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Dataset Card Authors [optional]## Dataset Card Contact"
] |
0d315a1a0c50e20131c2197dc8f5be5466862210 | # Guanaco-1k: Lazy Llama 2 Formatting
This is a subset (1000 samples) of the excellent [`timdettmers/openassistant-guanaco`](https://huggingface.co/datasets/timdettmers/openassistant-guanaco) dataset, processed to match Llama 2's prompt format as described [in this article](https://huggingface.co/blog/llama2#how-to-prompt-llama-2). It was created using the following [colab notebook](https://colab.research.google.com/drive/1Ad7a9zMmkxuXTOh1Z7-rNSICA4dybpM2?usp=sharing).
Useful if you don't want to reformat it by yourself (e.g., using a script). It was designed for [this article](https://mlabonne.github.io/blog/posts/Fine_Tune_Your_Own_Llama_2_Model_in_a_Colab_Notebook.html) about fine-tuning a Llama 2 (chat) model in a Google Colab.
| Pravarved/test-dataset | [
"region:us"
] | 2024-01-06T10:38:34+00:00 | {"dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1654448, "num_examples": 1000}], "download_size": 966693, "dataset_size": 1654448}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2024-01-06T12:16:49+00:00 | [] | [] | TAGS
#region-us
| # Guanaco-1k: Lazy Llama 2 Formatting
This is a subset (1000 samples) of the excellent 'timdettmers/openassistant-guanaco' dataset, processed to match Llama 2's prompt format as described in this article. It was created using the following colab notebook.
Useful if you don't want to reformat it by yourself (e.g., using a script). It was designed for this article about fine-tuning a Llama 2 (chat) model in a Google Colab.
| [
"# Guanaco-1k: Lazy Llama 2 Formatting\n\nThis is a subset (1000 samples) of the excellent 'timdettmers/openassistant-guanaco' dataset, processed to match Llama 2's prompt format as described in this article. It was created using the following colab notebook.\n\nUseful if you don't want to reformat it by yourself (e.g., using a script). It was designed for this article about fine-tuning a Llama 2 (chat) model in a Google Colab."
] | [
"TAGS\n#region-us \n",
"# Guanaco-1k: Lazy Llama 2 Formatting\n\nThis is a subset (1000 samples) of the excellent 'timdettmers/openassistant-guanaco' dataset, processed to match Llama 2's prompt format as described in this article. It was created using the following colab notebook.\n\nUseful if you don't want to reformat it by yourself (e.g., using a script). It was designed for this article about fine-tuning a Llama 2 (chat) model in a Google Colab."
] | [
6,
120
] | [
"passage: TAGS\n#region-us \n# Guanaco-1k: Lazy Llama 2 Formatting\n\nThis is a subset (1000 samples) of the excellent 'timdettmers/openassistant-guanaco' dataset, processed to match Llama 2's prompt format as described in this article. It was created using the following colab notebook.\n\nUseful if you don't want to reformat it by yourself (e.g., using a script). It was designed for this article about fine-tuning a Llama 2 (chat) model in a Google Colab."
] |
b5d05e91badf0ac5051179908b8236d8289fca88 |
# Dataset Card for Evaluation run of CausalLM/72B-preview-canary-llamafied-qwen-llamafy-unbias-qkv
<!-- Provide a quick summary of the dataset. -->
Dataset automatically created during the evaluation run of model [CausalLM/72B-preview-canary-llamafied-qwen-llamafy-unbias-qkv](https://huggingface.co/CausalLM/72B-preview-canary-llamafied-qwen-llamafy-unbias-qkv) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset("open-llm-leaderboard/details_CausalLM__72B-preview-canary-llamafied-qwen-llamafy-unbias-qkv",
"harness_winogrande_5",
split="train")
```
## Latest results
These are the [latest results from run 2024-01-06T10:49:51.922968](https://huggingface.co/datasets/open-llm-leaderboard/details_CausalLM__72B-preview-canary-llamafied-qwen-llamafy-unbias-qkv/blob/main/results_2024-01-06T10-49-51.922968.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"acc": 0.6646054440358954,
"acc_stderr": 0.03179887695147788,
"acc_norm": 0.6712216491861255,
"acc_norm_stderr": 0.03244437835929297,
"mc1": 0.423500611995104,
"mc1_stderr": 0.017297421448534727,
"mc2": 0.5761008495230423,
"mc2_stderr": 0.015574886099425339
},
"harness|arc:challenge|25": {
"acc": 0.48890784982935154,
"acc_stderr": 0.01460779491401306,
"acc_norm": 0.5255972696245734,
"acc_norm_stderr": 0.014592230885298966
},
"harness|hellaswag|10": {
"acc": 0.4992033459470225,
"acc_stderr": 0.0049897750778356495,
"acc_norm": 0.6298546106353317,
"acc_norm_stderr": 0.004818566366066922
},
"harness|hendrycksTest-abstract_algebra|5": {
"acc": 0.31,
"acc_stderr": 0.04648231987117316,
"acc_norm": 0.31,
"acc_norm_stderr": 0.04648231987117316
},
"harness|hendrycksTest-anatomy|5": {
"acc": 0.5851851851851851,
"acc_stderr": 0.04256193767901408,
"acc_norm": 0.5851851851851851,
"acc_norm_stderr": 0.04256193767901408
},
"harness|hendrycksTest-astronomy|5": {
"acc": 0.756578947368421,
"acc_stderr": 0.034923496688842384,
"acc_norm": 0.756578947368421,
"acc_norm_stderr": 0.034923496688842384
},
"harness|hendrycksTest-business_ethics|5": {
"acc": 0.7,
"acc_stderr": 0.046056618647183814,
"acc_norm": 0.7,
"acc_norm_stderr": 0.046056618647183814
},
"harness|hendrycksTest-clinical_knowledge|5": {
"acc": 0.7358490566037735,
"acc_stderr": 0.02713429162874171,
"acc_norm": 0.7358490566037735,
"acc_norm_stderr": 0.02713429162874171
},
"harness|hendrycksTest-college_biology|5": {
"acc": 0.7847222222222222,
"acc_stderr": 0.03437079344106135,
"acc_norm": 0.7847222222222222,
"acc_norm_stderr": 0.03437079344106135
},
"harness|hendrycksTest-college_chemistry|5": {
"acc": 0.5,
"acc_stderr": 0.050251890762960605,
"acc_norm": 0.5,
"acc_norm_stderr": 0.050251890762960605
},
"harness|hendrycksTest-college_computer_science|5": {
"acc": 0.58,
"acc_stderr": 0.049604496374885836,
"acc_norm": 0.58,
"acc_norm_stderr": 0.049604496374885836
},
"harness|hendrycksTest-college_mathematics|5": {
"acc": 0.49,
"acc_stderr": 0.05024183937956912,
"acc_norm": 0.49,
"acc_norm_stderr": 0.05024183937956912
},
"harness|hendrycksTest-college_medicine|5": {
"acc": 0.6705202312138728,
"acc_stderr": 0.03583901754736412,
"acc_norm": 0.6705202312138728,
"acc_norm_stderr": 0.03583901754736412
},
"harness|hendrycksTest-college_physics|5": {
"acc": 0.39215686274509803,
"acc_stderr": 0.04858083574266345,
"acc_norm": 0.39215686274509803,
"acc_norm_stderr": 0.04858083574266345
},
"harness|hendrycksTest-computer_security|5": {
"acc": 0.74,
"acc_stderr": 0.044084400227680794,
"acc_norm": 0.74,
"acc_norm_stderr": 0.044084400227680794
},
"harness|hendrycksTest-conceptual_physics|5": {
"acc": 0.6553191489361702,
"acc_stderr": 0.03106898596312215,
"acc_norm": 0.6553191489361702,
"acc_norm_stderr": 0.03106898596312215
},
"harness|hendrycksTest-econometrics|5": {
"acc": 0.47368421052631576,
"acc_stderr": 0.04697085136647863,
"acc_norm": 0.47368421052631576,
"acc_norm_stderr": 0.04697085136647863
},
"harness|hendrycksTest-electrical_engineering|5": {
"acc": 0.5655172413793104,
"acc_stderr": 0.04130740879555498,
"acc_norm": 0.5655172413793104,
"acc_norm_stderr": 0.04130740879555498
},
"harness|hendrycksTest-elementary_mathematics|5": {
"acc": 0.5608465608465608,
"acc_stderr": 0.02555992055053101,
"acc_norm": 0.5608465608465608,
"acc_norm_stderr": 0.02555992055053101
},
"harness|hendrycksTest-formal_logic|5": {
"acc": 0.38095238095238093,
"acc_stderr": 0.043435254289490965,
"acc_norm": 0.38095238095238093,
"acc_norm_stderr": 0.043435254289490965
},
"harness|hendrycksTest-global_facts|5": {
"acc": 0.43,
"acc_stderr": 0.04975698519562428,
"acc_norm": 0.43,
"acc_norm_stderr": 0.04975698519562428
},
"harness|hendrycksTest-high_school_biology|5": {
"acc": 0.7741935483870968,
"acc_stderr": 0.023785577884181012,
"acc_norm": 0.7741935483870968,
"acc_norm_stderr": 0.023785577884181012
},
"harness|hendrycksTest-high_school_chemistry|5": {
"acc": 0.5862068965517241,
"acc_stderr": 0.03465304488406795,
"acc_norm": 0.5862068965517241,
"acc_norm_stderr": 0.03465304488406795
},
"harness|hendrycksTest-high_school_computer_science|5": {
"acc": 0.81,
"acc_stderr": 0.039427724440366234,
"acc_norm": 0.81,
"acc_norm_stderr": 0.039427724440366234
},
"harness|hendrycksTest-high_school_european_history|5": {
"acc": 0.8242424242424242,
"acc_stderr": 0.02972094300622445,
"acc_norm": 0.8242424242424242,
"acc_norm_stderr": 0.02972094300622445
},
"harness|hendrycksTest-high_school_geography|5": {
"acc": 0.8535353535353535,
"acc_stderr": 0.025190921114603918,
"acc_norm": 0.8535353535353535,
"acc_norm_stderr": 0.025190921114603918
},
"harness|hendrycksTest-high_school_government_and_politics|5": {
"acc": 0.9430051813471503,
"acc_stderr": 0.016731085293607555,
"acc_norm": 0.9430051813471503,
"acc_norm_stderr": 0.016731085293607555
},
"harness|hendrycksTest-high_school_macroeconomics|5": {
"acc": 0.6974358974358974,
"acc_stderr": 0.02329088805377272,
"acc_norm": 0.6974358974358974,
"acc_norm_stderr": 0.02329088805377272
},
"harness|hendrycksTest-high_school_mathematics|5": {
"acc": 0.46296296296296297,
"acc_stderr": 0.03040178640610151,
"acc_norm": 0.46296296296296297,
"acc_norm_stderr": 0.03040178640610151
},
"harness|hendrycksTest-high_school_microeconomics|5": {
"acc": 0.7773109243697479,
"acc_stderr": 0.027025433498882395,
"acc_norm": 0.7773109243697479,
"acc_norm_stderr": 0.027025433498882395
},
"harness|hendrycksTest-high_school_physics|5": {
"acc": 0.47019867549668876,
"acc_stderr": 0.040752249922169775,
"acc_norm": 0.47019867549668876,
"acc_norm_stderr": 0.040752249922169775
},
"harness|hendrycksTest-high_school_psychology|5": {
"acc": 0.8587155963302753,
"acc_stderr": 0.014933868987028073,
"acc_norm": 0.8587155963302753,
"acc_norm_stderr": 0.014933868987028073
},
"harness|hendrycksTest-high_school_statistics|5": {
"acc": 0.5462962962962963,
"acc_stderr": 0.033953227263757976,
"acc_norm": 0.5462962962962963,
"acc_norm_stderr": 0.033953227263757976
},
"harness|hendrycksTest-high_school_us_history|5": {
"acc": 0.8627450980392157,
"acc_stderr": 0.02415222596280159,
"acc_norm": 0.8627450980392157,
"acc_norm_stderr": 0.02415222596280159
},
"harness|hendrycksTest-high_school_world_history|5": {
"acc": 0.8185654008438819,
"acc_stderr": 0.025085961144579658,
"acc_norm": 0.8185654008438819,
"acc_norm_stderr": 0.025085961144579658
},
"harness|hendrycksTest-human_aging|5": {
"acc": 0.7174887892376681,
"acc_stderr": 0.03021683101150877,
"acc_norm": 0.7174887892376681,
"acc_norm_stderr": 0.03021683101150877
},
"harness|hendrycksTest-human_sexuality|5": {
"acc": 0.7633587786259542,
"acc_stderr": 0.03727673575596914,
"acc_norm": 0.7633587786259542,
"acc_norm_stderr": 0.03727673575596914
},
"harness|hendrycksTest-international_law|5": {
"acc": 0.8016528925619835,
"acc_stderr": 0.036401182719909456,
"acc_norm": 0.8016528925619835,
"acc_norm_stderr": 0.036401182719909456
},
"harness|hendrycksTest-jurisprudence|5": {
"acc": 0.7592592592592593,
"acc_stderr": 0.0413311944024384,
"acc_norm": 0.7592592592592593,
"acc_norm_stderr": 0.0413311944024384
},
"harness|hendrycksTest-logical_fallacies|5": {
"acc": 0.7668711656441718,
"acc_stderr": 0.0332201579577674,
"acc_norm": 0.7668711656441718,
"acc_norm_stderr": 0.0332201579577674
},
"harness|hendrycksTest-machine_learning|5": {
"acc": 0.5267857142857143,
"acc_stderr": 0.047389751192741546,
"acc_norm": 0.5267857142857143,
"acc_norm_stderr": 0.047389751192741546
},
"harness|hendrycksTest-management|5": {
"acc": 0.7572815533980582,
"acc_stderr": 0.04245022486384495,
"acc_norm": 0.7572815533980582,
"acc_norm_stderr": 0.04245022486384495
},
"harness|hendrycksTest-marketing|5": {
"acc": 0.8632478632478633,
"acc_stderr": 0.022509033937077785,
"acc_norm": 0.8632478632478633,
"acc_norm_stderr": 0.022509033937077785
},
"harness|hendrycksTest-medical_genetics|5": {
"acc": 0.78,
"acc_stderr": 0.041633319989322626,
"acc_norm": 0.78,
"acc_norm_stderr": 0.041633319989322626
},
"harness|hendrycksTest-miscellaneous|5": {
"acc": 0.8505747126436781,
"acc_stderr": 0.0127486708025271,
"acc_norm": 0.8505747126436781,
"acc_norm_stderr": 0.0127486708025271
},
"harness|hendrycksTest-moral_disputes|5": {
"acc": 0.7398843930635838,
"acc_stderr": 0.023618678310069363,
"acc_norm": 0.7398843930635838,
"acc_norm_stderr": 0.023618678310069363
},
"harness|hendrycksTest-moral_scenarios|5": {
"acc": 0.5016759776536313,
"acc_stderr": 0.016722407608296394,
"acc_norm": 0.5016759776536313,
"acc_norm_stderr": 0.016722407608296394
},
"harness|hendrycksTest-nutrition|5": {
"acc": 0.7745098039215687,
"acc_stderr": 0.02392915551735128,
"acc_norm": 0.7745098039215687,
"acc_norm_stderr": 0.02392915551735128
},
"harness|hendrycksTest-philosophy|5": {
"acc": 0.752411575562701,
"acc_stderr": 0.024513879973621967,
"acc_norm": 0.752411575562701,
"acc_norm_stderr": 0.024513879973621967
},
"harness|hendrycksTest-prehistory|5": {
"acc": 0.7777777777777778,
"acc_stderr": 0.02313237623454335,
"acc_norm": 0.7777777777777778,
"acc_norm_stderr": 0.02313237623454335
},
"harness|hendrycksTest-professional_accounting|5": {
"acc": 0.5531914893617021,
"acc_stderr": 0.02965823509766691,
"acc_norm": 0.5531914893617021,
"acc_norm_stderr": 0.02965823509766691
},
"harness|hendrycksTest-professional_law|5": {
"acc": 0.5097783572359843,
"acc_stderr": 0.012767793787729338,
"acc_norm": 0.5097783572359843,
"acc_norm_stderr": 0.012767793787729338
},
"harness|hendrycksTest-professional_medicine|5": {
"acc": 0.6985294117647058,
"acc_stderr": 0.027875982114273168,
"acc_norm": 0.6985294117647058,
"acc_norm_stderr": 0.027875982114273168
},
"harness|hendrycksTest-professional_psychology|5": {
"acc": 0.6977124183006536,
"acc_stderr": 0.018579232711113877,
"acc_norm": 0.6977124183006536,
"acc_norm_stderr": 0.018579232711113877
},
"harness|hendrycksTest-public_relations|5": {
"acc": 0.6818181818181818,
"acc_stderr": 0.04461272175910508,
"acc_norm": 0.6818181818181818,
"acc_norm_stderr": 0.04461272175910508
},
"harness|hendrycksTest-security_studies|5": {
"acc": 0.7306122448979592,
"acc_stderr": 0.02840125202902294,
"acc_norm": 0.7306122448979592,
"acc_norm_stderr": 0.02840125202902294
},
"harness|hendrycksTest-sociology|5": {
"acc": 0.6865671641791045,
"acc_stderr": 0.03280188205348642,
"acc_norm": 0.6865671641791045,
"acc_norm_stderr": 0.03280188205348642
},
"harness|hendrycksTest-us_foreign_policy|5": {
"acc": 0.84,
"acc_stderr": 0.03684529491774708,
"acc_norm": 0.84,
"acc_norm_stderr": 0.03684529491774708
},
"harness|hendrycksTest-virology|5": {
"acc": 0.5060240963855421,
"acc_stderr": 0.03892212195333045,
"acc_norm": 0.5060240963855421,
"acc_norm_stderr": 0.03892212195333045
},
"harness|hendrycksTest-world_religions|5": {
"acc": 0.8128654970760234,
"acc_stderr": 0.02991312723236804,
"acc_norm": 0.8128654970760234,
"acc_norm_stderr": 0.02991312723236804
},
"harness|truthfulqa:mc|0": {
"mc1": 0.423500611995104,
"mc1_stderr": 0.017297421448534727,
"mc2": 0.5761008495230423,
"mc2_stderr": 0.015574886099425339
},
"harness|winogrande|5": {
"acc": 0.7513812154696132,
"acc_stderr": 0.012147314713403107
},
"harness|gsm8k|5": {
"acc": 0.354814253222138,
"acc_stderr": 0.013179083387979216
}
}
```
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
[More Information Needed] | open-llm-leaderboard/details_CausalLM__72B-preview-canary-llamafied-qwen-llamafy-unbias-qkv | [
"region:us"
] | 2024-01-06T10:46:16+00:00 | {"pretty_name": "Evaluation run of CausalLM/72B-preview-canary-llamafied-qwen-llamafy-unbias-qkv", "dataset_summary": "Dataset automatically created during the evaluation run of model [CausalLM/72B-preview-canary-llamafied-qwen-llamafy-unbias-qkv](https://huggingface.co/CausalLM/72B-preview-canary-llamafied-qwen-llamafy-unbias-qkv) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_CausalLM__72B-preview-canary-llamafied-qwen-llamafy-unbias-qkv\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-06T10:49:51.922968](https://huggingface.co/datasets/open-llm-leaderboard/details_CausalLM__72B-preview-canary-llamafied-qwen-llamafy-unbias-qkv/blob/main/results_2024-01-06T10-49-51.922968.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6646054440358954,\n \"acc_stderr\": 0.03179887695147788,\n \"acc_norm\": 0.6712216491861255,\n \"acc_norm_stderr\": 0.03244437835929297,\n \"mc1\": 0.423500611995104,\n \"mc1_stderr\": 0.017297421448534727,\n \"mc2\": 0.5761008495230423,\n \"mc2_stderr\": 0.015574886099425339\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.48890784982935154,\n \"acc_stderr\": 0.01460779491401306,\n \"acc_norm\": 0.5255972696245734,\n \"acc_norm_stderr\": 0.014592230885298966\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.4992033459470225,\n \"acc_stderr\": 0.0049897750778356495,\n \"acc_norm\": 0.6298546106353317,\n \"acc_norm_stderr\": 0.004818566366066922\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.31,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.5851851851851851,\n \"acc_stderr\": 0.04256193767901408,\n \"acc_norm\": 0.5851851851851851,\n \"acc_norm_stderr\": 0.04256193767901408\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.756578947368421,\n \"acc_stderr\": 0.034923496688842384,\n \"acc_norm\": 0.756578947368421,\n \"acc_norm_stderr\": 0.034923496688842384\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.7,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.7,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.7358490566037735,\n \"acc_stderr\": 0.02713429162874171,\n \"acc_norm\": 0.7358490566037735,\n \"acc_norm_stderr\": 0.02713429162874171\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7847222222222222,\n \"acc_stderr\": 0.03437079344106135,\n \"acc_norm\": 0.7847222222222222,\n \"acc_norm_stderr\": 0.03437079344106135\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.5,\n \"acc_stderr\": 0.050251890762960605,\n \"acc_norm\": 0.5,\n \"acc_norm_stderr\": 0.050251890762960605\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.58,\n \"acc_stderr\": 0.049604496374885836,\n \"acc_norm\": 0.58,\n \"acc_norm_stderr\": 0.049604496374885836\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.49,\n \"acc_stderr\": 0.05024183937956912,\n \"acc_norm\": 0.49,\n \"acc_norm_stderr\": 0.05024183937956912\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6705202312138728,\n \"acc_stderr\": 0.03583901754736412,\n \"acc_norm\": 0.6705202312138728,\n \"acc_norm_stderr\": 0.03583901754736412\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.39215686274509803,\n \"acc_stderr\": 0.04858083574266345,\n \"acc_norm\": 0.39215686274509803,\n \"acc_norm_stderr\": 0.04858083574266345\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.74,\n \"acc_stderr\": 0.044084400227680794,\n \"acc_norm\": 0.74,\n \"acc_norm_stderr\": 0.044084400227680794\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.6553191489361702,\n \"acc_stderr\": 0.03106898596312215,\n \"acc_norm\": 0.6553191489361702,\n \"acc_norm_stderr\": 0.03106898596312215\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.47368421052631576,\n \"acc_stderr\": 0.04697085136647863,\n \"acc_norm\": 0.47368421052631576,\n \"acc_norm_stderr\": 0.04697085136647863\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5655172413793104,\n \"acc_stderr\": 0.04130740879555498,\n \"acc_norm\": 0.5655172413793104,\n \"acc_norm_stderr\": 0.04130740879555498\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.5608465608465608,\n \"acc_stderr\": 0.02555992055053101,\n \"acc_norm\": 0.5608465608465608,\n \"acc_norm_stderr\": 0.02555992055053101\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.38095238095238093,\n \"acc_stderr\": 0.043435254289490965,\n \"acc_norm\": 0.38095238095238093,\n \"acc_norm_stderr\": 0.043435254289490965\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.43,\n \"acc_stderr\": 0.04975698519562428,\n \"acc_norm\": 0.43,\n \"acc_norm_stderr\": 0.04975698519562428\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7741935483870968,\n \"acc_stderr\": 0.023785577884181012,\n \"acc_norm\": 0.7741935483870968,\n \"acc_norm_stderr\": 0.023785577884181012\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.5862068965517241,\n \"acc_stderr\": 0.03465304488406795,\n \"acc_norm\": 0.5862068965517241,\n \"acc_norm_stderr\": 0.03465304488406795\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.81,\n \"acc_stderr\": 0.039427724440366234,\n \"acc_norm\": 0.81,\n \"acc_norm_stderr\": 0.039427724440366234\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.8242424242424242,\n \"acc_stderr\": 0.02972094300622445,\n \"acc_norm\": 0.8242424242424242,\n \"acc_norm_stderr\": 0.02972094300622445\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.8535353535353535,\n \"acc_stderr\": 0.025190921114603918,\n \"acc_norm\": 0.8535353535353535,\n \"acc_norm_stderr\": 0.025190921114603918\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.9430051813471503,\n \"acc_stderr\": 0.016731085293607555,\n \"acc_norm\": 0.9430051813471503,\n \"acc_norm_stderr\": 0.016731085293607555\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6974358974358974,\n \"acc_stderr\": 0.02329088805377272,\n \"acc_norm\": 0.6974358974358974,\n \"acc_norm_stderr\": 0.02329088805377272\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.46296296296296297,\n \"acc_stderr\": 0.03040178640610151,\n \"acc_norm\": 0.46296296296296297,\n \"acc_norm_stderr\": 0.03040178640610151\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.7773109243697479,\n \"acc_stderr\": 0.027025433498882395,\n \"acc_norm\": 0.7773109243697479,\n \"acc_norm_stderr\": 0.027025433498882395\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.47019867549668876,\n \"acc_stderr\": 0.040752249922169775,\n \"acc_norm\": 0.47019867549668876,\n \"acc_norm_stderr\": 0.040752249922169775\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8587155963302753,\n \"acc_stderr\": 0.014933868987028073,\n \"acc_norm\": 0.8587155963302753,\n \"acc_norm_stderr\": 0.014933868987028073\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.5462962962962963,\n \"acc_stderr\": 0.033953227263757976,\n \"acc_norm\": 0.5462962962962963,\n \"acc_norm_stderr\": 0.033953227263757976\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.8627450980392157,\n \"acc_stderr\": 0.02415222596280159,\n \"acc_norm\": 0.8627450980392157,\n \"acc_norm_stderr\": 0.02415222596280159\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.8185654008438819,\n \"acc_stderr\": 0.025085961144579658,\n \"acc_norm\": 0.8185654008438819,\n \"acc_norm_stderr\": 0.025085961144579658\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.7174887892376681,\n \"acc_stderr\": 0.03021683101150877,\n \"acc_norm\": 0.7174887892376681,\n \"acc_norm_stderr\": 0.03021683101150877\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7633587786259542,\n \"acc_stderr\": 0.03727673575596914,\n \"acc_norm\": 0.7633587786259542,\n \"acc_norm_stderr\": 0.03727673575596914\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8016528925619835,\n \"acc_stderr\": 0.036401182719909456,\n \"acc_norm\": 0.8016528925619835,\n \"acc_norm_stderr\": 0.036401182719909456\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7592592592592593,\n \"acc_stderr\": 0.0413311944024384,\n \"acc_norm\": 0.7592592592592593,\n \"acc_norm_stderr\": 0.0413311944024384\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7668711656441718,\n \"acc_stderr\": 0.0332201579577674,\n \"acc_norm\": 0.7668711656441718,\n \"acc_norm_stderr\": 0.0332201579577674\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.5267857142857143,\n \"acc_stderr\": 0.047389751192741546,\n \"acc_norm\": 0.5267857142857143,\n \"acc_norm_stderr\": 0.047389751192741546\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7572815533980582,\n \"acc_stderr\": 0.04245022486384495,\n \"acc_norm\": 0.7572815533980582,\n \"acc_norm_stderr\": 0.04245022486384495\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8632478632478633,\n \"acc_stderr\": 0.022509033937077785,\n \"acc_norm\": 0.8632478632478633,\n \"acc_norm_stderr\": 0.022509033937077785\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.78,\n \"acc_stderr\": 0.041633319989322626,\n \"acc_norm\": 0.78,\n \"acc_norm_stderr\": 0.041633319989322626\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8505747126436781,\n \"acc_stderr\": 0.0127486708025271,\n \"acc_norm\": 0.8505747126436781,\n \"acc_norm_stderr\": 0.0127486708025271\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7398843930635838,\n \"acc_stderr\": 0.023618678310069363,\n \"acc_norm\": 0.7398843930635838,\n \"acc_norm_stderr\": 0.023618678310069363\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.5016759776536313,\n \"acc_stderr\": 0.016722407608296394,\n \"acc_norm\": 0.5016759776536313,\n \"acc_norm_stderr\": 0.016722407608296394\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7745098039215687,\n \"acc_stderr\": 0.02392915551735128,\n \"acc_norm\": 0.7745098039215687,\n \"acc_norm_stderr\": 0.02392915551735128\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.752411575562701,\n \"acc_stderr\": 0.024513879973621967,\n \"acc_norm\": 0.752411575562701,\n \"acc_norm_stderr\": 0.024513879973621967\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.7777777777777778,\n \"acc_stderr\": 0.02313237623454335,\n \"acc_norm\": 0.7777777777777778,\n \"acc_norm_stderr\": 0.02313237623454335\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.5531914893617021,\n \"acc_stderr\": 0.02965823509766691,\n \"acc_norm\": 0.5531914893617021,\n \"acc_norm_stderr\": 0.02965823509766691\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.5097783572359843,\n \"acc_stderr\": 0.012767793787729338,\n \"acc_norm\": 0.5097783572359843,\n \"acc_norm_stderr\": 0.012767793787729338\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6985294117647058,\n \"acc_stderr\": 0.027875982114273168,\n \"acc_norm\": 0.6985294117647058,\n \"acc_norm_stderr\": 0.027875982114273168\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6977124183006536,\n \"acc_stderr\": 0.018579232711113877,\n \"acc_norm\": 0.6977124183006536,\n \"acc_norm_stderr\": 0.018579232711113877\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6818181818181818,\n \"acc_stderr\": 0.04461272175910508,\n \"acc_norm\": 0.6818181818181818,\n \"acc_norm_stderr\": 0.04461272175910508\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7306122448979592,\n \"acc_stderr\": 0.02840125202902294,\n \"acc_norm\": 0.7306122448979592,\n \"acc_norm_stderr\": 0.02840125202902294\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.6865671641791045,\n \"acc_stderr\": 0.03280188205348642,\n \"acc_norm\": 0.6865671641791045,\n \"acc_norm_stderr\": 0.03280188205348642\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.84,\n \"acc_stderr\": 0.03684529491774708,\n \"acc_norm\": 0.84,\n \"acc_norm_stderr\": 0.03684529491774708\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5060240963855421,\n \"acc_stderr\": 0.03892212195333045,\n \"acc_norm\": 0.5060240963855421,\n \"acc_norm_stderr\": 0.03892212195333045\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8128654970760234,\n \"acc_stderr\": 0.02991312723236804,\n \"acc_norm\": 0.8128654970760234,\n \"acc_norm_stderr\": 0.02991312723236804\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.423500611995104,\n \"mc1_stderr\": 0.017297421448534727,\n \"mc2\": 0.5761008495230423,\n \"mc2_stderr\": 0.015574886099425339\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.7513812154696132,\n \"acc_stderr\": 0.012147314713403107\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.354814253222138,\n \"acc_stderr\": 0.013179083387979216\n }\n}\n```", "repo_url": "https://huggingface.co/CausalLM/72B-preview-canary-llamafied-qwen-llamafy-unbias-qkv", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|arc:challenge|25_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|arc:challenge|25_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|gsm8k|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|gsm8k|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hellaswag|10_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hellaswag|10_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-06T10-44-03.845393.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-06T10-49-51.922968.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["**/details_harness|winogrande|5_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["**/details_harness|winogrande|5_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-06T10-49-51.922968.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_06T10_44_03.845393", "path": ["results_2024-01-06T10-44-03.845393.parquet"]}, {"split": "2024_01_06T10_49_51.922968", "path": ["results_2024-01-06T10-49-51.922968.parquet"]}, {"split": "latest", "path": ["results_2024-01-06T10-49-51.922968.parquet"]}]}]} | 2024-01-06T10:52:28+00:00 | [] | [] | TAGS
#region-us
|
# Dataset Card for Evaluation run of CausalLM/72B-preview-canary-llamafied-qwen-llamafy-unbias-qkv
Dataset automatically created during the evaluation run of model CausalLM/72B-preview-canary-llamafied-qwen-llamafy-unbias-qkv on the Open LLM Leaderboard.
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).
To load the details from a run, you can for instance do the following:
## Latest results
These are the latest results from run 2024-01-06T10:49:51.922968(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
## Dataset Details
### Dataset Description
- Curated by:
- Funded by [optional]:
- Shared by [optional]:
- Language(s) (NLP):
- License:
### Dataset Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Out-of-Scope Use
## Dataset Structure
## Dataset Creation
### Curation Rationale
### Source Data
#### Data Collection and Processing
#### Who are the source data producers?
### Annotations [optional]
#### Annotation process
#### Who are the annotators?
#### Personal and Sensitive Information
## Bias, Risks, and Limitations
### Recommendations
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Dataset Card Authors [optional]
## Dataset Card Contact
| [
"# Dataset Card for Evaluation run of CausalLM/72B-preview-canary-llamafied-qwen-llamafy-unbias-qkv\n\n\n\nDataset automatically created during the evaluation run of model CausalLM/72B-preview-canary-llamafied-qwen-llamafy-unbias-qkv on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-06T10:49:51.922968(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for Evaluation run of CausalLM/72B-preview-canary-llamafied-qwen-llamafy-unbias-qkv\n\n\n\nDataset automatically created during the evaluation run of model CausalLM/72B-preview-canary-llamafied-qwen-llamafy-unbias-qkv on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-06T10:49:51.922968(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
6,
223,
68,
4,
40,
29,
3,
4,
9,
6,
5,
7,
4,
7,
10,
9,
5,
9,
8,
10,
46,
8,
7,
10,
5
] | [
"passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of CausalLM/72B-preview-canary-llamafied-qwen-llamafy-unbias-qkv\n\n\n\nDataset automatically created during the evaluation run of model CausalLM/72B-preview-canary-llamafied-qwen-llamafy-unbias-qkv on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2024-01-06T10:49:51.922968(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):## Dataset Details### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Out-of-Scope Use## Dataset Structure## Dataset Creation### Curation Rationale### Source Data#### Data Collection and Processing#### Who are the source data producers?### Annotations [optional]#### Annotation process#### Who are the annotators?#### Personal and Sensitive Information## Bias, Risks, and Limitations"
] |
d3524708f390c5837df34cb3213eb7b51be96b12 | <p><strong><a href="https://dentatonic-review.company.site/">{DentaTonic UPDATED 2024}</a> -</strong>In a world where bright smiles and healthy teeth are more than just a part of personal aesthetics, understanding the essentials of dental health becomes paramount. The journey to maintaining a radiant smile is often fraught with challenges, as dental issues can sneak up on us, impacting not just our appearance but also our overall well-being.</p>
<p>As we delve into the complexities of oral health, it becomes evident that proactive care is not just a choice but a necessity. Amidst the plethora of options, one name emerges with a promise of innovation – <a href="https://groups.google.com/g/dentatonic-review/c/j_JXq-9f8JE"><strong>DentaTonic</strong></a>. This carefully formulated supplement brings to the fore the significance of lactoperoxidase, an enzyme in our saliva that plays a crucial role in safeguarding our teeth and gums against bacterial onslaughts.</p>
<h2><a href="https://www.globalfitnessmart.com/get-dentatonic"><strong><span style="-webkit-text-stroke-width: 0px; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">DentaTonic — Official Website Link — Click Here</span></strong></a></h2>
<h2><strong><span style="-webkit-text-stroke-width: 0px; display: inline; float: none; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">➥</span>➡️<span style="-webkit-text-stroke-width: 0px; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">Product Name: <a href="https://www.globalfitnessmart.com/get-dentatonic">{DentaTonic}</a></span></strong><br style="-webkit-text-stroke-width: 0px; background-color: white; color: #222222; font-family: Arial, Helvetica, sans-serif; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px;" /><strong><span style="-webkit-text-stroke-width: 0px; display: inline; float: none; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">➥</span>➡️<span style="-webkit-text-stroke-width: 0px; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">Official Website: <a href="https://www.globalfitnessmart.com/get-dentatonic">https//dentatonic.com</a></span></strong><br style="-webkit-text-stroke-width: 0px; background-color: white; color: #222222; font-family: Arial, Helvetica, sans-serif; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px;" /><strong><span style="-webkit-text-stroke-width: 0px; display: inline; float: none; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">➥</span>➡️<span style="-webkit-text-stroke-width: 0px; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">Rating: ★★★★☆ (4.5/5.0)</span></strong><br style="-webkit-text-stroke-width: 0px; background-color: white; color: #222222; font-family: Arial, Helvetica, sans-serif; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px;" /><strong><span style="-webkit-text-stroke-width: 0px; display: inline; float: none; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">➥</span>➡️<span style="-webkit-text-stroke-width: 0px; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">Offer: 60-Day Money Back Guarantee</span></strong><br style="-webkit-text-stroke-width: 0px; background-color: white; color: #222222; font-family: Arial, Helvetica, sans-serif; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px;" /><strong><span style="-webkit-text-stroke-width: 0px; display: inline; float: none; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">➥</span>➡️<span style="-webkit-text-stroke-width: 0px; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">Availability: <a href="https://www.globalfitnessmart.com/get-dentatonic">In Stock Voted #1 Product in the USA</a></span></strong></h2>
<p>But why does this matter? And how does <a href="https://sites.google.com/view/dentatonic-review-price/home"><strong>DentaTonic</strong></a> fit into this narrative? As we embark on this exploration, we aim to unravel the science behind lactoperoxidase, and how <a href="https://lookerstudio.google.com/u/0/reporting/5b2c9008-5e9c-44d4-96c8-f19d212e2d2d/page/rdpmD"><strong>DentaTonic</strong></a> could be a subtle yet potent ally in our quest for impeccable dental health. So, let’s take a closer look at the burgeoning field of dental supplements and understand how <a href="https://colab.research.google.com/drive/1Y_QEEY1pfraBh7Lyl6SmxVeyUnDdW5xh"><strong>DentaTonic</strong></a> could be more than just a supplement – it could be a game-changer in oral health care.</p>
<h2 style="text-align: center;"><span style="background-color: #ff0000; color: #ffcc00;"><a style="background-color: #ff0000; color: #ffcc00;" href="https://www.globalfitnessmart.com/get-dentatonic"><strong>👉🧿👉 Order DentaTonic From USA 👉🧿👉 “OFFICIAL WEBSITE”</strong></a></span></h2>
<h2><strong>What is <a href="https://www.scoop.it/topic/dentatonic-by-dentatonic-us">DentaTonic</a>?</strong></h2>
<p>In the dynamic world of dental health, where the battle against tooth decay and gum problems is ever-present, <a href="https://dentatonic-review.hashnode.dev/dentatonic-reviews-does-it-worknew-updated-2024"><strong>DentaTonic</strong></a> emerges as a revolutionary solution. It stands out as a pioneering dental filtration breakthrough, a term that encapsulates its role in promoting the health of our teeth and gums. This innovative product is not just a supplement; it’s a synergistic blend of nature’s best defenses against oral ailments.</p>
<p>At the heart of <a href="https://www.scoop.it/topic/dentatonic-reviews-usa"><strong>DentaTonic’</strong></a>s formula lies the essence of natural ingredients, each meticulously chosen for their proven benefits in oral health care. The key lies in its unique ability to bolster the levels of lactoperoxidase in our saliva. This enzyme is a natural guardian, playing a critical role in defending our oral cavity against the bacterial adversaries that threaten our dental well-being.</p>
<p>But <a href="https://gamma.app/docs/DentaTonic-Reviews-Does-It-WorkNEW-UPDATED-2024-6c291cyzapx5efd?mode=doc"><strong>DentaTonic</strong></a>’s efficacy doesn’t stop there. It’s designed to tackle a range of oral health challenges. For instance, it addresses the harmful effects of compounds like hydrogen cyanide, which can be detrimental to our oral environment. By enhancing the action of certain enzymes, <a href="https://dentatonic-2.jimdosite.com/"><strong>DentaTonic</strong> </a>works tirelessly to combat the bacteria and plaque that are the bane of our dental health.</p>
<p>Furthermore, <a href="https://forum.mmm.ucar.edu/threads/dentatonic-reviews-%E2%80%93-does-it-work-%E3%80%90-new-updated-2024%E3%80%91.15173/"><strong>DentaTonic’</strong></a>s blend of enzymes and minerals is not just about defense. It’s about creating a balance, ensuring that our mouth remains a fortress against oral health issues. The natural ingredients within are like sentinels, each playing a vital role in maintaining the delicate ecosystem of our mouth.</p>
<h2 style="text-align: center;"><span style="background-color: #ffff00; color: #0000ff;"><a style="background-color: #ffff00; color: #0000ff;" href="https://www.globalfitnessmart.com/get-dentatonic"><strong>SPECIAL PROMO: Get *DentaTonic* at the Lowest Discounted Price Online</strong></a></span></h2>
<h2><strong>How <a href="https://bitbucket.org/dentatonic/dentatonic/issues/1/dentatonic-reviews-does-it-work-new">DentaTonic</a> Works: Unveiling the Mechanism</strong></h2>
<p>Unraveling the workings of <a href="https://dentatonic-review.hashnode.dev/dentatonic-reviews-clinically-researched-ingredients-dentatonic-effective-oral-health-formula"><strong>DentaTonic</strong></a> brings us to an intriguing intersection of science and oral health. The effectiveness of this supplement, often highlighted in numerous <a href="https://forum.mmm.ucar.edu/threads/dentatonic-reviews-%E3%80%90-clinically-researched%E3%80%91-ingredients-dentatonic-effective-oral-health-formula.15174/"><strong>DentaTonic</strong></a> reviews, lies in its ability to enhance the natural defenses of our oral ecosystem. Central to this is the elevation of lactoperoxidase levels in our saliva, a crucial enzyme that acts as a protective shield for our teeth and gums.</p>
<p>The mechanism of<a href="https://bitbucket.org/dentatonic/dentatonic/issues/2/dentatonic-reviews-clinically-researched"><strong> DentaTonic</strong></a> is a finely tuned symphony of ingredients working in harmony. While lactoperoxidase is the conductor, other elements play equally vital roles. Ingredients such as Dextranase and Lysozyme are akin to skilled warriors in this battle, targeting plaque and oral bacteria with precision. These components break down the unwanted build-up and neutralize bacterial threats, ensuring a cleaner, healthier oral environment.</p>
<p>As per several <a href="https://medium.com/@dentatonicus/dentatonic-reviews-does-it-work-new-updated-2024-3b76d0a77484"><strong>DentaTonic</strong></a> reviews, the inclusion of Microcrystalline Hydroxyapatite is particularly noteworthy. This ingredient isn’t just filler; it’s a remineralization champion, contributing significantly to the restoration and strengthening of our teeth. This aspect of <a href="https://followme.tribe.so/post/dentatonic-reviews---does-it-work-new-updated-2024-6598fee4bef02efa7862eefd"><strong>DentaTonic</strong></a>’s working mechanism is akin to repairing the ramparts of a fortress, ensuring that our teeth are not just clean but also robust and resistant to decay.</p>
<p>In essence, the way <strong><a href="https://medium.com/@dentatonicus/dentatonic-reviews-usa-is-it-legit-read-this-before-buy-ab0241f7b388">DentaTonic</a></strong> works is by creating a robust, multi-layered defense system within our mouths. Each ingredient plays a strategic role, culminating in a supplement that doesn’t just promise oral health improvements but delivers them in a tangible, effective manner.</p>
<h2><strong>The Ingredients of <a href="https://followme.tribe.so/post/dentatonic-reviews-usa-is-it-legit-read-this-before-buy-6598ff419e33ef6ee9dd9bc3">DentaTonic</a>: A Deep Dive into Dental Protection</strong></h2>
<p><a href="https://medium.com/@dentatonicus/dentatonic-reviews-usa-is-it-legit-read-this-before-buy-7e4573cc6cc7"><strong>DentaTonic</strong></a>’s blend of ingredients is a meticulously crafted arsenal aimed at fortifying dental health. Each component brings a specific benefit to the table, working in unison to ensure a holistic approach to oral care. Here’s an exploration of these ingredients and their roles in dental protection:</p>
<p><strong>Lactoperoxidase</strong></p>
<p>The cornerstone of <a href="https://followme.tribe.so/post/dentatonic-reviews-usa-is-it-legit-read-this-before-buy-6599024d93542a5589edc1f7"><strong>DentaTonic</strong></a>’s formula, lactoperoxidase is a naturally occurring enzyme in saliva. Its primary function is to act as a first line of defense against oral bacteria. By enhancing the levels of this enzyme, <a href="https://soundcloud.com/dentatonicus/dentatonic-reviews-usa-is-it-legit-read-this-before-buy"><strong>DentaTonic</strong></a> helps in maintaining a balanced oral microbiome, effectively keeping bacterial growth in check and reducing the risk of dental caries and gum diseases.</p>
<p><strong>Dextranase</strong></p>
<p>This enzyme plays a crucial role in breaking down plaque. Plaque, a sticky film of bacteria and sugars, is a primary culprit in tooth decay and gum disease. Dextranase targets the polysaccharides in plaque, disrupting its structure and making it easier to remove. This action helps in preventing the accumulation of harmful bacteria and maintains oral hygiene.</p>
<p><strong>Lysozyme</strong></p>
<p>As a natural antibacterial agent found in saliva, lysozyme contributes significantly to oral health. It attacks and breaks down the cell walls of bacteria, thereby reducing their ability to colonize and cause dental issues. By boosting lysozyme levels, <a href="https://pdfhost.io/v/lYa.T9dlY_DentaTonic_Reviews_Does_It_WorkNEW_UPDATED_2024"><strong>DentaTonic</strong></a> ensures an extra layer of protection against oral infections.</p>
<p><strong>Lactoferrin</strong></p>
<p>This ingredient is renowned for its anti-inflammatory properties. Inflammation is a key factor in many dental problems, including periodontitis. Lactoferrin helps in reducing inflammation, thereby aiding in the prevention and management of gum diseases.</p>
<p><strong>Microcrystalline Hydroxyapatite</strong></p>
<p>A standout ingredient for remineralization, this form of hydroxyapatite is crucial in rebuilding and strengthening tooth enamel. It mimics the natural composition of teeth, providing essential minerals directly to the enamel, helping in reversing minor decay and preventing further damage.</p>
<p><strong>Beta-Glucanase</strong></p>
<p>This enzyme assists in breaking down glucans, compounds often found in sticky foods that adhere to teeth and contribute to plaque formation. By mitigating the formation of these glucans, Beta-Glucanase plays a vital role in maintaining a clean and healthy oral environment.</p>
<p><strong>Amylase</strong></p>
<p>Typically known for its role in digesting starches, amylase in <a href="https://community.thebatraanumerology.com/post/dentatonic-reviews---does-it-work-new-updated-2024-6599090593542a9f45edc27b"><strong>DentaTonic</strong></a> contributes to oral hygiene by breaking down food particles trapped in the teeth. This process reduces the food source for harmful bacteria, thereby lowering the risk of tooth decay and gum disease.</p>
<p>Each of these ingredients is carefully selected not just for their individual benefits but for their synergistic effect when combined. Together, they create a powerful blend that addresses various aspects of dental health, from strengthening enamel to reducing bacterial growth and inflammation. This comprehensive approach to oral care is what sets <a href="https://leetcode.com/discuss/interview-question/4516162/DentaTonic-Reviews-Does-It-Work(NEW-UPDATED-2024!"><strong>DentaTonic</strong></a> apart, making it a valuable ally in maintaining dental wellness.</p>
<h2 style="text-align: center;"><span style="background-color: #008000; color: #ff9900;"><a style="background-color: #008000; color: #ff9900;" href="https://www.globalfitnessmart.com/get-dentatonic"><strong>👉🌈👉 Order DentaTonic From USA 👉🌈👉 “OFFICIAL WEBSITE”</strong></a></span></h2>
<h2><strong><a href="https://www.click4r.com/posts/g/13971705/">DentaTonic</a> Benefits</strong></h2>
<p>Let’s zoom in on the potential Denta Tonic benefits users might anticipate from incorporating <a href="https://wandering.flarum.cloud/d/36073-dentatonic-reviews-does-it-worknew-updated-2024"><strong>DentaTonic</strong></a> into their daily oral care routine. While we’re not donning the cap of enthusiastic endorsers, we can certainly shed light on the promises laid out by this dental defense system.</p>
<p><strong>Oral Health Reinforcement:</strong> At the forefront of <a href="https://community.thebatraanumerology.com/post/dentatonic-viral-scam-or-legit-is-it-work-or-not-6599094df8a17b373310f394"><strong>DentaTonic</strong></a>’s pitch is reinforcing lactoperoxidase levels in saliva. This is positioned as a frontline defense, a guardian angel for your teeth and gums, standing resilient against the onslaught of bacteria. The potential result? Strengthen oral health, with fewer chances of succumbing to decay or gum irritation.</p>
<p><strong>Mitigation of Hydrogen Cyanide Effects:</strong> <a href="https://wandering.flarum.cloud/d/36075-dentatonic-viralscam-or-legit-is-it-work-or-not"><strong>DentaTonic</strong></a> doesn’t shy away from tackling hydrogen cyanide, aiming to mitigate its negative effects. By doing so, it aspires to create a safer haven for your dental landscape, addressing concerns that might linger beneath the surface of traditional oral care solutions.</p>
<p><strong>Enzymatic Warfare Against Bacteria and Plaque:</strong> The blend of enzymes and proteins, from dextranase to lysozyme, gears up for a relentless battle against the notorious duo – bacteria and plaque. This enzymatic warfare is a key element in the formula’s strategy, aiming to create an environment where these elements are kept in check for optimal dental health.</p>
<p><strong>Comprehensive Approach to Oral Well-Being:</strong> <a href="https://leetcode.com/discuss/interview-question/4516178/DentaTonic-Viral%3A*SCAM-or-LEGIT*-Is-It-Work-or-Not"><strong>DentaTonic</strong></a> positions itself as a bacteria-banishing agent and a comprehensive solution for oral well-being. Its approach seeks to create an environment where your teeth and gums don’t just survive but thrive.</p>
<p><strong>Ease of Integration into Daily Routine:</strong> A benefit for those who favor simplicity, <a href="https://www.eventcreate.com/e/dentatonic-reviews-504758"><strong>DentaTonic</strong></a>’s easy-to-swallow tablets make it a hassle-free addition to your daily routine. With just one tablet and a glass of water, it becomes a seamless part of your oral care practices.</p>
<p><strong>Bonus Guides for Added Value:</strong> Opting for the larger packs saves you some dollars and throws in two bonus guides – VIP Smile and Mouth to Gut Detox. The former shares insights for achieving sparkling white teeth at home, while the latter delves into the broader realm of cleansing your digestive system.</p>
<p>While these benefits paint an intriguing picture, individual experiences may vary. The real litmus test lies in the daily rituals of those who embrace <a href="https://www.deviantart.com/dentatonicus/art/DentaTonic-Reviews-Does-It-Work-NEW-UPDATED-2024-1008583926"><strong>DentaTonic</strong></a> as a companion in their oral health journey.</p>
<h2><strong><a href="https://www.weddingwire.com/wedding-forums/dentatonic-reviews-does-it-worknew-updated-2024/0de463499ede5c63.html">DentaTonic</a> Dosage and Usage</strong></h2>
<p>While we’re not here to dictate habits, we can certainly show how to incorporate <a href="https://www.deviantart.com/dentatonicus/art/DentaTonic-Reviews-CLINICALLY-RESEARCHED-1008584244"><strong>DentaTonic</strong></a> seamlessly.</p>
<p><a href="https://www.weddingwire.com/wedding-forums/dentatonic-reviews-legit-2024-its-really-works/239cb45026b63f76.html"><strong>DentaTonic</strong> </a>keeps things straightforward with a simple daily ritual. The prescribed dosage involves taking one tablet daily, accompanied by a glass of water. This uncomplicated routine is designed for ease of integration into your existing daily habits.</p>
<p>The easy-to-swallow tablets contribute to the user-friendly nature of <a href="https://www.styleforum.net/threads/dentatonic-reviews-%E2%80%93-does-it-work-%E3%80%90-new-updated-2024%E3%80%91.741555/"><strong>DentaTonic</strong></a>. This feature caters to those who prefer a hassle-free approach to their health regimen, eliminating potential barriers to consistent use.</p>
<p>The absence of strict timing requirements provides flexibility for users. Whether you prefer to take the tablet with breakfast, before bedtime, or at any other convenient time, DentaTonic’s dosage instructions accommodate a variety of schedules.While the dosage may be simple, the emphasis lies in consistency. Incorporating <a href="https://roggle-delivery.tribe.so/post/dentatonic-reviews---does-it-work-new-updated-2024-659920b3656ea12debbfed38"><strong>DentaTonic</strong></a> into your routine daily ensures a regular supply of the formulation’s key ingredients, fostering an environment that supports the health of your teeth and gums over time.</p>
<h2 style="text-align: center;"><span style="background-color: #ffff00; color: #0000ff;"><a style="background-color: #ffff00; color: #0000ff;" href="https://www.globalfitnessmart.com/get-dentatonic"><strong>(EXCLUSIVE OFFER)Click Here : "*DentaTonic* USA"Official Website!</strong></a></span></h2>
<h2><strong>FAQ’s</strong></h2>
<p><strong>What is <a href="https://glonet.com/forum/thread/28859/dentatonic-reviews-%E2%80%93-does-it-work-%E3%80%90-new-updated-2024%E3%80%91/">DentaTonic</a> and how does it support dental health?</strong></p>
<p><a href="https://thankyou.tribe.so/post/dentatonic-reviews-usa-is-it-legit-read-this-before-buy-65991dde2c4791c27a293ce9"><strong>DentaTonic</strong></a> is a natural supplement designed to enhance oral health by supporting lactoperoxidase levels in saliva, combating bacteria, and aiding in plaque reduction.</p>
<p><strong>How should <a href="https://rapbeatsforum.com/viewtopic.php?t=74612">DentaTonic</a> be taken for optimal results?</strong></p>
<p>For best results, it’s recommended to take one to two capsules of <a href="https://oqqur.tribe.so/post/dentatonic-viral-scam-or-legit-is-it-work-or-not-65991b57f5c6c21556aba352"><strong>DentaTonic</strong></a> daily with water, preferably in the morning.</p>
<p><strong>Are there any additional benefits of using <a href="https://forum.teknofest.az/d/13733-dentatonic-viralscam-or-legit-is-it-work-or-not">DentaTonic </a>apart from dental health?</strong></p>
<p>Yes, besides improving dental health, <a href="http://kaymakgames.com/forum/index.php?thread/41029-dentatonic-reviews-does-it-work-new-updated-2024/"><strong>DentaTonic</strong></a> also contributes to better respiratory health, strengthens the immune system, and improves digestion.</p>
<p><strong>Is <a href="https://rapbeatsforum.com/viewtopic.php?t=74610">DentaTonic</a> safe and where is it manufactured?</strong></p>
<p><a href="https://forum.teknofest.az/d/13732-dentatonic-reviews-does-it-worknew-updated-2024"><strong>DentaTonic</strong></a> is manufactured in an FDA-approved facility, ensuring its safety and quality.</p>
<p><strong>What if I’m not satisfied with <a href="https://www.styleforum.net/threads/dentatonic-reviews-%E2%80%93-does-it-work-%E3%80%90-new-updated-2024%E3%80%91.741555/">DentaTonic</a>?</strong></p>
<p><a href="https://www.deviantart.com/dentatonicus/art/DentaTonic-Reviews-Does-It-Work-NEW-UPDATED-2024-1008583926"><strong>DentaTonic</strong></a> offers a 60-day 100% money-back guarantee, providing assurance and confidence in its effectiveness.</p>
<h2><strong>Prices and 60-day Guarantee</strong></h2>
<p><a href="https://leetcode.com/discuss/interview-question/4516178/DentaTonic-Viral%3A*SCAM-or-LEGIT*-Is-It-Work-or-Not"><strong>DentaTonic</strong> </a>can be purchased on the official website at the following pricing options.</p>
<ul>
<li><strong>One bottle $69.00 + Free Shipping</strong></li>
<li><strong>Three bottles $59.00 each + 2 free books + Free Shipping</strong></li>
<li><strong>Six Bottles $49.00 + 2 free books + Free Shipping</strong></li>
</ul>
<h2><strong>Included Free Bonuses</strong></h2>
<p><strong>Bonus #1 – VIP Smile: Get Sparkling White Teeth From The Comfort of Your Own Home</strong></p>
<p><strong>Bonus #2 – Mouth to Gut Detox – A Comprehensive Guide to Cleansing Your Digestive System</strong></p>
<h2 style="text-align: center;"><span style="background-color: #ff0000; color: #ffcc00;"><a style="background-color: #ff0000; color: #ffcc00;" href="https://www.globalfitnessmart.com/get-dentatonic"><strong>👉🧿👉 Order DentaTonic From USA 👉🧿👉 “OFFICIAL WEBSITE”</strong></a></span></h2>
<h2><strong>Conclusion</strong></h2>
<p>In summary, <a href="https://wandering.flarum.cloud/d/36075-dentatonic-viralscam-or-legit-is-it-work-or-not"><strong>DentaTonic</strong></a> stands as a beacon of hope in the quest for optimal oral health. Its unique blend of ingredients, user-friendly purchasing options, and reassuring satisfaction guarantee make it more than just a supplement; it’s a comprehensive dental health ally. As we’ve explored, <a href="https://community.thebatraanumerology.com/post/dentatonic-viral-scam-or-legit-is-it-work-or-not-6599094df8a17b373310f394"><strong>DentaTonic</strong></a> not only promises improved dental well-being but also extends its benefits to overall health. It’s a testament to the power of proactive oral care, blending science and nature in each capsule. So, as you consider your dental health journey, remember that <a href="https://wandering.flarum.cloud/d/36073-dentatonic-reviews-does-it-worknew-updated-2024"><strong>DentaTonic</strong></a> could be the key to unlocking a healthier, more confident smile.</p>
<h2 style="text-align: center;"><span style="background-color: #ffff00; color: #0000ff;"><a style="background-color: #ffff00; color: #0000ff;" href="https://www.globalfitnessmart.com/get-dentatonic"><strong>[ACT NOW] Don’t miss out on this amazing offer! Advantage of DentaTonic</strong></a></span></h2>
<h2>@ READ MORE</h2>
<p><a href="https://dentatonic-review.company.site/">https://dentatonic-review.company.site/</a></p>
<p><a href="https://groups.google.com/g/dentatonic-review/c/j_JXq-9f8JE">https://groups.google.com/g/dentatonic-review/c/j_JXq-9f8JE</a></p>
<p><a href="https://colab.research.google.com/drive/1Y_QEEY1pfraBh7Lyl6SmxVeyUnDdW5xh">https://colab.research.google.com/drive/1Y_QEEY1pfraBh7Lyl6SmxVeyUnDdW5xh</a></p>
<p><a href="https://lookerstudio.google.com/u/0/reporting/5b2c9008-5e9c-44d4-96c8-f19d212e2d2d/page/rdpmD">https://lookerstudio.google.com/u/0/reporting/5b2c9008-5e9c-44d4-96c8-f19d212e2d2d/page/rdpmD</a></p>
<p><a href="https://sites.google.com/view/dentatonic-review-price/home">https://sites.google.com/view/dentatonic-review-price/home</a></p>
<p><a href="https://www.scoop.it/topic/dentatonic-by-dentatonic-us">https://www.scoop.it/topic/dentatonic-by-dentatonic-us</a></p>
<p><a href="https://dentatonic-2.jimdosite.com/">https://dentatonic-2.jimdosite.com/</a></p>
<p><a href="https://www.scoop.it/topic/dentatonic-reviews-usa">https://www.scoop.it/topic/dentatonic-reviews-usa</a></p>
<p><a href="https://bitbucket.org/dentatonic/dentatonic/issues/2/dentatonic-reviews-clinically-researched">https://bitbucket.org/dentatonic/dentatonic/issues/2/dentatonic-reviews-clinically-researched</a></p>
<p><a href="https://forum.mmm.ucar.edu/threads/dentatonic-reviews-%E3%80%90-clinically-researched%E3%80%91-ingredients-dentatonic-effective-oral-health-formula.15174/">https://forum.mmm.ucar.edu/threads/dentatonic-reviews-%E3%80%90-clinically-researched%E3%80%91-ingredients-dentatonic-effective-oral-health-formula.15174/</a></p>
<p><a href="https://dentatonic-review.hashnode.dev/dentatonic-reviews-clinically-researched-ingredients-dentatonic-effective-oral-health-formula">https://dentatonic-review.hashnode.dev/dentatonic-reviews-clinically-researched-ingredients-dentatonic-effective-oral-health-formula</a></p>
<p><a href="https://gamma.app/docs/DentaTonic-Reviews-Does-It-WorkNEW-UPDATED-2024-6c291cyzapx5efd?mode=doc">https://gamma.app/docs/DentaTonic-Reviews-Does-It-WorkNEW-UPDATED-2024-6c291cyzapx5efd?mode=doc</a></p>
<p><a href="https://dentatonic-review.hashnode.dev/dentatonic-reviews-does-it-worknew-updated-2024">https://dentatonic-review.hashnode.dev/dentatonic-reviews-does-it-worknew-updated-2024</a></p>
<p><a href="https://medium.com/@dentatonicus/dentatonic-reviews-does-it-work-new-updated-2024-3b76d0a77484">https://medium.com/@dentatonicus/dentatonic-reviews-does-it-work-new-updated-2024-3b76d0a77484</a></p>
<p><a href="https://followme.tribe.so/post/dentatonic-reviews---does-it-work-new-updated-2024-6598fee4bef02efa7862eefd">https://followme.tribe.so/post/dentatonic-reviews---does-it-work-new-updated-2024-6598fee4bef02efa7862eefd</a></p>
<p><a href="https://soundcloud.com/dentatonicus/dentatonic-reviews-usa-is-it-legit-read-this-before-buy">https://soundcloud.com/dentatonicus/dentatonic-reviews-usa-is-it-legit-read-this-before-buy</a></p>
<p><a href="https://dentatonic1.bandcamp.com/track/dentatonic-reviews-usa-is-it-legit-read-this-before-buy">https://dentatonic1.bandcamp.com/track/dentatonic-reviews-usa-is-it-legit-read-this-before-buy</a></p>
<p><a href="https://www.styleforum.net/threads/dentatonic-reviews-%E2%80%93-does-it-work-%E3%80%90-new-updated-2024%E3%80%91.741555/">https://www.styleforum.net/threads/dentatonic-reviews-%E2%80%93-does-it-work-%E3%80%90-new-updated-2024%E3%80%91.741555/</a></p>
<p><a href="https://www.weddingwire.com/wedding-forums/dentatonic-reviews-legit-2024-its-really-works/239cb45026b63f76.html">https://www.weddingwire.com/wedding-forums/dentatonic-reviews-legit-2024-its-really-works/239cb45026b63f76.html</a></p>
<p><a href="https://www.deviantart.com/dentatonicus/art/DentaTonic-Reviews-CLINICALLY-RESEARCHED-1008584244">https://www.deviantart.com/dentatonicus/art/DentaTonic-Reviews-CLINICALLY-RESEARCHED-1008584244</a></p>
<p><a href="https://leetcode.com/discuss/interview-question/4516178/DentaTonic-Viral%3A*SCAM-or-LEGIT*-Is-It-Work-or-Not">https://leetcode.com/discuss/interview-question/4516178/DentaTonic-Viral%3A*SCAM-or-LEGIT*-Is-It-Work-or-Not</a></p>
<p><a href="https://wandering.flarum.cloud/d/36075-dentatonic-viralscam-or-legit-is-it-work-or-not">https://wandering.flarum.cloud/d/36075-dentatonic-viralscam-or-legit-is-it-work-or-not</a></p>
<p><a href="https://community.thebatraanumerology.com/post/dentatonic-viral-scam-or-legit-is-it-work-or-not-6599094df8a17b373310f394">https://community.thebatraanumerology.com/post/dentatonic-viral-scam-or-legit-is-it-work-or-not-6599094df8a17b373310f394</a></p>
<p><a href="https://pdfhost.io/v/lYa.T9dlY_DentaTonic_Reviews_Does_It_WorkNEW_UPDATED_2024">https://pdfhost.io/v/lYa.T9dlY_DentaTonic_Reviews_Does_It_WorkNEW_UPDATED_2024</a></p> | dentatonicus/dentatonic-review | [
"region:us"
] | 2024-01-06T10:48:43+00:00 | {} | 2024-01-06T10:48:57+00:00 | [] | [] | TAGS
#region-us
| <p><strong><a href="URL UPDATED 2024}</a> -</strong>In a world where bright smiles and healthy teeth are more than just a part of personal aesthetics, understanding the essentials of dental health becomes paramount. The journey to maintaining a radiant smile is often fraught with challenges, as dental issues can sneak up on us, impacting not just our appearance but also our overall well-being.</p>
<p>As we delve into the complexities of oral health, it becomes evident that proactive care is not just a choice but a necessity. Amidst the plethora of options, one name emerges with a promise of innovation – <a href="URL This carefully formulated supplement brings to the fore the significance of lactoperoxidase, an enzyme in our saliva that plays a crucial role in safeguarding our teeth and gums against bacterial onslaughts.</p>
<h2><a href="URL style="-webkit-text-stroke-width: 0px; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">DentaTonic — Official Website Link — Click Here</span></strong></a></h2>
<h2><strong><span style="-webkit-text-stroke-width: 0px; display: inline; float: none; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;"></span>️<span style="-webkit-text-stroke-width: 0px; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">Product Name: <a href="URL style="-webkit-text-stroke-width: 0px; background-color: white; color: #222222; font-family: Arial, Helvetica, sans-serif; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px;" /><strong><span style="-webkit-text-stroke-width: 0px; display: inline; float: none; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;"></span>️<span style="-webkit-text-stroke-width: 0px; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">Official Website: <a href="URL/URL</a></span></strong><br style="-webkit-text-stroke-width: 0px; background-color: white; color: #222222; font-family: Arial, Helvetica, sans-serif; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px;" /><strong><span style="-webkit-text-stroke-width: 0px; display: inline; float: none; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;"></span>️<span style="-webkit-text-stroke-width: 0px; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">Rating: (4.5/5.0)</span></strong><br style="-webkit-text-stroke-width: 0px; background-color: white; color: #222222; font-family: Arial, Helvetica, sans-serif; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px;" /><strong><span style="-webkit-text-stroke-width: 0px; display: inline; float: none; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;"></span>️<span style="-webkit-text-stroke-width: 0px; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">Offer: 60-Day Money Back Guarantee</span></strong><br style="-webkit-text-stroke-width: 0px; background-color: white; color: #222222; font-family: Arial, Helvetica, sans-serif; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px;" /><strong><span style="-webkit-text-stroke-width: 0px; display: inline; float: none; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;"></span>️<span style="-webkit-text-stroke-width: 0px; font-size: small; font-style: normal; font-variant-caps: normal; font-variant-ligatures: normal; letter-spacing: normal; text-align: start; text-decoration-color: initial; text-decoration-style: initial; text-decoration-thickness: initial; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px;">Availability: <a href="URL Stock Voted #1 Product in the USA</a></span></strong></h2>
<p>But why does this matter? And how does <a href="URL fit into this narrative? As we embark on this exploration, we aim to unravel the science behind lactoperoxidase, and how <a href="URL could be a subtle yet potent ally in our quest for impeccable dental health. So, let’s take a closer look at the burgeoning field of dental supplements and understand how <a href="URL could be more than just a supplement – it could be a game-changer in oral health care.</p>
<h2 style="text-align: center;"><span style="background-color: #ff0000; color: #ffcc00;"><a style="background-color: #ff0000; color: #ffcc00;" href="URL Order DentaTonic From USA “OFFICIAL WEBSITE”</strong></a></span></h2>
<h2><strong>What is <a href="URL
<p>In the dynamic world of dental health, where the battle against tooth decay and gum problems is ever-present, <a href="URL emerges as a revolutionary solution. It stands out as a pioneering dental filtration breakthrough, a term that encapsulates its role in promoting the health of our teeth and gums. This innovative product is not just a supplement; it’s a synergistic blend of nature’s best defenses against oral ailments.</p>
<p>At the heart of <a href="URL formula lies the essence of natural ingredients, each meticulously chosen for their proven benefits in oral health care. The key lies in its unique ability to bolster the levels of lactoperoxidase in our saliva. This enzyme is a natural guardian, playing a critical role in defending our oral cavity against the bacterial adversaries that threaten our dental well-being.</p>
<p>But <a href="URL efficacy doesn’t stop there. It’s designed to tackle a range of oral health challenges. For instance, it addresses the harmful effects of compounds like hydrogen cyanide, which can be detrimental to our oral environment. By enhancing the action of certain enzymes, <a href="URL </a>works tirelessly to combat the bacteria and plaque that are the bane of our dental health.</p>
<p>Furthermore, <a href="URL blend of enzymes and minerals is not just about defense. It’s about creating a balance, ensuring that our mouth remains a fortress against oral health issues. The natural ingredients within are like sentinels, each playing a vital role in maintaining the delicate ecosystem of our mouth.</p>
<h2 style="text-align: center;"><span style="background-color: #ffff00; color: #0000ff;"><a style="background-color: #ffff00; color: #0000ff;" href="URL PROMO: Get *DentaTonic* at the Lowest Discounted Price Online</strong></a></span></h2>
<h2><strong>How <a href="URL Works: Unveiling the Mechanism</strong></h2>
<p>Unraveling the workings of <a href="URL brings us to an intriguing intersection of science and oral health. The effectiveness of this supplement, often highlighted in numerous <a href="URL reviews, lies in its ability to enhance the natural defenses of our oral ecosystem. Central to this is the elevation of lactoperoxidase levels in our saliva, a crucial enzyme that acts as a protective shield for our teeth and gums.</p>
<p>The mechanism of<a href="URL DentaTonic</strong></a> is a finely tuned symphony of ingredients working in harmony. While lactoperoxidase is the conductor, other elements play equally vital roles. Ingredients such as Dextranase and Lysozyme are akin to skilled warriors in this battle, targeting plaque and oral bacteria with precision. These components break down the unwanted build-up and neutralize bacterial threats, ensuring a cleaner, healthier oral environment.</p>
<p>As per several <a href="URL reviews, the inclusion of Microcrystalline Hydroxyapatite is particularly noteworthy. This ingredient isn’t just filler; it’s a remineralization champion, contributing significantly to the restoration and strengthening of our teeth. This aspect of <a href="URL working mechanism is akin to repairing the ramparts of a fortress, ensuring that our teeth are not just clean but also robust and resistant to decay.</p>
<p>In essence, the way <strong><a href="URL works is by creating a robust, multi-layered defense system within our mouths. Each ingredient plays a strategic role, culminating in a supplement that doesn’t just promise oral health improvements but delivers them in a tangible, effective manner.</p>
<h2><strong>The Ingredients of <a href="URL A Deep Dive into Dental Protection</strong></h2>
<p><a href="URL blend of ingredients is a meticulously crafted arsenal aimed at fortifying dental health. Each component brings a specific benefit to the table, working in unison to ensure a holistic approach to oral care. Here’s an exploration of these ingredients and their roles in dental protection:</p>
<p><strong>Lactoperoxidase</strong></p>
<p>The cornerstone of <a href="URL formula, lactoperoxidase is a naturally occurring enzyme in saliva. Its primary function is to act as a first line of defense against oral bacteria. By enhancing the levels of this enzyme, <a href="URL helps in maintaining a balanced oral microbiome, effectively keeping bacterial growth in check and reducing the risk of dental caries and gum diseases.</p>
<p><strong>Dextranase</strong></p>
<p>This enzyme plays a crucial role in breaking down plaque. Plaque, a sticky film of bacteria and sugars, is a primary culprit in tooth decay and gum disease. Dextranase targets the polysaccharides in plaque, disrupting its structure and making it easier to remove. This action helps in preventing the accumulation of harmful bacteria and maintains oral hygiene.</p>
<p><strong>Lysozyme</strong></p>
<p>As a natural antibacterial agent found in saliva, lysozyme contributes significantly to oral health. It attacks and breaks down the cell walls of bacteria, thereby reducing their ability to colonize and cause dental issues. By boosting lysozyme levels, <a href="URL ensures an extra layer of protection against oral infections.</p>
<p><strong>Lactoferrin</strong></p>
<p>This ingredient is renowned for its anti-inflammatory properties. Inflammation is a key factor in many dental problems, including periodontitis. Lactoferrin helps in reducing inflammation, thereby aiding in the prevention and management of gum diseases.</p>
<p><strong>Microcrystalline Hydroxyapatite</strong></p>
<p>A standout ingredient for remineralization, this form of hydroxyapatite is crucial in rebuilding and strengthening tooth enamel. It mimics the natural composition of teeth, providing essential minerals directly to the enamel, helping in reversing minor decay and preventing further damage.</p>
<p><strong>Beta-Glucanase</strong></p>
<p>This enzyme assists in breaking down glucans, compounds often found in sticky foods that adhere to teeth and contribute to plaque formation. By mitigating the formation of these glucans, Beta-Glucanase plays a vital role in maintaining a clean and healthy oral environment.</p>
<p><strong>Amylase</strong></p>
<p>Typically known for its role in digesting starches, amylase in <a href="URL contributes to oral hygiene by breaking down food particles trapped in the teeth. This process reduces the food source for harmful bacteria, thereby lowering the risk of tooth decay and gum disease.</p>
<p>Each of these ingredients is carefully selected not just for their individual benefits but for their synergistic effect when combined. Together, they create a powerful blend that addresses various aspects of dental health, from strengthening enamel to reducing bacterial growth and inflammation. This comprehensive approach to oral care is what sets <a href="URL apart, making it a valuable ally in maintaining dental wellness.</p>
<h2 style="text-align: center;"><span style="background-color: #008000; color: #ff9900;"><a style="background-color: #008000; color: #ff9900;" href="URL Order DentaTonic From USA “OFFICIAL WEBSITE”</strong></a></span></h2>
<h2><strong><a href="URL Benefits</strong></h2>
<p>Let’s zoom in on the potential Denta Tonic benefits users might anticipate from incorporating <a href="URL into their daily oral care routine. While we’re not donning the cap of enthusiastic endorsers, we can certainly shed light on the promises laid out by this dental defense system.</p>
<p><strong>Oral Health Reinforcement:</strong> At the forefront of <a href="URL pitch is reinforcing lactoperoxidase levels in saliva. This is positioned as a frontline defense, a guardian angel for your teeth and gums, standing resilient against the onslaught of bacteria. The potential result? Strengthen oral health, with fewer chances of succumbing to decay or gum irritation.</p>
<p><strong>Mitigation of Hydrogen Cyanide Effects:</strong> <a href="URL doesn’t shy away from tackling hydrogen cyanide, aiming to mitigate its negative effects. By doing so, it aspires to create a safer haven for your dental landscape, addressing concerns that might linger beneath the surface of traditional oral care solutions.</p>
<p><strong>Enzymatic Warfare Against Bacteria and Plaque:</strong> The blend of enzymes and proteins, from dextranase to lysozyme, gears up for a relentless battle against the notorious duo – bacteria and plaque. This enzymatic warfare is a key element in the formula’s strategy, aiming to create an environment where these elements are kept in check for optimal dental health.</p>
<p><strong>Comprehensive Approach to Oral Well-Being:</strong> <a href="URL positions itself as a bacteria-banishing agent and a comprehensive solution for oral well-being. Its approach seeks to create an environment where your teeth and gums don’t just survive but thrive.</p>
<p><strong>Ease of Integration into Daily Routine:</strong> A benefit for those who favor simplicity, <a href="URL easy-to-swallow tablets make it a hassle-free addition to your daily routine. With just one tablet and a glass of water, it becomes a seamless part of your oral care practices.</p>
<p><strong>Bonus Guides for Added Value:</strong> Opting for the larger packs saves you some dollars and throws in two bonus guides – VIP Smile and Mouth to Gut Detox. The former shares insights for achieving sparkling white teeth at home, while the latter delves into the broader realm of cleansing your digestive system.</p>
<p>While these benefits paint an intriguing picture, individual experiences may vary. The real litmus test lies in the daily rituals of those who embrace <a href="URL as a companion in their oral health journey.</p>
<h2><strong><a href="URL Dosage and Usage</strong></h2>
<p>While we’re not here to dictate habits, we can certainly show how to incorporate <a href="URL seamlessly.</p>
<p><a href="URL </a>keeps things straightforward with a simple daily ritual. The prescribed dosage involves taking one tablet daily, accompanied by a glass of water. This uncomplicated routine is designed for ease of integration into your existing daily habits.</p>
<p>The easy-to-swallow tablets contribute to the user-friendly nature of <a href="URL This feature caters to those who prefer a hassle-free approach to their health regimen, eliminating potential barriers to consistent use.</p>
<p>The absence of strict timing requirements provides flexibility for users. Whether you prefer to take the tablet with breakfast, before bedtime, or at any other convenient time, DentaTonic’s dosage instructions accommodate a variety of schedules.While the dosage may be simple, the emphasis lies in consistency. Incorporating <a href="URL into your routine daily ensures a regular supply of the formulation’s key ingredients, fostering an environment that supports the health of your teeth and gums over time.</p>
<h2 style="text-align: center;"><span style="background-color: #ffff00; color: #0000ff;"><a style="background-color: #ffff00; color: #0000ff;" href="URL OFFER)Click Here : "*DentaTonic* USA"Official Website!</strong></a></span></h2>
<h2><strong>FAQ’s</strong></h2>
<p><strong>What is <a href="URL and how does it support dental health?</strong></p>
<p><a href="URL is a natural supplement designed to enhance oral health by supporting lactoperoxidase levels in saliva, combating bacteria, and aiding in plaque reduction.</p>
<p><strong>How should <a href="URL be taken for optimal results?</strong></p>
<p>For best results, it’s recommended to take one to two capsules of <a href="URL daily with water, preferably in the morning.</p>
<p><strong>Are there any additional benefits of using <a href="URL </a>apart from dental health?</strong></p>
<p>Yes, besides improving dental health, <a href="URL also contributes to better respiratory health, strengthens the immune system, and improves digestion.</p>
<p><strong>Is <a href="URL safe and where is it manufactured?</strong></p>
<p><a href="URL is manufactured in an FDA-approved facility, ensuring its safety and quality.</p>
<p><strong>What if I’m not satisfied with <a href="URL
<p><a href="URL offers a 60-day 100% money-back guarantee, providing assurance and confidence in its effectiveness.</p>
<h2><strong>Prices and 60-day Guarantee</strong></h2>
<p><a href="URL </a>can be purchased on the official website at the following pricing options.</p>
<ul>
<li><strong>One bottle $69.00 + Free Shipping</strong></li>
<li><strong>Three bottles $59.00 each + 2 free books + Free Shipping</strong></li>
<li><strong>Six Bottles $49.00 + 2 free books + Free Shipping</strong></li>
</ul>
<h2><strong>Included Free Bonuses</strong></h2>
<p><strong>Bonus #1 – VIP Smile: Get Sparkling White Teeth From The Comfort of Your Own Home</strong></p>
<p><strong>Bonus #2 – Mouth to Gut Detox – A Comprehensive Guide to Cleansing Your Digestive System</strong></p>
<h2 style="text-align: center;"><span style="background-color: #ff0000; color: #ffcc00;"><a style="background-color: #ff0000; color: #ffcc00;" href="URL Order DentaTonic From USA “OFFICIAL WEBSITE”</strong></a></span></h2>
<h2><strong>Conclusion</strong></h2>
<p>In summary, <a href="URL stands as a beacon of hope in the quest for optimal oral health. Its unique blend of ingredients, user-friendly purchasing options, and reassuring satisfaction guarantee make it more than just a supplement; it’s a comprehensive dental health ally. As we’ve explored, <a href="URL not only promises improved dental well-being but also extends its benefits to overall health. It’s a testament to the power of proactive oral care, blending science and nature in each capsule. So, as you consider your dental health journey, remember that <a href="URL could be the key to unlocking a healthier, more confident smile.</p>
<h2 style="text-align: center;"><span style="background-color: #ffff00; color: #0000ff;"><a style="background-color: #ffff00; color: #0000ff;" href="URL NOW] Don’t miss out on this amazing offer! Advantage of DentaTonic</strong></a></span></h2>
<h2>@ READ MORE</h2>
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL
<p><a href="URL/URL | [] | [
"TAGS\n#region-us \n"
] | [
6
] | [
"passage: TAGS\n#region-us \n"
] |
412c575b7fd4ea1b24e565f19a0e1233a8c55ce6 |
# Dataset of Koyori Tanemura
This is the dataset of Koyori Tanemura, containing 162 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
| Name | Images | Download | Description |
|:----------------|---------:|:----------------------------------------|:-----------------------------------------------------------------------------------------|
| raw | 162 | [Download](dataset-raw.zip) | Raw data with meta information. |
| raw-stage3 | 416 | [Download](dataset-raw-stage3.zip) | 3-stage cropped raw data with meta information. |
| raw-stage3-eyes | 446 | [Download](dataset-raw-stage3-eyes.zip) | 3-stage cropped (with eye-focus) raw data with meta information. |
| 384x512 | 162 | [Download](dataset-384x512.zip) | 384x512 aligned dataset. |
| 512x704 | 162 | [Download](dataset-512x704.zip) | 512x704 aligned dataset. |
| 640x880 | 162 | [Download](dataset-640x880.zip) | 640x880 aligned dataset. |
| stage3-640 | 416 | [Download](dataset-stage3-640.zip) | 3-stage cropped dataset with the shorter side not exceeding 640 pixels. |
| stage3-800 | 416 | [Download](dataset-stage3-800.zip) | 3-stage cropped dataset with the shorter side not exceeding 800 pixels. |
| stage3-p512-640 | 313 | [Download](dataset-stage3-p512-640.zip) | 3-stage cropped dataset with the area not less than 512x512 pixels. |
| stage3-eyes-640 | 446 | [Download](dataset-stage3-eyes-640.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 640 pixels. |
| stage3-eyes-800 | 446 | [Download](dataset-stage3-eyes-800.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 800 pixels. |
| CyberHarem/koyori_tanemura_watashinitenshigamaiorita | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-06T10:50:07+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-06T10:51:01+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of Koyori Tanemura
==========================
This is the dataset of Koyori Tanemura, containing 162 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
| [] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] | [
44
] | [
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] |
93ca1d6a894d67c0f10e39a1cd40706339abeab8 |
# Dataset Card for Evaluation run of AA051610/testtest
<!-- Provide a quick summary of the dataset. -->
Dataset automatically created during the evaluation run of model [AA051610/testtest](https://huggingface.co/AA051610/testtest) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset("open-llm-leaderboard/details_AA051610__testtest",
"harness_winogrande_5",
split="train")
```
## Latest results
These are the [latest results from run 2024-01-06T11:01:46.425546](https://huggingface.co/datasets/open-llm-leaderboard/details_AA051610__testtest/blob/main/results_2024-01-06T11-01-46.425546.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"acc": 0.7617892127804575,
"acc_stderr": 0.028264083954934467,
"acc_norm": 0.7670102557925514,
"acc_norm_stderr": 0.028787360961551947,
"mc1": 0.5348837209302325,
"mc1_stderr": 0.017460849975873972,
"mc2": 0.6990494623892585,
"mc2_stderr": 0.014341231959910994
},
"harness|arc:challenge|25": {
"acc": 0.6860068259385665,
"acc_stderr": 0.013562691224726297,
"acc_norm": 0.7081911262798635,
"acc_norm_stderr": 0.013284525292403515
},
"harness|hellaswag|10": {
"acc": 0.6546504680342561,
"acc_stderr": 0.0047451035439012934,
"acc_norm": 0.8488348934475204,
"acc_norm_stderr": 0.0035747765941085037
},
"harness|hendrycksTest-abstract_algebra|5": {
"acc": 0.45,
"acc_stderr": 0.05,
"acc_norm": 0.45,
"acc_norm_stderr": 0.05
},
"harness|hendrycksTest-anatomy|5": {
"acc": 0.7481481481481481,
"acc_stderr": 0.03749850709174021,
"acc_norm": 0.7481481481481481,
"acc_norm_stderr": 0.03749850709174021
},
"harness|hendrycksTest-astronomy|5": {
"acc": 0.868421052631579,
"acc_stderr": 0.027508689533549912,
"acc_norm": 0.868421052631579,
"acc_norm_stderr": 0.027508689533549912
},
"harness|hendrycksTest-business_ethics|5": {
"acc": 0.78,
"acc_stderr": 0.04163331998932261,
"acc_norm": 0.78,
"acc_norm_stderr": 0.04163331998932261
},
"harness|hendrycksTest-clinical_knowledge|5": {
"acc": 0.8,
"acc_stderr": 0.024618298195866518,
"acc_norm": 0.8,
"acc_norm_stderr": 0.024618298195866518
},
"harness|hendrycksTest-college_biology|5": {
"acc": 0.9027777777777778,
"acc_stderr": 0.024774516250440182,
"acc_norm": 0.9027777777777778,
"acc_norm_stderr": 0.024774516250440182
},
"harness|hendrycksTest-college_chemistry|5": {
"acc": 0.56,
"acc_stderr": 0.04988876515698589,
"acc_norm": 0.56,
"acc_norm_stderr": 0.04988876515698589
},
"harness|hendrycksTest-college_computer_science|5": {
"acc": 0.63,
"acc_stderr": 0.048523658709391,
"acc_norm": 0.63,
"acc_norm_stderr": 0.048523658709391
},
"harness|hendrycksTest-college_mathematics|5": {
"acc": 0.4,
"acc_stderr": 0.049236596391733084,
"acc_norm": 0.4,
"acc_norm_stderr": 0.049236596391733084
},
"harness|hendrycksTest-college_medicine|5": {
"acc": 0.7456647398843931,
"acc_stderr": 0.0332055644308557,
"acc_norm": 0.7456647398843931,
"acc_norm_stderr": 0.0332055644308557
},
"harness|hendrycksTest-college_physics|5": {
"acc": 0.5686274509803921,
"acc_stderr": 0.04928099597287534,
"acc_norm": 0.5686274509803921,
"acc_norm_stderr": 0.04928099597287534
},
"harness|hendrycksTest-computer_security|5": {
"acc": 0.8,
"acc_stderr": 0.04020151261036845,
"acc_norm": 0.8,
"acc_norm_stderr": 0.04020151261036845
},
"harness|hendrycksTest-conceptual_physics|5": {
"acc": 0.7872340425531915,
"acc_stderr": 0.026754391348039783,
"acc_norm": 0.7872340425531915,
"acc_norm_stderr": 0.026754391348039783
},
"harness|hendrycksTest-econometrics|5": {
"acc": 0.5789473684210527,
"acc_stderr": 0.046446020912223177,
"acc_norm": 0.5789473684210527,
"acc_norm_stderr": 0.046446020912223177
},
"harness|hendrycksTest-electrical_engineering|5": {
"acc": 0.7655172413793103,
"acc_stderr": 0.035306258743465914,
"acc_norm": 0.7655172413793103,
"acc_norm_stderr": 0.035306258743465914
},
"harness|hendrycksTest-elementary_mathematics|5": {
"acc": 0.7116402116402116,
"acc_stderr": 0.023330654054535896,
"acc_norm": 0.7116402116402116,
"acc_norm_stderr": 0.023330654054535896
},
"harness|hendrycksTest-formal_logic|5": {
"acc": 0.626984126984127,
"acc_stderr": 0.04325506042017086,
"acc_norm": 0.626984126984127,
"acc_norm_stderr": 0.04325506042017086
},
"harness|hendrycksTest-global_facts|5": {
"acc": 0.59,
"acc_stderr": 0.04943110704237102,
"acc_norm": 0.59,
"acc_norm_stderr": 0.04943110704237102
},
"harness|hendrycksTest-high_school_biology|5": {
"acc": 0.9032258064516129,
"acc_stderr": 0.016818943416345197,
"acc_norm": 0.9032258064516129,
"acc_norm_stderr": 0.016818943416345197
},
"harness|hendrycksTest-high_school_chemistry|5": {
"acc": 0.645320197044335,
"acc_stderr": 0.03366124489051449,
"acc_norm": 0.645320197044335,
"acc_norm_stderr": 0.03366124489051449
},
"harness|hendrycksTest-high_school_computer_science|5": {
"acc": 0.78,
"acc_stderr": 0.04163331998932261,
"acc_norm": 0.78,
"acc_norm_stderr": 0.04163331998932261
},
"harness|hendrycksTest-high_school_european_history|5": {
"acc": 0.8666666666666667,
"acc_stderr": 0.026544435312706456,
"acc_norm": 0.8666666666666667,
"acc_norm_stderr": 0.026544435312706456
},
"harness|hendrycksTest-high_school_geography|5": {
"acc": 0.9191919191919192,
"acc_stderr": 0.019417681889724536,
"acc_norm": 0.9191919191919192,
"acc_norm_stderr": 0.019417681889724536
},
"harness|hendrycksTest-high_school_government_and_politics|5": {
"acc": 0.9689119170984456,
"acc_stderr": 0.012525310625527033,
"acc_norm": 0.9689119170984456,
"acc_norm_stderr": 0.012525310625527033
},
"harness|hendrycksTest-high_school_macroeconomics|5": {
"acc": 0.8076923076923077,
"acc_stderr": 0.019982347208637292,
"acc_norm": 0.8076923076923077,
"acc_norm_stderr": 0.019982347208637292
},
"harness|hendrycksTest-high_school_mathematics|5": {
"acc": 0.4444444444444444,
"acc_stderr": 0.030296771286067323,
"acc_norm": 0.4444444444444444,
"acc_norm_stderr": 0.030296771286067323
},
"harness|hendrycksTest-high_school_microeconomics|5": {
"acc": 0.8319327731092437,
"acc_stderr": 0.024289102115692265,
"acc_norm": 0.8319327731092437,
"acc_norm_stderr": 0.024289102115692265
},
"harness|hendrycksTest-high_school_physics|5": {
"acc": 0.4900662251655629,
"acc_stderr": 0.04081677107248436,
"acc_norm": 0.4900662251655629,
"acc_norm_stderr": 0.04081677107248436
},
"harness|hendrycksTest-high_school_psychology|5": {
"acc": 0.9155963302752294,
"acc_stderr": 0.01191881932733488,
"acc_norm": 0.9155963302752294,
"acc_norm_stderr": 0.01191881932733488
},
"harness|hendrycksTest-high_school_statistics|5": {
"acc": 0.6620370370370371,
"acc_stderr": 0.03225941352631295,
"acc_norm": 0.6620370370370371,
"acc_norm_stderr": 0.03225941352631295
},
"harness|hendrycksTest-high_school_us_history|5": {
"acc": 0.9264705882352942,
"acc_stderr": 0.018318855850089678,
"acc_norm": 0.9264705882352942,
"acc_norm_stderr": 0.018318855850089678
},
"harness|hendrycksTest-high_school_world_history|5": {
"acc": 0.9071729957805907,
"acc_stderr": 0.01888975055095671,
"acc_norm": 0.9071729957805907,
"acc_norm_stderr": 0.01888975055095671
},
"harness|hendrycksTest-human_aging|5": {
"acc": 0.7982062780269058,
"acc_stderr": 0.02693611191280227,
"acc_norm": 0.7982062780269058,
"acc_norm_stderr": 0.02693611191280227
},
"harness|hendrycksTest-human_sexuality|5": {
"acc": 0.8778625954198473,
"acc_stderr": 0.028718776889342323,
"acc_norm": 0.8778625954198473,
"acc_norm_stderr": 0.028718776889342323
},
"harness|hendrycksTest-international_law|5": {
"acc": 0.8925619834710744,
"acc_stderr": 0.028268812192540637,
"acc_norm": 0.8925619834710744,
"acc_norm_stderr": 0.028268812192540637
},
"harness|hendrycksTest-jurisprudence|5": {
"acc": 0.8981481481481481,
"acc_stderr": 0.02923927267563275,
"acc_norm": 0.8981481481481481,
"acc_norm_stderr": 0.02923927267563275
},
"harness|hendrycksTest-logical_fallacies|5": {
"acc": 0.8773006134969326,
"acc_stderr": 0.025777328426978927,
"acc_norm": 0.8773006134969326,
"acc_norm_stderr": 0.025777328426978927
},
"harness|hendrycksTest-machine_learning|5": {
"acc": 0.5357142857142857,
"acc_stderr": 0.04733667890053756,
"acc_norm": 0.5357142857142857,
"acc_norm_stderr": 0.04733667890053756
},
"harness|hendrycksTest-management|5": {
"acc": 0.883495145631068,
"acc_stderr": 0.03176683948640406,
"acc_norm": 0.883495145631068,
"acc_norm_stderr": 0.03176683948640406
},
"harness|hendrycksTest-marketing|5": {
"acc": 0.9444444444444444,
"acc_stderr": 0.015006312806446912,
"acc_norm": 0.9444444444444444,
"acc_norm_stderr": 0.015006312806446912
},
"harness|hendrycksTest-medical_genetics|5": {
"acc": 0.88,
"acc_stderr": 0.03265986323710906,
"acc_norm": 0.88,
"acc_norm_stderr": 0.03265986323710906
},
"harness|hendrycksTest-miscellaneous|5": {
"acc": 0.9029374201787995,
"acc_stderr": 0.010586474712018297,
"acc_norm": 0.9029374201787995,
"acc_norm_stderr": 0.010586474712018297
},
"harness|hendrycksTest-moral_disputes|5": {
"acc": 0.815028901734104,
"acc_stderr": 0.02090397584208303,
"acc_norm": 0.815028901734104,
"acc_norm_stderr": 0.02090397584208303
},
"harness|hendrycksTest-moral_scenarios|5": {
"acc": 0.8044692737430168,
"acc_stderr": 0.013264579220945105,
"acc_norm": 0.8044692737430168,
"acc_norm_stderr": 0.013264579220945105
},
"harness|hendrycksTest-nutrition|5": {
"acc": 0.8496732026143791,
"acc_stderr": 0.02046417512433263,
"acc_norm": 0.8496732026143791,
"acc_norm_stderr": 0.02046417512433263
},
"harness|hendrycksTest-philosophy|5": {
"acc": 0.8038585209003215,
"acc_stderr": 0.022552447780478022,
"acc_norm": 0.8038585209003215,
"acc_norm_stderr": 0.022552447780478022
},
"harness|hendrycksTest-prehistory|5": {
"acc": 0.8672839506172839,
"acc_stderr": 0.018877353839571842,
"acc_norm": 0.8672839506172839,
"acc_norm_stderr": 0.018877353839571842
},
"harness|hendrycksTest-professional_accounting|5": {
"acc": 0.6347517730496454,
"acc_stderr": 0.028723863853281267,
"acc_norm": 0.6347517730496454,
"acc_norm_stderr": 0.028723863853281267
},
"harness|hendrycksTest-professional_law|5": {
"acc": 0.5808344198174706,
"acc_stderr": 0.012602244505788228,
"acc_norm": 0.5808344198174706,
"acc_norm_stderr": 0.012602244505788228
},
"harness|hendrycksTest-professional_medicine|5": {
"acc": 0.8235294117647058,
"acc_stderr": 0.023157468308559345,
"acc_norm": 0.8235294117647058,
"acc_norm_stderr": 0.023157468308559345
},
"harness|hendrycksTest-professional_psychology|5": {
"acc": 0.815359477124183,
"acc_stderr": 0.01569702924075778,
"acc_norm": 0.815359477124183,
"acc_norm_stderr": 0.01569702924075778
},
"harness|hendrycksTest-public_relations|5": {
"acc": 0.7272727272727273,
"acc_stderr": 0.04265792110940589,
"acc_norm": 0.7272727272727273,
"acc_norm_stderr": 0.04265792110940589
},
"harness|hendrycksTest-security_studies|5": {
"acc": 0.8367346938775511,
"acc_stderr": 0.02366169917709861,
"acc_norm": 0.8367346938775511,
"acc_norm_stderr": 0.02366169917709861
},
"harness|hendrycksTest-sociology|5": {
"acc": 0.8955223880597015,
"acc_stderr": 0.021628920516700643,
"acc_norm": 0.8955223880597015,
"acc_norm_stderr": 0.021628920516700643
},
"harness|hendrycksTest-us_foreign_policy|5": {
"acc": 0.89,
"acc_stderr": 0.03144660377352203,
"acc_norm": 0.89,
"acc_norm_stderr": 0.03144660377352203
},
"harness|hendrycksTest-virology|5": {
"acc": 0.5783132530120482,
"acc_stderr": 0.03844453181770917,
"acc_norm": 0.5783132530120482,
"acc_norm_stderr": 0.03844453181770917
},
"harness|hendrycksTest-world_religions|5": {
"acc": 0.9005847953216374,
"acc_stderr": 0.022949025579355034,
"acc_norm": 0.9005847953216374,
"acc_norm_stderr": 0.022949025579355034
},
"harness|truthfulqa:mc|0": {
"mc1": 0.5348837209302325,
"mc1_stderr": 0.017460849975873972,
"mc2": 0.6990494623892585,
"mc2_stderr": 0.014341231959910994
},
"harness|winogrande|5": {
"acc": 0.8208366219415943,
"acc_stderr": 0.010777949156047987
},
"harness|gsm8k|5": {
"acc": 0.6110689916603488,
"acc_stderr": 0.013428382481274233
}
}
```
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
[More Information Needed] | open-llm-leaderboard/details_AA051610__testtest | [
"region:us"
] | 2024-01-06T11:03:57+00:00 | {"pretty_name": "Evaluation run of AA051610/testtest", "dataset_summary": "Dataset automatically created during the evaluation run of model [AA051610/testtest](https://huggingface.co/AA051610/testtest) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_AA051610__testtest\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-06T11:01:46.425546](https://huggingface.co/datasets/open-llm-leaderboard/details_AA051610__testtest/blob/main/results_2024-01-06T11-01-46.425546.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.7617892127804575,\n \"acc_stderr\": 0.028264083954934467,\n \"acc_norm\": 0.7670102557925514,\n \"acc_norm_stderr\": 0.028787360961551947,\n \"mc1\": 0.5348837209302325,\n \"mc1_stderr\": 0.017460849975873972,\n \"mc2\": 0.6990494623892585,\n \"mc2_stderr\": 0.014341231959910994\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.6860068259385665,\n \"acc_stderr\": 0.013562691224726297,\n \"acc_norm\": 0.7081911262798635,\n \"acc_norm_stderr\": 0.013284525292403515\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6546504680342561,\n \"acc_stderr\": 0.0047451035439012934,\n \"acc_norm\": 0.8488348934475204,\n \"acc_norm_stderr\": 0.0035747765941085037\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.45,\n \"acc_stderr\": 0.05,\n \"acc_norm\": 0.45,\n \"acc_norm_stderr\": 0.05\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.7481481481481481,\n \"acc_stderr\": 0.03749850709174021,\n \"acc_norm\": 0.7481481481481481,\n \"acc_norm_stderr\": 0.03749850709174021\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.868421052631579,\n \"acc_stderr\": 0.027508689533549912,\n \"acc_norm\": 0.868421052631579,\n \"acc_norm_stderr\": 0.027508689533549912\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.78,\n \"acc_stderr\": 0.04163331998932261,\n \"acc_norm\": 0.78,\n \"acc_norm_stderr\": 0.04163331998932261\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.8,\n \"acc_stderr\": 0.024618298195866518,\n \"acc_norm\": 0.8,\n \"acc_norm_stderr\": 0.024618298195866518\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.9027777777777778,\n \"acc_stderr\": 0.024774516250440182,\n \"acc_norm\": 0.9027777777777778,\n \"acc_norm_stderr\": 0.024774516250440182\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.56,\n \"acc_stderr\": 0.04988876515698589,\n \"acc_norm\": 0.56,\n \"acc_norm_stderr\": 0.04988876515698589\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.63,\n \"acc_stderr\": 0.048523658709391,\n \"acc_norm\": 0.63,\n \"acc_norm_stderr\": 0.048523658709391\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.4,\n \"acc_stderr\": 0.049236596391733084,\n \"acc_norm\": 0.4,\n \"acc_norm_stderr\": 0.049236596391733084\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.7456647398843931,\n \"acc_stderr\": 0.0332055644308557,\n \"acc_norm\": 0.7456647398843931,\n \"acc_norm_stderr\": 0.0332055644308557\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.5686274509803921,\n \"acc_stderr\": 0.04928099597287534,\n \"acc_norm\": 0.5686274509803921,\n \"acc_norm_stderr\": 0.04928099597287534\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.8,\n \"acc_stderr\": 0.04020151261036845,\n \"acc_norm\": 0.8,\n \"acc_norm_stderr\": 0.04020151261036845\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.7872340425531915,\n \"acc_stderr\": 0.026754391348039783,\n \"acc_norm\": 0.7872340425531915,\n \"acc_norm_stderr\": 0.026754391348039783\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.5789473684210527,\n \"acc_stderr\": 0.046446020912223177,\n \"acc_norm\": 0.5789473684210527,\n \"acc_norm_stderr\": 0.046446020912223177\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.7655172413793103,\n \"acc_stderr\": 0.035306258743465914,\n \"acc_norm\": 0.7655172413793103,\n \"acc_norm_stderr\": 0.035306258743465914\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.7116402116402116,\n \"acc_stderr\": 0.023330654054535896,\n \"acc_norm\": 0.7116402116402116,\n \"acc_norm_stderr\": 0.023330654054535896\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.626984126984127,\n \"acc_stderr\": 0.04325506042017086,\n \"acc_norm\": 0.626984126984127,\n \"acc_norm_stderr\": 0.04325506042017086\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.59,\n \"acc_stderr\": 0.04943110704237102,\n \"acc_norm\": 0.59,\n \"acc_norm_stderr\": 0.04943110704237102\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.9032258064516129,\n \"acc_stderr\": 0.016818943416345197,\n \"acc_norm\": 0.9032258064516129,\n \"acc_norm_stderr\": 0.016818943416345197\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.645320197044335,\n \"acc_stderr\": 0.03366124489051449,\n \"acc_norm\": 0.645320197044335,\n \"acc_norm_stderr\": 0.03366124489051449\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.78,\n \"acc_stderr\": 0.04163331998932261,\n \"acc_norm\": 0.78,\n \"acc_norm_stderr\": 0.04163331998932261\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.8666666666666667,\n \"acc_stderr\": 0.026544435312706456,\n \"acc_norm\": 0.8666666666666667,\n \"acc_norm_stderr\": 0.026544435312706456\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.9191919191919192,\n \"acc_stderr\": 0.019417681889724536,\n \"acc_norm\": 0.9191919191919192,\n \"acc_norm_stderr\": 0.019417681889724536\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.9689119170984456,\n \"acc_stderr\": 0.012525310625527033,\n \"acc_norm\": 0.9689119170984456,\n \"acc_norm_stderr\": 0.012525310625527033\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.8076923076923077,\n \"acc_stderr\": 0.019982347208637292,\n \"acc_norm\": 0.8076923076923077,\n \"acc_norm_stderr\": 0.019982347208637292\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.4444444444444444,\n \"acc_stderr\": 0.030296771286067323,\n \"acc_norm\": 0.4444444444444444,\n \"acc_norm_stderr\": 0.030296771286067323\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.8319327731092437,\n \"acc_stderr\": 0.024289102115692265,\n \"acc_norm\": 0.8319327731092437,\n \"acc_norm_stderr\": 0.024289102115692265\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.4900662251655629,\n \"acc_stderr\": 0.04081677107248436,\n \"acc_norm\": 0.4900662251655629,\n \"acc_norm_stderr\": 0.04081677107248436\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.9155963302752294,\n \"acc_stderr\": 0.01191881932733488,\n \"acc_norm\": 0.9155963302752294,\n \"acc_norm_stderr\": 0.01191881932733488\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.6620370370370371,\n \"acc_stderr\": 0.03225941352631295,\n \"acc_norm\": 0.6620370370370371,\n \"acc_norm_stderr\": 0.03225941352631295\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.9264705882352942,\n \"acc_stderr\": 0.018318855850089678,\n \"acc_norm\": 0.9264705882352942,\n \"acc_norm_stderr\": 0.018318855850089678\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.9071729957805907,\n \"acc_stderr\": 0.01888975055095671,\n \"acc_norm\": 0.9071729957805907,\n \"acc_norm_stderr\": 0.01888975055095671\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.7982062780269058,\n \"acc_stderr\": 0.02693611191280227,\n \"acc_norm\": 0.7982062780269058,\n \"acc_norm_stderr\": 0.02693611191280227\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.8778625954198473,\n \"acc_stderr\": 0.028718776889342323,\n \"acc_norm\": 0.8778625954198473,\n \"acc_norm_stderr\": 0.028718776889342323\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8925619834710744,\n \"acc_stderr\": 0.028268812192540637,\n \"acc_norm\": 0.8925619834710744,\n \"acc_norm_stderr\": 0.028268812192540637\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.8981481481481481,\n \"acc_stderr\": 0.02923927267563275,\n \"acc_norm\": 0.8981481481481481,\n \"acc_norm_stderr\": 0.02923927267563275\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.8773006134969326,\n \"acc_stderr\": 0.025777328426978927,\n \"acc_norm\": 0.8773006134969326,\n \"acc_norm_stderr\": 0.025777328426978927\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.5357142857142857,\n \"acc_stderr\": 0.04733667890053756,\n \"acc_norm\": 0.5357142857142857,\n \"acc_norm_stderr\": 0.04733667890053756\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.883495145631068,\n \"acc_stderr\": 0.03176683948640406,\n \"acc_norm\": 0.883495145631068,\n \"acc_norm_stderr\": 0.03176683948640406\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.9444444444444444,\n \"acc_stderr\": 0.015006312806446912,\n \"acc_norm\": 0.9444444444444444,\n \"acc_norm_stderr\": 0.015006312806446912\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.88,\n \"acc_stderr\": 0.03265986323710906,\n \"acc_norm\": 0.88,\n \"acc_norm_stderr\": 0.03265986323710906\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.9029374201787995,\n \"acc_stderr\": 0.010586474712018297,\n \"acc_norm\": 0.9029374201787995,\n \"acc_norm_stderr\": 0.010586474712018297\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.815028901734104,\n \"acc_stderr\": 0.02090397584208303,\n \"acc_norm\": 0.815028901734104,\n \"acc_norm_stderr\": 0.02090397584208303\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.8044692737430168,\n \"acc_stderr\": 0.013264579220945105,\n \"acc_norm\": 0.8044692737430168,\n \"acc_norm_stderr\": 0.013264579220945105\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.8496732026143791,\n \"acc_stderr\": 0.02046417512433263,\n \"acc_norm\": 0.8496732026143791,\n \"acc_norm_stderr\": 0.02046417512433263\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.8038585209003215,\n \"acc_stderr\": 0.022552447780478022,\n \"acc_norm\": 0.8038585209003215,\n \"acc_norm_stderr\": 0.022552447780478022\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.8672839506172839,\n \"acc_stderr\": 0.018877353839571842,\n \"acc_norm\": 0.8672839506172839,\n \"acc_norm_stderr\": 0.018877353839571842\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.6347517730496454,\n \"acc_stderr\": 0.028723863853281267,\n \"acc_norm\": 0.6347517730496454,\n \"acc_norm_stderr\": 0.028723863853281267\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.5808344198174706,\n \"acc_stderr\": 0.012602244505788228,\n \"acc_norm\": 0.5808344198174706,\n \"acc_norm_stderr\": 0.012602244505788228\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.8235294117647058,\n \"acc_stderr\": 0.023157468308559345,\n \"acc_norm\": 0.8235294117647058,\n \"acc_norm_stderr\": 0.023157468308559345\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.815359477124183,\n \"acc_stderr\": 0.01569702924075778,\n \"acc_norm\": 0.815359477124183,\n \"acc_norm_stderr\": 0.01569702924075778\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.7272727272727273,\n \"acc_stderr\": 0.04265792110940589,\n \"acc_norm\": 0.7272727272727273,\n \"acc_norm_stderr\": 0.04265792110940589\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.8367346938775511,\n \"acc_stderr\": 0.02366169917709861,\n \"acc_norm\": 0.8367346938775511,\n \"acc_norm_stderr\": 0.02366169917709861\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8955223880597015,\n \"acc_stderr\": 0.021628920516700643,\n \"acc_norm\": 0.8955223880597015,\n \"acc_norm_stderr\": 0.021628920516700643\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.89,\n \"acc_stderr\": 0.03144660377352203,\n \"acc_norm\": 0.89,\n \"acc_norm_stderr\": 0.03144660377352203\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5783132530120482,\n \"acc_stderr\": 0.03844453181770917,\n \"acc_norm\": 0.5783132530120482,\n \"acc_norm_stderr\": 0.03844453181770917\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.9005847953216374,\n \"acc_stderr\": 0.022949025579355034,\n \"acc_norm\": 0.9005847953216374,\n \"acc_norm_stderr\": 0.022949025579355034\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.5348837209302325,\n \"mc1_stderr\": 0.017460849975873972,\n \"mc2\": 0.6990494623892585,\n \"mc2_stderr\": 0.014341231959910994\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.8208366219415943,\n \"acc_stderr\": 0.010777949156047987\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.6110689916603488,\n \"acc_stderr\": 0.013428382481274233\n }\n}\n```", "repo_url": "https://huggingface.co/AA051610/testtest", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|arc:challenge|25_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|gsm8k|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hellaswag|10_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-06T11-01-46.425546.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["**/details_harness|winogrande|5_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-06T11-01-46.425546.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_06T11_01_46.425546", "path": ["results_2024-01-06T11-01-46.425546.parquet"]}, {"split": "latest", "path": ["results_2024-01-06T11-01-46.425546.parquet"]}]}]} | 2024-01-06T11:04:18+00:00 | [] | [] | TAGS
#region-us
|
# Dataset Card for Evaluation run of AA051610/testtest
Dataset automatically created during the evaluation run of model AA051610/testtest on the Open LLM Leaderboard.
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).
To load the details from a run, you can for instance do the following:
## Latest results
These are the latest results from run 2024-01-06T11:01:46.425546(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
## Dataset Details
### Dataset Description
- Curated by:
- Funded by [optional]:
- Shared by [optional]:
- Language(s) (NLP):
- License:
### Dataset Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Out-of-Scope Use
## Dataset Structure
## Dataset Creation
### Curation Rationale
### Source Data
#### Data Collection and Processing
#### Who are the source data producers?
### Annotations [optional]
#### Annotation process
#### Who are the annotators?
#### Personal and Sensitive Information
## Bias, Risks, and Limitations
### Recommendations
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Dataset Card Authors [optional]
## Dataset Card Contact
| [
"# Dataset Card for Evaluation run of AA051610/testtest\n\n\n\nDataset automatically created during the evaluation run of model AA051610/testtest on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-06T11:01:46.425546(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for Evaluation run of AA051610/testtest\n\n\n\nDataset automatically created during the evaluation run of model AA051610/testtest on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-06T11:01:46.425546(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
6,
175,
68,
4,
40,
29,
3,
4,
9,
6,
5,
7,
4,
7,
10,
9,
5,
9,
8,
10,
46,
8,
7,
10,
5
] | [
"passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of AA051610/testtest\n\n\n\nDataset automatically created during the evaluation run of model AA051610/testtest on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2024-01-06T11:01:46.425546(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):## Dataset Details### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Out-of-Scope Use## Dataset Structure## Dataset Creation### Curation Rationale### Source Data#### Data Collection and Processing#### Who are the source data producers?### Annotations [optional]#### Annotation process#### Who are the annotators?#### Personal and Sensitive Information## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Dataset Card Authors [optional]## Dataset Card Contact"
] |
18abb24c19a5602ad0d9f2644ddad0e3b30b82ab |
# Dataset Card for HyVoxpopuli
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
### Dataset Summary
### Example usage
HyVoxPopuli contains labelled data for 18 languages. To load a specific language pass its name as a config name:
```python
from datasets import load_dataset
voxpopuli_croatian = load_dataset("Edmon02/hyvoxpopuli")
```
### Supported Tasks and Leaderboards
* automatic-speech-recognition: The dataset can be used to train a model for Automatic Speech Recognition (ASR). The model is presented with an audio file and asked to transcribe the audio file to written text. The most common evaluation metric is the word error rate (WER).
## Dataset Structure
### Data Instances
```python
{
'audio_id': 'segment_00000072',
'audio': {
'path': '/home/polina/.cache/huggingface/datasets/downloads/extracted/254a284babeb60d348239423161397844bbfb209560b31edecb7f2b91379da7d/segment_00000072.wav',
'array': array([-0.01434326, -0.01055908, 0.00106812, ..., 0.00646973], dtype=float32),
'sampling_rate': 16000
},
'raw_text': '',
'normalized_text': 'poast genitalnog sakaenja ena u europi tek je jedna od manifestacija takve tetne politike.',
'gender': 'female',
'speaker_id': 'speaker_2',
'is_gold_transcript': True,
'accent': 'None'
}
```
### Data Fields
* `audio_id` (string) - id of audio segment
* `audio` (datasets.Audio) - a dictionary containing the path to the audio, the decoded audio array, and the sampling rate. In non-streaming mode (default), the path points to the locally extracted audio. In streaming mode, the path is the relative path of an audio inside its archive (as files are not downloaded and extracted locally).
* `raw_text` (string) - original (orthographic) audio segment text
* `normalized_text` (string) - normalized audio segment transcription
* `gender` (string) - gender of speaker
* `speaker_id` (string) - id of speaker
* `is_gold_transcript` (bool) - ?
* `accent` (string) - type of accent, for example "en_lt", if applicable, else "None".
### Data Splits
All configs contain data in three splits: train, validation and test.
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
The raw data is collected from [Գրքասեր site ](https://grqaser.org/am)
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
Please cite this paper:
```bibtex
@inproceedings{wang-etal-2021-voxpopuli,
title = "{H}y{V}ox{P}opuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation",
author = "Edmon, Sahakyan",
booktitle = "Գրքասեր site audio and pdf books",
month = feb,
year = "2024",
address = "Online",
publisher = "Researcher"
}
``` | Edmon02/hyvoxpopuli | [
"task_categories:automatic-speech-recognition",
"language:hy",
"region:us"
] | 2024-01-06T11:30:36+00:00 | {"annotations_creators": [], "language_creators": [], "language": ["hy"], "source_datasets": [], "task_categories": ["automatic-speech-recognition"], "task_ids": [], "pretty_name": "HyVoxPopuli"} | 2024-02-16T10:33:29+00:00 | [] | [
"hy"
] | TAGS
#task_categories-automatic-speech-recognition #language-Armenian #region-us
|
# Dataset Card for HyVoxpopuli
## Table of Contents
- Table of Contents
- Dataset Description
- Dataset Summary
- Supported Tasks and Leaderboards
- Languages
- Dataset Structure
- Data Instances
- Data Fields
- Data Splits
- Dataset Creation
- Curation Rationale
- Source Data
- Annotations
- Personal and Sensitive Information
- Considerations for Using the Data
- Social Impact of Dataset
- Discussion of Biases
- Other Known Limitations
- Additional Information
- Dataset Curators
- Licensing Information
- Citation Information
- Contributions
## Dataset Description
### Dataset Summary
### Example usage
HyVoxPopuli contains labelled data for 18 languages. To load a specific language pass its name as a config name:
### Supported Tasks and Leaderboards
* automatic-speech-recognition: The dataset can be used to train a model for Automatic Speech Recognition (ASR). The model is presented with an audio file and asked to transcribe the audio file to written text. The most common evaluation metric is the word error rate (WER).
## Dataset Structure
### Data Instances
### Data Fields
* 'audio_id' (string) - id of audio segment
* 'audio' (datasets.Audio) - a dictionary containing the path to the audio, the decoded audio array, and the sampling rate. In non-streaming mode (default), the path points to the locally extracted audio. In streaming mode, the path is the relative path of an audio inside its archive (as files are not downloaded and extracted locally).
* 'raw_text' (string) - original (orthographic) audio segment text
* 'normalized_text' (string) - normalized audio segment transcription
* 'gender' (string) - gender of speaker
* 'speaker_id' (string) - id of speaker
* 'is_gold_transcript' (bool) - ?
* 'accent' (string) - type of accent, for example "en_lt", if applicable, else "None".
### Data Splits
All configs contain data in three splits: train, validation and test.
## Dataset Creation
### Curation Rationale
### Source Data
The raw data is collected from Գրքասեր site
#### Initial Data Collection and Normalization
#### Who are the source language producers?
### Annotations
#### Annotation process
#### Who are the annotators?
### Personal and Sensitive Information
## Considerations for Using the Data
### Social Impact of Dataset
### Discussion of Biases
### Other Known Limitations
## Additional Information
### Dataset Curators
### Licensing Information
Please cite this paper:
| [
"# Dataset Card for HyVoxpopuli",
"## Table of Contents\n- Table of Contents\n- Dataset Description\n - Dataset Summary\n - Supported Tasks and Leaderboards\n - Languages\n- Dataset Structure\n - Data Instances\n - Data Fields\n - Data Splits\n- Dataset Creation\n - Curation Rationale\n - Source Data\n - Annotations\n - Personal and Sensitive Information\n- Considerations for Using the Data\n - Social Impact of Dataset\n - Discussion of Biases\n - Other Known Limitations\n- Additional Information\n - Dataset Curators\n - Licensing Information\n - Citation Information\n - Contributions",
"## Dataset Description",
"### Dataset Summary",
"### Example usage\n\nHyVoxPopuli contains labelled data for 18 languages. To load a specific language pass its name as a config name:",
"### Supported Tasks and Leaderboards\n\n* automatic-speech-recognition: The dataset can be used to train a model for Automatic Speech Recognition (ASR). The model is presented with an audio file and asked to transcribe the audio file to written text. The most common evaluation metric is the word error rate (WER).",
"## Dataset Structure",
"### Data Instances",
"### Data Fields\n\n* 'audio_id' (string) - id of audio segment\n* 'audio' (datasets.Audio) - a dictionary containing the path to the audio, the decoded audio array, and the sampling rate. In non-streaming mode (default), the path points to the locally extracted audio. In streaming mode, the path is the relative path of an audio inside its archive (as files are not downloaded and extracted locally).\n* 'raw_text' (string) - original (orthographic) audio segment text\n* 'normalized_text' (string) - normalized audio segment transcription\n* 'gender' (string) - gender of speaker\n* 'speaker_id' (string) - id of speaker\n* 'is_gold_transcript' (bool) - ?\n* 'accent' (string) - type of accent, for example \"en_lt\", if applicable, else \"None\".",
"### Data Splits\n\nAll configs contain data in three splits: train, validation and test.",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data\n\nThe raw data is collected from Գրքասեր site",
"#### Initial Data Collection and Normalization",
"#### Who are the source language producers?",
"### Annotations",
"#### Annotation process",
"#### Who are the annotators?",
"### Personal and Sensitive Information",
"## Considerations for Using the Data",
"### Social Impact of Dataset",
"### Discussion of Biases",
"### Other Known Limitations",
"## Additional Information",
"### Dataset Curators",
"### Licensing Information\n\n\n\n\n\nPlease cite this paper:"
] | [
"TAGS\n#task_categories-automatic-speech-recognition #language-Armenian #region-us \n",
"# Dataset Card for HyVoxpopuli",
"## Table of Contents\n- Table of Contents\n- Dataset Description\n - Dataset Summary\n - Supported Tasks and Leaderboards\n - Languages\n- Dataset Structure\n - Data Instances\n - Data Fields\n - Data Splits\n- Dataset Creation\n - Curation Rationale\n - Source Data\n - Annotations\n - Personal and Sensitive Information\n- Considerations for Using the Data\n - Social Impact of Dataset\n - Discussion of Biases\n - Other Known Limitations\n- Additional Information\n - Dataset Curators\n - Licensing Information\n - Citation Information\n - Contributions",
"## Dataset Description",
"### Dataset Summary",
"### Example usage\n\nHyVoxPopuli contains labelled data for 18 languages. To load a specific language pass its name as a config name:",
"### Supported Tasks and Leaderboards\n\n* automatic-speech-recognition: The dataset can be used to train a model for Automatic Speech Recognition (ASR). The model is presented with an audio file and asked to transcribe the audio file to written text. The most common evaluation metric is the word error rate (WER).",
"## Dataset Structure",
"### Data Instances",
"### Data Fields\n\n* 'audio_id' (string) - id of audio segment\n* 'audio' (datasets.Audio) - a dictionary containing the path to the audio, the decoded audio array, and the sampling rate. In non-streaming mode (default), the path points to the locally extracted audio. In streaming mode, the path is the relative path of an audio inside its archive (as files are not downloaded and extracted locally).\n* 'raw_text' (string) - original (orthographic) audio segment text\n* 'normalized_text' (string) - normalized audio segment transcription\n* 'gender' (string) - gender of speaker\n* 'speaker_id' (string) - id of speaker\n* 'is_gold_transcript' (bool) - ?\n* 'accent' (string) - type of accent, for example \"en_lt\", if applicable, else \"None\".",
"### Data Splits\n\nAll configs contain data in three splits: train, validation and test.",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data\n\nThe raw data is collected from Գրքասեր site",
"#### Initial Data Collection and Normalization",
"#### Who are the source language producers?",
"### Annotations",
"#### Annotation process",
"#### Who are the annotators?",
"### Personal and Sensitive Information",
"## Considerations for Using the Data",
"### Social Impact of Dataset",
"### Discussion of Biases",
"### Other Known Limitations",
"## Additional Information",
"### Dataset Curators",
"### Licensing Information\n\n\n\n\n\nPlease cite this paper:"
] | [
28,
10,
125,
4,
6,
34,
76,
6,
6,
216,
23,
5,
7,
15,
10,
10,
5,
5,
9,
8,
8,
7,
8,
7,
5,
6,
11
] | [
"passage: TAGS\n#task_categories-automatic-speech-recognition #language-Armenian #region-us \n# Dataset Card for HyVoxpopuli## Table of Contents\n- Table of Contents\n- Dataset Description\n - Dataset Summary\n - Supported Tasks and Leaderboards\n - Languages\n- Dataset Structure\n - Data Instances\n - Data Fields\n - Data Splits\n- Dataset Creation\n - Curation Rationale\n - Source Data\n - Annotations\n - Personal and Sensitive Information\n- Considerations for Using the Data\n - Social Impact of Dataset\n - Discussion of Biases\n - Other Known Limitations\n- Additional Information\n - Dataset Curators\n - Licensing Information\n - Citation Information\n - Contributions## Dataset Description### Dataset Summary### Example usage\n\nHyVoxPopuli contains labelled data for 18 languages. To load a specific language pass its name as a config name:### Supported Tasks and Leaderboards\n\n* automatic-speech-recognition: The dataset can be used to train a model for Automatic Speech Recognition (ASR). The model is presented with an audio file and asked to transcribe the audio file to written text. The most common evaluation metric is the word error rate (WER).## Dataset Structure### Data Instances"
] |
c254670c44a729ef4ff74d648ea7260be69b820d |
# Dataset of Elaina
This is the dataset of Elaina, containing 486 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
| Name | Images | Download | Description |
|:----------------|---------:|:----------------------------------------|:-----------------------------------------------------------------------------------------|
| raw | 486 | [Download](dataset-raw.zip) | Raw data with meta information. |
| raw-stage3 | 1107 | [Download](dataset-raw-stage3.zip) | 3-stage cropped raw data with meta information. |
| raw-stage3-eyes | 1341 | [Download](dataset-raw-stage3-eyes.zip) | 3-stage cropped (with eye-focus) raw data with meta information. |
| 384x512 | 486 | [Download](dataset-384x512.zip) | 384x512 aligned dataset. |
| 512x704 | 486 | [Download](dataset-512x704.zip) | 512x704 aligned dataset. |
| 640x880 | 486 | [Download](dataset-640x880.zip) | 640x880 aligned dataset. |
| stage3-640 | 1107 | [Download](dataset-stage3-640.zip) | 3-stage cropped dataset with the shorter side not exceeding 640 pixels. |
| stage3-800 | 1107 | [Download](dataset-stage3-800.zip) | 3-stage cropped dataset with the shorter side not exceeding 800 pixels. |
| stage3-p512-640 | 1011 | [Download](dataset-stage3-p512-640.zip) | 3-stage cropped dataset with the area not less than 512x512 pixels. |
| stage3-eyes-640 | 1341 | [Download](dataset-stage3-eyes-640.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 640 pixels. |
| stage3-eyes-800 | 1341 | [Download](dataset-stage3-eyes-800.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 800 pixels. |
| CyberHarem/elaina_majonotabitabi | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-06T11:53:26+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-06T11:59:46+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of Elaina
=================
This is the dataset of Elaina, containing 486 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
| [] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] | [
44
] | [
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] |
7e85c222232744274f946bc1c1e3ab4b7f467fc3 | There is a UUID for each prompt from [xzuyn/Stable-Diffusion-Prompts-Deduped-2.008M](https://huggingface.co/datasets/xzuyn/Stable-Diffusion-Prompts-Deduped-2.008M), which has a chosen and rejected prompt. You can format your data from that however you want. | xzuyn/SD-DPO-Individual-Files | [
"size_categories:n<1K",
"language:en",
"not-for-all-audiences",
"region:us"
] | 2024-01-06T12:02:57+00:00 | {"language": ["en"], "size_categories": ["n<1K"], "tags": ["not-for-all-audiences"]} | 2024-01-06T13:56:39+00:00 | [] | [
"en"
] | TAGS
#size_categories-n<1K #language-English #not-for-all-audiences #region-us
| There is a UUID for each prompt from xzuyn/Stable-Diffusion-Prompts-Deduped-2.008M, which has a chosen and rejected prompt. You can format your data from that however you want. | [] | [
"TAGS\n#size_categories-n<1K #language-English #not-for-all-audiences #region-us \n"
] | [
29
] | [
"passage: TAGS\n#size_categories-n<1K #language-English #not-for-all-audiences #region-us \n"
] |
578680f3b764f8b3244ab70fb5e692be6029d8c8 |
# Dataset of Saya
This is the dataset of Saya, containing 122 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
| Name | Images | Download | Description |
|:----------------|---------:|:----------------------------------------|:-----------------------------------------------------------------------------------------|
| raw | 122 | [Download](dataset-raw.zip) | Raw data with meta information. |
| raw-stage3 | 261 | [Download](dataset-raw-stage3.zip) | 3-stage cropped raw data with meta information. |
| raw-stage3-eyes | 324 | [Download](dataset-raw-stage3-eyes.zip) | 3-stage cropped (with eye-focus) raw data with meta information. |
| 384x512 | 122 | [Download](dataset-384x512.zip) | 384x512 aligned dataset. |
| 512x704 | 122 | [Download](dataset-512x704.zip) | 512x704 aligned dataset. |
| 640x880 | 122 | [Download](dataset-640x880.zip) | 640x880 aligned dataset. |
| stage3-640 | 261 | [Download](dataset-stage3-640.zip) | 3-stage cropped dataset with the shorter side not exceeding 640 pixels. |
| stage3-800 | 261 | [Download](dataset-stage3-800.zip) | 3-stage cropped dataset with the shorter side not exceeding 800 pixels. |
| stage3-p512-640 | 233 | [Download](dataset-stage3-p512-640.zip) | 3-stage cropped dataset with the area not less than 512x512 pixels. |
| stage3-eyes-640 | 324 | [Download](dataset-stage3-eyes-640.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 640 pixels. |
| stage3-eyes-800 | 324 | [Download](dataset-stage3-eyes-800.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 800 pixels. |
| CyberHarem/saya_majonotabitabi | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-06T12:13:46+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-06T12:14:55+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of Saya
===============
This is the dataset of Saya, containing 122 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
| [] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] | [
44
] | [
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] |
5042f8aa83c005767b4889bb8f31a7632e222ab4 |
# Dataset Card for Evaluation run of sethuiyer/Dr_Samantha_7b_mistral
<!-- Provide a quick summary of the dataset. -->
Dataset automatically created during the evaluation run of model [sethuiyer/Dr_Samantha_7b_mistral](https://huggingface.co/sethuiyer/Dr_Samantha_7b_mistral) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset("open-llm-leaderboard/details_sethuiyer__Dr_Samantha_7b_mistral",
"harness_winogrande_5",
split="train")
```
## Latest results
These are the [latest results from run 2024-01-06T12:13:02.119831](https://huggingface.co/datasets/open-llm-leaderboard/details_sethuiyer__Dr_Samantha_7b_mistral/blob/main/results_2024-01-06T12-13-02.119831.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"acc": 0.6273336582492067,
"acc_stderr": 0.03233016460859283,
"acc_norm": 0.6343956198695915,
"acc_norm_stderr": 0.032982632471190154,
"mc1": 0.27539779681762544,
"mc1_stderr": 0.01563813566777552,
"mc2": 0.4137176142549001,
"mc2_stderr": 0.014267838732784543
},
"harness|arc:challenge|25": {
"acc": 0.5691126279863481,
"acc_stderr": 0.014471133392642466,
"acc_norm": 0.6040955631399317,
"acc_norm_stderr": 0.014291228393536592
},
"harness|hellaswag|10": {
"acc": 0.6403106950806612,
"acc_stderr": 0.004789284723955858,
"acc_norm": 0.8364867556263692,
"acc_norm_stderr": 0.003690774563638009
},
"harness|hendrycksTest-abstract_algebra|5": {
"acc": 0.29,
"acc_stderr": 0.045604802157206845,
"acc_norm": 0.29,
"acc_norm_stderr": 0.045604802157206845
},
"harness|hendrycksTest-anatomy|5": {
"acc": 0.5851851851851851,
"acc_stderr": 0.04256193767901408,
"acc_norm": 0.5851851851851851,
"acc_norm_stderr": 0.04256193767901408
},
"harness|hendrycksTest-astronomy|5": {
"acc": 0.6710526315789473,
"acc_stderr": 0.038234289699266046,
"acc_norm": 0.6710526315789473,
"acc_norm_stderr": 0.038234289699266046
},
"harness|hendrycksTest-business_ethics|5": {
"acc": 0.56,
"acc_stderr": 0.04988876515698589,
"acc_norm": 0.56,
"acc_norm_stderr": 0.04988876515698589
},
"harness|hendrycksTest-clinical_knowledge|5": {
"acc": 0.7056603773584905,
"acc_stderr": 0.02804918631569525,
"acc_norm": 0.7056603773584905,
"acc_norm_stderr": 0.02804918631569525
},
"harness|hendrycksTest-college_biology|5": {
"acc": 0.7291666666666666,
"acc_stderr": 0.03716177437566016,
"acc_norm": 0.7291666666666666,
"acc_norm_stderr": 0.03716177437566016
},
"harness|hendrycksTest-college_chemistry|5": {
"acc": 0.42,
"acc_stderr": 0.049604496374885836,
"acc_norm": 0.42,
"acc_norm_stderr": 0.049604496374885836
},
"harness|hendrycksTest-college_computer_science|5": {
"acc": 0.49,
"acc_stderr": 0.05024183937956912,
"acc_norm": 0.49,
"acc_norm_stderr": 0.05024183937956912
},
"harness|hendrycksTest-college_mathematics|5": {
"acc": 0.4,
"acc_stderr": 0.049236596391733084,
"acc_norm": 0.4,
"acc_norm_stderr": 0.049236596391733084
},
"harness|hendrycksTest-college_medicine|5": {
"acc": 0.630057803468208,
"acc_stderr": 0.036812296333943194,
"acc_norm": 0.630057803468208,
"acc_norm_stderr": 0.036812296333943194
},
"harness|hendrycksTest-college_physics|5": {
"acc": 0.4411764705882353,
"acc_stderr": 0.049406356306056595,
"acc_norm": 0.4411764705882353,
"acc_norm_stderr": 0.049406356306056595
},
"harness|hendrycksTest-computer_security|5": {
"acc": 0.78,
"acc_stderr": 0.041633319989322605,
"acc_norm": 0.78,
"acc_norm_stderr": 0.041633319989322605
},
"harness|hendrycksTest-conceptual_physics|5": {
"acc": 0.6,
"acc_stderr": 0.03202563076101737,
"acc_norm": 0.6,
"acc_norm_stderr": 0.03202563076101737
},
"harness|hendrycksTest-econometrics|5": {
"acc": 0.5175438596491229,
"acc_stderr": 0.04700708033551038,
"acc_norm": 0.5175438596491229,
"acc_norm_stderr": 0.04700708033551038
},
"harness|hendrycksTest-electrical_engineering|5": {
"acc": 0.5517241379310345,
"acc_stderr": 0.04144311810878151,
"acc_norm": 0.5517241379310345,
"acc_norm_stderr": 0.04144311810878151
},
"harness|hendrycksTest-elementary_mathematics|5": {
"acc": 0.42328042328042326,
"acc_stderr": 0.025446365634406783,
"acc_norm": 0.42328042328042326,
"acc_norm_stderr": 0.025446365634406783
},
"harness|hendrycksTest-formal_logic|5": {
"acc": 0.3333333333333333,
"acc_stderr": 0.04216370213557835,
"acc_norm": 0.3333333333333333,
"acc_norm_stderr": 0.04216370213557835
},
"harness|hendrycksTest-global_facts|5": {
"acc": 0.35,
"acc_stderr": 0.04793724854411018,
"acc_norm": 0.35,
"acc_norm_stderr": 0.04793724854411018
},
"harness|hendrycksTest-high_school_biology|5": {
"acc": 0.7548387096774194,
"acc_stderr": 0.024472243840895525,
"acc_norm": 0.7548387096774194,
"acc_norm_stderr": 0.024472243840895525
},
"harness|hendrycksTest-high_school_chemistry|5": {
"acc": 0.4827586206896552,
"acc_stderr": 0.035158955511656986,
"acc_norm": 0.4827586206896552,
"acc_norm_stderr": 0.035158955511656986
},
"harness|hendrycksTest-high_school_computer_science|5": {
"acc": 0.65,
"acc_stderr": 0.04793724854411019,
"acc_norm": 0.65,
"acc_norm_stderr": 0.04793724854411019
},
"harness|hendrycksTest-high_school_european_history|5": {
"acc": 0.7272727272727273,
"acc_stderr": 0.03477691162163659,
"acc_norm": 0.7272727272727273,
"acc_norm_stderr": 0.03477691162163659
},
"harness|hendrycksTest-high_school_geography|5": {
"acc": 0.797979797979798,
"acc_stderr": 0.028606204289229872,
"acc_norm": 0.797979797979798,
"acc_norm_stderr": 0.028606204289229872
},
"harness|hendrycksTest-high_school_government_and_politics|5": {
"acc": 0.8704663212435233,
"acc_stderr": 0.024233532297758733,
"acc_norm": 0.8704663212435233,
"acc_norm_stderr": 0.024233532297758733
},
"harness|hendrycksTest-high_school_macroeconomics|5": {
"acc": 0.617948717948718,
"acc_stderr": 0.024635549163908237,
"acc_norm": 0.617948717948718,
"acc_norm_stderr": 0.024635549163908237
},
"harness|hendrycksTest-high_school_mathematics|5": {
"acc": 0.3148148148148148,
"acc_stderr": 0.02831753349606648,
"acc_norm": 0.3148148148148148,
"acc_norm_stderr": 0.02831753349606648
},
"harness|hendrycksTest-high_school_microeconomics|5": {
"acc": 0.6848739495798319,
"acc_stderr": 0.03017680828897434,
"acc_norm": 0.6848739495798319,
"acc_norm_stderr": 0.03017680828897434
},
"harness|hendrycksTest-high_school_physics|5": {
"acc": 0.3576158940397351,
"acc_stderr": 0.03913453431177258,
"acc_norm": 0.3576158940397351,
"acc_norm_stderr": 0.03913453431177258
},
"harness|hendrycksTest-high_school_psychology|5": {
"acc": 0.8311926605504587,
"acc_stderr": 0.016060056268530343,
"acc_norm": 0.8311926605504587,
"acc_norm_stderr": 0.016060056268530343
},
"harness|hendrycksTest-high_school_statistics|5": {
"acc": 0.4675925925925926,
"acc_stderr": 0.034028015813589656,
"acc_norm": 0.4675925925925926,
"acc_norm_stderr": 0.034028015813589656
},
"harness|hendrycksTest-high_school_us_history|5": {
"acc": 0.7647058823529411,
"acc_stderr": 0.029771775228145628,
"acc_norm": 0.7647058823529411,
"acc_norm_stderr": 0.029771775228145628
},
"harness|hendrycksTest-high_school_world_history|5": {
"acc": 0.7637130801687764,
"acc_stderr": 0.027652153144159263,
"acc_norm": 0.7637130801687764,
"acc_norm_stderr": 0.027652153144159263
},
"harness|hendrycksTest-human_aging|5": {
"acc": 0.6905829596412556,
"acc_stderr": 0.03102441174057221,
"acc_norm": 0.6905829596412556,
"acc_norm_stderr": 0.03102441174057221
},
"harness|hendrycksTest-human_sexuality|5": {
"acc": 0.7557251908396947,
"acc_stderr": 0.037683359597287434,
"acc_norm": 0.7557251908396947,
"acc_norm_stderr": 0.037683359597287434
},
"harness|hendrycksTest-international_law|5": {
"acc": 0.8347107438016529,
"acc_stderr": 0.03390780612972776,
"acc_norm": 0.8347107438016529,
"acc_norm_stderr": 0.03390780612972776
},
"harness|hendrycksTest-jurisprudence|5": {
"acc": 0.7777777777777778,
"acc_stderr": 0.040191074725573483,
"acc_norm": 0.7777777777777778,
"acc_norm_stderr": 0.040191074725573483
},
"harness|hendrycksTest-logical_fallacies|5": {
"acc": 0.7730061349693251,
"acc_stderr": 0.032910995786157686,
"acc_norm": 0.7730061349693251,
"acc_norm_stderr": 0.032910995786157686
},
"harness|hendrycksTest-machine_learning|5": {
"acc": 0.4642857142857143,
"acc_stderr": 0.04733667890053756,
"acc_norm": 0.4642857142857143,
"acc_norm_stderr": 0.04733667890053756
},
"harness|hendrycksTest-management|5": {
"acc": 0.7961165048543689,
"acc_stderr": 0.039891398595317706,
"acc_norm": 0.7961165048543689,
"acc_norm_stderr": 0.039891398595317706
},
"harness|hendrycksTest-marketing|5": {
"acc": 0.8888888888888888,
"acc_stderr": 0.020588491316092368,
"acc_norm": 0.8888888888888888,
"acc_norm_stderr": 0.020588491316092368
},
"harness|hendrycksTest-medical_genetics|5": {
"acc": 0.71,
"acc_stderr": 0.045604802157206845,
"acc_norm": 0.71,
"acc_norm_stderr": 0.045604802157206845
},
"harness|hendrycksTest-miscellaneous|5": {
"acc": 0.8109833971902938,
"acc_stderr": 0.014000791294406999,
"acc_norm": 0.8109833971902938,
"acc_norm_stderr": 0.014000791294406999
},
"harness|hendrycksTest-moral_disputes|5": {
"acc": 0.7138728323699421,
"acc_stderr": 0.02433214677913413,
"acc_norm": 0.7138728323699421,
"acc_norm_stderr": 0.02433214677913413
},
"harness|hendrycksTest-moral_scenarios|5": {
"acc": 0.2681564245810056,
"acc_stderr": 0.014816119635317012,
"acc_norm": 0.2681564245810056,
"acc_norm_stderr": 0.014816119635317012
},
"harness|hendrycksTest-nutrition|5": {
"acc": 0.7679738562091504,
"acc_stderr": 0.02417084087934086,
"acc_norm": 0.7679738562091504,
"acc_norm_stderr": 0.02417084087934086
},
"harness|hendrycksTest-philosophy|5": {
"acc": 0.7138263665594855,
"acc_stderr": 0.025670259242188933,
"acc_norm": 0.7138263665594855,
"acc_norm_stderr": 0.025670259242188933
},
"harness|hendrycksTest-prehistory|5": {
"acc": 0.7469135802469136,
"acc_stderr": 0.024191808600713002,
"acc_norm": 0.7469135802469136,
"acc_norm_stderr": 0.024191808600713002
},
"harness|hendrycksTest-professional_accounting|5": {
"acc": 0.4716312056737589,
"acc_stderr": 0.029779450957303055,
"acc_norm": 0.4716312056737589,
"acc_norm_stderr": 0.029779450957303055
},
"harness|hendrycksTest-professional_law|5": {
"acc": 0.4661016949152542,
"acc_stderr": 0.012740853872949829,
"acc_norm": 0.4661016949152542,
"acc_norm_stderr": 0.012740853872949829
},
"harness|hendrycksTest-professional_medicine|5": {
"acc": 0.6544117647058824,
"acc_stderr": 0.028888193103988626,
"acc_norm": 0.6544117647058824,
"acc_norm_stderr": 0.028888193103988626
},
"harness|hendrycksTest-professional_psychology|5": {
"acc": 0.6535947712418301,
"acc_stderr": 0.01924978569171721,
"acc_norm": 0.6535947712418301,
"acc_norm_stderr": 0.01924978569171721
},
"harness|hendrycksTest-public_relations|5": {
"acc": 0.6545454545454545,
"acc_stderr": 0.04554619617541054,
"acc_norm": 0.6545454545454545,
"acc_norm_stderr": 0.04554619617541054
},
"harness|hendrycksTest-security_studies|5": {
"acc": 0.7510204081632653,
"acc_stderr": 0.027682979522960234,
"acc_norm": 0.7510204081632653,
"acc_norm_stderr": 0.027682979522960234
},
"harness|hendrycksTest-sociology|5": {
"acc": 0.835820895522388,
"acc_stderr": 0.026193923544454125,
"acc_norm": 0.835820895522388,
"acc_norm_stderr": 0.026193923544454125
},
"harness|hendrycksTest-us_foreign_policy|5": {
"acc": 0.87,
"acc_stderr": 0.033799766898963086,
"acc_norm": 0.87,
"acc_norm_stderr": 0.033799766898963086
},
"harness|hendrycksTest-virology|5": {
"acc": 0.536144578313253,
"acc_stderr": 0.038823108508905954,
"acc_norm": 0.536144578313253,
"acc_norm_stderr": 0.038823108508905954
},
"harness|hendrycksTest-world_religions|5": {
"acc": 0.8187134502923976,
"acc_stderr": 0.029547741687640044,
"acc_norm": 0.8187134502923976,
"acc_norm_stderr": 0.029547741687640044
},
"harness|truthfulqa:mc|0": {
"mc1": 0.27539779681762544,
"mc1_stderr": 0.01563813566777552,
"mc2": 0.4137176142549001,
"mc2_stderr": 0.014267838732784543
},
"harness|winogrande|5": {
"acc": 0.7545382794001578,
"acc_stderr": 0.012095272937183649
},
"harness|gsm8k|5": {
"acc": 0.3146322971948446,
"acc_stderr": 0.012791037227336035
}
}
```
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
[More Information Needed] | open-llm-leaderboard/details_sethuiyer__Dr_Samantha_7b_mistral | [
"region:us"
] | 2024-01-06T12:15:21+00:00 | {"pretty_name": "Evaluation run of sethuiyer/Dr_Samantha_7b_mistral", "dataset_summary": "Dataset automatically created during the evaluation run of model [sethuiyer/Dr_Samantha_7b_mistral](https://huggingface.co/sethuiyer/Dr_Samantha_7b_mistral) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_sethuiyer__Dr_Samantha_7b_mistral\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-06T12:13:02.119831](https://huggingface.co/datasets/open-llm-leaderboard/details_sethuiyer__Dr_Samantha_7b_mistral/blob/main/results_2024-01-06T12-13-02.119831.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6273336582492067,\n \"acc_stderr\": 0.03233016460859283,\n \"acc_norm\": 0.6343956198695915,\n \"acc_norm_stderr\": 0.032982632471190154,\n \"mc1\": 0.27539779681762544,\n \"mc1_stderr\": 0.01563813566777552,\n \"mc2\": 0.4137176142549001,\n \"mc2_stderr\": 0.014267838732784543\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.5691126279863481,\n \"acc_stderr\": 0.014471133392642466,\n \"acc_norm\": 0.6040955631399317,\n \"acc_norm_stderr\": 0.014291228393536592\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6403106950806612,\n \"acc_stderr\": 0.004789284723955858,\n \"acc_norm\": 0.8364867556263692,\n \"acc_norm_stderr\": 0.003690774563638009\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.29,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\": 0.29,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.5851851851851851,\n \"acc_stderr\": 0.04256193767901408,\n \"acc_norm\": 0.5851851851851851,\n \"acc_norm_stderr\": 0.04256193767901408\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.6710526315789473,\n \"acc_stderr\": 0.038234289699266046,\n \"acc_norm\": 0.6710526315789473,\n \"acc_norm_stderr\": 0.038234289699266046\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.56,\n \"acc_stderr\": 0.04988876515698589,\n \"acc_norm\": 0.56,\n \"acc_norm_stderr\": 0.04988876515698589\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.7056603773584905,\n \"acc_stderr\": 0.02804918631569525,\n \"acc_norm\": 0.7056603773584905,\n \"acc_norm_stderr\": 0.02804918631569525\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7291666666666666,\n \"acc_stderr\": 0.03716177437566016,\n \"acc_norm\": 0.7291666666666666,\n \"acc_norm_stderr\": 0.03716177437566016\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.42,\n \"acc_stderr\": 0.049604496374885836,\n \"acc_norm\": 0.42,\n \"acc_norm_stderr\": 0.049604496374885836\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.49,\n \"acc_stderr\": 0.05024183937956912,\n \"acc_norm\": 0.49,\n \"acc_norm_stderr\": 0.05024183937956912\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.4,\n \"acc_stderr\": 0.049236596391733084,\n \"acc_norm\": 0.4,\n \"acc_norm_stderr\": 0.049236596391733084\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.630057803468208,\n \"acc_stderr\": 0.036812296333943194,\n \"acc_norm\": 0.630057803468208,\n \"acc_norm_stderr\": 0.036812296333943194\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.4411764705882353,\n \"acc_stderr\": 0.049406356306056595,\n \"acc_norm\": 0.4411764705882353,\n \"acc_norm_stderr\": 0.049406356306056595\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.78,\n \"acc_stderr\": 0.041633319989322605,\n \"acc_norm\": 0.78,\n \"acc_norm_stderr\": 0.041633319989322605\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.6,\n \"acc_stderr\": 0.03202563076101737,\n \"acc_norm\": 0.6,\n \"acc_norm_stderr\": 0.03202563076101737\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.5175438596491229,\n \"acc_stderr\": 0.04700708033551038,\n \"acc_norm\": 0.5175438596491229,\n \"acc_norm_stderr\": 0.04700708033551038\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5517241379310345,\n \"acc_stderr\": 0.04144311810878151,\n \"acc_norm\": 0.5517241379310345,\n \"acc_norm_stderr\": 0.04144311810878151\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.42328042328042326,\n \"acc_stderr\": 0.025446365634406783,\n \"acc_norm\": 0.42328042328042326,\n \"acc_norm_stderr\": 0.025446365634406783\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.3333333333333333,\n \"acc_stderr\": 0.04216370213557835,\n \"acc_norm\": 0.3333333333333333,\n \"acc_norm_stderr\": 0.04216370213557835\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.35,\n \"acc_stderr\": 0.04793724854411018,\n \"acc_norm\": 0.35,\n \"acc_norm_stderr\": 0.04793724854411018\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7548387096774194,\n \"acc_stderr\": 0.024472243840895525,\n \"acc_norm\": 0.7548387096774194,\n \"acc_norm_stderr\": 0.024472243840895525\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.4827586206896552,\n \"acc_stderr\": 0.035158955511656986,\n \"acc_norm\": 0.4827586206896552,\n \"acc_norm_stderr\": 0.035158955511656986\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.65,\n \"acc_stderr\": 0.04793724854411019,\n \"acc_norm\": 0.65,\n \"acc_norm_stderr\": 0.04793724854411019\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7272727272727273,\n \"acc_stderr\": 0.03477691162163659,\n \"acc_norm\": 0.7272727272727273,\n \"acc_norm_stderr\": 0.03477691162163659\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.797979797979798,\n \"acc_stderr\": 0.028606204289229872,\n \"acc_norm\": 0.797979797979798,\n \"acc_norm_stderr\": 0.028606204289229872\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8704663212435233,\n \"acc_stderr\": 0.024233532297758733,\n \"acc_norm\": 0.8704663212435233,\n \"acc_norm_stderr\": 0.024233532297758733\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.617948717948718,\n \"acc_stderr\": 0.024635549163908237,\n \"acc_norm\": 0.617948717948718,\n \"acc_norm_stderr\": 0.024635549163908237\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.3148148148148148,\n \"acc_stderr\": 0.02831753349606648,\n \"acc_norm\": 0.3148148148148148,\n \"acc_norm_stderr\": 0.02831753349606648\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6848739495798319,\n \"acc_stderr\": 0.03017680828897434,\n \"acc_norm\": 0.6848739495798319,\n \"acc_norm_stderr\": 0.03017680828897434\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.3576158940397351,\n \"acc_stderr\": 0.03913453431177258,\n \"acc_norm\": 0.3576158940397351,\n \"acc_norm_stderr\": 0.03913453431177258\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8311926605504587,\n \"acc_stderr\": 0.016060056268530343,\n \"acc_norm\": 0.8311926605504587,\n \"acc_norm_stderr\": 0.016060056268530343\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.4675925925925926,\n \"acc_stderr\": 0.034028015813589656,\n \"acc_norm\": 0.4675925925925926,\n \"acc_norm_stderr\": 0.034028015813589656\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.7647058823529411,\n \"acc_stderr\": 0.029771775228145628,\n \"acc_norm\": 0.7647058823529411,\n \"acc_norm_stderr\": 0.029771775228145628\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7637130801687764,\n \"acc_stderr\": 0.027652153144159263,\n \"acc_norm\": 0.7637130801687764,\n \"acc_norm_stderr\": 0.027652153144159263\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6905829596412556,\n \"acc_stderr\": 0.03102441174057221,\n \"acc_norm\": 0.6905829596412556,\n \"acc_norm_stderr\": 0.03102441174057221\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7557251908396947,\n \"acc_stderr\": 0.037683359597287434,\n \"acc_norm\": 0.7557251908396947,\n \"acc_norm_stderr\": 0.037683359597287434\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8347107438016529,\n \"acc_stderr\": 0.03390780612972776,\n \"acc_norm\": 0.8347107438016529,\n \"acc_norm_stderr\": 0.03390780612972776\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7777777777777778,\n \"acc_stderr\": 0.040191074725573483,\n \"acc_norm\": 0.7777777777777778,\n \"acc_norm_stderr\": 0.040191074725573483\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7730061349693251,\n \"acc_stderr\": 0.032910995786157686,\n \"acc_norm\": 0.7730061349693251,\n \"acc_norm_stderr\": 0.032910995786157686\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.4642857142857143,\n \"acc_stderr\": 0.04733667890053756,\n \"acc_norm\": 0.4642857142857143,\n \"acc_norm_stderr\": 0.04733667890053756\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7961165048543689,\n \"acc_stderr\": 0.039891398595317706,\n \"acc_norm\": 0.7961165048543689,\n \"acc_norm_stderr\": 0.039891398595317706\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8888888888888888,\n \"acc_stderr\": 0.020588491316092368,\n \"acc_norm\": 0.8888888888888888,\n \"acc_norm_stderr\": 0.020588491316092368\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.71,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\": 0.71,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8109833971902938,\n \"acc_stderr\": 0.014000791294406999,\n \"acc_norm\": 0.8109833971902938,\n \"acc_norm_stderr\": 0.014000791294406999\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7138728323699421,\n \"acc_stderr\": 0.02433214677913413,\n \"acc_norm\": 0.7138728323699421,\n \"acc_norm_stderr\": 0.02433214677913413\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.2681564245810056,\n \"acc_stderr\": 0.014816119635317012,\n \"acc_norm\": 0.2681564245810056,\n \"acc_norm_stderr\": 0.014816119635317012\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7679738562091504,\n \"acc_stderr\": 0.02417084087934086,\n \"acc_norm\": 0.7679738562091504,\n \"acc_norm_stderr\": 0.02417084087934086\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.7138263665594855,\n \"acc_stderr\": 0.025670259242188933,\n \"acc_norm\": 0.7138263665594855,\n \"acc_norm_stderr\": 0.025670259242188933\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.7469135802469136,\n \"acc_stderr\": 0.024191808600713002,\n \"acc_norm\": 0.7469135802469136,\n \"acc_norm_stderr\": 0.024191808600713002\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.4716312056737589,\n \"acc_stderr\": 0.029779450957303055,\n \"acc_norm\": 0.4716312056737589,\n \"acc_norm_stderr\": 0.029779450957303055\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.4661016949152542,\n \"acc_stderr\": 0.012740853872949829,\n \"acc_norm\": 0.4661016949152542,\n \"acc_norm_stderr\": 0.012740853872949829\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6544117647058824,\n \"acc_stderr\": 0.028888193103988626,\n \"acc_norm\": 0.6544117647058824,\n \"acc_norm_stderr\": 0.028888193103988626\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6535947712418301,\n \"acc_stderr\": 0.01924978569171721,\n \"acc_norm\": 0.6535947712418301,\n \"acc_norm_stderr\": 0.01924978569171721\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6545454545454545,\n \"acc_stderr\": 0.04554619617541054,\n \"acc_norm\": 0.6545454545454545,\n \"acc_norm_stderr\": 0.04554619617541054\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7510204081632653,\n \"acc_stderr\": 0.027682979522960234,\n \"acc_norm\": 0.7510204081632653,\n \"acc_norm_stderr\": 0.027682979522960234\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.835820895522388,\n \"acc_stderr\": 0.026193923544454125,\n \"acc_norm\": 0.835820895522388,\n \"acc_norm_stderr\": 0.026193923544454125\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.87,\n \"acc_stderr\": 0.033799766898963086,\n \"acc_norm\": 0.87,\n \"acc_norm_stderr\": 0.033799766898963086\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.536144578313253,\n \"acc_stderr\": 0.038823108508905954,\n \"acc_norm\": 0.536144578313253,\n \"acc_norm_stderr\": 0.038823108508905954\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8187134502923976,\n \"acc_stderr\": 0.029547741687640044,\n \"acc_norm\": 0.8187134502923976,\n \"acc_norm_stderr\": 0.029547741687640044\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.27539779681762544,\n \"mc1_stderr\": 0.01563813566777552,\n \"mc2\": 0.4137176142549001,\n \"mc2_stderr\": 0.014267838732784543\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.7545382794001578,\n \"acc_stderr\": 0.012095272937183649\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.3146322971948446,\n \"acc_stderr\": 0.012791037227336035\n }\n}\n```", "repo_url": "https://huggingface.co/sethuiyer/Dr_Samantha_7b_mistral", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|arc:challenge|25_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|gsm8k|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hellaswag|10_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-06T12-13-02.119831.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["**/details_harness|winogrande|5_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-06T12-13-02.119831.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_06T12_13_02.119831", "path": ["results_2024-01-06T12-13-02.119831.parquet"]}, {"split": "latest", "path": ["results_2024-01-06T12-13-02.119831.parquet"]}]}]} | 2024-01-06T12:15:43+00:00 | [] | [] | TAGS
#region-us
|
# Dataset Card for Evaluation run of sethuiyer/Dr_Samantha_7b_mistral
Dataset automatically created during the evaluation run of model sethuiyer/Dr_Samantha_7b_mistral on the Open LLM Leaderboard.
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).
To load the details from a run, you can for instance do the following:
## Latest results
These are the latest results from run 2024-01-06T12:13:02.119831(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
## Dataset Details
### Dataset Description
- Curated by:
- Funded by [optional]:
- Shared by [optional]:
- Language(s) (NLP):
- License:
### Dataset Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Out-of-Scope Use
## Dataset Structure
## Dataset Creation
### Curation Rationale
### Source Data
#### Data Collection and Processing
#### Who are the source data producers?
### Annotations [optional]
#### Annotation process
#### Who are the annotators?
#### Personal and Sensitive Information
## Bias, Risks, and Limitations
### Recommendations
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Dataset Card Authors [optional]
## Dataset Card Contact
| [
"# Dataset Card for Evaluation run of sethuiyer/Dr_Samantha_7b_mistral\n\n\n\nDataset automatically created during the evaluation run of model sethuiyer/Dr_Samantha_7b_mistral on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-06T12:13:02.119831(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for Evaluation run of sethuiyer/Dr_Samantha_7b_mistral\n\n\n\nDataset automatically created during the evaluation run of model sethuiyer/Dr_Samantha_7b_mistral on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-06T12:13:02.119831(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
6,
189,
68,
4,
40,
29,
3,
4,
9,
6,
5,
7,
4,
7,
10,
9,
5,
9,
8,
10,
46,
8,
7,
10,
5
] | [
"passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of sethuiyer/Dr_Samantha_7b_mistral\n\n\n\nDataset automatically created during the evaluation run of model sethuiyer/Dr_Samantha_7b_mistral on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2024-01-06T12:13:02.119831(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):## Dataset Details### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Out-of-Scope Use## Dataset Structure## Dataset Creation### Curation Rationale### Source Data#### Data Collection and Processing#### Who are the source data producers?### Annotations [optional]#### Annotation process#### Who are the annotators?#### Personal and Sensitive Information## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Dataset Card Authors [optional]"
] |
ba7a56fb7fdaaee4427e832d4575d1b59c49c50f |
# Dataset of Flan
This is the dataset of Flan, containing 112 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
| Name | Images | Download | Description |
|:----------------|---------:|:----------------------------------------|:-----------------------------------------------------------------------------------------|
| raw | 112 | [Download](dataset-raw.zip) | Raw data with meta information. |
| raw-stage3 | 246 | [Download](dataset-raw-stage3.zip) | 3-stage cropped raw data with meta information. |
| raw-stage3-eyes | 276 | [Download](dataset-raw-stage3-eyes.zip) | 3-stage cropped (with eye-focus) raw data with meta information. |
| 384x512 | 112 | [Download](dataset-384x512.zip) | 384x512 aligned dataset. |
| 512x704 | 112 | [Download](dataset-512x704.zip) | 512x704 aligned dataset. |
| 640x880 | 112 | [Download](dataset-640x880.zip) | 640x880 aligned dataset. |
| stage3-640 | 246 | [Download](dataset-stage3-640.zip) | 3-stage cropped dataset with the shorter side not exceeding 640 pixels. |
| stage3-800 | 246 | [Download](dataset-stage3-800.zip) | 3-stage cropped dataset with the shorter side not exceeding 800 pixels. |
| stage3-p512-640 | 218 | [Download](dataset-stage3-p512-640.zip) | 3-stage cropped dataset with the area not less than 512x512 pixels. |
| stage3-eyes-640 | 276 | [Download](dataset-stage3-eyes-640.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 640 pixels. |
| stage3-eyes-800 | 276 | [Download](dataset-stage3-eyes-800.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 800 pixels. |
| CyberHarem/flan_majonotabitabi | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-06T12:28:40+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-06T12:29:33+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of Flan
===============
This is the dataset of Flan, containing 112 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
| [] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] | [
44
] | [
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] |
8943f5a06520ee2760d43534833fa1d83819584e |
# Dataset Card for Dataset Name
<!-- Provide a quick summary of the dataset. -->
This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1).
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
[More Information Needed] | MAsad789565/codingdata | [
"region:us"
] | 2024-01-06T12:29:11+00:00 | {} | 2024-01-06T12:31:07+00:00 | [] | [] | TAGS
#region-us
|
# Dataset Card for Dataset Name
This dataset card aims to be a base template for new datasets. It has been generated using this raw template.
## Dataset Details
### Dataset Description
- Curated by:
- Funded by [optional]:
- Shared by [optional]:
- Language(s) (NLP):
- License:
### Dataset Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Out-of-Scope Use
## Dataset Structure
## Dataset Creation
### Curation Rationale
### Source Data
#### Data Collection and Processing
#### Who are the source data producers?
### Annotations [optional]
#### Annotation process
#### Who are the annotators?
#### Personal and Sensitive Information
## Bias, Risks, and Limitations
### Recommendations
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Dataset Card Authors [optional]
## Dataset Card Contact
| [
"# Dataset Card for Dataset Name\n\n\n\nThis dataset card aims to be a base template for new datasets. It has been generated using this raw template.",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for Dataset Name\n\n\n\nThis dataset card aims to be a base template for new datasets. It has been generated using this raw template.",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
6,
34,
4,
40,
29,
3,
4,
9,
6,
5,
7,
4,
7,
10,
9,
5,
9,
8,
10,
46,
8,
7,
10,
5
] | [
"passage: TAGS\n#region-us \n# Dataset Card for Dataset Name\n\n\n\nThis dataset card aims to be a base template for new datasets. It has been generated using this raw template.## Dataset Details### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Out-of-Scope Use## Dataset Structure## Dataset Creation### Curation Rationale### Source Data#### Data Collection and Processing#### Who are the source data producers?### Annotations [optional]#### Annotation process#### Who are the annotators?#### Personal and Sensitive Information## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Dataset Card Authors [optional]## Dataset Card Contact"
] |
bae270798e1a8a4405dc59d8fc5fda3e22ebf210 |
# Danbooru2023_metadata
Size: 6,391,111 (6.39M)
Metadata of posts from [Danbooru](https://danbooru.donmai.us), up to post `#7042183`.
Contains only active posts (see below). Also, child posts which have 'pixel-perfect_duplicate' were removed.
## Columns
`id, md5, created_at, updated_at, score, up_score, down_score, rating, image_width, image_height, file_ext, parent_id, duration, pixel_hash, tag_string_general, tag_string_character, tag_string_copyright, tag_string_artist, tag_string_meta`
### Rating
- `g` (general): Completely safe for work.
- `s` (sensitive): Probably not safe for work.
- `q` (questionable): Softcore erotica.
- `e` (explicit): Hardcore erotica. Definitely not safe for work.
For more information, [see link](https://danbooru.donmai.us/wiki_pages/howto:rate)
## Specifics of Danbooru
### Status
Every danbooru posts could be categorized to four types of status.
1. Active: Posts that are approved by a moderator.
2. Pending: Posts that are waiting to be approved. If a post is pending for more than 3 days without a moderator's approval, the post is deleted.
3. Deleted: Posts that do not meet danbooru's standards. (Non-anime, low quality, etc)
4. Banned: Posts that are copyright-claimed or contain off-limit content.
Therefore, we should only use images from active posts. (Banned posts cannot be downloaded by normal users.)
Sadly, the [Danbooru2021 dataset](https://gwern.net/danbooru2021) did not filter any deleted posts, and a lot of text-to-image models were trained with deleted posts.
From a total of 7,042,183 posts, there are 224,522 banned posts and 370,595 deleted posts. Deleted posts take 5.26% of the total posts, which is not trivial. Therefore, this dataset have not included them.
## Misc
- If you aim to create your own anime-based image dataset from danbooru posts, you should definitely exclude posts with the following tags: `cosplay_photo third-party_edit text-only_page`
- Also consider excluding posts with the following tags, if you are aiming for high quality: `photo_(medium) 3d no_humans comic`
## Other Links
[Looking for parquet files?](https://huggingface.co/datasets/Jakaline/Danbooru2023_metadata/tree/refs%2Fconvert%2Fparquet/default/train)
Looking for images? [nyanko7/danbooru2023](https://huggingface.co/datasets/nyanko7/danbooru2023) | Jakaline/Danbooru2023_metadata | [
"size_categories:1M<n<10M",
"not-for-all-audiences",
"region:us"
] | 2024-01-06T12:32:46+00:00 | {"size_categories": ["1M<n<10M"], "tags": ["not-for-all-audiences"]} | 2024-01-13T03:51:34+00:00 | [] | [] | TAGS
#size_categories-1M<n<10M #not-for-all-audiences #region-us
|
# Danbooru2023_metadata
Size: 6,391,111 (6.39M)
Metadata of posts from Danbooru, up to post '#7042183'.
Contains only active posts (see below). Also, child posts which have 'pixel-perfect_duplicate' were removed.
## Columns
'id, md5, created_at, updated_at, score, up_score, down_score, rating, image_width, image_height, file_ext, parent_id, duration, pixel_hash, tag_string_general, tag_string_character, tag_string_copyright, tag_string_artist, tag_string_meta'
### Rating
- 'g' (general): Completely safe for work.
- 's' (sensitive): Probably not safe for work.
- 'q' (questionable): Softcore erotica.
- 'e' (explicit): Hardcore erotica. Definitely not safe for work.
For more information, see link
## Specifics of Danbooru
### Status
Every danbooru posts could be categorized to four types of status.
1. Active: Posts that are approved by a moderator.
2. Pending: Posts that are waiting to be approved. If a post is pending for more than 3 days without a moderator's approval, the post is deleted.
3. Deleted: Posts that do not meet danbooru's standards. (Non-anime, low quality, etc)
4. Banned: Posts that are copyright-claimed or contain off-limit content.
Therefore, we should only use images from active posts. (Banned posts cannot be downloaded by normal users.)
Sadly, the Danbooru2021 dataset did not filter any deleted posts, and a lot of text-to-image models were trained with deleted posts.
From a total of 7,042,183 posts, there are 224,522 banned posts and 370,595 deleted posts. Deleted posts take 5.26% of the total posts, which is not trivial. Therefore, this dataset have not included them.
## Misc
- If you aim to create your own anime-based image dataset from danbooru posts, you should definitely exclude posts with the following tags: 'cosplay_photo third-party_edit text-only_page'
- Also consider excluding posts with the following tags, if you are aiming for high quality: 'photo_(medium) 3d no_humans comic'
## Other Links
Looking for parquet files?
Looking for images? nyanko7/danbooru2023 | [
"# Danbooru2023_metadata\n\nSize: 6,391,111 (6.39M)\n\nMetadata of posts from Danbooru, up to post '#7042183'.\n\nContains only active posts (see below). Also, child posts which have 'pixel-perfect_duplicate' were removed.",
"## Columns\n\n'id, md5, created_at, updated_at, score, up_score, down_score, rating, image_width, image_height, file_ext, parent_id, duration, pixel_hash, tag_string_general, tag_string_character, tag_string_copyright, tag_string_artist, tag_string_meta'",
"### Rating\n\n- 'g' (general): Completely safe for work.\n- 's' (sensitive): Probably not safe for work.\n- 'q' (questionable): Softcore erotica.\n- 'e' (explicit): Hardcore erotica. Definitely not safe for work.\n\nFor more information, see link",
"## Specifics of Danbooru",
"### Status\n\nEvery danbooru posts could be categorized to four types of status.\n\n1. Active: Posts that are approved by a moderator.\n2. Pending: Posts that are waiting to be approved. If a post is pending for more than 3 days without a moderator's approval, the post is deleted. \n3. Deleted: Posts that do not meet danbooru's standards. (Non-anime, low quality, etc)\n4. Banned: Posts that are copyright-claimed or contain off-limit content.\n\nTherefore, we should only use images from active posts. (Banned posts cannot be downloaded by normal users.)\n\nSadly, the Danbooru2021 dataset did not filter any deleted posts, and a lot of text-to-image models were trained with deleted posts.\n\nFrom a total of 7,042,183 posts, there are 224,522 banned posts and 370,595 deleted posts. Deleted posts take 5.26% of the total posts, which is not trivial. Therefore, this dataset have not included them.",
"## Misc\n\n- If you aim to create your own anime-based image dataset from danbooru posts, you should definitely exclude posts with the following tags: 'cosplay_photo third-party_edit text-only_page'\n- Also consider excluding posts with the following tags, if you are aiming for high quality: 'photo_(medium) 3d no_humans comic'",
"## Other Links\n\nLooking for parquet files?\n\nLooking for images? nyanko7/danbooru2023"
] | [
"TAGS\n#size_categories-1M<n<10M #not-for-all-audiences #region-us \n",
"# Danbooru2023_metadata\n\nSize: 6,391,111 (6.39M)\n\nMetadata of posts from Danbooru, up to post '#7042183'.\n\nContains only active posts (see below). Also, child posts which have 'pixel-perfect_duplicate' were removed.",
"## Columns\n\n'id, md5, created_at, updated_at, score, up_score, down_score, rating, image_width, image_height, file_ext, parent_id, duration, pixel_hash, tag_string_general, tag_string_character, tag_string_copyright, tag_string_artist, tag_string_meta'",
"### Rating\n\n- 'g' (general): Completely safe for work.\n- 's' (sensitive): Probably not safe for work.\n- 'q' (questionable): Softcore erotica.\n- 'e' (explicit): Hardcore erotica. Definitely not safe for work.\n\nFor more information, see link",
"## Specifics of Danbooru",
"### Status\n\nEvery danbooru posts could be categorized to four types of status.\n\n1. Active: Posts that are approved by a moderator.\n2. Pending: Posts that are waiting to be approved. If a post is pending for more than 3 days without a moderator's approval, the post is deleted. \n3. Deleted: Posts that do not meet danbooru's standards. (Non-anime, low quality, etc)\n4. Banned: Posts that are copyright-claimed or contain off-limit content.\n\nTherefore, we should only use images from active posts. (Banned posts cannot be downloaded by normal users.)\n\nSadly, the Danbooru2021 dataset did not filter any deleted posts, and a lot of text-to-image models were trained with deleted posts.\n\nFrom a total of 7,042,183 posts, there are 224,522 banned posts and 370,595 deleted posts. Deleted posts take 5.26% of the total posts, which is not trivial. Therefore, this dataset have not included them.",
"## Misc\n\n- If you aim to create your own anime-based image dataset from danbooru posts, you should definitely exclude posts with the following tags: 'cosplay_photo third-party_edit text-only_page'\n- Also consider excluding posts with the following tags, if you are aiming for high quality: 'photo_(medium) 3d no_humans comic'",
"## Other Links\n\nLooking for parquet files?\n\nLooking for images? nyanko7/danbooru2023"
] | [
27,
69,
91,
71,
7,
235,
87,
22
] | [
"passage: TAGS\n#size_categories-1M<n<10M #not-for-all-audiences #region-us \n# Danbooru2023_metadata\n\nSize: 6,391,111 (6.39M)\n\nMetadata of posts from Danbooru, up to post '#7042183'.\n\nContains only active posts (see below). Also, child posts which have 'pixel-perfect_duplicate' were removed.## Columns\n\n'id, md5, created_at, updated_at, score, up_score, down_score, rating, image_width, image_height, file_ext, parent_id, duration, pixel_hash, tag_string_general, tag_string_character, tag_string_copyright, tag_string_artist, tag_string_meta'### Rating\n\n- 'g' (general): Completely safe for work.\n- 's' (sensitive): Probably not safe for work.\n- 'q' (questionable): Softcore erotica.\n- 'e' (explicit): Hardcore erotica. Definitely not safe for work.\n\nFor more information, see link## Specifics of Danbooru### Status\n\nEvery danbooru posts could be categorized to four types of status.\n\n1. Active: Posts that are approved by a moderator.\n2. Pending: Posts that are waiting to be approved. If a post is pending for more than 3 days without a moderator's approval, the post is deleted. \n3. Deleted: Posts that do not meet danbooru's standards. (Non-anime, low quality, etc)\n4. Banned: Posts that are copyright-claimed or contain off-limit content.\n\nTherefore, we should only use images from active posts. (Banned posts cannot be downloaded by normal users.)\n\nSadly, the Danbooru2021 dataset did not filter any deleted posts, and a lot of text-to-image models were trained with deleted posts.\n\nFrom a total of 7,042,183 posts, there are 224,522 banned posts and 370,595 deleted posts. Deleted posts take 5.26% of the total posts, which is not trivial. Therefore, this dataset have not included them."
] |
a9eb2c581e9da264e5a59cef21d1aa2ef69851a6 |
This dataset is comprised of the output from kerchunk's scan_grib across the entire AWS-hosted HRRR forecast files, including pressure levels, surface, and sub-hourly, but not native levels.
Each grib message is its own json file, and each init time is its own zip containing the whole extracted json files for all the forecast times for that init time. Once the kerchunk extraction is
complete, the plan is to combine them so that they can be opened in a single call to Xarray as one very large dataset. Alternatively, they might be split into different ones, or versions of HRRR, but
we'll see. Additionally, the plan is to also add versions that can pull from the (I think), identitcal HRRR archives on Azure, and GCP, and so can be used more easily by users on those platforms. | jacobbieker/hrrr-kerchunk | [
"size_categories:10K<n<100K",
"license:mit",
"climate",
"region:us"
] | 2024-01-06T12:34:47+00:00 | {"license": "mit", "size_categories": ["10K<n<100K"], "pretty_name": "HRRR Kerchunk", "tags": ["climate"]} | 2024-02-17T17:42:19+00:00 | [] | [] | TAGS
#size_categories-10K<n<100K #license-mit #climate #region-us
|
This dataset is comprised of the output from kerchunk's scan_grib across the entire AWS-hosted HRRR forecast files, including pressure levels, surface, and sub-hourly, but not native levels.
Each grib message is its own json file, and each init time is its own zip containing the whole extracted json files for all the forecast times for that init time. Once the kerchunk extraction is
complete, the plan is to combine them so that they can be opened in a single call to Xarray as one very large dataset. Alternatively, they might be split into different ones, or versions of HRRR, but
we'll see. Additionally, the plan is to also add versions that can pull from the (I think), identitcal HRRR archives on Azure, and GCP, and so can be used more easily by users on those platforms. | [] | [
"TAGS\n#size_categories-10K<n<100K #license-mit #climate #region-us \n"
] | [
27
] | [
"passage: TAGS\n#size_categories-10K<n<100K #license-mit #climate #region-us \n"
] |
63efde4909402b9b621a2151d88ac0164317af36 |
# Dataset of Sheila
This is the dataset of Sheila, containing 67 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
| Name | Images | Download | Description |
|:----------------|---------:|:----------------------------------------|:-----------------------------------------------------------------------------------------|
| raw | 67 | [Download](dataset-raw.zip) | Raw data with meta information. |
| raw-stage3 | 149 | [Download](dataset-raw-stage3.zip) | 3-stage cropped raw data with meta information. |
| raw-stage3-eyes | 185 | [Download](dataset-raw-stage3-eyes.zip) | 3-stage cropped (with eye-focus) raw data with meta information. |
| 384x512 | 67 | [Download](dataset-384x512.zip) | 384x512 aligned dataset. |
| 512x704 | 67 | [Download](dataset-512x704.zip) | 512x704 aligned dataset. |
| 640x880 | 67 | [Download](dataset-640x880.zip) | 640x880 aligned dataset. |
| stage3-640 | 149 | [Download](dataset-stage3-640.zip) | 3-stage cropped dataset with the shorter side not exceeding 640 pixels. |
| stage3-800 | 149 | [Download](dataset-stage3-800.zip) | 3-stage cropped dataset with the shorter side not exceeding 800 pixels. |
| stage3-p512-640 | 139 | [Download](dataset-stage3-p512-640.zip) | 3-stage cropped dataset with the area not less than 512x512 pixels. |
| stage3-eyes-640 | 185 | [Download](dataset-stage3-eyes-640.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 640 pixels. |
| stage3-eyes-800 | 185 | [Download](dataset-stage3-eyes-800.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 800 pixels. |
| CyberHarem/sheila_majonotabitabi | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-06T12:36:43+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-06T12:37:22+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of Sheila
=================
This is the dataset of Sheila, containing 67 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
| [] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] | [
44
] | [
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] |
eb5a117703a1b74b5b3b9bf3f73221667bfcc9c5 |
# Dataset Card for Evaluation run of gqd/mistral-merge-7b
<!-- Provide a quick summary of the dataset. -->
Dataset automatically created during the evaluation run of model [gqd/mistral-merge-7b](https://huggingface.co/gqd/mistral-merge-7b) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset("open-llm-leaderboard/details_gqd__mistral-merge-7b",
"harness_winogrande_5",
split="train")
```
## Latest results
These are the [latest results from run 2024-01-06T12:41:19.293051](https://huggingface.co/datasets/open-llm-leaderboard/details_gqd__mistral-merge-7b/blob/main/results_2024-01-06T12-41-19.293051.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"acc": 0.6414554079543251,
"acc_stderr": 0.032254726301902334,
"acc_norm": 0.6438195861987412,
"acc_norm_stderr": 0.03289596118221943,
"mc1": 0.3574051407588739,
"mc1_stderr": 0.0167765996767294,
"mc2": 0.5373136788770528,
"mc2_stderr": 0.0154735636943193
},
"harness|arc:challenge|25": {
"acc": 0.606655290102389,
"acc_stderr": 0.014275101465693028,
"acc_norm": 0.6390784982935154,
"acc_norm_stderr": 0.014034761386175452
},
"harness|hellaswag|10": {
"acc": 0.6580362477594105,
"acc_stderr": 0.0047339804707992135,
"acc_norm": 0.8447520414260108,
"acc_norm_stderr": 0.003614007841341988
},
"harness|hendrycksTest-abstract_algebra|5": {
"acc": 0.29,
"acc_stderr": 0.045604802157206845,
"acc_norm": 0.29,
"acc_norm_stderr": 0.045604802157206845
},
"harness|hendrycksTest-anatomy|5": {
"acc": 0.5777777777777777,
"acc_stderr": 0.04266763404099582,
"acc_norm": 0.5777777777777777,
"acc_norm_stderr": 0.04266763404099582
},
"harness|hendrycksTest-astronomy|5": {
"acc": 0.7105263157894737,
"acc_stderr": 0.03690677986137282,
"acc_norm": 0.7105263157894737,
"acc_norm_stderr": 0.03690677986137282
},
"harness|hendrycksTest-business_ethics|5": {
"acc": 0.57,
"acc_stderr": 0.049756985195624284,
"acc_norm": 0.57,
"acc_norm_stderr": 0.049756985195624284
},
"harness|hendrycksTest-clinical_knowledge|5": {
"acc": 0.7169811320754716,
"acc_stderr": 0.027724236492700914,
"acc_norm": 0.7169811320754716,
"acc_norm_stderr": 0.027724236492700914
},
"harness|hendrycksTest-college_biology|5": {
"acc": 0.7777777777777778,
"acc_stderr": 0.03476590104304134,
"acc_norm": 0.7777777777777778,
"acc_norm_stderr": 0.03476590104304134
},
"harness|hendrycksTest-college_chemistry|5": {
"acc": 0.47,
"acc_stderr": 0.05016135580465919,
"acc_norm": 0.47,
"acc_norm_stderr": 0.05016135580465919
},
"harness|hendrycksTest-college_computer_science|5": {
"acc": 0.51,
"acc_stderr": 0.05024183937956912,
"acc_norm": 0.51,
"acc_norm_stderr": 0.05024183937956912
},
"harness|hendrycksTest-college_mathematics|5": {
"acc": 0.39,
"acc_stderr": 0.04902071300001974,
"acc_norm": 0.39,
"acc_norm_stderr": 0.04902071300001974
},
"harness|hendrycksTest-college_medicine|5": {
"acc": 0.6127167630057804,
"acc_stderr": 0.03714325906302065,
"acc_norm": 0.6127167630057804,
"acc_norm_stderr": 0.03714325906302065
},
"harness|hendrycksTest-college_physics|5": {
"acc": 0.39215686274509803,
"acc_stderr": 0.04858083574266345,
"acc_norm": 0.39215686274509803,
"acc_norm_stderr": 0.04858083574266345
},
"harness|hendrycksTest-computer_security|5": {
"acc": 0.76,
"acc_stderr": 0.042923469599092816,
"acc_norm": 0.76,
"acc_norm_stderr": 0.042923469599092816
},
"harness|hendrycksTest-conceptual_physics|5": {
"acc": 0.5617021276595745,
"acc_stderr": 0.03243618636108101,
"acc_norm": 0.5617021276595745,
"acc_norm_stderr": 0.03243618636108101
},
"harness|hendrycksTest-econometrics|5": {
"acc": 0.5175438596491229,
"acc_stderr": 0.04700708033551038,
"acc_norm": 0.5175438596491229,
"acc_norm_stderr": 0.04700708033551038
},
"harness|hendrycksTest-electrical_engineering|5": {
"acc": 0.5517241379310345,
"acc_stderr": 0.04144311810878151,
"acc_norm": 0.5517241379310345,
"acc_norm_stderr": 0.04144311810878151
},
"harness|hendrycksTest-elementary_mathematics|5": {
"acc": 0.4074074074074074,
"acc_stderr": 0.025305906241590626,
"acc_norm": 0.4074074074074074,
"acc_norm_stderr": 0.025305906241590626
},
"harness|hendrycksTest-formal_logic|5": {
"acc": 0.4444444444444444,
"acc_stderr": 0.044444444444444495,
"acc_norm": 0.4444444444444444,
"acc_norm_stderr": 0.044444444444444495
},
"harness|hendrycksTest-global_facts|5": {
"acc": 0.36,
"acc_stderr": 0.048241815132442176,
"acc_norm": 0.36,
"acc_norm_stderr": 0.048241815132442176
},
"harness|hendrycksTest-high_school_biology|5": {
"acc": 0.8,
"acc_stderr": 0.022755204959542946,
"acc_norm": 0.8,
"acc_norm_stderr": 0.022755204959542946
},
"harness|hendrycksTest-high_school_chemistry|5": {
"acc": 0.458128078817734,
"acc_stderr": 0.03505630140785741,
"acc_norm": 0.458128078817734,
"acc_norm_stderr": 0.03505630140785741
},
"harness|hendrycksTest-high_school_computer_science|5": {
"acc": 0.69,
"acc_stderr": 0.04648231987117316,
"acc_norm": 0.69,
"acc_norm_stderr": 0.04648231987117316
},
"harness|hendrycksTest-high_school_european_history|5": {
"acc": 0.7757575757575758,
"acc_stderr": 0.03256866661681102,
"acc_norm": 0.7757575757575758,
"acc_norm_stderr": 0.03256866661681102
},
"harness|hendrycksTest-high_school_geography|5": {
"acc": 0.7878787878787878,
"acc_stderr": 0.029126522834586815,
"acc_norm": 0.7878787878787878,
"acc_norm_stderr": 0.029126522834586815
},
"harness|hendrycksTest-high_school_government_and_politics|5": {
"acc": 0.8911917098445595,
"acc_stderr": 0.022473253332768776,
"acc_norm": 0.8911917098445595,
"acc_norm_stderr": 0.022473253332768776
},
"harness|hendrycksTest-high_school_macroeconomics|5": {
"acc": 0.6358974358974359,
"acc_stderr": 0.024396672985094767,
"acc_norm": 0.6358974358974359,
"acc_norm_stderr": 0.024396672985094767
},
"harness|hendrycksTest-high_school_mathematics|5": {
"acc": 0.34074074074074073,
"acc_stderr": 0.028897748741131143,
"acc_norm": 0.34074074074074073,
"acc_norm_stderr": 0.028897748741131143
},
"harness|hendrycksTest-high_school_microeconomics|5": {
"acc": 0.6848739495798319,
"acc_stderr": 0.030176808288974337,
"acc_norm": 0.6848739495798319,
"acc_norm_stderr": 0.030176808288974337
},
"harness|hendrycksTest-high_school_physics|5": {
"acc": 0.33774834437086093,
"acc_stderr": 0.038615575462551684,
"acc_norm": 0.33774834437086093,
"acc_norm_stderr": 0.038615575462551684
},
"harness|hendrycksTest-high_school_psychology|5": {
"acc": 0.8238532110091743,
"acc_stderr": 0.016332882393431357,
"acc_norm": 0.8238532110091743,
"acc_norm_stderr": 0.016332882393431357
},
"harness|hendrycksTest-high_school_statistics|5": {
"acc": 0.4861111111111111,
"acc_stderr": 0.03408655867977748,
"acc_norm": 0.4861111111111111,
"acc_norm_stderr": 0.03408655867977748
},
"harness|hendrycksTest-high_school_us_history|5": {
"acc": 0.8284313725490197,
"acc_stderr": 0.026460569561240644,
"acc_norm": 0.8284313725490197,
"acc_norm_stderr": 0.026460569561240644
},
"harness|hendrycksTest-high_school_world_history|5": {
"acc": 0.7974683544303798,
"acc_stderr": 0.026160568246601457,
"acc_norm": 0.7974683544303798,
"acc_norm_stderr": 0.026160568246601457
},
"harness|hendrycksTest-human_aging|5": {
"acc": 0.6860986547085202,
"acc_stderr": 0.031146796482972465,
"acc_norm": 0.6860986547085202,
"acc_norm_stderr": 0.031146796482972465
},
"harness|hendrycksTest-human_sexuality|5": {
"acc": 0.7862595419847328,
"acc_stderr": 0.0359546161177469,
"acc_norm": 0.7862595419847328,
"acc_norm_stderr": 0.0359546161177469
},
"harness|hendrycksTest-international_law|5": {
"acc": 0.8016528925619835,
"acc_stderr": 0.036401182719909456,
"acc_norm": 0.8016528925619835,
"acc_norm_stderr": 0.036401182719909456
},
"harness|hendrycksTest-jurisprudence|5": {
"acc": 0.7870370370370371,
"acc_stderr": 0.0395783547198098,
"acc_norm": 0.7870370370370371,
"acc_norm_stderr": 0.0395783547198098
},
"harness|hendrycksTest-logical_fallacies|5": {
"acc": 0.7791411042944786,
"acc_stderr": 0.03259177392742178,
"acc_norm": 0.7791411042944786,
"acc_norm_stderr": 0.03259177392742178
},
"harness|hendrycksTest-machine_learning|5": {
"acc": 0.5357142857142857,
"acc_stderr": 0.04733667890053757,
"acc_norm": 0.5357142857142857,
"acc_norm_stderr": 0.04733667890053757
},
"harness|hendrycksTest-management|5": {
"acc": 0.7766990291262136,
"acc_stderr": 0.04123553189891431,
"acc_norm": 0.7766990291262136,
"acc_norm_stderr": 0.04123553189891431
},
"harness|hendrycksTest-marketing|5": {
"acc": 0.8675213675213675,
"acc_stderr": 0.022209309073165616,
"acc_norm": 0.8675213675213675,
"acc_norm_stderr": 0.022209309073165616
},
"harness|hendrycksTest-medical_genetics|5": {
"acc": 0.72,
"acc_stderr": 0.04512608598542128,
"acc_norm": 0.72,
"acc_norm_stderr": 0.04512608598542128
},
"harness|hendrycksTest-miscellaneous|5": {
"acc": 0.8314176245210728,
"acc_stderr": 0.013387895731543604,
"acc_norm": 0.8314176245210728,
"acc_norm_stderr": 0.013387895731543604
},
"harness|hendrycksTest-moral_disputes|5": {
"acc": 0.7283236994219653,
"acc_stderr": 0.02394851290546837,
"acc_norm": 0.7283236994219653,
"acc_norm_stderr": 0.02394851290546837
},
"harness|hendrycksTest-moral_scenarios|5": {
"acc": 0.311731843575419,
"acc_stderr": 0.015491756531894638,
"acc_norm": 0.311731843575419,
"acc_norm_stderr": 0.015491756531894638
},
"harness|hendrycksTest-nutrition|5": {
"acc": 0.7483660130718954,
"acc_stderr": 0.0248480182638752,
"acc_norm": 0.7483660130718954,
"acc_norm_stderr": 0.0248480182638752
},
"harness|hendrycksTest-philosophy|5": {
"acc": 0.707395498392283,
"acc_stderr": 0.02583989833487798,
"acc_norm": 0.707395498392283,
"acc_norm_stderr": 0.02583989833487798
},
"harness|hendrycksTest-prehistory|5": {
"acc": 0.7407407407407407,
"acc_stderr": 0.02438366553103545,
"acc_norm": 0.7407407407407407,
"acc_norm_stderr": 0.02438366553103545
},
"harness|hendrycksTest-professional_accounting|5": {
"acc": 0.4929078014184397,
"acc_stderr": 0.02982449855912901,
"acc_norm": 0.4929078014184397,
"acc_norm_stderr": 0.02982449855912901
},
"harness|hendrycksTest-professional_law|5": {
"acc": 0.4634941329856584,
"acc_stderr": 0.012736153390214963,
"acc_norm": 0.4634941329856584,
"acc_norm_stderr": 0.012736153390214963
},
"harness|hendrycksTest-professional_medicine|5": {
"acc": 0.6727941176470589,
"acc_stderr": 0.02850145286039655,
"acc_norm": 0.6727941176470589,
"acc_norm_stderr": 0.02850145286039655
},
"harness|hendrycksTest-professional_psychology|5": {
"acc": 0.684640522875817,
"acc_stderr": 0.01879808628488689,
"acc_norm": 0.684640522875817,
"acc_norm_stderr": 0.01879808628488689
},
"harness|hendrycksTest-public_relations|5": {
"acc": 0.6545454545454545,
"acc_stderr": 0.04554619617541054,
"acc_norm": 0.6545454545454545,
"acc_norm_stderr": 0.04554619617541054
},
"harness|hendrycksTest-security_studies|5": {
"acc": 0.726530612244898,
"acc_stderr": 0.028535560337128438,
"acc_norm": 0.726530612244898,
"acc_norm_stderr": 0.028535560337128438
},
"harness|hendrycksTest-sociology|5": {
"acc": 0.8208955223880597,
"acc_stderr": 0.027113286753111837,
"acc_norm": 0.8208955223880597,
"acc_norm_stderr": 0.027113286753111837
},
"harness|hendrycksTest-us_foreign_policy|5": {
"acc": 0.84,
"acc_stderr": 0.03684529491774709,
"acc_norm": 0.84,
"acc_norm_stderr": 0.03684529491774709
},
"harness|hendrycksTest-virology|5": {
"acc": 0.5542168674698795,
"acc_stderr": 0.03869543323472101,
"acc_norm": 0.5542168674698795,
"acc_norm_stderr": 0.03869543323472101
},
"harness|hendrycksTest-world_religions|5": {
"acc": 0.8245614035087719,
"acc_stderr": 0.029170885500727665,
"acc_norm": 0.8245614035087719,
"acc_norm_stderr": 0.029170885500727665
},
"harness|truthfulqa:mc|0": {
"mc1": 0.3574051407588739,
"mc1_stderr": 0.0167765996767294,
"mc2": 0.5373136788770528,
"mc2_stderr": 0.0154735636943193
},
"harness|winogrande|5": {
"acc": 0.7734806629834254,
"acc_stderr": 0.01176414905469833
},
"harness|gsm8k|5": {
"acc": 0.5890826383623957,
"acc_stderr": 0.01355213290142322
}
}
```
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
[More Information Needed] | open-llm-leaderboard/details_gqd__mistral-merge-7b | [
"region:us"
] | 2024-01-06T12:43:36+00:00 | {"pretty_name": "Evaluation run of gqd/mistral-merge-7b", "dataset_summary": "Dataset automatically created during the evaluation run of model [gqd/mistral-merge-7b](https://huggingface.co/gqd/mistral-merge-7b) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_gqd__mistral-merge-7b\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-06T12:41:19.293051](https://huggingface.co/datasets/open-llm-leaderboard/details_gqd__mistral-merge-7b/blob/main/results_2024-01-06T12-41-19.293051.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6414554079543251,\n \"acc_stderr\": 0.032254726301902334,\n \"acc_norm\": 0.6438195861987412,\n \"acc_norm_stderr\": 0.03289596118221943,\n \"mc1\": 0.3574051407588739,\n \"mc1_stderr\": 0.0167765996767294,\n \"mc2\": 0.5373136788770528,\n \"mc2_stderr\": 0.0154735636943193\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.606655290102389,\n \"acc_stderr\": 0.014275101465693028,\n \"acc_norm\": 0.6390784982935154,\n \"acc_norm_stderr\": 0.014034761386175452\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6580362477594105,\n \"acc_stderr\": 0.0047339804707992135,\n \"acc_norm\": 0.8447520414260108,\n \"acc_norm_stderr\": 0.003614007841341988\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.29,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\": 0.29,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.5777777777777777,\n \"acc_stderr\": 0.04266763404099582,\n \"acc_norm\": 0.5777777777777777,\n \"acc_norm_stderr\": 0.04266763404099582\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.7105263157894737,\n \"acc_stderr\": 0.03690677986137282,\n \"acc_norm\": 0.7105263157894737,\n \"acc_norm_stderr\": 0.03690677986137282\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.57,\n \"acc_stderr\": 0.049756985195624284,\n \"acc_norm\": 0.57,\n \"acc_norm_stderr\": 0.049756985195624284\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.7169811320754716,\n \"acc_stderr\": 0.027724236492700914,\n \"acc_norm\": 0.7169811320754716,\n \"acc_norm_stderr\": 0.027724236492700914\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7777777777777778,\n \"acc_stderr\": 0.03476590104304134,\n \"acc_norm\": 0.7777777777777778,\n \"acc_norm_stderr\": 0.03476590104304134\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.47,\n \"acc_stderr\": 0.05016135580465919,\n \"acc_norm\": 0.47,\n \"acc_norm_stderr\": 0.05016135580465919\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.51,\n \"acc_stderr\": 0.05024183937956912,\n \"acc_norm\": 0.51,\n \"acc_norm_stderr\": 0.05024183937956912\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.39,\n \"acc_stderr\": 0.04902071300001974,\n \"acc_norm\": 0.39,\n \"acc_norm_stderr\": 0.04902071300001974\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6127167630057804,\n \"acc_stderr\": 0.03714325906302065,\n \"acc_norm\": 0.6127167630057804,\n \"acc_norm_stderr\": 0.03714325906302065\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.39215686274509803,\n \"acc_stderr\": 0.04858083574266345,\n \"acc_norm\": 0.39215686274509803,\n \"acc_norm_stderr\": 0.04858083574266345\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.76,\n \"acc_stderr\": 0.042923469599092816,\n \"acc_norm\": 0.76,\n \"acc_norm_stderr\": 0.042923469599092816\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5617021276595745,\n \"acc_stderr\": 0.03243618636108101,\n \"acc_norm\": 0.5617021276595745,\n \"acc_norm_stderr\": 0.03243618636108101\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.5175438596491229,\n \"acc_stderr\": 0.04700708033551038,\n \"acc_norm\": 0.5175438596491229,\n \"acc_norm_stderr\": 0.04700708033551038\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5517241379310345,\n \"acc_stderr\": 0.04144311810878151,\n \"acc_norm\": 0.5517241379310345,\n \"acc_norm_stderr\": 0.04144311810878151\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.4074074074074074,\n \"acc_stderr\": 0.025305906241590626,\n \"acc_norm\": 0.4074074074074074,\n \"acc_norm_stderr\": 0.025305906241590626\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.4444444444444444,\n \"acc_stderr\": 0.044444444444444495,\n \"acc_norm\": 0.4444444444444444,\n \"acc_norm_stderr\": 0.044444444444444495\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.36,\n \"acc_stderr\": 0.048241815132442176,\n \"acc_norm\": 0.36,\n \"acc_norm_stderr\": 0.048241815132442176\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.8,\n \"acc_stderr\": 0.022755204959542946,\n \"acc_norm\": 0.8,\n \"acc_norm_stderr\": 0.022755204959542946\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.458128078817734,\n \"acc_stderr\": 0.03505630140785741,\n \"acc_norm\": 0.458128078817734,\n \"acc_norm_stderr\": 0.03505630140785741\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.69,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.69,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7757575757575758,\n \"acc_stderr\": 0.03256866661681102,\n \"acc_norm\": 0.7757575757575758,\n \"acc_norm_stderr\": 0.03256866661681102\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7878787878787878,\n \"acc_stderr\": 0.029126522834586815,\n \"acc_norm\": 0.7878787878787878,\n \"acc_norm_stderr\": 0.029126522834586815\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8911917098445595,\n \"acc_stderr\": 0.022473253332768776,\n \"acc_norm\": 0.8911917098445595,\n \"acc_norm_stderr\": 0.022473253332768776\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6358974358974359,\n \"acc_stderr\": 0.024396672985094767,\n \"acc_norm\": 0.6358974358974359,\n \"acc_norm_stderr\": 0.024396672985094767\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.34074074074074073,\n \"acc_stderr\": 0.028897748741131143,\n \"acc_norm\": 0.34074074074074073,\n \"acc_norm_stderr\": 0.028897748741131143\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6848739495798319,\n \"acc_stderr\": 0.030176808288974337,\n \"acc_norm\": 0.6848739495798319,\n \"acc_norm_stderr\": 0.030176808288974337\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.33774834437086093,\n \"acc_stderr\": 0.038615575462551684,\n \"acc_norm\": 0.33774834437086093,\n \"acc_norm_stderr\": 0.038615575462551684\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8238532110091743,\n \"acc_stderr\": 0.016332882393431357,\n \"acc_norm\": 0.8238532110091743,\n \"acc_norm_stderr\": 0.016332882393431357\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.4861111111111111,\n \"acc_stderr\": 0.03408655867977748,\n \"acc_norm\": 0.4861111111111111,\n \"acc_norm_stderr\": 0.03408655867977748\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.8284313725490197,\n \"acc_stderr\": 0.026460569561240644,\n \"acc_norm\": 0.8284313725490197,\n \"acc_norm_stderr\": 0.026460569561240644\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7974683544303798,\n \"acc_stderr\": 0.026160568246601457,\n \"acc_norm\": 0.7974683544303798,\n \"acc_norm_stderr\": 0.026160568246601457\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6860986547085202,\n \"acc_stderr\": 0.031146796482972465,\n \"acc_norm\": 0.6860986547085202,\n \"acc_norm_stderr\": 0.031146796482972465\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7862595419847328,\n \"acc_stderr\": 0.0359546161177469,\n \"acc_norm\": 0.7862595419847328,\n \"acc_norm_stderr\": 0.0359546161177469\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8016528925619835,\n \"acc_stderr\": 0.036401182719909456,\n \"acc_norm\": 0.8016528925619835,\n \"acc_norm_stderr\": 0.036401182719909456\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7870370370370371,\n \"acc_stderr\": 0.0395783547198098,\n \"acc_norm\": 0.7870370370370371,\n \"acc_norm_stderr\": 0.0395783547198098\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7791411042944786,\n \"acc_stderr\": 0.03259177392742178,\n \"acc_norm\": 0.7791411042944786,\n \"acc_norm_stderr\": 0.03259177392742178\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.5357142857142857,\n \"acc_stderr\": 0.04733667890053757,\n \"acc_norm\": 0.5357142857142857,\n \"acc_norm_stderr\": 0.04733667890053757\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7766990291262136,\n \"acc_stderr\": 0.04123553189891431,\n \"acc_norm\": 0.7766990291262136,\n \"acc_norm_stderr\": 0.04123553189891431\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8675213675213675,\n \"acc_stderr\": 0.022209309073165616,\n \"acc_norm\": 0.8675213675213675,\n \"acc_norm_stderr\": 0.022209309073165616\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.72,\n \"acc_stderr\": 0.04512608598542128,\n \"acc_norm\": 0.72,\n \"acc_norm_stderr\": 0.04512608598542128\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8314176245210728,\n \"acc_stderr\": 0.013387895731543604,\n \"acc_norm\": 0.8314176245210728,\n \"acc_norm_stderr\": 0.013387895731543604\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7283236994219653,\n \"acc_stderr\": 0.02394851290546837,\n \"acc_norm\": 0.7283236994219653,\n \"acc_norm_stderr\": 0.02394851290546837\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.311731843575419,\n \"acc_stderr\": 0.015491756531894638,\n \"acc_norm\": 0.311731843575419,\n \"acc_norm_stderr\": 0.015491756531894638\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7483660130718954,\n \"acc_stderr\": 0.0248480182638752,\n \"acc_norm\": 0.7483660130718954,\n \"acc_norm_stderr\": 0.0248480182638752\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.707395498392283,\n \"acc_stderr\": 0.02583989833487798,\n \"acc_norm\": 0.707395498392283,\n \"acc_norm_stderr\": 0.02583989833487798\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.7407407407407407,\n \"acc_stderr\": 0.02438366553103545,\n \"acc_norm\": 0.7407407407407407,\n \"acc_norm_stderr\": 0.02438366553103545\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.4929078014184397,\n \"acc_stderr\": 0.02982449855912901,\n \"acc_norm\": 0.4929078014184397,\n \"acc_norm_stderr\": 0.02982449855912901\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.4634941329856584,\n \"acc_stderr\": 0.012736153390214963,\n \"acc_norm\": 0.4634941329856584,\n \"acc_norm_stderr\": 0.012736153390214963\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6727941176470589,\n \"acc_stderr\": 0.02850145286039655,\n \"acc_norm\": 0.6727941176470589,\n \"acc_norm_stderr\": 0.02850145286039655\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.684640522875817,\n \"acc_stderr\": 0.01879808628488689,\n \"acc_norm\": 0.684640522875817,\n \"acc_norm_stderr\": 0.01879808628488689\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6545454545454545,\n \"acc_stderr\": 0.04554619617541054,\n \"acc_norm\": 0.6545454545454545,\n \"acc_norm_stderr\": 0.04554619617541054\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.726530612244898,\n \"acc_stderr\": 0.028535560337128438,\n \"acc_norm\": 0.726530612244898,\n \"acc_norm_stderr\": 0.028535560337128438\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8208955223880597,\n \"acc_stderr\": 0.027113286753111837,\n \"acc_norm\": 0.8208955223880597,\n \"acc_norm_stderr\": 0.027113286753111837\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.84,\n \"acc_stderr\": 0.03684529491774709,\n \"acc_norm\": 0.84,\n \"acc_norm_stderr\": 0.03684529491774709\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5542168674698795,\n \"acc_stderr\": 0.03869543323472101,\n \"acc_norm\": 0.5542168674698795,\n \"acc_norm_stderr\": 0.03869543323472101\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8245614035087719,\n \"acc_stderr\": 0.029170885500727665,\n \"acc_norm\": 0.8245614035087719,\n \"acc_norm_stderr\": 0.029170885500727665\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.3574051407588739,\n \"mc1_stderr\": 0.0167765996767294,\n \"mc2\": 0.5373136788770528,\n \"mc2_stderr\": 0.0154735636943193\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.7734806629834254,\n \"acc_stderr\": 0.01176414905469833\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.5890826383623957,\n \"acc_stderr\": 0.01355213290142322\n }\n}\n```", "repo_url": "https://huggingface.co/gqd/mistral-merge-7b", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|arc:challenge|25_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|gsm8k|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hellaswag|10_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-06T12-41-19.293051.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["**/details_harness|winogrande|5_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-06T12-41-19.293051.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_06T12_41_19.293051", "path": ["results_2024-01-06T12-41-19.293051.parquet"]}, {"split": "latest", "path": ["results_2024-01-06T12-41-19.293051.parquet"]}]}]} | 2024-01-06T12:43:56+00:00 | [] | [] | TAGS
#region-us
|
# Dataset Card for Evaluation run of gqd/mistral-merge-7b
Dataset automatically created during the evaluation run of model gqd/mistral-merge-7b on the Open LLM Leaderboard.
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).
To load the details from a run, you can for instance do the following:
## Latest results
These are the latest results from run 2024-01-06T12:41:19.293051(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
## Dataset Details
### Dataset Description
- Curated by:
- Funded by [optional]:
- Shared by [optional]:
- Language(s) (NLP):
- License:
### Dataset Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Out-of-Scope Use
## Dataset Structure
## Dataset Creation
### Curation Rationale
### Source Data
#### Data Collection and Processing
#### Who are the source data producers?
### Annotations [optional]
#### Annotation process
#### Who are the annotators?
#### Personal and Sensitive Information
## Bias, Risks, and Limitations
### Recommendations
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Dataset Card Authors [optional]
## Dataset Card Contact
| [
"# Dataset Card for Evaluation run of gqd/mistral-merge-7b\n\n\n\nDataset automatically created during the evaluation run of model gqd/mistral-merge-7b on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-06T12:41:19.293051(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for Evaluation run of gqd/mistral-merge-7b\n\n\n\nDataset automatically created during the evaluation run of model gqd/mistral-merge-7b on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-06T12:41:19.293051(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
6,
183,
68,
4,
40,
29,
3,
4,
9,
6,
5,
7,
4,
7,
10,
9,
5,
9,
8,
10,
46,
8,
7,
10,
5
] | [
"passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of gqd/mistral-merge-7b\n\n\n\nDataset automatically created during the evaluation run of model gqd/mistral-merge-7b on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2024-01-06T12:41:19.293051(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):## Dataset Details### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Out-of-Scope Use## Dataset Structure## Dataset Creation### Curation Rationale### Source Data#### Data Collection and Processing#### Who are the source data producers?### Annotations [optional]#### Annotation process#### Who are the annotators?#### Personal and Sensitive Information## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Dataset Card Authors [optional]## Dataset Card Contact"
] |
31545b93d753d0c973505b067ce9274f6e0db64b |
# Dataset of Haruka Takayama
This is the dataset of Haruka Takayama, containing 332 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
| Name | Images | Download | Description |
|:----------------|---------:|:----------------------------------------|:-----------------------------------------------------------------------------------------|
| raw | 332 | [Download](dataset-raw.zip) | Raw data with meta information. |
| raw-stage3 | 791 | [Download](dataset-raw-stage3.zip) | 3-stage cropped raw data with meta information. |
| raw-stage3-eyes | 884 | [Download](dataset-raw-stage3-eyes.zip) | 3-stage cropped (with eye-focus) raw data with meta information. |
| 384x512 | 332 | [Download](dataset-384x512.zip) | 384x512 aligned dataset. |
| 512x704 | 332 | [Download](dataset-512x704.zip) | 512x704 aligned dataset. |
| 640x880 | 332 | [Download](dataset-640x880.zip) | 640x880 aligned dataset. |
| stage3-640 | 791 | [Download](dataset-stage3-640.zip) | 3-stage cropped dataset with the shorter side not exceeding 640 pixels. |
| stage3-800 | 791 | [Download](dataset-stage3-800.zip) | 3-stage cropped dataset with the shorter side not exceeding 800 pixels. |
| stage3-p512-640 | 688 | [Download](dataset-stage3-p512-640.zip) | 3-stage cropped dataset with the area not less than 512x512 pixels. |
| stage3-eyes-640 | 884 | [Download](dataset-stage3-eyes-640.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 640 pixels. |
| stage3-eyes-800 | 884 | [Download](dataset-stage3-eyes-800.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 800 pixels. |
| CyberHarem/haruka_takayama_sakuratrick | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-06T13:01:40+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-06T13:03:44+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of Haruka Takayama
==========================
This is the dataset of Haruka Takayama, containing 332 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
| [] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] | [
44
] | [
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] |
2184b342b1a3ea3a939cdcd2ba997704af86b077 |
# Dataset of Yuu Sonoda
This is the dataset of Yuu Sonoda, containing 282 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
| Name | Images | Download | Description |
|:----------------|---------:|:----------------------------------------|:-----------------------------------------------------------------------------------------|
| raw | 282 | [Download](dataset-raw.zip) | Raw data with meta information. |
| raw-stage3 | 663 | [Download](dataset-raw-stage3.zip) | 3-stage cropped raw data with meta information. |
| raw-stage3-eyes | 740 | [Download](dataset-raw-stage3-eyes.zip) | 3-stage cropped (with eye-focus) raw data with meta information. |
| 384x512 | 282 | [Download](dataset-384x512.zip) | 384x512 aligned dataset. |
| 512x704 | 282 | [Download](dataset-512x704.zip) | 512x704 aligned dataset. |
| 640x880 | 282 | [Download](dataset-640x880.zip) | 640x880 aligned dataset. |
| stage3-640 | 663 | [Download](dataset-stage3-640.zip) | 3-stage cropped dataset with the shorter side not exceeding 640 pixels. |
| stage3-800 | 663 | [Download](dataset-stage3-800.zip) | 3-stage cropped dataset with the shorter side not exceeding 800 pixels. |
| stage3-p512-640 | 555 | [Download](dataset-stage3-p512-640.zip) | 3-stage cropped dataset with the area not less than 512x512 pixels. |
| stage3-eyes-640 | 740 | [Download](dataset-stage3-eyes-640.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 640 pixels. |
| stage3-eyes-800 | 740 | [Download](dataset-stage3-eyes-800.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 800 pixels. |
| CyberHarem/yuu_sonoda_sakuratrick | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-06T13:22:41+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-06T13:24:40+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of Yuu Sonoda
=====================
This is the dataset of Yuu Sonoda, containing 282 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
| [] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] | [
44
] | [
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] |
03f016319599944cea00255a041f1254b395fe21 | # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_midscore_true"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | ibranze/araproje_hellaswag_tr_conf_mgpt_midscore_true | [
"region:us"
] | 2024-01-06T13:32:32+00:00 | {"dataset_info": {"features": [{"name": "ind", "dtype": "int32"}, {"name": "activity_label", "dtype": "string"}, {"name": "ctx_a", "dtype": "string"}, {"name": "ctx_b", "dtype": "string"}, {"name": "ctx", "dtype": "string"}, {"name": "endings", "sequence": "string"}, {"name": "source_id", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "split_type", "dtype": "string"}, {"name": "label", "dtype": "string"}], "splits": [{"name": "validation", "num_bytes": 162703.0, "num_examples": 250}], "download_size": 0, "dataset_size": 162703.0}, "configs": [{"config_name": "default", "data_files": [{"split": "validation", "path": "data/validation-*"}]}]} | 2024-01-06T13:32:44+00:00 | [] | [] | TAGS
#region-us
| # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_midscore_true"
More Information needed | [
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_midscore_true\"\n\nMore Information needed"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_midscore_true\"\n\nMore Information needed"
] | [
6,
31
] | [
"passage: TAGS\n#region-us \n# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_midscore_true\"\n\nMore Information needed"
] |
a8a5eccf3a4f44447e531f612b91359b9c4c7334 | # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_midscore_false"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | ibranze/araproje_hellaswag_tr_conf_mgpt_midscore_false | [
"region:us"
] | 2024-01-06T13:32:36+00:00 | {"dataset_info": {"features": [{"name": "ind", "dtype": "int32"}, {"name": "activity_label", "dtype": "string"}, {"name": "ctx_a", "dtype": "string"}, {"name": "ctx_b", "dtype": "string"}, {"name": "ctx", "dtype": "string"}, {"name": "endings", "sequence": "string"}, {"name": "source_id", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "split_type", "dtype": "string"}, {"name": "label", "dtype": "string"}], "splits": [{"name": "validation", "num_bytes": 162703.0, "num_examples": 250}], "download_size": 0, "dataset_size": 162703.0}, "configs": [{"config_name": "default", "data_files": [{"split": "validation", "path": "data/validation-*"}]}]} | 2024-01-06T13:32:46+00:00 | [] | [] | TAGS
#region-us
| # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_midscore_false"
More Information needed | [
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_midscore_false\"\n\nMore Information needed"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_midscore_false\"\n\nMore Information needed"
] | [
6,
31
] | [
"passage: TAGS\n#region-us \n# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_midscore_false\"\n\nMore Information needed"
] |
746ad54a6d968577f5c2a58bcbf123a477148e03 | # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_midscore_all"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | ibranze/araproje_hellaswag_tr_conf_mgpt_midscore_all | [
"region:us"
] | 2024-01-06T13:32:39+00:00 | {"dataset_info": {"features": [{"name": "ind", "dtype": "int32"}, {"name": "activity_label", "dtype": "string"}, {"name": "ctx_a", "dtype": "string"}, {"name": "ctx_b", "dtype": "string"}, {"name": "ctx", "dtype": "string"}, {"name": "endings", "sequence": "string"}, {"name": "source_id", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "split_type", "dtype": "string"}, {"name": "label", "dtype": "string"}], "splits": [{"name": "validation", "num_bytes": 162703.0, "num_examples": 250}], "download_size": 0, "dataset_size": 162703.0}, "configs": [{"config_name": "default", "data_files": [{"split": "validation", "path": "data/validation-*"}]}]} | 2024-01-06T13:32:48+00:00 | [] | [] | TAGS
#region-us
| # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_midscore_all"
More Information needed | [
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_midscore_all\"\n\nMore Information needed"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_midscore_all\"\n\nMore Information needed"
] | [
6,
30
] | [
"passage: TAGS\n#region-us \n# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_midscore_all\"\n\nMore Information needed"
] |
bfc3814d3874af66bc544e6d702ed7ecca87d2a2 | # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_farestscore_true"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | ibranze/araproje_hellaswag_tr_conf_mgpt_farestscore_true | [
"region:us"
] | 2024-01-06T13:35:07+00:00 | {"dataset_info": {"features": [{"name": "ind", "dtype": "int32"}, {"name": "activity_label", "dtype": "string"}, {"name": "ctx_a", "dtype": "string"}, {"name": "ctx_b", "dtype": "string"}, {"name": "ctx", "dtype": "string"}, {"name": "endings", "sequence": "string"}, {"name": "source_id", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "split_type", "dtype": "string"}, {"name": "label", "dtype": "string"}], "splits": [{"name": "validation", "num_bytes": 162703.0, "num_examples": 250}], "download_size": 0, "dataset_size": 162703.0}, "configs": [{"config_name": "default", "data_files": [{"split": "validation", "path": "data/validation-*"}]}]} | 2024-01-06T13:36:47+00:00 | [] | [] | TAGS
#region-us
| # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_farestscore_true"
More Information needed | [
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_farestscore_true\"\n\nMore Information needed"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_farestscore_true\"\n\nMore Information needed"
] | [
6,
32
] | [
"passage: TAGS\n#region-us \n# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_farestscore_true\"\n\nMore Information needed"
] |
a4ad2d8a0790e1e78959420129d7bc64e9780752 | # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_farestscore_false"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | ibranze/araproje_hellaswag_tr_conf_mgpt_farestscore_false | [
"region:us"
] | 2024-01-06T13:35:11+00:00 | {"dataset_info": {"features": [{"name": "ind", "dtype": "int32"}, {"name": "activity_label", "dtype": "string"}, {"name": "ctx_a", "dtype": "string"}, {"name": "ctx_b", "dtype": "string"}, {"name": "ctx", "dtype": "string"}, {"name": "endings", "sequence": "string"}, {"name": "source_id", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "split_type", "dtype": "string"}, {"name": "label", "dtype": "string"}], "splits": [{"name": "validation", "num_bytes": 162703.0, "num_examples": 250}], "download_size": 87035, "dataset_size": 162703.0}, "configs": [{"config_name": "default", "data_files": [{"split": "validation", "path": "data/validation-*"}]}]} | 2024-01-06T13:35:13+00:00 | [] | [] | TAGS
#region-us
| # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_farestscore_false"
More Information needed | [
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_farestscore_false\"\n\nMore Information needed"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_farestscore_false\"\n\nMore Information needed"
] | [
6,
32
] | [
"passage: TAGS\n#region-us \n# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_farestscore_false\"\n\nMore Information needed"
] |
fb1daa7d70145a4a565cd8a6a3b0e105e3fae0be | # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_farestscore_all"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | ibranze/araproje_hellaswag_tr_conf_mgpt_farestscore_all | [
"region:us"
] | 2024-01-06T13:35:14+00:00 | {"dataset_info": {"features": [{"name": "ind", "dtype": "int32"}, {"name": "activity_label", "dtype": "string"}, {"name": "ctx_a", "dtype": "string"}, {"name": "ctx_b", "dtype": "string"}, {"name": "ctx", "dtype": "string"}, {"name": "endings", "sequence": "string"}, {"name": "source_id", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "split_type", "dtype": "string"}, {"name": "label", "dtype": "string"}], "splits": [{"name": "validation", "num_bytes": 162703.0, "num_examples": 250}], "download_size": 87016, "dataset_size": 162703.0}, "configs": [{"config_name": "default", "data_files": [{"split": "validation", "path": "data/validation-*"}]}]} | 2024-01-06T13:35:16+00:00 | [] | [] | TAGS
#region-us
| # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_farestscore_all"
More Information needed | [
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_farestscore_all\"\n\nMore Information needed"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_farestscore_all\"\n\nMore Information needed"
] | [
6,
31
] | [
"passage: TAGS\n#region-us \n# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_farestscore_all\"\n\nMore Information needed"
] |
50aed6d4316c18faaa0255060f8701e4b169bb22 |
# Dataset of Yuzu Iizuka
This is the dataset of Yuzu Iizuka, containing 185 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
| Name | Images | Download | Description |
|:----------------|---------:|:----------------------------------------|:-----------------------------------------------------------------------------------------|
| raw | 185 | [Download](dataset-raw.zip) | Raw data with meta information. |
| raw-stage3 | 446 | [Download](dataset-raw-stage3.zip) | 3-stage cropped raw data with meta information. |
| raw-stage3-eyes | 492 | [Download](dataset-raw-stage3-eyes.zip) | 3-stage cropped (with eye-focus) raw data with meta information. |
| 384x512 | 185 | [Download](dataset-384x512.zip) | 384x512 aligned dataset. |
| 512x704 | 185 | [Download](dataset-512x704.zip) | 512x704 aligned dataset. |
| 640x880 | 185 | [Download](dataset-640x880.zip) | 640x880 aligned dataset. |
| stage3-640 | 446 | [Download](dataset-stage3-640.zip) | 3-stage cropped dataset with the shorter side not exceeding 640 pixels. |
| stage3-800 | 446 | [Download](dataset-stage3-800.zip) | 3-stage cropped dataset with the shorter side not exceeding 800 pixels. |
| stage3-p512-640 | 378 | [Download](dataset-stage3-p512-640.zip) | 3-stage cropped dataset with the area not less than 512x512 pixels. |
| stage3-eyes-640 | 492 | [Download](dataset-stage3-eyes-640.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 640 pixels. |
| stage3-eyes-800 | 492 | [Download](dataset-stage3-eyes-800.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 800 pixels. |
| CyberHarem/yuzu_iizuka_sakuratrick | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-06T13:36:29+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-06T13:37:36+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of Yuzu Iizuka
======================
This is the dataset of Yuzu Iizuka, containing 185 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
| [] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] | [
44
] | [
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] |
d8e7dab810fb761c38510625bbf1ae447adcac7a | # Dataset Card for "mmlu_one_line"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | fxmeng/mmlu_one_line | [
"region:us"
] | 2024-01-06T13:37:16+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "val", "path": "data/val-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 119303, "num_examples": 285}, {"name": "val", "num_bytes": 730743, "num_examples": 1531}, {"name": "test", "num_bytes": 6667440, "num_examples": 14042}], "download_size": 3474542, "dataset_size": 7517486}} | 2024-01-06T13:48:24+00:00 | [] | [] | TAGS
#region-us
| # Dataset Card for "mmlu_one_line"
More Information needed | [
"# Dataset Card for \"mmlu_one_line\"\n\nMore Information needed"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for \"mmlu_one_line\"\n\nMore Information needed"
] | [
6,
16
] | [
"passage: TAGS\n#region-us \n# Dataset Card for \"mmlu_one_line\"\n\nMore Information needed"
] |
671ff7101c588044d304cbee505a9907da20e981 | English-Persian translation dataset with about two million translation lines optimized for training LibreTranslate model:
https://github.com/LibreTranslate/Locomotive | mehr32/Persian_English_translation | [
"size_categories:1M<n<10M",
"language:fa",
"language:en",
"license:gpl-3.0",
"region:us"
] | 2024-01-06T13:40:54+00:00 | {"language": ["fa", "en"], "license": "gpl-3.0", "size_categories": ["1M<n<10M"]} | 2024-01-26T13:24:53+00:00 | [] | [
"fa",
"en"
] | TAGS
#size_categories-1M<n<10M #language-Persian #language-English #license-gpl-3.0 #region-us
| English-Persian translation dataset with about two million translation lines optimized for training LibreTranslate model:
URL | [] | [
"TAGS\n#size_categories-1M<n<10M #language-Persian #language-English #license-gpl-3.0 #region-us \n"
] | [
35
] | [
"passage: TAGS\n#size_categories-1M<n<10M #language-Persian #language-English #license-gpl-3.0 #region-us \n"
] |
d995421e3870e82a6b3f3cbf4be6a283f1bb8aef | # Dataset Card for ChatAlpaca 20K
## ChatAlpaca: A Multi-Turn Dialogue Corpus based on Alpaca Instructions
### Dataset Description
ChatAlpaca is a chat dataset that aims to help researchers develop models for instruction-following in multi-turn conversations. The dataset is an extension of the [Stanford Alpaca data](https://github.com/tatsu-lab/stanford_alpaca), which contains multi-turn instructions and their corresponding responses.
ChatAlpaca is developed by Chinese Information Processing Laboratory at the Institute of Software, Chinese Academy of Sciences (www.icip.org.cn).
In this dataset, we use ChatGPT (GPT-3.5-turbo) to generate follow-up utterances and continue the conversation with ChatGPT. This process results in multi-turn conversations where the simulated user provides instructions and ChatGPT responds accordingly.
### Dataset Structure
The data in this repository consists of a JSON file chatalpaca-20k.json containing the multi-turn instruction-following conversations. Each item in the data file represents a different conversation between a simulated user and the ChatGPT. The data currently contains a total of 20,000 conversations.
I've created 3 splits in the dataset:
* original: all the data as available in the original chatalpaca-20k.json
* train: 19600 rows for training
* test: 400 rows for testing or validating.
*
The conversations in the dataset begin with an instruction, followed by a response from ChatGPT, which are from the Stanford Alpaca data. The conversation then continues with the user providing further instructions and ChatGPT responding accordingly.
Each item in the dataset is a list of dictionaries, each dictionary contains the following fields:
* id: int, identifier
* messages: list, contains multiple dictionaries representing the conversations
Each dictionary in the messages list contains the following fields:
* role: str, with values "user" or "assistant";
* content: str, the conversation content.
! Note: In the original .json file the researchers used different field and variable names.
I've renamed them to be consistent with the defacto standard as used for chat conversations.
Here is an example of one conversation:
```
[
{
"role": "user",
"content": "Identify the odd one out: Twitter, Instagram, Telegram"
},
{
"role": "assistant",
"content": "Telegram"
},
{
"role": "user",
"content": "What makes Telegram different from Twitter and Instagram?"
},
{
"role": "assistant",
"content": "Telegram is a cloud-based instant messaging app that focuses on privacy and security. Unlike Twitter and Instagram which are mainly used for following news, celebrities, and sharing images, Telegram was created as a secure messaging app for private and group communication. Telegram also offers more advanced features than Twitter and Instagram, such as the ability to schedule messages, create bots, and send encrypted messages."
},
{
"role": "user",
"content": "Can you give me an example of how the scheduling messages feature can be useful on Telegram?"
},
{
"role": "assistant",
"content": "Sure! The scheduling messages feature on Telegram can be useful in many different situations. Here's an example:\n\nLet's say you have a workgroup on Telegram, and you want to send a message to everyone in the group to remind them of a meeting. However, you know that most of the people in the group are busy at work during the time you want to send the message.\n\nThat's where the scheduling messages feature comes in. You can schedule the message to be sent at a later time when people are more likely to be free, such as during their lunch break or after work. This way, everyone in the group will receive the message at the same time, and you won't have to worry about anyone missing the important reminder.\n\nOverall, the scheduling messages feature can be really helpful for coordinating communication with groups of people on Telegram, whether it's for work, social events, or anything else."
},
{
"role": "user",
"content": "Goodbye."
}
]
```
### Discussion of Biases
As this dataset contains machine-generated texts it could contain potential biases. Verify and validate this for your specific usage scenario.
## Citation
!! Note. I've only put this dataset on HuggingFace since it was not available. All credits go to the original researchers and creators.
Please cite the original repository if you use the dataset.
```
@misc{ChatAlpaca,
author = {Ning Bian and Hongyu Lin and Yaojie Lu and Xianpei Han and Le Sun and Ben He },
title = {ChatAlpaca: A Multi-Turn Dialogue Corpus based on Alpaca Instructions},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/cascip/ChatAlpaca}},
}
``` | robinsmits/ChatAlpaca-20K | [
"task_categories:conversational",
"task_categories:text-generation",
"size_categories:10K<n<100K",
"language:en",
"license:apache-2.0",
"chat",
"alpaca",
"gpt-3.5",
"region:us"
] | 2024-01-06T13:44:38+00:00 | {"language": ["en"], "license": "apache-2.0", "size_categories": ["10K<n<100K"], "task_categories": ["conversational", "text-generation"], "pretty_name": "ChatAlpaca 20K", "tags": ["chat", "alpaca", "gpt-3.5"], "dataset_info": {"features": [{"name": "id", "dtype": "int32"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "original", "num_bytes": 68350442, "num_examples": 20000}, {"name": "train", "num_bytes": 66983433.16, "num_examples": 19600}, {"name": "test", "num_bytes": 1367008.84, "num_examples": 400}], "download_size": 69122205, "dataset_size": 136700884.0}, "configs": [{"config_name": "default", "data_files": [{"split": "original", "path": "data/original-*"}, {"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}]} | 2024-01-08T22:18:52+00:00 | [] | [
"en"
] | TAGS
#task_categories-conversational #task_categories-text-generation #size_categories-10K<n<100K #language-English #license-apache-2.0 #chat #alpaca #gpt-3.5 #region-us
| # Dataset Card for ChatAlpaca 20K
## ChatAlpaca: A Multi-Turn Dialogue Corpus based on Alpaca Instructions
### Dataset Description
ChatAlpaca is a chat dataset that aims to help researchers develop models for instruction-following in multi-turn conversations. The dataset is an extension of the Stanford Alpaca data, which contains multi-turn instructions and their corresponding responses.
ChatAlpaca is developed by Chinese Information Processing Laboratory at the Institute of Software, Chinese Academy of Sciences (URL).
In this dataset, we use ChatGPT (GPT-3.5-turbo) to generate follow-up utterances and continue the conversation with ChatGPT. This process results in multi-turn conversations where the simulated user provides instructions and ChatGPT responds accordingly.
### Dataset Structure
The data in this repository consists of a JSON file URL containing the multi-turn instruction-following conversations. Each item in the data file represents a different conversation between a simulated user and the ChatGPT. The data currently contains a total of 20,000 conversations.
I've created 3 splits in the dataset:
* original: all the data as available in the original URL
* train: 19600 rows for training
* test: 400 rows for testing or validating.
*
The conversations in the dataset begin with an instruction, followed by a response from ChatGPT, which are from the Stanford Alpaca data. The conversation then continues with the user providing further instructions and ChatGPT responding accordingly.
Each item in the dataset is a list of dictionaries, each dictionary contains the following fields:
* id: int, identifier
* messages: list, contains multiple dictionaries representing the conversations
Each dictionary in the messages list contains the following fields:
* role: str, with values "user" or "assistant";
* content: str, the conversation content.
! Note: In the original .json file the researchers used different field and variable names.
I've renamed them to be consistent with the defacto standard as used for chat conversations.
Here is an example of one conversation:
### Discussion of Biases
As this dataset contains machine-generated texts it could contain potential biases. Verify and validate this for your specific usage scenario.
!! Note. I've only put this dataset on HuggingFace since it was not available. All credits go to the original researchers and creators.
Please cite the original repository if you use the dataset.
| [
"# Dataset Card for ChatAlpaca 20K",
"## ChatAlpaca: A Multi-Turn Dialogue Corpus based on Alpaca Instructions",
"### Dataset Description\n\nChatAlpaca is a chat dataset that aims to help researchers develop models for instruction-following in multi-turn conversations. The dataset is an extension of the Stanford Alpaca data, which contains multi-turn instructions and their corresponding responses.\n\nChatAlpaca is developed by Chinese Information Processing Laboratory at the Institute of Software, Chinese Academy of Sciences (URL).\n\nIn this dataset, we use ChatGPT (GPT-3.5-turbo) to generate follow-up utterances and continue the conversation with ChatGPT. This process results in multi-turn conversations where the simulated user provides instructions and ChatGPT responds accordingly.",
"### Dataset Structure\n\nThe data in this repository consists of a JSON file URL containing the multi-turn instruction-following conversations. Each item in the data file represents a different conversation between a simulated user and the ChatGPT. The data currently contains a total of 20,000 conversations.\n\nI've created 3 splits in the dataset:\n* original: all the data as available in the original URL\n* train: 19600 rows for training\n* test: 400 rows for testing or validating.\n* \nThe conversations in the dataset begin with an instruction, followed by a response from ChatGPT, which are from the Stanford Alpaca data. The conversation then continues with the user providing further instructions and ChatGPT responding accordingly.\n\nEach item in the dataset is a list of dictionaries, each dictionary contains the following fields:\n\n* id: int, identifier\n* messages: list, contains multiple dictionaries representing the conversations\n\nEach dictionary in the messages list contains the following fields:\n* role: str, with values \"user\" or \"assistant\";\n* content: str, the conversation content.\n\n! Note: In the original .json file the researchers used different field and variable names. \nI've renamed them to be consistent with the defacto standard as used for chat conversations.\n\nHere is an example of one conversation:",
"### Discussion of Biases\n\nAs this dataset contains machine-generated texts it could contain potential biases. Verify and validate this for your specific usage scenario. \n\n!! Note. I've only put this dataset on HuggingFace since it was not available. All credits go to the original researchers and creators.\n\nPlease cite the original repository if you use the dataset."
] | [
"TAGS\n#task_categories-conversational #task_categories-text-generation #size_categories-10K<n<100K #language-English #license-apache-2.0 #chat #alpaca #gpt-3.5 #region-us \n",
"# Dataset Card for ChatAlpaca 20K",
"## ChatAlpaca: A Multi-Turn Dialogue Corpus based on Alpaca Instructions",
"### Dataset Description\n\nChatAlpaca is a chat dataset that aims to help researchers develop models for instruction-following in multi-turn conversations. The dataset is an extension of the Stanford Alpaca data, which contains multi-turn instructions and their corresponding responses.\n\nChatAlpaca is developed by Chinese Information Processing Laboratory at the Institute of Software, Chinese Academy of Sciences (URL).\n\nIn this dataset, we use ChatGPT (GPT-3.5-turbo) to generate follow-up utterances and continue the conversation with ChatGPT. This process results in multi-turn conversations where the simulated user provides instructions and ChatGPT responds accordingly.",
"### Dataset Structure\n\nThe data in this repository consists of a JSON file URL containing the multi-turn instruction-following conversations. Each item in the data file represents a different conversation between a simulated user and the ChatGPT. The data currently contains a total of 20,000 conversations.\n\nI've created 3 splits in the dataset:\n* original: all the data as available in the original URL\n* train: 19600 rows for training\n* test: 400 rows for testing or validating.\n* \nThe conversations in the dataset begin with an instruction, followed by a response from ChatGPT, which are from the Stanford Alpaca data. The conversation then continues with the user providing further instructions and ChatGPT responding accordingly.\n\nEach item in the dataset is a list of dictionaries, each dictionary contains the following fields:\n\n* id: int, identifier\n* messages: list, contains multiple dictionaries representing the conversations\n\nEach dictionary in the messages list contains the following fields:\n* role: str, with values \"user\" or \"assistant\";\n* content: str, the conversation content.\n\n! Note: In the original .json file the researchers used different field and variable names. \nI've renamed them to be consistent with the defacto standard as used for chat conversations.\n\nHere is an example of one conversation:",
"### Discussion of Biases\n\nAs this dataset contains machine-generated texts it could contain potential biases. Verify and validate this for your specific usage scenario. \n\n!! Note. I've only put this dataset on HuggingFace since it was not available. All credits go to the original researchers and creators.\n\nPlease cite the original repository if you use the dataset."
] | [
61,
11,
21,
154,
312,
89
] | [
"passage: TAGS\n#task_categories-conversational #task_categories-text-generation #size_categories-10K<n<100K #language-English #license-apache-2.0 #chat #alpaca #gpt-3.5 #region-us \n# Dataset Card for ChatAlpaca 20K## ChatAlpaca: A Multi-Turn Dialogue Corpus based on Alpaca Instructions### Dataset Description\n\nChatAlpaca is a chat dataset that aims to help researchers develop models for instruction-following in multi-turn conversations. The dataset is an extension of the Stanford Alpaca data, which contains multi-turn instructions and their corresponding responses.\n\nChatAlpaca is developed by Chinese Information Processing Laboratory at the Institute of Software, Chinese Academy of Sciences (URL).\n\nIn this dataset, we use ChatGPT (GPT-3.5-turbo) to generate follow-up utterances and continue the conversation with ChatGPT. This process results in multi-turn conversations where the simulated user provides instructions and ChatGPT responds accordingly."
] |
7aae6e753a9f0648b5d19ad9ce6add9c88512588 |
# Dataset of Kaede Ikeno
This is the dataset of Kaede Ikeno, containing 150 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
| Name | Images | Download | Description |
|:----------------|---------:|:----------------------------------------|:-----------------------------------------------------------------------------------------|
| raw | 150 | [Download](dataset-raw.zip) | Raw data with meta information. |
| raw-stage3 | 348 | [Download](dataset-raw-stage3.zip) | 3-stage cropped raw data with meta information. |
| raw-stage3-eyes | 383 | [Download](dataset-raw-stage3-eyes.zip) | 3-stage cropped (with eye-focus) raw data with meta information. |
| 384x512 | 150 | [Download](dataset-384x512.zip) | 384x512 aligned dataset. |
| 512x704 | 150 | [Download](dataset-512x704.zip) | 512x704 aligned dataset. |
| 640x880 | 150 | [Download](dataset-640x880.zip) | 640x880 aligned dataset. |
| stage3-640 | 348 | [Download](dataset-stage3-640.zip) | 3-stage cropped dataset with the shorter side not exceeding 640 pixels. |
| stage3-800 | 348 | [Download](dataset-stage3-800.zip) | 3-stage cropped dataset with the shorter side not exceeding 800 pixels. |
| stage3-p512-640 | 301 | [Download](dataset-stage3-p512-640.zip) | 3-stage cropped dataset with the area not less than 512x512 pixels. |
| stage3-eyes-640 | 383 | [Download](dataset-stage3-eyes-640.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 640 pixels. |
| stage3-eyes-800 | 383 | [Download](dataset-stage3-eyes-800.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 800 pixels. |
| CyberHarem/kaede_ikeno_sakuratrick | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-06T13:47:17+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-06T13:48:06+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of Kaede Ikeno
======================
This is the dataset of Kaede Ikeno, containing 150 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
| [] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] | [
44
] | [
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] |
37b68744b0e3e36f5e50564c406ae3786110ea6c | ---
# Information
This is a reformatted version of the [HumanEval dataset](https://github.com/openai/human-eval)
| nus-yam/human-eval | [
"license:mit",
"region:us"
] | 2024-01-06T13:50:57+00:00 | {"license": "mit", "pretty_name": "HumanEval", "description": "A formatted version of HumanEval.", "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "HumanEval.csv"}]}]} | 2024-01-06T14:43:16+00:00 | [] | [] | TAGS
#license-mit #region-us
| ---
# Information
This is a reformatted version of the HumanEval dataset
| [
"# Information\n\nThis is a reformatted version of the HumanEval dataset"
] | [
"TAGS\n#license-mit #region-us \n",
"# Information\n\nThis is a reformatted version of the HumanEval dataset"
] | [
11,
16
] | [
"passage: TAGS\n#license-mit #region-us \n# Information\n\nThis is a reformatted version of the HumanEval dataset"
] |
4980a7f19fbafea8dfe8ef8f03f7ce5486ef3170 |
# Dataset of Kotone Noda
This is the dataset of Kotone Noda, containing 90 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
| Name | Images | Download | Description |
|:----------------|---------:|:----------------------------------------|:-----------------------------------------------------------------------------------------|
| raw | 90 | [Download](dataset-raw.zip) | Raw data with meta information. |
| raw-stage3 | 224 | [Download](dataset-raw-stage3.zip) | 3-stage cropped raw data with meta information. |
| raw-stage3-eyes | 234 | [Download](dataset-raw-stage3-eyes.zip) | 3-stage cropped (with eye-focus) raw data with meta information. |
| 384x512 | 90 | [Download](dataset-384x512.zip) | 384x512 aligned dataset. |
| 512x704 | 90 | [Download](dataset-512x704.zip) | 512x704 aligned dataset. |
| 640x880 | 90 | [Download](dataset-640x880.zip) | 640x880 aligned dataset. |
| stage3-640 | 224 | [Download](dataset-stage3-640.zip) | 3-stage cropped dataset with the shorter side not exceeding 640 pixels. |
| stage3-800 | 224 | [Download](dataset-stage3-800.zip) | 3-stage cropped dataset with the shorter side not exceeding 800 pixels. |
| stage3-p512-640 | 172 | [Download](dataset-stage3-p512-640.zip) | 3-stage cropped dataset with the area not less than 512x512 pixels. |
| stage3-eyes-640 | 234 | [Download](dataset-stage3-eyes-640.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 640 pixels. |
| stage3-eyes-800 | 234 | [Download](dataset-stage3-eyes-800.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 800 pixels. |
| CyberHarem/kotone_noda_sakuratrick | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-06T13:53:16+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-06T13:53:54+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of Kotone Noda
======================
This is the dataset of Kotone Noda, containing 90 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
| [] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] | [
44
] | [
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] |
c6101690e3cde31b66703ddb883e5a1e762e607c | A DPO set using prompts from [xzuyn/Stable-Diffusion-Prompts-Deduped-2.008M](https://huggingface.co/datasets/xzuyn/Stable-Diffusion-Prompts-Deduped-2.008M).
For use with [this version of the Diffusion DPO LoRA script](https://gist.github.com/xzuyn/e931da62ba32a2aa4f41238c52d7ad3b).
I generated the images using my merge [xzuyn/PhotoMerge](https://huggingface.co/xzuyn/PhotoMerge). This merge I find prefers a CFG of 3-4, and at least 16-32 steps. 512x512.
Chosen is: 100 steps, 4 cfg
Rejected is: 8 steps, 4 cfg | xzuyn/SD-DPO | [
"size_categories:n<1K",
"language:en",
"DPO",
"preference",
"rlhf",
"region:us"
] | 2024-01-06T13:57:12+00:00 | {"language": ["en"], "size_categories": ["n<1K"], "tags": ["DPO", "preference", "rlhf"]} | 2024-01-06T14:02:46+00:00 | [] | [
"en"
] | TAGS
#size_categories-n<1K #language-English #DPO #preference #rlhf #region-us
| A DPO set using prompts from xzuyn/Stable-Diffusion-Prompts-Deduped-2.008M.
For use with this version of the Diffusion DPO LoRA script.
I generated the images using my merge xzuyn/PhotoMerge. This merge I find prefers a CFG of 3-4, and at least 16-32 steps. 512x512.
Chosen is: 100 steps, 4 cfg
Rejected is: 8 steps, 4 cfg | [] | [
"TAGS\n#size_categories-n<1K #language-English #DPO #preference #rlhf #region-us \n"
] | [
30
] | [
"passage: TAGS\n#size_categories-n<1K #language-English #DPO #preference #rlhf #region-us \n"
] |
062845b4ff93e5af5f0fc13a1476c6490a7c8f9a |
# Dataset of Shizuku Minami
This is the dataset of Shizuku Minami, containing 101 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
| Name | Images | Download | Description |
|:----------------|---------:|:----------------------------------------|:-----------------------------------------------------------------------------------------|
| raw | 101 | [Download](dataset-raw.zip) | Raw data with meta information. |
| raw-stage3 | 237 | [Download](dataset-raw-stage3.zip) | 3-stage cropped raw data with meta information. |
| raw-stage3-eyes | 273 | [Download](dataset-raw-stage3-eyes.zip) | 3-stage cropped (with eye-focus) raw data with meta information. |
| 384x512 | 101 | [Download](dataset-384x512.zip) | 384x512 aligned dataset. |
| 512x704 | 101 | [Download](dataset-512x704.zip) | 512x704 aligned dataset. |
| 640x880 | 101 | [Download](dataset-640x880.zip) | 640x880 aligned dataset. |
| stage3-640 | 237 | [Download](dataset-stage3-640.zip) | 3-stage cropped dataset with the shorter side not exceeding 640 pixels. |
| stage3-800 | 237 | [Download](dataset-stage3-800.zip) | 3-stage cropped dataset with the shorter side not exceeding 800 pixels. |
| stage3-p512-640 | 197 | [Download](dataset-stage3-p512-640.zip) | 3-stage cropped dataset with the area not less than 512x512 pixels. |
| stage3-eyes-640 | 273 | [Download](dataset-stage3-eyes-640.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 640 pixels. |
| stage3-eyes-800 | 273 | [Download](dataset-stage3-eyes-800.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 800 pixels. |
| CyberHarem/shizuku_minami_sakuratrick | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-06T14:00:09+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-06T14:01:00+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of Shizuku Minami
=========================
This is the dataset of Shizuku Minami, containing 101 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
| [] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] | [
44
] | [
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] |
f65587098bb5c9cd8378e451b7e57b72a0c64b2d | # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_nearestscore_true"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | ibranze/araproje_hellaswag_tr_conf_mgpt_nearestscore_true | [
"region:us"
] | 2024-01-06T14:10:39+00:00 | {"dataset_info": {"features": [{"name": "ind", "dtype": "int32"}, {"name": "activity_label", "dtype": "string"}, {"name": "ctx_a", "dtype": "string"}, {"name": "ctx_b", "dtype": "string"}, {"name": "ctx", "dtype": "string"}, {"name": "endings", "sequence": "string"}, {"name": "source_id", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "split_type", "dtype": "string"}, {"name": "label", "dtype": "string"}], "splits": [{"name": "validation", "num_bytes": 162703.0, "num_examples": 250}], "download_size": 87094, "dataset_size": 162703.0}, "configs": [{"config_name": "default", "data_files": [{"split": "validation", "path": "data/validation-*"}]}]} | 2024-01-06T14:10:41+00:00 | [] | [] | TAGS
#region-us
| # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_nearestscore_true"
More Information needed | [
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_nearestscore_true\"\n\nMore Information needed"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_nearestscore_true\"\n\nMore Information needed"
] | [
6,
33
] | [
"passage: TAGS\n#region-us \n# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_nearestscore_true\"\n\nMore Information needed"
] |
d08bdd3213a43a4f00b3cf89c91c27d60ac259d4 | # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_nearestscore_false"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | ibranze/araproje_hellaswag_tr_conf_mgpt_nearestscore_false | [
"region:us"
] | 2024-01-06T14:10:43+00:00 | {"dataset_info": {"features": [{"name": "ind", "dtype": "int32"}, {"name": "activity_label", "dtype": "string"}, {"name": "ctx_a", "dtype": "string"}, {"name": "ctx_b", "dtype": "string"}, {"name": "ctx", "dtype": "string"}, {"name": "endings", "sequence": "string"}, {"name": "source_id", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "split_type", "dtype": "string"}, {"name": "label", "dtype": "string"}], "splits": [{"name": "validation", "num_bytes": 162703.0, "num_examples": 250}], "download_size": 87247, "dataset_size": 162703.0}, "configs": [{"config_name": "default", "data_files": [{"split": "validation", "path": "data/validation-*"}]}]} | 2024-01-06T14:10:47+00:00 | [] | [] | TAGS
#region-us
| # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_nearestscore_false"
More Information needed | [
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_nearestscore_false\"\n\nMore Information needed"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_nearestscore_false\"\n\nMore Information needed"
] | [
6,
33
] | [
"passage: TAGS\n#region-us \n# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_nearestscore_false\"\n\nMore Information needed"
] |
49542cfb0b96fc514c9976bd02b517c1b571a2d6 |
# Dataset of Mitsuki Sonoda
This is the dataset of Mitsuki Sonoda, containing 132 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
| Name | Images | Download | Description |
|:----------------|---------:|:----------------------------------------|:-----------------------------------------------------------------------------------------|
| raw | 132 | [Download](dataset-raw.zip) | Raw data with meta information. |
| raw-stage3 | 348 | [Download](dataset-raw-stage3.zip) | 3-stage cropped raw data with meta information. |
| raw-stage3-eyes | 417 | [Download](dataset-raw-stage3-eyes.zip) | 3-stage cropped (with eye-focus) raw data with meta information. |
| 384x512 | 132 | [Download](dataset-384x512.zip) | 384x512 aligned dataset. |
| 512x704 | 132 | [Download](dataset-512x704.zip) | 512x704 aligned dataset. |
| 640x880 | 132 | [Download](dataset-640x880.zip) | 640x880 aligned dataset. |
| stage3-640 | 348 | [Download](dataset-stage3-640.zip) | 3-stage cropped dataset with the shorter side not exceeding 640 pixels. |
| stage3-800 | 348 | [Download](dataset-stage3-800.zip) | 3-stage cropped dataset with the shorter side not exceeding 800 pixels. |
| stage3-p512-640 | 295 | [Download](dataset-stage3-p512-640.zip) | 3-stage cropped dataset with the area not less than 512x512 pixels. |
| stage3-eyes-640 | 417 | [Download](dataset-stage3-eyes-640.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 640 pixels. |
| stage3-eyes-800 | 417 | [Download](dataset-stage3-eyes-800.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 800 pixels. |
| CyberHarem/mitsuki_sonoda_sakuratrick | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-06T14:11:48+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-06T14:14:51+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of Mitsuki Sonoda
=========================
This is the dataset of Mitsuki Sonoda, containing 132 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
| [] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] | [
44
] | [
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] |
f038defd251a9a217030d9f42b17231e0a7dd6b8 | # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_midscore_false_reversed"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | ibranze/araproje_hellaswag_tr_conf_mgpt_midscore_false_reversed | [
"region:us"
] | 2024-01-06T14:14:54+00:00 | {"dataset_info": {"features": [{"name": "ind", "dtype": "int32"}, {"name": "activity_label", "dtype": "string"}, {"name": "ctx_a", "dtype": "string"}, {"name": "ctx_b", "dtype": "string"}, {"name": "ctx", "dtype": "string"}, {"name": "endings", "sequence": "string"}, {"name": "source_id", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "split_type", "dtype": "string"}, {"name": "label", "dtype": "string"}], "splits": [{"name": "validation", "num_bytes": 162703.0, "num_examples": 250}], "download_size": 87315, "dataset_size": 162703.0}, "configs": [{"config_name": "default", "data_files": [{"split": "validation", "path": "data/validation-*"}]}]} | 2024-01-06T14:14:56+00:00 | [] | [] | TAGS
#region-us
| # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_midscore_false_reversed"
More Information needed | [
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_midscore_false_reversed\"\n\nMore Information needed"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_midscore_false_reversed\"\n\nMore Information needed"
] | [
6,
35
] | [
"passage: TAGS\n#region-us \n# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_midscore_false_reversed\"\n\nMore Information needed"
] |
0b42d4b487f11d21fadcc1dda604d64fc55dba2c |
# Dataset of Sumi Otokawa
This is the dataset of Sumi Otokawa, containing 49 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
| Name | Images | Download | Description |
|:----------------|---------:|:----------------------------------------|:-----------------------------------------------------------------------------------------|
| raw | 49 | [Download](dataset-raw.zip) | Raw data with meta information. |
| raw-stage3 | 117 | [Download](dataset-raw-stage3.zip) | 3-stage cropped raw data with meta information. |
| raw-stage3-eyes | 145 | [Download](dataset-raw-stage3-eyes.zip) | 3-stage cropped (with eye-focus) raw data with meta information. |
| 384x512 | 49 | [Download](dataset-384x512.zip) | 384x512 aligned dataset. |
| 512x704 | 49 | [Download](dataset-512x704.zip) | 512x704 aligned dataset. |
| 640x880 | 49 | [Download](dataset-640x880.zip) | 640x880 aligned dataset. |
| stage3-640 | 117 | [Download](dataset-stage3-640.zip) | 3-stage cropped dataset with the shorter side not exceeding 640 pixels. |
| stage3-800 | 117 | [Download](dataset-stage3-800.zip) | 3-stage cropped dataset with the shorter side not exceeding 800 pixels. |
| stage3-p512-640 | 101 | [Download](dataset-stage3-p512-640.zip) | 3-stage cropped dataset with the area not less than 512x512 pixels. |
| stage3-eyes-640 | 145 | [Download](dataset-stage3-eyes-640.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 640 pixels. |
| stage3-eyes-800 | 145 | [Download](dataset-stage3-eyes-800.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 800 pixels. |
| CyberHarem/sumi_otokawa_sakuratrick | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-06T14:18:04+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-06T14:19:21+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of Sumi Otokawa
=======================
This is the dataset of Sumi Otokawa, containing 49 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
| [] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] | [
44
] | [
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] |
9688c1791aa0288b1d8b418ae8dd357136b04a83 | t. The dataset contains circular economy business ideas that come in
problem-solution pairs. Participants were asked about the problem their solution is meant to
solve and describe the solution in their own words | Kisu-2003/dataset_ai_earth_hackthon | [
"task_categories:table-question-answering",
"size_categories:n<1K",
"license:apache-2.0",
"climate",
"region:us"
] | 2024-01-06T14:19:07+00:00 | {"license": "apache-2.0", "size_categories": ["n<1K"], "task_categories": ["table-question-answering"], "tags": ["climate"]} | 2024-01-06T15:55:58+00:00 | [] | [] | TAGS
#task_categories-table-question-answering #size_categories-n<1K #license-apache-2.0 #climate #region-us
| t. The dataset contains circular economy business ideas that come in
problem-solution pairs. Participants were asked about the problem their solution is meant to
solve and describe the solution in their own words | [] | [
"TAGS\n#task_categories-table-question-answering #size_categories-n<1K #license-apache-2.0 #climate #region-us \n"
] | [
42
] | [
"passage: TAGS\n#task_categories-table-question-answering #size_categories-n<1K #license-apache-2.0 #climate #region-us \n"
] |
c227ead06ae6492328d9b8ef2d309d5ba2a12820 |
# Dataset Card for Evaluation run of cloudyu/Mixtral_7Bx5_MoE_30B
<!-- Provide a quick summary of the dataset. -->
Dataset automatically created during the evaluation run of model [cloudyu/Mixtral_7Bx5_MoE_30B](https://huggingface.co/cloudyu/Mixtral_7Bx5_MoE_30B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset("open-llm-leaderboard/details_cloudyu__Mixtral_7Bx5_MoE_30B",
"harness_winogrande_5",
split="train")
```
## Latest results
These are the [latest results from run 2024-01-06T14:21:39.499093](https://huggingface.co/datasets/open-llm-leaderboard/details_cloudyu__Mixtral_7Bx5_MoE_30B/blob/main/results_2024-01-06T14-21-39.499093.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"acc": 0.6493865331777782,
"acc_stderr": 0.03218980866657855,
"acc_norm": 0.6488917285561709,
"acc_norm_stderr": 0.03285901354356614,
"mc1": 0.5116279069767442,
"mc1_stderr": 0.017498767175740084,
"mc2": 0.6597251221687485,
"mc2_stderr": 0.015039625746661539
},
"harness|arc:challenge|25": {
"acc": 0.6766211604095563,
"acc_stderr": 0.013669421630012127,
"acc_norm": 0.6996587030716723,
"acc_norm_stderr": 0.013395909309957007
},
"harness|hellaswag|10": {
"acc": 0.6876120294761999,
"acc_stderr": 0.0046251987567102444,
"acc_norm": 0.8681537542322246,
"acc_norm_stderr": 0.0033763209559167064
},
"harness|hendrycksTest-abstract_algebra|5": {
"acc": 0.26,
"acc_stderr": 0.044084400227680794,
"acc_norm": 0.26,
"acc_norm_stderr": 0.044084400227680794
},
"harness|hendrycksTest-anatomy|5": {
"acc": 0.6296296296296297,
"acc_stderr": 0.041716541613545426,
"acc_norm": 0.6296296296296297,
"acc_norm_stderr": 0.041716541613545426
},
"harness|hendrycksTest-astronomy|5": {
"acc": 0.7039473684210527,
"acc_stderr": 0.03715062154998904,
"acc_norm": 0.7039473684210527,
"acc_norm_stderr": 0.03715062154998904
},
"harness|hendrycksTest-business_ethics|5": {
"acc": 0.63,
"acc_stderr": 0.04852365870939099,
"acc_norm": 0.63,
"acc_norm_stderr": 0.04852365870939099
},
"harness|hendrycksTest-clinical_knowledge|5": {
"acc": 0.7018867924528301,
"acc_stderr": 0.02815283794249387,
"acc_norm": 0.7018867924528301,
"acc_norm_stderr": 0.02815283794249387
},
"harness|hendrycksTest-college_biology|5": {
"acc": 0.7569444444444444,
"acc_stderr": 0.03586879280080341,
"acc_norm": 0.7569444444444444,
"acc_norm_stderr": 0.03586879280080341
},
"harness|hendrycksTest-college_chemistry|5": {
"acc": 0.51,
"acc_stderr": 0.05024183937956912,
"acc_norm": 0.51,
"acc_norm_stderr": 0.05024183937956912
},
"harness|hendrycksTest-college_computer_science|5": {
"acc": 0.57,
"acc_stderr": 0.04975698519562428,
"acc_norm": 0.57,
"acc_norm_stderr": 0.04975698519562428
},
"harness|hendrycksTest-college_mathematics|5": {
"acc": 0.31,
"acc_stderr": 0.04648231987117316,
"acc_norm": 0.31,
"acc_norm_stderr": 0.04648231987117316
},
"harness|hendrycksTest-college_medicine|5": {
"acc": 0.6763005780346821,
"acc_stderr": 0.035676037996391706,
"acc_norm": 0.6763005780346821,
"acc_norm_stderr": 0.035676037996391706
},
"harness|hendrycksTest-college_physics|5": {
"acc": 0.45098039215686275,
"acc_stderr": 0.049512182523962625,
"acc_norm": 0.45098039215686275,
"acc_norm_stderr": 0.049512182523962625
},
"harness|hendrycksTest-computer_security|5": {
"acc": 0.74,
"acc_stderr": 0.04408440022768078,
"acc_norm": 0.74,
"acc_norm_stderr": 0.04408440022768078
},
"harness|hendrycksTest-conceptual_physics|5": {
"acc": 0.5914893617021276,
"acc_stderr": 0.032134180267015755,
"acc_norm": 0.5914893617021276,
"acc_norm_stderr": 0.032134180267015755
},
"harness|hendrycksTest-econometrics|5": {
"acc": 0.5087719298245614,
"acc_stderr": 0.047028804320496165,
"acc_norm": 0.5087719298245614,
"acc_norm_stderr": 0.047028804320496165
},
"harness|hendrycksTest-electrical_engineering|5": {
"acc": 0.5517241379310345,
"acc_stderr": 0.04144311810878152,
"acc_norm": 0.5517241379310345,
"acc_norm_stderr": 0.04144311810878152
},
"harness|hendrycksTest-elementary_mathematics|5": {
"acc": 0.43386243386243384,
"acc_stderr": 0.02552503438247489,
"acc_norm": 0.43386243386243384,
"acc_norm_stderr": 0.02552503438247489
},
"harness|hendrycksTest-formal_logic|5": {
"acc": 0.42857142857142855,
"acc_stderr": 0.0442626668137991,
"acc_norm": 0.42857142857142855,
"acc_norm_stderr": 0.0442626668137991
},
"harness|hendrycksTest-global_facts|5": {
"acc": 0.37,
"acc_stderr": 0.04852365870939099,
"acc_norm": 0.37,
"acc_norm_stderr": 0.04852365870939099
},
"harness|hendrycksTest-high_school_biology|5": {
"acc": 0.7741935483870968,
"acc_stderr": 0.023785577884181015,
"acc_norm": 0.7741935483870968,
"acc_norm_stderr": 0.023785577884181015
},
"harness|hendrycksTest-high_school_chemistry|5": {
"acc": 0.47783251231527096,
"acc_stderr": 0.03514528562175008,
"acc_norm": 0.47783251231527096,
"acc_norm_stderr": 0.03514528562175008
},
"harness|hendrycksTest-high_school_computer_science|5": {
"acc": 0.69,
"acc_stderr": 0.04648231987117316,
"acc_norm": 0.69,
"acc_norm_stderr": 0.04648231987117316
},
"harness|hendrycksTest-high_school_european_history|5": {
"acc": 0.7757575757575758,
"acc_stderr": 0.03256866661681102,
"acc_norm": 0.7757575757575758,
"acc_norm_stderr": 0.03256866661681102
},
"harness|hendrycksTest-high_school_geography|5": {
"acc": 0.7878787878787878,
"acc_stderr": 0.02912652283458682,
"acc_norm": 0.7878787878787878,
"acc_norm_stderr": 0.02912652283458682
},
"harness|hendrycksTest-high_school_government_and_politics|5": {
"acc": 0.8860103626943006,
"acc_stderr": 0.022935144053919436,
"acc_norm": 0.8860103626943006,
"acc_norm_stderr": 0.022935144053919436
},
"harness|hendrycksTest-high_school_macroeconomics|5": {
"acc": 0.6487179487179487,
"acc_stderr": 0.024203665177902803,
"acc_norm": 0.6487179487179487,
"acc_norm_stderr": 0.024203665177902803
},
"harness|hendrycksTest-high_school_mathematics|5": {
"acc": 0.32592592592592595,
"acc_stderr": 0.02857834836547308,
"acc_norm": 0.32592592592592595,
"acc_norm_stderr": 0.02857834836547308
},
"harness|hendrycksTest-high_school_microeconomics|5": {
"acc": 0.6890756302521008,
"acc_stderr": 0.03006676158297794,
"acc_norm": 0.6890756302521008,
"acc_norm_stderr": 0.03006676158297794
},
"harness|hendrycksTest-high_school_physics|5": {
"acc": 0.33112582781456956,
"acc_stderr": 0.038425817186598696,
"acc_norm": 0.33112582781456956,
"acc_norm_stderr": 0.038425817186598696
},
"harness|hendrycksTest-high_school_psychology|5": {
"acc": 0.8477064220183487,
"acc_stderr": 0.015405084393157074,
"acc_norm": 0.8477064220183487,
"acc_norm_stderr": 0.015405084393157074
},
"harness|hendrycksTest-high_school_statistics|5": {
"acc": 0.5324074074074074,
"acc_stderr": 0.03402801581358966,
"acc_norm": 0.5324074074074074,
"acc_norm_stderr": 0.03402801581358966
},
"harness|hendrycksTest-high_school_us_history|5": {
"acc": 0.8088235294117647,
"acc_stderr": 0.027599174300640766,
"acc_norm": 0.8088235294117647,
"acc_norm_stderr": 0.027599174300640766
},
"harness|hendrycksTest-high_school_world_history|5": {
"acc": 0.7974683544303798,
"acc_stderr": 0.026160568246601443,
"acc_norm": 0.7974683544303798,
"acc_norm_stderr": 0.026160568246601443
},
"harness|hendrycksTest-human_aging|5": {
"acc": 0.6860986547085202,
"acc_stderr": 0.031146796482972465,
"acc_norm": 0.6860986547085202,
"acc_norm_stderr": 0.031146796482972465
},
"harness|hendrycksTest-human_sexuality|5": {
"acc": 0.7709923664122137,
"acc_stderr": 0.036853466317118506,
"acc_norm": 0.7709923664122137,
"acc_norm_stderr": 0.036853466317118506
},
"harness|hendrycksTest-international_law|5": {
"acc": 0.8016528925619835,
"acc_stderr": 0.03640118271990946,
"acc_norm": 0.8016528925619835,
"acc_norm_stderr": 0.03640118271990946
},
"harness|hendrycksTest-jurisprudence|5": {
"acc": 0.7407407407407407,
"acc_stderr": 0.042365112580946315,
"acc_norm": 0.7407407407407407,
"acc_norm_stderr": 0.042365112580946315
},
"harness|hendrycksTest-logical_fallacies|5": {
"acc": 0.7607361963190185,
"acc_stderr": 0.0335195387952127,
"acc_norm": 0.7607361963190185,
"acc_norm_stderr": 0.0335195387952127
},
"harness|hendrycksTest-machine_learning|5": {
"acc": 0.45535714285714285,
"acc_stderr": 0.047268355537191,
"acc_norm": 0.45535714285714285,
"acc_norm_stderr": 0.047268355537191
},
"harness|hendrycksTest-management|5": {
"acc": 0.7669902912621359,
"acc_stderr": 0.04185832598928315,
"acc_norm": 0.7669902912621359,
"acc_norm_stderr": 0.04185832598928315
},
"harness|hendrycksTest-marketing|5": {
"acc": 0.8888888888888888,
"acc_stderr": 0.020588491316092375,
"acc_norm": 0.8888888888888888,
"acc_norm_stderr": 0.020588491316092375
},
"harness|hendrycksTest-medical_genetics|5": {
"acc": 0.72,
"acc_stderr": 0.045126085985421276,
"acc_norm": 0.72,
"acc_norm_stderr": 0.045126085985421276
},
"harness|hendrycksTest-miscellaneous|5": {
"acc": 0.8275862068965517,
"acc_stderr": 0.013507943909371802,
"acc_norm": 0.8275862068965517,
"acc_norm_stderr": 0.013507943909371802
},
"harness|hendrycksTest-moral_disputes|5": {
"acc": 0.7485549132947977,
"acc_stderr": 0.02335736578587403,
"acc_norm": 0.7485549132947977,
"acc_norm_stderr": 0.02335736578587403
},
"harness|hendrycksTest-moral_scenarios|5": {
"acc": 0.4301675977653631,
"acc_stderr": 0.016558601636041035,
"acc_norm": 0.4301675977653631,
"acc_norm_stderr": 0.016558601636041035
},
"harness|hendrycksTest-nutrition|5": {
"acc": 0.7222222222222222,
"acc_stderr": 0.025646863097137897,
"acc_norm": 0.7222222222222222,
"acc_norm_stderr": 0.025646863097137897
},
"harness|hendrycksTest-philosophy|5": {
"acc": 0.7138263665594855,
"acc_stderr": 0.025670259242188933,
"acc_norm": 0.7138263665594855,
"acc_norm_stderr": 0.025670259242188933
},
"harness|hendrycksTest-prehistory|5": {
"acc": 0.7376543209876543,
"acc_stderr": 0.024477222856135114,
"acc_norm": 0.7376543209876543,
"acc_norm_stderr": 0.024477222856135114
},
"harness|hendrycksTest-professional_accounting|5": {
"acc": 0.4716312056737589,
"acc_stderr": 0.02977945095730307,
"acc_norm": 0.4716312056737589,
"acc_norm_stderr": 0.02977945095730307
},
"harness|hendrycksTest-professional_law|5": {
"acc": 0.46088657105606257,
"acc_stderr": 0.012731102790504514,
"acc_norm": 0.46088657105606257,
"acc_norm_stderr": 0.012731102790504514
},
"harness|hendrycksTest-professional_medicine|5": {
"acc": 0.6764705882352942,
"acc_stderr": 0.02841820861940676,
"acc_norm": 0.6764705882352942,
"acc_norm_stderr": 0.02841820861940676
},
"harness|hendrycksTest-professional_psychology|5": {
"acc": 0.6650326797385621,
"acc_stderr": 0.01909422816700033,
"acc_norm": 0.6650326797385621,
"acc_norm_stderr": 0.01909422816700033
},
"harness|hendrycksTest-public_relations|5": {
"acc": 0.6727272727272727,
"acc_stderr": 0.0449429086625209,
"acc_norm": 0.6727272727272727,
"acc_norm_stderr": 0.0449429086625209
},
"harness|hendrycksTest-security_studies|5": {
"acc": 0.7510204081632653,
"acc_stderr": 0.027682979522960234,
"acc_norm": 0.7510204081632653,
"acc_norm_stderr": 0.027682979522960234
},
"harness|hendrycksTest-sociology|5": {
"acc": 0.8656716417910447,
"acc_stderr": 0.02411267824090083,
"acc_norm": 0.8656716417910447,
"acc_norm_stderr": 0.02411267824090083
},
"harness|hendrycksTest-us_foreign_policy|5": {
"acc": 0.83,
"acc_stderr": 0.0377525168068637,
"acc_norm": 0.83,
"acc_norm_stderr": 0.0377525168068637
},
"harness|hendrycksTest-virology|5": {
"acc": 0.536144578313253,
"acc_stderr": 0.03882310850890594,
"acc_norm": 0.536144578313253,
"acc_norm_stderr": 0.03882310850890594
},
"harness|hendrycksTest-world_religions|5": {
"acc": 0.8187134502923976,
"acc_stderr": 0.029547741687640038,
"acc_norm": 0.8187134502923976,
"acc_norm_stderr": 0.029547741687640038
},
"harness|truthfulqa:mc|0": {
"mc1": 0.5116279069767442,
"mc1_stderr": 0.017498767175740084,
"mc2": 0.6597251221687485,
"mc2_stderr": 0.015039625746661539
},
"harness|winogrande|5": {
"acc": 0.8097868981846882,
"acc_stderr": 0.01103033579861744
},
"harness|gsm8k|5": {
"acc": 0.7217589082638363,
"acc_stderr": 0.012343803671422673
}
}
```
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
[More Information Needed] | open-llm-leaderboard/details_cloudyu__Mixtral_7Bx5_MoE_30B | [
"region:us"
] | 2024-01-06T14:23:59+00:00 | {"pretty_name": "Evaluation run of cloudyu/Mixtral_7Bx5_MoE_30B", "dataset_summary": "Dataset automatically created during the evaluation run of model [cloudyu/Mixtral_7Bx5_MoE_30B](https://huggingface.co/cloudyu/Mixtral_7Bx5_MoE_30B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_cloudyu__Mixtral_7Bx5_MoE_30B\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-06T14:21:39.499093](https://huggingface.co/datasets/open-llm-leaderboard/details_cloudyu__Mixtral_7Bx5_MoE_30B/blob/main/results_2024-01-06T14-21-39.499093.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6493865331777782,\n \"acc_stderr\": 0.03218980866657855,\n \"acc_norm\": 0.6488917285561709,\n \"acc_norm_stderr\": 0.03285901354356614,\n \"mc1\": 0.5116279069767442,\n \"mc1_stderr\": 0.017498767175740084,\n \"mc2\": 0.6597251221687485,\n \"mc2_stderr\": 0.015039625746661539\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.6766211604095563,\n \"acc_stderr\": 0.013669421630012127,\n \"acc_norm\": 0.6996587030716723,\n \"acc_norm_stderr\": 0.013395909309957007\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6876120294761999,\n \"acc_stderr\": 0.0046251987567102444,\n \"acc_norm\": 0.8681537542322246,\n \"acc_norm_stderr\": 0.0033763209559167064\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.26,\n \"acc_stderr\": 0.044084400227680794,\n \"acc_norm\": 0.26,\n \"acc_norm_stderr\": 0.044084400227680794\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6296296296296297,\n \"acc_stderr\": 0.041716541613545426,\n \"acc_norm\": 0.6296296296296297,\n \"acc_norm_stderr\": 0.041716541613545426\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.7039473684210527,\n \"acc_stderr\": 0.03715062154998904,\n \"acc_norm\": 0.7039473684210527,\n \"acc_norm_stderr\": 0.03715062154998904\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.63,\n \"acc_stderr\": 0.04852365870939099,\n \"acc_norm\": 0.63,\n \"acc_norm_stderr\": 0.04852365870939099\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.7018867924528301,\n \"acc_stderr\": 0.02815283794249387,\n \"acc_norm\": 0.7018867924528301,\n \"acc_norm_stderr\": 0.02815283794249387\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7569444444444444,\n \"acc_stderr\": 0.03586879280080341,\n \"acc_norm\": 0.7569444444444444,\n \"acc_norm_stderr\": 0.03586879280080341\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.51,\n \"acc_stderr\": 0.05024183937956912,\n \"acc_norm\": 0.51,\n \"acc_norm_stderr\": 0.05024183937956912\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.57,\n \"acc_stderr\": 0.04975698519562428,\n \"acc_norm\": 0.57,\n \"acc_norm_stderr\": 0.04975698519562428\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.31,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.31,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6763005780346821,\n \"acc_stderr\": 0.035676037996391706,\n \"acc_norm\": 0.6763005780346821,\n \"acc_norm_stderr\": 0.035676037996391706\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.45098039215686275,\n \"acc_stderr\": 0.049512182523962625,\n \"acc_norm\": 0.45098039215686275,\n \"acc_norm_stderr\": 0.049512182523962625\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.74,\n \"acc_stderr\": 0.04408440022768078,\n \"acc_norm\": 0.74,\n \"acc_norm_stderr\": 0.04408440022768078\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5914893617021276,\n \"acc_stderr\": 0.032134180267015755,\n \"acc_norm\": 0.5914893617021276,\n \"acc_norm_stderr\": 0.032134180267015755\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.5087719298245614,\n \"acc_stderr\": 0.047028804320496165,\n \"acc_norm\": 0.5087719298245614,\n \"acc_norm_stderr\": 0.047028804320496165\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5517241379310345,\n \"acc_stderr\": 0.04144311810878152,\n \"acc_norm\": 0.5517241379310345,\n \"acc_norm_stderr\": 0.04144311810878152\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.43386243386243384,\n \"acc_stderr\": 0.02552503438247489,\n \"acc_norm\": 0.43386243386243384,\n \"acc_norm_stderr\": 0.02552503438247489\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.42857142857142855,\n \"acc_stderr\": 0.0442626668137991,\n \"acc_norm\": 0.42857142857142855,\n \"acc_norm_stderr\": 0.0442626668137991\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.37,\n \"acc_stderr\": 0.04852365870939099,\n \"acc_norm\": 0.37,\n \"acc_norm_stderr\": 0.04852365870939099\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7741935483870968,\n \"acc_stderr\": 0.023785577884181015,\n \"acc_norm\": 0.7741935483870968,\n \"acc_norm_stderr\": 0.023785577884181015\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.47783251231527096,\n \"acc_stderr\": 0.03514528562175008,\n \"acc_norm\": 0.47783251231527096,\n \"acc_norm_stderr\": 0.03514528562175008\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.69,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.69,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7757575757575758,\n \"acc_stderr\": 0.03256866661681102,\n \"acc_norm\": 0.7757575757575758,\n \"acc_norm_stderr\": 0.03256866661681102\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7878787878787878,\n \"acc_stderr\": 0.02912652283458682,\n \"acc_norm\": 0.7878787878787878,\n \"acc_norm_stderr\": 0.02912652283458682\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8860103626943006,\n \"acc_stderr\": 0.022935144053919436,\n \"acc_norm\": 0.8860103626943006,\n \"acc_norm_stderr\": 0.022935144053919436\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6487179487179487,\n \"acc_stderr\": 0.024203665177902803,\n \"acc_norm\": 0.6487179487179487,\n \"acc_norm_stderr\": 0.024203665177902803\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.32592592592592595,\n \"acc_stderr\": 0.02857834836547308,\n \"acc_norm\": 0.32592592592592595,\n \"acc_norm_stderr\": 0.02857834836547308\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6890756302521008,\n \"acc_stderr\": 0.03006676158297794,\n \"acc_norm\": 0.6890756302521008,\n \"acc_norm_stderr\": 0.03006676158297794\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.33112582781456956,\n \"acc_stderr\": 0.038425817186598696,\n \"acc_norm\": 0.33112582781456956,\n \"acc_norm_stderr\": 0.038425817186598696\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8477064220183487,\n \"acc_stderr\": 0.015405084393157074,\n \"acc_norm\": 0.8477064220183487,\n \"acc_norm_stderr\": 0.015405084393157074\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.5324074074074074,\n \"acc_stderr\": 0.03402801581358966,\n \"acc_norm\": 0.5324074074074074,\n \"acc_norm_stderr\": 0.03402801581358966\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.8088235294117647,\n \"acc_stderr\": 0.027599174300640766,\n \"acc_norm\": 0.8088235294117647,\n \"acc_norm_stderr\": 0.027599174300640766\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7974683544303798,\n \"acc_stderr\": 0.026160568246601443,\n \"acc_norm\": 0.7974683544303798,\n \"acc_norm_stderr\": 0.026160568246601443\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6860986547085202,\n \"acc_stderr\": 0.031146796482972465,\n \"acc_norm\": 0.6860986547085202,\n \"acc_norm_stderr\": 0.031146796482972465\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7709923664122137,\n \"acc_stderr\": 0.036853466317118506,\n \"acc_norm\": 0.7709923664122137,\n \"acc_norm_stderr\": 0.036853466317118506\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8016528925619835,\n \"acc_stderr\": 0.03640118271990946,\n \"acc_norm\": 0.8016528925619835,\n \"acc_norm_stderr\": 0.03640118271990946\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7407407407407407,\n \"acc_stderr\": 0.042365112580946315,\n \"acc_norm\": 0.7407407407407407,\n \"acc_norm_stderr\": 0.042365112580946315\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7607361963190185,\n \"acc_stderr\": 0.0335195387952127,\n \"acc_norm\": 0.7607361963190185,\n \"acc_norm_stderr\": 0.0335195387952127\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.45535714285714285,\n \"acc_stderr\": 0.047268355537191,\n \"acc_norm\": 0.45535714285714285,\n \"acc_norm_stderr\": 0.047268355537191\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7669902912621359,\n \"acc_stderr\": 0.04185832598928315,\n \"acc_norm\": 0.7669902912621359,\n \"acc_norm_stderr\": 0.04185832598928315\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8888888888888888,\n \"acc_stderr\": 0.020588491316092375,\n \"acc_norm\": 0.8888888888888888,\n \"acc_norm_stderr\": 0.020588491316092375\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.72,\n \"acc_stderr\": 0.045126085985421276,\n \"acc_norm\": 0.72,\n \"acc_norm_stderr\": 0.045126085985421276\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8275862068965517,\n \"acc_stderr\": 0.013507943909371802,\n \"acc_norm\": 0.8275862068965517,\n \"acc_norm_stderr\": 0.013507943909371802\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7485549132947977,\n \"acc_stderr\": 0.02335736578587403,\n \"acc_norm\": 0.7485549132947977,\n \"acc_norm_stderr\": 0.02335736578587403\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.4301675977653631,\n \"acc_stderr\": 0.016558601636041035,\n \"acc_norm\": 0.4301675977653631,\n \"acc_norm_stderr\": 0.016558601636041035\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7222222222222222,\n \"acc_stderr\": 0.025646863097137897,\n \"acc_norm\": 0.7222222222222222,\n \"acc_norm_stderr\": 0.025646863097137897\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.7138263665594855,\n \"acc_stderr\": 0.025670259242188933,\n \"acc_norm\": 0.7138263665594855,\n \"acc_norm_stderr\": 0.025670259242188933\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.7376543209876543,\n \"acc_stderr\": 0.024477222856135114,\n \"acc_norm\": 0.7376543209876543,\n \"acc_norm_stderr\": 0.024477222856135114\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.4716312056737589,\n \"acc_stderr\": 0.02977945095730307,\n \"acc_norm\": 0.4716312056737589,\n \"acc_norm_stderr\": 0.02977945095730307\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.46088657105606257,\n \"acc_stderr\": 0.012731102790504514,\n \"acc_norm\": 0.46088657105606257,\n \"acc_norm_stderr\": 0.012731102790504514\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6764705882352942,\n \"acc_stderr\": 0.02841820861940676,\n \"acc_norm\": 0.6764705882352942,\n \"acc_norm_stderr\": 0.02841820861940676\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6650326797385621,\n \"acc_stderr\": 0.01909422816700033,\n \"acc_norm\": 0.6650326797385621,\n \"acc_norm_stderr\": 0.01909422816700033\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6727272727272727,\n \"acc_stderr\": 0.0449429086625209,\n \"acc_norm\": 0.6727272727272727,\n \"acc_norm_stderr\": 0.0449429086625209\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7510204081632653,\n \"acc_stderr\": 0.027682979522960234,\n \"acc_norm\": 0.7510204081632653,\n \"acc_norm_stderr\": 0.027682979522960234\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8656716417910447,\n \"acc_stderr\": 0.02411267824090083,\n \"acc_norm\": 0.8656716417910447,\n \"acc_norm_stderr\": 0.02411267824090083\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.83,\n \"acc_stderr\": 0.0377525168068637,\n \"acc_norm\": 0.83,\n \"acc_norm_stderr\": 0.0377525168068637\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.536144578313253,\n \"acc_stderr\": 0.03882310850890594,\n \"acc_norm\": 0.536144578313253,\n \"acc_norm_stderr\": 0.03882310850890594\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8187134502923976,\n \"acc_stderr\": 0.029547741687640038,\n \"acc_norm\": 0.8187134502923976,\n \"acc_norm_stderr\": 0.029547741687640038\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.5116279069767442,\n \"mc1_stderr\": 0.017498767175740084,\n \"mc2\": 0.6597251221687485,\n \"mc2_stderr\": 0.015039625746661539\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.8097868981846882,\n \"acc_stderr\": 0.01103033579861744\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.7217589082638363,\n \"acc_stderr\": 0.012343803671422673\n }\n}\n```", "repo_url": "https://huggingface.co/cloudyu/Mixtral_7Bx5_MoE_30B", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|arc:challenge|25_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|gsm8k|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hellaswag|10_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-06T14-21-39.499093.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["**/details_harness|winogrande|5_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-06T14-21-39.499093.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_06T14_21_39.499093", "path": ["results_2024-01-06T14-21-39.499093.parquet"]}, {"split": "latest", "path": ["results_2024-01-06T14-21-39.499093.parquet"]}]}]} | 2024-01-06T14:24:20+00:00 | [] | [] | TAGS
#region-us
|
# Dataset Card for Evaluation run of cloudyu/Mixtral_7Bx5_MoE_30B
Dataset automatically created during the evaluation run of model cloudyu/Mixtral_7Bx5_MoE_30B on the Open LLM Leaderboard.
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).
To load the details from a run, you can for instance do the following:
## Latest results
These are the latest results from run 2024-01-06T14:21:39.499093(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
## Dataset Details
### Dataset Description
- Curated by:
- Funded by [optional]:
- Shared by [optional]:
- Language(s) (NLP):
- License:
### Dataset Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Out-of-Scope Use
## Dataset Structure
## Dataset Creation
### Curation Rationale
### Source Data
#### Data Collection and Processing
#### Who are the source data producers?
### Annotations [optional]
#### Annotation process
#### Who are the annotators?
#### Personal and Sensitive Information
## Bias, Risks, and Limitations
### Recommendations
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Dataset Card Authors [optional]
## Dataset Card Contact
| [
"# Dataset Card for Evaluation run of cloudyu/Mixtral_7Bx5_MoE_30B\n\n\n\nDataset automatically created during the evaluation run of model cloudyu/Mixtral_7Bx5_MoE_30B on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-06T14:21:39.499093(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for Evaluation run of cloudyu/Mixtral_7Bx5_MoE_30B\n\n\n\nDataset automatically created during the evaluation run of model cloudyu/Mixtral_7Bx5_MoE_30B on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-06T14:21:39.499093(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
6,
195,
68,
4,
40,
29,
3,
4,
9,
6,
5,
7,
4,
7,
10,
9,
5,
9,
8,
10,
46,
8,
7,
10,
5
] | [
"passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of cloudyu/Mixtral_7Bx5_MoE_30B\n\n\n\nDataset automatically created during the evaluation run of model cloudyu/Mixtral_7Bx5_MoE_30B on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2024-01-06T14:21:39.499093(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):## Dataset Details### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Out-of-Scope Use## Dataset Structure## Dataset Creation### Curation Rationale### Source Data#### Data Collection and Processing#### Who are the source data producers?### Annotations [optional]#### Annotation process#### Who are the annotators?#### Personal and Sensitive Information## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]"
] |
89ac1bcbac1e8e2b62666e3f8482df6a262bf65b | # Dataset Card for DS Coder Instruct v2 Dataset
Changes from v1:
* Added WizardLM evol data science samples
* Removed R samples from v2
<!-- Provide a quick summary of the dataset. -->
DS Coder is a dataset for instruction fine tuning of language models. It is a specialized dataset focusing only on
data science (eg. plotting, data wrangling, machine learnig models, deep learning, and numerical computations). The dataset contains code examples both in Python (R samples were removed in v2).
The goal of this dataset is to enable creation of small-scale, specialized language model assistants for data science projects.
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
DS Coder instruct dataset contains *(input, instruction, output)* triplets. Instruction provides a task in the data science domain and output contains the code to solve the task.
Where available, it also contains *text* field holding Alpaca style input. Metadata, such as the programming language *(lang)* and topics *(topics)* are provided.
*topics* lists the concepts used in the code (eg. ML, neural networs, plotting, etc.). This is determined based on which kinds of libraries the code uses. This field can be used
to obtain subset of data for specific tasks, such as data vizualisation.
Additionally, the original data source is provided under the *dataset* field.
### Dataset Sources
<!-- Provide the basic links for the dataset. -->
DS Coder is filtered and preprocessed from a collection of publically available datasets on HuggingFace. All the sources all liste below with their corresponding links.
- **nickrosh/Evol-Instruct-Code-80k-v1:** https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1
- **TokenBender/code_instructions_122k_alpaca_style:** https://huggingface.co/datasets/TokenBender/code_instructions_122k_alpaca_style
- **theblackcat102/evol-codealpaca-v1:** https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1
- **ise-uiuc/Magicoder-OSS-Instruct-75K:** https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
- **WizardLM/WizardLM_evol_instruct_V2_196k:** https://huggingface.co/datasets/ise-uiuc/WizardLM_evol_instruct_V2_196k
Please make sure to cite the above mentioned source when using this dataset. You should visit these pages and look for specific usage instructions, if any.
## Dataset Creation
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
DS Coder was created by filtering and processing existing public datasets of *(instruction, code)* pairs. Source data was filtered to keep only code related to data science
applications. The filtering was done using regex to gather code that uses popular data science libraries (eg. Matplotlib, Sklearn, PyTorch, etc.) in Python and R.
Then, the data is further processed to filter out samples with very long or very short code. Code outputs with lots of comments and low amound of code were filtered out.
Additionally, samples with very long and very short instructions were also removed.
After filtering, exact deduplication based on output code and input instruction was performed. After this process, roughly *16K* samples remain.
More specific description dataset processing is provided below.
### Filtering
The first step of the filtering process is to gather all samples from source datasets that have code related to a data science application. To do so, regex filtering was
applied to the *code* and *instruction* to filter out such samples. Regex filters mainly look for imports and usage of popular data science libraries, such as Pandas or PyTorch.
Data science code in Python as well as R are gathered.
After gathering relevant code samples, further filtering based on line length, instruction length, alphanumeric ratio, and comment to code ratio are performed.
Code filtering is similar to [BigCode](https://github.com/bigcode-project/bigcode-dataset). Code filtering parameters shown below are derived from there.
This stage ensures that short, very, long and uninformative samples are removed. The script for filtering can be found in this repo
[Ea0011/wrangler](https://github.com/Ea0011/wrangler). You may use the filtering script to process additional datasets or tweak the params.
Parameters for filtering are listed below:
- **line_max**: Maximum line length allowed is 1000 characters.
- **line_mean**: Maximum mean line length allowed is 100 characters.
- **alpha_frac**: Minimum fraction of alphanumeric characters allowed is 25%.
- **min_inst_size**: Minimum instruction size in words is 5 words.
- **max_inst_size**: Maximum instruction size in words is 1000 words.
- **max_threshold_comments**: Maximum threshold for comment to code ratio is 80%.
- **min_threshold_comments**: Minimum threshold for comment to code ratio is 1%.
## Data Analysis
This section provides some analysis of the dataset. Code lengths and distribution of data science tasks are shown. Topic distribution shows
distribution of concepts used in the code. Some domains, such as plotting are underrepresanted compared to others. You may use the topics column to select samples for specific tasks.
<img src="ds_dist.png" width="60%" />
<img src="inst_len_total.png" width="60%"/>
<img src="topics.png" width="60%" />
As there are data points from several data sources, it is also worth showing distributions across samples from different datasets. As it can be seen, some sources
contain short and concise samples while others contain verbose samples. Use this information to choose specific data source if needed.
<img src="code_len.png" width="60%"/>
<img src="inst_len.png" width="60%" />
## Dataset Card Contact
For any suggestions and concerns please reach out to me: [Ea0011](https://github.com/Ea0011/) | ed001/ds-coder-instruct-v2 | [
"task_categories:text-generation",
"task_categories:conversational",
"task_categories:text2text-generation",
"size_categories:10K<n<100K",
"language:en",
"license:cc-by-nc-sa-4.0",
"code",
"machine learning",
"deep learning",
"data science",
"region:us"
] | 2024-01-06T14:37:49+00:00 | {"language": ["en"], "license": "cc-by-nc-sa-4.0", "size_categories": ["10K<n<100K"], "task_categories": ["text-generation", "conversational", "text2text-generation"], "pretty_name": "Data Science Coder", "tags": ["code", "machine learning", "deep learning", "data science"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "ds_coder.jsonl"}]}]} | 2024-01-06T14:45:39+00:00 | [] | [
"en"
] | TAGS
#task_categories-text-generation #task_categories-conversational #task_categories-text2text-generation #size_categories-10K<n<100K #language-English #license-cc-by-nc-sa-4.0 #code #machine learning #deep learning #data science #region-us
| # Dataset Card for DS Coder Instruct v2 Dataset
Changes from v1:
* Added WizardLM evol data science samples
* Removed R samples from v2
DS Coder is a dataset for instruction fine tuning of language models. It is a specialized dataset focusing only on
data science (eg. plotting, data wrangling, machine learnig models, deep learning, and numerical computations). The dataset contains code examples both in Python (R samples were removed in v2).
The goal of this dataset is to enable creation of small-scale, specialized language model assistants for data science projects.
## Dataset Details
### Dataset Description
DS Coder instruct dataset contains *(input, instruction, output)* triplets. Instruction provides a task in the data science domain and output contains the code to solve the task.
Where available, it also contains *text* field holding Alpaca style input. Metadata, such as the programming language *(lang)* and topics *(topics)* are provided.
*topics* lists the concepts used in the code (eg. ML, neural networs, plotting, etc.). This is determined based on which kinds of libraries the code uses. This field can be used
to obtain subset of data for specific tasks, such as data vizualisation.
Additionally, the original data source is provided under the *dataset* field.
### Dataset Sources
DS Coder is filtered and preprocessed from a collection of publically available datasets on HuggingFace. All the sources all liste below with their corresponding links.
- nickrosh/Evol-Instruct-Code-80k-v1: URL
- TokenBender/code_instructions_122k_alpaca_style: URL
- theblackcat102/evol-codealpaca-v1: URL
- ise-uiuc/Magicoder-OSS-Instruct-75K: URL
- WizardLM/WizardLM_evol_instruct_V2_196k: URL
Please make sure to cite the above mentioned source when using this dataset. You should visit these pages and look for specific usage instructions, if any.
## Dataset Creation
DS Coder was created by filtering and processing existing public datasets of *(instruction, code)* pairs. Source data was filtered to keep only code related to data science
applications. The filtering was done using regex to gather code that uses popular data science libraries (eg. Matplotlib, Sklearn, PyTorch, etc.) in Python and R.
Then, the data is further processed to filter out samples with very long or very short code. Code outputs with lots of comments and low amound of code were filtered out.
Additionally, samples with very long and very short instructions were also removed.
After filtering, exact deduplication based on output code and input instruction was performed. After this process, roughly *16K* samples remain.
More specific description dataset processing is provided below.
### Filtering
The first step of the filtering process is to gather all samples from source datasets that have code related to a data science application. To do so, regex filtering was
applied to the *code* and *instruction* to filter out such samples. Regex filters mainly look for imports and usage of popular data science libraries, such as Pandas or PyTorch.
Data science code in Python as well as R are gathered.
After gathering relevant code samples, further filtering based on line length, instruction length, alphanumeric ratio, and comment to code ratio are performed.
Code filtering is similar to BigCode. Code filtering parameters shown below are derived from there.
This stage ensures that short, very, long and uninformative samples are removed. The script for filtering can be found in this repo
Ea0011/wrangler. You may use the filtering script to process additional datasets or tweak the params.
Parameters for filtering are listed below:
- line_max: Maximum line length allowed is 1000 characters.
- line_mean: Maximum mean line length allowed is 100 characters.
- alpha_frac: Minimum fraction of alphanumeric characters allowed is 25%.
- min_inst_size: Minimum instruction size in words is 5 words.
- max_inst_size: Maximum instruction size in words is 1000 words.
- max_threshold_comments: Maximum threshold for comment to code ratio is 80%.
- min_threshold_comments: Minimum threshold for comment to code ratio is 1%.
## Data Analysis
This section provides some analysis of the dataset. Code lengths and distribution of data science tasks are shown. Topic distribution shows
distribution of concepts used in the code. Some domains, such as plotting are underrepresanted compared to others. You may use the topics column to select samples for specific tasks.
<img src="ds_dist.png" width="60%" />
<img src="inst_len_total.png" width="60%"/>
<img src="URL" width="60%" />
As there are data points from several data sources, it is also worth showing distributions across samples from different datasets. As it can be seen, some sources
contain short and concise samples while others contain verbose samples. Use this information to choose specific data source if needed.
<img src="code_len.png" width="60%"/>
<img src="inst_len.png" width="60%" />
## Dataset Card Contact
For any suggestions and concerns please reach out to me: Ea0011 | [
"# Dataset Card for DS Coder Instruct v2 Dataset\n\nChanges from v1:\n* Added WizardLM evol data science samples\n* Removed R samples from v2\n\n\n\nDS Coder is a dataset for instruction fine tuning of language models. It is a specialized dataset focusing only on\ndata science (eg. plotting, data wrangling, machine learnig models, deep learning, and numerical computations). The dataset contains code examples both in Python (R samples were removed in v2).\nThe goal of this dataset is to enable creation of small-scale, specialized language model assistants for data science projects.",
"## Dataset Details",
"### Dataset Description\n\n\nDS Coder instruct dataset contains *(input, instruction, output)* triplets. Instruction provides a task in the data science domain and output contains the code to solve the task.\nWhere available, it also contains *text* field holding Alpaca style input. Metadata, such as the programming language *(lang)* and topics *(topics)* are provided.\n*topics* lists the concepts used in the code (eg. ML, neural networs, plotting, etc.). This is determined based on which kinds of libraries the code uses. This field can be used\nto obtain subset of data for specific tasks, such as data vizualisation. \n\nAdditionally, the original data source is provided under the *dataset* field.",
"### Dataset Sources\n\n\nDS Coder is filtered and preprocessed from a collection of publically available datasets on HuggingFace. All the sources all liste below with their corresponding links.\n\n- nickrosh/Evol-Instruct-Code-80k-v1: URL\n- TokenBender/code_instructions_122k_alpaca_style: URL\n- theblackcat102/evol-codealpaca-v1: URL\n- ise-uiuc/Magicoder-OSS-Instruct-75K: URL\n- WizardLM/WizardLM_evol_instruct_V2_196k: URL\n\nPlease make sure to cite the above mentioned source when using this dataset. You should visit these pages and look for specific usage instructions, if any.",
"## Dataset Creation\n\n\n\nDS Coder was created by filtering and processing existing public datasets of *(instruction, code)* pairs. Source data was filtered to keep only code related to data science\napplications. The filtering was done using regex to gather code that uses popular data science libraries (eg. Matplotlib, Sklearn, PyTorch, etc.) in Python and R.\nThen, the data is further processed to filter out samples with very long or very short code. Code outputs with lots of comments and low amound of code were filtered out.\nAdditionally, samples with very long and very short instructions were also removed. \n\nAfter filtering, exact deduplication based on output code and input instruction was performed. After this process, roughly *16K* samples remain.\n\nMore specific description dataset processing is provided below.",
"### Filtering\n\nThe first step of the filtering process is to gather all samples from source datasets that have code related to a data science application. To do so, regex filtering was\napplied to the *code* and *instruction* to filter out such samples. Regex filters mainly look for imports and usage of popular data science libraries, such as Pandas or PyTorch.\nData science code in Python as well as R are gathered. \n\nAfter gathering relevant code samples, further filtering based on line length, instruction length, alphanumeric ratio, and comment to code ratio are performed.\nCode filtering is similar to BigCode. Code filtering parameters shown below are derived from there.\nThis stage ensures that short, very, long and uninformative samples are removed. The script for filtering can be found in this repo\nEa0011/wrangler. You may use the filtering script to process additional datasets or tweak the params.\n\nParameters for filtering are listed below:\n\n- line_max: Maximum line length allowed is 1000 characters.\n \n- line_mean: Maximum mean line length allowed is 100 characters.\n\n- alpha_frac: Minimum fraction of alphanumeric characters allowed is 25%.\n\n- min_inst_size: Minimum instruction size in words is 5 words.\n\n- max_inst_size: Maximum instruction size in words is 1000 words.\n\n- max_threshold_comments: Maximum threshold for comment to code ratio is 80%.\n\n- min_threshold_comments: Minimum threshold for comment to code ratio is 1%.",
"## Data Analysis\n\nThis section provides some analysis of the dataset. Code lengths and distribution of data science tasks are shown. Topic distribution shows\ndistribution of concepts used in the code. Some domains, such as plotting are underrepresanted compared to others. You may use the topics column to select samples for specific tasks.\n\n<img src=\"ds_dist.png\" width=\"60%\" />\n<img src=\"inst_len_total.png\" width=\"60%\"/>\n<img src=\"URL\" width=\"60%\" />\n\nAs there are data points from several data sources, it is also worth showing distributions across samples from different datasets. As it can be seen, some sources\ncontain short and concise samples while others contain verbose samples. Use this information to choose specific data source if needed.\n\n<img src=\"code_len.png\" width=\"60%\"/>\n<img src=\"inst_len.png\" width=\"60%\" />",
"## Dataset Card Contact\n\nFor any suggestions and concerns please reach out to me: Ea0011"
] | [
"TAGS\n#task_categories-text-generation #task_categories-conversational #task_categories-text2text-generation #size_categories-10K<n<100K #language-English #license-cc-by-nc-sa-4.0 #code #machine learning #deep learning #data science #region-us \n",
"# Dataset Card for DS Coder Instruct v2 Dataset\n\nChanges from v1:\n* Added WizardLM evol data science samples\n* Removed R samples from v2\n\n\n\nDS Coder is a dataset for instruction fine tuning of language models. It is a specialized dataset focusing only on\ndata science (eg. plotting, data wrangling, machine learnig models, deep learning, and numerical computations). The dataset contains code examples both in Python (R samples were removed in v2).\nThe goal of this dataset is to enable creation of small-scale, specialized language model assistants for data science projects.",
"## Dataset Details",
"### Dataset Description\n\n\nDS Coder instruct dataset contains *(input, instruction, output)* triplets. Instruction provides a task in the data science domain and output contains the code to solve the task.\nWhere available, it also contains *text* field holding Alpaca style input. Metadata, such as the programming language *(lang)* and topics *(topics)* are provided.\n*topics* lists the concepts used in the code (eg. ML, neural networs, plotting, etc.). This is determined based on which kinds of libraries the code uses. This field can be used\nto obtain subset of data for specific tasks, such as data vizualisation. \n\nAdditionally, the original data source is provided under the *dataset* field.",
"### Dataset Sources\n\n\nDS Coder is filtered and preprocessed from a collection of publically available datasets on HuggingFace. All the sources all liste below with their corresponding links.\n\n- nickrosh/Evol-Instruct-Code-80k-v1: URL\n- TokenBender/code_instructions_122k_alpaca_style: URL\n- theblackcat102/evol-codealpaca-v1: URL\n- ise-uiuc/Magicoder-OSS-Instruct-75K: URL\n- WizardLM/WizardLM_evol_instruct_V2_196k: URL\n\nPlease make sure to cite the above mentioned source when using this dataset. You should visit these pages and look for specific usage instructions, if any.",
"## Dataset Creation\n\n\n\nDS Coder was created by filtering and processing existing public datasets of *(instruction, code)* pairs. Source data was filtered to keep only code related to data science\napplications. The filtering was done using regex to gather code that uses popular data science libraries (eg. Matplotlib, Sklearn, PyTorch, etc.) in Python and R.\nThen, the data is further processed to filter out samples with very long or very short code. Code outputs with lots of comments and low amound of code were filtered out.\nAdditionally, samples with very long and very short instructions were also removed. \n\nAfter filtering, exact deduplication based on output code and input instruction was performed. After this process, roughly *16K* samples remain.\n\nMore specific description dataset processing is provided below.",
"### Filtering\n\nThe first step of the filtering process is to gather all samples from source datasets that have code related to a data science application. To do so, regex filtering was\napplied to the *code* and *instruction* to filter out such samples. Regex filters mainly look for imports and usage of popular data science libraries, such as Pandas or PyTorch.\nData science code in Python as well as R are gathered. \n\nAfter gathering relevant code samples, further filtering based on line length, instruction length, alphanumeric ratio, and comment to code ratio are performed.\nCode filtering is similar to BigCode. Code filtering parameters shown below are derived from there.\nThis stage ensures that short, very, long and uninformative samples are removed. The script for filtering can be found in this repo\nEa0011/wrangler. You may use the filtering script to process additional datasets or tweak the params.\n\nParameters for filtering are listed below:\n\n- line_max: Maximum line length allowed is 1000 characters.\n \n- line_mean: Maximum mean line length allowed is 100 characters.\n\n- alpha_frac: Minimum fraction of alphanumeric characters allowed is 25%.\n\n- min_inst_size: Minimum instruction size in words is 5 words.\n\n- max_inst_size: Maximum instruction size in words is 1000 words.\n\n- max_threshold_comments: Maximum threshold for comment to code ratio is 80%.\n\n- min_threshold_comments: Minimum threshold for comment to code ratio is 1%.",
"## Data Analysis\n\nThis section provides some analysis of the dataset. Code lengths and distribution of data science tasks are shown. Topic distribution shows\ndistribution of concepts used in the code. Some domains, such as plotting are underrepresanted compared to others. You may use the topics column to select samples for specific tasks.\n\n<img src=\"ds_dist.png\" width=\"60%\" />\n<img src=\"inst_len_total.png\" width=\"60%\"/>\n<img src=\"URL\" width=\"60%\" />\n\nAs there are data points from several data sources, it is also worth showing distributions across samples from different datasets. As it can be seen, some sources\ncontain short and concise samples while others contain verbose samples. Use this information to choose specific data source if needed.\n\n<img src=\"code_len.png\" width=\"60%\"/>\n<img src=\"inst_len.png\" width=\"60%\" />",
"## Dataset Card Contact\n\nFor any suggestions and concerns please reach out to me: Ea0011"
] | [
80,
143,
4,
181,
169,
193,
359,
229,
20
] | [
"passage: TAGS\n#task_categories-text-generation #task_categories-conversational #task_categories-text2text-generation #size_categories-10K<n<100K #language-English #license-cc-by-nc-sa-4.0 #code #machine learning #deep learning #data science #region-us \n# Dataset Card for DS Coder Instruct v2 Dataset\n\nChanges from v1:\n* Added WizardLM evol data science samples\n* Removed R samples from v2\n\n\n\nDS Coder is a dataset for instruction fine tuning of language models. It is a specialized dataset focusing only on\ndata science (eg. plotting, data wrangling, machine learnig models, deep learning, and numerical computations). The dataset contains code examples both in Python (R samples were removed in v2).\nThe goal of this dataset is to enable creation of small-scale, specialized language model assistants for data science projects.## Dataset Details### Dataset Description\n\n\nDS Coder instruct dataset contains *(input, instruction, output)* triplets. Instruction provides a task in the data science domain and output contains the code to solve the task.\nWhere available, it also contains *text* field holding Alpaca style input. Metadata, such as the programming language *(lang)* and topics *(topics)* are provided.\n*topics* lists the concepts used in the code (eg. ML, neural networs, plotting, etc.). This is determined based on which kinds of libraries the code uses. This field can be used\nto obtain subset of data for specific tasks, such as data vizualisation. \n\nAdditionally, the original data source is provided under the *dataset* field.",
"passage: ### Dataset Sources\n\n\nDS Coder is filtered and preprocessed from a collection of publically available datasets on HuggingFace. All the sources all liste below with their corresponding links.\n\n- nickrosh/Evol-Instruct-Code-80k-v1: URL\n- TokenBender/code_instructions_122k_alpaca_style: URL\n- theblackcat102/evol-codealpaca-v1: URL\n- ise-uiuc/Magicoder-OSS-Instruct-75K: URL\n- WizardLM/WizardLM_evol_instruct_V2_196k: URL\n\nPlease make sure to cite the above mentioned source when using this dataset. You should visit these pages and look for specific usage instructions, if any.## Dataset Creation\n\n\n\nDS Coder was created by filtering and processing existing public datasets of *(instruction, code)* pairs. Source data was filtered to keep only code related to data science\napplications. The filtering was done using regex to gather code that uses popular data science libraries (eg. Matplotlib, Sklearn, PyTorch, etc.) in Python and R.\nThen, the data is further processed to filter out samples with very long or very short code. Code outputs with lots of comments and low amound of code were filtered out.\nAdditionally, samples with very long and very short instructions were also removed. \n\nAfter filtering, exact deduplication based on output code and input instruction was performed. After this process, roughly *16K* samples remain.\n\nMore specific description dataset processing is provided below."
] |
3c44231be4592e55566cd51516d89aa742ed4d83 | ---
# Information
This is a reformatted version of the [HumanEval dataset](https://github.com/openai/human-eval)
| nus-yam/mbpp | [
"license:mit",
"region:us"
] | 2024-01-06T14:40:38+00:00 | {"license": "mit", "pretty_name": "MBPP", "description": "A formatted version of MBPP.", "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "mbpp.csv"}]}]} | 2024-01-06T15:09:55+00:00 | [] | [] | TAGS
#license-mit #region-us
| ---
# Information
This is a reformatted version of the HumanEval dataset
| [
"# Information\n\nThis is a reformatted version of the HumanEval dataset"
] | [
"TAGS\n#license-mit #region-us \n",
"# Information\n\nThis is a reformatted version of the HumanEval dataset"
] | [
11,
16
] | [
"passage: TAGS\n#license-mit #region-us \n# Information\n\nThis is a reformatted version of the HumanEval dataset"
] |
1a853c1ba0402dddcc6275cd1e755974b896b82a | # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_s1_nearestscore_all"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | ibranze/araproje_hellaswag_tr_conf_mgpt_s1_nearestscore_all | [
"region:us"
] | 2024-01-06T14:44:06+00:00 | {"dataset_info": {"features": [{"name": "ind", "dtype": "int32"}, {"name": "activity_label", "dtype": "string"}, {"name": "ctx_a", "dtype": "string"}, {"name": "ctx_b", "dtype": "string"}, {"name": "ctx", "dtype": "string"}, {"name": "endings", "sequence": "string"}, {"name": "source_id", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "split_type", "dtype": "string"}, {"name": "label", "dtype": "string"}], "splits": [{"name": "validation", "num_bytes": 162703.0, "num_examples": 250}], "download_size": 0, "dataset_size": 162703.0}, "configs": [{"config_name": "default", "data_files": [{"split": "validation", "path": "data/validation-*"}]}]} | 2024-01-06T14:44:56+00:00 | [] | [] | TAGS
#region-us
| # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_s1_nearestscore_all"
More Information needed | [
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_s1_nearestscore_all\"\n\nMore Information needed"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_s1_nearestscore_all\"\n\nMore Information needed"
] | [
6,
35
] | [
"passage: TAGS\n#region-us \n# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_s1_nearestscore_all\"\n\nMore Information needed"
] |
5ad3bc296ceb8a311db4324d8c58df4e602c3cbe | # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_s1_nearestscore_true"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | ibranze/araproje_hellaswag_tr_conf_mgpt_s1_nearestscore_true | [
"region:us"
] | 2024-01-06T14:44:09+00:00 | {"dataset_info": {"features": [{"name": "ind", "dtype": "int32"}, {"name": "activity_label", "dtype": "string"}, {"name": "ctx_a", "dtype": "string"}, {"name": "ctx_b", "dtype": "string"}, {"name": "ctx", "dtype": "string"}, {"name": "endings", "sequence": "string"}, {"name": "source_id", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "split_type", "dtype": "string"}, {"name": "label", "dtype": "string"}], "splits": [{"name": "validation", "num_bytes": 162703.0, "num_examples": 250}], "download_size": 0, "dataset_size": 162703.0}, "configs": [{"config_name": "default", "data_files": [{"split": "validation", "path": "data/validation-*"}]}]} | 2024-01-06T14:44:58+00:00 | [] | [] | TAGS
#region-us
| # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_s1_nearestscore_true"
More Information needed | [
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_s1_nearestscore_true\"\n\nMore Information needed"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_s1_nearestscore_true\"\n\nMore Information needed"
] | [
6,
36
] | [
"passage: TAGS\n#region-us \n# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_s1_nearestscore_true\"\n\nMore Information needed"
] |
cdbcd274623faf7d95d2c96262f257662285e5fb | # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_s1_midscore_all"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | ibranze/araproje_hellaswag_tr_conf_mgpt_s1_midscore_all | [
"region:us"
] | 2024-01-06T14:44:13+00:00 | {"dataset_info": {"features": [{"name": "ind", "dtype": "int32"}, {"name": "activity_label", "dtype": "string"}, {"name": "ctx_a", "dtype": "string"}, {"name": "ctx_b", "dtype": "string"}, {"name": "ctx", "dtype": "string"}, {"name": "endings", "sequence": "string"}, {"name": "source_id", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "split_type", "dtype": "string"}, {"name": "label", "dtype": "string"}], "splits": [{"name": "validation", "num_bytes": 162703.0, "num_examples": 250}], "download_size": 0, "dataset_size": 162703.0}, "configs": [{"config_name": "default", "data_files": [{"split": "validation", "path": "data/validation-*"}]}]} | 2024-01-06T14:44:59+00:00 | [] | [] | TAGS
#region-us
| # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_s1_midscore_all"
More Information needed | [
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_s1_midscore_all\"\n\nMore Information needed"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_s1_midscore_all\"\n\nMore Information needed"
] | [
6,
33
] | [
"passage: TAGS\n#region-us \n# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_s1_midscore_all\"\n\nMore Information needed"
] |
63334295e47e59efb0afe46d6e600480b75a8744 | # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_s1_midscore_true"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | ibranze/araproje_hellaswag_tr_conf_mgpt_s1_midscore_true | [
"region:us"
] | 2024-01-06T14:45:01+00:00 | {"dataset_info": {"features": [{"name": "ind", "dtype": "int32"}, {"name": "activity_label", "dtype": "string"}, {"name": "ctx_a", "dtype": "string"}, {"name": "ctx_b", "dtype": "string"}, {"name": "ctx", "dtype": "string"}, {"name": "endings", "sequence": "string"}, {"name": "source_id", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "split_type", "dtype": "string"}, {"name": "label", "dtype": "string"}], "splits": [{"name": "validation", "num_bytes": 162703.0, "num_examples": 250}], "download_size": 87103, "dataset_size": 162703.0}, "configs": [{"config_name": "default", "data_files": [{"split": "validation", "path": "data/validation-*"}]}]} | 2024-01-06T14:45:03+00:00 | [] | [] | TAGS
#region-us
| # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_s1_midscore_true"
More Information needed | [
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_s1_midscore_true\"\n\nMore Information needed"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_s1_midscore_true\"\n\nMore Information needed"
] | [
6,
34
] | [
"passage: TAGS\n#region-us \n# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_s1_midscore_true\"\n\nMore Information needed"
] |
7282ef5cadbfa43be686ed52a41d1c8432aaffbf |
# Dataset Card for Evaluation run of Felladrin/Pythia-31M-Chat-v1
<!-- Provide a quick summary of the dataset. -->
Dataset automatically created during the evaluation run of model [Felladrin/Pythia-31M-Chat-v1](https://huggingface.co/Felladrin/Pythia-31M-Chat-v1) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset("open-llm-leaderboard/details_Felladrin__Pythia-31M-Chat-v1",
"harness_winogrande_5",
split="train")
```
## Latest results
These are the [latest results from run 2024-01-06T14:50:17.030237](https://huggingface.co/datasets/open-llm-leaderboard/details_Felladrin__Pythia-31M-Chat-v1/blob/main/results_2024-01-06T14-50-17.030237.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"acc": 0.2326508582119927,
"acc_stderr": 0.02999510521623055,
"acc_norm": 0.2327251785301861,
"acc_norm_stderr": 0.030779845312941433,
"mc1": 0.2876376988984088,
"mc1_stderr": 0.015846315101394816,
"mc2": NaN,
"mc2_stderr": NaN
},
"harness|arc:challenge|25": {
"acc": 0.2098976109215017,
"acc_stderr": 0.011900548748047423,
"acc_norm": 0.22696245733788395,
"acc_norm_stderr": 0.012240491536132865
},
"harness|hellaswag|10": {
"acc": 0.25413264289982074,
"acc_stderr": 0.004344827546976549,
"acc_norm": 0.2560246962756423,
"acc_norm_stderr": 0.004355436696716298
},
"harness|hendrycksTest-abstract_algebra|5": {
"acc": 0.22,
"acc_stderr": 0.04163331998932268,
"acc_norm": 0.22,
"acc_norm_stderr": 0.04163331998932268
},
"harness|hendrycksTest-anatomy|5": {
"acc": 0.18518518518518517,
"acc_stderr": 0.03355677216313142,
"acc_norm": 0.18518518518518517,
"acc_norm_stderr": 0.03355677216313142
},
"harness|hendrycksTest-astronomy|5": {
"acc": 0.17763157894736842,
"acc_stderr": 0.031103182383123398,
"acc_norm": 0.17763157894736842,
"acc_norm_stderr": 0.031103182383123398
},
"harness|hendrycksTest-business_ethics|5": {
"acc": 0.23,
"acc_stderr": 0.042295258468165065,
"acc_norm": 0.23,
"acc_norm_stderr": 0.042295258468165065
},
"harness|hendrycksTest-clinical_knowledge|5": {
"acc": 0.21509433962264152,
"acc_stderr": 0.02528839450289137,
"acc_norm": 0.21509433962264152,
"acc_norm_stderr": 0.02528839450289137
},
"harness|hendrycksTest-college_biology|5": {
"acc": 0.2569444444444444,
"acc_stderr": 0.03653946969442099,
"acc_norm": 0.2569444444444444,
"acc_norm_stderr": 0.03653946969442099
},
"harness|hendrycksTest-college_chemistry|5": {
"acc": 0.19,
"acc_stderr": 0.039427724440366234,
"acc_norm": 0.19,
"acc_norm_stderr": 0.039427724440366234
},
"harness|hendrycksTest-college_computer_science|5": {
"acc": 0.26,
"acc_stderr": 0.0440844002276808,
"acc_norm": 0.26,
"acc_norm_stderr": 0.0440844002276808
},
"harness|hendrycksTest-college_mathematics|5": {
"acc": 0.2,
"acc_stderr": 0.04020151261036846,
"acc_norm": 0.2,
"acc_norm_stderr": 0.04020151261036846
},
"harness|hendrycksTest-college_medicine|5": {
"acc": 0.20809248554913296,
"acc_stderr": 0.030952890217749874,
"acc_norm": 0.20809248554913296,
"acc_norm_stderr": 0.030952890217749874
},
"harness|hendrycksTest-college_physics|5": {
"acc": 0.21568627450980393,
"acc_stderr": 0.04092563958237654,
"acc_norm": 0.21568627450980393,
"acc_norm_stderr": 0.04092563958237654
},
"harness|hendrycksTest-computer_security|5": {
"acc": 0.28,
"acc_stderr": 0.045126085985421276,
"acc_norm": 0.28,
"acc_norm_stderr": 0.045126085985421276
},
"harness|hendrycksTest-conceptual_physics|5": {
"acc": 0.26382978723404255,
"acc_stderr": 0.028809989854102973,
"acc_norm": 0.26382978723404255,
"acc_norm_stderr": 0.028809989854102973
},
"harness|hendrycksTest-econometrics|5": {
"acc": 0.2719298245614035,
"acc_stderr": 0.04185774424022056,
"acc_norm": 0.2719298245614035,
"acc_norm_stderr": 0.04185774424022056
},
"harness|hendrycksTest-electrical_engineering|5": {
"acc": 0.2413793103448276,
"acc_stderr": 0.03565998174135302,
"acc_norm": 0.2413793103448276,
"acc_norm_stderr": 0.03565998174135302
},
"harness|hendrycksTest-elementary_mathematics|5": {
"acc": 0.2222222222222222,
"acc_stderr": 0.02141168439369419,
"acc_norm": 0.2222222222222222,
"acc_norm_stderr": 0.02141168439369419
},
"harness|hendrycksTest-formal_logic|5": {
"acc": 0.24603174603174602,
"acc_stderr": 0.03852273364924317,
"acc_norm": 0.24603174603174602,
"acc_norm_stderr": 0.03852273364924317
},
"harness|hendrycksTest-global_facts|5": {
"acc": 0.18,
"acc_stderr": 0.038612291966536934,
"acc_norm": 0.18,
"acc_norm_stderr": 0.038612291966536934
},
"harness|hendrycksTest-high_school_biology|5": {
"acc": 0.2064516129032258,
"acc_stderr": 0.023025899617188712,
"acc_norm": 0.2064516129032258,
"acc_norm_stderr": 0.023025899617188712
},
"harness|hendrycksTest-high_school_chemistry|5": {
"acc": 0.2019704433497537,
"acc_stderr": 0.02824735012218026,
"acc_norm": 0.2019704433497537,
"acc_norm_stderr": 0.02824735012218026
},
"harness|hendrycksTest-high_school_computer_science|5": {
"acc": 0.25,
"acc_stderr": 0.04351941398892446,
"acc_norm": 0.25,
"acc_norm_stderr": 0.04351941398892446
},
"harness|hendrycksTest-high_school_european_history|5": {
"acc": 0.21818181818181817,
"acc_stderr": 0.03225078108306289,
"acc_norm": 0.21818181818181817,
"acc_norm_stderr": 0.03225078108306289
},
"harness|hendrycksTest-high_school_geography|5": {
"acc": 0.17676767676767677,
"acc_stderr": 0.027178752639044915,
"acc_norm": 0.17676767676767677,
"acc_norm_stderr": 0.027178752639044915
},
"harness|hendrycksTest-high_school_government_and_politics|5": {
"acc": 0.25906735751295334,
"acc_stderr": 0.03161877917935411,
"acc_norm": 0.25906735751295334,
"acc_norm_stderr": 0.03161877917935411
},
"harness|hendrycksTest-high_school_macroeconomics|5": {
"acc": 0.20256410256410257,
"acc_stderr": 0.020377660970371372,
"acc_norm": 0.20256410256410257,
"acc_norm_stderr": 0.020377660970371372
},
"harness|hendrycksTest-high_school_mathematics|5": {
"acc": 0.2111111111111111,
"acc_stderr": 0.024882116857655075,
"acc_norm": 0.2111111111111111,
"acc_norm_stderr": 0.024882116857655075
},
"harness|hendrycksTest-high_school_microeconomics|5": {
"acc": 0.21008403361344538,
"acc_stderr": 0.026461398717471874,
"acc_norm": 0.21008403361344538,
"acc_norm_stderr": 0.026461398717471874
},
"harness|hendrycksTest-high_school_physics|5": {
"acc": 0.2251655629139073,
"acc_stderr": 0.03410435282008936,
"acc_norm": 0.2251655629139073,
"acc_norm_stderr": 0.03410435282008936
},
"harness|hendrycksTest-high_school_psychology|5": {
"acc": 0.1926605504587156,
"acc_stderr": 0.016909276884936094,
"acc_norm": 0.1926605504587156,
"acc_norm_stderr": 0.016909276884936094
},
"harness|hendrycksTest-high_school_statistics|5": {
"acc": 0.1527777777777778,
"acc_stderr": 0.024536326026134224,
"acc_norm": 0.1527777777777778,
"acc_norm_stderr": 0.024536326026134224
},
"harness|hendrycksTest-high_school_us_history|5": {
"acc": 0.25,
"acc_stderr": 0.03039153369274154,
"acc_norm": 0.25,
"acc_norm_stderr": 0.03039153369274154
},
"harness|hendrycksTest-high_school_world_history|5": {
"acc": 0.270042194092827,
"acc_stderr": 0.028900721906293426,
"acc_norm": 0.270042194092827,
"acc_norm_stderr": 0.028900721906293426
},
"harness|hendrycksTest-human_aging|5": {
"acc": 0.30493273542600896,
"acc_stderr": 0.030898610882477515,
"acc_norm": 0.30493273542600896,
"acc_norm_stderr": 0.030898610882477515
},
"harness|hendrycksTest-human_sexuality|5": {
"acc": 0.2595419847328244,
"acc_stderr": 0.03844876139785271,
"acc_norm": 0.2595419847328244,
"acc_norm_stderr": 0.03844876139785271
},
"harness|hendrycksTest-international_law|5": {
"acc": 0.2396694214876033,
"acc_stderr": 0.03896878985070417,
"acc_norm": 0.2396694214876033,
"acc_norm_stderr": 0.03896878985070417
},
"harness|hendrycksTest-jurisprudence|5": {
"acc": 0.25925925925925924,
"acc_stderr": 0.042365112580946336,
"acc_norm": 0.25925925925925924,
"acc_norm_stderr": 0.042365112580946336
},
"harness|hendrycksTest-logical_fallacies|5": {
"acc": 0.2085889570552147,
"acc_stderr": 0.031921934489347235,
"acc_norm": 0.2085889570552147,
"acc_norm_stderr": 0.031921934489347235
},
"harness|hendrycksTest-machine_learning|5": {
"acc": 0.2857142857142857,
"acc_stderr": 0.042878587513404565,
"acc_norm": 0.2857142857142857,
"acc_norm_stderr": 0.042878587513404565
},
"harness|hendrycksTest-management|5": {
"acc": 0.17475728155339806,
"acc_stderr": 0.037601780060266224,
"acc_norm": 0.17475728155339806,
"acc_norm_stderr": 0.037601780060266224
},
"harness|hendrycksTest-marketing|5": {
"acc": 0.2905982905982906,
"acc_stderr": 0.02974504857267404,
"acc_norm": 0.2905982905982906,
"acc_norm_stderr": 0.02974504857267404
},
"harness|hendrycksTest-medical_genetics|5": {
"acc": 0.3,
"acc_stderr": 0.046056618647183814,
"acc_norm": 0.3,
"acc_norm_stderr": 0.046056618647183814
},
"harness|hendrycksTest-miscellaneous|5": {
"acc": 0.22988505747126436,
"acc_stderr": 0.01504630184669183,
"acc_norm": 0.22988505747126436,
"acc_norm_stderr": 0.01504630184669183
},
"harness|hendrycksTest-moral_disputes|5": {
"acc": 0.24277456647398843,
"acc_stderr": 0.0230836585869842,
"acc_norm": 0.24277456647398843,
"acc_norm_stderr": 0.0230836585869842
},
"harness|hendrycksTest-moral_scenarios|5": {
"acc": 0.23798882681564246,
"acc_stderr": 0.014242630070574915,
"acc_norm": 0.23798882681564246,
"acc_norm_stderr": 0.014242630070574915
},
"harness|hendrycksTest-nutrition|5": {
"acc": 0.22549019607843138,
"acc_stderr": 0.023929155517351284,
"acc_norm": 0.22549019607843138,
"acc_norm_stderr": 0.023929155517351284
},
"harness|hendrycksTest-philosophy|5": {
"acc": 0.1864951768488746,
"acc_stderr": 0.02212243977248077,
"acc_norm": 0.1864951768488746,
"acc_norm_stderr": 0.02212243977248077
},
"harness|hendrycksTest-prehistory|5": {
"acc": 0.21604938271604937,
"acc_stderr": 0.022899162918445806,
"acc_norm": 0.21604938271604937,
"acc_norm_stderr": 0.022899162918445806
},
"harness|hendrycksTest-professional_accounting|5": {
"acc": 0.23404255319148937,
"acc_stderr": 0.025257861359432417,
"acc_norm": 0.23404255319148937,
"acc_norm_stderr": 0.025257861359432417
},
"harness|hendrycksTest-professional_law|5": {
"acc": 0.2457627118644068,
"acc_stderr": 0.010996156635142692,
"acc_norm": 0.2457627118644068,
"acc_norm_stderr": 0.010996156635142692
},
"harness|hendrycksTest-professional_medicine|5": {
"acc": 0.27205882352941174,
"acc_stderr": 0.027033041151681456,
"acc_norm": 0.27205882352941174,
"acc_norm_stderr": 0.027033041151681456
},
"harness|hendrycksTest-professional_psychology|5": {
"acc": 0.25,
"acc_stderr": 0.01751781884501444,
"acc_norm": 0.25,
"acc_norm_stderr": 0.01751781884501444
},
"harness|hendrycksTest-public_relations|5": {
"acc": 0.23636363636363636,
"acc_stderr": 0.04069306319721376,
"acc_norm": 0.23636363636363636,
"acc_norm_stderr": 0.04069306319721376
},
"harness|hendrycksTest-security_studies|5": {
"acc": 0.18775510204081633,
"acc_stderr": 0.02500025603954621,
"acc_norm": 0.18775510204081633,
"acc_norm_stderr": 0.02500025603954621
},
"harness|hendrycksTest-sociology|5": {
"acc": 0.24875621890547264,
"acc_stderr": 0.030567675938916707,
"acc_norm": 0.24875621890547264,
"acc_norm_stderr": 0.030567675938916707
},
"harness|hendrycksTest-us_foreign_policy|5": {
"acc": 0.28,
"acc_stderr": 0.04512608598542128,
"acc_norm": 0.28,
"acc_norm_stderr": 0.04512608598542128
},
"harness|hendrycksTest-virology|5": {
"acc": 0.28313253012048195,
"acc_stderr": 0.03507295431370518,
"acc_norm": 0.28313253012048195,
"acc_norm_stderr": 0.03507295431370518
},
"harness|hendrycksTest-world_religions|5": {
"acc": 0.2573099415204678,
"acc_stderr": 0.03352799844161865,
"acc_norm": 0.2573099415204678,
"acc_norm_stderr": 0.03352799844161865
},
"harness|truthfulqa:mc|0": {
"mc1": 0.2876376988984088,
"mc1_stderr": 0.015846315101394816,
"mc2": NaN,
"mc2_stderr": NaN
},
"harness|winogrande|5": {
"acc": 0.47987371744277824,
"acc_stderr": 0.014041096664344324
},
"harness|gsm8k|5": {
"acc": 0.0,
"acc_stderr": 0.0
}
}
```
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
[More Information Needed] | open-llm-leaderboard/details_Felladrin__Pythia-31M-Chat-v1 | [
"region:us"
] | 2024-01-06T14:52:00+00:00 | {"pretty_name": "Evaluation run of Felladrin/Pythia-31M-Chat-v1", "dataset_summary": "Dataset automatically created during the evaluation run of model [Felladrin/Pythia-31M-Chat-v1](https://huggingface.co/Felladrin/Pythia-31M-Chat-v1) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_Felladrin__Pythia-31M-Chat-v1\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-06T14:50:17.030237](https://huggingface.co/datasets/open-llm-leaderboard/details_Felladrin__Pythia-31M-Chat-v1/blob/main/results_2024-01-06T14-50-17.030237.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.2326508582119927,\n \"acc_stderr\": 0.02999510521623055,\n \"acc_norm\": 0.2327251785301861,\n \"acc_norm_stderr\": 0.030779845312941433,\n \"mc1\": 0.2876376988984088,\n \"mc1_stderr\": 0.015846315101394816,\n \"mc2\": NaN,\n \"mc2_stderr\": NaN\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.2098976109215017,\n \"acc_stderr\": 0.011900548748047423,\n \"acc_norm\": 0.22696245733788395,\n \"acc_norm_stderr\": 0.012240491536132865\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.25413264289982074,\n \"acc_stderr\": 0.004344827546976549,\n \"acc_norm\": 0.2560246962756423,\n \"acc_norm_stderr\": 0.004355436696716298\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.22,\n \"acc_stderr\": 0.04163331998932268,\n \"acc_norm\": 0.22,\n \"acc_norm_stderr\": 0.04163331998932268\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.18518518518518517,\n \"acc_stderr\": 0.03355677216313142,\n \"acc_norm\": 0.18518518518518517,\n \"acc_norm_stderr\": 0.03355677216313142\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.17763157894736842,\n \"acc_stderr\": 0.031103182383123398,\n \"acc_norm\": 0.17763157894736842,\n \"acc_norm_stderr\": 0.031103182383123398\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.23,\n \"acc_stderr\": 0.042295258468165065,\n \"acc_norm\": 0.23,\n \"acc_norm_stderr\": 0.042295258468165065\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.21509433962264152,\n \"acc_stderr\": 0.02528839450289137,\n \"acc_norm\": 0.21509433962264152,\n \"acc_norm_stderr\": 0.02528839450289137\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.2569444444444444,\n \"acc_stderr\": 0.03653946969442099,\n \"acc_norm\": 0.2569444444444444,\n \"acc_norm_stderr\": 0.03653946969442099\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.19,\n \"acc_stderr\": 0.039427724440366234,\n \"acc_norm\": 0.19,\n \"acc_norm_stderr\": 0.039427724440366234\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.26,\n \"acc_stderr\": 0.0440844002276808,\n \"acc_norm\": 0.26,\n \"acc_norm_stderr\": 0.0440844002276808\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.2,\n \"acc_stderr\": 0.04020151261036846,\n \"acc_norm\": 0.2,\n \"acc_norm_stderr\": 0.04020151261036846\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.20809248554913296,\n \"acc_stderr\": 0.030952890217749874,\n \"acc_norm\": 0.20809248554913296,\n \"acc_norm_stderr\": 0.030952890217749874\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.21568627450980393,\n \"acc_stderr\": 0.04092563958237654,\n \"acc_norm\": 0.21568627450980393,\n \"acc_norm_stderr\": 0.04092563958237654\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.28,\n \"acc_stderr\": 0.045126085985421276,\n \"acc_norm\": 0.28,\n \"acc_norm_stderr\": 0.045126085985421276\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.26382978723404255,\n \"acc_stderr\": 0.028809989854102973,\n \"acc_norm\": 0.26382978723404255,\n \"acc_norm_stderr\": 0.028809989854102973\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.2719298245614035,\n \"acc_stderr\": 0.04185774424022056,\n \"acc_norm\": 0.2719298245614035,\n \"acc_norm_stderr\": 0.04185774424022056\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.2413793103448276,\n \"acc_stderr\": 0.03565998174135302,\n \"acc_norm\": 0.2413793103448276,\n \"acc_norm_stderr\": 0.03565998174135302\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.2222222222222222,\n \"acc_stderr\": 0.02141168439369419,\n \"acc_norm\": 0.2222222222222222,\n \"acc_norm_stderr\": 0.02141168439369419\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.24603174603174602,\n \"acc_stderr\": 0.03852273364924317,\n \"acc_norm\": 0.24603174603174602,\n \"acc_norm_stderr\": 0.03852273364924317\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.18,\n \"acc_stderr\": 0.038612291966536934,\n \"acc_norm\": 0.18,\n \"acc_norm_stderr\": 0.038612291966536934\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.2064516129032258,\n \"acc_stderr\": 0.023025899617188712,\n \"acc_norm\": 0.2064516129032258,\n \"acc_norm_stderr\": 0.023025899617188712\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.2019704433497537,\n \"acc_stderr\": 0.02824735012218026,\n \"acc_norm\": 0.2019704433497537,\n \"acc_norm_stderr\": 0.02824735012218026\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.25,\n \"acc_stderr\": 0.04351941398892446,\n \"acc_norm\": 0.25,\n \"acc_norm_stderr\": 0.04351941398892446\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.21818181818181817,\n \"acc_stderr\": 0.03225078108306289,\n \"acc_norm\": 0.21818181818181817,\n \"acc_norm_stderr\": 0.03225078108306289\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.17676767676767677,\n \"acc_stderr\": 0.027178752639044915,\n \"acc_norm\": 0.17676767676767677,\n \"acc_norm_stderr\": 0.027178752639044915\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.25906735751295334,\n \"acc_stderr\": 0.03161877917935411,\n \"acc_norm\": 0.25906735751295334,\n \"acc_norm_stderr\": 0.03161877917935411\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.20256410256410257,\n \"acc_stderr\": 0.020377660970371372,\n \"acc_norm\": 0.20256410256410257,\n \"acc_norm_stderr\": 0.020377660970371372\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.2111111111111111,\n \"acc_stderr\": 0.024882116857655075,\n \"acc_norm\": 0.2111111111111111,\n \"acc_norm_stderr\": 0.024882116857655075\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.21008403361344538,\n \"acc_stderr\": 0.026461398717471874,\n \"acc_norm\": 0.21008403361344538,\n \"acc_norm_stderr\": 0.026461398717471874\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.2251655629139073,\n \"acc_stderr\": 0.03410435282008936,\n \"acc_norm\": 0.2251655629139073,\n \"acc_norm_stderr\": 0.03410435282008936\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.1926605504587156,\n \"acc_stderr\": 0.016909276884936094,\n \"acc_norm\": 0.1926605504587156,\n \"acc_norm_stderr\": 0.016909276884936094\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.1527777777777778,\n \"acc_stderr\": 0.024536326026134224,\n \"acc_norm\": 0.1527777777777778,\n \"acc_norm_stderr\": 0.024536326026134224\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.25,\n \"acc_stderr\": 0.03039153369274154,\n \"acc_norm\": 0.25,\n \"acc_norm_stderr\": 0.03039153369274154\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.270042194092827,\n \"acc_stderr\": 0.028900721906293426,\n \"acc_norm\": 0.270042194092827,\n \"acc_norm_stderr\": 0.028900721906293426\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.30493273542600896,\n \"acc_stderr\": 0.030898610882477515,\n \"acc_norm\": 0.30493273542600896,\n \"acc_norm_stderr\": 0.030898610882477515\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.2595419847328244,\n \"acc_stderr\": 0.03844876139785271,\n \"acc_norm\": 0.2595419847328244,\n \"acc_norm_stderr\": 0.03844876139785271\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.2396694214876033,\n \"acc_stderr\": 0.03896878985070417,\n \"acc_norm\": 0.2396694214876033,\n \"acc_norm_stderr\": 0.03896878985070417\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.25925925925925924,\n \"acc_stderr\": 0.042365112580946336,\n \"acc_norm\": 0.25925925925925924,\n \"acc_norm_stderr\": 0.042365112580946336\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.2085889570552147,\n \"acc_stderr\": 0.031921934489347235,\n \"acc_norm\": 0.2085889570552147,\n \"acc_norm_stderr\": 0.031921934489347235\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.2857142857142857,\n \"acc_stderr\": 0.042878587513404565,\n \"acc_norm\": 0.2857142857142857,\n \"acc_norm_stderr\": 0.042878587513404565\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.17475728155339806,\n \"acc_stderr\": 0.037601780060266224,\n \"acc_norm\": 0.17475728155339806,\n \"acc_norm_stderr\": 0.037601780060266224\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.2905982905982906,\n \"acc_stderr\": 0.02974504857267404,\n \"acc_norm\": 0.2905982905982906,\n \"acc_norm_stderr\": 0.02974504857267404\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.3,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.3,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.22988505747126436,\n \"acc_stderr\": 0.01504630184669183,\n \"acc_norm\": 0.22988505747126436,\n \"acc_norm_stderr\": 0.01504630184669183\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.24277456647398843,\n \"acc_stderr\": 0.0230836585869842,\n \"acc_norm\": 0.24277456647398843,\n \"acc_norm_stderr\": 0.0230836585869842\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.23798882681564246,\n \"acc_stderr\": 0.014242630070574915,\n \"acc_norm\": 0.23798882681564246,\n \"acc_norm_stderr\": 0.014242630070574915\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.22549019607843138,\n \"acc_stderr\": 0.023929155517351284,\n \"acc_norm\": 0.22549019607843138,\n \"acc_norm_stderr\": 0.023929155517351284\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.1864951768488746,\n \"acc_stderr\": 0.02212243977248077,\n \"acc_norm\": 0.1864951768488746,\n \"acc_norm_stderr\": 0.02212243977248077\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.21604938271604937,\n \"acc_stderr\": 0.022899162918445806,\n \"acc_norm\": 0.21604938271604937,\n \"acc_norm_stderr\": 0.022899162918445806\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.23404255319148937,\n \"acc_stderr\": 0.025257861359432417,\n \"acc_norm\": 0.23404255319148937,\n \"acc_norm_stderr\": 0.025257861359432417\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.2457627118644068,\n \"acc_stderr\": 0.010996156635142692,\n \"acc_norm\": 0.2457627118644068,\n \"acc_norm_stderr\": 0.010996156635142692\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.27205882352941174,\n \"acc_stderr\": 0.027033041151681456,\n \"acc_norm\": 0.27205882352941174,\n \"acc_norm_stderr\": 0.027033041151681456\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.25,\n \"acc_stderr\": 0.01751781884501444,\n \"acc_norm\": 0.25,\n \"acc_norm_stderr\": 0.01751781884501444\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.23636363636363636,\n \"acc_stderr\": 0.04069306319721376,\n \"acc_norm\": 0.23636363636363636,\n \"acc_norm_stderr\": 0.04069306319721376\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.18775510204081633,\n \"acc_stderr\": 0.02500025603954621,\n \"acc_norm\": 0.18775510204081633,\n \"acc_norm_stderr\": 0.02500025603954621\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.24875621890547264,\n \"acc_stderr\": 0.030567675938916707,\n \"acc_norm\": 0.24875621890547264,\n \"acc_norm_stderr\": 0.030567675938916707\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.28,\n \"acc_stderr\": 0.04512608598542128,\n \"acc_norm\": 0.28,\n \"acc_norm_stderr\": 0.04512608598542128\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.28313253012048195,\n \"acc_stderr\": 0.03507295431370518,\n \"acc_norm\": 0.28313253012048195,\n \"acc_norm_stderr\": 0.03507295431370518\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.2573099415204678,\n \"acc_stderr\": 0.03352799844161865,\n \"acc_norm\": 0.2573099415204678,\n \"acc_norm_stderr\": 0.03352799844161865\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.2876376988984088,\n \"mc1_stderr\": 0.015846315101394816,\n \"mc2\": NaN,\n \"mc2_stderr\": NaN\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.47987371744277824,\n \"acc_stderr\": 0.014041096664344324\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.0,\n \"acc_stderr\": 0.0\n }\n}\n```", "repo_url": "https://huggingface.co/Felladrin/Pythia-31M-Chat-v1", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|arc:challenge|25_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|gsm8k|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hellaswag|10_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-06T14-50-17.030237.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["**/details_harness|winogrande|5_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-06T14-50-17.030237.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_06T14_50_17.030237", "path": ["results_2024-01-06T14-50-17.030237.parquet"]}, {"split": "latest", "path": ["results_2024-01-06T14-50-17.030237.parquet"]}]}]} | 2024-01-06T14:52:21+00:00 | [] | [] | TAGS
#region-us
|
# Dataset Card for Evaluation run of Felladrin/Pythia-31M-Chat-v1
Dataset automatically created during the evaluation run of model Felladrin/Pythia-31M-Chat-v1 on the Open LLM Leaderboard.
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).
To load the details from a run, you can for instance do the following:
## Latest results
These are the latest results from run 2024-01-06T14:50:17.030237(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
## Dataset Details
### Dataset Description
- Curated by:
- Funded by [optional]:
- Shared by [optional]:
- Language(s) (NLP):
- License:
### Dataset Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Out-of-Scope Use
## Dataset Structure
## Dataset Creation
### Curation Rationale
### Source Data
#### Data Collection and Processing
#### Who are the source data producers?
### Annotations [optional]
#### Annotation process
#### Who are the annotators?
#### Personal and Sensitive Information
## Bias, Risks, and Limitations
### Recommendations
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Dataset Card Authors [optional]
## Dataset Card Contact
| [
"# Dataset Card for Evaluation run of Felladrin/Pythia-31M-Chat-v1\n\n\n\nDataset automatically created during the evaluation run of model Felladrin/Pythia-31M-Chat-v1 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-06T14:50:17.030237(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for Evaluation run of Felladrin/Pythia-31M-Chat-v1\n\n\n\nDataset automatically created during the evaluation run of model Felladrin/Pythia-31M-Chat-v1 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-06T14:50:17.030237(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
6,
191,
68,
4,
40,
29,
3,
4,
9,
6,
5,
7,
4,
7,
10,
9,
5,
9,
8,
10,
46,
8,
7,
10,
5
] | [
"passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of Felladrin/Pythia-31M-Chat-v1\n\n\n\nDataset automatically created during the evaluation run of model Felladrin/Pythia-31M-Chat-v1 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2024-01-06T14:50:17.030237(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):## Dataset Details### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Out-of-Scope Use## Dataset Structure## Dataset Creation### Curation Rationale### Source Data#### Data Collection and Processing#### Who are the source data producers?### Annotations [optional]#### Annotation process#### Who are the annotators?#### Personal and Sensitive Information## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Dataset Card Authors [optional]"
] |
07e61e232f2f91377e5f0de9f118f1b299990611 |
### Instruct-QA-Thai-Combined
#### Dataset Description
**Instruct-QA-Thai-Combined** is a rich collection of question-answering datasets compiled from various sources,\
tailored for the development and benchmarking of Thai language question-answering systems.
#### Languages
The primary language present in this dataset is Thai.
### Data Structure
#### Data Sources:
- **Wiki QA:** 17,000 question-answer pairs.
- **MKQA:** 10,000 queries sampled from the Google Natural Questions dataset.
- **iapp-wiki-qa-squad:** 5,761 document/question pairs.
- **ThaiQA Squad:** 4,000 question-answer pairs from Thai Wikipedia.
- **TyDi QA:** 3,789 question-answer pairs in diverse languages.
- **XQuAD:** 1,190 question-answer pairs for cross-lingual question answering performance.
#### Features:
The dataset includes the following features:
- **Instuction**: A question related to a specific topic.
- **Input**: Long form context.
- **Answer**: The corresponding answer to the question.
- **Source**: The dataset each question and answer pair originated from.
#### Source Data
The source data includes multiple datasets, each with its licensing:
- XQuAD (CC BY-SA 4.0)
- Thai QA (CC BY-SA-NC 3.0)
- TyDi QA (Apache-2.0 License)
- iapp-wiki-qa-dataset (MIT License)
- MKQA (Apple)
#### Citation Information
Please cite the following if you use the Instruct-QA-Thai-Combined dataset in your work:
```
@misc{instruct-qa-thai-combined,
author = {Thaweewat},
title = {Instruct-QA-Thai-Combined: A Comprehensive Thai Question Answering Dataset},
year = {2024},
publisher = {Hugging Face},
journal = {Hugging Face Datasets},
howpublished = {url{https://huggingface.co/datasets/Thaweewat/instruct-qa-thai-combined}}
}
```
### Acknowledgements
Special thanks to the contributors of the original datasets: NECTEC, DeepMind, Google Research, and Apple, among others.
--- | Thaweewat/instruct-qa-thai-combined | [
"size_categories:10K<n<100K",
"language:th",
"region:us"
] | 2024-01-06T15:01:07+00:00 | {"language": ["th"], "size_categories": ["10K<n<100K"], "dataset_info": {"features": [{"name": "instruction", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "__index_level_0__", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 77970280, "num_examples": 41740}], "download_size": 17214030, "dataset_size": 77970280}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2024-01-06T15:30:04+00:00 | [] | [
"th"
] | TAGS
#size_categories-10K<n<100K #language-Thai #region-us
|
### Instruct-QA-Thai-Combined
#### Dataset Description
Instruct-QA-Thai-Combined is a rich collection of question-answering datasets compiled from various sources,\
tailored for the development and benchmarking of Thai language question-answering systems.
#### Languages
The primary language present in this dataset is Thai.
### Data Structure
#### Data Sources:
- Wiki QA: 17,000 question-answer pairs.
- MKQA: 10,000 queries sampled from the Google Natural Questions dataset.
- iapp-wiki-qa-squad: 5,761 document/question pairs.
- ThaiQA Squad: 4,000 question-answer pairs from Thai Wikipedia.
- TyDi QA: 3,789 question-answer pairs in diverse languages.
- XQuAD: 1,190 question-answer pairs for cross-lingual question answering performance.
#### Features:
The dataset includes the following features:
- Instuction: A question related to a specific topic.
- Input: Long form context.
- Answer: The corresponding answer to the question.
- Source: The dataset each question and answer pair originated from.
#### Source Data
The source data includes multiple datasets, each with its licensing:
- XQuAD (CC BY-SA 4.0)
- Thai QA (CC BY-SA-NC 3.0)
- TyDi QA (Apache-2.0 License)
- iapp-wiki-qa-dataset (MIT License)
- MKQA (Apple)
Please cite the following if you use the Instruct-QA-Thai-Combined dataset in your work:
### Acknowledgements
Special thanks to the contributors of the original datasets: NECTEC, DeepMind, Google Research, and Apple, among others.
--- | [
"### Instruct-QA-Thai-Combined",
"#### Dataset Description\n\nInstruct-QA-Thai-Combined is a rich collection of question-answering datasets compiled from various sources,\\\ntailored for the development and benchmarking of Thai language question-answering systems.",
"#### Languages\n\nThe primary language present in this dataset is Thai.",
"### Data Structure",
"#### Data Sources:\n\n- Wiki QA: 17,000 question-answer pairs.\n- MKQA: 10,000 queries sampled from the Google Natural Questions dataset.\n- iapp-wiki-qa-squad: 5,761 document/question pairs.\n- ThaiQA Squad: 4,000 question-answer pairs from Thai Wikipedia.\n- TyDi QA: 3,789 question-answer pairs in diverse languages.\n- XQuAD: 1,190 question-answer pairs for cross-lingual question answering performance.",
"#### Features:\n\nThe dataset includes the following features:\n\n- Instuction: A question related to a specific topic.\n- Input: Long form context.\n- Answer: The corresponding answer to the question.\n- Source: The dataset each question and answer pair originated from.",
"#### Source Data\n\nThe source data includes multiple datasets, each with its licensing:\n\n- XQuAD (CC BY-SA 4.0)\n- Thai QA (CC BY-SA-NC 3.0)\n- TyDi QA (Apache-2.0 License)\n- iapp-wiki-qa-dataset (MIT License)\n- MKQA (Apple)\n\n\n\nPlease cite the following if you use the Instruct-QA-Thai-Combined dataset in your work:",
"### Acknowledgements\n\nSpecial thanks to the contributors of the original datasets: NECTEC, DeepMind, Google Research, and Apple, among others.\n\n---"
] | [
"TAGS\n#size_categories-10K<n<100K #language-Thai #region-us \n",
"### Instruct-QA-Thai-Combined",
"#### Dataset Description\n\nInstruct-QA-Thai-Combined is a rich collection of question-answering datasets compiled from various sources,\\\ntailored for the development and benchmarking of Thai language question-answering systems.",
"#### Languages\n\nThe primary language present in this dataset is Thai.",
"### Data Structure",
"#### Data Sources:\n\n- Wiki QA: 17,000 question-answer pairs.\n- MKQA: 10,000 queries sampled from the Google Natural Questions dataset.\n- iapp-wiki-qa-squad: 5,761 document/question pairs.\n- ThaiQA Squad: 4,000 question-answer pairs from Thai Wikipedia.\n- TyDi QA: 3,789 question-answer pairs in diverse languages.\n- XQuAD: 1,190 question-answer pairs for cross-lingual question answering performance.",
"#### Features:\n\nThe dataset includes the following features:\n\n- Instuction: A question related to a specific topic.\n- Input: Long form context.\n- Answer: The corresponding answer to the question.\n- Source: The dataset each question and answer pair originated from.",
"#### Source Data\n\nThe source data includes multiple datasets, each with its licensing:\n\n- XQuAD (CC BY-SA 4.0)\n- Thai QA (CC BY-SA-NC 3.0)\n- TyDi QA (Apache-2.0 License)\n- iapp-wiki-qa-dataset (MIT License)\n- MKQA (Apple)\n\n\n\nPlease cite the following if you use the Instruct-QA-Thai-Combined dataset in your work:",
"### Acknowledgements\n\nSpecial thanks to the contributors of the original datasets: NECTEC, DeepMind, Google Research, and Apple, among others.\n\n---"
] | [
23,
13,
54,
15,
6,
120,
60,
101,
36
] | [
"passage: TAGS\n#size_categories-10K<n<100K #language-Thai #region-us \n### Instruct-QA-Thai-Combined#### Dataset Description\n\nInstruct-QA-Thai-Combined is a rich collection of question-answering datasets compiled from various sources,\\\ntailored for the development and benchmarking of Thai language question-answering systems.#### Languages\n\nThe primary language present in this dataset is Thai.### Data Structure#### Data Sources:\n\n- Wiki QA: 17,000 question-answer pairs.\n- MKQA: 10,000 queries sampled from the Google Natural Questions dataset.\n- iapp-wiki-qa-squad: 5,761 document/question pairs.\n- ThaiQA Squad: 4,000 question-answer pairs from Thai Wikipedia.\n- TyDi QA: 3,789 question-answer pairs in diverse languages.\n- XQuAD: 1,190 question-answer pairs for cross-lingual question answering performance.#### Features:\n\nThe dataset includes the following features:\n\n- Instuction: A question related to a specific topic.\n- Input: Long form context.\n- Answer: The corresponding answer to the question.\n- Source: The dataset each question and answer pair originated from.#### Source Data\n\nThe source data includes multiple datasets, each with its licensing:\n\n- XQuAD (CC BY-SA 4.0)\n- Thai QA (CC BY-SA-NC 3.0)\n- TyDi QA (Apache-2.0 License)\n- iapp-wiki-qa-dataset (MIT License)\n- MKQA (Apple)\n\n\n\nPlease cite the following if you use the Instruct-QA-Thai-Combined dataset in your work:### Acknowledgements\n\nSpecial thanks to the contributors of the original datasets: NECTEC, DeepMind, Google Research, and Apple, among others.\n\n---"
] |
139427b75e14e45e24a557cfb5850d9bf515d42d | # Dataset Card for "minor-prince"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | lingtrain/minor-prince | [
"region:us"
] | 2024-01-06T15:06:36+00:00 | {"dataset_info": {"features": [{"name": "ba", "dtype": "string"}, {"name": "cv", "dtype": "string"}, {"name": "di", "dtype": "string"}, {"name": "krc", "dtype": "string"}, {"name": "kv", "dtype": "string"}, {"name": "mdf", "dtype": "string"}, {"name": "mrh", "dtype": "string"}, {"name": "mrj", "dtype": "string"}, {"name": "myv", "dtype": "string"}, {"name": "ru", "dtype": "string"}, {"name": "sah", "dtype": "string"}, {"name": "tt", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1859606, "num_examples": 1229}], "download_size": 922687, "dataset_size": 1859606}} | 2024-01-06T15:06:38+00:00 | [] | [] | TAGS
#region-us
| # Dataset Card for "minor-prince"
More Information needed | [
"# Dataset Card for \"minor-prince\"\n\nMore Information needed"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for \"minor-prince\"\n\nMore Information needed"
] | [
6,
15
] | [
"passage: TAGS\n#region-us \n# Dataset Card for \"minor-prince\"\n\nMore Information needed"
] |
06f6d31c6454205fe4a684d242efb551f484b2c4 | # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_s1_nearestscore_true_y"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | ibranze/araproje_hellaswag_tr_conf_mgpt_s1_nearestscore_true_y | [
"region:us"
] | 2024-01-06T15:31:07+00:00 | {"dataset_info": {"features": [{"name": "ind", "dtype": "int32"}, {"name": "activity_label", "dtype": "string"}, {"name": "ctx_a", "dtype": "string"}, {"name": "ctx_b", "dtype": "string"}, {"name": "ctx", "dtype": "string"}, {"name": "endings", "sequence": "string"}, {"name": "source_id", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "split_type", "dtype": "string"}, {"name": "label", "dtype": "string"}], "splits": [{"name": "validation", "num_bytes": 162703.0, "num_examples": 250}], "download_size": 87228, "dataset_size": 162703.0}, "configs": [{"config_name": "default", "data_files": [{"split": "validation", "path": "data/validation-*"}]}]} | 2024-01-06T15:31:09+00:00 | [] | [] | TAGS
#region-us
| # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_s1_nearestscore_true_y"
More Information needed | [
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_s1_nearestscore_true_y\"\n\nMore Information needed"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_s1_nearestscore_true_y\"\n\nMore Information needed"
] | [
6,
38
] | [
"passage: TAGS\n#region-us \n# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_s1_nearestscore_true_y\"\n\nMore Information needed"
] |
243fa0509422a1bca4099dff3c666ef68cb9161e | # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_s1_nearestscore_true_x"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | ibranze/araproje_hellaswag_tr_conf_mgpt_s1_nearestscore_true_x | [
"region:us"
] | 2024-01-06T15:31:10+00:00 | {"dataset_info": {"features": [{"name": "ind", "dtype": "int32"}, {"name": "activity_label", "dtype": "string"}, {"name": "ctx_a", "dtype": "string"}, {"name": "ctx_b", "dtype": "string"}, {"name": "ctx", "dtype": "string"}, {"name": "endings", "sequence": "string"}, {"name": "source_id", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "split_type", "dtype": "string"}, {"name": "label", "dtype": "string"}], "splits": [{"name": "validation", "num_bytes": 162703.0, "num_examples": 250}], "download_size": 87353, "dataset_size": 162703.0}, "configs": [{"config_name": "default", "data_files": [{"split": "validation", "path": "data/validation-*"}]}]} | 2024-01-06T15:31:12+00:00 | [] | [] | TAGS
#region-us
| # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_s1_nearestscore_true_x"
More Information needed | [
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_s1_nearestscore_true_x\"\n\nMore Information needed"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_s1_nearestscore_true_x\"\n\nMore Information needed"
] | [
6,
38
] | [
"passage: TAGS\n#region-us \n# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_s1_nearestscore_true_x\"\n\nMore Information needed"
] |
ee921282ac89327072953c7293819080699fc7bf | # Dataset Card for "rna_black_1024"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | Sofoklis/rna_black_1024 | [
"region:us"
] | 2024-01-06T15:38:51+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "caption", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "sequence", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 49750.0, "num_examples": 15}, {"name": "validation", "num_bytes": 9950.0, "num_examples": 3}, {"name": "test", "num_bytes": 6634.0, "num_examples": 2}], "download_size": 68465, "dataset_size": 66334.0}} | 2024-01-06T15:38:56+00:00 | [] | [] | TAGS
#region-us
| # Dataset Card for "rna_black_1024"
More Information needed | [
"# Dataset Card for \"rna_black_1024\"\n\nMore Information needed"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for \"rna_black_1024\"\n\nMore Information needed"
] | [
6,
16
] | [
"passage: TAGS\n#region-us \n# Dataset Card for \"rna_black_1024\"\n\nMore Information needed"
] |
5a959c70cb16fcd71e98f1b8cfa0960a1e110a22 | # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_nearestscore_true_y"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | ibranze/araproje_hellaswag_tr_conf_mgpt_nearestscore_true_y | [
"region:us"
] | 2024-01-06T15:41:16+00:00 | {"dataset_info": {"features": [{"name": "ind", "dtype": "int32"}, {"name": "activity_label", "dtype": "string"}, {"name": "ctx_a", "dtype": "string"}, {"name": "ctx_b", "dtype": "string"}, {"name": "ctx", "dtype": "string"}, {"name": "endings", "sequence": "string"}, {"name": "source_id", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "split_type", "dtype": "string"}, {"name": "label", "dtype": "string"}], "splits": [{"name": "validation", "num_bytes": 162703.0, "num_examples": 250}], "download_size": 87120, "dataset_size": 162703.0}, "configs": [{"config_name": "default", "data_files": [{"split": "validation", "path": "data/validation-*"}]}]} | 2024-01-06T15:41:18+00:00 | [] | [] | TAGS
#region-us
| # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_nearestscore_true_y"
More Information needed | [
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_nearestscore_true_y\"\n\nMore Information needed"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_nearestscore_true_y\"\n\nMore Information needed"
] | [
6,
35
] | [
"passage: TAGS\n#region-us \n# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_nearestscore_true_y\"\n\nMore Information needed"
] |
becf4c3ee7241e8c4e4401e028be63c3ba10397c | # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_nearestscore_true_x"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | ibranze/araproje_hellaswag_tr_conf_mgpt_nearestscore_true_x | [
"region:us"
] | 2024-01-06T15:41:20+00:00 | {"dataset_info": {"features": [{"name": "ind", "dtype": "int32"}, {"name": "activity_label", "dtype": "string"}, {"name": "ctx_a", "dtype": "string"}, {"name": "ctx_b", "dtype": "string"}, {"name": "ctx", "dtype": "string"}, {"name": "endings", "sequence": "string"}, {"name": "source_id", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "split_type", "dtype": "string"}, {"name": "label", "dtype": "string"}], "splits": [{"name": "validation", "num_bytes": 162703.0, "num_examples": 250}], "download_size": 87162, "dataset_size": 162703.0}, "configs": [{"config_name": "default", "data_files": [{"split": "validation", "path": "data/validation-*"}]}]} | 2024-01-06T15:41:21+00:00 | [] | [] | TAGS
#region-us
| # Dataset Card for "araproje_hellaswag_tr_conf_mgpt_nearestscore_true_x"
More Information needed | [
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_nearestscore_true_x\"\n\nMore Information needed"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_nearestscore_true_x\"\n\nMore Information needed"
] | [
6,
35
] | [
"passage: TAGS\n#region-us \n# Dataset Card for \"araproje_hellaswag_tr_conf_mgpt_nearestscore_true_x\"\n\nMore Information needed"
] |
936f163b5f4587f5672ef97b9f68044c8e71445d |
# Dataset Card for TextOCR-GPT4V
## Dataset Description
- **Point of Contact:** APJC (me)
### Dataset Summary
TextOCR-GPT4V is Meta's [TextOCR dataset](https://textvqa.org/textocr/) dataset captioned with emphasis on text OCR using GPT4V. To get the image, you will need to agree to their terms of service.
### Supported Tasks
The TextOCR-GPT4V dataset is intended for generating benchmarks for comparison of an MLLM to GPT4v.
### Languages
The caption languages are in English, while various texts in images are in many languages such as Spanish, Japanese, and Hindi.
### Original Prompts
The `caption` field was produced with the following prompt with the `gpt-4-vision-preview` model:
```
Can you please describe the contents of this image in the following way: (1) In one to two sentences at most under the heading entitled 'DESCRIPTION' (2) Transcribe any text found within the image and where it is located under the heading entitled 'TEXT'?\n\nFor example, you might describe a picture of a palm tree with a logo on it in the center that spells the word COCONUT as:\n\nDESCRIPTION\nA photograph of a palm tree on a beach somewhere, there is a blue sky in the background and it is a sunny day. There is a blue text logo with white outline in the center of the image.\n\nTEXT\nThe text logo in the center of the image says, \"COCONUT\".\n\nBe sure to describe all the text that is found in the image.
```
The `caption_condensed` field was produced with the following prompt using the `gpt-4-1106-preview` model:
```
Please make the following description of an image that may or may not have text into a single description of 120 words or less.
{caption}
Be terse and do not add extraneous details. Keep the description as a single, unbroken paragraph.
```
### Data Instances
An example of "train" looks as follows:
```json
{
"filename": "aabbccddeeff0011.jpg",
"caption": "DESCRIPTION\nA banana.\n\nTEXT\nThe banana has a sticker on it that says \"Fruit Company\".",
"caption_image": "A banana.",
"caption_text": "The banana has a sticker on it that says \"Fruit Company\".",
"caption_condensed": "A banana that has a sticker on it that says \"Fruit Company\".",
}
```
### Data Fields
The data fields are as follows:
* `filename`: The filename of the image from the original [TextOCR dataset](https://textvqa.org/textocr/).
* `caption`: A caption with both a `DESCRIPTION` and `TEXT` part.
* `caption_image`: The `DESCRIPTION` part of the caption.
* `caption_text`: The `TEXT` part of the caption.
* `caption_condensed`: GPT4 distilled version of the original caption onto a single line.
### Data Splits
| | train |
|---------------|------:|
| textocr-gpt4v | 25114 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
The `textocr-gpt4v` data is generated by a vision-language model (`gpt-4-vision-preview`) and inevitably contains some errors or biases. We encourage users to use this data with caution and propose new methods to filter or improve the imperfections.
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
The dataset is available under the [Creative Commons NonCommercial (CC BY-NC 4.0)](https://creativecommons.org/licenses/by-nc/4.0/legalcode).
### Citation Information
```
@misc{textocr-gpt4v,
author = { Jimmy Carter },
title = {TextOCR-GPT4V},
year = {2024},
publisher = {Huggingface},
journal = {Huggingface repository},
howpublished = {\url{https://huggingface.co/datasets/jimmycarter/textocr-gpt4v}},
}
```
### Contributions
[More Information Needed] | jimmycarter/textocr-gpt4v | [
"task_categories:image-to-text",
"task_categories:visual-question-answering",
"size_categories:10K<n<100K",
"language:en",
"license:cc-by-nc-4.0",
"region:us"
] | 2024-01-06T15:49:12+00:00 | {"language": ["en"], "license": "cc-by-nc-4.0", "size_categories": ["10K<n<100K"], "task_categories": ["image-to-text", "visual-question-answering"], "pretty_name": "textocr-gpt4v"} | 2024-01-06T16:18:30+00:00 | [] | [
"en"
] | TAGS
#task_categories-image-to-text #task_categories-visual-question-answering #size_categories-10K<n<100K #language-English #license-cc-by-nc-4.0 #region-us
| Dataset Card for TextOCR-GPT4V
==============================
Dataset Description
-------------------
* Point of Contact: APJC (me)
### Dataset Summary
TextOCR-GPT4V is Meta's TextOCR dataset dataset captioned with emphasis on text OCR using GPT4V. To get the image, you will need to agree to their terms of service.
### Supported Tasks
The TextOCR-GPT4V dataset is intended for generating benchmarks for comparison of an MLLM to GPT4v.
### Languages
The caption languages are in English, while various texts in images are in many languages such as Spanish, Japanese, and Hindi.
### Original Prompts
The 'caption' field was produced with the following prompt with the 'gpt-4-vision-preview' model:
The 'caption\_condensed' field was produced with the following prompt using the 'gpt-4-1106-preview' model:
### Data Instances
An example of "train" looks as follows:
### Data Fields
The data fields are as follows:
* 'filename': The filename of the image from the original TextOCR dataset.
* 'caption': A caption with both a 'DESCRIPTION' and 'TEXT' part.
* 'caption\_image': The 'DESCRIPTION' part of the caption.
* 'caption\_text': The 'TEXT' part of the caption.
* 'caption\_condensed': GPT4 distilled version of the original caption onto a single line.
### Data Splits
Dataset Creation
----------------
### Curation Rationale
### Source Data
#### Initial Data Collection and Normalization
#### Who are the source language producers?
### Annotations
#### Annotation process
#### Who are the annotators?
### Personal and Sensitive Information
Considerations for Using the Data
---------------------------------
### Social Impact of Dataset
### Discussion of Biases
### Other Known Limitations
The 'textocr-gpt4v' data is generated by a vision-language model ('gpt-4-vision-preview') and inevitably contains some errors or biases. We encourage users to use this data with caution and propose new methods to filter or improve the imperfections.
Additional Information
----------------------
### Dataset Curators
### Licensing Information
The dataset is available under the Creative Commons NonCommercial (CC BY-NC 4.0).
### Contributions
| [
"### Dataset Summary\n\n\nTextOCR-GPT4V is Meta's TextOCR dataset dataset captioned with emphasis on text OCR using GPT4V. To get the image, you will need to agree to their terms of service.",
"### Supported Tasks\n\n\nThe TextOCR-GPT4V dataset is intended for generating benchmarks for comparison of an MLLM to GPT4v.",
"### Languages\n\n\nThe caption languages are in English, while various texts in images are in many languages such as Spanish, Japanese, and Hindi.",
"### Original Prompts\n\n\nThe 'caption' field was produced with the following prompt with the 'gpt-4-vision-preview' model:\n\n\nThe 'caption\\_condensed' field was produced with the following prompt using the 'gpt-4-1106-preview' model:",
"### Data Instances\n\n\nAn example of \"train\" looks as follows:",
"### Data Fields\n\n\nThe data fields are as follows:\n\n\n* 'filename': The filename of the image from the original TextOCR dataset.\n* 'caption': A caption with both a 'DESCRIPTION' and 'TEXT' part.\n* 'caption\\_image': The 'DESCRIPTION' part of the caption.\n* 'caption\\_text': The 'TEXT' part of the caption.\n* 'caption\\_condensed': GPT4 distilled version of the original caption onto a single line.",
"### Data Splits\n\n\n\nDataset Creation\n----------------",
"### Curation Rationale",
"### Source Data",
"#### Initial Data Collection and Normalization",
"#### Who are the source language producers?",
"### Annotations",
"#### Annotation process",
"#### Who are the annotators?",
"### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------",
"### Social Impact of Dataset",
"### Discussion of Biases",
"### Other Known Limitations\n\n\nThe 'textocr-gpt4v' data is generated by a vision-language model ('gpt-4-vision-preview') and inevitably contains some errors or biases. We encourage users to use this data with caution and propose new methods to filter or improve the imperfections.\n\n\nAdditional Information\n----------------------",
"### Dataset Curators",
"### Licensing Information\n\n\nThe dataset is available under the Creative Commons NonCommercial (CC BY-NC 4.0).",
"### Contributions"
] | [
"TAGS\n#task_categories-image-to-text #task_categories-visual-question-answering #size_categories-10K<n<100K #language-English #license-cc-by-nc-4.0 #region-us \n",
"### Dataset Summary\n\n\nTextOCR-GPT4V is Meta's TextOCR dataset dataset captioned with emphasis on text OCR using GPT4V. To get the image, you will need to agree to their terms of service.",
"### Supported Tasks\n\n\nThe TextOCR-GPT4V dataset is intended for generating benchmarks for comparison of an MLLM to GPT4v.",
"### Languages\n\n\nThe caption languages are in English, while various texts in images are in many languages such as Spanish, Japanese, and Hindi.",
"### Original Prompts\n\n\nThe 'caption' field was produced with the following prompt with the 'gpt-4-vision-preview' model:\n\n\nThe 'caption\\_condensed' field was produced with the following prompt using the 'gpt-4-1106-preview' model:",
"### Data Instances\n\n\nAn example of \"train\" looks as follows:",
"### Data Fields\n\n\nThe data fields are as follows:\n\n\n* 'filename': The filename of the image from the original TextOCR dataset.\n* 'caption': A caption with both a 'DESCRIPTION' and 'TEXT' part.\n* 'caption\\_image': The 'DESCRIPTION' part of the caption.\n* 'caption\\_text': The 'TEXT' part of the caption.\n* 'caption\\_condensed': GPT4 distilled version of the original caption onto a single line.",
"### Data Splits\n\n\n\nDataset Creation\n----------------",
"### Curation Rationale",
"### Source Data",
"#### Initial Data Collection and Normalization",
"#### Who are the source language producers?",
"### Annotations",
"#### Annotation process",
"#### Who are the annotators?",
"### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------",
"### Social Impact of Dataset",
"### Discussion of Biases",
"### Other Known Limitations\n\n\nThe 'textocr-gpt4v' data is generated by a vision-language model ('gpt-4-vision-preview') and inevitably contains some errors or biases. We encourage users to use this data with caution and propose new methods to filter or improve the imperfections.\n\n\nAdditional Information\n----------------------",
"### Dataset Curators",
"### Licensing Information\n\n\nThe dataset is available under the Creative Commons NonCommercial (CC BY-NC 4.0).",
"### Contributions"
] | [
60,
55,
37,
32,
63,
18,
127,
11,
7,
4,
10,
10,
5,
5,
9,
18,
7,
8,
83,
6,
26,
5
] | [
"passage: TAGS\n#task_categories-image-to-text #task_categories-visual-question-answering #size_categories-10K<n<100K #language-English #license-cc-by-nc-4.0 #region-us \n### Dataset Summary\n\n\nTextOCR-GPT4V is Meta's TextOCR dataset dataset captioned with emphasis on text OCR using GPT4V. To get the image, you will need to agree to their terms of service.### Supported Tasks\n\n\nThe TextOCR-GPT4V dataset is intended for generating benchmarks for comparison of an MLLM to GPT4v.### Languages\n\n\nThe caption languages are in English, while various texts in images are in many languages such as Spanish, Japanese, and Hindi.### Original Prompts\n\n\nThe 'caption' field was produced with the following prompt with the 'gpt-4-vision-preview' model:\n\n\nThe 'caption\\_condensed' field was produced with the following prompt using the 'gpt-4-1106-preview' model:### Data Instances\n\n\nAn example of \"train\" looks as follows:### Data Fields\n\n\nThe data fields are as follows:\n\n\n* 'filename': The filename of the image from the original TextOCR dataset.\n* 'caption': A caption with both a 'DESCRIPTION' and 'TEXT' part.\n* 'caption\\_image': The 'DESCRIPTION' part of the caption.\n* 'caption\\_text': The 'TEXT' part of the caption.\n* 'caption\\_condensed': GPT4 distilled version of the original caption onto a single line.### Data Splits\n\n\n\nDataset Creation\n----------------### Curation Rationale### Source Data#### Initial Data Collection and Normalization#### Who are the source language producers?### Annotations#### Annotation process#### Who are the annotators?### Personal and Sensitive Information\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset### Discussion of Biases"
] |
87c905cbcb672c93280150a1bbcd27ff7b6a5376 | # Dataset Card for "araproje_hellaswag_tr_conf_gpt2_nearestscore_true_y"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | ibranze/araproje_hellaswag_tr_conf_gpt2_nearestscore_true_y | [
"region:us"
] | 2024-01-06T15:52:32+00:00 | {"dataset_info": {"features": [{"name": "ind", "dtype": "int32"}, {"name": "activity_label", "dtype": "string"}, {"name": "ctx_a", "dtype": "string"}, {"name": "ctx_b", "dtype": "string"}, {"name": "ctx", "dtype": "string"}, {"name": "endings", "sequence": "string"}, {"name": "source_id", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "split_type", "dtype": "string"}, {"name": "label", "dtype": "string"}], "splits": [{"name": "validation", "num_bytes": 162703.0, "num_examples": 250}], "download_size": 0, "dataset_size": 162703.0}, "configs": [{"config_name": "default", "data_files": [{"split": "validation", "path": "data/validation-*"}]}]} | 2024-01-14T10:06:53+00:00 | [] | [] | TAGS
#region-us
| # Dataset Card for "araproje_hellaswag_tr_conf_gpt2_nearestscore_true_y"
More Information needed | [
"# Dataset Card for \"araproje_hellaswag_tr_conf_gpt2_nearestscore_true_y\"\n\nMore Information needed"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for \"araproje_hellaswag_tr_conf_gpt2_nearestscore_true_y\"\n\nMore Information needed"
] | [
6,
36
] | [
"passage: TAGS\n#region-us \n# Dataset Card for \"araproje_hellaswag_tr_conf_gpt2_nearestscore_true_y\"\n\nMore Information needed"
] |
e692aa99c7b4ba60784a795fba89d7cd05d15b4d | # Dataset Card for "araproje_hellaswag_tr_conf_gpt2_nearestscore_true_x"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | ibranze/araproje_hellaswag_tr_conf_gpt2_nearestscore_true_x | [
"region:us"
] | 2024-01-06T15:53:31+00:00 | {"dataset_info": {"features": [{"name": "ind", "dtype": "int32"}, {"name": "activity_label", "dtype": "string"}, {"name": "ctx_a", "dtype": "string"}, {"name": "ctx_b", "dtype": "string"}, {"name": "ctx", "dtype": "string"}, {"name": "endings", "sequence": "string"}, {"name": "source_id", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "split_type", "dtype": "string"}, {"name": "label", "dtype": "string"}], "splits": [{"name": "validation", "num_bytes": 162703.0, "num_examples": 250}], "download_size": 0, "dataset_size": 162703.0}, "configs": [{"config_name": "default", "data_files": [{"split": "validation", "path": "data/validation-*"}]}]} | 2024-01-14T10:06:56+00:00 | [] | [] | TAGS
#region-us
| # Dataset Card for "araproje_hellaswag_tr_conf_gpt2_nearestscore_true_x"
More Information needed | [
"# Dataset Card for \"araproje_hellaswag_tr_conf_gpt2_nearestscore_true_x\"\n\nMore Information needed"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for \"araproje_hellaswag_tr_conf_gpt2_nearestscore_true_x\"\n\nMore Information needed"
] | [
6,
36
] | [
"passage: TAGS\n#region-us \n# Dataset Card for \"araproje_hellaswag_tr_conf_gpt2_nearestscore_true_x\"\n\nMore Information needed"
] |
feb611bf9e9e5166c78d550d68f9d7910ea1f2a4 |
# Dataset Card for Dataset Name
<!-- Provide a quick summary of the dataset. -->
This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1).
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
[More Information Needed] | arthurheretica/subway_traffic | [
"region:us"
] | 2024-01-06T15:58:09+00:00 | {} | 2024-01-06T16:02:30+00:00 | [] | [] | TAGS
#region-us
|
# Dataset Card for Dataset Name
This dataset card aims to be a base template for new datasets. It has been generated using this raw template.
## Dataset Details
### Dataset Description
- Curated by:
- Funded by [optional]:
- Shared by [optional]:
- Language(s) (NLP):
- License:
### Dataset Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Out-of-Scope Use
## Dataset Structure
## Dataset Creation
### Curation Rationale
### Source Data
#### Data Collection and Processing
#### Who are the source data producers?
### Annotations [optional]
#### Annotation process
#### Who are the annotators?
#### Personal and Sensitive Information
## Bias, Risks, and Limitations
### Recommendations
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Dataset Card Authors [optional]
## Dataset Card Contact
| [
"# Dataset Card for Dataset Name\n\n\n\nThis dataset card aims to be a base template for new datasets. It has been generated using this raw template.",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for Dataset Name\n\n\n\nThis dataset card aims to be a base template for new datasets. It has been generated using this raw template.",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
6,
34,
4,
40,
29,
3,
4,
9,
6,
5,
7,
4,
7,
10,
9,
5,
9,
8,
10,
46,
8,
7,
10,
5
] | [
"passage: TAGS\n#region-us \n# Dataset Card for Dataset Name\n\n\n\nThis dataset card aims to be a base template for new datasets. It has been generated using this raw template.## Dataset Details### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Out-of-Scope Use## Dataset Structure## Dataset Creation### Curation Rationale### Source Data#### Data Collection and Processing#### Who are the source data producers?### Annotations [optional]#### Annotation process#### Who are the annotators?#### Personal and Sensitive Information## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Dataset Card Authors [optional]## Dataset Card Contact"
] |
1d8de7a8aec5bc4a8b312915c2871d5df081bd19 | # Dataset Card for "araproje_hellaswag_en_conf_mpgt_nearestscore_true_y"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | ibranze/araproje_hellaswag_en_conf_mpgt_nearestscore_true_y | [
"region:us"
] | 2024-01-06T15:59:06+00:00 | {"dataset_info": {"features": [{"name": "ind", "dtype": "int32"}, {"name": "activity_label", "dtype": "string"}, {"name": "ctx_a", "dtype": "string"}, {"name": "ctx_b", "dtype": "string"}, {"name": "ctx", "dtype": "string"}, {"name": "endings", "sequence": "string"}, {"name": "source_id", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "split_type", "dtype": "string"}, {"name": "label", "dtype": "string"}], "splits": [{"name": "validation", "num_bytes": 149738.0, "num_examples": 250}], "download_size": 81214, "dataset_size": 149738.0}, "configs": [{"config_name": "default", "data_files": [{"split": "validation", "path": "data/validation-*"}]}]} | 2024-01-06T15:59:08+00:00 | [] | [] | TAGS
#region-us
| # Dataset Card for "araproje_hellaswag_en_conf_mpgt_nearestscore_true_y"
More Information needed | [
"# Dataset Card for \"araproje_hellaswag_en_conf_mpgt_nearestscore_true_y\"\n\nMore Information needed"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for \"araproje_hellaswag_en_conf_mpgt_nearestscore_true_y\"\n\nMore Information needed"
] | [
6,
35
] | [
"passage: TAGS\n#region-us \n# Dataset Card for \"araproje_hellaswag_en_conf_mpgt_nearestscore_true_y\"\n\nMore Information needed"
] |
091a1f6ab1102b4c656eb24fb06069529e1c2d46 | # Dataset Card for "araproje_hellaswag_en_conf_llama_nearestscore_true_y"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | ibranze/araproje_hellaswag_en_conf_llama_nearestscore_true_y | [
"region:us"
] | 2024-01-06T16:08:12+00:00 | {"dataset_info": {"features": [{"name": "ind", "dtype": "int32"}, {"name": "activity_label", "dtype": "string"}, {"name": "ctx_a", "dtype": "string"}, {"name": "ctx_b", "dtype": "string"}, {"name": "ctx", "dtype": "string"}, {"name": "endings", "sequence": "string"}, {"name": "source_id", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "split_type", "dtype": "string"}, {"name": "label", "dtype": "string"}], "splits": [{"name": "validation", "num_bytes": 149738.0, "num_examples": 250}], "download_size": 81116, "dataset_size": 149738.0}, "configs": [{"config_name": "default", "data_files": [{"split": "validation", "path": "data/validation-*"}]}]} | 2024-01-06T16:08:14+00:00 | [] | [] | TAGS
#region-us
| # Dataset Card for "araproje_hellaswag_en_conf_llama_nearestscore_true_y"
More Information needed | [
"# Dataset Card for \"araproje_hellaswag_en_conf_llama_nearestscore_true_y\"\n\nMore Information needed"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for \"araproje_hellaswag_en_conf_llama_nearestscore_true_y\"\n\nMore Information needed"
] | [
6,
35
] | [
"passage: TAGS\n#region-us \n# Dataset Card for \"araproje_hellaswag_en_conf_llama_nearestscore_true_y\"\n\nMore Information needed"
] |
6ec5d7d571c7ac12ff60848f066bb6a8a104c1c0 | # Dataset Card for "araproje_hellaswag_en_conf_llama_nearestscore_true_x"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | ibranze/araproje_hellaswag_en_conf_llama_nearestscore_true_x | [
"region:us"
] | 2024-01-06T16:27:34+00:00 | {"dataset_info": {"features": [{"name": "ind", "dtype": "int32"}, {"name": "activity_label", "dtype": "string"}, {"name": "ctx_a", "dtype": "string"}, {"name": "ctx_b", "dtype": "string"}, {"name": "ctx", "dtype": "string"}, {"name": "endings", "sequence": "string"}, {"name": "source_id", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "split_type", "dtype": "string"}, {"name": "label", "dtype": "string"}], "splits": [{"name": "validation", "num_bytes": 149738.0, "num_examples": 250}], "download_size": 81339, "dataset_size": 149738.0}, "configs": [{"config_name": "default", "data_files": [{"split": "validation", "path": "data/validation-*"}]}]} | 2024-01-06T16:27:36+00:00 | [] | [] | TAGS
#region-us
| # Dataset Card for "araproje_hellaswag_en_conf_llama_nearestscore_true_x"
More Information needed | [
"# Dataset Card for \"araproje_hellaswag_en_conf_llama_nearestscore_true_x\"\n\nMore Information needed"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for \"araproje_hellaswag_en_conf_llama_nearestscore_true_x\"\n\nMore Information needed"
] | [
6,
35
] | [
"passage: TAGS\n#region-us \n# Dataset Card for \"araproje_hellaswag_en_conf_llama_nearestscore_true_x\"\n\nMore Information needed"
] |
8efd863014f26114e2ab191c2a77f60e24d4dc55 | # Dataset Card for "araproje_hellaswag_en_conf_llama_nearestscore_true"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | ibranze/araproje_hellaswag_en_conf_llama_nearestscore_true | [
"region:us"
] | 2024-01-06T16:27:38+00:00 | {"dataset_info": {"features": [{"name": "ind", "dtype": "int32"}, {"name": "activity_label", "dtype": "string"}, {"name": "ctx_a", "dtype": "string"}, {"name": "ctx_b", "dtype": "string"}, {"name": "ctx", "dtype": "string"}, {"name": "endings", "sequence": "string"}, {"name": "source_id", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "split_type", "dtype": "string"}, {"name": "label", "dtype": "string"}], "splits": [{"name": "validation", "num_bytes": 149738.0, "num_examples": 250}], "download_size": 81112, "dataset_size": 149738.0}, "configs": [{"config_name": "default", "data_files": [{"split": "validation", "path": "data/validation-*"}]}]} | 2024-01-06T16:27:40+00:00 | [] | [] | TAGS
#region-us
| # Dataset Card for "araproje_hellaswag_en_conf_llama_nearestscore_true"
More Information needed | [
"# Dataset Card for \"araproje_hellaswag_en_conf_llama_nearestscore_true\"\n\nMore Information needed"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for \"araproje_hellaswag_en_conf_llama_nearestscore_true\"\n\nMore Information needed"
] | [
6,
33
] | [
"passage: TAGS\n#region-us \n# Dataset Card for \"araproje_hellaswag_en_conf_llama_nearestscore_true\"\n\nMore Information needed"
] |
82e84dbddcc5b8d6d49b1ad8df3434026dde19e3 | 750 [DALL·E 3 images](https://huggingface.co/datasets/dataautogpt3/Dalle3) (the first 3 arrow files) paired with a Base SD v1.5 generated version as a rejected image.
Images are bytes encoded in base64 strings, so it can save in a jsonl. | xzuyn/dalle-3_vs_sd-v1-5_dpo | [
"size_categories:n<1K",
"language:en",
"region:us"
] | 2024-01-06T16:47:51+00:00 | {"language": ["en"], "size_categories": ["n<1K"]} | 2024-01-06T18:14:14+00:00 | [] | [
"en"
] | TAGS
#size_categories-n<1K #language-English #region-us
| 750 DALL·E 3 images (the first 3 arrow files) paired with a Base SD v1.5 generated version as a rejected image.
Images are bytes encoded in base64 strings, so it can save in a jsonl. | [] | [
"TAGS\n#size_categories-n<1K #language-English #region-us \n"
] | [
20
] | [
"passage: TAGS\n#size_categories-n<1K #language-English #region-us \n"
] |
0e70fa2644527c8440ef41099922eb0810222419 |
# BEE-spoke-data/TACO-hf
Simple re-host of https://huggingface.co/datasets/BAAI/TACO but saved as hf dataset for ease of use.
Features:
```py
DatasetDict({
"train": Dataset({
"features": [
"question",
"solutions",
"starter_code",
"input_output",
"difficulty",
"raw_tags",
"name",
"source",
"tags",
"skill_types",
"url",
"Expected Auxiliary Space",
"time_limit",
"date",
"picture_num",
"memory_limit",
"Expected Time Complexity"
],
"num_rows": 25443
}),
"test": Dataset({
"features": [
"question",
"solutions",
"starter_code",
"input_output",
"difficulty",
"raw_tags",
"name",
"source",
"tags",
"skill_types",
"url",
"Expected Auxiliary Space",
"time_limit",
"date",
"picture_num",
"memory_limit",
"Expected Time Complexity"
],
"num_rows": 1000
})
})
```
Refer to the original dataset for more details.
| BEE-spoke-data/TACO-hf | [
"task_categories:text-generation",
"task_categories:feature-extraction",
"size_categories:10K<n<100K",
"source_datasets:BAAI/TACO",
"language:en",
"license:apache-2.0",
"BAAI/TACO",
"region:us"
] | 2024-01-06T17:00:48+00:00 | {"language": ["en"], "license": "apache-2.0", "size_categories": ["10K<n<100K"], "source_datasets": "BAAI/TACO", "task_categories": ["text-generation", "feature-extraction"], "dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "solutions", "dtype": "string"}, {"name": "starter_code", "dtype": "string"}, {"name": "input_output", "dtype": "string"}, {"name": "difficulty", "dtype": "string"}, {"name": "raw_tags", "dtype": "string"}, {"name": "name", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "tags", "dtype": "string"}, {"name": "skill_types", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "Expected Auxiliary Space", "dtype": "string"}, {"name": "time_limit", "dtype": "string"}, {"name": "date", "dtype": "string"}, {"name": "picture_num", "dtype": "string"}, {"name": "memory_limit", "dtype": "string"}, {"name": "Expected Time Complexity", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4239311973, "num_examples": 25443}, {"name": "test", "num_bytes": 481480755, "num_examples": 1000}], "download_size": 2419845110, "dataset_size": 4720792728}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "tags": ["BAAI/TACO"]} | 2024-01-06T17:11:03+00:00 | [] | [
"en"
] | TAGS
#task_categories-text-generation #task_categories-feature-extraction #size_categories-10K<n<100K #source_datasets-BAAI/TACO #language-English #license-apache-2.0 #BAAI/TACO #region-us
|
# BEE-spoke-data/TACO-hf
Simple re-host of URL but saved as hf dataset for ease of use.
Features:
Refer to the original dataset for more details.
| [
"# BEE-spoke-data/TACO-hf\n\nSimple re-host of URL but saved as hf dataset for ease of use.\n\n\nFeatures:\n\n\n\nRefer to the original dataset for more details."
] | [
"TAGS\n#task_categories-text-generation #task_categories-feature-extraction #size_categories-10K<n<100K #source_datasets-BAAI/TACO #language-English #license-apache-2.0 #BAAI/TACO #region-us \n",
"# BEE-spoke-data/TACO-hf\n\nSimple re-host of URL but saved as hf dataset for ease of use.\n\n\nFeatures:\n\n\n\nRefer to the original dataset for more details."
] | [
71,
47
] | [
"passage: TAGS\n#task_categories-text-generation #task_categories-feature-extraction #size_categories-10K<n<100K #source_datasets-BAAI/TACO #language-English #license-apache-2.0 #BAAI/TACO #region-us \n# BEE-spoke-data/TACO-hf\n\nSimple re-host of URL but saved as hf dataset for ease of use.\n\n\nFeatures:\n\n\n\nRefer to the original dataset for more details."
] |
3267fa9b0a31df8c9a6d1aefeeb5b725d9ccae5e |
Converting newsqa dataset to identical format as lmqg/qag_squad for asahi417/lm-question-generation
Questions, that dont end on "?" have been removed.
[GitHub Repo](https://github.com/gabrieltorresgamez/newsqa) | StellarMilk/newsqa_modified | [
"size_categories:10K<n<100K",
"language:en",
"region:us"
] | 2024-01-06T17:08:46+00:00 | {"language": ["en"], "size_categories": ["10K<n<100K"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "newsqa_cleaned_train.parquet"}, {"split": "validation", "path": "newsqa_cleaned_validation.parquet"}, {"split": "test", "path": "newsqa_cleaned_test.parquet"}]}]} | 2024-01-06T17:09:35+00:00 | [] | [
"en"
] | TAGS
#size_categories-10K<n<100K #language-English #region-us
|
Converting newsqa dataset to identical format as lmqg/qag_squad for asahi417/lm-question-generation
Questions, that dont end on "?" have been removed.
GitHub Repo | [] | [
"TAGS\n#size_categories-10K<n<100K #language-English #region-us \n"
] | [
22
] | [
"passage: TAGS\n#size_categories-10K<n<100K #language-English #region-us \n"
] |
52244d71b4001ace1602ef0b532470dbfb5411c2 |
# Dataset Card for Evaluation run of Sao10K/Sensualize-Solar-10.7B
<!-- Provide a quick summary of the dataset. -->
Dataset automatically created during the evaluation run of model [Sao10K/Sensualize-Solar-10.7B](https://huggingface.co/Sao10K/Sensualize-Solar-10.7B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset("open-llm-leaderboard/details_Sao10K__Sensualize-Solar-10.7B",
"harness_winogrande_5",
split="train")
```
## Latest results
These are the [latest results from run 2024-01-06T17:08:25.096986](https://huggingface.co/datasets/open-llm-leaderboard/details_Sao10K__Sensualize-Solar-10.7B/blob/main/results_2024-01-06T17-08-25.096986.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"acc": 0.6534934665633889,
"acc_stderr": 0.03171875326840945,
"acc_norm": 0.6559682682415703,
"acc_norm_stderr": 0.0323621597140985,
"mc1": 0.3769889840881273,
"mc1_stderr": 0.016965517578930354,
"mc2": 0.5362748169124832,
"mc2_stderr": 0.015301821423558902
},
"harness|arc:challenge|25": {
"acc": 0.6049488054607508,
"acc_stderr": 0.01428589829293817,
"acc_norm": 0.6501706484641638,
"acc_norm_stderr": 0.013936809212158289
},
"harness|hellaswag|10": {
"acc": 0.6463851822346146,
"acc_stderr": 0.004771143074426129,
"acc_norm": 0.8455486954789883,
"acc_norm_stderr": 0.0036064226236399237
},
"harness|hendrycksTest-abstract_algebra|5": {
"acc": 0.3,
"acc_stderr": 0.046056618647183814,
"acc_norm": 0.3,
"acc_norm_stderr": 0.046056618647183814
},
"harness|hendrycksTest-anatomy|5": {
"acc": 0.5851851851851851,
"acc_stderr": 0.04256193767901408,
"acc_norm": 0.5851851851851851,
"acc_norm_stderr": 0.04256193767901408
},
"harness|hendrycksTest-astronomy|5": {
"acc": 0.75,
"acc_stderr": 0.03523807393012047,
"acc_norm": 0.75,
"acc_norm_stderr": 0.03523807393012047
},
"harness|hendrycksTest-business_ethics|5": {
"acc": 0.69,
"acc_stderr": 0.04648231987117316,
"acc_norm": 0.69,
"acc_norm_stderr": 0.04648231987117316
},
"harness|hendrycksTest-clinical_knowledge|5": {
"acc": 0.6943396226415094,
"acc_stderr": 0.028353298073322663,
"acc_norm": 0.6943396226415094,
"acc_norm_stderr": 0.028353298073322663
},
"harness|hendrycksTest-college_biology|5": {
"acc": 0.7569444444444444,
"acc_stderr": 0.0358687928008034,
"acc_norm": 0.7569444444444444,
"acc_norm_stderr": 0.0358687928008034
},
"harness|hendrycksTest-college_chemistry|5": {
"acc": 0.43,
"acc_stderr": 0.04975698519562428,
"acc_norm": 0.43,
"acc_norm_stderr": 0.04975698519562428
},
"harness|hendrycksTest-college_computer_science|5": {
"acc": 0.54,
"acc_stderr": 0.05009082659620332,
"acc_norm": 0.54,
"acc_norm_stderr": 0.05009082659620332
},
"harness|hendrycksTest-college_mathematics|5": {
"acc": 0.39,
"acc_stderr": 0.04902071300001974,
"acc_norm": 0.39,
"acc_norm_stderr": 0.04902071300001974
},
"harness|hendrycksTest-college_medicine|5": {
"acc": 0.653179190751445,
"acc_stderr": 0.036291466701596636,
"acc_norm": 0.653179190751445,
"acc_norm_stderr": 0.036291466701596636
},
"harness|hendrycksTest-college_physics|5": {
"acc": 0.3431372549019608,
"acc_stderr": 0.047240073523838876,
"acc_norm": 0.3431372549019608,
"acc_norm_stderr": 0.047240073523838876
},
"harness|hendrycksTest-computer_security|5": {
"acc": 0.73,
"acc_stderr": 0.04461960433384739,
"acc_norm": 0.73,
"acc_norm_stderr": 0.04461960433384739
},
"harness|hendrycksTest-conceptual_physics|5": {
"acc": 0.5829787234042553,
"acc_stderr": 0.03223276266711712,
"acc_norm": 0.5829787234042553,
"acc_norm_stderr": 0.03223276266711712
},
"harness|hendrycksTest-econometrics|5": {
"acc": 0.5,
"acc_stderr": 0.047036043419179864,
"acc_norm": 0.5,
"acc_norm_stderr": 0.047036043419179864
},
"harness|hendrycksTest-electrical_engineering|5": {
"acc": 0.6068965517241379,
"acc_stderr": 0.040703290137070705,
"acc_norm": 0.6068965517241379,
"acc_norm_stderr": 0.040703290137070705
},
"harness|hendrycksTest-elementary_mathematics|5": {
"acc": 0.4417989417989418,
"acc_stderr": 0.02557625706125384,
"acc_norm": 0.4417989417989418,
"acc_norm_stderr": 0.02557625706125384
},
"harness|hendrycksTest-formal_logic|5": {
"acc": 0.42063492063492064,
"acc_stderr": 0.04415438226743744,
"acc_norm": 0.42063492063492064,
"acc_norm_stderr": 0.04415438226743744
},
"harness|hendrycksTest-global_facts|5": {
"acc": 0.34,
"acc_stderr": 0.04760952285695235,
"acc_norm": 0.34,
"acc_norm_stderr": 0.04760952285695235
},
"harness|hendrycksTest-high_school_biology|5": {
"acc": 0.8,
"acc_stderr": 0.02275520495954294,
"acc_norm": 0.8,
"acc_norm_stderr": 0.02275520495954294
},
"harness|hendrycksTest-high_school_chemistry|5": {
"acc": 0.4630541871921182,
"acc_stderr": 0.035083705204426656,
"acc_norm": 0.4630541871921182,
"acc_norm_stderr": 0.035083705204426656
},
"harness|hendrycksTest-high_school_computer_science|5": {
"acc": 0.68,
"acc_stderr": 0.04688261722621504,
"acc_norm": 0.68,
"acc_norm_stderr": 0.04688261722621504
},
"harness|hendrycksTest-high_school_european_history|5": {
"acc": 0.8,
"acc_stderr": 0.031234752377721175,
"acc_norm": 0.8,
"acc_norm_stderr": 0.031234752377721175
},
"harness|hendrycksTest-high_school_geography|5": {
"acc": 0.8535353535353535,
"acc_stderr": 0.025190921114603908,
"acc_norm": 0.8535353535353535,
"acc_norm_stderr": 0.025190921114603908
},
"harness|hendrycksTest-high_school_government_and_politics|5": {
"acc": 0.927461139896373,
"acc_stderr": 0.018718998520678178,
"acc_norm": 0.927461139896373,
"acc_norm_stderr": 0.018718998520678178
},
"harness|hendrycksTest-high_school_macroeconomics|5": {
"acc": 0.6538461538461539,
"acc_stderr": 0.02412112541694119,
"acc_norm": 0.6538461538461539,
"acc_norm_stderr": 0.02412112541694119
},
"harness|hendrycksTest-high_school_mathematics|5": {
"acc": 0.32592592592592595,
"acc_stderr": 0.028578348365473072,
"acc_norm": 0.32592592592592595,
"acc_norm_stderr": 0.028578348365473072
},
"harness|hendrycksTest-high_school_microeconomics|5": {
"acc": 0.680672268907563,
"acc_stderr": 0.0302839955258844,
"acc_norm": 0.680672268907563,
"acc_norm_stderr": 0.0302839955258844
},
"harness|hendrycksTest-high_school_physics|5": {
"acc": 0.3576158940397351,
"acc_stderr": 0.03913453431177258,
"acc_norm": 0.3576158940397351,
"acc_norm_stderr": 0.03913453431177258
},
"harness|hendrycksTest-high_school_psychology|5": {
"acc": 0.8385321100917431,
"acc_stderr": 0.015776239256163248,
"acc_norm": 0.8385321100917431,
"acc_norm_stderr": 0.015776239256163248
},
"harness|hendrycksTest-high_school_statistics|5": {
"acc": 0.5601851851851852,
"acc_stderr": 0.033851779760448106,
"acc_norm": 0.5601851851851852,
"acc_norm_stderr": 0.033851779760448106
},
"harness|hendrycksTest-high_school_us_history|5": {
"acc": 0.8480392156862745,
"acc_stderr": 0.025195658428931796,
"acc_norm": 0.8480392156862745,
"acc_norm_stderr": 0.025195658428931796
},
"harness|hendrycksTest-high_school_world_history|5": {
"acc": 0.8523206751054853,
"acc_stderr": 0.023094329582595694,
"acc_norm": 0.8523206751054853,
"acc_norm_stderr": 0.023094329582595694
},
"harness|hendrycksTest-human_aging|5": {
"acc": 0.7085201793721974,
"acc_stderr": 0.03050028317654585,
"acc_norm": 0.7085201793721974,
"acc_norm_stderr": 0.03050028317654585
},
"harness|hendrycksTest-human_sexuality|5": {
"acc": 0.7633587786259542,
"acc_stderr": 0.03727673575596914,
"acc_norm": 0.7633587786259542,
"acc_norm_stderr": 0.03727673575596914
},
"harness|hendrycksTest-international_law|5": {
"acc": 0.7933884297520661,
"acc_stderr": 0.036959801280988226,
"acc_norm": 0.7933884297520661,
"acc_norm_stderr": 0.036959801280988226
},
"harness|hendrycksTest-jurisprudence|5": {
"acc": 0.7592592592592593,
"acc_stderr": 0.04133119440243838,
"acc_norm": 0.7592592592592593,
"acc_norm_stderr": 0.04133119440243838
},
"harness|hendrycksTest-logical_fallacies|5": {
"acc": 0.7300613496932515,
"acc_stderr": 0.03487825168497892,
"acc_norm": 0.7300613496932515,
"acc_norm_stderr": 0.03487825168497892
},
"harness|hendrycksTest-machine_learning|5": {
"acc": 0.5357142857142857,
"acc_stderr": 0.04733667890053756,
"acc_norm": 0.5357142857142857,
"acc_norm_stderr": 0.04733667890053756
},
"harness|hendrycksTest-management|5": {
"acc": 0.8446601941747572,
"acc_stderr": 0.03586594738573974,
"acc_norm": 0.8446601941747572,
"acc_norm_stderr": 0.03586594738573974
},
"harness|hendrycksTest-marketing|5": {
"acc": 0.8803418803418803,
"acc_stderr": 0.021262719400406957,
"acc_norm": 0.8803418803418803,
"acc_norm_stderr": 0.021262719400406957
},
"harness|hendrycksTest-medical_genetics|5": {
"acc": 0.73,
"acc_stderr": 0.044619604333847394,
"acc_norm": 0.73,
"acc_norm_stderr": 0.044619604333847394
},
"harness|hendrycksTest-miscellaneous|5": {
"acc": 0.8326947637292464,
"acc_stderr": 0.013347327202920332,
"acc_norm": 0.8326947637292464,
"acc_norm_stderr": 0.013347327202920332
},
"harness|hendrycksTest-moral_disputes|5": {
"acc": 0.7283236994219653,
"acc_stderr": 0.023948512905468358,
"acc_norm": 0.7283236994219653,
"acc_norm_stderr": 0.023948512905468358
},
"harness|hendrycksTest-moral_scenarios|5": {
"acc": 0.3340782122905028,
"acc_stderr": 0.015774911422381622,
"acc_norm": 0.3340782122905028,
"acc_norm_stderr": 0.015774911422381622
},
"harness|hendrycksTest-nutrition|5": {
"acc": 0.7647058823529411,
"acc_stderr": 0.024288619466046095,
"acc_norm": 0.7647058823529411,
"acc_norm_stderr": 0.024288619466046095
},
"harness|hendrycksTest-philosophy|5": {
"acc": 0.7170418006430869,
"acc_stderr": 0.025583062489984806,
"acc_norm": 0.7170418006430869,
"acc_norm_stderr": 0.025583062489984806
},
"harness|hendrycksTest-prehistory|5": {
"acc": 0.7561728395061729,
"acc_stderr": 0.023891879541959597,
"acc_norm": 0.7561728395061729,
"acc_norm_stderr": 0.023891879541959597
},
"harness|hendrycksTest-professional_accounting|5": {
"acc": 0.5141843971631206,
"acc_stderr": 0.02981549448368206,
"acc_norm": 0.5141843971631206,
"acc_norm_stderr": 0.02981549448368206
},
"harness|hendrycksTest-professional_law|5": {
"acc": 0.4863102998696219,
"acc_stderr": 0.012765448722610083,
"acc_norm": 0.4863102998696219,
"acc_norm_stderr": 0.012765448722610083
},
"harness|hendrycksTest-professional_medicine|5": {
"acc": 0.7205882352941176,
"acc_stderr": 0.027257202606114948,
"acc_norm": 0.7205882352941176,
"acc_norm_stderr": 0.027257202606114948
},
"harness|hendrycksTest-professional_psychology|5": {
"acc": 0.6715686274509803,
"acc_stderr": 0.018999707383162666,
"acc_norm": 0.6715686274509803,
"acc_norm_stderr": 0.018999707383162666
},
"harness|hendrycksTest-public_relations|5": {
"acc": 0.6909090909090909,
"acc_stderr": 0.044262946482000985,
"acc_norm": 0.6909090909090909,
"acc_norm_stderr": 0.044262946482000985
},
"harness|hendrycksTest-security_studies|5": {
"acc": 0.7591836734693878,
"acc_stderr": 0.02737294220178816,
"acc_norm": 0.7591836734693878,
"acc_norm_stderr": 0.02737294220178816
},
"harness|hendrycksTest-sociology|5": {
"acc": 0.8557213930348259,
"acc_stderr": 0.02484575321230604,
"acc_norm": 0.8557213930348259,
"acc_norm_stderr": 0.02484575321230604
},
"harness|hendrycksTest-us_foreign_policy|5": {
"acc": 0.89,
"acc_stderr": 0.03144660377352203,
"acc_norm": 0.89,
"acc_norm_stderr": 0.03144660377352203
},
"harness|hendrycksTest-virology|5": {
"acc": 0.5421686746987951,
"acc_stderr": 0.03878626771002361,
"acc_norm": 0.5421686746987951,
"acc_norm_stderr": 0.03878626771002361
},
"harness|hendrycksTest-world_religions|5": {
"acc": 0.8011695906432749,
"acc_stderr": 0.030611116557432528,
"acc_norm": 0.8011695906432749,
"acc_norm_stderr": 0.030611116557432528
},
"harness|truthfulqa:mc|0": {
"mc1": 0.3769889840881273,
"mc1_stderr": 0.016965517578930354,
"mc2": 0.5362748169124832,
"mc2_stderr": 0.015301821423558902
},
"harness|winogrande|5": {
"acc": 0.8397790055248618,
"acc_stderr": 0.010309209498187474
},
"harness|gsm8k|5": {
"acc": 0.5655799848369977,
"acc_stderr": 0.013653507211411417
}
}
```
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
[More Information Needed] | open-llm-leaderboard/details_Sao10K__Sensualize-Solar-10.7B | [
"region:us"
] | 2024-01-06T17:10:42+00:00 | {"pretty_name": "Evaluation run of Sao10K/Sensualize-Solar-10.7B", "dataset_summary": "Dataset automatically created during the evaluation run of model [Sao10K/Sensualize-Solar-10.7B](https://huggingface.co/Sao10K/Sensualize-Solar-10.7B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_Sao10K__Sensualize-Solar-10.7B\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-06T17:08:25.096986](https://huggingface.co/datasets/open-llm-leaderboard/details_Sao10K__Sensualize-Solar-10.7B/blob/main/results_2024-01-06T17-08-25.096986.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6534934665633889,\n \"acc_stderr\": 0.03171875326840945,\n \"acc_norm\": 0.6559682682415703,\n \"acc_norm_stderr\": 0.0323621597140985,\n \"mc1\": 0.3769889840881273,\n \"mc1_stderr\": 0.016965517578930354,\n \"mc2\": 0.5362748169124832,\n \"mc2_stderr\": 0.015301821423558902\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.6049488054607508,\n \"acc_stderr\": 0.01428589829293817,\n \"acc_norm\": 0.6501706484641638,\n \"acc_norm_stderr\": 0.013936809212158289\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6463851822346146,\n \"acc_stderr\": 0.004771143074426129,\n \"acc_norm\": 0.8455486954789883,\n \"acc_norm_stderr\": 0.0036064226236399237\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.3,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.3,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.5851851851851851,\n \"acc_stderr\": 0.04256193767901408,\n \"acc_norm\": 0.5851851851851851,\n \"acc_norm_stderr\": 0.04256193767901408\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.75,\n \"acc_stderr\": 0.03523807393012047,\n \"acc_norm\": 0.75,\n \"acc_norm_stderr\": 0.03523807393012047\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.69,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.69,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.6943396226415094,\n \"acc_stderr\": 0.028353298073322663,\n \"acc_norm\": 0.6943396226415094,\n \"acc_norm_stderr\": 0.028353298073322663\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7569444444444444,\n \"acc_stderr\": 0.0358687928008034,\n \"acc_norm\": 0.7569444444444444,\n \"acc_norm_stderr\": 0.0358687928008034\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.43,\n \"acc_stderr\": 0.04975698519562428,\n \"acc_norm\": 0.43,\n \"acc_norm_stderr\": 0.04975698519562428\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.54,\n \"acc_stderr\": 0.05009082659620332,\n \"acc_norm\": 0.54,\n \"acc_norm_stderr\": 0.05009082659620332\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.39,\n \"acc_stderr\": 0.04902071300001974,\n \"acc_norm\": 0.39,\n \"acc_norm_stderr\": 0.04902071300001974\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.653179190751445,\n \"acc_stderr\": 0.036291466701596636,\n \"acc_norm\": 0.653179190751445,\n \"acc_norm_stderr\": 0.036291466701596636\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.3431372549019608,\n \"acc_stderr\": 0.047240073523838876,\n \"acc_norm\": 0.3431372549019608,\n \"acc_norm_stderr\": 0.047240073523838876\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.73,\n \"acc_stderr\": 0.04461960433384739,\n \"acc_norm\": 0.73,\n \"acc_norm_stderr\": 0.04461960433384739\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5829787234042553,\n \"acc_stderr\": 0.03223276266711712,\n \"acc_norm\": 0.5829787234042553,\n \"acc_norm_stderr\": 0.03223276266711712\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.5,\n \"acc_stderr\": 0.047036043419179864,\n \"acc_norm\": 0.5,\n \"acc_norm_stderr\": 0.047036043419179864\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.6068965517241379,\n \"acc_stderr\": 0.040703290137070705,\n \"acc_norm\": 0.6068965517241379,\n \"acc_norm_stderr\": 0.040703290137070705\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.4417989417989418,\n \"acc_stderr\": 0.02557625706125384,\n \"acc_norm\": 0.4417989417989418,\n \"acc_norm_stderr\": 0.02557625706125384\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.42063492063492064,\n \"acc_stderr\": 0.04415438226743744,\n \"acc_norm\": 0.42063492063492064,\n \"acc_norm_stderr\": 0.04415438226743744\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.34,\n \"acc_stderr\": 0.04760952285695235,\n \"acc_norm\": 0.34,\n \"acc_norm_stderr\": 0.04760952285695235\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.8,\n \"acc_stderr\": 0.02275520495954294,\n \"acc_norm\": 0.8,\n \"acc_norm_stderr\": 0.02275520495954294\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.4630541871921182,\n \"acc_stderr\": 0.035083705204426656,\n \"acc_norm\": 0.4630541871921182,\n \"acc_norm_stderr\": 0.035083705204426656\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.68,\n \"acc_stderr\": 0.04688261722621504,\n \"acc_norm\": 0.68,\n \"acc_norm_stderr\": 0.04688261722621504\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.8,\n \"acc_stderr\": 0.031234752377721175,\n \"acc_norm\": 0.8,\n \"acc_norm_stderr\": 0.031234752377721175\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.8535353535353535,\n \"acc_stderr\": 0.025190921114603908,\n \"acc_norm\": 0.8535353535353535,\n \"acc_norm_stderr\": 0.025190921114603908\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.927461139896373,\n \"acc_stderr\": 0.018718998520678178,\n \"acc_norm\": 0.927461139896373,\n \"acc_norm_stderr\": 0.018718998520678178\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6538461538461539,\n \"acc_stderr\": 0.02412112541694119,\n \"acc_norm\": 0.6538461538461539,\n \"acc_norm_stderr\": 0.02412112541694119\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.32592592592592595,\n \"acc_stderr\": 0.028578348365473072,\n \"acc_norm\": 0.32592592592592595,\n \"acc_norm_stderr\": 0.028578348365473072\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.680672268907563,\n \"acc_stderr\": 0.0302839955258844,\n \"acc_norm\": 0.680672268907563,\n \"acc_norm_stderr\": 0.0302839955258844\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.3576158940397351,\n \"acc_stderr\": 0.03913453431177258,\n \"acc_norm\": 0.3576158940397351,\n \"acc_norm_stderr\": 0.03913453431177258\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8385321100917431,\n \"acc_stderr\": 0.015776239256163248,\n \"acc_norm\": 0.8385321100917431,\n \"acc_norm_stderr\": 0.015776239256163248\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.5601851851851852,\n \"acc_stderr\": 0.033851779760448106,\n \"acc_norm\": 0.5601851851851852,\n \"acc_norm_stderr\": 0.033851779760448106\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.8480392156862745,\n \"acc_stderr\": 0.025195658428931796,\n \"acc_norm\": 0.8480392156862745,\n \"acc_norm_stderr\": 0.025195658428931796\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.8523206751054853,\n \"acc_stderr\": 0.023094329582595694,\n \"acc_norm\": 0.8523206751054853,\n \"acc_norm_stderr\": 0.023094329582595694\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.7085201793721974,\n \"acc_stderr\": 0.03050028317654585,\n \"acc_norm\": 0.7085201793721974,\n \"acc_norm_stderr\": 0.03050028317654585\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7633587786259542,\n \"acc_stderr\": 0.03727673575596914,\n \"acc_norm\": 0.7633587786259542,\n \"acc_norm_stderr\": 0.03727673575596914\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.7933884297520661,\n \"acc_stderr\": 0.036959801280988226,\n \"acc_norm\": 0.7933884297520661,\n \"acc_norm_stderr\": 0.036959801280988226\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7592592592592593,\n \"acc_stderr\": 0.04133119440243838,\n \"acc_norm\": 0.7592592592592593,\n \"acc_norm_stderr\": 0.04133119440243838\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7300613496932515,\n \"acc_stderr\": 0.03487825168497892,\n \"acc_norm\": 0.7300613496932515,\n \"acc_norm_stderr\": 0.03487825168497892\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.5357142857142857,\n \"acc_stderr\": 0.04733667890053756,\n \"acc_norm\": 0.5357142857142857,\n \"acc_norm_stderr\": 0.04733667890053756\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.8446601941747572,\n \"acc_stderr\": 0.03586594738573974,\n \"acc_norm\": 0.8446601941747572,\n \"acc_norm_stderr\": 0.03586594738573974\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8803418803418803,\n \"acc_stderr\": 0.021262719400406957,\n \"acc_norm\": 0.8803418803418803,\n \"acc_norm_stderr\": 0.021262719400406957\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.73,\n \"acc_stderr\": 0.044619604333847394,\n \"acc_norm\": 0.73,\n \"acc_norm_stderr\": 0.044619604333847394\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8326947637292464,\n \"acc_stderr\": 0.013347327202920332,\n \"acc_norm\": 0.8326947637292464,\n \"acc_norm_stderr\": 0.013347327202920332\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7283236994219653,\n \"acc_stderr\": 0.023948512905468358,\n \"acc_norm\": 0.7283236994219653,\n \"acc_norm_stderr\": 0.023948512905468358\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.3340782122905028,\n \"acc_stderr\": 0.015774911422381622,\n \"acc_norm\": 0.3340782122905028,\n \"acc_norm_stderr\": 0.015774911422381622\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7647058823529411,\n \"acc_stderr\": 0.024288619466046095,\n \"acc_norm\": 0.7647058823529411,\n \"acc_norm_stderr\": 0.024288619466046095\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.7170418006430869,\n \"acc_stderr\": 0.025583062489984806,\n \"acc_norm\": 0.7170418006430869,\n \"acc_norm_stderr\": 0.025583062489984806\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.7561728395061729,\n \"acc_stderr\": 0.023891879541959597,\n \"acc_norm\": 0.7561728395061729,\n \"acc_norm_stderr\": 0.023891879541959597\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.5141843971631206,\n \"acc_stderr\": 0.02981549448368206,\n \"acc_norm\": 0.5141843971631206,\n \"acc_norm_stderr\": 0.02981549448368206\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.4863102998696219,\n \"acc_stderr\": 0.012765448722610083,\n \"acc_norm\": 0.4863102998696219,\n \"acc_norm_stderr\": 0.012765448722610083\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.7205882352941176,\n \"acc_stderr\": 0.027257202606114948,\n \"acc_norm\": 0.7205882352941176,\n \"acc_norm_stderr\": 0.027257202606114948\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6715686274509803,\n \"acc_stderr\": 0.018999707383162666,\n \"acc_norm\": 0.6715686274509803,\n \"acc_norm_stderr\": 0.018999707383162666\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6909090909090909,\n \"acc_stderr\": 0.044262946482000985,\n \"acc_norm\": 0.6909090909090909,\n \"acc_norm_stderr\": 0.044262946482000985\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7591836734693878,\n \"acc_stderr\": 0.02737294220178816,\n \"acc_norm\": 0.7591836734693878,\n \"acc_norm_stderr\": 0.02737294220178816\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8557213930348259,\n \"acc_stderr\": 0.02484575321230604,\n \"acc_norm\": 0.8557213930348259,\n \"acc_norm_stderr\": 0.02484575321230604\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.89,\n \"acc_stderr\": 0.03144660377352203,\n \"acc_norm\": 0.89,\n \"acc_norm_stderr\": 0.03144660377352203\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5421686746987951,\n \"acc_stderr\": 0.03878626771002361,\n \"acc_norm\": 0.5421686746987951,\n \"acc_norm_stderr\": 0.03878626771002361\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8011695906432749,\n \"acc_stderr\": 0.030611116557432528,\n \"acc_norm\": 0.8011695906432749,\n \"acc_norm_stderr\": 0.030611116557432528\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.3769889840881273,\n \"mc1_stderr\": 0.016965517578930354,\n \"mc2\": 0.5362748169124832,\n \"mc2_stderr\": 0.015301821423558902\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.8397790055248618,\n \"acc_stderr\": 0.010309209498187474\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.5655799848369977,\n \"acc_stderr\": 0.013653507211411417\n }\n}\n```", "repo_url": "https://huggingface.co/Sao10K/Sensualize-Solar-10.7B", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|arc:challenge|25_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|gsm8k|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hellaswag|10_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-06T17-08-25.096986.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["**/details_harness|winogrande|5_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-06T17-08-25.096986.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_06T17_08_25.096986", "path": ["results_2024-01-06T17-08-25.096986.parquet"]}, {"split": "latest", "path": ["results_2024-01-06T17-08-25.096986.parquet"]}]}]} | 2024-01-06T17:11:03+00:00 | [] | [] | TAGS
#region-us
|
# Dataset Card for Evaluation run of Sao10K/Sensualize-Solar-10.7B
Dataset automatically created during the evaluation run of model Sao10K/Sensualize-Solar-10.7B on the Open LLM Leaderboard.
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).
To load the details from a run, you can for instance do the following:
## Latest results
These are the latest results from run 2024-01-06T17:08:25.096986(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
## Dataset Details
### Dataset Description
- Curated by:
- Funded by [optional]:
- Shared by [optional]:
- Language(s) (NLP):
- License:
### Dataset Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Out-of-Scope Use
## Dataset Structure
## Dataset Creation
### Curation Rationale
### Source Data
#### Data Collection and Processing
#### Who are the source data producers?
### Annotations [optional]
#### Annotation process
#### Who are the annotators?
#### Personal and Sensitive Information
## Bias, Risks, and Limitations
### Recommendations
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Dataset Card Authors [optional]
## Dataset Card Contact
| [
"# Dataset Card for Evaluation run of Sao10K/Sensualize-Solar-10.7B\n\n\n\nDataset automatically created during the evaluation run of model Sao10K/Sensualize-Solar-10.7B on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-06T17:08:25.096986(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for Evaluation run of Sao10K/Sensualize-Solar-10.7B\n\n\n\nDataset automatically created during the evaluation run of model Sao10K/Sensualize-Solar-10.7B on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-06T17:08:25.096986(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
6,
189,
68,
4,
40,
29,
3,
4,
9,
6,
5,
7,
4,
7,
10,
9,
5,
9,
8,
10,
46,
8,
7,
10,
5
] | [
"passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of Sao10K/Sensualize-Solar-10.7B\n\n\n\nDataset automatically created during the evaluation run of model Sao10K/Sensualize-Solar-10.7B on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2024-01-06T17:08:25.096986(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):## Dataset Details### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Out-of-Scope Use## Dataset Structure## Dataset Creation### Curation Rationale### Source Data#### Data Collection and Processing#### Who are the source data producers?### Annotations [optional]#### Annotation process#### Who are the annotators?#### Personal and Sensitive Information## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Dataset Card Authors [optional]"
] |
5d11a5304d1f0e28ad54e3074f1b343ee2bdcdb1 | # Dataset Card for "en-fin_gpt_senti"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | PIXIU-fin/en-fin_gpt_senti | [
"region:us"
] | 2024-01-06T17:25:56+00:00 | {"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "valid", "path": "data/valid-*"}, {"split": "test", "path": "data/test-*"}]}], "dataset_info": {"features": [{"name": "query", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4850721, "num_examples": 12947}, {"name": "valid", "num_bytes": 1206387, "num_examples": 3237}, {"name": "test", "num_bytes": 1520123, "num_examples": 4047}], "download_size": 2707364, "dataset_size": 7577231}} | 2024-01-06T17:26:06+00:00 | [] | [] | TAGS
#region-us
| # Dataset Card for "en-fin_gpt_senti"
More Information needed | [
"# Dataset Card for \"en-fin_gpt_senti\"\n\nMore Information needed"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for \"en-fin_gpt_senti\"\n\nMore Information needed"
] | [
6,
18
] | [
"passage: TAGS\n#region-us \n# Dataset Card for \"en-fin_gpt_senti\"\n\nMore Information needed"
] |
5220c4b833edaf9d6e5747500fd8e9fe70c68e81 |
# MMMU (A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI)
[**🌐 Homepage**](https://mmmu-benchmark.github.io/) | [**🤗 Dataset**](https://huggingface.co/datasets/MMMU/MMMU/) | [**🤗 Paper**](https://huggingface.co/papers/2311.16502) | [**📖 arXiv**](https://arxiv.org/abs/2311.16502) | [**GitHub**](https://github.com/MMMU-Benchmark/MMMU)
## 🔔News
- **🔥[2023-12-04]: Our evaluation server for test set is now availble on [EvalAI](https://eval.ai/web/challenges/challenge-page/2179/overview). We welcome all submissions and look forward to your participation! 😆**
## Dataset Details
### Dataset Description
We introduce MMMU: a new benchmark designed to evaluate multimodal models on massive multi-discipline tasks demanding college-level subject knowledge and deliberate reasoning. MMMU includes **11.5K meticulously collected multimodal questions** from college exams, quizzes, and textbooks, covering six core disciplines: Art & Design, Business, Science, Health & Medicine, Humanities & Social Science, and Tech & Engineering. These questions span **30 subjects** and **183 subfields**, comprising **30 highly heterogeneous image types**, such as charts, diagrams, maps, tables, music sheets, and chemical structures. We believe MMMU will stimulate the community to build next-generation multimodal foundation models towards expert artificial general intelligence (AGI).
🎯 **We have released a full set comprising 150 development samples and 900 validation samples. We have released 10,500 test questions without their answers.**
The development set is used for few-shot/in-context learning, and the validation set is used for debugging models, selecting hyperparameters, or quick evaluations. The answers and explanations for the test set questions are withheld. You can submit your model's predictions for the **test set** on **[EvalAI](https://eval.ai/web/challenges/challenge-page/2179/overview)**.

### Dataset Creation
MMMU was created to challenge multimodal models with tasks that demand college-level subject knowledge and deliberate reasoning, pushing the boundaries of what these models can achieve in terms of expert-level perception and reasoning.
The data for the MMMU dataset was manually collected by a team of college students from various disciplines, using online sources, textbooks, and lecture materials.
- **Content:** The dataset contains 11.5K college-level problems across six broad disciplines (Art & Design, Business, Science, Health & Medicine, Humanities & Social Science, Tech & Engineering) and 30 college subjects.
- **Image Types:** The dataset includes 30 highly heterogeneous image types, such as charts, diagrams, maps, tables, music sheets, and chemical structures, interleaved with text.

## 🏆 Mini-Leaderboard
We show a mini-leaderboard here and please find more information in our paper or [**homepage**](https://mmmu-benchmark.github.io/).
| Model | Val (900) | Test (10.5K) |
|----------------------------|:---------:|:------------:|
| Gemini Ultra* | **59.4** | - |
| GPT-4V(ision) (Playground) | 56.8 | **55.7** |
| Gemini Pro* | 47.9 | - |
| Yi-VL-34B* | 45.9 | 41.6 |
| Qwen-VL-PLUS* | 45.2 | 40.8 |
| InfiMM-Zephyr-7B* | 39.4 | 35.5 |
| SVIT* | 38.0 | 34.1 |
| Emu2-Chat* | 36.3 | 34.1 |
| BLIP-2 FLAN-T5-XXL | 35.4 | 34.0 |
| InstructBLIP-T5-XXL | 35.7 | 33.8 |
| LLaVA-1.5-13B | 36.4 | 33.6 |
| Qwen-VL-7B | 35.9 | 32.9 |
| mPLUG-OWL2* | 32.7 | 32.1 |
| BLIP-2 FLAN-T5-XL | 34.4 | 31.0 |
| InstructBLIP-T5-XL | 32.9 | 30.6 |
| SPHINX* | 32.9 | 32.9 |
| Gemini Nano2* | 32.6 | - |
| CogVLM | 32.1 | 30.1 |
| Otter | 32.2 | 29.1 |
| LLaMA-Adapter2-7B | 29.8 | 27.7 |
| MiniGPT4-Vicuna-13B | 26.8 | 27.6 |
| Fuyu-8B | 27.9 | 27.4 |
| Kosmos2 | 24.4 | 26.6 |
| OpenFlamingo2-9B | 28.7 | 26.3 |
| Frequent Choice | 22.1 | 23.9 |
| Random Choice | 26.8 | 25.8 |
*: results provided by the authors.
## Limitations
Despite its comprehensive nature, MMMU, like any benchmark, is not without limitations. The manual curation process, albeit thorough, may carry biases.
And the focus on college-level subjects might not fully be a sufficient test for Expert AGI.
However, we believe it should be necessary for an Expert AGI to achieve strong performance on MMMU to demonstrate their broad and deep subject knowledge as well as expert-level understanding and reasoning capabilities.
In future work, we plan to incorporate human evaluations into MMMU. This will provide a more grounded comparison between model capabilities and expert performance, shedding light on the proximity of current AI systems to achieving Expert AGI.
## Disclaimers
The guidelines for the annotators emphasized strict compliance with copyright and licensing rules from the initial data source, specifically avoiding materials from websites that forbid copying and redistribution.
Should you encounter any data samples potentially breaching the copyright or licensing regulations of any site, we encourage you to notify us. Upon verification, such samples will be promptly removed.
## Contact
- Xiang Yue: [email protected]
- Yu Su: [email protected]
- Wenhu Chen: [email protected]
## Citation
**BibTeX:**
```bibtex
@article{yue2023mmmu,
title={MMMU: A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI},
author={Xiang Yue and Yuansheng Ni and Kai Zhang and Tianyu Zheng and Ruoqi Liu and Ge Zhang and Samuel Stevens and Dongfu Jiang and Weiming Ren and Yuxuan Sun and Cong Wei and Botao Yu and Ruibin Yuan and Renliang Sun and Ming Yin and Boyuan Zheng and Zhenzhu Yang and Yibo Liu and Wenhao Huang and Huan Sun and Yu Su and Wenhu Chen},
journal={arXiv preprint arXiv:2311.16502},
year={2023},
}
``` | aslessor/MMMU | [
"task_categories:question-answering",
"task_categories:visual-question-answering",
"task_categories:multiple-choice",
"size_categories:10K<n<100K",
"language:en",
"license:apache-2.0",
"biology",
"medical",
"finance",
"chemistry",
"music",
"art",
"art_theory",
"design",
"business",
"accounting",
"economics",
"manage",
"marketing",
"health",
"medicine",
"basic_medical_science",
"clinical",
"pharmacy",
"public_health",
"humanities",
"social_science",
"history",
"literature",
"sociology",
"psychology",
"science",
"geography",
"math",
"physics",
"engineering",
"agriculture",
"architecture",
"computer_science",
"electronics",
"energy_and_power",
"materials",
"mechanical_engineering",
"arxiv:2311.16502",
"region:us"
] | 2024-01-06T17:28:39+00:00 | {"language": ["en"], "license": "apache-2.0", "size_categories": ["10K<n<100K"], "task_categories": ["question-answering", "visual-question-answering", "multiple-choice"], "pretty_name": "mmmu", "dataset_info": [{"config_name": "Accounting", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 262599.0, "num_examples": 5}, {"name": "validation", "num_bytes": 1598285.0, "num_examples": 30}, {"name": "test", "num_bytes": 22135625.0, "num_examples": 380}], "download_size": 37363379, "dataset_size": 23996509.0}, {"config_name": "Agriculture", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 22082656.0, "num_examples": 5}, {"name": "validation", "num_bytes": 119217558.0, "num_examples": 30}, {"name": "test", "num_bytes": 993664077.0, "num_examples": 287}], "download_size": 1158036990, "dataset_size": 1134964291.0}, {"config_name": "Architecture_and_Engineering", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 137750.0, "num_examples": 5}, {"name": "validation", "num_bytes": 721378.0, "num_examples": 30}, {"name": "test", "num_bytes": 16054607.0, "num_examples": 551}], "download_size": 48763955, "dataset_size": 16913735.0}, {"config_name": "Art", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 6241184.0, "num_examples": 5}, {"name": "validation", "num_bytes": 29934534.0, "num_examples": 30}, {"name": "test", "num_bytes": 237801390.0, "num_examples": 231}], "download_size": 585798641, "dataset_size": 273977108.0}, {"config_name": "Art_Theory", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 7435106.0, "num_examples": 5}, {"name": "validation", "num_bytes": 33481558.0, "num_examples": 30}, {"name": "test", "num_bytes": 553174647.0, "num_examples": 429}], "download_size": 930525695, "dataset_size": 594091311.0}, {"config_name": "Basic_Medical_Science", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 814310.0, "num_examples": 5}, {"name": "validation", "num_bytes": 4125930.0, "num_examples": 30}, {"name": "test", "num_bytes": 48125891.0, "num_examples": 326}], "download_size": 84666454, "dataset_size": 53066131.0}, {"config_name": "Biology", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 574342.0, "num_examples": 5}, {"name": "validation", "num_bytes": 8491863.0, "num_examples": 30}, {"name": "test", "num_bytes": 132966151.0, "num_examples": 345}], "download_size": 410242502, "dataset_size": 142032356.0}, {"config_name": "Chemistry", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 262397.0, "num_examples": 5}, {"name": "validation", "num_bytes": 1518573.0, "num_examples": 30}, {"name": "test", "num_bytes": 37219529.0, "num_examples": 603}], "download_size": 108345562, "dataset_size": 39000499.0}, {"config_name": "Clinical_Medicine", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 1467945.0, "num_examples": 5}, {"name": "validation", "num_bytes": 10882484.0, "num_examples": 30}, {"name": "test", "num_bytes": 98201863.0, "num_examples": 325}], "download_size": 160611488, "dataset_size": 110552292.0}, {"config_name": "Computer_Science", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 440523.0, "num_examples": 5}, {"name": "validation", "num_bytes": 2072018.0, "num_examples": 30}, {"name": "test", "num_bytes": 32047381.0, "num_examples": 371}], "download_size": 55640991, "dataset_size": 34559922.0}, {"config_name": "Design", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 2259873.0, "num_examples": 5}, {"name": "validation", "num_bytes": 17923120.0, "num_examples": 30}, {"name": "test", "num_bytes": 77676331.0, "num_examples": 169}], "download_size": 142866617, "dataset_size": 97859324.0}, {"config_name": "Diagnostics_and_Laboratory_Medicine", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 2056117.0, "num_examples": 5}, {"name": "validation", "num_bytes": 37106233.0, "num_examples": 30}, {"name": "test", "num_bytes": 157003069.0, "num_examples": 162}], "download_size": 603957093, "dataset_size": 196165419.0}, {"config_name": "Economics", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 171434.0, "num_examples": 5}, {"name": "validation", "num_bytes": 1487048.0, "num_examples": 30}, {"name": "test", "num_bytes": 11852300.0, "num_examples": 267}], "download_size": 20777635, "dataset_size": 13510782.0}, {"config_name": "Electronics", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 123632.0, "num_examples": 5}, {"name": "validation", "num_bytes": 641377.0, "num_examples": 30}, {"name": "test", "num_bytes": 5717686.0, "num_examples": 256}], "download_size": 11602832, "dataset_size": 6482695.0}, {"config_name": "Energy_and_Power", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 105006.0, "num_examples": 5}, {"name": "validation", "num_bytes": 1641935.0, "num_examples": 30}, {"name": "test", "num_bytes": 14748428.0, "num_examples": 432}], "download_size": 35246567, "dataset_size": 16495369.0}, {"config_name": "Finance", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 296124.0, "num_examples": 5}, {"name": "validation", "num_bytes": 1071060.0, "num_examples": 30}, {"name": "test", "num_bytes": 12065803.0, "num_examples": 355}], "download_size": 29551521, "dataset_size": 13432987.0}, {"config_name": "Geography", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 1494060.0, "num_examples": 5}, {"name": "validation", "num_bytes": 6671316.0, "num_examples": 30}, {"name": "test", "num_bytes": 137218400.0, "num_examples": 565}], "download_size": 374766631, "dataset_size": 145383776.0}, {"config_name": "History", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 1444231.0, "num_examples": 5}, {"name": "validation", "num_bytes": 8819857.0, "num_examples": 30}, {"name": "test", "num_bytes": 115228815.0, "num_examples": 278}], "download_size": 232549641, "dataset_size": 125492903.0}, {"config_name": "Literature", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 2451201.0, "num_examples": 5}, {"name": "validation", "num_bytes": 14241046.0, "num_examples": 30}, {"name": "test", "num_bytes": 50301541.0, "num_examples": 112}], "download_size": 132145895, "dataset_size": 66993788.0}, {"config_name": "Manage", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 449514.0, "num_examples": 5}, {"name": "validation", "num_bytes": 3277436.0, "num_examples": 30}, {"name": "test", "num_bytes": 29963963.0, "num_examples": 245}], "download_size": 51186888, "dataset_size": 33690913.0}, {"config_name": "Marketing", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 116960.0, "num_examples": 5}, {"name": "validation", "num_bytes": 1472981.0, "num_examples": 30}, {"name": "test", "num_bytes": 7732976.0, "num_examples": 181}], "download_size": 13146078, "dataset_size": 9322917.0}, {"config_name": "Materials", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 239632.0, "num_examples": 5}, {"name": "validation", "num_bytes": 2305211.0, "num_examples": 30}, {"name": "test", "num_bytes": 25256854.0, "num_examples": 458}], "download_size": 78365794, "dataset_size": 27801697.0}, {"config_name": "Math", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 175861.0, "num_examples": 5}, {"name": "validation", "num_bytes": 1444458.0, "num_examples": 30}, {"name": "test", "num_bytes": 27701878.0, "num_examples": 505}], "download_size": 89368153, "dataset_size": 29322197.0}, {"config_name": "Mechanical_Engineering", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 152542.0, "num_examples": 5}, {"name": "validation", "num_bytes": 874988.0, "num_examples": 30}, {"name": "test", "num_bytes": 15093746.0, "num_examples": 429}], "download_size": 30450114, "dataset_size": 16121276.0}, {"config_name": "Music", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 1417615.0, "num_examples": 5}, {"name": "validation", "num_bytes": 9359372.0, "num_examples": 30}, {"name": "test", "num_bytes": 134096770.0, "num_examples": 334}], "download_size": 174725052, "dataset_size": 144873757.0}, {"config_name": "Pharmacy", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 207924.0, "num_examples": 5}, {"name": "validation", "num_bytes": 1656342.0, "num_examples": 30}, {"name": "test", "num_bytes": 31866248.0, "num_examples": 430}], "download_size": 62721263, "dataset_size": 33730514.0}, {"config_name": "Physics", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 233734.0, "num_examples": 5}, {"name": "validation", "num_bytes": 1114130.0, "num_examples": 30}, {"name": "test", "num_bytes": 15905705.0, "num_examples": 408}], "download_size": 35238571, "dataset_size": 17253569.0}, {"config_name": "Psychology", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 600864.0, "num_examples": 5}, {"name": "validation", "num_bytes": 4403886.0, "num_examples": 30}, {"name": "test", "num_bytes": 53813915.0, "num_examples": 305}], "download_size": 102466671, "dataset_size": 58818665.0}, {"config_name": "Public_Health", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 234781.0, "num_examples": 5}, {"name": "validation", "num_bytes": 1508761.0, "num_examples": 30}, {"name": "test", "num_bytes": 32150088.0, "num_examples": 509}], "download_size": 48231609, "dataset_size": 33893630.0}, {"config_name": "Sociology", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 3769220.0, "num_examples": 5}, {"name": "validation", "num_bytes": 18455336.0, "num_examples": 30}, {"name": "test", "num_bytes": 144301123.0, "num_examples": 252}], "download_size": 310313826, "dataset_size": 166525679.0}], "configs": [{"config_name": "Accounting", "data_files": [{"split": "dev", "path": "Accounting/dev-*"}, {"split": "validation", "path": "Accounting/validation-*"}, {"split": "test", "path": "Accounting/test-*"}]}, {"config_name": "Agriculture", "data_files": [{"split": "dev", "path": "Agriculture/dev-*"}, {"split": "validation", "path": "Agriculture/validation-*"}, {"split": "test", "path": "Agriculture/test-*"}]}, {"config_name": "Architecture_and_Engineering", "data_files": [{"split": "dev", "path": "Architecture_and_Engineering/dev-*"}, {"split": "validation", "path": "Architecture_and_Engineering/validation-*"}, {"split": "test", "path": "Architecture_and_Engineering/test-*"}]}, {"config_name": "Art", "data_files": [{"split": "dev", "path": "Art/dev-*"}, {"split": "validation", "path": "Art/validation-*"}, {"split": "test", "path": "Art/test-*"}]}, {"config_name": "Art_Theory", "data_files": [{"split": "dev", "path": "Art_Theory/dev-*"}, {"split": "validation", "path": "Art_Theory/validation-*"}, {"split": "test", "path": "Art_Theory/test-*"}]}, {"config_name": "Basic_Medical_Science", "data_files": [{"split": "dev", "path": "Basic_Medical_Science/dev-*"}, {"split": "validation", "path": "Basic_Medical_Science/validation-*"}, {"split": "test", "path": "Basic_Medical_Science/test-*"}]}, {"config_name": "Biology", "data_files": [{"split": "dev", "path": "Biology/dev-*"}, {"split": "validation", "path": "Biology/validation-*"}, {"split": "test", "path": "Biology/test-*"}]}, {"config_name": "Chemistry", "data_files": [{"split": "dev", "path": "Chemistry/dev-*"}, {"split": "validation", "path": "Chemistry/validation-*"}, {"split": "test", "path": "Chemistry/test-*"}]}, {"config_name": "Clinical_Medicine", "data_files": [{"split": "dev", "path": "Clinical_Medicine/dev-*"}, {"split": "validation", "path": "Clinical_Medicine/validation-*"}, {"split": "test", "path": "Clinical_Medicine/test-*"}]}, {"config_name": "Computer_Science", "data_files": [{"split": "dev", "path": "Computer_Science/dev-*"}, {"split": "validation", "path": "Computer_Science/validation-*"}, {"split": "test", "path": "Computer_Science/test-*"}]}, {"config_name": "Design", "data_files": [{"split": "dev", "path": "Design/dev-*"}, {"split": "validation", "path": "Design/validation-*"}, {"split": "test", "path": "Design/test-*"}]}, {"config_name": "Diagnostics_and_Laboratory_Medicine", "data_files": [{"split": "dev", "path": "Diagnostics_and_Laboratory_Medicine/dev-*"}, {"split": "validation", "path": "Diagnostics_and_Laboratory_Medicine/validation-*"}, {"split": "test", "path": "Diagnostics_and_Laboratory_Medicine/test-*"}]}, {"config_name": "Economics", "data_files": [{"split": "dev", "path": "Economics/dev-*"}, {"split": "validation", "path": "Economics/validation-*"}, {"split": "test", "path": "Economics/test-*"}]}, {"config_name": "Electronics", "data_files": [{"split": "dev", "path": "Electronics/dev-*"}, {"split": "validation", "path": "Electronics/validation-*"}, {"split": "test", "path": "Electronics/test-*"}]}, {"config_name": "Energy_and_Power", "data_files": [{"split": "dev", "path": "Energy_and_Power/dev-*"}, {"split": "validation", "path": "Energy_and_Power/validation-*"}, {"split": "test", "path": "Energy_and_Power/test-*"}]}, {"config_name": "Finance", "data_files": [{"split": "dev", "path": "Finance/dev-*"}, {"split": "validation", "path": "Finance/validation-*"}, {"split": "test", "path": "Finance/test-*"}]}, {"config_name": "Geography", "data_files": [{"split": "dev", "path": "Geography/dev-*"}, {"split": "validation", "path": "Geography/validation-*"}, {"split": "test", "path": "Geography/test-*"}]}, {"config_name": "History", "data_files": [{"split": "dev", "path": "History/dev-*"}, {"split": "validation", "path": "History/validation-*"}, {"split": "test", "path": "History/test-*"}]}, {"config_name": "Literature", "data_files": [{"split": "dev", "path": "Literature/dev-*"}, {"split": "validation", "path": "Literature/validation-*"}, {"split": "test", "path": "Literature/test-*"}]}, {"config_name": "Manage", "data_files": [{"split": "dev", "path": "Manage/dev-*"}, {"split": "validation", "path": "Manage/validation-*"}, {"split": "test", "path": "Manage/test-*"}]}, {"config_name": "Marketing", "data_files": [{"split": "dev", "path": "Marketing/dev-*"}, {"split": "validation", "path": "Marketing/validation-*"}, {"split": "test", "path": "Marketing/test-*"}]}, {"config_name": "Materials", "data_files": [{"split": "dev", "path": "Materials/dev-*"}, {"split": "validation", "path": "Materials/validation-*"}, {"split": "test", "path": "Materials/test-*"}]}, {"config_name": "Math", "data_files": [{"split": "dev", "path": "Math/dev-*"}, {"split": "validation", "path": "Math/validation-*"}, {"split": "test", "path": "Math/test-*"}]}, {"config_name": "Mechanical_Engineering", "data_files": [{"split": "dev", "path": "Mechanical_Engineering/dev-*"}, {"split": "validation", "path": "Mechanical_Engineering/validation-*"}, {"split": "test", "path": "Mechanical_Engineering/test-*"}]}, {"config_name": "Music", "data_files": [{"split": "dev", "path": "Music/dev-*"}, {"split": "validation", "path": "Music/validation-*"}, {"split": "test", "path": "Music/test-*"}]}, {"config_name": "Pharmacy", "data_files": [{"split": "dev", "path": "Pharmacy/dev-*"}, {"split": "validation", "path": "Pharmacy/validation-*"}, {"split": "test", "path": "Pharmacy/test-*"}]}, {"config_name": "Physics", "data_files": [{"split": "dev", "path": "Physics/dev-*"}, {"split": "validation", "path": "Physics/validation-*"}, {"split": "test", "path": "Physics/test-*"}]}, {"config_name": "Psychology", "data_files": [{"split": "dev", "path": "Psychology/dev-*"}, {"split": "validation", "path": "Psychology/validation-*"}, {"split": "test", "path": "Psychology/test-*"}]}, {"config_name": "Public_Health", "data_files": [{"split": "dev", "path": "Public_Health/dev-*"}, {"split": "validation", "path": "Public_Health/validation-*"}, {"split": "test", "path": "Public_Health/test-*"}]}, {"config_name": "Sociology", "data_files": [{"split": "dev", "path": "Sociology/dev-*"}, {"split": "validation", "path": "Sociology/validation-*"}, {"split": "test", "path": "Sociology/test-*"}]}], "tags": ["biology", "medical", "finance", "chemistry", "music", "art", "art_theory", "design", "music", "business", "accounting", "economics", "finance", "manage", "marketing", "health", "medicine", "basic_medical_science", "clinical", "pharmacy", "public_health", "humanities", "social_science", "history", "literature", "sociology", "psychology", "science", "biology", "chemistry", "geography", "math", "physics", "engineering", "agriculture", "architecture", "computer_science", "electronics", "energy_and_power", "materials", "mechanical_engineering"]} | 2024-01-06T17:28:39+00:00 | [
"2311.16502"
] | [
"en"
] | TAGS
#task_categories-question-answering #task_categories-visual-question-answering #task_categories-multiple-choice #size_categories-10K<n<100K #language-English #license-apache-2.0 #biology #medical #finance #chemistry #music #art #art_theory #design #business #accounting #economics #manage #marketing #health #medicine #basic_medical_science #clinical #pharmacy #public_health #humanities #social_science #history #literature #sociology #psychology #science #geography #math #physics #engineering #agriculture #architecture #computer_science #electronics #energy_and_power #materials #mechanical_engineering #arxiv-2311.16502 #region-us
| MMMU (A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI)
=================================================================================================
Homepage | Dataset | Paper | arXiv | GitHub
News
----
* [2023-12-04]: Our evaluation server for test set is now availble on EvalAI. We welcome all submissions and look forward to your participation!
Dataset Details
---------------
### Dataset Description
We introduce MMMU: a new benchmark designed to evaluate multimodal models on massive multi-discipline tasks demanding college-level subject knowledge and deliberate reasoning. MMMU includes 11.5K meticulously collected multimodal questions from college exams, quizzes, and textbooks, covering six core disciplines: Art & Design, Business, Science, Health & Medicine, Humanities & Social Science, and Tech & Engineering. These questions span 30 subjects and 183 subfields, comprising 30 highly heterogeneous image types, such as charts, diagrams, maps, tables, music sheets, and chemical structures. We believe MMMU will stimulate the community to build next-generation multimodal foundation models towards expert artificial general intelligence (AGI).
We have released a full set comprising 150 development samples and 900 validation samples. We have released 10,500 test questions without their answers.
The development set is used for few-shot/in-context learning, and the validation set is used for debugging models, selecting hyperparameters, or quick evaluations. The answers and explanations for the test set questions are withheld. You can submit your model's predictions for the test set on EvalAI.
!image/png
### Dataset Creation
MMMU was created to challenge multimodal models with tasks that demand college-level subject knowledge and deliberate reasoning, pushing the boundaries of what these models can achieve in terms of expert-level perception and reasoning.
The data for the MMMU dataset was manually collected by a team of college students from various disciplines, using online sources, textbooks, and lecture materials.
* Content: The dataset contains 11.5K college-level problems across six broad disciplines (Art & Design, Business, Science, Health & Medicine, Humanities & Social Science, Tech & Engineering) and 30 college subjects.
* Image Types: The dataset includes 30 highly heterogeneous image types, such as charts, diagrams, maps, tables, music sheets, and chemical structures, interleaved with text.
!image/png
Mini-Leaderboard
----------------
We show a mini-leaderboard here and please find more information in our paper or homepage.
\*: results provided by the authors.
Limitations
-----------
Despite its comprehensive nature, MMMU, like any benchmark, is not without limitations. The manual curation process, albeit thorough, may carry biases.
And the focus on college-level subjects might not fully be a sufficient test for Expert AGI.
However, we believe it should be necessary for an Expert AGI to achieve strong performance on MMMU to demonstrate their broad and deep subject knowledge as well as expert-level understanding and reasoning capabilities.
In future work, we plan to incorporate human evaluations into MMMU. This will provide a more grounded comparison between model capabilities and expert performance, shedding light on the proximity of current AI systems to achieving Expert AGI.
Disclaimers
-----------
The guidelines for the annotators emphasized strict compliance with copyright and licensing rules from the initial data source, specifically avoiding materials from websites that forbid copying and redistribution.
Should you encounter any data samples potentially breaching the copyright or licensing regulations of any site, we encourage you to notify us. Upon verification, such samples will be promptly removed.
Contact
-------
* Xiang Yue: URL@URL
* Yu Su: su.809@URL
* Wenhu Chen: wenhuchen@URL
BibTeX:
| [
"### Dataset Description\n\n\nWe introduce MMMU: a new benchmark designed to evaluate multimodal models on massive multi-discipline tasks demanding college-level subject knowledge and deliberate reasoning. MMMU includes 11.5K meticulously collected multimodal questions from college exams, quizzes, and textbooks, covering six core disciplines: Art & Design, Business, Science, Health & Medicine, Humanities & Social Science, and Tech & Engineering. These questions span 30 subjects and 183 subfields, comprising 30 highly heterogeneous image types, such as charts, diagrams, maps, tables, music sheets, and chemical structures. We believe MMMU will stimulate the community to build next-generation multimodal foundation models towards expert artificial general intelligence (AGI).\n\n\nWe have released a full set comprising 150 development samples and 900 validation samples. We have released 10,500 test questions without their answers.\nThe development set is used for few-shot/in-context learning, and the validation set is used for debugging models, selecting hyperparameters, or quick evaluations. The answers and explanations for the test set questions are withheld. You can submit your model's predictions for the test set on EvalAI.\n\n\n!image/png",
"### Dataset Creation\n\n\nMMMU was created to challenge multimodal models with tasks that demand college-level subject knowledge and deliberate reasoning, pushing the boundaries of what these models can achieve in terms of expert-level perception and reasoning.\nThe data for the MMMU dataset was manually collected by a team of college students from various disciplines, using online sources, textbooks, and lecture materials.\n\n\n* Content: The dataset contains 11.5K college-level problems across six broad disciplines (Art & Design, Business, Science, Health & Medicine, Humanities & Social Science, Tech & Engineering) and 30 college subjects.\n* Image Types: The dataset includes 30 highly heterogeneous image types, such as charts, diagrams, maps, tables, music sheets, and chemical structures, interleaved with text.\n\n\n!image/png\n\n\nMini-Leaderboard\n----------------\n\n\nWe show a mini-leaderboard here and please find more information in our paper or homepage.\n\n\n\n\\*: results provided by the authors.\n\n\nLimitations\n-----------\n\n\nDespite its comprehensive nature, MMMU, like any benchmark, is not without limitations. The manual curation process, albeit thorough, may carry biases.\nAnd the focus on college-level subjects might not fully be a sufficient test for Expert AGI.\nHowever, we believe it should be necessary for an Expert AGI to achieve strong performance on MMMU to demonstrate their broad and deep subject knowledge as well as expert-level understanding and reasoning capabilities.\nIn future work, we plan to incorporate human evaluations into MMMU. This will provide a more grounded comparison between model capabilities and expert performance, shedding light on the proximity of current AI systems to achieving Expert AGI.\n\n\nDisclaimers\n-----------\n\n\nThe guidelines for the annotators emphasized strict compliance with copyright and licensing rules from the initial data source, specifically avoiding materials from websites that forbid copying and redistribution.\nShould you encounter any data samples potentially breaching the copyright or licensing regulations of any site, we encourage you to notify us. Upon verification, such samples will be promptly removed.\n\n\nContact\n-------\n\n\n* Xiang Yue: URL@URL\n* Yu Su: su.809@URL\n* Wenhu Chen: wenhuchen@URL\n\n\nBibTeX:"
] | [
"TAGS\n#task_categories-question-answering #task_categories-visual-question-answering #task_categories-multiple-choice #size_categories-10K<n<100K #language-English #license-apache-2.0 #biology #medical #finance #chemistry #music #art #art_theory #design #business #accounting #economics #manage #marketing #health #medicine #basic_medical_science #clinical #pharmacy #public_health #humanities #social_science #history #literature #sociology #psychology #science #geography #math #physics #engineering #agriculture #architecture #computer_science #electronics #energy_and_power #materials #mechanical_engineering #arxiv-2311.16502 #region-us \n",
"### Dataset Description\n\n\nWe introduce MMMU: a new benchmark designed to evaluate multimodal models on massive multi-discipline tasks demanding college-level subject knowledge and deliberate reasoning. MMMU includes 11.5K meticulously collected multimodal questions from college exams, quizzes, and textbooks, covering six core disciplines: Art & Design, Business, Science, Health & Medicine, Humanities & Social Science, and Tech & Engineering. These questions span 30 subjects and 183 subfields, comprising 30 highly heterogeneous image types, such as charts, diagrams, maps, tables, music sheets, and chemical structures. We believe MMMU will stimulate the community to build next-generation multimodal foundation models towards expert artificial general intelligence (AGI).\n\n\nWe have released a full set comprising 150 development samples and 900 validation samples. We have released 10,500 test questions without their answers.\nThe development set is used for few-shot/in-context learning, and the validation set is used for debugging models, selecting hyperparameters, or quick evaluations. The answers and explanations for the test set questions are withheld. You can submit your model's predictions for the test set on EvalAI.\n\n\n!image/png",
"### Dataset Creation\n\n\nMMMU was created to challenge multimodal models with tasks that demand college-level subject knowledge and deliberate reasoning, pushing the boundaries of what these models can achieve in terms of expert-level perception and reasoning.\nThe data for the MMMU dataset was manually collected by a team of college students from various disciplines, using online sources, textbooks, and lecture materials.\n\n\n* Content: The dataset contains 11.5K college-level problems across six broad disciplines (Art & Design, Business, Science, Health & Medicine, Humanities & Social Science, Tech & Engineering) and 30 college subjects.\n* Image Types: The dataset includes 30 highly heterogeneous image types, such as charts, diagrams, maps, tables, music sheets, and chemical structures, interleaved with text.\n\n\n!image/png\n\n\nMini-Leaderboard\n----------------\n\n\nWe show a mini-leaderboard here and please find more information in our paper or homepage.\n\n\n\n\\*: results provided by the authors.\n\n\nLimitations\n-----------\n\n\nDespite its comprehensive nature, MMMU, like any benchmark, is not without limitations. The manual curation process, albeit thorough, may carry biases.\nAnd the focus on college-level subjects might not fully be a sufficient test for Expert AGI.\nHowever, we believe it should be necessary for an Expert AGI to achieve strong performance on MMMU to demonstrate their broad and deep subject knowledge as well as expert-level understanding and reasoning capabilities.\nIn future work, we plan to incorporate human evaluations into MMMU. This will provide a more grounded comparison between model capabilities and expert performance, shedding light on the proximity of current AI systems to achieving Expert AGI.\n\n\nDisclaimers\n-----------\n\n\nThe guidelines for the annotators emphasized strict compliance with copyright and licensing rules from the initial data source, specifically avoiding materials from websites that forbid copying and redistribution.\nShould you encounter any data samples potentially breaching the copyright or licensing regulations of any site, we encourage you to notify us. Upon verification, such samples will be promptly removed.\n\n\nContact\n-------\n\n\n* Xiang Yue: URL@URL\n* Yu Su: su.809@URL\n* Wenhu Chen: wenhuchen@URL\n\n\nBibTeX:"
] | [
203,
284,
511
] | [
"passage: TAGS\n#task_categories-question-answering #task_categories-visual-question-answering #task_categories-multiple-choice #size_categories-10K<n<100K #language-English #license-apache-2.0 #biology #medical #finance #chemistry #music #art #art_theory #design #business #accounting #economics #manage #marketing #health #medicine #basic_medical_science #clinical #pharmacy #public_health #humanities #social_science #history #literature #sociology #psychology #science #geography #math #physics #engineering #agriculture #architecture #computer_science #electronics #energy_and_power #materials #mechanical_engineering #arxiv-2311.16502 #region-us \n### Dataset Description\n\n\nWe introduce MMMU: a new benchmark designed to evaluate multimodal models on massive multi-discipline tasks demanding college-level subject knowledge and deliberate reasoning. MMMU includes 11.5K meticulously collected multimodal questions from college exams, quizzes, and textbooks, covering six core disciplines: Art & Design, Business, Science, Health & Medicine, Humanities & Social Science, and Tech & Engineering. These questions span 30 subjects and 183 subfields, comprising 30 highly heterogeneous image types, such as charts, diagrams, maps, tables, music sheets, and chemical structures. We believe MMMU will stimulate the community to build next-generation multimodal foundation models towards expert artificial general intelligence (AGI).\n\n\nWe have released a full set comprising 150 development samples and 900 validation samples. We have released 10,500 test questions without their answers.\nThe development set is used for few-shot/in-context learning, and the validation set is used for debugging models, selecting hyperparameters, or quick evaluations. The answers and explanations for the test set questions are withheld. You can submit your model's predictions for the test set on EvalAI.\n\n\n!image/png"
] |
25386b7e92ec5c7045a7a51ddef7aeb55c55ba70 |
# Dataset Card for Evaluation run of Sao10K/Winterreise-m7
<!-- Provide a quick summary of the dataset. -->
Dataset automatically created during the evaluation run of model [Sao10K/Winterreise-m7](https://huggingface.co/Sao10K/Winterreise-m7) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset("open-llm-leaderboard/details_Sao10K__Winterreise-m7",
"harness_winogrande_5",
split="train")
```
## Latest results
These are the [latest results from run 2024-01-06T17:27:54.681124](https://huggingface.co/datasets/open-llm-leaderboard/details_Sao10K__Winterreise-m7/blob/main/results_2024-01-06T17-27-54.681124.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"acc": 0.6356608689538731,
"acc_stderr": 0.03240626820159796,
"acc_norm": 0.6414323310244244,
"acc_norm_stderr": 0.03306251040203467,
"mc1": 0.30354957160342716,
"mc1_stderr": 0.016095884155386847,
"mc2": 0.4555071503037089,
"mc2_stderr": 0.014269000225909255
},
"harness|arc:challenge|25": {
"acc": 0.5784982935153583,
"acc_stderr": 0.014430197069326023,
"acc_norm": 0.6126279863481229,
"acc_norm_stderr": 0.01423587248790987
},
"harness|hellaswag|10": {
"acc": 0.6364270065723959,
"acc_stderr": 0.004800446397653348,
"acc_norm": 0.8383788090021908,
"acc_norm_stderr": 0.0036735065123709503
},
"harness|hendrycksTest-abstract_algebra|5": {
"acc": 0.36,
"acc_stderr": 0.04824181513244218,
"acc_norm": 0.36,
"acc_norm_stderr": 0.04824181513244218
},
"harness|hendrycksTest-anatomy|5": {
"acc": 0.6370370370370371,
"acc_stderr": 0.04153948404742398,
"acc_norm": 0.6370370370370371,
"acc_norm_stderr": 0.04153948404742398
},
"harness|hendrycksTest-astronomy|5": {
"acc": 0.6710526315789473,
"acc_stderr": 0.038234289699266046,
"acc_norm": 0.6710526315789473,
"acc_norm_stderr": 0.038234289699266046
},
"harness|hendrycksTest-business_ethics|5": {
"acc": 0.59,
"acc_stderr": 0.04943110704237102,
"acc_norm": 0.59,
"acc_norm_stderr": 0.04943110704237102
},
"harness|hendrycksTest-clinical_knowledge|5": {
"acc": 0.6830188679245283,
"acc_stderr": 0.02863723563980089,
"acc_norm": 0.6830188679245283,
"acc_norm_stderr": 0.02863723563980089
},
"harness|hendrycksTest-college_biology|5": {
"acc": 0.7291666666666666,
"acc_stderr": 0.03716177437566017,
"acc_norm": 0.7291666666666666,
"acc_norm_stderr": 0.03716177437566017
},
"harness|hendrycksTest-college_chemistry|5": {
"acc": 0.48,
"acc_stderr": 0.050211673156867795,
"acc_norm": 0.48,
"acc_norm_stderr": 0.050211673156867795
},
"harness|hendrycksTest-college_computer_science|5": {
"acc": 0.54,
"acc_stderr": 0.05009082659620332,
"acc_norm": 0.54,
"acc_norm_stderr": 0.05009082659620332
},
"harness|hendrycksTest-college_mathematics|5": {
"acc": 0.36,
"acc_stderr": 0.048241815132442176,
"acc_norm": 0.36,
"acc_norm_stderr": 0.048241815132442176
},
"harness|hendrycksTest-college_medicine|5": {
"acc": 0.6184971098265896,
"acc_stderr": 0.03703851193099521,
"acc_norm": 0.6184971098265896,
"acc_norm_stderr": 0.03703851193099521
},
"harness|hendrycksTest-college_physics|5": {
"acc": 0.4019607843137255,
"acc_stderr": 0.04878608714466996,
"acc_norm": 0.4019607843137255,
"acc_norm_stderr": 0.04878608714466996
},
"harness|hendrycksTest-computer_security|5": {
"acc": 0.77,
"acc_stderr": 0.04229525846816505,
"acc_norm": 0.77,
"acc_norm_stderr": 0.04229525846816505
},
"harness|hendrycksTest-conceptual_physics|5": {
"acc": 0.5787234042553191,
"acc_stderr": 0.03227834510146268,
"acc_norm": 0.5787234042553191,
"acc_norm_stderr": 0.03227834510146268
},
"harness|hendrycksTest-econometrics|5": {
"acc": 0.49122807017543857,
"acc_stderr": 0.04702880432049615,
"acc_norm": 0.49122807017543857,
"acc_norm_stderr": 0.04702880432049615
},
"harness|hendrycksTest-electrical_engineering|5": {
"acc": 0.5724137931034483,
"acc_stderr": 0.04122737111370332,
"acc_norm": 0.5724137931034483,
"acc_norm_stderr": 0.04122737111370332
},
"harness|hendrycksTest-elementary_mathematics|5": {
"acc": 0.40476190476190477,
"acc_stderr": 0.025279850397404897,
"acc_norm": 0.40476190476190477,
"acc_norm_stderr": 0.025279850397404897
},
"harness|hendrycksTest-formal_logic|5": {
"acc": 0.40476190476190477,
"acc_stderr": 0.04390259265377562,
"acc_norm": 0.40476190476190477,
"acc_norm_stderr": 0.04390259265377562
},
"harness|hendrycksTest-global_facts|5": {
"acc": 0.33,
"acc_stderr": 0.04725815626252605,
"acc_norm": 0.33,
"acc_norm_stderr": 0.04725815626252605
},
"harness|hendrycksTest-high_school_biology|5": {
"acc": 0.7645161290322581,
"acc_stderr": 0.02413763242933771,
"acc_norm": 0.7645161290322581,
"acc_norm_stderr": 0.02413763242933771
},
"harness|hendrycksTest-high_school_chemistry|5": {
"acc": 0.4876847290640394,
"acc_stderr": 0.035169204442208966,
"acc_norm": 0.4876847290640394,
"acc_norm_stderr": 0.035169204442208966
},
"harness|hendrycksTest-high_school_computer_science|5": {
"acc": 0.7,
"acc_stderr": 0.046056618647183814,
"acc_norm": 0.7,
"acc_norm_stderr": 0.046056618647183814
},
"harness|hendrycksTest-high_school_european_history|5": {
"acc": 0.7575757575757576,
"acc_stderr": 0.03346409881055953,
"acc_norm": 0.7575757575757576,
"acc_norm_stderr": 0.03346409881055953
},
"harness|hendrycksTest-high_school_geography|5": {
"acc": 0.7828282828282829,
"acc_stderr": 0.02937661648494563,
"acc_norm": 0.7828282828282829,
"acc_norm_stderr": 0.02937661648494563
},
"harness|hendrycksTest-high_school_government_and_politics|5": {
"acc": 0.8808290155440415,
"acc_stderr": 0.02338193534812143,
"acc_norm": 0.8808290155440415,
"acc_norm_stderr": 0.02338193534812143
},
"harness|hendrycksTest-high_school_macroeconomics|5": {
"acc": 0.6512820512820513,
"acc_stderr": 0.024162780284017724,
"acc_norm": 0.6512820512820513,
"acc_norm_stderr": 0.024162780284017724
},
"harness|hendrycksTest-high_school_mathematics|5": {
"acc": 0.3851851851851852,
"acc_stderr": 0.029670906124630886,
"acc_norm": 0.3851851851851852,
"acc_norm_stderr": 0.029670906124630886
},
"harness|hendrycksTest-high_school_microeconomics|5": {
"acc": 0.6764705882352942,
"acc_stderr": 0.03038835355188679,
"acc_norm": 0.6764705882352942,
"acc_norm_stderr": 0.03038835355188679
},
"harness|hendrycksTest-high_school_physics|5": {
"acc": 0.3576158940397351,
"acc_stderr": 0.03913453431177258,
"acc_norm": 0.3576158940397351,
"acc_norm_stderr": 0.03913453431177258
},
"harness|hendrycksTest-high_school_psychology|5": {
"acc": 0.8238532110091743,
"acc_stderr": 0.016332882393431385,
"acc_norm": 0.8238532110091743,
"acc_norm_stderr": 0.016332882393431385
},
"harness|hendrycksTest-high_school_statistics|5": {
"acc": 0.5138888888888888,
"acc_stderr": 0.03408655867977749,
"acc_norm": 0.5138888888888888,
"acc_norm_stderr": 0.03408655867977749
},
"harness|hendrycksTest-high_school_us_history|5": {
"acc": 0.8088235294117647,
"acc_stderr": 0.02759917430064076,
"acc_norm": 0.8088235294117647,
"acc_norm_stderr": 0.02759917430064076
},
"harness|hendrycksTest-high_school_world_history|5": {
"acc": 0.7552742616033755,
"acc_stderr": 0.027985699387036423,
"acc_norm": 0.7552742616033755,
"acc_norm_stderr": 0.027985699387036423
},
"harness|hendrycksTest-human_aging|5": {
"acc": 0.695067264573991,
"acc_stderr": 0.030898610882477518,
"acc_norm": 0.695067264573991,
"acc_norm_stderr": 0.030898610882477518
},
"harness|hendrycksTest-human_sexuality|5": {
"acc": 0.7862595419847328,
"acc_stderr": 0.0359546161177469,
"acc_norm": 0.7862595419847328,
"acc_norm_stderr": 0.0359546161177469
},
"harness|hendrycksTest-international_law|5": {
"acc": 0.7768595041322314,
"acc_stderr": 0.03800754475228733,
"acc_norm": 0.7768595041322314,
"acc_norm_stderr": 0.03800754475228733
},
"harness|hendrycksTest-jurisprudence|5": {
"acc": 0.7685185185185185,
"acc_stderr": 0.04077494709252627,
"acc_norm": 0.7685185185185185,
"acc_norm_stderr": 0.04077494709252627
},
"harness|hendrycksTest-logical_fallacies|5": {
"acc": 0.7668711656441718,
"acc_stderr": 0.0332201579577674,
"acc_norm": 0.7668711656441718,
"acc_norm_stderr": 0.0332201579577674
},
"harness|hendrycksTest-machine_learning|5": {
"acc": 0.49107142857142855,
"acc_stderr": 0.04745033255489123,
"acc_norm": 0.49107142857142855,
"acc_norm_stderr": 0.04745033255489123
},
"harness|hendrycksTest-management|5": {
"acc": 0.7961165048543689,
"acc_stderr": 0.03989139859531772,
"acc_norm": 0.7961165048543689,
"acc_norm_stderr": 0.03989139859531772
},
"harness|hendrycksTest-marketing|5": {
"acc": 0.8760683760683761,
"acc_stderr": 0.021586494001281403,
"acc_norm": 0.8760683760683761,
"acc_norm_stderr": 0.021586494001281403
},
"harness|hendrycksTest-medical_genetics|5": {
"acc": 0.73,
"acc_stderr": 0.044619604333847394,
"acc_norm": 0.73,
"acc_norm_stderr": 0.044619604333847394
},
"harness|hendrycksTest-miscellaneous|5": {
"acc": 0.8122605363984674,
"acc_stderr": 0.013964393769899126,
"acc_norm": 0.8122605363984674,
"acc_norm_stderr": 0.013964393769899126
},
"harness|hendrycksTest-moral_disputes|5": {
"acc": 0.7109826589595376,
"acc_stderr": 0.02440517393578323,
"acc_norm": 0.7109826589595376,
"acc_norm_stderr": 0.02440517393578323
},
"harness|hendrycksTest-moral_scenarios|5": {
"acc": 0.29608938547486036,
"acc_stderr": 0.015268677317602281,
"acc_norm": 0.29608938547486036,
"acc_norm_stderr": 0.015268677317602281
},
"harness|hendrycksTest-nutrition|5": {
"acc": 0.7549019607843137,
"acc_stderr": 0.024630048979824775,
"acc_norm": 0.7549019607843137,
"acc_norm_stderr": 0.024630048979824775
},
"harness|hendrycksTest-philosophy|5": {
"acc": 0.7202572347266881,
"acc_stderr": 0.02549425935069491,
"acc_norm": 0.7202572347266881,
"acc_norm_stderr": 0.02549425935069491
},
"harness|hendrycksTest-prehistory|5": {
"acc": 0.7345679012345679,
"acc_stderr": 0.024569223600460842,
"acc_norm": 0.7345679012345679,
"acc_norm_stderr": 0.024569223600460842
},
"harness|hendrycksTest-professional_accounting|5": {
"acc": 0.49645390070921985,
"acc_stderr": 0.02982674915328092,
"acc_norm": 0.49645390070921985,
"acc_norm_stderr": 0.02982674915328092
},
"harness|hendrycksTest-professional_law|5": {
"acc": 0.4439374185136897,
"acc_stderr": 0.012689708167787686,
"acc_norm": 0.4439374185136897,
"acc_norm_stderr": 0.012689708167787686
},
"harness|hendrycksTest-professional_medicine|5": {
"acc": 0.6801470588235294,
"acc_stderr": 0.02833295951403121,
"acc_norm": 0.6801470588235294,
"acc_norm_stderr": 0.02833295951403121
},
"harness|hendrycksTest-professional_psychology|5": {
"acc": 0.6715686274509803,
"acc_stderr": 0.018999707383162666,
"acc_norm": 0.6715686274509803,
"acc_norm_stderr": 0.018999707383162666
},
"harness|hendrycksTest-public_relations|5": {
"acc": 0.6636363636363637,
"acc_stderr": 0.04525393596302506,
"acc_norm": 0.6636363636363637,
"acc_norm_stderr": 0.04525393596302506
},
"harness|hendrycksTest-security_studies|5": {
"acc": 0.726530612244898,
"acc_stderr": 0.028535560337128448,
"acc_norm": 0.726530612244898,
"acc_norm_stderr": 0.028535560337128448
},
"harness|hendrycksTest-sociology|5": {
"acc": 0.845771144278607,
"acc_stderr": 0.025538433368578337,
"acc_norm": 0.845771144278607,
"acc_norm_stderr": 0.025538433368578337
},
"harness|hendrycksTest-us_foreign_policy|5": {
"acc": 0.85,
"acc_stderr": 0.03588702812826371,
"acc_norm": 0.85,
"acc_norm_stderr": 0.03588702812826371
},
"harness|hendrycksTest-virology|5": {
"acc": 0.5240963855421686,
"acc_stderr": 0.03887971849597264,
"acc_norm": 0.5240963855421686,
"acc_norm_stderr": 0.03887971849597264
},
"harness|hendrycksTest-world_religions|5": {
"acc": 0.8070175438596491,
"acc_stderr": 0.030267457554898458,
"acc_norm": 0.8070175438596491,
"acc_norm_stderr": 0.030267457554898458
},
"harness|truthfulqa:mc|0": {
"mc1": 0.30354957160342716,
"mc1_stderr": 0.016095884155386847,
"mc2": 0.4555071503037089,
"mc2_stderr": 0.014269000225909255
},
"harness|winogrande|5": {
"acc": 0.7908445146014207,
"acc_stderr": 0.011430450045881578
},
"harness|gsm8k|5": {
"acc": 0.37604245640636846,
"acc_stderr": 0.013342532064849772
}
}
```
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
[More Information Needed] | open-llm-leaderboard/details_Sao10K__Winterreise-m7 | [
"region:us"
] | 2024-01-06T17:30:14+00:00 | {"pretty_name": "Evaluation run of Sao10K/Winterreise-m7", "dataset_summary": "Dataset automatically created during the evaluation run of model [Sao10K/Winterreise-m7](https://huggingface.co/Sao10K/Winterreise-m7) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_Sao10K__Winterreise-m7\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-06T17:27:54.681124](https://huggingface.co/datasets/open-llm-leaderboard/details_Sao10K__Winterreise-m7/blob/main/results_2024-01-06T17-27-54.681124.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6356608689538731,\n \"acc_stderr\": 0.03240626820159796,\n \"acc_norm\": 0.6414323310244244,\n \"acc_norm_stderr\": 0.03306251040203467,\n \"mc1\": 0.30354957160342716,\n \"mc1_stderr\": 0.016095884155386847,\n \"mc2\": 0.4555071503037089,\n \"mc2_stderr\": 0.014269000225909255\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.5784982935153583,\n \"acc_stderr\": 0.014430197069326023,\n \"acc_norm\": 0.6126279863481229,\n \"acc_norm_stderr\": 0.01423587248790987\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6364270065723959,\n \"acc_stderr\": 0.004800446397653348,\n \"acc_norm\": 0.8383788090021908,\n \"acc_norm_stderr\": 0.0036735065123709503\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.36,\n \"acc_stderr\": 0.04824181513244218,\n \"acc_norm\": 0.36,\n \"acc_norm_stderr\": 0.04824181513244218\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6370370370370371,\n \"acc_stderr\": 0.04153948404742398,\n \"acc_norm\": 0.6370370370370371,\n \"acc_norm_stderr\": 0.04153948404742398\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.6710526315789473,\n \"acc_stderr\": 0.038234289699266046,\n \"acc_norm\": 0.6710526315789473,\n \"acc_norm_stderr\": 0.038234289699266046\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.59,\n \"acc_stderr\": 0.04943110704237102,\n \"acc_norm\": 0.59,\n \"acc_norm_stderr\": 0.04943110704237102\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.6830188679245283,\n \"acc_stderr\": 0.02863723563980089,\n \"acc_norm\": 0.6830188679245283,\n \"acc_norm_stderr\": 0.02863723563980089\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7291666666666666,\n \"acc_stderr\": 0.03716177437566017,\n \"acc_norm\": 0.7291666666666666,\n \"acc_norm_stderr\": 0.03716177437566017\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.48,\n \"acc_stderr\": 0.050211673156867795,\n \"acc_norm\": 0.48,\n \"acc_norm_stderr\": 0.050211673156867795\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.54,\n \"acc_stderr\": 0.05009082659620332,\n \"acc_norm\": 0.54,\n \"acc_norm_stderr\": 0.05009082659620332\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.36,\n \"acc_stderr\": 0.048241815132442176,\n \"acc_norm\": 0.36,\n \"acc_norm_stderr\": 0.048241815132442176\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6184971098265896,\n \"acc_stderr\": 0.03703851193099521,\n \"acc_norm\": 0.6184971098265896,\n \"acc_norm_stderr\": 0.03703851193099521\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.4019607843137255,\n \"acc_stderr\": 0.04878608714466996,\n \"acc_norm\": 0.4019607843137255,\n \"acc_norm_stderr\": 0.04878608714466996\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.77,\n \"acc_stderr\": 0.04229525846816505,\n \"acc_norm\": 0.77,\n \"acc_norm_stderr\": 0.04229525846816505\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5787234042553191,\n \"acc_stderr\": 0.03227834510146268,\n \"acc_norm\": 0.5787234042553191,\n \"acc_norm_stderr\": 0.03227834510146268\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.49122807017543857,\n \"acc_stderr\": 0.04702880432049615,\n \"acc_norm\": 0.49122807017543857,\n \"acc_norm_stderr\": 0.04702880432049615\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5724137931034483,\n \"acc_stderr\": 0.04122737111370332,\n \"acc_norm\": 0.5724137931034483,\n \"acc_norm_stderr\": 0.04122737111370332\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.40476190476190477,\n \"acc_stderr\": 0.025279850397404897,\n \"acc_norm\": 0.40476190476190477,\n \"acc_norm_stderr\": 0.025279850397404897\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.40476190476190477,\n \"acc_stderr\": 0.04390259265377562,\n \"acc_norm\": 0.40476190476190477,\n \"acc_norm_stderr\": 0.04390259265377562\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.33,\n \"acc_stderr\": 0.04725815626252605,\n \"acc_norm\": 0.33,\n \"acc_norm_stderr\": 0.04725815626252605\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7645161290322581,\n \"acc_stderr\": 0.02413763242933771,\n \"acc_norm\": 0.7645161290322581,\n \"acc_norm_stderr\": 0.02413763242933771\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.4876847290640394,\n \"acc_stderr\": 0.035169204442208966,\n \"acc_norm\": 0.4876847290640394,\n \"acc_norm_stderr\": 0.035169204442208966\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.7,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.7,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7575757575757576,\n \"acc_stderr\": 0.03346409881055953,\n \"acc_norm\": 0.7575757575757576,\n \"acc_norm_stderr\": 0.03346409881055953\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7828282828282829,\n \"acc_stderr\": 0.02937661648494563,\n \"acc_norm\": 0.7828282828282829,\n \"acc_norm_stderr\": 0.02937661648494563\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8808290155440415,\n \"acc_stderr\": 0.02338193534812143,\n \"acc_norm\": 0.8808290155440415,\n \"acc_norm_stderr\": 0.02338193534812143\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6512820512820513,\n \"acc_stderr\": 0.024162780284017724,\n \"acc_norm\": 0.6512820512820513,\n \"acc_norm_stderr\": 0.024162780284017724\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.3851851851851852,\n \"acc_stderr\": 0.029670906124630886,\n \"acc_norm\": 0.3851851851851852,\n \"acc_norm_stderr\": 0.029670906124630886\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6764705882352942,\n \"acc_stderr\": 0.03038835355188679,\n \"acc_norm\": 0.6764705882352942,\n \"acc_norm_stderr\": 0.03038835355188679\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.3576158940397351,\n \"acc_stderr\": 0.03913453431177258,\n \"acc_norm\": 0.3576158940397351,\n \"acc_norm_stderr\": 0.03913453431177258\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8238532110091743,\n \"acc_stderr\": 0.016332882393431385,\n \"acc_norm\": 0.8238532110091743,\n \"acc_norm_stderr\": 0.016332882393431385\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.5138888888888888,\n \"acc_stderr\": 0.03408655867977749,\n \"acc_norm\": 0.5138888888888888,\n \"acc_norm_stderr\": 0.03408655867977749\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.8088235294117647,\n \"acc_stderr\": 0.02759917430064076,\n \"acc_norm\": 0.8088235294117647,\n \"acc_norm_stderr\": 0.02759917430064076\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7552742616033755,\n \"acc_stderr\": 0.027985699387036423,\n \"acc_norm\": 0.7552742616033755,\n \"acc_norm_stderr\": 0.027985699387036423\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.695067264573991,\n \"acc_stderr\": 0.030898610882477518,\n \"acc_norm\": 0.695067264573991,\n \"acc_norm_stderr\": 0.030898610882477518\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7862595419847328,\n \"acc_stderr\": 0.0359546161177469,\n \"acc_norm\": 0.7862595419847328,\n \"acc_norm_stderr\": 0.0359546161177469\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.7768595041322314,\n \"acc_stderr\": 0.03800754475228733,\n \"acc_norm\": 0.7768595041322314,\n \"acc_norm_stderr\": 0.03800754475228733\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7685185185185185,\n \"acc_stderr\": 0.04077494709252627,\n \"acc_norm\": 0.7685185185185185,\n \"acc_norm_stderr\": 0.04077494709252627\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7668711656441718,\n \"acc_stderr\": 0.0332201579577674,\n \"acc_norm\": 0.7668711656441718,\n \"acc_norm_stderr\": 0.0332201579577674\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.49107142857142855,\n \"acc_stderr\": 0.04745033255489123,\n \"acc_norm\": 0.49107142857142855,\n \"acc_norm_stderr\": 0.04745033255489123\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7961165048543689,\n \"acc_stderr\": 0.03989139859531772,\n \"acc_norm\": 0.7961165048543689,\n \"acc_norm_stderr\": 0.03989139859531772\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8760683760683761,\n \"acc_stderr\": 0.021586494001281403,\n \"acc_norm\": 0.8760683760683761,\n \"acc_norm_stderr\": 0.021586494001281403\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.73,\n \"acc_stderr\": 0.044619604333847394,\n \"acc_norm\": 0.73,\n \"acc_norm_stderr\": 0.044619604333847394\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8122605363984674,\n \"acc_stderr\": 0.013964393769899126,\n \"acc_norm\": 0.8122605363984674,\n \"acc_norm_stderr\": 0.013964393769899126\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7109826589595376,\n \"acc_stderr\": 0.02440517393578323,\n \"acc_norm\": 0.7109826589595376,\n \"acc_norm_stderr\": 0.02440517393578323\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.29608938547486036,\n \"acc_stderr\": 0.015268677317602281,\n \"acc_norm\": 0.29608938547486036,\n \"acc_norm_stderr\": 0.015268677317602281\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7549019607843137,\n \"acc_stderr\": 0.024630048979824775,\n \"acc_norm\": 0.7549019607843137,\n \"acc_norm_stderr\": 0.024630048979824775\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.7202572347266881,\n \"acc_stderr\": 0.02549425935069491,\n \"acc_norm\": 0.7202572347266881,\n \"acc_norm_stderr\": 0.02549425935069491\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.7345679012345679,\n \"acc_stderr\": 0.024569223600460842,\n \"acc_norm\": 0.7345679012345679,\n \"acc_norm_stderr\": 0.024569223600460842\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.49645390070921985,\n \"acc_stderr\": 0.02982674915328092,\n \"acc_norm\": 0.49645390070921985,\n \"acc_norm_stderr\": 0.02982674915328092\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.4439374185136897,\n \"acc_stderr\": 0.012689708167787686,\n \"acc_norm\": 0.4439374185136897,\n \"acc_norm_stderr\": 0.012689708167787686\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6801470588235294,\n \"acc_stderr\": 0.02833295951403121,\n \"acc_norm\": 0.6801470588235294,\n \"acc_norm_stderr\": 0.02833295951403121\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6715686274509803,\n \"acc_stderr\": 0.018999707383162666,\n \"acc_norm\": 0.6715686274509803,\n \"acc_norm_stderr\": 0.018999707383162666\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6636363636363637,\n \"acc_stderr\": 0.04525393596302506,\n \"acc_norm\": 0.6636363636363637,\n \"acc_norm_stderr\": 0.04525393596302506\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.726530612244898,\n \"acc_stderr\": 0.028535560337128448,\n \"acc_norm\": 0.726530612244898,\n \"acc_norm_stderr\": 0.028535560337128448\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.845771144278607,\n \"acc_stderr\": 0.025538433368578337,\n \"acc_norm\": 0.845771144278607,\n \"acc_norm_stderr\": 0.025538433368578337\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.85,\n \"acc_stderr\": 0.03588702812826371,\n \"acc_norm\": 0.85,\n \"acc_norm_stderr\": 0.03588702812826371\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5240963855421686,\n \"acc_stderr\": 0.03887971849597264,\n \"acc_norm\": 0.5240963855421686,\n \"acc_norm_stderr\": 0.03887971849597264\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8070175438596491,\n \"acc_stderr\": 0.030267457554898458,\n \"acc_norm\": 0.8070175438596491,\n \"acc_norm_stderr\": 0.030267457554898458\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.30354957160342716,\n \"mc1_stderr\": 0.016095884155386847,\n \"mc2\": 0.4555071503037089,\n \"mc2_stderr\": 0.014269000225909255\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.7908445146014207,\n \"acc_stderr\": 0.011430450045881578\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.37604245640636846,\n \"acc_stderr\": 0.013342532064849772\n }\n}\n```", "repo_url": "https://huggingface.co/Sao10K/Winterreise-m7", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|arc:challenge|25_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|gsm8k|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hellaswag|10_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-06T17-27-54.681124.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["**/details_harness|winogrande|5_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-06T17-27-54.681124.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_06T17_27_54.681124", "path": ["results_2024-01-06T17-27-54.681124.parquet"]}, {"split": "latest", "path": ["results_2024-01-06T17-27-54.681124.parquet"]}]}]} | 2024-01-06T17:30:46+00:00 | [] | [] | TAGS
#region-us
|
# Dataset Card for Evaluation run of Sao10K/Winterreise-m7
Dataset automatically created during the evaluation run of model Sao10K/Winterreise-m7 on the Open LLM Leaderboard.
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).
To load the details from a run, you can for instance do the following:
## Latest results
These are the latest results from run 2024-01-06T17:27:54.681124(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
## Dataset Details
### Dataset Description
- Curated by:
- Funded by [optional]:
- Shared by [optional]:
- Language(s) (NLP):
- License:
### Dataset Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Out-of-Scope Use
## Dataset Structure
## Dataset Creation
### Curation Rationale
### Source Data
#### Data Collection and Processing
#### Who are the source data producers?
### Annotations [optional]
#### Annotation process
#### Who are the annotators?
#### Personal and Sensitive Information
## Bias, Risks, and Limitations
### Recommendations
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Dataset Card Authors [optional]
## Dataset Card Contact
| [
"# Dataset Card for Evaluation run of Sao10K/Winterreise-m7\n\n\n\nDataset automatically created during the evaluation run of model Sao10K/Winterreise-m7 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-06T17:27:54.681124(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for Evaluation run of Sao10K/Winterreise-m7\n\n\n\nDataset automatically created during the evaluation run of model Sao10K/Winterreise-m7 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-06T17:27:54.681124(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
6,
181,
68,
4,
40,
29,
3,
4,
9,
6,
5,
7,
4,
7,
10,
9,
5,
9,
8,
10,
46,
8,
7,
10,
5
] | [
"passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of Sao10K/Winterreise-m7\n\n\n\nDataset automatically created during the evaluation run of model Sao10K/Winterreise-m7 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2024-01-06T17:27:54.681124(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):## Dataset Details### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Out-of-Scope Use## Dataset Structure## Dataset Creation### Curation Rationale### Source Data#### Data Collection and Processing#### Who are the source data producers?### Annotations [optional]#### Annotation process#### Who are the annotators?#### Personal and Sensitive Information## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Dataset Card Authors [optional]## Dataset Card Contact"
] |
d2bc9fbf4625e96a56e2fdc4610133ffb0fe593c |
Source - https://www.dropbox.com/s/omintwb3k2h46kk/passport_dataset.zip | aslessor/passports | [
"task_categories:visual-question-answering",
"size_categories:n<1K",
"language:en",
"license:mit",
"kyc",
"passports",
"region:us"
] | 2024-01-06T17:31:59+00:00 | {"language": ["en"], "license": "mit", "size_categories": ["n<1K"], "task_categories": ["visual-question-answering"], "pretty_name": "Passports", "tags": ["kyc", "passports"], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label_string", "sequence": "string"}, {"name": "words", "sequence": "string"}, {"name": "labels", "sequence": "int64"}, {"name": "boxes", "sequence": {"sequence": "int64"}}], "splits": [{"name": "train", "num_bytes": 34324486.0, "num_examples": 100}, {"name": "valid", "num_bytes": 2769718.0, "num_examples": 9}], "download_size": 36565385, "dataset_size": 37094204.0}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "valid", "path": "data/valid-*"}]}]} | 2024-01-06T17:31:59+00:00 | [] | [
"en"
] | TAGS
#task_categories-visual-question-answering #size_categories-n<1K #language-English #license-mit #kyc #passports #region-us
|
Source - URL | [] | [
"TAGS\n#task_categories-visual-question-answering #size_categories-n<1K #language-English #license-mit #kyc #passports #region-us \n"
] | [
46
] | [
"passage: TAGS\n#task_categories-visual-question-answering #size_categories-n<1K #language-English #license-mit #kyc #passports #region-us \n"
] |
be81e2941ab9c7577266a4a276d54e063a60b7ea |
# Dataset of Sakura Adachi
This is the dataset of Sakura Adachi, containing 698 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
| Name | Images | Download | Description |
|:----------------|---------:|:----------------------------------------|:-----------------------------------------------------------------------------------------|
| raw | 698 | [Download](dataset-raw.zip) | Raw data with meta information. |
| raw-stage3 | 1445 | [Download](dataset-raw-stage3.zip) | 3-stage cropped raw data with meta information. |
| raw-stage3-eyes | 1685 | [Download](dataset-raw-stage3-eyes.zip) | 3-stage cropped (with eye-focus) raw data with meta information. |
| 384x512 | 698 | [Download](dataset-384x512.zip) | 384x512 aligned dataset. |
| 512x704 | 698 | [Download](dataset-512x704.zip) | 512x704 aligned dataset. |
| 640x880 | 698 | [Download](dataset-640x880.zip) | 640x880 aligned dataset. |
| stage3-640 | 1445 | [Download](dataset-stage3-640.zip) | 3-stage cropped dataset with the shorter side not exceeding 640 pixels. |
| stage3-800 | 1445 | [Download](dataset-stage3-800.zip) | 3-stage cropped dataset with the shorter side not exceeding 800 pixels. |
| stage3-p512-640 | 1277 | [Download](dataset-stage3-p512-640.zip) | 3-stage cropped dataset with the area not less than 512x512 pixels. |
| stage3-eyes-640 | 1685 | [Download](dataset-stage3-eyes-640.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 640 pixels. |
| stage3-eyes-800 | 1685 | [Download](dataset-stage3-eyes-800.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 800 pixels. |
| CyberHarem/sakura_adachi_adachitoshimamura | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-06T17:34:34+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-06T17:36:06+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of Sakura Adachi
========================
This is the dataset of Sakura Adachi, containing 698 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
| [] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] | [
44
] | [
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] |
a6a6b07486c479c097624711d7baa8462ba02a3c | # Dataset Card for Dataset Name
<!-- Provide a quick summary of the dataset. -->
The FinancialNewsSentiment_26000 dataset comprises 26,000 rows of financial news articles related to the Indian market. It features four columns: URL, Content (scrapped content), Summary (generated using the T5-base model), and Sentiment Analysis (gathered using the GPT add-on for Google Sheets). The dataset is designed for sentiment analysis tasks, providing a comprehensive view of sentiments expressed in financial news.
## Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** Khushi Dave
- **Language(s):** English
- **Type:** Text
- **Domain:** Financial, Economy
- **Size:** 112,293 KB
- **Dataset:** Version: 1.0
- **Last Updated:** 01/01/2024
## Dataset Sources
<!-- Provide the basic links for the dataset. -->
- **Repository:** https://huggingface.co/datasets/kdave/Indian_Financial_News
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
**Sentiment Analysis Research:** Ideal for exploring sentiment nuances in Indian financial news.
**NLP Projects:** Enhance NLP models with diverse financial text for improved understanding.
**Algorithmic Trading Strategies:** Study correlations between sentiment shifts and market movements.
**News Aggregation:** Generate concise summaries with sentiment insights for financial news.
**Educational Resource:** Hands-on examples for teaching sentiment analysis and financial text processing.
**Ethical AI Exploration:** Analyze biases in sentiment analysis models for ethical AI research.
**Model Benchmarking:** Evaluate and benchmark sentiment analysis models for financial text.
**Note:** Use cautiously; do not rely solely on model predictions for financial decision-making.
## Dataset Creation
- **Format:** String
- **Columns:**
URL: URL of the news article
Content: Scrapped content of the news article
Summary: Summarized version using T5-base
Sentiment Analysis: Sentiment labels (Positive, Negative, Neutral) gathered using the GPT add-on
## Data Collection
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
**Source Selection:** Aggregation of Indian financial news articles from reputable sources covering a range of topics.
**URL Scrapping:** Extraction of URLs for each article to maintain a connection between the dataset and the original content.
**Content Scrapping:** Extraction of article content for analysis and modeling purposes.
**Summarization:** Utilization of the T5-base model from Hugging Face for content summarization.
**Sentiment Annotation:** Manual sentiment labeling using the GPT add-on for Google Sheets to categorize each article as Positive, Negative, or Neutral.
## Data Processing:
**Cleaning and Tokenization:** Standard preprocessing techniques were applied to clean and tokenize the content, ensuring uniformity and consistency.
**Format Standardization:** Conversion of data into a structured format with columns: URL, Content, Summary, and Sentiment Analysis.
**Dataset Splitting:** Given the subjective nature of sentiments, the dataset was not split into training, validation, and testing sets. Users are encouraged to customize splits based on their specific use cases.
## Tools and Libraries:
**Beautiful Soup:** Used for web scraping to extract content from HTML.
**Hugging Face Transformers:** Employed for summarization using the T5-base model.
**GPT Add-on for Google Sheets:** Facilitated manual sentiment annotation.
**Pandas:** Utilized for data manipulation and structuring.
## Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
```bibtex
@dataset{AuthorYearFinancialNewsSentiment_26000,
author = {Dave, Khushi},
year = {2024},
title = {IndiaFinanceSent Corpus},
url = {[https://huggingface.co/datasets/kdave/Indian_Financial_News]},
}
```
## Dataset Card Authors
Khushi Dave, Data Scientist | kdave/Indian_Financial_News | [
"task_categories:summarization",
"task_categories:text-classification",
"size_categories:10K<n<100K",
"language:en",
"finance",
"Financial News",
"Sentiment Analysis",
"Stock Market",
"Text Summarization",
"Indian Finance",
"BERT",
"FinBERT",
"NLP (Natural Language Processing)",
"Hugging Face Dataset",
"T5-base",
"GPT (Google Sheets Add-on)",
"Data Annotation",
"region:us"
] | 2024-01-06T17:35:00+00:00 | {"language": ["en"], "size_categories": ["10K<n<100K"], "task_categories": ["summarization", "text-classification"], "pretty_name": "IndiaFinanceSent Corpus", "tags": ["finance", "Financial News", "Sentiment Analysis", "Stock Market", "Text Summarization", "Indian Finance", "BERT", "FinBERT", "NLP (Natural Language Processing)", "Hugging Face Dataset", "T5-base", "GPT (Google Sheets Add-on)", "Data Annotation"]} | 2024-01-06T18:09:18+00:00 | [] | [
"en"
] | TAGS
#task_categories-summarization #task_categories-text-classification #size_categories-10K<n<100K #language-English #finance #Financial News #Sentiment Analysis #Stock Market #Text Summarization #Indian Finance #BERT #FinBERT #NLP (Natural Language Processing) #Hugging Face Dataset #T5-base #GPT (Google Sheets Add-on) #Data Annotation #region-us
| # Dataset Card for Dataset Name
The FinancialNewsSentiment_26000 dataset comprises 26,000 rows of financial news articles related to the Indian market. It features four columns: URL, Content (scrapped content), Summary (generated using the T5-base model), and Sentiment Analysis (gathered using the GPT add-on for Google Sheets). The dataset is designed for sentiment analysis tasks, providing a comprehensive view of sentiments expressed in financial news.
## Dataset Description
- Curated by: Khushi Dave
- Language(s): English
- Type: Text
- Domain: Financial, Economy
- Size: 112,293 KB
- Dataset: Version: 1.0
- Last Updated: 01/01/2024
## Dataset Sources
- Repository: URL
## Uses
Sentiment Analysis Research: Ideal for exploring sentiment nuances in Indian financial news.
NLP Projects: Enhance NLP models with diverse financial text for improved understanding.
Algorithmic Trading Strategies: Study correlations between sentiment shifts and market movements.
News Aggregation: Generate concise summaries with sentiment insights for financial news.
Educational Resource: Hands-on examples for teaching sentiment analysis and financial text processing.
Ethical AI Exploration: Analyze biases in sentiment analysis models for ethical AI research.
Model Benchmarking: Evaluate and benchmark sentiment analysis models for financial text.
Note: Use cautiously; do not rely solely on model predictions for financial decision-making.
## Dataset Creation
- Format: String
- Columns:
URL: URL of the news article
Content: Scrapped content of the news article
Summary: Summarized version using T5-base
Sentiment Analysis: Sentiment labels (Positive, Negative, Neutral) gathered using the GPT add-on
## Data Collection
Source Selection: Aggregation of Indian financial news articles from reputable sources covering a range of topics.
URL Scrapping: Extraction of URLs for each article to maintain a connection between the dataset and the original content.
Content Scrapping: Extraction of article content for analysis and modeling purposes.
Summarization: Utilization of the T5-base model from Hugging Face for content summarization.
Sentiment Annotation: Manual sentiment labeling using the GPT add-on for Google Sheets to categorize each article as Positive, Negative, or Neutral.
## Data Processing:
Cleaning and Tokenization: Standard preprocessing techniques were applied to clean and tokenize the content, ensuring uniformity and consistency.
Format Standardization: Conversion of data into a structured format with columns: URL, Content, Summary, and Sentiment Analysis.
Dataset Splitting: Given the subjective nature of sentiments, the dataset was not split into training, validation, and testing sets. Users are encouraged to customize splits based on their specific use cases.
## Tools and Libraries:
Beautiful Soup: Used for web scraping to extract content from HTML.
Hugging Face Transformers: Employed for summarization using the T5-base model.
GPT Add-on for Google Sheets: Facilitated manual sentiment annotation.
Pandas: Utilized for data manipulation and structuring.
## Dataset Card Authors
Khushi Dave, Data Scientist | [
"# Dataset Card for Dataset Name\n\n\n\nThe FinancialNewsSentiment_26000 dataset comprises 26,000 rows of financial news articles related to the Indian market. It features four columns: URL, Content (scrapped content), Summary (generated using the T5-base model), and Sentiment Analysis (gathered using the GPT add-on for Google Sheets). The dataset is designed for sentiment analysis tasks, providing a comprehensive view of sentiments expressed in financial news.",
"## Dataset Description\n\n\n\n\n\n- Curated by: Khushi Dave\n- Language(s): English\n- Type: Text\n- Domain: Financial, Economy\n- Size: 112,293 KB\n- Dataset: Version: 1.0\n- Last Updated: 01/01/2024",
"## Dataset Sources \n\n\n\n- Repository: URL",
"## Uses\n\n\n\nSentiment Analysis Research: Ideal for exploring sentiment nuances in Indian financial news.\n\nNLP Projects: Enhance NLP models with diverse financial text for improved understanding.\n\nAlgorithmic Trading Strategies: Study correlations between sentiment shifts and market movements.\n\nNews Aggregation: Generate concise summaries with sentiment insights for financial news.\n\nEducational Resource: Hands-on examples for teaching sentiment analysis and financial text processing.\n\nEthical AI Exploration: Analyze biases in sentiment analysis models for ethical AI research.\n\nModel Benchmarking: Evaluate and benchmark sentiment analysis models for financial text.\n\nNote: Use cautiously; do not rely solely on model predictions for financial decision-making.",
"## Dataset Creation\n\n- Format: String\n- Columns:\nURL: URL of the news article\n\nContent: Scrapped content of the news article\n\nSummary: Summarized version using T5-base\n\nSentiment Analysis: Sentiment labels (Positive, Negative, Neutral) gathered using the GPT add-on",
"## Data Collection\n\n\n\nSource Selection: Aggregation of Indian financial news articles from reputable sources covering a range of topics.\n\nURL Scrapping: Extraction of URLs for each article to maintain a connection between the dataset and the original content.\n\nContent Scrapping: Extraction of article content for analysis and modeling purposes.\n\nSummarization: Utilization of the T5-base model from Hugging Face for content summarization.\n\nSentiment Annotation: Manual sentiment labeling using the GPT add-on for Google Sheets to categorize each article as Positive, Negative, or Neutral.",
"## Data Processing:\n\nCleaning and Tokenization: Standard preprocessing techniques were applied to clean and tokenize the content, ensuring uniformity and consistency.\n\nFormat Standardization: Conversion of data into a structured format with columns: URL, Content, Summary, and Sentiment Analysis.\n\nDataset Splitting: Given the subjective nature of sentiments, the dataset was not split into training, validation, and testing sets. Users are encouraged to customize splits based on their specific use cases.",
"## Tools and Libraries:\n\nBeautiful Soup: Used for web scraping to extract content from HTML.\nHugging Face Transformers: Employed for summarization using the T5-base model.\nGPT Add-on for Google Sheets: Facilitated manual sentiment annotation.\nPandas: Utilized for data manipulation and structuring.",
"## Dataset Card Authors\n\nKhushi Dave, Data Scientist"
] | [
"TAGS\n#task_categories-summarization #task_categories-text-classification #size_categories-10K<n<100K #language-English #finance #Financial News #Sentiment Analysis #Stock Market #Text Summarization #Indian Finance #BERT #FinBERT #NLP (Natural Language Processing) #Hugging Face Dataset #T5-base #GPT (Google Sheets Add-on) #Data Annotation #region-us \n",
"# Dataset Card for Dataset Name\n\n\n\nThe FinancialNewsSentiment_26000 dataset comprises 26,000 rows of financial news articles related to the Indian market. It features four columns: URL, Content (scrapped content), Summary (generated using the T5-base model), and Sentiment Analysis (gathered using the GPT add-on for Google Sheets). The dataset is designed for sentiment analysis tasks, providing a comprehensive view of sentiments expressed in financial news.",
"## Dataset Description\n\n\n\n\n\n- Curated by: Khushi Dave\n- Language(s): English\n- Type: Text\n- Domain: Financial, Economy\n- Size: 112,293 KB\n- Dataset: Version: 1.0\n- Last Updated: 01/01/2024",
"## Dataset Sources \n\n\n\n- Repository: URL",
"## Uses\n\n\n\nSentiment Analysis Research: Ideal for exploring sentiment nuances in Indian financial news.\n\nNLP Projects: Enhance NLP models with diverse financial text for improved understanding.\n\nAlgorithmic Trading Strategies: Study correlations between sentiment shifts and market movements.\n\nNews Aggregation: Generate concise summaries with sentiment insights for financial news.\n\nEducational Resource: Hands-on examples for teaching sentiment analysis and financial text processing.\n\nEthical AI Exploration: Analyze biases in sentiment analysis models for ethical AI research.\n\nModel Benchmarking: Evaluate and benchmark sentiment analysis models for financial text.\n\nNote: Use cautiously; do not rely solely on model predictions for financial decision-making.",
"## Dataset Creation\n\n- Format: String\n- Columns:\nURL: URL of the news article\n\nContent: Scrapped content of the news article\n\nSummary: Summarized version using T5-base\n\nSentiment Analysis: Sentiment labels (Positive, Negative, Neutral) gathered using the GPT add-on",
"## Data Collection\n\n\n\nSource Selection: Aggregation of Indian financial news articles from reputable sources covering a range of topics.\n\nURL Scrapping: Extraction of URLs for each article to maintain a connection between the dataset and the original content.\n\nContent Scrapping: Extraction of article content for analysis and modeling purposes.\n\nSummarization: Utilization of the T5-base model from Hugging Face for content summarization.\n\nSentiment Annotation: Manual sentiment labeling using the GPT add-on for Google Sheets to categorize each article as Positive, Negative, or Neutral.",
"## Data Processing:\n\nCleaning and Tokenization: Standard preprocessing techniques were applied to clean and tokenize the content, ensuring uniformity and consistency.\n\nFormat Standardization: Conversion of data into a structured format with columns: URL, Content, Summary, and Sentiment Analysis.\n\nDataset Splitting: Given the subjective nature of sentiments, the dataset was not split into training, validation, and testing sets. Users are encouraged to customize splits based on their specific use cases.",
"## Tools and Libraries:\n\nBeautiful Soup: Used for web scraping to extract content from HTML.\nHugging Face Transformers: Employed for summarization using the T5-base model.\nGPT Add-on for Google Sheets: Facilitated manual sentiment annotation.\nPandas: Utilized for data manipulation and structuring.",
"## Dataset Card Authors\n\nKhushi Dave, Data Scientist"
] | [
111,
109,
52,
11,
166,
71,
127,
117,
74,
14
] | [
"passage: TAGS\n#task_categories-summarization #task_categories-text-classification #size_categories-10K<n<100K #language-English #finance #Financial News #Sentiment Analysis #Stock Market #Text Summarization #Indian Finance #BERT #FinBERT #NLP (Natural Language Processing) #Hugging Face Dataset #T5-base #GPT (Google Sheets Add-on) #Data Annotation #region-us \n# Dataset Card for Dataset Name\n\n\n\nThe FinancialNewsSentiment_26000 dataset comprises 26,000 rows of financial news articles related to the Indian market. It features four columns: URL, Content (scrapped content), Summary (generated using the T5-base model), and Sentiment Analysis (gathered using the GPT add-on for Google Sheets). The dataset is designed for sentiment analysis tasks, providing a comprehensive view of sentiments expressed in financial news.## Dataset Description\n\n\n\n\n\n- Curated by: Khushi Dave\n- Language(s): English\n- Type: Text\n- Domain: Financial, Economy\n- Size: 112,293 KB\n- Dataset: Version: 1.0\n- Last Updated: 01/01/2024## Dataset Sources \n\n\n\n- Repository: URL## Uses\n\n\n\nSentiment Analysis Research: Ideal for exploring sentiment nuances in Indian financial news.\n\nNLP Projects: Enhance NLP models with diverse financial text for improved understanding.\n\nAlgorithmic Trading Strategies: Study correlations between sentiment shifts and market movements.\n\nNews Aggregation: Generate concise summaries with sentiment insights for financial news.\n\nEducational Resource: Hands-on examples for teaching sentiment analysis and financial text processing.\n\nEthical AI Exploration: Analyze biases in sentiment analysis models for ethical AI research.\n\nModel Benchmarking: Evaluate and benchmark sentiment analysis models for financial text.\n\nNote: Use cautiously; do not rely solely on model predictions for financial decision-making."
] |
30cc151b5f9aa360a43c287d7511e741c1328685 | # TL;DR SFT Dataset for OpenAI's [Summarize from Feedback](https://openai.com/blog/summarization/) task
The dataset is directly taken from https://github.com/openai/summarize-from-feedback/tree/700967448d10004279f138666442bf1497d0e705#reddit-tldr-dataset
These columns are taken directly from the aforementioned dataset:
* **id**: unique identifier for the post
* **subreddit**: subreddit the post was taken from
* **title**: title of the post
* **post**: body of the post
* **summary**: summary of the post
* **reference_response**: reference response for the post
These columns are added by this preprocessing script:
* **query**: length-limited query for summarization: OAI pre-processes the main text (title + subreddit + post), ensuring it has only 512 tokens; if the main text is too long, then it tries to truncate at the last `
`. If it's too short it pads the main text ([summarize_from_feedback/tasks.py#L98-L165](https://github.com/openai/summarize-from-feedback/blob/700967448d10004279f138666442bf1497d0e705/summarize_from_feedback/tasks.py#L98-L165)). Padding is either space or `[PAD]` token (see Args below).
* **query_token**: tokenized version of `query`
* **reference_response_token**: tokenized version of `reference_response`
* **reference_response_token_len**: length of `reference_response_token`
* **query_reference_response**: concatenation of `query.strip()` and `reference_response`
* **query_reference_response_token**: tokenized version of `query_reference_response`, up to `max_sft_query_response_length` tokens
* **query_reference_response_token_len**: length of `query_reference_response_token`
# Args
```python
{'base_model': 'EleutherAI/pythia-1b-deduped',
'check_length_correctness': False,
'cnndm_params': TaskQueryHParams(length=1919,
format_str='Article:\n{article}\n\nTL;DR:\n',
truncate_field='article',
truncate_text='\n',
padding=[50277],
pad_side='left',
max_sft_response_length=None,
max_sft_query_response_length=None,
max_rm_response_length=155,
max_rm_query_response_length=2021),
'hf_entity': 'cleanrl',
'push_to_hub': True,
'tldr_params': TaskQueryHParams(length=512,
format_str='SUBREDDIT: r/{subreddit}\n'
'\n'
'TITLE: {title}\n'
'\n'
'POST: {post}\n'
'\n'
'TL;DR:',
truncate_field='post',
truncate_text='\n',
padding=[50277],
pad_side='left',
max_sft_response_length=53,
max_sft_query_response_length=562,
max_rm_response_length=169,
max_rm_query_response_length=638)}
```
| cleanrl/summarize_from_feedback_tldr_3_filtered_oai_preprocessing_1704563162 | [
"region:us"
] | 2024-01-06T17:47:13+00:00 | {"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "subreddit", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "post", "dtype": "string"}, {"name": "summary", "dtype": "string"}, {"name": "query_token", "sequence": "int64"}, {"name": "query", "dtype": "string"}, {"name": "reference_response", "dtype": "string"}, {"name": "reference_response_token", "sequence": "int64"}, {"name": "reference_response_token_len", "dtype": "int64"}, {"name": "query_reference_response", "dtype": "string"}, {"name": "query_reference_response_token", "sequence": "int64"}, {"name": "query_reference_response_token_len", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1600440249, "num_examples": 116722}, {"name": "validation", "num_bytes": 88425771, "num_examples": 6447}, {"name": "test", "num_bytes": 89922466, "num_examples": 6553}], "download_size": 551824607, "dataset_size": 1778788486}} | 2024-01-06T17:47:32+00:00 | [] | [] | TAGS
#region-us
| # TL;DR SFT Dataset for OpenAI's Summarize from Feedback task
The dataset is directly taken from URL
These columns are taken directly from the aforementioned dataset:
* id: unique identifier for the post
* subreddit: subreddit the post was taken from
* title: title of the post
* post: body of the post
* summary: summary of the post
* reference_response: reference response for the post
These columns are added by this preprocessing script:
* query: length-limited query for summarization: OAI pre-processes the main text (title + subreddit + post), ensuring it has only 512 tokens; if the main text is too long, then it tries to truncate at the last '
'. If it's too short it pads the main text (summarize_from_feedback/URL#L98-L165). Padding is either space or '[PAD]' token (see Args below).
* query_token: tokenized version of 'query'
* reference_response_token: tokenized version of 'reference_response'
* reference_response_token_len: length of 'reference_response_token'
* query_reference_response: concatenation of 'URL()' and 'reference_response'
* query_reference_response_token: tokenized version of 'query_reference_response', up to 'max_sft_query_response_length' tokens
* query_reference_response_token_len: length of 'query_reference_response_token'
# Args
| [
"# TL;DR SFT Dataset for OpenAI's Summarize from Feedback task\n\nThe dataset is directly taken from URL\n\nThese columns are taken directly from the aforementioned dataset:\n\n* id: unique identifier for the post\n* subreddit: subreddit the post was taken from\n* title: title of the post\n* post: body of the post\n* summary: summary of the post\n* reference_response: reference response for the post\n\nThese columns are added by this preprocessing script:\n* query: length-limited query for summarization: OAI pre-processes the main text (title + subreddit + post), ensuring it has only 512 tokens; if the main text is too long, then it tries to truncate at the last '\n'. If it's too short it pads the main text (summarize_from_feedback/URL#L98-L165). Padding is either space or '[PAD]' token (see Args below).\n* query_token: tokenized version of 'query'\n* reference_response_token: tokenized version of 'reference_response'\n* reference_response_token_len: length of 'reference_response_token'\n* query_reference_response: concatenation of 'URL()' and 'reference_response'\n* query_reference_response_token: tokenized version of 'query_reference_response', up to 'max_sft_query_response_length' tokens\n* query_reference_response_token_len: length of 'query_reference_response_token'",
"# Args"
] | [
"TAGS\n#region-us \n",
"# TL;DR SFT Dataset for OpenAI's Summarize from Feedback task\n\nThe dataset is directly taken from URL\n\nThese columns are taken directly from the aforementioned dataset:\n\n* id: unique identifier for the post\n* subreddit: subreddit the post was taken from\n* title: title of the post\n* post: body of the post\n* summary: summary of the post\n* reference_response: reference response for the post\n\nThese columns are added by this preprocessing script:\n* query: length-limited query for summarization: OAI pre-processes the main text (title + subreddit + post), ensuring it has only 512 tokens; if the main text is too long, then it tries to truncate at the last '\n'. If it's too short it pads the main text (summarize_from_feedback/URL#L98-L165). Padding is either space or '[PAD]' token (see Args below).\n* query_token: tokenized version of 'query'\n* reference_response_token: tokenized version of 'reference_response'\n* reference_response_token_len: length of 'reference_response_token'\n* query_reference_response: concatenation of 'URL()' and 'reference_response'\n* query_reference_response_token: tokenized version of 'query_reference_response', up to 'max_sft_query_response_length' tokens\n* query_reference_response_token_len: length of 'query_reference_response_token'",
"# Args"
] | [
6,
384,
3
] | [
"passage: TAGS\n#region-us \n# TL;DR SFT Dataset for OpenAI's Summarize from Feedback task\n\nThe dataset is directly taken from URL\n\nThese columns are taken directly from the aforementioned dataset:\n\n* id: unique identifier for the post\n* subreddit: subreddit the post was taken from\n* title: title of the post\n* post: body of the post\n* summary: summary of the post\n* reference_response: reference response for the post\n\nThese columns are added by this preprocessing script:\n* query: length-limited query for summarization: OAI pre-processes the main text (title + subreddit + post), ensuring it has only 512 tokens; if the main text is too long, then it tries to truncate at the last '\n'. If it's too short it pads the main text (summarize_from_feedback/URL#L98-L165). Padding is either space or '[PAD]' token (see Args below).\n* query_token: tokenized version of 'query'\n* reference_response_token: tokenized version of 'reference_response'\n* reference_response_token_len: length of 'reference_response_token'\n* query_reference_response: concatenation of 'URL()' and 'reference_response'\n* query_reference_response_token: tokenized version of 'query_reference_response', up to 'max_sft_query_response_length' tokens\n* query_reference_response_token_len: length of 'query_reference_response_token'# Args"
] |
2dad8379b6ae98eae174c3bc3ab8c105533ecc27 | # Dataset Card for "summarize_from_feedback_oai_preprocessing_1704563162"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | cleanrl/summarize_from_feedback_oai_preprocessing_1704563162 | [
"region:us"
] | 2024-01-06T17:48:52+00:00 | {"dataset_info": {"features": [{"name": "info", "struct": [{"name": "id", "dtype": "string"}, {"name": "post", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "subreddit", "dtype": "string"}, {"name": "site", "dtype": "string"}, {"name": "article", "dtype": "string"}]}, {"name": "summaries", "list": [{"name": "text", "dtype": "string"}, {"name": "policy", "dtype": "string"}, {"name": "note", "dtype": "string"}]}, {"name": "choice", "dtype": "int32"}, {"name": "worker", "dtype": "string"}, {"name": "batch", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "extra", "struct": [{"name": "confidence", "dtype": "int32"}]}, {"name": "query_token", "sequence": "int64"}, {"name": "query", "dtype": "string"}, {"name": "response0", "dtype": "string"}, {"name": "response0_token", "sequence": "int64"}, {"name": "response0_token_len", "dtype": "int64"}, {"name": "response1", "dtype": "string"}, {"name": "response1_token", "sequence": "int64"}, {"name": "response1_token_len", "dtype": "int64"}, {"name": "response0_policy", "dtype": "string"}, {"name": "response1_policy", "dtype": "string"}, {"name": "policies", "dtype": "string"}, {"name": "query_response0", "dtype": "string"}, {"name": "query_response0_token", "sequence": "int64"}, {"name": "query_response0_token_len", "dtype": "int64"}, {"name": "query_response1", "dtype": "string"}, {"name": "query_response1_token", "sequence": "int64"}, {"name": "query_response1_token_len", "dtype": "int64"}, {"name": "query_token_len", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 2211307331, "num_examples": 92858}, {"name": "validation", "num_bytes": 2003186127, "num_examples": 83802}, {"name": "validation_cnndm", "num_bytes": 151483055, "num_examples": 2284}], "download_size": 278269886, "dataset_size": 4365976513}} | 2024-01-06T17:49:32+00:00 | [] | [] | TAGS
#region-us
| # Dataset Card for "summarize_from_feedback_oai_preprocessing_1704563162"
More Information needed | [
"# Dataset Card for \"summarize_from_feedback_oai_preprocessing_1704563162\"\n\nMore Information needed"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for \"summarize_from_feedback_oai_preprocessing_1704563162\"\n\nMore Information needed"
] | [
6,
30
] | [
"passage: TAGS\n#region-us \n# Dataset Card for \"summarize_from_feedback_oai_preprocessing_1704563162\"\n\nMore Information needed"
] |
49d76bb81c69f08174fba2652e007177dba2bda3 |
# Dataset of Hougetsu Shimamura
This is the dataset of Hougetsu Shimamura, containing 550 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
| Name | Images | Download | Description |
|:----------------|---------:|:----------------------------------------|:-----------------------------------------------------------------------------------------|
| raw | 550 | [Download](dataset-raw.zip) | Raw data with meta information. |
| raw-stage3 | 1263 | [Download](dataset-raw-stage3.zip) | 3-stage cropped raw data with meta information. |
| raw-stage3-eyes | 1370 | [Download](dataset-raw-stage3-eyes.zip) | 3-stage cropped (with eye-focus) raw data with meta information. |
| 384x512 | 550 | [Download](dataset-384x512.zip) | 384x512 aligned dataset. |
| 512x704 | 550 | [Download](dataset-512x704.zip) | 512x704 aligned dataset. |
| 640x880 | 550 | [Download](dataset-640x880.zip) | 640x880 aligned dataset. |
| stage3-640 | 1263 | [Download](dataset-stage3-640.zip) | 3-stage cropped dataset with the shorter side not exceeding 640 pixels. |
| stage3-800 | 1263 | [Download](dataset-stage3-800.zip) | 3-stage cropped dataset with the shorter side not exceeding 800 pixels. |
| stage3-p512-640 | 1087 | [Download](dataset-stage3-p512-640.zip) | 3-stage cropped dataset with the area not less than 512x512 pixels. |
| stage3-eyes-640 | 1370 | [Download](dataset-stage3-eyes-640.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 640 pixels. |
| stage3-eyes-800 | 1370 | [Download](dataset-stage3-eyes-800.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 800 pixels. |
| CyberHarem/hougetsu_shimamura_adachitoshimamura | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-06T18:19:59+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-06T18:21:54+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of Hougetsu Shimamura
=============================
This is the dataset of Hougetsu Shimamura, containing 550 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
| [] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] | [
44
] | [
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] |
56a9f87eae1ad962e0f36e5e325f21d311058cfd |
# Dataset of Yashiro Chikama
This is the dataset of Yashiro Chikama, containing 78 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
| Name | Images | Download | Description |
|:----------------|---------:|:----------------------------------------|:-----------------------------------------------------------------------------------------|
| raw | 78 | [Download](dataset-raw.zip) | Raw data with meta information. |
| raw-stage3 | 187 | [Download](dataset-raw-stage3.zip) | 3-stage cropped raw data with meta information. |
| raw-stage3-eyes | 201 | [Download](dataset-raw-stage3-eyes.zip) | 3-stage cropped (with eye-focus) raw data with meta information. |
| 384x512 | 78 | [Download](dataset-384x512.zip) | 384x512 aligned dataset. |
| 512x704 | 78 | [Download](dataset-512x704.zip) | 512x704 aligned dataset. |
| 640x880 | 78 | [Download](dataset-640x880.zip) | 640x880 aligned dataset. |
| stage3-640 | 187 | [Download](dataset-stage3-640.zip) | 3-stage cropped dataset with the shorter side not exceeding 640 pixels. |
| stage3-800 | 187 | [Download](dataset-stage3-800.zip) | 3-stage cropped dataset with the shorter side not exceeding 800 pixels. |
| stage3-p512-640 | 160 | [Download](dataset-stage3-p512-640.zip) | 3-stage cropped dataset with the area not less than 512x512 pixels. |
| stage3-eyes-640 | 201 | [Download](dataset-stage3-eyes-640.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 640 pixels. |
| stage3-eyes-800 | 201 | [Download](dataset-stage3-eyes-800.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 800 pixels. |
| CyberHarem/yashiro_chikama_adachitoshimamura | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-06T18:28:22+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-06T18:28:43+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of Yashiro Chikama
==========================
This is the dataset of Yashiro Chikama, containing 78 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
| [] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] | [
44
] | [
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] |
7c4d93dabe7e6029024ecab105b7452d3884eea0 |
# Dataset of Akira Hino
This is the dataset of Akira Hino, containing 93 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
| Name | Images | Download | Description |
|:----------------|---------:|:----------------------------------------|:-----------------------------------------------------------------------------------------|
| raw | 93 | [Download](dataset-raw.zip) | Raw data with meta information. |
| raw-stage3 | 210 | [Download](dataset-raw-stage3.zip) | 3-stage cropped raw data with meta information. |
| raw-stage3-eyes | 225 | [Download](dataset-raw-stage3-eyes.zip) | 3-stage cropped (with eye-focus) raw data with meta information. |
| 384x512 | 93 | [Download](dataset-384x512.zip) | 384x512 aligned dataset. |
| 512x704 | 93 | [Download](dataset-512x704.zip) | 512x704 aligned dataset. |
| 640x880 | 93 | [Download](dataset-640x880.zip) | 640x880 aligned dataset. |
| stage3-640 | 210 | [Download](dataset-stage3-640.zip) | 3-stage cropped dataset with the shorter side not exceeding 640 pixels. |
| stage3-800 | 210 | [Download](dataset-stage3-800.zip) | 3-stage cropped dataset with the shorter side not exceeding 800 pixels. |
| stage3-p512-640 | 177 | [Download](dataset-stage3-p512-640.zip) | 3-stage cropped dataset with the area not less than 512x512 pixels. |
| stage3-eyes-640 | 225 | [Download](dataset-stage3-eyes-640.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 640 pixels. |
| stage3-eyes-800 | 225 | [Download](dataset-stage3-eyes-800.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 800 pixels. |
| CyberHarem/akira_hino_adachitoshimamura | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-06T18:35:02+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-06T18:35:20+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of Akira Hino
=====================
This is the dataset of Akira Hino, containing 93 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
| [] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] | [
44
] | [
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] |
d2b94571ee1865465dc7b3ef77f5a5f890cb3e30 |
# Dataset of Taeko Nagafuji
This is the dataset of Taeko Nagafuji, containing 63 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)).
| Name | Images | Download | Description |
|:----------------|---------:|:----------------------------------------|:-----------------------------------------------------------------------------------------|
| raw | 63 | [Download](dataset-raw.zip) | Raw data with meta information. |
| raw-stage3 | 150 | [Download](dataset-raw-stage3.zip) | 3-stage cropped raw data with meta information. |
| raw-stage3-eyes | 164 | [Download](dataset-raw-stage3-eyes.zip) | 3-stage cropped (with eye-focus) raw data with meta information. |
| 384x512 | 63 | [Download](dataset-384x512.zip) | 384x512 aligned dataset. |
| 512x704 | 63 | [Download](dataset-512x704.zip) | 512x704 aligned dataset. |
| 640x880 | 63 | [Download](dataset-640x880.zip) | 640x880 aligned dataset. |
| stage3-640 | 150 | [Download](dataset-stage3-640.zip) | 3-stage cropped dataset with the shorter side not exceeding 640 pixels. |
| stage3-800 | 150 | [Download](dataset-stage3-800.zip) | 3-stage cropped dataset with the shorter side not exceeding 800 pixels. |
| stage3-p512-640 | 121 | [Download](dataset-stage3-p512-640.zip) | 3-stage cropped dataset with the area not less than 512x512 pixels. |
| stage3-eyes-640 | 164 | [Download](dataset-stage3-eyes-640.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 640 pixels. |
| stage3-eyes-800 | 164 | [Download](dataset-stage3-eyes-800.zip) | 3-stage cropped (with eye-focus) dataset with the shorter side not exceeding 800 pixels. |
| CyberHarem/taeko_nagafuji_adachitoshimamura | [
"task_categories:text-to-image",
"size_categories:n<1K",
"license:mit",
"art",
"not-for-all-audiences",
"region:us"
] | 2024-01-06T18:39:06+00:00 | {"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]} | 2024-01-06T18:39:17+00:00 | [] | [] | TAGS
#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us
| Dataset of Taeko Nagafuji
=========================
This is the dataset of Taeko Nagafuji, containing 63 images and their tags.
Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by DeepGHS Team(huggingface organization).
| [] | [
"TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] | [
44
] | [
"passage: TAGS\n#task_categories-text-to-image #size_categories-n<1K #license-mit #art #not-for-all-audiences #region-us \n"
] |
64a86cec14f17e94b87c2120e9fb68a1788627cc | # Celebrity 1000
Top 1000 celebrities. 18,184 images. 256x256. Square cropped to face. | tonyassi/celebrity-1000 | [
"region:us"
] | 2024-01-06T18:53:55+00:00 | {"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "Aaron Eckhart", "1": "Aaron Paul", "2": "Aaron Rodgers", "3": "Aaron Taylor-Johnson", "4": "Abbi Jacobson", "5": "Abhishek Bachchan", "6": "Abigail Breslin", "7": "Abigail Spencer", "8": "Adam Brody", "9": "Adam Devine", "10": "Adam Driver", "11": "Adam Lambert", "12": "Adam Levine", "13": "Adam Sandler", "14": "Adam Scott", "15": "Adele", "16": "Adrian Grenier", "17": "Ad\u00e8le Exarchopoulos", "18": "Aidan Gillen", "19": "Aidan Turner", "20": "Aishwarya Rai", "21": "Aja Naomi King", "22": "Alden Ehrenreich", "23": "Aldis Hodge", "24": "Alec Baldwin", "25": "Alex Morgan", "26": "Alex Pettyfer", "27": "Alex Rodriguez", "28": "Alexander Skarsg\u00e5rd", "29": "Alexandra Daddario", "30": "Alfre Woodard", "31": "Alia Shawkat", "32": "Alice Braga", "33": "Alice Eve", "34": "Alicia Keys", "35": "Alicia Vikander", "36": "Alison Brie", "37": "Allison Janney", "38": "Allison Williams", "39": "Alyson Hannigan", "40": "Amanda Peet", "41": "Amanda Seyfried", "42": "Amandla Stenberg", "43": "Amber Heard", "44": "America Ferrera", "45": "Amy Adams", "46": "Amy Poehler", "47": "Amy Schumer", "48": "Ana de Armas", "49": "Andie MacDowell", "50": "Andrew Garfield", "51": "Andrew Lincoln", "52": "Andrew Scott", "53": "Andy Garcia", "54": "Andy Samberg", "55": "Andy Serkis", "56": "Angela Bassett", "57": "Angelina Jolie", "58": "Anna Camp", "59": "Anna Faris", "60": "Anna Kendrick", "61": "Anna Paquin", "62": "AnnaSophia Robb", "63": "Annabelle Wallis", "64": "Anne Hathaway", "65": "Anne Marie", "66": "Anne-Marie", "67": "Ansel Elgort", "68": "Anson Mount", "69": "Anthony Hopkins", "70": "Anthony Joshua", "71": "Anthony Mackie", "72": "Antonio Banderas", "73": "Anya Taylor-Joy", "74": "Ariana Grande", "75": "Armie Hammer", "76": "Ashley Judd", "77": "Ashton Kutcher", "78": "Aubrey Plaza", "79": "Auli'i Cravalho", "80": "Awkwafina", "81": "Barack Obama", "82": "Bella Hadid", "83": "Bella Thorne", "84": "Ben Barnes", "85": "Ben Mendelsohn", "86": "Ben Stiller", "87": "Ben Whishaw", "88": "Benedict Cumberbatch", "89": "Benedict Wong", "90": "Benicio del Toro", "91": "Bill Gates", "92": "Bill Hader", "93": "Bill Murray", "94": "Bill Pullman", "95": "Bill Skarsg\u00e5rd", "96": "Billie Eilish", "97": "Billie Lourd", "98": "Billy Crudup", "99": "Billy Porter", "100": "Blake Lively", "101": "Bob Odenkirk", "102": "Bonnie Wright", "103": "Boyd Holbrook", "104": "Brad Pitt", "105": "Bradley Cooper", "106": "Brendan Fraser", "107": "Brian Cox", "108": "Brie Larson", "109": "Brittany Snow", "110": "Bryan Cranston", "111": "Bryce Dallas Howard", "112": "Busy Philipps", "113": "Caitriona Balfe", "114": "Cameron Diaz", "115": "Camila Cabello", "116": "Camila Mendes", "117": "Cardi B", "118": "Carey Mulligan", "119": "Carla Gugino", "120": "Carrie Underwood", "121": "Casey Affleck", "122": "Cate Blanchett", "123": "Catherine Keener", "124": "Catherine Zeta-Jones", "125": "Celine Dion", "126": "Chace Crawford", "127": "Chadwick Boseman", "128": "Channing Tatum", "129": "Charlie Cox", "130": "Charlie Day", "131": "Charlie Hunnam", "132": "Charlie Plummer", "133": "Charlize Theron", "134": "Chiara Ferragni", "135": "Chiwetel Ejiofor", "136": "Chloe Bennet", "137": "Chloe Grace Moretz", "138": "Chloe Sevigny", "139": "Chlo\u00eb Grace Moretz", "140": "Chlo\u00eb Sevigny", "141": "Chris Cooper", "142": "Chris Evans", "143": "Chris Hemsworth", "144": "Chris Martin", "145": "Chris Messina", "146": "Chris Noth", "147": "Chris O'Dowd", "148": "Chris Pine", "149": "Chris Pratt", "150": "Chris Tucker", "151": "Chrissy Teigen", "152": "Christian Bale", "153": "Christian Slater", "154": "Christina Aguilera", "155": "Christina Applegate", "156": "Christina Hendricks", "157": "Christina Milian", "158": "Christina Ricci", "159": "Christine Baranski", "160": "Christoph Waltz", "161": "Christopher Plummer", "162": "Christopher Walken", "163": "Cillian Murphy", "164": "Claire Foy", "165": "Clive Owen", "166": "Clive Standen", "167": "Cobie Smulders", "168": "Colin Farrell", "169": "Colin Firth", "170": "Colin Hanks", "171": "Connie Britton", "172": "Conor McGregor", "173": "Constance Wu", "174": "Constance Zimmer", "175": "Courteney Cox", "176": "Cristiano Ronaldo", "177": "Daisy Ridley", "178": "Dak Prescott", "179": "Dakota Fanning", "180": "Dakota Johnson", "181": "Damian Lewis", "182": "Dan Stevens", "183": "Danai Gurira", "184": "Dane DeHaan", "185": "Daniel Craig", "186": "Daniel Dae Kim", "187": "Daniel Day-Lewis", "188": "Daniel Gillies", "189": "Daniel Kaluuya", "190": "Daniel Mays", "191": "Daniel Radcliffe", "192": "Danny DeVito", "193": "Darren Criss", "194": "Dave Bautista", "195": "Dave Franco", "196": "Dave Grohl", "197": "Daveed Diggs", "198": "David Attenborough", "199": "David Beckham", "200": "David Duchovny", "201": "David Harbour", "202": "David Oyelowo", "203": "David Schwimmer", "204": "David Tennant", "205": "David Thewlis", "206": "Dax Shepard", "207": "Debra Messing", "208": "Demi Lovato", "209": "Dennis Quaid", "210": "Denzel Washington", "211": "Dermot Mulroney", "212": "Dev Patel", "213": "Diane Keaton", "214": "Diane Kruger", "215": "Diane Lane", "216": "Diego Boneta", "217": "Diego Luna", "218": "Djimon Hounsou", "219": "Dolly Parton", "220": "Domhnall Gleeson", "221": "Dominic Cooper", "222": "Dominic Monaghan", "223": "Dominic West", "224": "Don Cheadle", "225": "Donald Glover", "226": "Donald Sutherland", "227": "Donald Trump", "228": "Dua Lipa", "229": "Dwayne \"The Rock\" Johnson", "230": "Dwayne Johnson", "231": "Dylan O'Brien", "232": "Ed Harris", "233": "Ed Helms", "234": "Ed Sheeran", "235": "Eddie Murphy", "236": "Eddie Redmayne", "237": "Edgar Ramirez", "238": "Edward Norton", "239": "Eiza Gonzalez", "240": "Eiza Gonz\u00e1lez", "241": "Elijah Wood", "242": "Elisabeth Moss", "243": "Elisha Cuthbert", "244": "Eliza Coupe", "245": "Elizabeth Banks", "246": "Elizabeth Debicki", "247": "Elizabeth Lail", "248": "Elizabeth McGovern", "249": "Elizabeth Moss", "250": "Elizabeth Olsen", "251": "Elle Fanning", "252": "Ellen DeGeneres", "253": "Ellen Page", "254": "Ellen Pompeo", "255": "Ellie Goulding", "256": "Elon Musk", "257": "Emile Hirsch", "258": "Emilia Clarke", "259": "Emilia Fox", "260": "Emily Beecham", "261": "Emily Blunt", "262": "Emily Browning", "263": "Emily Deschanel", "264": "Emily Hampshire", "265": "Emily Mortimer", "266": "Emily Ratajkowski", "267": "Emily VanCamp", "268": "Emily Watson", "269": "Emma Bunton", "270": "Emma Chamberlain", "271": "Emma Corrin", "272": "Emma Mackey", "273": "Emma Roberts", "274": "Emma Stone", "275": "Emma Thompson", "276": "Emma Watson", "277": "Emmanuelle Chriqui", "278": "Emmy Rossum", "279": "Eoin Macken", "280": "Eric Bana", "281": "Ethan Hawke", "282": "Eva Green", "283": "Eva Longoria", "284": "Eva Mendes", "285": "Evan Peters", "286": "Evan Rachel Wood", "287": "Evangeline Lilly", "288": "Ewan McGregor", "289": "Ezra Miller", "290": "Felicity Huffman", "291": "Felicity Jones", "292": "Finn Wolfhard", "293": "Florence Pugh", "294": "Florence Welch", "295": "Forest Whitaker", "296": "Freddie Highmore", "297": "Freddie Prinze Jr.", "298": "Freema Agyeman", "299": "Freida Pinto", "300": "Freya Allan", "301": "Gabrielle Union", "302": "Gael Garcia Bernal", "303": "Gael Garc\u00eda Bernal", "304": "Gal Gadot", "305": "Garrett Hedlund", "306": "Gary Oldman", "307": "Gemma Arterton", "308": "Gemma Chan", "309": "Gemma Whelan", "310": "George Clooney", "311": "George Lucas", "312": "Gerard Butler", "313": "Giancarlo Esposito", "314": "Giannis Antetokounmpo", "315": "Gigi Hadid", "316": "Gillian Anderson", "317": "Gillian Jacobs", "318": "Gina Carano", "319": "Gina Gershon", "320": "Gina Rodriguez", "321": "Ginnifer Goodwin", "322": "Gisele Bundchen", "323": "Glenn Close", "324": "Grace Kelly", "325": "Greg Kinnear", "326": "Greta Gerwig", "327": "Greta Scacchi", "328": "Greta Thunberg", "329": "Gugu Mbatha-Raw", "330": "Guy Ritchie", "331": "Gwen Stefani", "332": "Gwendoline Christie", "333": "Gwyneth Paltrow", "334": "Hafthor Bjornsson", "335": "Hailee Steinfeld", "336": "Hailey Bieber", "337": "Haley Joel Osment", "338": "Halle Berry", "339": "Hannah Simone", "340": "Harrison Ford", "341": "Harry Styles", "342": "Harvey Weinstein", "343": "Hayden Panettiere", "344": "Hayley Atwell", "345": "Helen Hunt", "346": "Helen Mirren", "347": "Helena Bonham Carter", "348": "Henry Cavill", "349": "Henry Golding", "350": "Hilary Swank", "351": "Himesh Patel", "352": "Hozier", "353": "Hugh Bonneville", "354": "Hugh Dancy", "355": "Hugh Grant", "356": "Hugh Jackman", "357": "Hugh Laurie", "358": "Ian Somerhalder", "359": "Idris Elba", "360": "Imelda Staunton", "361": "Imogen Poots", "362": "Ioan Gruffudd", "363": "Isabella Rossellini", "364": "Isabelle Huppert", "365": "Isla Fisher", "366": "Issa Rae", "367": "Iwan Rheon", "368": "J.K. Rowling", "369": "J.K. Simmons", "370": "Jack Black", "371": "Jack Reynor", "372": "Jack Whitehall", "373": "Jackie Chan", "374": "Jada Pinkett Smith", "375": "Jaden Smith", "376": "Jaimie Alexander", "377": "Jake Gyllenhaal", "378": "Jake Johnson", "379": "Jake T. Austin", "380": "James Cameron", "381": "James Corden", "382": "James Franco", "383": "James Marsden", "384": "James McAvoy", "385": "James Norton", "386": "Jamie Bell", "387": "Jamie Chung", "388": "Jamie Dornan", "389": "Jamie Foxx", "390": "Jamie Lee Curtis", "391": "Jamie Oliver", "392": "Jane Fonda", "393": "Jane Krakowski", "394": "Jane Levy", "395": "Jane Lynch", "396": "Jane Seymour", "397": "Janelle Mon\u00e1e", "398": "January Jones", "399": "Jared Leto", "400": "Jason Bateman", "401": "Jason Clarke", "402": "Jason Derulo", "403": "Jason Isaacs", "404": "Jason Momoa", "405": "Jason Mraz", "406": "Jason Schwartzman", "407": "Jason Segel", "408": "Jason Statham", "409": "Jason Sudeikis", "410": "Javier Bardem", "411": "Jay Baruchel", "412": "Jay-Z", "413": "Jeff Bezos", "414": "Jeff Bridges", "415": "Jeff Daniels", "416": "Jeff Goldblum", "417": "Jeffrey Dean Morgan", "418": "Jeffrey Donovan", "419": "Jeffrey Wright", "420": "Jemima Kirke", "421": "Jenna Coleman", "422": "Jenna Fischer", "423": "Jenna Ortega", "424": "Jennifer Aniston", "425": "Jennifer Connelly", "426": "Jennifer Coolidge", "427": "Jennifer Esposito", "428": "Jennifer Garner", "429": "Jennifer Hudson", "430": "Jennifer Lawrence", "431": "Jennifer Lopez", "432": "Jennifer Love Hewitt", "433": "Jenny Slate", "434": "Jeremy Irons", "435": "Jeremy Renner", "436": "Jeremy Strong", "437": "Jerry Seinfeld", "438": "Jesse Eisenberg", "439": "Jesse Metcalfe", "440": "Jesse Plemons", "441": "Jesse Tyler Ferguson", "442": "Jesse Williams", "443": "Jessica Alba", "444": "Jessica Biel", "445": "Jessica Chastain", "446": "Jessica Lange", "447": "Jessie Buckley", "448": "Jim Carrey", "449": "Jim Parsons", "450": "Joan Collins", "451": "Joan Cusack", "452": "Joanne Froggatt", "453": "Joaquin Phoenix", "454": "Jodie Comer", "455": "Jodie Foster", "456": "Joe Jonas", "457": "Joe Keery", "458": "Joel Edgerton", "459": "Joel Kinnaman", "460": "Joel McHale", "461": "John Boyega", "462": "John C. Reilly", "463": "John Cena", "464": "John Cho", "465": "John Cleese", "466": "John Corbett", "467": "John David Washington", "468": "John Goodman", "469": "John Hawkes", "470": "John Krasinski", "471": "John Legend", "472": "John Leguizamo", "473": "John Lithgow", "474": "John Malkovich", "475": "John Mayer", "476": "John Mulaney", "477": "John Oliver", "478": "John Slattery", "479": "John Travolta", "480": "John Turturro", "481": "Johnny Depp", "482": "Johnny Knoxville", "483": "Jon Bernthal", "484": "Jon Favreau", "485": "Jon Hamm", "486": "Jonah Hill", "487": "Jonathan Groff", "488": "Jonathan Majors", "489": "Jonathan Pryce", "490": "Jonathan Rhys Meyers", "491": "Jordan Peele", "492": "Jordana Brewster", "493": "Joseph Fiennes", "494": "Joseph Gordon-Levitt", "495": "Josh Allen", "496": "Josh Brolin", "497": "Josh Gad", "498": "Josh Hartnett", "499": "Josh Hutcherson", "500": "Josh Radnor", "501": "Jude Law", "502": "Judy Dench", "503": "Judy Greer", "504": "Julia Garner", "505": "Julia Louis-Dreyfus", "506": "Julia Roberts", "507": "Julia Stiles", "508": "Julian Casablancas", "509": "Julian McMahon", "510": "Julianna Margulies", "511": "Julianne Hough", "512": "Julianne Moore", "513": "Julianne Nicholson", "514": "Juliette Binoche", "515": "Juliette Lewis", "516": "Juno Temple", "517": "Jurnee Smollett", "518": "Justin Bartha", "519": "Justin Bieber", "520": "Justin Hartley", "521": "Justin Herbert", "522": "Justin Long", "523": "Justin Theroux", "524": "Justin Timberlake", "525": "KJ Apa", "526": "Kaitlyn Dever", "527": "Kaley Cuoco", "528": "Kanye West", "529": "Karl Urban", "530": "Kat Dennings", "531": "Kate Beckinsale", "532": "Kate Bosworth", "533": "Kate Hudson", "534": "Kate Mara", "535": "Kate Middleton", "536": "Kate Upton", "537": "Kate Walsh", "538": "Kate Winslet", "539": "Katee Sackhoff", "540": "Katherine Heigl", "541": "Katherine Langford", "542": "Katherine Waterston", "543": "Kathryn Hahn", "544": "Katie Holmes", "545": "Katie McGrath", "546": "Katy Perry", "547": "Kaya Scodelario", "548": "Keanu Reeves", "549": "Keegan-Michael Key", "550": "Keira Knightley", "551": "Keke Palmer", "552": "Kelly Clarkson", "553": "Kelly Macdonald", "554": "Kelly Marie Tran", "555": "Kelly Reilly", "556": "Kelly Ripa", "557": "Kelvin Harrison Jr.", "558": "Keri Russell", "559": "Kerry Washington", "560": "Kevin Bacon", "561": "Kevin Costner", "562": "Kevin Hart", "563": "Kevin Spacey", "564": "Ki Hong Lee", "565": "Kiefer Sutherland", "566": "Kieran Culkin", "567": "Kiernan Shipka", "568": "Kim Dickens", "569": "Kim Kardashian", "570": "Kirsten Dunst", "571": "Kit Harington", "572": "Kourtney Kardashian", "573": "Kristen Bell", "574": "Kristen Stewart", "575": "Kristen Wiig", "576": "Kristin Davis", "577": "Krysten Ritter", "578": "Kyle Chandler", "579": "Kylie Jenner", "580": "Kylie Minogue", "581": "Lady Gaga", "582": "Lake Bell", "583": "Lakeith Stanfield", "584": "Lamar Jackson", "585": "Lana Del Rey", "586": "Laura Dern", "587": "Laura Harrier", "588": "Laura Linney", "589": "Laura Prepon", "590": "Laurence Fishburne", "591": "Laverne Cox", "592": "LeBron James", "593": "Lea Michele", "594": "Lea Seydoux", "595": "Lee Pace", "596": "Leighton Meester", "597": "Lena Headey", "598": "Leonardo Da Vinci", "599": "Leonardo DiCaprio", "600": "Leslie Mann", "601": "Leslie Odom Jr.", "602": "Lewis Hamilton", "603": "Liam Hemsworth", "604": "Liam Neeson", "605": "Lili Reinhart", "606": "Lily Aldridge", "607": "Lily Allen", "608": "Lily Collins", "609": "Lily James", "610": "Lily Rabe", "611": "Lily Tomlin", "612": "Lin-Manuel Miranda", "613": "Linda Cardellini", "614": "Lionel Messi", "615": "Lisa Bonet", "616": "Lisa Kudrow", "617": "Liv Tyler", "618": "Lizzo", "619": "Logan Lerman", "620": "Lorde", "621": "Lucy Boynton", "622": "Lucy Hale", "623": "Lucy Lawless", "624": "Lucy Liu", "625": "Luke Evans", "626": "Luke Perry", "627": "Luke Wilson", "628": "Lupita Nyong'o", "629": "L\u00e9a Seydoux", "630": "Mackenzie Davis", "631": "Madelaine Petsch", "632": "Mads Mikkelsen", "633": "Mae Whitman", "634": "Maggie Gyllenhaal", "635": "Maggie Q", "636": "Maggie Siff", "637": "Maggie Smith", "638": "Mahershala Ali", "639": "Mahira Khan", "640": "Maisie Richardson-Sellers", "641": "Maisie Williams", "642": "Mandy Moore", "643": "Mandy Patinkin", "644": "Marc Anthony", "645": "Margaret Qualley", "646": "Margot Robbie", "647": "Maria Sharapova", "648": "Marion Cotillard", "649": "Marisa Tomei", "650": "Mariska Hargitay", "651": "Mark Hamill", "652": "Mark Ruffalo", "653": "Mark Strong", "654": "Mark Wahlberg", "655": "Mark Zuckerberg", "656": "Marlon Brando", "657": "Martin Freeman", "658": "Martin Scorsese", "659": "Mary Elizabeth Winstead", "660": "Mary J. Blige", "661": "Mary Steenburgen", "662": "Mary-Louise Parker", "663": "Matt Bomer", "664": "Matt Damon", "665": "Matt LeBlanc", "666": "Matt Smith", "667": "Matthew Fox", "668": "Matthew Goode", "669": "Matthew Macfadyen", "670": "Matthew McConaughey", "671": "Matthew Perry", "672": "Matthew Rhys", "673": "Matthew Stafford", "674": "Max Minghella", "675": "Maya Angelou", "676": "Maya Hawke", "677": "Maya Rudolph", "678": "Megan Fox", "679": "Megan Rapinoe", "680": "Meghan Markle", "681": "Mel Gibson", "682": "Melanie Lynskey", "683": "Melissa Benoist", "684": "Melissa McCarthy", "685": "Melonie Diaz", "686": "Meryl Streep", "687": "Mia Wasikowska", "688": "Michael B. Jordan", "689": "Michael C. Hall", "690": "Michael Caine", "691": "Michael Cera", "692": "Michael Cudlitz", "693": "Michael Douglas", "694": "Michael Ealy", "695": "Michael Fassbender", "696": "Michael Jordan", "697": "Michael Keaton", "698": "Michael Pena", "699": "Michael Pe\u00f1a", "700": "Michael Phelps", "701": "Michael Shannon", "702": "Michael Sheen", "703": "Michael Stuhlbarg", "704": "Michelle Dockery", "705": "Michelle Monaghan", "706": "Michelle Obama", "707": "Michelle Pfeiffer", "708": "Michelle Rodriguez", "709": "Michelle Williams", "710": "Michelle Yeoh", "711": "Michiel Huisman", "712": "Mila Kunis", "713": "Miles Teller", "714": "Milla Jovovich", "715": "Millie Bobby Brown", "716": "Milo Ventimiglia", "717": "Mindy Kaling", "718": "Miranda Cosgrove", "719": "Miranda Kerr", "720": "Mireille Enos", "721": "Molly Ringwald", "722": "Morgan Freeman", "723": "M\u00e9lanie Laurent", "724": "Naomi Campbell", "725": "Naomi Harris", "726": "Naomi Scott", "727": "Naomi Watts", "728": "Naomie Harris", "729": "Nas", "730": "Natalie Dormer", "731": "Natalie Imbruglia", "732": "Natalie Morales", "733": "Natalie Portman", "734": "Nathalie Emmanuel", "735": "Nathalie Portman", "736": "Nathan Fillion", "737": "Naya Rivera", "738": "Neil Patrick Harris", "739": "Neil deGrasse Tyson", "740": "Neve Campbell", "741": "Neymar Jr.", "742": "Nicholas Braun", "743": "Nicholas Hoult", "744": "Nick Jonas", "745": "Nick Kroll", "746": "Nick Offerman", "747": "Nick Robinson", "748": "Nicole Kidman", "749": "Nikolaj Coster-Waldau", "750": "Nina Dobrev", "751": "Noah Centineo", "752": "Noomi Rapace", "753": "Norman Reedus", "754": "Novak Djokovic", "755": "Octavia Spencer", "756": "Odessa Young", "757": "Odette Annable", "758": "Olivia Colman", "759": "Olivia Cooke", "760": "Olivia Holt", "761": "Olivia Munn", "762": "Olivia Wilde", "763": "Oprah Winfrey", "764": "Orlando Bloom", "765": "Oscar Isaac", "766": "Owen Wilson", "767": "Pablo Picasso", "768": "Patrick Dempsey", "769": "Patrick Mahomes", "770": "Patrick Stewart", "771": "Patrick Wilson", "772": "Paul Bettany", "773": "Paul Dano", "774": "Paul Giamatti", "775": "Paul McCartney", "776": "Paul Rudd", "777": "Paul Wesley", "778": "Paula Patton", "779": "Pedro Almod\u00f3var", "780": "Pedro Pascal", "781": "Penelope Cruz", "782": "Pen\u00e9lope Cruz", "783": "Pete Davidson", "784": "Peter Dinklage", "785": "Phoebe Dynevor", "786": "Phoebe Waller-Bridge", "787": "Pierce Brosnan", "788": "Portia de Rossi", "789": "Priyanka Chopra", "790": "Quentin Tarantino", "791": "Rachel Bilson", "792": "Rachel Brosnahan", "793": "Rachel McAdams", "794": "Rachel Weisz", "795": "Rafe Spall", "796": "Rainn Wilson", "797": "Ralph Fiennes", "798": "Rami Malek", "799": "Rashida Jones", "800": "Ray Liotta", "801": "Ray Romano", "802": "Rebecca Ferguson", "803": "Rebecca Hall", "804": "Reese Witherspoon", "805": "Regina Hall", "806": "Regina King", "807": "Renee Zellweger", "808": "Ren\u00e9e Zellweger", "809": "Rhys Ifans", "810": "Ricardo Montalban", "811": "Richard Armitage", "812": "Richard Gere", "813": "Richard Jenkins", "814": "Richard Madden", "815": "Ricky Gervais", "816": "Ricky Martin", "817": "Rihanna", "818": "Riley Keough", "819": "Rita Ora", "820": "River Phoenix", "821": "Riz Ahmed", "822": "Rob Lowe", "823": "Robert Carlyle", "824": "Robert De Niro", "825": "Robert Downey Jr.", "826": "Robert Pattinson", "827": "Robert Sheehan", "828": "Robin Tunney", "829": "Robin Williams", "830": "Roger Federer", "831": "Rooney Mara", "832": "Rosamund Pike", "833": "Rosario Dawson", "834": "Rose Byrne", "835": "Rose Leslie", "836": "Roselyn Sanchez", "837": "Ruby Rose", "838": "Rupert Grint", "839": "Russell Brand", "840": "Russell Crowe", "841": "Russell Wilson", "842": "Ruth Bader Ginsburg", "843": "Ruth Wilson", "844": "Ryan Eggold", "845": "Ryan Gosling", "846": "Ryan Murphy", "847": "Ryan Phillippe", "848": "Ryan Reynolds", "849": "Ryan Seacrest", "850": "Salma Hayek", "851": "Sam Claflin", "852": "Sam Heughan", "853": "Sam Rockwell", "854": "Sam Smith", "855": "Samara Weaving", "856": "Samuel L. Jackson", "857": "Sandra Bullock", "858": "Sandra Oh", "859": "Saoirse Ronan", "860": "Sarah Gadon", "861": "Sarah Hyland", "862": "Sarah Jessica Parker", "863": "Sarah Michelle Gellar", "864": "Sarah Paulson", "865": "Sarah Silverman", "866": "Sarah Wayne Callies", "867": "Sasha Alexander", "868": "Scarlett Johansson", "869": "Scott Speedman", "870": "Sean Bean", "871": "Sebastian Stan", "872": "Selena Gomez", "873": "Selma Blair", "874": "Serena Williams", "875": "Seth MacFarlane", "876": "Seth Meyers", "877": "Seth Rogen", "878": "Shailene Woodley", "879": "Shakira", "880": "Shania Twain", "881": "Sharlto Copley", "882": "Shawn Mendes", "883": "Shia LaBeouf", "884": "Shiri Appleby", "885": "Shohreh Aghdashloo", "886": "Shonda Rhimes", "887": "Sienna Miller", "888": "Sigourney Weaver", "889": "Simon Baker", "890": "Simon Cowell", "891": "Simon Pegg", "892": "Simone Biles", "893": "Sofia Boutella", "894": "Sofia Vergara", "895": "Sophie Turner", "896": "Sophie Wessex", "897": "Stanley Tucci", "898": "Stephen Amell", "899": "Stephen Colbert", "900": "Stephen Curry", "901": "Stephen Dorff", "902": "Sterling K. Brown", "903": "Sterling Knight", "904": "Steve Carell", "905": "Steven Yeun", "906": "Susan Sarandon", "907": "Taika Waititi", "908": "Taraji P. Henson", "909": "Taron Egerton", "910": "Taylor Hill", "911": "Taylor Kitsch", "912": "Taylor Lautner", "913": "Taylor Schilling", "914": "Taylor Swift", "915": "Teresa Palmer", "916": "Terrence Howard", "917": "Tessa Thompson", "918": "Thandie Newton", "919": "The Weeknd", "920": "Theo James", "921": "Thomas Brodie-Sangster", "922": "Thomas Jane", "923": "Tiger Woods", "924": "Tilda Swinton", "925": "Tim Burton", "926": "Tim Cook", "927": "Timothee Chalamet", "928": "Timothy Olyphant", "929": "Timothy Spall", "930": "Timoth\u00e9e Chalamet", "931": "Tina Fey", "932": "Tobey Maguire", "933": "Toby Jones", "934": "Toby Kebbell", "935": "Toby Regbo", "936": "Tom Brady", "937": "Tom Brokaw", "938": "Tom Cavanagh", "939": "Tom Cruise", "940": "Tom Ellis", "941": "Tom Felton", "942": "Tom Hanks", "943": "Tom Hardy", "944": "Tom Hiddleston", "945": "Tom Holland", "946": "Tom Hollander", "947": "Tom Hopper", "948": "Tom Selleck", "949": "Toni Collette", "950": "Tony Hale", "951": "Topher Grace", "952": "Tracee Ellis Ross", "953": "Tyra Banks", "954": "Tyrese Gibson", "955": "Uma Thurman", "956": "Usain Bolt", "957": "Uzo Aduba", "958": "Vanessa Hudgens", "959": "Vanessa Kirby", "960": "Vera Farmiga", "961": "Victoria Pedretti", "962": "Viggo Mortensen", "963": "Vin Diesel", "964": "Vince Vaughn", "965": "Vincent Cassel", "966": "Vincent D'Onofrio", "967": "Vincent Kartheiser", "968": "Viola Davis", "969": "Walton Goggins", "970": "Wes Anderson", "971": "Wes Bentley", "972": "Whoopi Goldberg", "973": "Will Ferrell", "974": "Will Poulter", "975": "Willem Dafoe", "976": "William Jackson Harper", "977": "William Shatner", "978": "Winona Ryder", "979": "Woody Harrelson", "980": "Yara Shahidi", "981": "Yvonne Strahovski", "982": "Zac Efron", "983": "Zach Braff", "984": "Zach Galifianakis", "985": "Zachary Levi", "986": "Zachary Quinto", "987": "Zayn Malik", "988": "Zazie Beetz", "989": "Zendaya", "990": "Zoe Kazan", "991": "Zoe Kravitz", "992": "Zoe Saldana", "993": "Zoey Deutch", "994": "Zooey Deschanel", "995": "Zo\u00eb Kravitz", "996": "Zo\u00eb Saldana"}}}}], "splits": [{"name": "train", "num_bytes": 193671657.464, "num_examples": 18184}], "download_size": 190510261, "dataset_size": 193671657.464}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2024-01-06T19:03:17+00:00 | [] | [] | TAGS
#region-us
| # Celebrity 1000
Top 1000 celebrities. 18,184 images. 256x256. Square cropped to face. | [
"# Celebrity 1000\n\nTop 1000 celebrities. 18,184 images. 256x256. Square cropped to face."
] | [
"TAGS\n#region-us \n",
"# Celebrity 1000\n\nTop 1000 celebrities. 18,184 images. 256x256. Square cropped to face."
] | [
6,
24
] | [
"passage: TAGS\n#region-us \n# Celebrity 1000\n\nTop 1000 celebrities. 18,184 images. 256x256. Square cropped to face."
] |
969360dde074040ca423e8155d351808307378f3 | # Dataset Card for "code-vllm-func-names"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | mpronesti/code-vllm-func-names | [
"region:us"
] | 2024-01-06T19:09:00+00:00 | {"dataset_info": {"features": [{"name": "method_name", "dtype": "string"}, {"name": "method_body", "dtype": "string"}, {"name": "full_code", "dtype": "string"}, {"name": "docstring", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 700524.3637515843, "num_examples": 631}, {"name": "val", "num_bytes": 87704.31812420786, "num_examples": 79}, {"name": "test", "num_bytes": 87704.31812420786, "num_examples": 79}], "download_size": 358947, "dataset_size": 875933.0000000001}} | 2024-01-06T19:09:17+00:00 | [] | [] | TAGS
#region-us
| # Dataset Card for "code-vllm-func-names"
More Information needed | [
"# Dataset Card for \"code-vllm-func-names\"\n\nMore Information needed"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for \"code-vllm-func-names\"\n\nMore Information needed"
] | [
6,
21
] | [
"passage: TAGS\n#region-us \n# Dataset Card for \"code-vllm-func-names\"\n\nMore Information needed"
] |
dd4511d31aa1d1d51a1f58f33237a2f056562bb1 |
# Dataset Card for SAW Corpus
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
### Dataset Summary
The Selective Armenian Web (SAW) Corpus is a collection of Armenian language texts, selectively compiled from various online sources. It aims to support natural language processing tasks, offering a wide range of text types, including news articles, legal documents, and other web content.
### Supported Tasks and Leaderboards
- `language-modeling`
- `masked-language-modeling`
### Languages
The dataset is composed entirely in Armenian (hy), with all texts containing at least 50% Armenian characters.
## Dataset Structure
### Data Instances
A typical data instance in this dataset might look like the following:
{
"text": "Հայաստանում կատարվել է 2 164 083 պատվաստում\n\nՊատվաստումային գործընթացը շարունակվում է:Ապրիլի 24-ի դրությամբ կատարվել է՝",
"link": "https://hy.armradio.am/2022/04/25/հայաստանում-կատարվել-է-2-164-083-պատվաստում/",
"date": "2022-04-25",
"tags": ["Կարևոր", "Հասարակություն"],
"source": "hy.armradio.am"
}
### Data Fields
- `text`: The main content of the article or text. Always includes the title.
- `url`: The URL where the text was sourced from.
- `date`: The publication date of the text.
- `tags`: A list of tags or categories associated with the text.
- `source`: The name of the website or platform where the text was sourced from.
### Data Splits
The dataset is divided into three splits: train, validation (val), and test. Below are the details for each split:
| Split | Samples | Words |
| ------- | ------: | ----------: |
| Train | 724,044 | 252,738,363 |
| Val | 40,309 | 14,087,046 |
| Test | 40,356 | 13,938,088 |
## Dataset Creation
### Curation Rationale
The SAW Corpus was curated with the intent to create a comprehensive resource for Armenian language processing. The rationale behind its creation was to compile a diverse and significant collection of Armenian texts from various online sources, suitable for training robust language models and other NLP tasks. The dataset aims to fill the gap in Armenian language resources and provide a valuable tool for both academic research and practical applications in NLP.
### Source Data
#### Initial Data Collection and Normalization
The texts for the SAW Corpus were collected from a wide range of Armenian online sources, including news websites, document archives, and other relevant web content. The collection process involved selectively sourcing texts that were representative of contemporary Armenian usage.
Normalization and cleaning processes were applied to ensure the quality and consistency of the dataset. These processes included:
- Removing extraneous formatting and correcting obvious errors.
- Standardizing punctuation marks such as commas, colons, and dashes.
- Harmonizing variations of specific Armenian characters (e.g., standardizing 'և' and 'եւ').
- Markdown style was used for formatting tables, ordered, and unordered lists.
The focus was on maintaining the integrity and diversity of the original content while ensuring the texts were suitable for NLP tasks. Markdown style was used for formatting tables, ordered, and unordered lists.
#### Annotations
The dataset does not contain any additional annotations.
#### Personal and Sensitive Information
The dataset consists of texts collected from publicly available sources. Due to the extensive volume of data, no specific steps were taken to identify or remove personal or sensitive information from each text. Users are advised to be aware of this when utilizing the dataset, particularly in contexts where privacy and data protection are concerns.
## Considerations for Using the Data
### Social Impact of Dataset
The dataset supports advancements in NLP for the Armenian language, which can aid in diverse applications ranging from language research to the development of linguistic technologies.
### Discussion of Biases
As the dataset aggregates content from various online sources, it may inherently carry the biases present in these sources. This can include skewness in topics, styles, or viewpoints.
### Other Known Limitations
The dataset primarily includes Eastern Armenian texts and does not cover Western Armenian, which limits its linguistic diversity. While the dataset is rich in formal and literary styles, being a written corpus, it may not adequately represent spoken dialects and colloquial forms of Armenian.
## Additional Information
### Dataset Curators
Curated by Mkrtich Minasyan.
### Licensing Information
This dataset is distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license.
### Citation Information
@dataset{saw_corpus_2024,
title = {Selective Armenian Web (SAW) Corpus},
author = {Mkrtich Minasyan},
year = {2024}
}
| MMinasyan/SAW-corpus | [
"task_categories:text-generation",
"task_categories:fill-mask",
"task_ids:language-modeling",
"task_ids:masked-language-modeling",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:100K<n<1M",
"source_datasets:original",
"language:hy",
"license:cc-by-sa-4.0",
"region:us"
] | 2024-01-06T19:23:47+00:00 | {"language_creators": ["found"], "language": ["hy"], "license": ["cc-by-sa-4.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": ["original"], "task_categories": ["text-generation", "fill-mask"], "task_ids": ["language-modeling", "masked-language-modeling"]} | 2024-01-07T00:41:21+00:00 | [] | [
"hy"
] | TAGS
#task_categories-text-generation #task_categories-fill-mask #task_ids-language-modeling #task_ids-masked-language-modeling #language_creators-found #multilinguality-monolingual #size_categories-100K<n<1M #source_datasets-original #language-Armenian #license-cc-by-sa-4.0 #region-us
| Dataset Card for SAW Corpus
===========================
Table of Contents
-----------------
* Dataset Description
+ Dataset Summary
+ Supported Tasks and Leaderboards
+ Languages
* Dataset Structure
+ Data Instances
+ Data Fields
+ Data Splits
* Dataset Creation
+ Curation Rationale
+ Source Data
+ Annotations
+ Personal and Sensitive Information
* Considerations for Using the Data
+ Social Impact of Dataset
+ Discussion of Biases
+ Other Known Limitations
* Additional Information
+ Dataset Curators
+ Licensing Information
+ Citation Information
Dataset Description
-------------------
### Dataset Summary
The Selective Armenian Web (SAW) Corpus is a collection of Armenian language texts, selectively compiled from various online sources. It aims to support natural language processing tasks, offering a wide range of text types, including news articles, legal documents, and other web content.
### Supported Tasks and Leaderboards
* 'language-modeling'
* 'masked-language-modeling'
### Languages
The dataset is composed entirely in Armenian (hy), with all texts containing at least 50% Armenian characters.
Dataset Structure
-----------------
### Data Instances
A typical data instance in this dataset might look like the following:
```
{
"text": "Հայաստանում կատարվել է 2 164 083 պատվաստում\n\nՊատվաստումային գործընթացը շարունակվում է:Ապրիլի 24-ի դրությամբ կատարվել է՝",
"link": "URL/հայաստանում-կատարվել-է-2-164-083-պատվաստում/",
"date": "2022-04-25",
"tags": ["Կարևոր", "Հասարակություն"],
"source": "URL"
}
```
### Data Fields
* 'text': The main content of the article or text. Always includes the title.
* 'url': The URL where the text was sourced from.
* 'date': The publication date of the text.
* 'tags': A list of tags or categories associated with the text.
* 'source': The name of the website or platform where the text was sourced from.
### Data Splits
The dataset is divided into three splits: train, validation (val), and test. Below are the details for each split:
Dataset Creation
----------------
### Curation Rationale
The SAW Corpus was curated with the intent to create a comprehensive resource for Armenian language processing. The rationale behind its creation was to compile a diverse and significant collection of Armenian texts from various online sources, suitable for training robust language models and other NLP tasks. The dataset aims to fill the gap in Armenian language resources and provide a valuable tool for both academic research and practical applications in NLP.
### Source Data
#### Initial Data Collection and Normalization
The texts for the SAW Corpus were collected from a wide range of Armenian online sources, including news websites, document archives, and other relevant web content. The collection process involved selectively sourcing texts that were representative of contemporary Armenian usage.
Normalization and cleaning processes were applied to ensure the quality and consistency of the dataset. These processes included:
* Removing extraneous formatting and correcting obvious errors.
* Standardizing punctuation marks such as commas, colons, and dashes.
* Harmonizing variations of specific Armenian characters (e.g., standardizing 'և' and 'եւ').
* Markdown style was used for formatting tables, ordered, and unordered lists.
The focus was on maintaining the integrity and diversity of the original content while ensuring the texts were suitable for NLP tasks. Markdown style was used for formatting tables, ordered, and unordered lists.
#### Annotations
The dataset does not contain any additional annotations.
#### Personal and Sensitive Information
The dataset consists of texts collected from publicly available sources. Due to the extensive volume of data, no specific steps were taken to identify or remove personal or sensitive information from each text. Users are advised to be aware of this when utilizing the dataset, particularly in contexts where privacy and data protection are concerns.
Considerations for Using the Data
---------------------------------
### Social Impact of Dataset
The dataset supports advancements in NLP for the Armenian language, which can aid in diverse applications ranging from language research to the development of linguistic technologies.
### Discussion of Biases
As the dataset aggregates content from various online sources, it may inherently carry the biases present in these sources. This can include skewness in topics, styles, or viewpoints.
### Other Known Limitations
The dataset primarily includes Eastern Armenian texts and does not cover Western Armenian, which limits its linguistic diversity. While the dataset is rich in formal and literary styles, being a written corpus, it may not adequately represent spoken dialects and colloquial forms of Armenian.
Additional Information
----------------------
### Dataset Curators
Curated by Mkrtich Minasyan.
### Licensing Information
This dataset is distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license.
```
@dataset{saw_corpus_2024,
title = {Selective Armenian Web (SAW) Corpus},
author = {Mkrtich Minasyan},
year = {2024}
}
```
| [
"### Dataset Summary\n\n\nThe Selective Armenian Web (SAW) Corpus is a collection of Armenian language texts, selectively compiled from various online sources. It aims to support natural language processing tasks, offering a wide range of text types, including news articles, legal documents, and other web content.",
"### Supported Tasks and Leaderboards\n\n\n* 'language-modeling'\n* 'masked-language-modeling'",
"### Languages\n\n\nThe dataset is composed entirely in Armenian (hy), with all texts containing at least 50% Armenian characters.\n\n\nDataset Structure\n-----------------",
"### Data Instances\n\n\nA typical data instance in this dataset might look like the following:\n\n\n\n```\n{\n\"text\": \"Հայաստանում կատարվել է 2 164 083 պատվաստում\\n\\nՊատվաստումային գործընթացը շարունակվում է:Ապրիլի 24-ի դրությամբ կատարվել է՝\",\n\"link\": \"URL/հայաստանում-կատարվել-է-2-164-083-պատվաստում/\",\n\"date\": \"2022-04-25\",\n\"tags\": [\"Կարևոր\", \"Հասարակություն\"],\n\"source\": \"URL\"\n}\n\n```",
"### Data Fields\n\n\n* 'text': The main content of the article or text. Always includes the title.\n* 'url': The URL where the text was sourced from.\n* 'date': The publication date of the text.\n* 'tags': A list of tags or categories associated with the text.\n* 'source': The name of the website or platform where the text was sourced from.",
"### Data Splits\n\n\nThe dataset is divided into three splits: train, validation (val), and test. Below are the details for each split:\n\n\n\nDataset Creation\n----------------",
"### Curation Rationale\n\n\nThe SAW Corpus was curated with the intent to create a comprehensive resource for Armenian language processing. The rationale behind its creation was to compile a diverse and significant collection of Armenian texts from various online sources, suitable for training robust language models and other NLP tasks. The dataset aims to fill the gap in Armenian language resources and provide a valuable tool for both academic research and practical applications in NLP.",
"### Source Data",
"#### Initial Data Collection and Normalization\n\n\nThe texts for the SAW Corpus were collected from a wide range of Armenian online sources, including news websites, document archives, and other relevant web content. The collection process involved selectively sourcing texts that were representative of contemporary Armenian usage.\n\n\nNormalization and cleaning processes were applied to ensure the quality and consistency of the dataset. These processes included:\n\n\n* Removing extraneous formatting and correcting obvious errors.\n* Standardizing punctuation marks such as commas, colons, and dashes.\n* Harmonizing variations of specific Armenian characters (e.g., standardizing 'և' and 'եւ').\n* Markdown style was used for formatting tables, ordered, and unordered lists.\n\n\nThe focus was on maintaining the integrity and diversity of the original content while ensuring the texts were suitable for NLP tasks. Markdown style was used for formatting tables, ordered, and unordered lists.",
"#### Annotations\n\n\nThe dataset does not contain any additional annotations.",
"#### Personal and Sensitive Information\n\n\nThe dataset consists of texts collected from publicly available sources. Due to the extensive volume of data, no specific steps were taken to identify or remove personal or sensitive information from each text. Users are advised to be aware of this when utilizing the dataset, particularly in contexts where privacy and data protection are concerns.\n\n\nConsiderations for Using the Data\n---------------------------------",
"### Social Impact of Dataset\n\n\nThe dataset supports advancements in NLP for the Armenian language, which can aid in diverse applications ranging from language research to the development of linguistic technologies.",
"### Discussion of Biases\n\n\nAs the dataset aggregates content from various online sources, it may inherently carry the biases present in these sources. This can include skewness in topics, styles, or viewpoints.",
"### Other Known Limitations\n\n\nThe dataset primarily includes Eastern Armenian texts and does not cover Western Armenian, which limits its linguistic diversity. While the dataset is rich in formal and literary styles, being a written corpus, it may not adequately represent spoken dialects and colloquial forms of Armenian.\n\n\nAdditional Information\n----------------------",
"### Dataset Curators\n\n\nCurated by Mkrtich Minasyan.",
"### Licensing Information\n\n\nThis dataset is distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license.\n\n\n\n```\n@dataset{saw_corpus_2024,\ntitle = {Selective Armenian Web (SAW) Corpus},\nauthor = {Mkrtich Minasyan},\nyear = {2024}\n}\n\n```"
] | [
"TAGS\n#task_categories-text-generation #task_categories-fill-mask #task_ids-language-modeling #task_ids-masked-language-modeling #language_creators-found #multilinguality-monolingual #size_categories-100K<n<1M #source_datasets-original #language-Armenian #license-cc-by-sa-4.0 #region-us \n",
"### Dataset Summary\n\n\nThe Selective Armenian Web (SAW) Corpus is a collection of Armenian language texts, selectively compiled from various online sources. It aims to support natural language processing tasks, offering a wide range of text types, including news articles, legal documents, and other web content.",
"### Supported Tasks and Leaderboards\n\n\n* 'language-modeling'\n* 'masked-language-modeling'",
"### Languages\n\n\nThe dataset is composed entirely in Armenian (hy), with all texts containing at least 50% Armenian characters.\n\n\nDataset Structure\n-----------------",
"### Data Instances\n\n\nA typical data instance in this dataset might look like the following:\n\n\n\n```\n{\n\"text\": \"Հայաստանում կատարվել է 2 164 083 պատվաստում\\n\\nՊատվաստումային գործընթացը շարունակվում է:Ապրիլի 24-ի դրությամբ կատարվել է՝\",\n\"link\": \"URL/հայաստանում-կատարվել-է-2-164-083-պատվաստում/\",\n\"date\": \"2022-04-25\",\n\"tags\": [\"Կարևոր\", \"Հասարակություն\"],\n\"source\": \"URL\"\n}\n\n```",
"### Data Fields\n\n\n* 'text': The main content of the article or text. Always includes the title.\n* 'url': The URL where the text was sourced from.\n* 'date': The publication date of the text.\n* 'tags': A list of tags or categories associated with the text.\n* 'source': The name of the website or platform where the text was sourced from.",
"### Data Splits\n\n\nThe dataset is divided into three splits: train, validation (val), and test. Below are the details for each split:\n\n\n\nDataset Creation\n----------------",
"### Curation Rationale\n\n\nThe SAW Corpus was curated with the intent to create a comprehensive resource for Armenian language processing. The rationale behind its creation was to compile a diverse and significant collection of Armenian texts from various online sources, suitable for training robust language models and other NLP tasks. The dataset aims to fill the gap in Armenian language resources and provide a valuable tool for both academic research and practical applications in NLP.",
"### Source Data",
"#### Initial Data Collection and Normalization\n\n\nThe texts for the SAW Corpus were collected from a wide range of Armenian online sources, including news websites, document archives, and other relevant web content. The collection process involved selectively sourcing texts that were representative of contemporary Armenian usage.\n\n\nNormalization and cleaning processes were applied to ensure the quality and consistency of the dataset. These processes included:\n\n\n* Removing extraneous formatting and correcting obvious errors.\n* Standardizing punctuation marks such as commas, colons, and dashes.\n* Harmonizing variations of specific Armenian characters (e.g., standardizing 'և' and 'եւ').\n* Markdown style was used for formatting tables, ordered, and unordered lists.\n\n\nThe focus was on maintaining the integrity and diversity of the original content while ensuring the texts were suitable for NLP tasks. Markdown style was used for formatting tables, ordered, and unordered lists.",
"#### Annotations\n\n\nThe dataset does not contain any additional annotations.",
"#### Personal and Sensitive Information\n\n\nThe dataset consists of texts collected from publicly available sources. Due to the extensive volume of data, no specific steps were taken to identify or remove personal or sensitive information from each text. Users are advised to be aware of this when utilizing the dataset, particularly in contexts where privacy and data protection are concerns.\n\n\nConsiderations for Using the Data\n---------------------------------",
"### Social Impact of Dataset\n\n\nThe dataset supports advancements in NLP for the Armenian language, which can aid in diverse applications ranging from language research to the development of linguistic technologies.",
"### Discussion of Biases\n\n\nAs the dataset aggregates content from various online sources, it may inherently carry the biases present in these sources. This can include skewness in topics, styles, or viewpoints.",
"### Other Known Limitations\n\n\nThe dataset primarily includes Eastern Armenian texts and does not cover Western Armenian, which limits its linguistic diversity. While the dataset is rich in formal and literary styles, being a written corpus, it may not adequately represent spoken dialects and colloquial forms of Armenian.\n\n\nAdditional Information\n----------------------",
"### Dataset Curators\n\n\nCurated by Mkrtich Minasyan.",
"### Licensing Information\n\n\nThis dataset is distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license.\n\n\n\n```\n@dataset{saw_corpus_2024,\ntitle = {Selective Armenian Web (SAW) Corpus},\nauthor = {Mkrtich Minasyan},\nyear = {2024}\n}\n\n```"
] | [
104,
69,
27,
37,
127,
88,
41,
95,
4,
228,
17,
92,
42,
53,
81,
16,
80
] | [
"passage: TAGS\n#task_categories-text-generation #task_categories-fill-mask #task_ids-language-modeling #task_ids-masked-language-modeling #language_creators-found #multilinguality-monolingual #size_categories-100K<n<1M #source_datasets-original #language-Armenian #license-cc-by-sa-4.0 #region-us \n### Dataset Summary\n\n\nThe Selective Armenian Web (SAW) Corpus is a collection of Armenian language texts, selectively compiled from various online sources. It aims to support natural language processing tasks, offering a wide range of text types, including news articles, legal documents, and other web content.### Supported Tasks and Leaderboards\n\n\n* 'language-modeling'\n* 'masked-language-modeling'### Languages\n\n\nThe dataset is composed entirely in Armenian (hy), with all texts containing at least 50% Armenian characters.\n\n\nDataset Structure\n-----------------### Data Instances\n\n\nA typical data instance in this dataset might look like the following:\n\n\n\n```\n{\n\"text\": \"Հայաստանում կատարվել է 2 164 083 պատվաստում\\n\\nՊատվաստումային գործընթացը շարունակվում է:Ապրիլի 24-ի դրությամբ կատարվել է՝\",\n\"link\": \"URL/հայաստանում-կատարվել-է-2-164-083-պատվաստում/\",\n\"date\": \"2022-04-25\",\n\"tags\": [\"Կարևոր\", \"Հասարակություն\"],\n\"source\": \"URL\"\n}\n\n```### Data Fields\n\n\n* 'text': The main content of the article or text. Always includes the title.\n* 'url': The URL where the text was sourced from.\n* 'date': The publication date of the text.\n* 'tags': A list of tags or categories associated with the text.\n* 'source': The name of the website or platform where the text was sourced from.### Data Splits\n\n\nThe dataset is divided into three splits: train, validation (val), and test. Below are the details for each split:\n\n\n\nDataset Creation\n----------------",
"passage: ### Curation Rationale\n\n\nThe SAW Corpus was curated with the intent to create a comprehensive resource for Armenian language processing. The rationale behind its creation was to compile a diverse and significant collection of Armenian texts from various online sources, suitable for training robust language models and other NLP tasks. The dataset aims to fill the gap in Armenian language resources and provide a valuable tool for both academic research and practical applications in NLP.### Source Data#### Initial Data Collection and Normalization\n\n\nThe texts for the SAW Corpus were collected from a wide range of Armenian online sources, including news websites, document archives, and other relevant web content. The collection process involved selectively sourcing texts that were representative of contemporary Armenian usage.\n\n\nNormalization and cleaning processes were applied to ensure the quality and consistency of the dataset. These processes included:\n\n\n* Removing extraneous formatting and correcting obvious errors.\n* Standardizing punctuation marks such as commas, colons, and dashes.\n* Harmonizing variations of specific Armenian characters (e.g., standardizing 'և' and 'եւ').\n* Markdown style was used for formatting tables, ordered, and unordered lists.\n\n\nThe focus was on maintaining the integrity and diversity of the original content while ensuring the texts were suitable for NLP tasks. Markdown style was used for formatting tables, ordered, and unordered lists.#### Annotations\n\n\nThe dataset does not contain any additional annotations.#### Personal and Sensitive Information\n\n\nThe dataset consists of texts collected from publicly available sources. Due to the extensive volume of data, no specific steps were taken to identify or remove personal or sensitive information from each text. Users are advised to be aware of this when utilizing the dataset, particularly in contexts where privacy and data protection are concerns.\n\n\nConsiderations for Using the Data\n---------------------------------### Social Impact of Dataset\n\n\nThe dataset supports advancements in NLP for the Armenian language, which can aid in diverse applications ranging from language research to the development of linguistic technologies.### Discussion of Biases\n\n\nAs the dataset aggregates content from various online sources, it may inherently carry the biases present in these sources. This can include skewness in topics, styles, or viewpoints."
] |
1b3b23297a8a3b05ac7bd3070c6c0e1ffdab4705 |
# Dataset Card for Evaluation run of nlpguy/Hermes-low-tune-3
<!-- Provide a quick summary of the dataset. -->
Dataset automatically created during the evaluation run of model [nlpguy/Hermes-low-tune-3](https://huggingface.co/nlpguy/Hermes-low-tune-3) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset("open-llm-leaderboard/details_nlpguy__Hermes-low-tune-3",
"harness_winogrande_5",
split="train")
```
## Latest results
These are the [latest results from run 2024-01-06T19:55:30.793353](https://huggingface.co/datasets/open-llm-leaderboard/details_nlpguy__Hermes-low-tune-3/blob/main/results_2024-01-06T19-55-30.793353.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"acc": 0.6402020080388997,
"acc_stderr": 0.032280751866764705,
"acc_norm": 0.6414551350223837,
"acc_norm_stderr": 0.03293149995276801,
"mc1": 0.3990208078335373,
"mc1_stderr": 0.017142825728496767,
"mc2": 0.5793658606194433,
"mc2_stderr": 0.01538436656194187
},
"harness|arc:challenge|25": {
"acc": 0.6305460750853242,
"acc_stderr": 0.014104578366491887,
"acc_norm": 0.6621160409556314,
"acc_norm_stderr": 0.013822047922283507
},
"harness|hellaswag|10": {
"acc": 0.6619199362676758,
"acc_stderr": 0.0047208915971747294,
"acc_norm": 0.8499302927703645,
"acc_norm_stderr": 0.003564098420387769
},
"harness|hendrycksTest-abstract_algebra|5": {
"acc": 0.27,
"acc_stderr": 0.044619604333847394,
"acc_norm": 0.27,
"acc_norm_stderr": 0.044619604333847394
},
"harness|hendrycksTest-anatomy|5": {
"acc": 0.6,
"acc_stderr": 0.04232073695151589,
"acc_norm": 0.6,
"acc_norm_stderr": 0.04232073695151589
},
"harness|hendrycksTest-astronomy|5": {
"acc": 0.6973684210526315,
"acc_stderr": 0.03738520676119669,
"acc_norm": 0.6973684210526315,
"acc_norm_stderr": 0.03738520676119669
},
"harness|hendrycksTest-business_ethics|5": {
"acc": 0.58,
"acc_stderr": 0.049604496374885836,
"acc_norm": 0.58,
"acc_norm_stderr": 0.049604496374885836
},
"harness|hendrycksTest-clinical_knowledge|5": {
"acc": 0.6867924528301886,
"acc_stderr": 0.028544793319055326,
"acc_norm": 0.6867924528301886,
"acc_norm_stderr": 0.028544793319055326
},
"harness|hendrycksTest-college_biology|5": {
"acc": 0.7638888888888888,
"acc_stderr": 0.03551446610810826,
"acc_norm": 0.7638888888888888,
"acc_norm_stderr": 0.03551446610810826
},
"harness|hendrycksTest-college_chemistry|5": {
"acc": 0.49,
"acc_stderr": 0.05024183937956912,
"acc_norm": 0.49,
"acc_norm_stderr": 0.05024183937956912
},
"harness|hendrycksTest-college_computer_science|5": {
"acc": 0.47,
"acc_stderr": 0.050161355804659205,
"acc_norm": 0.47,
"acc_norm_stderr": 0.050161355804659205
},
"harness|hendrycksTest-college_mathematics|5": {
"acc": 0.27,
"acc_stderr": 0.044619604333847394,
"acc_norm": 0.27,
"acc_norm_stderr": 0.044619604333847394
},
"harness|hendrycksTest-college_medicine|5": {
"acc": 0.6416184971098265,
"acc_stderr": 0.036563436533531585,
"acc_norm": 0.6416184971098265,
"acc_norm_stderr": 0.036563436533531585
},
"harness|hendrycksTest-college_physics|5": {
"acc": 0.38235294117647056,
"acc_stderr": 0.04835503696107223,
"acc_norm": 0.38235294117647056,
"acc_norm_stderr": 0.04835503696107223
},
"harness|hendrycksTest-computer_security|5": {
"acc": 0.75,
"acc_stderr": 0.04351941398892446,
"acc_norm": 0.75,
"acc_norm_stderr": 0.04351941398892446
},
"harness|hendrycksTest-conceptual_physics|5": {
"acc": 0.5702127659574469,
"acc_stderr": 0.03236214467715564,
"acc_norm": 0.5702127659574469,
"acc_norm_stderr": 0.03236214467715564
},
"harness|hendrycksTest-econometrics|5": {
"acc": 0.47368421052631576,
"acc_stderr": 0.046970851366478626,
"acc_norm": 0.47368421052631576,
"acc_norm_stderr": 0.046970851366478626
},
"harness|hendrycksTest-electrical_engineering|5": {
"acc": 0.5517241379310345,
"acc_stderr": 0.04144311810878151,
"acc_norm": 0.5517241379310345,
"acc_norm_stderr": 0.04144311810878151
},
"harness|hendrycksTest-elementary_mathematics|5": {
"acc": 0.42328042328042326,
"acc_stderr": 0.02544636563440679,
"acc_norm": 0.42328042328042326,
"acc_norm_stderr": 0.02544636563440679
},
"harness|hendrycksTest-formal_logic|5": {
"acc": 0.46825396825396826,
"acc_stderr": 0.04463112720677172,
"acc_norm": 0.46825396825396826,
"acc_norm_stderr": 0.04463112720677172
},
"harness|hendrycksTest-global_facts|5": {
"acc": 0.36,
"acc_stderr": 0.048241815132442176,
"acc_norm": 0.36,
"acc_norm_stderr": 0.048241815132442176
},
"harness|hendrycksTest-high_school_biology|5": {
"acc": 0.7741935483870968,
"acc_stderr": 0.023785577884181012,
"acc_norm": 0.7741935483870968,
"acc_norm_stderr": 0.023785577884181012
},
"harness|hendrycksTest-high_school_chemistry|5": {
"acc": 0.5123152709359606,
"acc_stderr": 0.035169204442208966,
"acc_norm": 0.5123152709359606,
"acc_norm_stderr": 0.035169204442208966
},
"harness|hendrycksTest-high_school_computer_science|5": {
"acc": 0.67,
"acc_stderr": 0.047258156262526066,
"acc_norm": 0.67,
"acc_norm_stderr": 0.047258156262526066
},
"harness|hendrycksTest-high_school_european_history|5": {
"acc": 0.7757575757575758,
"acc_stderr": 0.03256866661681102,
"acc_norm": 0.7757575757575758,
"acc_norm_stderr": 0.03256866661681102
},
"harness|hendrycksTest-high_school_geography|5": {
"acc": 0.7878787878787878,
"acc_stderr": 0.029126522834586818,
"acc_norm": 0.7878787878787878,
"acc_norm_stderr": 0.029126522834586818
},
"harness|hendrycksTest-high_school_government_and_politics|5": {
"acc": 0.8860103626943006,
"acc_stderr": 0.022935144053919443,
"acc_norm": 0.8860103626943006,
"acc_norm_stderr": 0.022935144053919443
},
"harness|hendrycksTest-high_school_macroeconomics|5": {
"acc": 0.6230769230769231,
"acc_stderr": 0.024570975364225995,
"acc_norm": 0.6230769230769231,
"acc_norm_stderr": 0.024570975364225995
},
"harness|hendrycksTest-high_school_mathematics|5": {
"acc": 0.31851851851851853,
"acc_stderr": 0.02840653309060846,
"acc_norm": 0.31851851851851853,
"acc_norm_stderr": 0.02840653309060846
},
"harness|hendrycksTest-high_school_microeconomics|5": {
"acc": 0.6722689075630253,
"acc_stderr": 0.030489911417673227,
"acc_norm": 0.6722689075630253,
"acc_norm_stderr": 0.030489911417673227
},
"harness|hendrycksTest-high_school_physics|5": {
"acc": 0.36423841059602646,
"acc_stderr": 0.03929111781242741,
"acc_norm": 0.36423841059602646,
"acc_norm_stderr": 0.03929111781242741
},
"harness|hendrycksTest-high_school_psychology|5": {
"acc": 0.8293577981651377,
"acc_stderr": 0.016129271025099857,
"acc_norm": 0.8293577981651377,
"acc_norm_stderr": 0.016129271025099857
},
"harness|hendrycksTest-high_school_statistics|5": {
"acc": 0.5416666666666666,
"acc_stderr": 0.03398110890294636,
"acc_norm": 0.5416666666666666,
"acc_norm_stderr": 0.03398110890294636
},
"harness|hendrycksTest-high_school_us_history|5": {
"acc": 0.7990196078431373,
"acc_stderr": 0.028125972265654373,
"acc_norm": 0.7990196078431373,
"acc_norm_stderr": 0.028125972265654373
},
"harness|hendrycksTest-high_school_world_history|5": {
"acc": 0.8227848101265823,
"acc_stderr": 0.02485636418450322,
"acc_norm": 0.8227848101265823,
"acc_norm_stderr": 0.02485636418450322
},
"harness|hendrycksTest-human_aging|5": {
"acc": 0.695067264573991,
"acc_stderr": 0.030898610882477515,
"acc_norm": 0.695067264573991,
"acc_norm_stderr": 0.030898610882477515
},
"harness|hendrycksTest-human_sexuality|5": {
"acc": 0.7709923664122137,
"acc_stderr": 0.036853466317118506,
"acc_norm": 0.7709923664122137,
"acc_norm_stderr": 0.036853466317118506
},
"harness|hendrycksTest-international_law|5": {
"acc": 0.7768595041322314,
"acc_stderr": 0.03800754475228732,
"acc_norm": 0.7768595041322314,
"acc_norm_stderr": 0.03800754475228732
},
"harness|hendrycksTest-jurisprudence|5": {
"acc": 0.7407407407407407,
"acc_stderr": 0.04236511258094632,
"acc_norm": 0.7407407407407407,
"acc_norm_stderr": 0.04236511258094632
},
"harness|hendrycksTest-logical_fallacies|5": {
"acc": 0.7975460122699386,
"acc_stderr": 0.031570650789119005,
"acc_norm": 0.7975460122699386,
"acc_norm_stderr": 0.031570650789119005
},
"harness|hendrycksTest-machine_learning|5": {
"acc": 0.5089285714285714,
"acc_stderr": 0.04745033255489123,
"acc_norm": 0.5089285714285714,
"acc_norm_stderr": 0.04745033255489123
},
"harness|hendrycksTest-management|5": {
"acc": 0.7961165048543689,
"acc_stderr": 0.039891398595317706,
"acc_norm": 0.7961165048543689,
"acc_norm_stderr": 0.039891398595317706
},
"harness|hendrycksTest-marketing|5": {
"acc": 0.8632478632478633,
"acc_stderr": 0.022509033937077805,
"acc_norm": 0.8632478632478633,
"acc_norm_stderr": 0.022509033937077805
},
"harness|hendrycksTest-medical_genetics|5": {
"acc": 0.68,
"acc_stderr": 0.046882617226215034,
"acc_norm": 0.68,
"acc_norm_stderr": 0.046882617226215034
},
"harness|hendrycksTest-miscellaneous|5": {
"acc": 0.8135376756066411,
"acc_stderr": 0.013927751372001505,
"acc_norm": 0.8135376756066411,
"acc_norm_stderr": 0.013927751372001505
},
"harness|hendrycksTest-moral_disputes|5": {
"acc": 0.7196531791907514,
"acc_stderr": 0.024182427496577605,
"acc_norm": 0.7196531791907514,
"acc_norm_stderr": 0.024182427496577605
},
"harness|hendrycksTest-moral_scenarios|5": {
"acc": 0.358659217877095,
"acc_stderr": 0.016040454426164464,
"acc_norm": 0.358659217877095,
"acc_norm_stderr": 0.016040454426164464
},
"harness|hendrycksTest-nutrition|5": {
"acc": 0.7418300653594772,
"acc_stderr": 0.02505850331695814,
"acc_norm": 0.7418300653594772,
"acc_norm_stderr": 0.02505850331695814
},
"harness|hendrycksTest-philosophy|5": {
"acc": 0.7009646302250804,
"acc_stderr": 0.026003301117885142,
"acc_norm": 0.7009646302250804,
"acc_norm_stderr": 0.026003301117885142
},
"harness|hendrycksTest-prehistory|5": {
"acc": 0.7438271604938271,
"acc_stderr": 0.0242885336377261,
"acc_norm": 0.7438271604938271,
"acc_norm_stderr": 0.0242885336377261
},
"harness|hendrycksTest-professional_accounting|5": {
"acc": 0.4929078014184397,
"acc_stderr": 0.02982449855912901,
"acc_norm": 0.4929078014184397,
"acc_norm_stderr": 0.02982449855912901
},
"harness|hendrycksTest-professional_law|5": {
"acc": 0.46870925684485004,
"acc_stderr": 0.012745204626083135,
"acc_norm": 0.46870925684485004,
"acc_norm_stderr": 0.012745204626083135
},
"harness|hendrycksTest-professional_medicine|5": {
"acc": 0.6911764705882353,
"acc_stderr": 0.02806499816704009,
"acc_norm": 0.6911764705882353,
"acc_norm_stderr": 0.02806499816704009
},
"harness|hendrycksTest-professional_psychology|5": {
"acc": 0.6813725490196079,
"acc_stderr": 0.018850084696468712,
"acc_norm": 0.6813725490196079,
"acc_norm_stderr": 0.018850084696468712
},
"harness|hendrycksTest-public_relations|5": {
"acc": 0.6727272727272727,
"acc_stderr": 0.04494290866252091,
"acc_norm": 0.6727272727272727,
"acc_norm_stderr": 0.04494290866252091
},
"harness|hendrycksTest-security_studies|5": {
"acc": 0.7306122448979592,
"acc_stderr": 0.02840125202902294,
"acc_norm": 0.7306122448979592,
"acc_norm_stderr": 0.02840125202902294
},
"harness|hendrycksTest-sociology|5": {
"acc": 0.8159203980099502,
"acc_stderr": 0.027403859410786848,
"acc_norm": 0.8159203980099502,
"acc_norm_stderr": 0.027403859410786848
},
"harness|hendrycksTest-us_foreign_policy|5": {
"acc": 0.85,
"acc_stderr": 0.0358870281282637,
"acc_norm": 0.85,
"acc_norm_stderr": 0.0358870281282637
},
"harness|hendrycksTest-virology|5": {
"acc": 0.5481927710843374,
"acc_stderr": 0.03874371556587953,
"acc_norm": 0.5481927710843374,
"acc_norm_stderr": 0.03874371556587953
},
"harness|hendrycksTest-world_religions|5": {
"acc": 0.847953216374269,
"acc_stderr": 0.027539122889061463,
"acc_norm": 0.847953216374269,
"acc_norm_stderr": 0.027539122889061463
},
"harness|truthfulqa:mc|0": {
"mc1": 0.3990208078335373,
"mc1_stderr": 0.017142825728496767,
"mc2": 0.5793658606194433,
"mc2_stderr": 0.01538436656194187
},
"harness|winogrande|5": {
"acc": 0.7876874506708761,
"acc_stderr": 0.011493384687249787
},
"harness|gsm8k|5": {
"acc": 0.6383623957543594,
"acc_stderr": 0.013234658351088766
}
}
```
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
[More Information Needed] | open-llm-leaderboard/details_nlpguy__Hermes-low-tune-3 | [
"region:us"
] | 2024-01-06T19:57:47+00:00 | {"pretty_name": "Evaluation run of nlpguy/Hermes-low-tune-3", "dataset_summary": "Dataset automatically created during the evaluation run of model [nlpguy/Hermes-low-tune-3](https://huggingface.co/nlpguy/Hermes-low-tune-3) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_nlpguy__Hermes-low-tune-3\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-06T19:55:30.793353](https://huggingface.co/datasets/open-llm-leaderboard/details_nlpguy__Hermes-low-tune-3/blob/main/results_2024-01-06T19-55-30.793353.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6402020080388997,\n \"acc_stderr\": 0.032280751866764705,\n \"acc_norm\": 0.6414551350223837,\n \"acc_norm_stderr\": 0.03293149995276801,\n \"mc1\": 0.3990208078335373,\n \"mc1_stderr\": 0.017142825728496767,\n \"mc2\": 0.5793658606194433,\n \"mc2_stderr\": 0.01538436656194187\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.6305460750853242,\n \"acc_stderr\": 0.014104578366491887,\n \"acc_norm\": 0.6621160409556314,\n \"acc_norm_stderr\": 0.013822047922283507\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6619199362676758,\n \"acc_stderr\": 0.0047208915971747294,\n \"acc_norm\": 0.8499302927703645,\n \"acc_norm_stderr\": 0.003564098420387769\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.27,\n \"acc_stderr\": 0.044619604333847394,\n \"acc_norm\": 0.27,\n \"acc_norm_stderr\": 0.044619604333847394\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6,\n \"acc_stderr\": 0.04232073695151589,\n \"acc_norm\": 0.6,\n \"acc_norm_stderr\": 0.04232073695151589\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.6973684210526315,\n \"acc_stderr\": 0.03738520676119669,\n \"acc_norm\": 0.6973684210526315,\n \"acc_norm_stderr\": 0.03738520676119669\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.58,\n \"acc_stderr\": 0.049604496374885836,\n \"acc_norm\": 0.58,\n \"acc_norm_stderr\": 0.049604496374885836\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.6867924528301886,\n \"acc_stderr\": 0.028544793319055326,\n \"acc_norm\": 0.6867924528301886,\n \"acc_norm_stderr\": 0.028544793319055326\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7638888888888888,\n \"acc_stderr\": 0.03551446610810826,\n \"acc_norm\": 0.7638888888888888,\n \"acc_norm_stderr\": 0.03551446610810826\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.49,\n \"acc_stderr\": 0.05024183937956912,\n \"acc_norm\": 0.49,\n \"acc_norm_stderr\": 0.05024183937956912\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.47,\n \"acc_stderr\": 0.050161355804659205,\n \"acc_norm\": 0.47,\n \"acc_norm_stderr\": 0.050161355804659205\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.27,\n \"acc_stderr\": 0.044619604333847394,\n \"acc_norm\": 0.27,\n \"acc_norm_stderr\": 0.044619604333847394\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6416184971098265,\n \"acc_stderr\": 0.036563436533531585,\n \"acc_norm\": 0.6416184971098265,\n \"acc_norm_stderr\": 0.036563436533531585\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.38235294117647056,\n \"acc_stderr\": 0.04835503696107223,\n \"acc_norm\": 0.38235294117647056,\n \"acc_norm_stderr\": 0.04835503696107223\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.75,\n \"acc_stderr\": 0.04351941398892446,\n \"acc_norm\": 0.75,\n \"acc_norm_stderr\": 0.04351941398892446\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5702127659574469,\n \"acc_stderr\": 0.03236214467715564,\n \"acc_norm\": 0.5702127659574469,\n \"acc_norm_stderr\": 0.03236214467715564\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.47368421052631576,\n \"acc_stderr\": 0.046970851366478626,\n \"acc_norm\": 0.47368421052631576,\n \"acc_norm_stderr\": 0.046970851366478626\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5517241379310345,\n \"acc_stderr\": 0.04144311810878151,\n \"acc_norm\": 0.5517241379310345,\n \"acc_norm_stderr\": 0.04144311810878151\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.42328042328042326,\n \"acc_stderr\": 0.02544636563440679,\n \"acc_norm\": 0.42328042328042326,\n \"acc_norm_stderr\": 0.02544636563440679\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.46825396825396826,\n \"acc_stderr\": 0.04463112720677172,\n \"acc_norm\": 0.46825396825396826,\n \"acc_norm_stderr\": 0.04463112720677172\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.36,\n \"acc_stderr\": 0.048241815132442176,\n \"acc_norm\": 0.36,\n \"acc_norm_stderr\": 0.048241815132442176\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7741935483870968,\n \"acc_stderr\": 0.023785577884181012,\n \"acc_norm\": 0.7741935483870968,\n \"acc_norm_stderr\": 0.023785577884181012\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.5123152709359606,\n \"acc_stderr\": 0.035169204442208966,\n \"acc_norm\": 0.5123152709359606,\n \"acc_norm_stderr\": 0.035169204442208966\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.67,\n \"acc_stderr\": 0.047258156262526066,\n \"acc_norm\": 0.67,\n \"acc_norm_stderr\": 0.047258156262526066\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7757575757575758,\n \"acc_stderr\": 0.03256866661681102,\n \"acc_norm\": 0.7757575757575758,\n \"acc_norm_stderr\": 0.03256866661681102\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7878787878787878,\n \"acc_stderr\": 0.029126522834586818,\n \"acc_norm\": 0.7878787878787878,\n \"acc_norm_stderr\": 0.029126522834586818\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8860103626943006,\n \"acc_stderr\": 0.022935144053919443,\n \"acc_norm\": 0.8860103626943006,\n \"acc_norm_stderr\": 0.022935144053919443\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6230769230769231,\n \"acc_stderr\": 0.024570975364225995,\n \"acc_norm\": 0.6230769230769231,\n \"acc_norm_stderr\": 0.024570975364225995\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.31851851851851853,\n \"acc_stderr\": 0.02840653309060846,\n \"acc_norm\": 0.31851851851851853,\n \"acc_norm_stderr\": 0.02840653309060846\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6722689075630253,\n \"acc_stderr\": 0.030489911417673227,\n \"acc_norm\": 0.6722689075630253,\n \"acc_norm_stderr\": 0.030489911417673227\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.36423841059602646,\n \"acc_stderr\": 0.03929111781242741,\n \"acc_norm\": 0.36423841059602646,\n \"acc_norm_stderr\": 0.03929111781242741\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8293577981651377,\n \"acc_stderr\": 0.016129271025099857,\n \"acc_norm\": 0.8293577981651377,\n \"acc_norm_stderr\": 0.016129271025099857\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.5416666666666666,\n \"acc_stderr\": 0.03398110890294636,\n \"acc_norm\": 0.5416666666666666,\n \"acc_norm_stderr\": 0.03398110890294636\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.7990196078431373,\n \"acc_stderr\": 0.028125972265654373,\n \"acc_norm\": 0.7990196078431373,\n \"acc_norm_stderr\": 0.028125972265654373\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.8227848101265823,\n \"acc_stderr\": 0.02485636418450322,\n \"acc_norm\": 0.8227848101265823,\n \"acc_norm_stderr\": 0.02485636418450322\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.695067264573991,\n \"acc_stderr\": 0.030898610882477515,\n \"acc_norm\": 0.695067264573991,\n \"acc_norm_stderr\": 0.030898610882477515\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7709923664122137,\n \"acc_stderr\": 0.036853466317118506,\n \"acc_norm\": 0.7709923664122137,\n \"acc_norm_stderr\": 0.036853466317118506\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.7768595041322314,\n \"acc_stderr\": 0.03800754475228732,\n \"acc_norm\": 0.7768595041322314,\n \"acc_norm_stderr\": 0.03800754475228732\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7407407407407407,\n \"acc_stderr\": 0.04236511258094632,\n \"acc_norm\": 0.7407407407407407,\n \"acc_norm_stderr\": 0.04236511258094632\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7975460122699386,\n \"acc_stderr\": 0.031570650789119005,\n \"acc_norm\": 0.7975460122699386,\n \"acc_norm_stderr\": 0.031570650789119005\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.5089285714285714,\n \"acc_stderr\": 0.04745033255489123,\n \"acc_norm\": 0.5089285714285714,\n \"acc_norm_stderr\": 0.04745033255489123\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7961165048543689,\n \"acc_stderr\": 0.039891398595317706,\n \"acc_norm\": 0.7961165048543689,\n \"acc_norm_stderr\": 0.039891398595317706\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8632478632478633,\n \"acc_stderr\": 0.022509033937077805,\n \"acc_norm\": 0.8632478632478633,\n \"acc_norm_stderr\": 0.022509033937077805\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.68,\n \"acc_stderr\": 0.046882617226215034,\n \"acc_norm\": 0.68,\n \"acc_norm_stderr\": 0.046882617226215034\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8135376756066411,\n \"acc_stderr\": 0.013927751372001505,\n \"acc_norm\": 0.8135376756066411,\n \"acc_norm_stderr\": 0.013927751372001505\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7196531791907514,\n \"acc_stderr\": 0.024182427496577605,\n \"acc_norm\": 0.7196531791907514,\n \"acc_norm_stderr\": 0.024182427496577605\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.358659217877095,\n \"acc_stderr\": 0.016040454426164464,\n \"acc_norm\": 0.358659217877095,\n \"acc_norm_stderr\": 0.016040454426164464\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7418300653594772,\n \"acc_stderr\": 0.02505850331695814,\n \"acc_norm\": 0.7418300653594772,\n \"acc_norm_stderr\": 0.02505850331695814\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.7009646302250804,\n \"acc_stderr\": 0.026003301117885142,\n \"acc_norm\": 0.7009646302250804,\n \"acc_norm_stderr\": 0.026003301117885142\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.7438271604938271,\n \"acc_stderr\": 0.0242885336377261,\n \"acc_norm\": 0.7438271604938271,\n \"acc_norm_stderr\": 0.0242885336377261\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.4929078014184397,\n \"acc_stderr\": 0.02982449855912901,\n \"acc_norm\": 0.4929078014184397,\n \"acc_norm_stderr\": 0.02982449855912901\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.46870925684485004,\n \"acc_stderr\": 0.012745204626083135,\n \"acc_norm\": 0.46870925684485004,\n \"acc_norm_stderr\": 0.012745204626083135\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6911764705882353,\n \"acc_stderr\": 0.02806499816704009,\n \"acc_norm\": 0.6911764705882353,\n \"acc_norm_stderr\": 0.02806499816704009\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6813725490196079,\n \"acc_stderr\": 0.018850084696468712,\n \"acc_norm\": 0.6813725490196079,\n \"acc_norm_stderr\": 0.018850084696468712\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6727272727272727,\n \"acc_stderr\": 0.04494290866252091,\n \"acc_norm\": 0.6727272727272727,\n \"acc_norm_stderr\": 0.04494290866252091\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7306122448979592,\n \"acc_stderr\": 0.02840125202902294,\n \"acc_norm\": 0.7306122448979592,\n \"acc_norm_stderr\": 0.02840125202902294\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8159203980099502,\n \"acc_stderr\": 0.027403859410786848,\n \"acc_norm\": 0.8159203980099502,\n \"acc_norm_stderr\": 0.027403859410786848\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.85,\n \"acc_stderr\": 0.0358870281282637,\n \"acc_norm\": 0.85,\n \"acc_norm_stderr\": 0.0358870281282637\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5481927710843374,\n \"acc_stderr\": 0.03874371556587953,\n \"acc_norm\": 0.5481927710843374,\n \"acc_norm_stderr\": 0.03874371556587953\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.847953216374269,\n \"acc_stderr\": 0.027539122889061463,\n \"acc_norm\": 0.847953216374269,\n \"acc_norm_stderr\": 0.027539122889061463\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.3990208078335373,\n \"mc1_stderr\": 0.017142825728496767,\n \"mc2\": 0.5793658606194433,\n \"mc2_stderr\": 0.01538436656194187\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.7876874506708761,\n \"acc_stderr\": 0.011493384687249787\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.6383623957543594,\n \"acc_stderr\": 0.013234658351088766\n }\n}\n```", "repo_url": "https://huggingface.co/nlpguy/Hermes-low-tune-3", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|arc:challenge|25_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|gsm8k|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hellaswag|10_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-06T19-55-30.793353.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["**/details_harness|winogrande|5_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-06T19-55-30.793353.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_06T19_55_30.793353", "path": ["results_2024-01-06T19-55-30.793353.parquet"]}, {"split": "latest", "path": ["results_2024-01-06T19-55-30.793353.parquet"]}]}]} | 2024-01-06T19:58:10+00:00 | [] | [] | TAGS
#region-us
|
# Dataset Card for Evaluation run of nlpguy/Hermes-low-tune-3
Dataset automatically created during the evaluation run of model nlpguy/Hermes-low-tune-3 on the Open LLM Leaderboard.
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).
To load the details from a run, you can for instance do the following:
## Latest results
These are the latest results from run 2024-01-06T19:55:30.793353(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
## Dataset Details
### Dataset Description
- Curated by:
- Funded by [optional]:
- Shared by [optional]:
- Language(s) (NLP):
- License:
### Dataset Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Out-of-Scope Use
## Dataset Structure
## Dataset Creation
### Curation Rationale
### Source Data
#### Data Collection and Processing
#### Who are the source data producers?
### Annotations [optional]
#### Annotation process
#### Who are the annotators?
#### Personal and Sensitive Information
## Bias, Risks, and Limitations
### Recommendations
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Dataset Card Authors [optional]
## Dataset Card Contact
| [
"# Dataset Card for Evaluation run of nlpguy/Hermes-low-tune-3\n\n\n\nDataset automatically created during the evaluation run of model nlpguy/Hermes-low-tune-3 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-06T19:55:30.793353(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for Evaluation run of nlpguy/Hermes-low-tune-3\n\n\n\nDataset automatically created during the evaluation run of model nlpguy/Hermes-low-tune-3 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-06T19:55:30.793353(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
6,
185,
68,
4,
40,
29,
3,
4,
9,
6,
5,
7,
4,
7,
10,
9,
5,
9,
8,
10,
46,
8,
7,
10,
5
] | [
"passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of nlpguy/Hermes-low-tune-3\n\n\n\nDataset automatically created during the evaluation run of model nlpguy/Hermes-low-tune-3 on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2024-01-06T19:55:30.793353(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):## Dataset Details### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Out-of-Scope Use## Dataset Structure## Dataset Creation### Curation Rationale### Source Data#### Data Collection and Processing#### Who are the source data producers?### Annotations [optional]#### Annotation process#### Who are the annotators?#### Personal and Sensitive Information## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Dataset Card Authors [optional]## Dataset Card Contact"
] |
a1847f3c3a454ddfb7acf852494fd684faa52a06 | # 1brc.data
1️⃣🐝🏎️ The One Billion Row Challenge - Data files only if you can't be bothered with Java
or write a generator but would rather download +3GB 😁
See https://github.com/gunnarmorling/1brc for original Java challenge.
Large data files have been generated on my machine and given official Java generator is random
(not seeded and hence not deterministic) will be different than official files.
+10 million row files have been compressed with [7-zip](https://www.7-zip.org/) and split in 1GB volumes if needed.
Those files have been uploaded using git lfs.
Expected output (`.out`) have been generated using Java implementations. Nothing has been done to verify results are correct.
Other files are from https://github.com/gunnarmorling/1brc/tree/main/src/test/resources/samples with expected outputs.
Download or clone with:
```
git clone https://huggingface.co/datasets/nietras/1brc.data
``` | nietras/1brc.data | [
"size_categories:1B<n<10B",
"language:en",
"license:apache-2.0",
"region:us"
] | 2024-01-06T20:31:21+00:00 | {"language": ["en"], "license": "apache-2.0", "size_categories": ["1B<n<10B"], "pretty_name": "1\ufe0f\u20e3\ud83d\udc1d\ud83c\udfce\ufe0f The One Billion Row Challenge - Data", "viewer": false} | 2024-01-13T08:52:16+00:00 | [] | [
"en"
] | TAGS
#size_categories-1B<n<10B #language-English #license-apache-2.0 #region-us
| # URL
1️⃣️ The One Billion Row Challenge - Data files only if you can't be bothered with Java
or write a generator but would rather download +3GB
See URL for original Java challenge.
Large data files have been generated on my machine and given official Java generator is random
(not seeded and hence not deterministic) will be different than official files.
+10 million row files have been compressed with 7-zip and split in 1GB volumes if needed.
Those files have been uploaded using git lfs.
Expected output ('.out') have been generated using Java implementations. Nothing has been done to verify results are correct.
Other files are from URL with expected outputs.
Download or clone with:
| [
"# URL\n1️⃣️ The One Billion Row Challenge - Data files only if you can't be bothered with Java \nor write a generator but would rather download +3GB \n\nSee URL for original Java challenge.\n\nLarge data files have been generated on my machine and given official Java generator is random\n(not seeded and hence not deterministic) will be different than official files.\n\n+10 million row files have been compressed with 7-zip and split in 1GB volumes if needed.\nThose files have been uploaded using git lfs. \n\nExpected output ('.out') have been generated using Java implementations. Nothing has been done to verify results are correct.\n\nOther files are from URL with expected outputs.\n\nDownload or clone with:"
] | [
"TAGS\n#size_categories-1B<n<10B #language-English #license-apache-2.0 #region-us \n",
"# URL\n1️⃣️ The One Billion Row Challenge - Data files only if you can't be bothered with Java \nor write a generator but would rather download +3GB \n\nSee URL for original Java challenge.\n\nLarge data files have been generated on my machine and given official Java generator is random\n(not seeded and hence not deterministic) will be different than official files.\n\n+10 million row files have been compressed with 7-zip and split in 1GB volumes if needed.\nThose files have been uploaded using git lfs. \n\nExpected output ('.out') have been generated using Java implementations. Nothing has been done to verify results are correct.\n\nOther files are from URL with expected outputs.\n\nDownload or clone with:"
] | [
30,
161
] | [
"passage: TAGS\n#size_categories-1B<n<10B #language-English #license-apache-2.0 #region-us \n# URL\n1️⃣️ The One Billion Row Challenge - Data files only if you can't be bothered with Java \nor write a generator but would rather download +3GB \n\nSee URL for original Java challenge.\n\nLarge data files have been generated on my machine and given official Java generator is random\n(not seeded and hence not deterministic) will be different than official files.\n\n+10 million row files have been compressed with 7-zip and split in 1GB volumes if needed.\nThose files have been uploaded using git lfs. \n\nExpected output ('.out') have been generated using Java implementations. Nothing has been done to verify results are correct.\n\nOther files are from URL with expected outputs.\n\nDownload or clone with:"
] |
cf7f694217d04b7a31912644f504a8b59525439b | # Dataset Card for "hh-rlhf"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | tasksource/hh-rlhf | [
"region:us"
] | 2024-01-06T20:32:09+00:00 | {"dataset_info": [{"config_name": "harmless-base", "features": [{"name": "chosen", "dtype": "string"}, {"name": "rejected", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 56295642, "num_examples": 42537}, {"name": "test", "num_bytes": 3177260, "num_examples": 2312}], "download_size": 33114797, "dataset_size": 59472902}, {"config_name": "helpful-base", "features": [{"name": "chosen", "dtype": "string"}, {"name": "rejected", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 67080738, "num_examples": 43835}, {"name": "test", "num_bytes": 3620289, "num_examples": 2354}], "download_size": 40170130, "dataset_size": 70701027}, {"config_name": "helpful-online", "features": [{"name": "chosen", "dtype": "string"}, {"name": "rejected", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 81565233, "num_examples": 22007}, {"name": "test", "num_bytes": 4283371, "num_examples": 1137}], "download_size": 48457936, "dataset_size": 85848604}, {"config_name": "helpful-rejection-sampled", "features": [{"name": "chosen", "dtype": "string"}, {"name": "rejected", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 103629758, "num_examples": 52421}, {"name": "test", "num_bytes": 5481145, "num_examples": 2749}], "download_size": 61806251, "dataset_size": 109110903}], "configs": [{"config_name": "harmless-base", "data_files": [{"split": "train", "path": "harmless-base/train-*"}, {"split": "test", "path": "harmless-base/test-*"}]}, {"config_name": "helpful-base", "data_files": [{"split": "train", "path": "helpful-base/train-*"}, {"split": "test", "path": "helpful-base/test-*"}]}, {"config_name": "helpful-online", "data_files": [{"split": "train", "path": "helpful-online/train-*"}, {"split": "test", "path": "helpful-online/test-*"}]}, {"config_name": "helpful-rejection-sampled", "data_files": [{"split": "train", "path": "helpful-rejection-sampled/train-*"}, {"split": "test", "path": "helpful-rejection-sampled/test-*"}]}]} | 2024-01-06T20:34:27+00:00 | [] | [] | TAGS
#region-us
| # Dataset Card for "hh-rlhf"
More Information needed | [
"# Dataset Card for \"hh-rlhf\"\n\nMore Information needed"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for \"hh-rlhf\"\n\nMore Information needed"
] | [
6,
15
] | [
"passage: TAGS\n#region-us \n# Dataset Card for \"hh-rlhf\"\n\nMore Information needed"
] |
794d262ee70afce847508a7542ce6ef0c0605df0 | # Welcome to the World of Gutendex English Books!
**This repository brings you a curated collection of English books from the vast Gutendex library, hosted on the amazing Hugging Face platform. Dive into a plethora of classics, timeless gems, and lesser-known treasures, all waiting to be explored and rediscovered.**
## ✨ What's inside?
+ **Thousands of English books:** We've meticulously handpicked and processed a diverse selection of English books, spanning various genres and eras. From adventure novels and historical sagas to philosophical treatises and poetry anthologies, you'll find something for every taste.
+ **Clean and accessible text:** Each book is carefully cleaned and converted to plain text format, making it readily available for natural language processing (NLP) tasks and analysis.
+ **Easy-to-use metadata:** Each book comes with rich metadata, including author, title, publication date, genre, and language. This makes it simple to filter, search, and organize your literary adventures.
+ **Open and shareable:** This repository is built on the collaborative spirit of Hugging Face. Feel free to fork, contribute, and build upon this collection to create your own unique literary playground.
## Getting started:
+ **Explore the dataset:** Browse the list of available books or use the provided metadata to find specific titles or genres.
+ **⬇️ Download & Use:** Each book is readily available for download in plain text format. Feel free to integrate them into your NLP projects, build custom applications, or simply enjoy reading them in their digital form.
+ **Contribute & share:** This is just the beginning! If you find a missing book, have suggestions for improvement, or want to create new features, we encourage you to contribute and be part of the growing community.
## Beyond the bookshelf:
This repository is not just a collection of books, it's a springboard for creativity and innovation. Here are some potential applications:
+ **Train your own NLP models:** Use this dataset to train language models on diverse writing styles and historical texts.
+ **Build research projects:** Analyze literary trends, explore author similarities, or develop new methods for text analysis.
+ **Spark creativity:** Draw inspiration from timeless stories and craft your own literary masterpieces.
+ **Share your love of books:** Create engaging applications, interactive experiences, or simply recommend hidden gems to fellow bookworms.
## Let the adventure begin!
We hope this repository opens up a world of possibilities for readers, researchers, and NLP enthusiasts alike. So grab your bookworm hat, embark on a literary journey, and don't hesitate to leave your mark on this ever-growing treasure trove of words.
## Happy reading!
**P.S.** Feel free to reach out if you have any questions, suggestions, or simply want to share your favorite book from the collection. We're always happy to hear from fellow bibliophiles! | AvishayDev/gutendex-dataset | [
"task_categories:text-classification",
"task_categories:token-classification",
"task_categories:text-generation",
"task_categories:fill-mask",
"size_categories:10K<n<100K",
"language:en",
"books",
"text",
"region:us"
] | 2024-01-06T20:38:37+00:00 | {"language": ["en"], "size_categories": ["10K<n<100K"], "task_categories": ["text-classification", "token-classification", "text-generation", "fill-mask"], "pretty_name": "Books For All!", "dataset_info": {"features": [{"name": "title", "dtype": "string"}, {"name": "authors", "list": [{"name": "birth_year", "dtype": "int64"}, {"name": "death_year", "dtype": "int64"}, {"name": "name", "dtype": "string"}]}, {"name": "translators", "list": [{"name": "birth_year", "dtype": "int64"}, {"name": "death_year", "dtype": "int64"}, {"name": "name", "dtype": "string"}]}, {"name": "subjects", "sequence": "string"}, {"name": "bookshelves", "sequence": "string"}, {"name": "languages", "sequence": "string"}, {"name": "copyright", "dtype": "bool"}, {"name": "download_count", "dtype": "int64"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 11768240138, "num_examples": 26138}], "download_size": 7164356350, "dataset_size": 11768240138}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "tags": ["books", "text"]} | 2024-01-28T13:26:42+00:00 | [] | [
"en"
] | TAGS
#task_categories-text-classification #task_categories-token-classification #task_categories-text-generation #task_categories-fill-mask #size_categories-10K<n<100K #language-English #books #text #region-us
| # Welcome to the World of Gutendex English Books!
This repository brings you a curated collection of English books from the vast Gutendex library, hosted on the amazing Hugging Face platform. Dive into a plethora of classics, timeless gems, and lesser-known treasures, all waiting to be explored and rediscovered.
## What's inside?
+ Thousands of English books: We've meticulously handpicked and processed a diverse selection of English books, spanning various genres and eras. From adventure novels and historical sagas to philosophical treatises and poetry anthologies, you'll find something for every taste.
+ Clean and accessible text: Each book is carefully cleaned and converted to plain text format, making it readily available for natural language processing (NLP) tasks and analysis.
+ Easy-to-use metadata: Each book comes with rich metadata, including author, title, publication date, genre, and language. This makes it simple to filter, search, and organize your literary adventures.
+ Open and shareable: This repository is built on the collaborative spirit of Hugging Face. Feel free to fork, contribute, and build upon this collection to create your own unique literary playground.
## Getting started:
+ Explore the dataset: Browse the list of available books or use the provided metadata to find specific titles or genres.
+ ⬇️ Download & Use: Each book is readily available for download in plain text format. Feel free to integrate them into your NLP projects, build custom applications, or simply enjoy reading them in their digital form.
+ Contribute & share: This is just the beginning! If you find a missing book, have suggestions for improvement, or want to create new features, we encourage you to contribute and be part of the growing community.
## Beyond the bookshelf:
This repository is not just a collection of books, it's a springboard for creativity and innovation. Here are some potential applications:
+ Train your own NLP models: Use this dataset to train language models on diverse writing styles and historical texts.
+ Build research projects: Analyze literary trends, explore author similarities, or develop new methods for text analysis.
+ Spark creativity: Draw inspiration from timeless stories and craft your own literary masterpieces.
+ Share your love of books: Create engaging applications, interactive experiences, or simply recommend hidden gems to fellow bookworms.
## Let the adventure begin!
We hope this repository opens up a world of possibilities for readers, researchers, and NLP enthusiasts alike. So grab your bookworm hat, embark on a literary journey, and don't hesitate to leave your mark on this ever-growing treasure trove of words.
## Happy reading!
P.S. Feel free to reach out if you have any questions, suggestions, or simply want to share your favorite book from the collection. We're always happy to hear from fellow bibliophiles! | [
"# Welcome to the World of Gutendex English Books!\n\nThis repository brings you a curated collection of English books from the vast Gutendex library, hosted on the amazing Hugging Face platform. Dive into a plethora of classics, timeless gems, and lesser-known treasures, all waiting to be explored and rediscovered.",
"## What's inside?\n\n+ Thousands of English books: We've meticulously handpicked and processed a diverse selection of English books, spanning various genres and eras. From adventure novels and historical sagas to philosophical treatises and poetry anthologies, you'll find something for every taste.\n+ Clean and accessible text: Each book is carefully cleaned and converted to plain text format, making it readily available for natural language processing (NLP) tasks and analysis.\n+ Easy-to-use metadata: Each book comes with rich metadata, including author, title, publication date, genre, and language. This makes it simple to filter, search, and organize your literary adventures.\n+ Open and shareable: This repository is built on the collaborative spirit of Hugging Face. Feel free to fork, contribute, and build upon this collection to create your own unique literary playground.",
"## Getting started:\n\n+ Explore the dataset: Browse the list of available books or use the provided metadata to find specific titles or genres.\n+ ⬇️ Download & Use: Each book is readily available for download in plain text format. Feel free to integrate them into your NLP projects, build custom applications, or simply enjoy reading them in their digital form.\n+ Contribute & share: This is just the beginning! If you find a missing book, have suggestions for improvement, or want to create new features, we encourage you to contribute and be part of the growing community.",
"## Beyond the bookshelf:\n\nThis repository is not just a collection of books, it's a springboard for creativity and innovation. Here are some potential applications:\n\n+ Train your own NLP models: Use this dataset to train language models on diverse writing styles and historical texts.\n+ Build research projects: Analyze literary trends, explore author similarities, or develop new methods for text analysis.\n+ Spark creativity: Draw inspiration from timeless stories and craft your own literary masterpieces.\n+ Share your love of books: Create engaging applications, interactive experiences, or simply recommend hidden gems to fellow bookworms.",
"## Let the adventure begin!\n\nWe hope this repository opens up a world of possibilities for readers, researchers, and NLP enthusiasts alike. So grab your bookworm hat, embark on a literary journey, and don't hesitate to leave your mark on this ever-growing treasure trove of words.",
"## Happy reading!\n\nP.S. Feel free to reach out if you have any questions, suggestions, or simply want to share your favorite book from the collection. We're always happy to hear from fellow bibliophiles!"
] | [
"TAGS\n#task_categories-text-classification #task_categories-token-classification #task_categories-text-generation #task_categories-fill-mask #size_categories-10K<n<100K #language-English #books #text #region-us \n",
"# Welcome to the World of Gutendex English Books!\n\nThis repository brings you a curated collection of English books from the vast Gutendex library, hosted on the amazing Hugging Face platform. Dive into a plethora of classics, timeless gems, and lesser-known treasures, all waiting to be explored and rediscovered.",
"## What's inside?\n\n+ Thousands of English books: We've meticulously handpicked and processed a diverse selection of English books, spanning various genres and eras. From adventure novels and historical sagas to philosophical treatises and poetry anthologies, you'll find something for every taste.\n+ Clean and accessible text: Each book is carefully cleaned and converted to plain text format, making it readily available for natural language processing (NLP) tasks and analysis.\n+ Easy-to-use metadata: Each book comes with rich metadata, including author, title, publication date, genre, and language. This makes it simple to filter, search, and organize your literary adventures.\n+ Open and shareable: This repository is built on the collaborative spirit of Hugging Face. Feel free to fork, contribute, and build upon this collection to create your own unique literary playground.",
"## Getting started:\n\n+ Explore the dataset: Browse the list of available books or use the provided metadata to find specific titles or genres.\n+ ⬇️ Download & Use: Each book is readily available for download in plain text format. Feel free to integrate them into your NLP projects, build custom applications, or simply enjoy reading them in their digital form.\n+ Contribute & share: This is just the beginning! If you find a missing book, have suggestions for improvement, or want to create new features, we encourage you to contribute and be part of the growing community.",
"## Beyond the bookshelf:\n\nThis repository is not just a collection of books, it's a springboard for creativity and innovation. Here are some potential applications:\n\n+ Train your own NLP models: Use this dataset to train language models on diverse writing styles and historical texts.\n+ Build research projects: Analyze literary trends, explore author similarities, or develop new methods for text analysis.\n+ Spark creativity: Draw inspiration from timeless stories and craft your own literary masterpieces.\n+ Share your love of books: Create engaging applications, interactive experiences, or simply recommend hidden gems to fellow bookworms.",
"## Let the adventure begin!\n\nWe hope this repository opens up a world of possibilities for readers, researchers, and NLP enthusiasts alike. So grab your bookworm hat, embark on a literary journey, and don't hesitate to leave your mark on this ever-growing treasure trove of words.",
"## Happy reading!\n\nP.S. Feel free to reach out if you have any questions, suggestions, or simply want to share your favorite book from the collection. We're always happy to hear from fellow bibliophiles!"
] | [
71,
82,
203,
125,
141,
75,
46
] | [
"passage: TAGS\n#task_categories-text-classification #task_categories-token-classification #task_categories-text-generation #task_categories-fill-mask #size_categories-10K<n<100K #language-English #books #text #region-us \n# Welcome to the World of Gutendex English Books!\n\nThis repository brings you a curated collection of English books from the vast Gutendex library, hosted on the amazing Hugging Face platform. Dive into a plethora of classics, timeless gems, and lesser-known treasures, all waiting to be explored and rediscovered.## What's inside?\n\n+ Thousands of English books: We've meticulously handpicked and processed a diverse selection of English books, spanning various genres and eras. From adventure novels and historical sagas to philosophical treatises and poetry anthologies, you'll find something for every taste.\n+ Clean and accessible text: Each book is carefully cleaned and converted to plain text format, making it readily available for natural language processing (NLP) tasks and analysis.\n+ Easy-to-use metadata: Each book comes with rich metadata, including author, title, publication date, genre, and language. This makes it simple to filter, search, and organize your literary adventures.\n+ Open and shareable: This repository is built on the collaborative spirit of Hugging Face. Feel free to fork, contribute, and build upon this collection to create your own unique literary playground.## Getting started:\n\n+ Explore the dataset: Browse the list of available books or use the provided metadata to find specific titles or genres.\n+ ⬇️ Download & Use: Each book is readily available for download in plain text format. Feel free to integrate them into your NLP projects, build custom applications, or simply enjoy reading them in their digital form.\n+ Contribute & share: This is just the beginning! If you find a missing book, have suggestions for improvement, or want to create new features, we encourage you to contribute and be part of the growing community."
] |
cc2d3071489b9e8d7c7a42ea011a6a851101af9f |
# Dataset Card for Evaluation run of nlpguy/Lelantos-low-tune
<!-- Provide a quick summary of the dataset. -->
Dataset automatically created during the evaluation run of model [nlpguy/Lelantos-low-tune](https://huggingface.co/nlpguy/Lelantos-low-tune) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset("open-llm-leaderboard/details_nlpguy__Lelantos-low-tune",
"harness_winogrande_5",
split="train")
```
## Latest results
These are the [latest results from run 2024-01-06T20:37:11.486361](https://huggingface.co/datasets/open-llm-leaderboard/details_nlpguy__Lelantos-low-tune/blob/main/results_2024-01-06T20-37-11.486361.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"acc": 0.6447697519576503,
"acc_stderr": 0.032166201051049795,
"acc_norm": 0.6453578989917766,
"acc_norm_stderr": 0.03281998402567921,
"mc1": 0.4418604651162791,
"mc1_stderr": 0.017384767478986218,
"mc2": 0.6133400726022729,
"mc2_stderr": 0.015422148614448189
},
"harness|arc:challenge|25": {
"acc": 0.6459044368600683,
"acc_stderr": 0.013975454122756562,
"acc_norm": 0.6706484641638225,
"acc_norm_stderr": 0.013734057652635474
},
"harness|hellaswag|10": {
"acc": 0.6766580362477594,
"acc_stderr": 0.004667960519938637,
"acc_norm": 0.8605855407289384,
"acc_norm_stderr": 0.0034567060380547555
},
"harness|hendrycksTest-abstract_algebra|5": {
"acc": 0.3,
"acc_stderr": 0.04605661864718381,
"acc_norm": 0.3,
"acc_norm_stderr": 0.04605661864718381
},
"harness|hendrycksTest-anatomy|5": {
"acc": 0.6,
"acc_stderr": 0.04232073695151589,
"acc_norm": 0.6,
"acc_norm_stderr": 0.04232073695151589
},
"harness|hendrycksTest-astronomy|5": {
"acc": 0.7171052631578947,
"acc_stderr": 0.03665349695640767,
"acc_norm": 0.7171052631578947,
"acc_norm_stderr": 0.03665349695640767
},
"harness|hendrycksTest-business_ethics|5": {
"acc": 0.59,
"acc_stderr": 0.049431107042371025,
"acc_norm": 0.59,
"acc_norm_stderr": 0.049431107042371025
},
"harness|hendrycksTest-clinical_knowledge|5": {
"acc": 0.6830188679245283,
"acc_stderr": 0.02863723563980089,
"acc_norm": 0.6830188679245283,
"acc_norm_stderr": 0.02863723563980089
},
"harness|hendrycksTest-college_biology|5": {
"acc": 0.7430555555555556,
"acc_stderr": 0.03653946969442099,
"acc_norm": 0.7430555555555556,
"acc_norm_stderr": 0.03653946969442099
},
"harness|hendrycksTest-college_chemistry|5": {
"acc": 0.48,
"acc_stderr": 0.050211673156867795,
"acc_norm": 0.48,
"acc_norm_stderr": 0.050211673156867795
},
"harness|hendrycksTest-college_computer_science|5": {
"acc": 0.48,
"acc_stderr": 0.050211673156867795,
"acc_norm": 0.48,
"acc_norm_stderr": 0.050211673156867795
},
"harness|hendrycksTest-college_mathematics|5": {
"acc": 0.23,
"acc_stderr": 0.04229525846816506,
"acc_norm": 0.23,
"acc_norm_stderr": 0.04229525846816506
},
"harness|hendrycksTest-college_medicine|5": {
"acc": 0.6416184971098265,
"acc_stderr": 0.036563436533531585,
"acc_norm": 0.6416184971098265,
"acc_norm_stderr": 0.036563436533531585
},
"harness|hendrycksTest-college_physics|5": {
"acc": 0.4019607843137255,
"acc_stderr": 0.04878608714466996,
"acc_norm": 0.4019607843137255,
"acc_norm_stderr": 0.04878608714466996
},
"harness|hendrycksTest-computer_security|5": {
"acc": 0.76,
"acc_stderr": 0.04292346959909283,
"acc_norm": 0.76,
"acc_norm_stderr": 0.04292346959909283
},
"harness|hendrycksTest-conceptual_physics|5": {
"acc": 0.5702127659574469,
"acc_stderr": 0.03236214467715564,
"acc_norm": 0.5702127659574469,
"acc_norm_stderr": 0.03236214467715564
},
"harness|hendrycksTest-econometrics|5": {
"acc": 0.4824561403508772,
"acc_stderr": 0.04700708033551038,
"acc_norm": 0.4824561403508772,
"acc_norm_stderr": 0.04700708033551038
},
"harness|hendrycksTest-electrical_engineering|5": {
"acc": 0.5448275862068965,
"acc_stderr": 0.04149886942192117,
"acc_norm": 0.5448275862068965,
"acc_norm_stderr": 0.04149886942192117
},
"harness|hendrycksTest-elementary_mathematics|5": {
"acc": 0.4312169312169312,
"acc_stderr": 0.025506481698138208,
"acc_norm": 0.4312169312169312,
"acc_norm_stderr": 0.025506481698138208
},
"harness|hendrycksTest-formal_logic|5": {
"acc": 0.4523809523809524,
"acc_stderr": 0.044518079590553275,
"acc_norm": 0.4523809523809524,
"acc_norm_stderr": 0.044518079590553275
},
"harness|hendrycksTest-global_facts|5": {
"acc": 0.36,
"acc_stderr": 0.04824181513244218,
"acc_norm": 0.36,
"acc_norm_stderr": 0.04824181513244218
},
"harness|hendrycksTest-high_school_biology|5": {
"acc": 0.7774193548387097,
"acc_stderr": 0.02366421667164251,
"acc_norm": 0.7774193548387097,
"acc_norm_stderr": 0.02366421667164251
},
"harness|hendrycksTest-high_school_chemistry|5": {
"acc": 0.5221674876847291,
"acc_stderr": 0.03514528562175007,
"acc_norm": 0.5221674876847291,
"acc_norm_stderr": 0.03514528562175007
},
"harness|hendrycksTest-high_school_computer_science|5": {
"acc": 0.7,
"acc_stderr": 0.046056618647183814,
"acc_norm": 0.7,
"acc_norm_stderr": 0.046056618647183814
},
"harness|hendrycksTest-high_school_european_history|5": {
"acc": 0.7818181818181819,
"acc_stderr": 0.03225078108306289,
"acc_norm": 0.7818181818181819,
"acc_norm_stderr": 0.03225078108306289
},
"harness|hendrycksTest-high_school_geography|5": {
"acc": 0.7777777777777778,
"acc_stderr": 0.02962022787479049,
"acc_norm": 0.7777777777777778,
"acc_norm_stderr": 0.02962022787479049
},
"harness|hendrycksTest-high_school_government_and_politics|5": {
"acc": 0.8860103626943006,
"acc_stderr": 0.022935144053919436,
"acc_norm": 0.8860103626943006,
"acc_norm_stderr": 0.022935144053919436
},
"harness|hendrycksTest-high_school_macroeconomics|5": {
"acc": 0.6358974358974359,
"acc_stderr": 0.02439667298509476,
"acc_norm": 0.6358974358974359,
"acc_norm_stderr": 0.02439667298509476
},
"harness|hendrycksTest-high_school_mathematics|5": {
"acc": 0.34814814814814815,
"acc_stderr": 0.029045600290616255,
"acc_norm": 0.34814814814814815,
"acc_norm_stderr": 0.029045600290616255
},
"harness|hendrycksTest-high_school_microeconomics|5": {
"acc": 0.6890756302521008,
"acc_stderr": 0.030066761582977934,
"acc_norm": 0.6890756302521008,
"acc_norm_stderr": 0.030066761582977934
},
"harness|hendrycksTest-high_school_physics|5": {
"acc": 0.33774834437086093,
"acc_stderr": 0.038615575462551684,
"acc_norm": 0.33774834437086093,
"acc_norm_stderr": 0.038615575462551684
},
"harness|hendrycksTest-high_school_psychology|5": {
"acc": 0.8348623853211009,
"acc_stderr": 0.015919557829976037,
"acc_norm": 0.8348623853211009,
"acc_norm_stderr": 0.015919557829976037
},
"harness|hendrycksTest-high_school_statistics|5": {
"acc": 0.5416666666666666,
"acc_stderr": 0.03398110890294636,
"acc_norm": 0.5416666666666666,
"acc_norm_stderr": 0.03398110890294636
},
"harness|hendrycksTest-high_school_us_history|5": {
"acc": 0.8137254901960784,
"acc_stderr": 0.027325470966716312,
"acc_norm": 0.8137254901960784,
"acc_norm_stderr": 0.027325470966716312
},
"harness|hendrycksTest-high_school_world_history|5": {
"acc": 0.8185654008438819,
"acc_stderr": 0.02508596114457966,
"acc_norm": 0.8185654008438819,
"acc_norm_stderr": 0.02508596114457966
},
"harness|hendrycksTest-human_aging|5": {
"acc": 0.695067264573991,
"acc_stderr": 0.030898610882477515,
"acc_norm": 0.695067264573991,
"acc_norm_stderr": 0.030898610882477515
},
"harness|hendrycksTest-human_sexuality|5": {
"acc": 0.8015267175572519,
"acc_stderr": 0.034981493854624734,
"acc_norm": 0.8015267175572519,
"acc_norm_stderr": 0.034981493854624734
},
"harness|hendrycksTest-international_law|5": {
"acc": 0.7768595041322314,
"acc_stderr": 0.03800754475228732,
"acc_norm": 0.7768595041322314,
"acc_norm_stderr": 0.03800754475228732
},
"harness|hendrycksTest-jurisprudence|5": {
"acc": 0.7592592592592593,
"acc_stderr": 0.04133119440243838,
"acc_norm": 0.7592592592592593,
"acc_norm_stderr": 0.04133119440243838
},
"harness|hendrycksTest-logical_fallacies|5": {
"acc": 0.7914110429447853,
"acc_stderr": 0.031921934489347235,
"acc_norm": 0.7914110429447853,
"acc_norm_stderr": 0.031921934489347235
},
"harness|hendrycksTest-machine_learning|5": {
"acc": 0.49107142857142855,
"acc_stderr": 0.04745033255489123,
"acc_norm": 0.49107142857142855,
"acc_norm_stderr": 0.04745033255489123
},
"harness|hendrycksTest-management|5": {
"acc": 0.7766990291262136,
"acc_stderr": 0.04123553189891431,
"acc_norm": 0.7766990291262136,
"acc_norm_stderr": 0.04123553189891431
},
"harness|hendrycksTest-marketing|5": {
"acc": 0.8632478632478633,
"acc_stderr": 0.022509033937077805,
"acc_norm": 0.8632478632478633,
"acc_norm_stderr": 0.022509033937077805
},
"harness|hendrycksTest-medical_genetics|5": {
"acc": 0.69,
"acc_stderr": 0.04648231987117316,
"acc_norm": 0.69,
"acc_norm_stderr": 0.04648231987117316
},
"harness|hendrycksTest-miscellaneous|5": {
"acc": 0.8275862068965517,
"acc_stderr": 0.013507943909371803,
"acc_norm": 0.8275862068965517,
"acc_norm_stderr": 0.013507943909371803
},
"harness|hendrycksTest-moral_disputes|5": {
"acc": 0.7225433526011561,
"acc_stderr": 0.024105712607754307,
"acc_norm": 0.7225433526011561,
"acc_norm_stderr": 0.024105712607754307
},
"harness|hendrycksTest-moral_scenarios|5": {
"acc": 0.3843575418994413,
"acc_stderr": 0.016269088663959402,
"acc_norm": 0.3843575418994413,
"acc_norm_stderr": 0.016269088663959402
},
"harness|hendrycksTest-nutrition|5": {
"acc": 0.7450980392156863,
"acc_stderr": 0.02495418432487991,
"acc_norm": 0.7450980392156863,
"acc_norm_stderr": 0.02495418432487991
},
"harness|hendrycksTest-philosophy|5": {
"acc": 0.707395498392283,
"acc_stderr": 0.02583989833487798,
"acc_norm": 0.707395498392283,
"acc_norm_stderr": 0.02583989833487798
},
"harness|hendrycksTest-prehistory|5": {
"acc": 0.7314814814814815,
"acc_stderr": 0.02465968518596729,
"acc_norm": 0.7314814814814815,
"acc_norm_stderr": 0.02465968518596729
},
"harness|hendrycksTest-professional_accounting|5": {
"acc": 0.5035460992907801,
"acc_stderr": 0.02982674915328092,
"acc_norm": 0.5035460992907801,
"acc_norm_stderr": 0.02982674915328092
},
"harness|hendrycksTest-professional_law|5": {
"acc": 0.4667535853976532,
"acc_stderr": 0.012741974333897229,
"acc_norm": 0.4667535853976532,
"acc_norm_stderr": 0.012741974333897229
},
"harness|hendrycksTest-professional_medicine|5": {
"acc": 0.6948529411764706,
"acc_stderr": 0.027971541370170598,
"acc_norm": 0.6948529411764706,
"acc_norm_stderr": 0.027971541370170598
},
"harness|hendrycksTest-professional_psychology|5": {
"acc": 0.6862745098039216,
"acc_stderr": 0.01877168389352818,
"acc_norm": 0.6862745098039216,
"acc_norm_stderr": 0.01877168389352818
},
"harness|hendrycksTest-public_relations|5": {
"acc": 0.6818181818181818,
"acc_stderr": 0.04461272175910509,
"acc_norm": 0.6818181818181818,
"acc_norm_stderr": 0.04461272175910509
},
"harness|hendrycksTest-security_studies|5": {
"acc": 0.7387755102040816,
"acc_stderr": 0.028123429335142773,
"acc_norm": 0.7387755102040816,
"acc_norm_stderr": 0.028123429335142773
},
"harness|hendrycksTest-sociology|5": {
"acc": 0.8258706467661692,
"acc_stderr": 0.026814951200421603,
"acc_norm": 0.8258706467661692,
"acc_norm_stderr": 0.026814951200421603
},
"harness|hendrycksTest-us_foreign_policy|5": {
"acc": 0.86,
"acc_stderr": 0.0348735088019777,
"acc_norm": 0.86,
"acc_norm_stderr": 0.0348735088019777
},
"harness|hendrycksTest-virology|5": {
"acc": 0.5602409638554217,
"acc_stderr": 0.03864139923699122,
"acc_norm": 0.5602409638554217,
"acc_norm_stderr": 0.03864139923699122
},
"harness|hendrycksTest-world_religions|5": {
"acc": 0.8304093567251462,
"acc_stderr": 0.02878210810540171,
"acc_norm": 0.8304093567251462,
"acc_norm_stderr": 0.02878210810540171
},
"harness|truthfulqa:mc|0": {
"mc1": 0.4418604651162791,
"mc1_stderr": 0.017384767478986218,
"mc2": 0.6133400726022729,
"mc2_stderr": 0.015422148614448189
},
"harness|winogrande|5": {
"acc": 0.7955801104972375,
"acc_stderr": 0.011334090612597223
},
"harness|gsm8k|5": {
"acc": 0.6679302501895376,
"acc_stderr": 0.012972465034361867
}
}
```
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
[More Information Needed] | open-llm-leaderboard/details_nlpguy__Lelantos-low-tune | [
"region:us"
] | 2024-01-06T20:39:29+00:00 | {"pretty_name": "Evaluation run of nlpguy/Lelantos-low-tune", "dataset_summary": "Dataset automatically created during the evaluation run of model [nlpguy/Lelantos-low-tune](https://huggingface.co/nlpguy/Lelantos-low-tune) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_nlpguy__Lelantos-low-tune\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-06T20:37:11.486361](https://huggingface.co/datasets/open-llm-leaderboard/details_nlpguy__Lelantos-low-tune/blob/main/results_2024-01-06T20-37-11.486361.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6447697519576503,\n \"acc_stderr\": 0.032166201051049795,\n \"acc_norm\": 0.6453578989917766,\n \"acc_norm_stderr\": 0.03281998402567921,\n \"mc1\": 0.4418604651162791,\n \"mc1_stderr\": 0.017384767478986218,\n \"mc2\": 0.6133400726022729,\n \"mc2_stderr\": 0.015422148614448189\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.6459044368600683,\n \"acc_stderr\": 0.013975454122756562,\n \"acc_norm\": 0.6706484641638225,\n \"acc_norm_stderr\": 0.013734057652635474\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6766580362477594,\n \"acc_stderr\": 0.004667960519938637,\n \"acc_norm\": 0.8605855407289384,\n \"acc_norm_stderr\": 0.0034567060380547555\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.3,\n \"acc_stderr\": 0.04605661864718381,\n \"acc_norm\": 0.3,\n \"acc_norm_stderr\": 0.04605661864718381\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6,\n \"acc_stderr\": 0.04232073695151589,\n \"acc_norm\": 0.6,\n \"acc_norm_stderr\": 0.04232073695151589\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.7171052631578947,\n \"acc_stderr\": 0.03665349695640767,\n \"acc_norm\": 0.7171052631578947,\n \"acc_norm_stderr\": 0.03665349695640767\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.59,\n \"acc_stderr\": 0.049431107042371025,\n \"acc_norm\": 0.59,\n \"acc_norm_stderr\": 0.049431107042371025\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.6830188679245283,\n \"acc_stderr\": 0.02863723563980089,\n \"acc_norm\": 0.6830188679245283,\n \"acc_norm_stderr\": 0.02863723563980089\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7430555555555556,\n \"acc_stderr\": 0.03653946969442099,\n \"acc_norm\": 0.7430555555555556,\n \"acc_norm_stderr\": 0.03653946969442099\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.48,\n \"acc_stderr\": 0.050211673156867795,\n \"acc_norm\": 0.48,\n \"acc_norm_stderr\": 0.050211673156867795\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.48,\n \"acc_stderr\": 0.050211673156867795,\n \"acc_norm\": 0.48,\n \"acc_norm_stderr\": 0.050211673156867795\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.23,\n \"acc_stderr\": 0.04229525846816506,\n \"acc_norm\": 0.23,\n \"acc_norm_stderr\": 0.04229525846816506\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6416184971098265,\n \"acc_stderr\": 0.036563436533531585,\n \"acc_norm\": 0.6416184971098265,\n \"acc_norm_stderr\": 0.036563436533531585\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.4019607843137255,\n \"acc_stderr\": 0.04878608714466996,\n \"acc_norm\": 0.4019607843137255,\n \"acc_norm_stderr\": 0.04878608714466996\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.76,\n \"acc_stderr\": 0.04292346959909283,\n \"acc_norm\": 0.76,\n \"acc_norm_stderr\": 0.04292346959909283\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5702127659574469,\n \"acc_stderr\": 0.03236214467715564,\n \"acc_norm\": 0.5702127659574469,\n \"acc_norm_stderr\": 0.03236214467715564\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.4824561403508772,\n \"acc_stderr\": 0.04700708033551038,\n \"acc_norm\": 0.4824561403508772,\n \"acc_norm_stderr\": 0.04700708033551038\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5448275862068965,\n \"acc_stderr\": 0.04149886942192117,\n \"acc_norm\": 0.5448275862068965,\n \"acc_norm_stderr\": 0.04149886942192117\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.4312169312169312,\n \"acc_stderr\": 0.025506481698138208,\n \"acc_norm\": 0.4312169312169312,\n \"acc_norm_stderr\": 0.025506481698138208\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.4523809523809524,\n \"acc_stderr\": 0.044518079590553275,\n \"acc_norm\": 0.4523809523809524,\n \"acc_norm_stderr\": 0.044518079590553275\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.36,\n \"acc_stderr\": 0.04824181513244218,\n \"acc_norm\": 0.36,\n \"acc_norm_stderr\": 0.04824181513244218\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7774193548387097,\n \"acc_stderr\": 0.02366421667164251,\n \"acc_norm\": 0.7774193548387097,\n \"acc_norm_stderr\": 0.02366421667164251\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.5221674876847291,\n \"acc_stderr\": 0.03514528562175007,\n \"acc_norm\": 0.5221674876847291,\n \"acc_norm_stderr\": 0.03514528562175007\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.7,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.7,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7818181818181819,\n \"acc_stderr\": 0.03225078108306289,\n \"acc_norm\": 0.7818181818181819,\n \"acc_norm_stderr\": 0.03225078108306289\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7777777777777778,\n \"acc_stderr\": 0.02962022787479049,\n \"acc_norm\": 0.7777777777777778,\n \"acc_norm_stderr\": 0.02962022787479049\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8860103626943006,\n \"acc_stderr\": 0.022935144053919436,\n \"acc_norm\": 0.8860103626943006,\n \"acc_norm_stderr\": 0.022935144053919436\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6358974358974359,\n \"acc_stderr\": 0.02439667298509476,\n \"acc_norm\": 0.6358974358974359,\n \"acc_norm_stderr\": 0.02439667298509476\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.34814814814814815,\n \"acc_stderr\": 0.029045600290616255,\n \"acc_norm\": 0.34814814814814815,\n \"acc_norm_stderr\": 0.029045600290616255\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6890756302521008,\n \"acc_stderr\": 0.030066761582977934,\n \"acc_norm\": 0.6890756302521008,\n \"acc_norm_stderr\": 0.030066761582977934\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.33774834437086093,\n \"acc_stderr\": 0.038615575462551684,\n \"acc_norm\": 0.33774834437086093,\n \"acc_norm_stderr\": 0.038615575462551684\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8348623853211009,\n \"acc_stderr\": 0.015919557829976037,\n \"acc_norm\": 0.8348623853211009,\n \"acc_norm_stderr\": 0.015919557829976037\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.5416666666666666,\n \"acc_stderr\": 0.03398110890294636,\n \"acc_norm\": 0.5416666666666666,\n \"acc_norm_stderr\": 0.03398110890294636\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.8137254901960784,\n \"acc_stderr\": 0.027325470966716312,\n \"acc_norm\": 0.8137254901960784,\n \"acc_norm_stderr\": 0.027325470966716312\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.8185654008438819,\n \"acc_stderr\": 0.02508596114457966,\n \"acc_norm\": 0.8185654008438819,\n \"acc_norm_stderr\": 0.02508596114457966\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.695067264573991,\n \"acc_stderr\": 0.030898610882477515,\n \"acc_norm\": 0.695067264573991,\n \"acc_norm_stderr\": 0.030898610882477515\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.8015267175572519,\n \"acc_stderr\": 0.034981493854624734,\n \"acc_norm\": 0.8015267175572519,\n \"acc_norm_stderr\": 0.034981493854624734\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.7768595041322314,\n \"acc_stderr\": 0.03800754475228732,\n \"acc_norm\": 0.7768595041322314,\n \"acc_norm_stderr\": 0.03800754475228732\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7592592592592593,\n \"acc_stderr\": 0.04133119440243838,\n \"acc_norm\": 0.7592592592592593,\n \"acc_norm_stderr\": 0.04133119440243838\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7914110429447853,\n \"acc_stderr\": 0.031921934489347235,\n \"acc_norm\": 0.7914110429447853,\n \"acc_norm_stderr\": 0.031921934489347235\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.49107142857142855,\n \"acc_stderr\": 0.04745033255489123,\n \"acc_norm\": 0.49107142857142855,\n \"acc_norm_stderr\": 0.04745033255489123\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7766990291262136,\n \"acc_stderr\": 0.04123553189891431,\n \"acc_norm\": 0.7766990291262136,\n \"acc_norm_stderr\": 0.04123553189891431\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8632478632478633,\n \"acc_stderr\": 0.022509033937077805,\n \"acc_norm\": 0.8632478632478633,\n \"acc_norm_stderr\": 0.022509033937077805\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.69,\n \"acc_stderr\": 0.04648231987117316,\n \"acc_norm\": 0.69,\n \"acc_norm_stderr\": 0.04648231987117316\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8275862068965517,\n \"acc_stderr\": 0.013507943909371803,\n \"acc_norm\": 0.8275862068965517,\n \"acc_norm_stderr\": 0.013507943909371803\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7225433526011561,\n \"acc_stderr\": 0.024105712607754307,\n \"acc_norm\": 0.7225433526011561,\n \"acc_norm_stderr\": 0.024105712607754307\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.3843575418994413,\n \"acc_stderr\": 0.016269088663959402,\n \"acc_norm\": 0.3843575418994413,\n \"acc_norm_stderr\": 0.016269088663959402\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7450980392156863,\n \"acc_stderr\": 0.02495418432487991,\n \"acc_norm\": 0.7450980392156863,\n \"acc_norm_stderr\": 0.02495418432487991\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.707395498392283,\n \"acc_stderr\": 0.02583989833487798,\n \"acc_norm\": 0.707395498392283,\n \"acc_norm_stderr\": 0.02583989833487798\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.7314814814814815,\n \"acc_stderr\": 0.02465968518596729,\n \"acc_norm\": 0.7314814814814815,\n \"acc_norm_stderr\": 0.02465968518596729\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.5035460992907801,\n \"acc_stderr\": 0.02982674915328092,\n \"acc_norm\": 0.5035460992907801,\n \"acc_norm_stderr\": 0.02982674915328092\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.4667535853976532,\n \"acc_stderr\": 0.012741974333897229,\n \"acc_norm\": 0.4667535853976532,\n \"acc_norm_stderr\": 0.012741974333897229\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6948529411764706,\n \"acc_stderr\": 0.027971541370170598,\n \"acc_norm\": 0.6948529411764706,\n \"acc_norm_stderr\": 0.027971541370170598\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6862745098039216,\n \"acc_stderr\": 0.01877168389352818,\n \"acc_norm\": 0.6862745098039216,\n \"acc_norm_stderr\": 0.01877168389352818\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6818181818181818,\n \"acc_stderr\": 0.04461272175910509,\n \"acc_norm\": 0.6818181818181818,\n \"acc_norm_stderr\": 0.04461272175910509\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7387755102040816,\n \"acc_stderr\": 0.028123429335142773,\n \"acc_norm\": 0.7387755102040816,\n \"acc_norm_stderr\": 0.028123429335142773\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8258706467661692,\n \"acc_stderr\": 0.026814951200421603,\n \"acc_norm\": 0.8258706467661692,\n \"acc_norm_stderr\": 0.026814951200421603\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.86,\n \"acc_stderr\": 0.0348735088019777,\n \"acc_norm\": 0.86,\n \"acc_norm_stderr\": 0.0348735088019777\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5602409638554217,\n \"acc_stderr\": 0.03864139923699122,\n \"acc_norm\": 0.5602409638554217,\n \"acc_norm_stderr\": 0.03864139923699122\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8304093567251462,\n \"acc_stderr\": 0.02878210810540171,\n \"acc_norm\": 0.8304093567251462,\n \"acc_norm_stderr\": 0.02878210810540171\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.4418604651162791,\n \"mc1_stderr\": 0.017384767478986218,\n \"mc2\": 0.6133400726022729,\n \"mc2_stderr\": 0.015422148614448189\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.7955801104972375,\n \"acc_stderr\": 0.011334090612597223\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.6679302501895376,\n \"acc_stderr\": 0.012972465034361867\n }\n}\n```", "repo_url": "https://huggingface.co/nlpguy/Lelantos-low-tune", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|arc:challenge|25_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|gsm8k|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hellaswag|10_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-06T20-37-11.486361.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["**/details_harness|winogrande|5_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-06T20-37-11.486361.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_06T20_37_11.486361", "path": ["results_2024-01-06T20-37-11.486361.parquet"]}, {"split": "latest", "path": ["results_2024-01-06T20-37-11.486361.parquet"]}]}]} | 2024-01-06T20:39:50+00:00 | [] | [] | TAGS
#region-us
|
# Dataset Card for Evaluation run of nlpguy/Lelantos-low-tune
Dataset automatically created during the evaluation run of model nlpguy/Lelantos-low-tune on the Open LLM Leaderboard.
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).
To load the details from a run, you can for instance do the following:
## Latest results
These are the latest results from run 2024-01-06T20:37:11.486361(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
## Dataset Details
### Dataset Description
- Curated by:
- Funded by [optional]:
- Shared by [optional]:
- Language(s) (NLP):
- License:
### Dataset Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Out-of-Scope Use
## Dataset Structure
## Dataset Creation
### Curation Rationale
### Source Data
#### Data Collection and Processing
#### Who are the source data producers?
### Annotations [optional]
#### Annotation process
#### Who are the annotators?
#### Personal and Sensitive Information
## Bias, Risks, and Limitations
### Recommendations
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Dataset Card Authors [optional]
## Dataset Card Contact
| [
"# Dataset Card for Evaluation run of nlpguy/Lelantos-low-tune\n\n\n\nDataset automatically created during the evaluation run of model nlpguy/Lelantos-low-tune on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-06T20:37:11.486361(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for Evaluation run of nlpguy/Lelantos-low-tune\n\n\n\nDataset automatically created during the evaluation run of model nlpguy/Lelantos-low-tune on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-06T20:37:11.486361(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
6,
185,
67,
4,
40,
29,
3,
4,
9,
6,
5,
7,
4,
7,
10,
9,
5,
9,
8,
10,
46,
8,
7,
10,
5
] | [
"passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of nlpguy/Lelantos-low-tune\n\n\n\nDataset automatically created during the evaluation run of model nlpguy/Lelantos-low-tune on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2024-01-06T20:37:11.486361(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):## Dataset Details### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Out-of-Scope Use## Dataset Structure## Dataset Creation### Curation Rationale### Source Data#### Data Collection and Processing#### Who are the source data producers?### Annotations [optional]#### Annotation process#### Who are the annotators?#### Personal and Sensitive Information## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Dataset Card Authors [optional]## Dataset Card Contact"
] |
9c97f722fdcac20eac308c61b56d3da0a71e3aac |
# Dataset Card for Evaluation run of mlabonne/Daredevil-7B
<!-- Provide a quick summary of the dataset. -->
Dataset automatically created during the evaluation run of model [mlabonne/Daredevil-7B](https://huggingface.co/mlabonne/Daredevil-7B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset("open-llm-leaderboard/details_mlabonne__Daredevil-7B",
"harness_winogrande_5",
split="train")
```
## Latest results
These are the [latest results from run 2024-01-06T20:52:48.007383](https://huggingface.co/datasets/open-llm-leaderboard/details_mlabonne__Daredevil-7B/blob/main/results_2024-01-06T20-52-48.007383.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"acc": 0.6576282722341497,
"acc_stderr": 0.03185002058167276,
"acc_norm": 0.657363411157928,
"acc_norm_stderr": 0.03250917525070854,
"mc1": 0.4749082007343941,
"mc1_stderr": 0.017481446804104003,
"mc2": 0.6408567221685382,
"mc2_stderr": 0.015087537873647814
},
"harness|arc:challenge|25": {
"acc": 0.6638225255972696,
"acc_stderr": 0.013804855026205761,
"acc_norm": 0.6936860068259386,
"acc_norm_stderr": 0.013470584417276513
},
"harness|hellaswag|10": {
"acc": 0.6902011551483768,
"acc_stderr": 0.004614655175010014,
"acc_norm": 0.8717386974706234,
"acc_norm_stderr": 0.003336971535131177
},
"harness|hendrycksTest-abstract_algebra|5": {
"acc": 0.36,
"acc_stderr": 0.04824181513244218,
"acc_norm": 0.36,
"acc_norm_stderr": 0.04824181513244218
},
"harness|hendrycksTest-anatomy|5": {
"acc": 0.6370370370370371,
"acc_stderr": 0.04153948404742398,
"acc_norm": 0.6370370370370371,
"acc_norm_stderr": 0.04153948404742398
},
"harness|hendrycksTest-astronomy|5": {
"acc": 0.6973684210526315,
"acc_stderr": 0.03738520676119669,
"acc_norm": 0.6973684210526315,
"acc_norm_stderr": 0.03738520676119669
},
"harness|hendrycksTest-business_ethics|5": {
"acc": 0.63,
"acc_stderr": 0.04852365870939099,
"acc_norm": 0.63,
"acc_norm_stderr": 0.04852365870939099
},
"harness|hendrycksTest-clinical_knowledge|5": {
"acc": 0.7584905660377359,
"acc_stderr": 0.026341480371118362,
"acc_norm": 0.7584905660377359,
"acc_norm_stderr": 0.026341480371118362
},
"harness|hendrycksTest-college_biology|5": {
"acc": 0.7777777777777778,
"acc_stderr": 0.03476590104304134,
"acc_norm": 0.7777777777777778,
"acc_norm_stderr": 0.03476590104304134
},
"harness|hendrycksTest-college_chemistry|5": {
"acc": 0.48,
"acc_stderr": 0.050211673156867795,
"acc_norm": 0.48,
"acc_norm_stderr": 0.050211673156867795
},
"harness|hendrycksTest-college_computer_science|5": {
"acc": 0.54,
"acc_stderr": 0.05009082659620333,
"acc_norm": 0.54,
"acc_norm_stderr": 0.05009082659620333
},
"harness|hendrycksTest-college_mathematics|5": {
"acc": 0.29,
"acc_stderr": 0.04560480215720684,
"acc_norm": 0.29,
"acc_norm_stderr": 0.04560480215720684
},
"harness|hendrycksTest-college_medicine|5": {
"acc": 0.6878612716763006,
"acc_stderr": 0.035331333893236574,
"acc_norm": 0.6878612716763006,
"acc_norm_stderr": 0.035331333893236574
},
"harness|hendrycksTest-college_physics|5": {
"acc": 0.4117647058823529,
"acc_stderr": 0.048971049527263666,
"acc_norm": 0.4117647058823529,
"acc_norm_stderr": 0.048971049527263666
},
"harness|hendrycksTest-computer_security|5": {
"acc": 0.79,
"acc_stderr": 0.04093601807403326,
"acc_norm": 0.79,
"acc_norm_stderr": 0.04093601807403326
},
"harness|hendrycksTest-conceptual_physics|5": {
"acc": 0.5914893617021276,
"acc_stderr": 0.032134180267015755,
"acc_norm": 0.5914893617021276,
"acc_norm_stderr": 0.032134180267015755
},
"harness|hendrycksTest-econometrics|5": {
"acc": 0.4824561403508772,
"acc_stderr": 0.04700708033551038,
"acc_norm": 0.4824561403508772,
"acc_norm_stderr": 0.04700708033551038
},
"harness|hendrycksTest-electrical_engineering|5": {
"acc": 0.5655172413793104,
"acc_stderr": 0.04130740879555498,
"acc_norm": 0.5655172413793104,
"acc_norm_stderr": 0.04130740879555498
},
"harness|hendrycksTest-elementary_mathematics|5": {
"acc": 0.41005291005291006,
"acc_stderr": 0.025331202438944433,
"acc_norm": 0.41005291005291006,
"acc_norm_stderr": 0.025331202438944433
},
"harness|hendrycksTest-formal_logic|5": {
"acc": 0.46825396825396826,
"acc_stderr": 0.04463112720677172,
"acc_norm": 0.46825396825396826,
"acc_norm_stderr": 0.04463112720677172
},
"harness|hendrycksTest-global_facts|5": {
"acc": 0.38,
"acc_stderr": 0.04878317312145633,
"acc_norm": 0.38,
"acc_norm_stderr": 0.04878317312145633
},
"harness|hendrycksTest-high_school_biology|5": {
"acc": 0.7774193548387097,
"acc_stderr": 0.023664216671642514,
"acc_norm": 0.7774193548387097,
"acc_norm_stderr": 0.023664216671642514
},
"harness|hendrycksTest-high_school_chemistry|5": {
"acc": 0.4975369458128079,
"acc_stderr": 0.03517945038691063,
"acc_norm": 0.4975369458128079,
"acc_norm_stderr": 0.03517945038691063
},
"harness|hendrycksTest-high_school_computer_science|5": {
"acc": 0.71,
"acc_stderr": 0.045604802157206845,
"acc_norm": 0.71,
"acc_norm_stderr": 0.045604802157206845
},
"harness|hendrycksTest-high_school_european_history|5": {
"acc": 0.7757575757575758,
"acc_stderr": 0.03256866661681102,
"acc_norm": 0.7757575757575758,
"acc_norm_stderr": 0.03256866661681102
},
"harness|hendrycksTest-high_school_geography|5": {
"acc": 0.7929292929292929,
"acc_stderr": 0.028869778460267042,
"acc_norm": 0.7929292929292929,
"acc_norm_stderr": 0.028869778460267042
},
"harness|hendrycksTest-high_school_government_and_politics|5": {
"acc": 0.8963730569948186,
"acc_stderr": 0.02199531196364424,
"acc_norm": 0.8963730569948186,
"acc_norm_stderr": 0.02199531196364424
},
"harness|hendrycksTest-high_school_macroeconomics|5": {
"acc": 0.6692307692307692,
"acc_stderr": 0.02385479568097112,
"acc_norm": 0.6692307692307692,
"acc_norm_stderr": 0.02385479568097112
},
"harness|hendrycksTest-high_school_mathematics|5": {
"acc": 0.34074074074074073,
"acc_stderr": 0.028897748741131157,
"acc_norm": 0.34074074074074073,
"acc_norm_stderr": 0.028897748741131157
},
"harness|hendrycksTest-high_school_microeconomics|5": {
"acc": 0.680672268907563,
"acc_stderr": 0.030283995525884396,
"acc_norm": 0.680672268907563,
"acc_norm_stderr": 0.030283995525884396
},
"harness|hendrycksTest-high_school_physics|5": {
"acc": 0.32450331125827814,
"acc_stderr": 0.03822746937658751,
"acc_norm": 0.32450331125827814,
"acc_norm_stderr": 0.03822746937658751
},
"harness|hendrycksTest-high_school_psychology|5": {
"acc": 0.8513761467889909,
"acc_stderr": 0.015251253773660834,
"acc_norm": 0.8513761467889909,
"acc_norm_stderr": 0.015251253773660834
},
"harness|hendrycksTest-high_school_statistics|5": {
"acc": 0.5416666666666666,
"acc_stderr": 0.03398110890294636,
"acc_norm": 0.5416666666666666,
"acc_norm_stderr": 0.03398110890294636
},
"harness|hendrycksTest-high_school_us_history|5": {
"acc": 0.8480392156862745,
"acc_stderr": 0.025195658428931796,
"acc_norm": 0.8480392156862745,
"acc_norm_stderr": 0.025195658428931796
},
"harness|hendrycksTest-high_school_world_history|5": {
"acc": 0.8227848101265823,
"acc_stderr": 0.02485636418450322,
"acc_norm": 0.8227848101265823,
"acc_norm_stderr": 0.02485636418450322
},
"harness|hendrycksTest-human_aging|5": {
"acc": 0.695067264573991,
"acc_stderr": 0.030898610882477515,
"acc_norm": 0.695067264573991,
"acc_norm_stderr": 0.030898610882477515
},
"harness|hendrycksTest-human_sexuality|5": {
"acc": 0.8015267175572519,
"acc_stderr": 0.034981493854624714,
"acc_norm": 0.8015267175572519,
"acc_norm_stderr": 0.034981493854624714
},
"harness|hendrycksTest-international_law|5": {
"acc": 0.7851239669421488,
"acc_stderr": 0.037494924487096966,
"acc_norm": 0.7851239669421488,
"acc_norm_stderr": 0.037494924487096966
},
"harness|hendrycksTest-jurisprudence|5": {
"acc": 0.8055555555555556,
"acc_stderr": 0.038260763248848646,
"acc_norm": 0.8055555555555556,
"acc_norm_stderr": 0.038260763248848646
},
"harness|hendrycksTest-logical_fallacies|5": {
"acc": 0.7668711656441718,
"acc_stderr": 0.0332201579577674,
"acc_norm": 0.7668711656441718,
"acc_norm_stderr": 0.0332201579577674
},
"harness|hendrycksTest-machine_learning|5": {
"acc": 0.4107142857142857,
"acc_stderr": 0.046695106638751906,
"acc_norm": 0.4107142857142857,
"acc_norm_stderr": 0.046695106638751906
},
"harness|hendrycksTest-management|5": {
"acc": 0.7669902912621359,
"acc_stderr": 0.04185832598928315,
"acc_norm": 0.7669902912621359,
"acc_norm_stderr": 0.04185832598928315
},
"harness|hendrycksTest-marketing|5": {
"acc": 0.8888888888888888,
"acc_stderr": 0.020588491316092375,
"acc_norm": 0.8888888888888888,
"acc_norm_stderr": 0.020588491316092375
},
"harness|hendrycksTest-medical_genetics|5": {
"acc": 0.73,
"acc_stderr": 0.044619604333847394,
"acc_norm": 0.73,
"acc_norm_stderr": 0.044619604333847394
},
"harness|hendrycksTest-miscellaneous|5": {
"acc": 0.8339719029374202,
"acc_stderr": 0.0133064782430663,
"acc_norm": 0.8339719029374202,
"acc_norm_stderr": 0.0133064782430663
},
"harness|hendrycksTest-moral_disputes|5": {
"acc": 0.7601156069364162,
"acc_stderr": 0.022989592543123563,
"acc_norm": 0.7601156069364162,
"acc_norm_stderr": 0.022989592543123563
},
"harness|hendrycksTest-moral_scenarios|5": {
"acc": 0.4301675977653631,
"acc_stderr": 0.01655860163604103,
"acc_norm": 0.4301675977653631,
"acc_norm_stderr": 0.01655860163604103
},
"harness|hendrycksTest-nutrition|5": {
"acc": 0.7352941176470589,
"acc_stderr": 0.025261691219729477,
"acc_norm": 0.7352941176470589,
"acc_norm_stderr": 0.025261691219729477
},
"harness|hendrycksTest-philosophy|5": {
"acc": 0.7202572347266881,
"acc_stderr": 0.025494259350694912,
"acc_norm": 0.7202572347266881,
"acc_norm_stderr": 0.025494259350694912
},
"harness|hendrycksTest-prehistory|5": {
"acc": 0.7561728395061729,
"acc_stderr": 0.02389187954195961,
"acc_norm": 0.7561728395061729,
"acc_norm_stderr": 0.02389187954195961
},
"harness|hendrycksTest-professional_accounting|5": {
"acc": 0.48936170212765956,
"acc_stderr": 0.02982074719142248,
"acc_norm": 0.48936170212765956,
"acc_norm_stderr": 0.02982074719142248
},
"harness|hendrycksTest-professional_law|5": {
"acc": 0.46740547588005216,
"acc_stderr": 0.01274307294265335,
"acc_norm": 0.46740547588005216,
"acc_norm_stderr": 0.01274307294265335
},
"harness|hendrycksTest-professional_medicine|5": {
"acc": 0.6911764705882353,
"acc_stderr": 0.02806499816704009,
"acc_norm": 0.6911764705882353,
"acc_norm_stderr": 0.02806499816704009
},
"harness|hendrycksTest-professional_psychology|5": {
"acc": 0.684640522875817,
"acc_stderr": 0.018798086284886887,
"acc_norm": 0.684640522875817,
"acc_norm_stderr": 0.018798086284886887
},
"harness|hendrycksTest-public_relations|5": {
"acc": 0.6909090909090909,
"acc_stderr": 0.044262946482000985,
"acc_norm": 0.6909090909090909,
"acc_norm_stderr": 0.044262946482000985
},
"harness|hendrycksTest-security_studies|5": {
"acc": 0.7306122448979592,
"acc_stderr": 0.02840125202902294,
"acc_norm": 0.7306122448979592,
"acc_norm_stderr": 0.02840125202902294
},
"harness|hendrycksTest-sociology|5": {
"acc": 0.8407960199004975,
"acc_stderr": 0.025870646766169136,
"acc_norm": 0.8407960199004975,
"acc_norm_stderr": 0.025870646766169136
},
"harness|hendrycksTest-us_foreign_policy|5": {
"acc": 0.86,
"acc_stderr": 0.03487350880197769,
"acc_norm": 0.86,
"acc_norm_stderr": 0.03487350880197769
},
"harness|hendrycksTest-virology|5": {
"acc": 0.5481927710843374,
"acc_stderr": 0.03874371556587953,
"acc_norm": 0.5481927710843374,
"acc_norm_stderr": 0.03874371556587953
},
"harness|hendrycksTest-world_religions|5": {
"acc": 0.8421052631578947,
"acc_stderr": 0.027966785859160893,
"acc_norm": 0.8421052631578947,
"acc_norm_stderr": 0.027966785859160893
},
"harness|truthfulqa:mc|0": {
"mc1": 0.4749082007343941,
"mc1_stderr": 0.017481446804104003,
"mc2": 0.6408567221685382,
"mc2_stderr": 0.015087537873647814
},
"harness|winogrande|5": {
"acc": 0.8129439621152328,
"acc_stderr": 0.010959716435242912
},
"harness|gsm8k|5": {
"acc": 0.7293404094010614,
"acc_stderr": 0.012238245006183411
}
}
```
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
[More Information Needed] | open-llm-leaderboard/details_shadowml__Daredevil-7B | [
"region:us"
] | 2024-01-06T20:55:08+00:00 | {"pretty_name": "Evaluation run of mlabonne/Daredevil-7B", "dataset_summary": "Dataset automatically created during the evaluation run of model [mlabonne/Daredevil-7B](https://huggingface.co/mlabonne/Daredevil-7B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_mlabonne__Daredevil-7B\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-06T20:52:48.007383](https://huggingface.co/datasets/open-llm-leaderboard/details_mlabonne__Daredevil-7B/blob/main/results_2024-01-06T20-52-48.007383.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6576282722341497,\n \"acc_stderr\": 0.03185002058167276,\n \"acc_norm\": 0.657363411157928,\n \"acc_norm_stderr\": 0.03250917525070854,\n \"mc1\": 0.4749082007343941,\n \"mc1_stderr\": 0.017481446804104003,\n \"mc2\": 0.6408567221685382,\n \"mc2_stderr\": 0.015087537873647814\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.6638225255972696,\n \"acc_stderr\": 0.013804855026205761,\n \"acc_norm\": 0.6936860068259386,\n \"acc_norm_stderr\": 0.013470584417276513\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.6902011551483768,\n \"acc_stderr\": 0.004614655175010014,\n \"acc_norm\": 0.8717386974706234,\n \"acc_norm_stderr\": 0.003336971535131177\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.36,\n \"acc_stderr\": 0.04824181513244218,\n \"acc_norm\": 0.36,\n \"acc_norm_stderr\": 0.04824181513244218\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6370370370370371,\n \"acc_stderr\": 0.04153948404742398,\n \"acc_norm\": 0.6370370370370371,\n \"acc_norm_stderr\": 0.04153948404742398\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.6973684210526315,\n \"acc_stderr\": 0.03738520676119669,\n \"acc_norm\": 0.6973684210526315,\n \"acc_norm_stderr\": 0.03738520676119669\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.63,\n \"acc_stderr\": 0.04852365870939099,\n \"acc_norm\": 0.63,\n \"acc_norm_stderr\": 0.04852365870939099\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.7584905660377359,\n \"acc_stderr\": 0.026341480371118362,\n \"acc_norm\": 0.7584905660377359,\n \"acc_norm_stderr\": 0.026341480371118362\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7777777777777778,\n \"acc_stderr\": 0.03476590104304134,\n \"acc_norm\": 0.7777777777777778,\n \"acc_norm_stderr\": 0.03476590104304134\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.48,\n \"acc_stderr\": 0.050211673156867795,\n \"acc_norm\": 0.48,\n \"acc_norm_stderr\": 0.050211673156867795\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.54,\n \"acc_stderr\": 0.05009082659620333,\n \"acc_norm\": 0.54,\n \"acc_norm_stderr\": 0.05009082659620333\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.29,\n \"acc_stderr\": 0.04560480215720684,\n \"acc_norm\": 0.29,\n \"acc_norm_stderr\": 0.04560480215720684\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6878612716763006,\n \"acc_stderr\": 0.035331333893236574,\n \"acc_norm\": 0.6878612716763006,\n \"acc_norm_stderr\": 0.035331333893236574\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.4117647058823529,\n \"acc_stderr\": 0.048971049527263666,\n \"acc_norm\": 0.4117647058823529,\n \"acc_norm_stderr\": 0.048971049527263666\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.79,\n \"acc_stderr\": 0.04093601807403326,\n \"acc_norm\": 0.79,\n \"acc_norm_stderr\": 0.04093601807403326\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5914893617021276,\n \"acc_stderr\": 0.032134180267015755,\n \"acc_norm\": 0.5914893617021276,\n \"acc_norm_stderr\": 0.032134180267015755\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.4824561403508772,\n \"acc_stderr\": 0.04700708033551038,\n \"acc_norm\": 0.4824561403508772,\n \"acc_norm_stderr\": 0.04700708033551038\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5655172413793104,\n \"acc_stderr\": 0.04130740879555498,\n \"acc_norm\": 0.5655172413793104,\n \"acc_norm_stderr\": 0.04130740879555498\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.41005291005291006,\n \"acc_stderr\": 0.025331202438944433,\n \"acc_norm\": 0.41005291005291006,\n \"acc_norm_stderr\": 0.025331202438944433\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.46825396825396826,\n \"acc_stderr\": 0.04463112720677172,\n \"acc_norm\": 0.46825396825396826,\n \"acc_norm_stderr\": 0.04463112720677172\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.38,\n \"acc_stderr\": 0.04878317312145633,\n \"acc_norm\": 0.38,\n \"acc_norm_stderr\": 0.04878317312145633\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7774193548387097,\n \"acc_stderr\": 0.023664216671642514,\n \"acc_norm\": 0.7774193548387097,\n \"acc_norm_stderr\": 0.023664216671642514\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.4975369458128079,\n \"acc_stderr\": 0.03517945038691063,\n \"acc_norm\": 0.4975369458128079,\n \"acc_norm_stderr\": 0.03517945038691063\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.71,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\": 0.71,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7757575757575758,\n \"acc_stderr\": 0.03256866661681102,\n \"acc_norm\": 0.7757575757575758,\n \"acc_norm_stderr\": 0.03256866661681102\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7929292929292929,\n \"acc_stderr\": 0.028869778460267042,\n \"acc_norm\": 0.7929292929292929,\n \"acc_norm_stderr\": 0.028869778460267042\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8963730569948186,\n \"acc_stderr\": 0.02199531196364424,\n \"acc_norm\": 0.8963730569948186,\n \"acc_norm_stderr\": 0.02199531196364424\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6692307692307692,\n \"acc_stderr\": 0.02385479568097112,\n \"acc_norm\": 0.6692307692307692,\n \"acc_norm_stderr\": 0.02385479568097112\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.34074074074074073,\n \"acc_stderr\": 0.028897748741131157,\n \"acc_norm\": 0.34074074074074073,\n \"acc_norm_stderr\": 0.028897748741131157\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.680672268907563,\n \"acc_stderr\": 0.030283995525884396,\n \"acc_norm\": 0.680672268907563,\n \"acc_norm_stderr\": 0.030283995525884396\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.32450331125827814,\n \"acc_stderr\": 0.03822746937658751,\n \"acc_norm\": 0.32450331125827814,\n \"acc_norm_stderr\": 0.03822746937658751\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8513761467889909,\n \"acc_stderr\": 0.015251253773660834,\n \"acc_norm\": 0.8513761467889909,\n \"acc_norm_stderr\": 0.015251253773660834\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.5416666666666666,\n \"acc_stderr\": 0.03398110890294636,\n \"acc_norm\": 0.5416666666666666,\n \"acc_norm_stderr\": 0.03398110890294636\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.8480392156862745,\n \"acc_stderr\": 0.025195658428931796,\n \"acc_norm\": 0.8480392156862745,\n \"acc_norm_stderr\": 0.025195658428931796\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.8227848101265823,\n \"acc_stderr\": 0.02485636418450322,\n \"acc_norm\": 0.8227848101265823,\n \"acc_norm_stderr\": 0.02485636418450322\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.695067264573991,\n \"acc_stderr\": 0.030898610882477515,\n \"acc_norm\": 0.695067264573991,\n \"acc_norm_stderr\": 0.030898610882477515\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.8015267175572519,\n \"acc_stderr\": 0.034981493854624714,\n \"acc_norm\": 0.8015267175572519,\n \"acc_norm_stderr\": 0.034981493854624714\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.7851239669421488,\n \"acc_stderr\": 0.037494924487096966,\n \"acc_norm\": 0.7851239669421488,\n \"acc_norm_stderr\": 0.037494924487096966\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.8055555555555556,\n \"acc_stderr\": 0.038260763248848646,\n \"acc_norm\": 0.8055555555555556,\n \"acc_norm_stderr\": 0.038260763248848646\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7668711656441718,\n \"acc_stderr\": 0.0332201579577674,\n \"acc_norm\": 0.7668711656441718,\n \"acc_norm_stderr\": 0.0332201579577674\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.4107142857142857,\n \"acc_stderr\": 0.046695106638751906,\n \"acc_norm\": 0.4107142857142857,\n \"acc_norm_stderr\": 0.046695106638751906\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7669902912621359,\n \"acc_stderr\": 0.04185832598928315,\n \"acc_norm\": 0.7669902912621359,\n \"acc_norm_stderr\": 0.04185832598928315\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8888888888888888,\n \"acc_stderr\": 0.020588491316092375,\n \"acc_norm\": 0.8888888888888888,\n \"acc_norm_stderr\": 0.020588491316092375\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.73,\n \"acc_stderr\": 0.044619604333847394,\n \"acc_norm\": 0.73,\n \"acc_norm_stderr\": 0.044619604333847394\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8339719029374202,\n \"acc_stderr\": 0.0133064782430663,\n \"acc_norm\": 0.8339719029374202,\n \"acc_norm_stderr\": 0.0133064782430663\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7601156069364162,\n \"acc_stderr\": 0.022989592543123563,\n \"acc_norm\": 0.7601156069364162,\n \"acc_norm_stderr\": 0.022989592543123563\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.4301675977653631,\n \"acc_stderr\": 0.01655860163604103,\n \"acc_norm\": 0.4301675977653631,\n \"acc_norm_stderr\": 0.01655860163604103\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7352941176470589,\n \"acc_stderr\": 0.025261691219729477,\n \"acc_norm\": 0.7352941176470589,\n \"acc_norm_stderr\": 0.025261691219729477\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.7202572347266881,\n \"acc_stderr\": 0.025494259350694912,\n \"acc_norm\": 0.7202572347266881,\n \"acc_norm_stderr\": 0.025494259350694912\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.7561728395061729,\n \"acc_stderr\": 0.02389187954195961,\n \"acc_norm\": 0.7561728395061729,\n \"acc_norm_stderr\": 0.02389187954195961\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.48936170212765956,\n \"acc_stderr\": 0.02982074719142248,\n \"acc_norm\": 0.48936170212765956,\n \"acc_norm_stderr\": 0.02982074719142248\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.46740547588005216,\n \"acc_stderr\": 0.01274307294265335,\n \"acc_norm\": 0.46740547588005216,\n \"acc_norm_stderr\": 0.01274307294265335\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6911764705882353,\n \"acc_stderr\": 0.02806499816704009,\n \"acc_norm\": 0.6911764705882353,\n \"acc_norm_stderr\": 0.02806499816704009\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.684640522875817,\n \"acc_stderr\": 0.018798086284886887,\n \"acc_norm\": 0.684640522875817,\n \"acc_norm_stderr\": 0.018798086284886887\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6909090909090909,\n \"acc_stderr\": 0.044262946482000985,\n \"acc_norm\": 0.6909090909090909,\n \"acc_norm_stderr\": 0.044262946482000985\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7306122448979592,\n \"acc_stderr\": 0.02840125202902294,\n \"acc_norm\": 0.7306122448979592,\n \"acc_norm_stderr\": 0.02840125202902294\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8407960199004975,\n \"acc_stderr\": 0.025870646766169136,\n \"acc_norm\": 0.8407960199004975,\n \"acc_norm_stderr\": 0.025870646766169136\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.86,\n \"acc_stderr\": 0.03487350880197769,\n \"acc_norm\": 0.86,\n \"acc_norm_stderr\": 0.03487350880197769\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5481927710843374,\n \"acc_stderr\": 0.03874371556587953,\n \"acc_norm\": 0.5481927710843374,\n \"acc_norm_stderr\": 0.03874371556587953\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8421052631578947,\n \"acc_stderr\": 0.027966785859160893,\n \"acc_norm\": 0.8421052631578947,\n \"acc_norm_stderr\": 0.027966785859160893\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.4749082007343941,\n \"mc1_stderr\": 0.017481446804104003,\n \"mc2\": 0.6408567221685382,\n \"mc2_stderr\": 0.015087537873647814\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.8129439621152328,\n \"acc_stderr\": 0.010959716435242912\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.7293404094010614,\n \"acc_stderr\": 0.012238245006183411\n }\n}\n```", "repo_url": "https://huggingface.co/mlabonne/Daredevil-7B", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|arc:challenge|25_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|gsm8k|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hellaswag|10_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-06T20-52-48.007383.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["**/details_harness|winogrande|5_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-06T20-52-48.007383.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_06T20_52_48.007383", "path": ["results_2024-01-06T20-52-48.007383.parquet"]}, {"split": "latest", "path": ["results_2024-01-06T20-52-48.007383.parquet"]}]}]} | 2024-01-25T10:51:03+00:00 | [] | [] | TAGS
#region-us
|
# Dataset Card for Evaluation run of mlabonne/Daredevil-7B
Dataset automatically created during the evaluation run of model mlabonne/Daredevil-7B on the Open LLM Leaderboard.
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).
To load the details from a run, you can for instance do the following:
## Latest results
These are the latest results from run 2024-01-06T20:52:48.007383(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
## Dataset Details
### Dataset Description
- Curated by:
- Funded by [optional]:
- Shared by [optional]:
- Language(s) (NLP):
- License:
### Dataset Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Out-of-Scope Use
## Dataset Structure
## Dataset Creation
### Curation Rationale
### Source Data
#### Data Collection and Processing
#### Who are the source data producers?
### Annotations [optional]
#### Annotation process
#### Who are the annotators?
#### Personal and Sensitive Information
## Bias, Risks, and Limitations
### Recommendations
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Dataset Card Authors [optional]
## Dataset Card Contact
| [
"# Dataset Card for Evaluation run of mlabonne/Daredevil-7B\n\n\n\nDataset automatically created during the evaluation run of model mlabonne/Daredevil-7B on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-06T20:52:48.007383(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for Evaluation run of mlabonne/Daredevil-7B\n\n\n\nDataset automatically created during the evaluation run of model mlabonne/Daredevil-7B on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-06T20:52:48.007383(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
6,
179,
67,
4,
40,
29,
3,
4,
9,
6,
5,
7,
4,
7,
10,
9,
5,
9,
8,
10,
46,
8,
7,
10,
5
] | [
"passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of mlabonne/Daredevil-7B\n\n\n\nDataset automatically created during the evaluation run of model mlabonne/Daredevil-7B on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2024-01-06T20:52:48.007383(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):## Dataset Details### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Out-of-Scope Use## Dataset Structure## Dataset Creation### Curation Rationale### Source Data#### Data Collection and Processing#### Who are the source data producers?### Annotations [optional]#### Annotation process#### Who are the annotators?#### Personal and Sensitive Information## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Dataset Card Authors [optional]## Dataset Card Contact"
] |
692550f7cddcee990f8b017da1fc3471a69f043f |
# Dataset Card for Evaluation run of occultml/CatMarcoro14-7B-slerp
<!-- Provide a quick summary of the dataset. -->
Dataset automatically created during the evaluation run of model [occultml/CatMarcoro14-7B-slerp](https://huggingface.co/occultml/CatMarcoro14-7B-slerp) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset("open-llm-leaderboard/details_occultml__CatMarcoro14-7B-slerp",
"harness_winogrande_5",
split="train")
```
## Latest results
These are the [latest results from run 2024-01-06T21:04:34.082486](https://huggingface.co/datasets/open-llm-leaderboard/details_occultml__CatMarcoro14-7B-slerp/blob/main/results_2024-01-06T21-04-34.082486.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"acc": 0.6574722326639718,
"acc_stderr": 0.03188895296761844,
"acc_norm": 0.6570269052037782,
"acc_norm_stderr": 0.03255254600254235,
"mc1": 0.4675642594859241,
"mc1_stderr": 0.01746663214957761,
"mc2": 0.6324003297074412,
"mc2_stderr": 0.015075106150958025
},
"harness|arc:challenge|25": {
"acc": 0.6706484641638225,
"acc_stderr": 0.013734057652635474,
"acc_norm": 0.6936860068259386,
"acc_norm_stderr": 0.013470584417276513
},
"harness|hellaswag|10": {
"acc": 0.686516630153356,
"acc_stderr": 0.004629608863272308,
"acc_norm": 0.8692491535550687,
"acc_norm_stderr": 0.003364386713542236
},
"harness|hendrycksTest-abstract_algebra|5": {
"acc": 0.3,
"acc_stderr": 0.046056618647183814,
"acc_norm": 0.3,
"acc_norm_stderr": 0.046056618647183814
},
"harness|hendrycksTest-anatomy|5": {
"acc": 0.6444444444444445,
"acc_stderr": 0.04135176749720385,
"acc_norm": 0.6444444444444445,
"acc_norm_stderr": 0.04135176749720385
},
"harness|hendrycksTest-astronomy|5": {
"acc": 0.7039473684210527,
"acc_stderr": 0.03715062154998904,
"acc_norm": 0.7039473684210527,
"acc_norm_stderr": 0.03715062154998904
},
"harness|hendrycksTest-business_ethics|5": {
"acc": 0.64,
"acc_stderr": 0.04824181513244218,
"acc_norm": 0.64,
"acc_norm_stderr": 0.04824181513244218
},
"harness|hendrycksTest-clinical_knowledge|5": {
"acc": 0.7245283018867924,
"acc_stderr": 0.027495663683724057,
"acc_norm": 0.7245283018867924,
"acc_norm_stderr": 0.027495663683724057
},
"harness|hendrycksTest-college_biology|5": {
"acc": 0.7847222222222222,
"acc_stderr": 0.03437079344106135,
"acc_norm": 0.7847222222222222,
"acc_norm_stderr": 0.03437079344106135
},
"harness|hendrycksTest-college_chemistry|5": {
"acc": 0.45,
"acc_stderr": 0.05,
"acc_norm": 0.45,
"acc_norm_stderr": 0.05
},
"harness|hendrycksTest-college_computer_science|5": {
"acc": 0.54,
"acc_stderr": 0.05009082659620333,
"acc_norm": 0.54,
"acc_norm_stderr": 0.05009082659620333
},
"harness|hendrycksTest-college_mathematics|5": {
"acc": 0.32,
"acc_stderr": 0.04688261722621504,
"acc_norm": 0.32,
"acc_norm_stderr": 0.04688261722621504
},
"harness|hendrycksTest-college_medicine|5": {
"acc": 0.6589595375722543,
"acc_stderr": 0.03614665424180826,
"acc_norm": 0.6589595375722543,
"acc_norm_stderr": 0.03614665424180826
},
"harness|hendrycksTest-college_physics|5": {
"acc": 0.43137254901960786,
"acc_stderr": 0.04928099597287534,
"acc_norm": 0.43137254901960786,
"acc_norm_stderr": 0.04928099597287534
},
"harness|hendrycksTest-computer_security|5": {
"acc": 0.78,
"acc_stderr": 0.04163331998932263,
"acc_norm": 0.78,
"acc_norm_stderr": 0.04163331998932263
},
"harness|hendrycksTest-conceptual_physics|5": {
"acc": 0.6,
"acc_stderr": 0.03202563076101735,
"acc_norm": 0.6,
"acc_norm_stderr": 0.03202563076101735
},
"harness|hendrycksTest-econometrics|5": {
"acc": 0.47368421052631576,
"acc_stderr": 0.046970851366478626,
"acc_norm": 0.47368421052631576,
"acc_norm_stderr": 0.046970851366478626
},
"harness|hendrycksTest-electrical_engineering|5": {
"acc": 0.5724137931034483,
"acc_stderr": 0.04122737111370333,
"acc_norm": 0.5724137931034483,
"acc_norm_stderr": 0.04122737111370333
},
"harness|hendrycksTest-elementary_mathematics|5": {
"acc": 0.42328042328042326,
"acc_stderr": 0.025446365634406783,
"acc_norm": 0.42328042328042326,
"acc_norm_stderr": 0.025446365634406783
},
"harness|hendrycksTest-formal_logic|5": {
"acc": 0.4444444444444444,
"acc_stderr": 0.044444444444444495,
"acc_norm": 0.4444444444444444,
"acc_norm_stderr": 0.044444444444444495
},
"harness|hendrycksTest-global_facts|5": {
"acc": 0.37,
"acc_stderr": 0.048523658709391,
"acc_norm": 0.37,
"acc_norm_stderr": 0.048523658709391
},
"harness|hendrycksTest-high_school_biology|5": {
"acc": 0.7903225806451613,
"acc_stderr": 0.023157879349083525,
"acc_norm": 0.7903225806451613,
"acc_norm_stderr": 0.023157879349083525
},
"harness|hendrycksTest-high_school_chemistry|5": {
"acc": 0.5024630541871922,
"acc_stderr": 0.035179450386910616,
"acc_norm": 0.5024630541871922,
"acc_norm_stderr": 0.035179450386910616
},
"harness|hendrycksTest-high_school_computer_science|5": {
"acc": 0.71,
"acc_stderr": 0.045604802157206845,
"acc_norm": 0.71,
"acc_norm_stderr": 0.045604802157206845
},
"harness|hendrycksTest-high_school_european_history|5": {
"acc": 0.7757575757575758,
"acc_stderr": 0.03256866661681102,
"acc_norm": 0.7757575757575758,
"acc_norm_stderr": 0.03256866661681102
},
"harness|hendrycksTest-high_school_geography|5": {
"acc": 0.7828282828282829,
"acc_stderr": 0.029376616484945633,
"acc_norm": 0.7828282828282829,
"acc_norm_stderr": 0.029376616484945633
},
"harness|hendrycksTest-high_school_government_and_politics|5": {
"acc": 0.9015544041450777,
"acc_stderr": 0.021500249576033484,
"acc_norm": 0.9015544041450777,
"acc_norm_stderr": 0.021500249576033484
},
"harness|hendrycksTest-high_school_macroeconomics|5": {
"acc": 0.676923076923077,
"acc_stderr": 0.02371088850197057,
"acc_norm": 0.676923076923077,
"acc_norm_stderr": 0.02371088850197057
},
"harness|hendrycksTest-high_school_mathematics|5": {
"acc": 0.37037037037037035,
"acc_stderr": 0.029443169323031537,
"acc_norm": 0.37037037037037035,
"acc_norm_stderr": 0.029443169323031537
},
"harness|hendrycksTest-high_school_microeconomics|5": {
"acc": 0.6974789915966386,
"acc_stderr": 0.029837962388291936,
"acc_norm": 0.6974789915966386,
"acc_norm_stderr": 0.029837962388291936
},
"harness|hendrycksTest-high_school_physics|5": {
"acc": 0.33774834437086093,
"acc_stderr": 0.03861557546255169,
"acc_norm": 0.33774834437086093,
"acc_norm_stderr": 0.03861557546255169
},
"harness|hendrycksTest-high_school_psychology|5": {
"acc": 0.8550458715596331,
"acc_stderr": 0.015094215699700481,
"acc_norm": 0.8550458715596331,
"acc_norm_stderr": 0.015094215699700481
},
"harness|hendrycksTest-high_school_statistics|5": {
"acc": 0.5138888888888888,
"acc_stderr": 0.03408655867977749,
"acc_norm": 0.5138888888888888,
"acc_norm_stderr": 0.03408655867977749
},
"harness|hendrycksTest-high_school_us_history|5": {
"acc": 0.8431372549019608,
"acc_stderr": 0.02552472232455334,
"acc_norm": 0.8431372549019608,
"acc_norm_stderr": 0.02552472232455334
},
"harness|hendrycksTest-high_school_world_history|5": {
"acc": 0.810126582278481,
"acc_stderr": 0.02553010046023349,
"acc_norm": 0.810126582278481,
"acc_norm_stderr": 0.02553010046023349
},
"harness|hendrycksTest-human_aging|5": {
"acc": 0.695067264573991,
"acc_stderr": 0.030898610882477515,
"acc_norm": 0.695067264573991,
"acc_norm_stderr": 0.030898610882477515
},
"harness|hendrycksTest-human_sexuality|5": {
"acc": 0.7938931297709924,
"acc_stderr": 0.03547771004159465,
"acc_norm": 0.7938931297709924,
"acc_norm_stderr": 0.03547771004159465
},
"harness|hendrycksTest-international_law|5": {
"acc": 0.7933884297520661,
"acc_stderr": 0.03695980128098824,
"acc_norm": 0.7933884297520661,
"acc_norm_stderr": 0.03695980128098824
},
"harness|hendrycksTest-jurisprudence|5": {
"acc": 0.8148148148148148,
"acc_stderr": 0.03755265865037182,
"acc_norm": 0.8148148148148148,
"acc_norm_stderr": 0.03755265865037182
},
"harness|hendrycksTest-logical_fallacies|5": {
"acc": 0.7607361963190185,
"acc_stderr": 0.0335195387952127,
"acc_norm": 0.7607361963190185,
"acc_norm_stderr": 0.0335195387952127
},
"harness|hendrycksTest-machine_learning|5": {
"acc": 0.4642857142857143,
"acc_stderr": 0.04733667890053756,
"acc_norm": 0.4642857142857143,
"acc_norm_stderr": 0.04733667890053756
},
"harness|hendrycksTest-management|5": {
"acc": 0.7669902912621359,
"acc_stderr": 0.04185832598928315,
"acc_norm": 0.7669902912621359,
"acc_norm_stderr": 0.04185832598928315
},
"harness|hendrycksTest-marketing|5": {
"acc": 0.8846153846153846,
"acc_stderr": 0.020930193185179326,
"acc_norm": 0.8846153846153846,
"acc_norm_stderr": 0.020930193185179326
},
"harness|hendrycksTest-medical_genetics|5": {
"acc": 0.73,
"acc_stderr": 0.044619604333847394,
"acc_norm": 0.73,
"acc_norm_stderr": 0.044619604333847394
},
"harness|hendrycksTest-miscellaneous|5": {
"acc": 0.8416347381864623,
"acc_stderr": 0.013055346753516727,
"acc_norm": 0.8416347381864623,
"acc_norm_stderr": 0.013055346753516727
},
"harness|hendrycksTest-moral_disputes|5": {
"acc": 0.7572254335260116,
"acc_stderr": 0.023083658586984204,
"acc_norm": 0.7572254335260116,
"acc_norm_stderr": 0.023083658586984204
},
"harness|hendrycksTest-moral_scenarios|5": {
"acc": 0.4346368715083799,
"acc_stderr": 0.01657899743549672,
"acc_norm": 0.4346368715083799,
"acc_norm_stderr": 0.01657899743549672
},
"harness|hendrycksTest-nutrition|5": {
"acc": 0.7320261437908496,
"acc_stderr": 0.025360603796242557,
"acc_norm": 0.7320261437908496,
"acc_norm_stderr": 0.025360603796242557
},
"harness|hendrycksTest-philosophy|5": {
"acc": 0.7202572347266881,
"acc_stderr": 0.025494259350694912,
"acc_norm": 0.7202572347266881,
"acc_norm_stderr": 0.025494259350694912
},
"harness|hendrycksTest-prehistory|5": {
"acc": 0.7561728395061729,
"acc_stderr": 0.023891879541959607,
"acc_norm": 0.7561728395061729,
"acc_norm_stderr": 0.023891879541959607
},
"harness|hendrycksTest-professional_accounting|5": {
"acc": 0.5035460992907801,
"acc_stderr": 0.02982674915328092,
"acc_norm": 0.5035460992907801,
"acc_norm_stderr": 0.02982674915328092
},
"harness|hendrycksTest-professional_law|5": {
"acc": 0.4726205997392438,
"acc_stderr": 0.012751075788015055,
"acc_norm": 0.4726205997392438,
"acc_norm_stderr": 0.012751075788015055
},
"harness|hendrycksTest-professional_medicine|5": {
"acc": 0.6764705882352942,
"acc_stderr": 0.02841820861940676,
"acc_norm": 0.6764705882352942,
"acc_norm_stderr": 0.02841820861940676
},
"harness|hendrycksTest-professional_psychology|5": {
"acc": 0.673202614379085,
"acc_stderr": 0.01897542792050721,
"acc_norm": 0.673202614379085,
"acc_norm_stderr": 0.01897542792050721
},
"harness|hendrycksTest-public_relations|5": {
"acc": 0.6727272727272727,
"acc_stderr": 0.0449429086625209,
"acc_norm": 0.6727272727272727,
"acc_norm_stderr": 0.0449429086625209
},
"harness|hendrycksTest-security_studies|5": {
"acc": 0.7387755102040816,
"acc_stderr": 0.028123429335142777,
"acc_norm": 0.7387755102040816,
"acc_norm_stderr": 0.028123429335142777
},
"harness|hendrycksTest-sociology|5": {
"acc": 0.8606965174129353,
"acc_stderr": 0.024484487162913973,
"acc_norm": 0.8606965174129353,
"acc_norm_stderr": 0.024484487162913973
},
"harness|hendrycksTest-us_foreign_policy|5": {
"acc": 0.85,
"acc_stderr": 0.0358870281282637,
"acc_norm": 0.85,
"acc_norm_stderr": 0.0358870281282637
},
"harness|hendrycksTest-virology|5": {
"acc": 0.5421686746987951,
"acc_stderr": 0.0387862677100236,
"acc_norm": 0.5421686746987951,
"acc_norm_stderr": 0.0387862677100236
},
"harness|hendrycksTest-world_religions|5": {
"acc": 0.8362573099415205,
"acc_stderr": 0.028380919596145866,
"acc_norm": 0.8362573099415205,
"acc_norm_stderr": 0.028380919596145866
},
"harness|truthfulqa:mc|0": {
"mc1": 0.4675642594859241,
"mc1_stderr": 0.01746663214957761,
"mc2": 0.6324003297074412,
"mc2_stderr": 0.015075106150958025
},
"harness|winogrande|5": {
"acc": 0.8168902920284136,
"acc_stderr": 0.01086977863316837
},
"harness|gsm8k|5": {
"acc": 0.730098559514784,
"acc_stderr": 0.012227442856468897
}
}
```
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
[More Information Needed] | open-llm-leaderboard/details_occultml__CatMarcoro14-7B-slerp | [
"region:us"
] | 2024-01-06T21:06:54+00:00 | {"pretty_name": "Evaluation run of occultml/CatMarcoro14-7B-slerp", "dataset_summary": "Dataset automatically created during the evaluation run of model [occultml/CatMarcoro14-7B-slerp](https://huggingface.co/occultml/CatMarcoro14-7B-slerp) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_occultml__CatMarcoro14-7B-slerp\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-06T21:04:34.082486](https://huggingface.co/datasets/open-llm-leaderboard/details_occultml__CatMarcoro14-7B-slerp/blob/main/results_2024-01-06T21-04-34.082486.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6574722326639718,\n \"acc_stderr\": 0.03188895296761844,\n \"acc_norm\": 0.6570269052037782,\n \"acc_norm_stderr\": 0.03255254600254235,\n \"mc1\": 0.4675642594859241,\n \"mc1_stderr\": 0.01746663214957761,\n \"mc2\": 0.6324003297074412,\n \"mc2_stderr\": 0.015075106150958025\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.6706484641638225,\n \"acc_stderr\": 0.013734057652635474,\n \"acc_norm\": 0.6936860068259386,\n \"acc_norm_stderr\": 0.013470584417276513\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.686516630153356,\n \"acc_stderr\": 0.004629608863272308,\n \"acc_norm\": 0.8692491535550687,\n \"acc_norm_stderr\": 0.003364386713542236\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.3,\n \"acc_stderr\": 0.046056618647183814,\n \"acc_norm\": 0.3,\n \"acc_norm_stderr\": 0.046056618647183814\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6444444444444445,\n \"acc_stderr\": 0.04135176749720385,\n \"acc_norm\": 0.6444444444444445,\n \"acc_norm_stderr\": 0.04135176749720385\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.7039473684210527,\n \"acc_stderr\": 0.03715062154998904,\n \"acc_norm\": 0.7039473684210527,\n \"acc_norm_stderr\": 0.03715062154998904\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.64,\n \"acc_stderr\": 0.04824181513244218,\n \"acc_norm\": 0.64,\n \"acc_norm_stderr\": 0.04824181513244218\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.7245283018867924,\n \"acc_stderr\": 0.027495663683724057,\n \"acc_norm\": 0.7245283018867924,\n \"acc_norm_stderr\": 0.027495663683724057\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7847222222222222,\n \"acc_stderr\": 0.03437079344106135,\n \"acc_norm\": 0.7847222222222222,\n \"acc_norm_stderr\": 0.03437079344106135\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.45,\n \"acc_stderr\": 0.05,\n \"acc_norm\": 0.45,\n \"acc_norm_stderr\": 0.05\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.54,\n \"acc_stderr\": 0.05009082659620333,\n \"acc_norm\": 0.54,\n \"acc_norm_stderr\": 0.05009082659620333\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.32,\n \"acc_stderr\": 0.04688261722621504,\n \"acc_norm\": 0.32,\n \"acc_norm_stderr\": 0.04688261722621504\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6589595375722543,\n \"acc_stderr\": 0.03614665424180826,\n \"acc_norm\": 0.6589595375722543,\n \"acc_norm_stderr\": 0.03614665424180826\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.43137254901960786,\n \"acc_stderr\": 0.04928099597287534,\n \"acc_norm\": 0.43137254901960786,\n \"acc_norm_stderr\": 0.04928099597287534\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.78,\n \"acc_stderr\": 0.04163331998932263,\n \"acc_norm\": 0.78,\n \"acc_norm_stderr\": 0.04163331998932263\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.6,\n \"acc_stderr\": 0.03202563076101735,\n \"acc_norm\": 0.6,\n \"acc_norm_stderr\": 0.03202563076101735\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.47368421052631576,\n \"acc_stderr\": 0.046970851366478626,\n \"acc_norm\": 0.47368421052631576,\n \"acc_norm_stderr\": 0.046970851366478626\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5724137931034483,\n \"acc_stderr\": 0.04122737111370333,\n \"acc_norm\": 0.5724137931034483,\n \"acc_norm_stderr\": 0.04122737111370333\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.42328042328042326,\n \"acc_stderr\": 0.025446365634406783,\n \"acc_norm\": 0.42328042328042326,\n \"acc_norm_stderr\": 0.025446365634406783\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.4444444444444444,\n \"acc_stderr\": 0.044444444444444495,\n \"acc_norm\": 0.4444444444444444,\n \"acc_norm_stderr\": 0.044444444444444495\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.37,\n \"acc_stderr\": 0.048523658709391,\n \"acc_norm\": 0.37,\n \"acc_norm_stderr\": 0.048523658709391\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7903225806451613,\n \"acc_stderr\": 0.023157879349083525,\n \"acc_norm\": 0.7903225806451613,\n \"acc_norm_stderr\": 0.023157879349083525\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.5024630541871922,\n \"acc_stderr\": 0.035179450386910616,\n \"acc_norm\": 0.5024630541871922,\n \"acc_norm_stderr\": 0.035179450386910616\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.71,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\": 0.71,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7757575757575758,\n \"acc_stderr\": 0.03256866661681102,\n \"acc_norm\": 0.7757575757575758,\n \"acc_norm_stderr\": 0.03256866661681102\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7828282828282829,\n \"acc_stderr\": 0.029376616484945633,\n \"acc_norm\": 0.7828282828282829,\n \"acc_norm_stderr\": 0.029376616484945633\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.9015544041450777,\n \"acc_stderr\": 0.021500249576033484,\n \"acc_norm\": 0.9015544041450777,\n \"acc_norm_stderr\": 0.021500249576033484\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.676923076923077,\n \"acc_stderr\": 0.02371088850197057,\n \"acc_norm\": 0.676923076923077,\n \"acc_norm_stderr\": 0.02371088850197057\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.37037037037037035,\n \"acc_stderr\": 0.029443169323031537,\n \"acc_norm\": 0.37037037037037035,\n \"acc_norm_stderr\": 0.029443169323031537\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6974789915966386,\n \"acc_stderr\": 0.029837962388291936,\n \"acc_norm\": 0.6974789915966386,\n \"acc_norm_stderr\": 0.029837962388291936\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.33774834437086093,\n \"acc_stderr\": 0.03861557546255169,\n \"acc_norm\": 0.33774834437086093,\n \"acc_norm_stderr\": 0.03861557546255169\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8550458715596331,\n \"acc_stderr\": 0.015094215699700481,\n \"acc_norm\": 0.8550458715596331,\n \"acc_norm_stderr\": 0.015094215699700481\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.5138888888888888,\n \"acc_stderr\": 0.03408655867977749,\n \"acc_norm\": 0.5138888888888888,\n \"acc_norm_stderr\": 0.03408655867977749\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.8431372549019608,\n \"acc_stderr\": 0.02552472232455334,\n \"acc_norm\": 0.8431372549019608,\n \"acc_norm_stderr\": 0.02552472232455334\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.810126582278481,\n \"acc_stderr\": 0.02553010046023349,\n \"acc_norm\": 0.810126582278481,\n \"acc_norm_stderr\": 0.02553010046023349\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.695067264573991,\n \"acc_stderr\": 0.030898610882477515,\n \"acc_norm\": 0.695067264573991,\n \"acc_norm_stderr\": 0.030898610882477515\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7938931297709924,\n \"acc_stderr\": 0.03547771004159465,\n \"acc_norm\": 0.7938931297709924,\n \"acc_norm_stderr\": 0.03547771004159465\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.7933884297520661,\n \"acc_stderr\": 0.03695980128098824,\n \"acc_norm\": 0.7933884297520661,\n \"acc_norm_stderr\": 0.03695980128098824\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.8148148148148148,\n \"acc_stderr\": 0.03755265865037182,\n \"acc_norm\": 0.8148148148148148,\n \"acc_norm_stderr\": 0.03755265865037182\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7607361963190185,\n \"acc_stderr\": 0.0335195387952127,\n \"acc_norm\": 0.7607361963190185,\n \"acc_norm_stderr\": 0.0335195387952127\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.4642857142857143,\n \"acc_stderr\": 0.04733667890053756,\n \"acc_norm\": 0.4642857142857143,\n \"acc_norm_stderr\": 0.04733667890053756\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7669902912621359,\n \"acc_stderr\": 0.04185832598928315,\n \"acc_norm\": 0.7669902912621359,\n \"acc_norm_stderr\": 0.04185832598928315\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8846153846153846,\n \"acc_stderr\": 0.020930193185179326,\n \"acc_norm\": 0.8846153846153846,\n \"acc_norm_stderr\": 0.020930193185179326\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.73,\n \"acc_stderr\": 0.044619604333847394,\n \"acc_norm\": 0.73,\n \"acc_norm_stderr\": 0.044619604333847394\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8416347381864623,\n \"acc_stderr\": 0.013055346753516727,\n \"acc_norm\": 0.8416347381864623,\n \"acc_norm_stderr\": 0.013055346753516727\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7572254335260116,\n \"acc_stderr\": 0.023083658586984204,\n \"acc_norm\": 0.7572254335260116,\n \"acc_norm_stderr\": 0.023083658586984204\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.4346368715083799,\n \"acc_stderr\": 0.01657899743549672,\n \"acc_norm\": 0.4346368715083799,\n \"acc_norm_stderr\": 0.01657899743549672\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7320261437908496,\n \"acc_stderr\": 0.025360603796242557,\n \"acc_norm\": 0.7320261437908496,\n \"acc_norm_stderr\": 0.025360603796242557\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.7202572347266881,\n \"acc_stderr\": 0.025494259350694912,\n \"acc_norm\": 0.7202572347266881,\n \"acc_norm_stderr\": 0.025494259350694912\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.7561728395061729,\n \"acc_stderr\": 0.023891879541959607,\n \"acc_norm\": 0.7561728395061729,\n \"acc_norm_stderr\": 0.023891879541959607\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.5035460992907801,\n \"acc_stderr\": 0.02982674915328092,\n \"acc_norm\": 0.5035460992907801,\n \"acc_norm_stderr\": 0.02982674915328092\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.4726205997392438,\n \"acc_stderr\": 0.012751075788015055,\n \"acc_norm\": 0.4726205997392438,\n \"acc_norm_stderr\": 0.012751075788015055\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6764705882352942,\n \"acc_stderr\": 0.02841820861940676,\n \"acc_norm\": 0.6764705882352942,\n \"acc_norm_stderr\": 0.02841820861940676\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.673202614379085,\n \"acc_stderr\": 0.01897542792050721,\n \"acc_norm\": 0.673202614379085,\n \"acc_norm_stderr\": 0.01897542792050721\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6727272727272727,\n \"acc_stderr\": 0.0449429086625209,\n \"acc_norm\": 0.6727272727272727,\n \"acc_norm_stderr\": 0.0449429086625209\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7387755102040816,\n \"acc_stderr\": 0.028123429335142777,\n \"acc_norm\": 0.7387755102040816,\n \"acc_norm_stderr\": 0.028123429335142777\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8606965174129353,\n \"acc_stderr\": 0.024484487162913973,\n \"acc_norm\": 0.8606965174129353,\n \"acc_norm_stderr\": 0.024484487162913973\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.85,\n \"acc_stderr\": 0.0358870281282637,\n \"acc_norm\": 0.85,\n \"acc_norm_stderr\": 0.0358870281282637\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5421686746987951,\n \"acc_stderr\": 0.0387862677100236,\n \"acc_norm\": 0.5421686746987951,\n \"acc_norm_stderr\": 0.0387862677100236\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8362573099415205,\n \"acc_stderr\": 0.028380919596145866,\n \"acc_norm\": 0.8362573099415205,\n \"acc_norm_stderr\": 0.028380919596145866\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.4675642594859241,\n \"mc1_stderr\": 0.01746663214957761,\n \"mc2\": 0.6324003297074412,\n \"mc2_stderr\": 0.015075106150958025\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.8168902920284136,\n \"acc_stderr\": 0.01086977863316837\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.730098559514784,\n \"acc_stderr\": 0.012227442856468897\n }\n}\n```", "repo_url": "https://huggingface.co/occultml/CatMarcoro14-7B-slerp", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|arc:challenge|25_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|gsm8k|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hellaswag|10_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-06T21-04-34.082486.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["**/details_harness|winogrande|5_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-06T21-04-34.082486.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_06T21_04_34.082486", "path": ["results_2024-01-06T21-04-34.082486.parquet"]}, {"split": "latest", "path": ["results_2024-01-06T21-04-34.082486.parquet"]}]}]} | 2024-01-06T21:07:15+00:00 | [] | [] | TAGS
#region-us
|
# Dataset Card for Evaluation run of occultml/CatMarcoro14-7B-slerp
Dataset automatically created during the evaluation run of model occultml/CatMarcoro14-7B-slerp on the Open LLM Leaderboard.
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).
To load the details from a run, you can for instance do the following:
## Latest results
These are the latest results from run 2024-01-06T21:04:34.082486(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
## Dataset Details
### Dataset Description
- Curated by:
- Funded by [optional]:
- Shared by [optional]:
- Language(s) (NLP):
- License:
### Dataset Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Out-of-Scope Use
## Dataset Structure
## Dataset Creation
### Curation Rationale
### Source Data
#### Data Collection and Processing
#### Who are the source data producers?
### Annotations [optional]
#### Annotation process
#### Who are the annotators?
#### Personal and Sensitive Information
## Bias, Risks, and Limitations
### Recommendations
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Dataset Card Authors [optional]
## Dataset Card Contact
| [
"# Dataset Card for Evaluation run of occultml/CatMarcoro14-7B-slerp\n\n\n\nDataset automatically created during the evaluation run of model occultml/CatMarcoro14-7B-slerp on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-06T21:04:34.082486(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for Evaluation run of occultml/CatMarcoro14-7B-slerp\n\n\n\nDataset automatically created during the evaluation run of model occultml/CatMarcoro14-7B-slerp on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-06T21:04:34.082486(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
6,
187,
68,
4,
40,
29,
3,
4,
9,
6,
5,
7,
4,
7,
10,
9,
5,
9,
8,
10,
46,
8,
7,
10,
5
] | [
"passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of occultml/CatMarcoro14-7B-slerp\n\n\n\nDataset automatically created during the evaluation run of model occultml/CatMarcoro14-7B-slerp on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2024-01-06T21:04:34.082486(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):## Dataset Details### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Out-of-Scope Use## Dataset Structure## Dataset Creation### Curation Rationale### Source Data#### Data Collection and Processing#### Who are the source data producers?### Annotations [optional]#### Annotation process#### Who are the annotators?#### Personal and Sensitive Information## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Dataset Card Authors [optional]## Dataset Card Contact"
] |
f986e09d3acfb0407581195a2ea70025b24f4df6 | # TL;DR SFT Dataset for OpenAI's [Summarize from Feedback](https://openai.com/blog/summarization/) task
The dataset is directly taken from https://github.com/openai/summarize-from-feedback/tree/700967448d10004279f138666442bf1497d0e705#reddit-tldr-dataset
These columns are taken directly from the aforementioned dataset:
* **id**: unique identifier for the post
* **subreddit**: subreddit the post was taken from
* **title**: title of the post
* **post**: body of the post
* **summary**: summary of the post
* **reference_response**: reference response for the post
These columns are added by this preprocessing script:
* **query**: length-limited query for summarization: OAI pre-processes the main text (title + subreddit + post), ensuring it has only 512 tokens; if the main text is too long, then it tries to truncate at the last `
`. If it's too short it pads the main text ([summarize_from_feedback/tasks.py#L98-L165](https://github.com/openai/summarize-from-feedback/blob/700967448d10004279f138666442bf1497d0e705/summarize_from_feedback/tasks.py#L98-L165)). Padding is either space or `[PAD]` token (see Args below).
* **query_token**: tokenized version of `query`
* **reference_response_token**: tokenized version of `reference_response`
* **reference_response_token_len**: length of `reference_response_token`
* **query_reference_response**: concatenation of `query.strip()` and `reference_response`
* **query_reference_response_token**: tokenized version of `query_reference_response`, up to `max_sft_query_response_length` tokens
* **query_reference_response_token_len**: length of `query_reference_response_token`
# Args
```python
{'base_model': 'EleutherAI/pythia-1b-deduped',
'check_length_correctness': True,
'cnndm_params': TaskQueryHParams(length=1919,
format_str='Article:\n{article}\n\nTL;DR:\n',
truncate_field='article',
truncate_text='\n',
padding='empty_space',
pad_token=[209],
pad_side='left',
max_sft_response_length=None,
max_sft_query_response_length=None,
max_rm_response_length=155,
max_rm_query_response_length=2021),
'hf_entity': 'cleanrl',
'push_to_hub': True,
'tldr_params': TaskQueryHParams(length=512,
format_str='SUBREDDIT: r/{subreddit}\n'
'\n'
'TITLE: {title}\n'
'\n'
'POST: {post}\n'
'\n'
'TL;DR:',
truncate_field='post',
truncate_text='\n',
padding='empty_space',
pad_token=[209],
pad_side='left',
max_sft_response_length=53,
max_sft_query_response_length=562,
max_rm_response_length=169,
max_rm_query_response_length=638)}
```
| cleanrl/summarize_from_feedback_tldr_3_filtered_oai_preprocessing_1704578687 | [
"region:us"
] | 2024-01-06T22:05:57+00:00 | {"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "subreddit", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "post", "dtype": "string"}, {"name": "summary", "dtype": "string"}, {"name": "query_token", "sequence": "int64"}, {"name": "query", "dtype": "string"}, {"name": "reference_response", "dtype": "string"}, {"name": "reference_response_token", "sequence": "int64"}, {"name": "reference_response_token_len", "dtype": "int64"}, {"name": "query_reference_response", "dtype": "string"}, {"name": "query_reference_response_token", "sequence": "int64"}, {"name": "query_reference_response_token_len", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1603241577, "num_examples": 116722}, {"name": "validation", "num_bytes": 88580499, "num_examples": 6447}, {"name": "test", "num_bytes": 90079738, "num_examples": 6553}], "download_size": 552249594, "dataset_size": 1781901814}} | 2024-01-06T22:06:17+00:00 | [] | [] | TAGS
#region-us
| # TL;DR SFT Dataset for OpenAI's Summarize from Feedback task
The dataset is directly taken from URL
These columns are taken directly from the aforementioned dataset:
* id: unique identifier for the post
* subreddit: subreddit the post was taken from
* title: title of the post
* post: body of the post
* summary: summary of the post
* reference_response: reference response for the post
These columns are added by this preprocessing script:
* query: length-limited query for summarization: OAI pre-processes the main text (title + subreddit + post), ensuring it has only 512 tokens; if the main text is too long, then it tries to truncate at the last '
'. If it's too short it pads the main text (summarize_from_feedback/URL#L98-L165). Padding is either space or '[PAD]' token (see Args below).
* query_token: tokenized version of 'query'
* reference_response_token: tokenized version of 'reference_response'
* reference_response_token_len: length of 'reference_response_token'
* query_reference_response: concatenation of 'URL()' and 'reference_response'
* query_reference_response_token: tokenized version of 'query_reference_response', up to 'max_sft_query_response_length' tokens
* query_reference_response_token_len: length of 'query_reference_response_token'
# Args
| [
"# TL;DR SFT Dataset for OpenAI's Summarize from Feedback task\n\nThe dataset is directly taken from URL\n\nThese columns are taken directly from the aforementioned dataset:\n\n* id: unique identifier for the post\n* subreddit: subreddit the post was taken from\n* title: title of the post\n* post: body of the post\n* summary: summary of the post\n* reference_response: reference response for the post\n\nThese columns are added by this preprocessing script:\n* query: length-limited query for summarization: OAI pre-processes the main text (title + subreddit + post), ensuring it has only 512 tokens; if the main text is too long, then it tries to truncate at the last '\n'. If it's too short it pads the main text (summarize_from_feedback/URL#L98-L165). Padding is either space or '[PAD]' token (see Args below).\n* query_token: tokenized version of 'query'\n* reference_response_token: tokenized version of 'reference_response'\n* reference_response_token_len: length of 'reference_response_token'\n* query_reference_response: concatenation of 'URL()' and 'reference_response'\n* query_reference_response_token: tokenized version of 'query_reference_response', up to 'max_sft_query_response_length' tokens\n* query_reference_response_token_len: length of 'query_reference_response_token'",
"# Args"
] | [
"TAGS\n#region-us \n",
"# TL;DR SFT Dataset for OpenAI's Summarize from Feedback task\n\nThe dataset is directly taken from URL\n\nThese columns are taken directly from the aforementioned dataset:\n\n* id: unique identifier for the post\n* subreddit: subreddit the post was taken from\n* title: title of the post\n* post: body of the post\n* summary: summary of the post\n* reference_response: reference response for the post\n\nThese columns are added by this preprocessing script:\n* query: length-limited query for summarization: OAI pre-processes the main text (title + subreddit + post), ensuring it has only 512 tokens; if the main text is too long, then it tries to truncate at the last '\n'. If it's too short it pads the main text (summarize_from_feedback/URL#L98-L165). Padding is either space or '[PAD]' token (see Args below).\n* query_token: tokenized version of 'query'\n* reference_response_token: tokenized version of 'reference_response'\n* reference_response_token_len: length of 'reference_response_token'\n* query_reference_response: concatenation of 'URL()' and 'reference_response'\n* query_reference_response_token: tokenized version of 'query_reference_response', up to 'max_sft_query_response_length' tokens\n* query_reference_response_token_len: length of 'query_reference_response_token'",
"# Args"
] | [
6,
384,
3
] | [
"passage: TAGS\n#region-us \n# TL;DR SFT Dataset for OpenAI's Summarize from Feedback task\n\nThe dataset is directly taken from URL\n\nThese columns are taken directly from the aforementioned dataset:\n\n* id: unique identifier for the post\n* subreddit: subreddit the post was taken from\n* title: title of the post\n* post: body of the post\n* summary: summary of the post\n* reference_response: reference response for the post\n\nThese columns are added by this preprocessing script:\n* query: length-limited query for summarization: OAI pre-processes the main text (title + subreddit + post), ensuring it has only 512 tokens; if the main text is too long, then it tries to truncate at the last '\n'. If it's too short it pads the main text (summarize_from_feedback/URL#L98-L165). Padding is either space or '[PAD]' token (see Args below).\n* query_token: tokenized version of 'query'\n* reference_response_token: tokenized version of 'reference_response'\n* reference_response_token_len: length of 'reference_response_token'\n* query_reference_response: concatenation of 'URL()' and 'reference_response'\n* query_reference_response_token: tokenized version of 'query_reference_response', up to 'max_sft_query_response_length' tokens\n* query_reference_response_token_len: length of 'query_reference_response_token'# Args"
] |
bc280f5969fbc6316a3ccae14024235790f9650f | # Dataset Card for "summarize_from_feedback_oai_preprocessing_1704578687"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | cleanrl/summarize_from_feedback_oai_preprocessing_1704578687 | [
"region:us"
] | 2024-01-06T22:07:35+00:00 | {"dataset_info": {"features": [{"name": "info", "struct": [{"name": "id", "dtype": "string"}, {"name": "post", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "subreddit", "dtype": "string"}, {"name": "site", "dtype": "string"}, {"name": "article", "dtype": "string"}]}, {"name": "summaries", "list": [{"name": "text", "dtype": "string"}, {"name": "policy", "dtype": "string"}, {"name": "note", "dtype": "string"}]}, {"name": "choice", "dtype": "int32"}, {"name": "worker", "dtype": "string"}, {"name": "batch", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "extra", "struct": [{"name": "confidence", "dtype": "int32"}]}, {"name": "query_token", "sequence": "int64"}, {"name": "query", "dtype": "string"}, {"name": "response0", "dtype": "string"}, {"name": "response0_token", "sequence": "int64"}, {"name": "response0_token_len", "dtype": "int64"}, {"name": "response1", "dtype": "string"}, {"name": "response1_token", "sequence": "int64"}, {"name": "response1_token_len", "dtype": "int64"}, {"name": "response0_policy", "dtype": "string"}, {"name": "response1_policy", "dtype": "string"}, {"name": "policies", "dtype": "string"}, {"name": "query_response0", "dtype": "string"}, {"name": "query_response0_token", "sequence": "int64"}, {"name": "query_response0_token_len", "dtype": "int64"}, {"name": "query_response1", "dtype": "string"}, {"name": "query_response1_token", "sequence": "int64"}, {"name": "query_response1_token_len", "dtype": "int64"}, {"name": "query_token_len", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 2275193635, "num_examples": 92858}, {"name": "validation", "num_bytes": 2060841903, "num_examples": 83802}, {"name": "validation_cnndm", "num_bytes": 153419887, "num_examples": 2284}], "download_size": 277994823, "dataset_size": 4489455425}} | 2024-01-06T22:08:10+00:00 | [] | [] | TAGS
#region-us
| # Dataset Card for "summarize_from_feedback_oai_preprocessing_1704578687"
More Information needed | [
"# Dataset Card for \"summarize_from_feedback_oai_preprocessing_1704578687\"\n\nMore Information needed"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for \"summarize_from_feedback_oai_preprocessing_1704578687\"\n\nMore Information needed"
] | [
6,
30
] | [
"passage: TAGS\n#region-us \n# Dataset Card for \"summarize_from_feedback_oai_preprocessing_1704578687\"\n\nMore Information needed"
] |
4977604124fa1906c75c12381a66911596a9f8a5 |
# Dataset Card for Evaluation run of jilp00/OpenHermes-Symbolic-Mistral-7B
<!-- Provide a quick summary of the dataset. -->
Dataset automatically created during the evaluation run of model [jilp00/OpenHermes-Symbolic-Mistral-7B](https://huggingface.co/jilp00/OpenHermes-Symbolic-Mistral-7B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).
To load the details from a run, you can for instance do the following:
```python
from datasets import load_dataset
data = load_dataset("open-llm-leaderboard/details_jilp00__OpenHermes-Symbolic-Mistral-7B",
"harness_winogrande_5",
split="train")
```
## Latest results
These are the [latest results from run 2024-01-08T02:06:58.494676](https://huggingface.co/datasets/open-llm-leaderboard/details_jilp00__OpenHermes-Symbolic-Mistral-7B/blob/main/results_2024-01-08T02-06-58.494676.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
```python
{
"all": {
"acc": 0.6047117383672899,
"acc_stderr": 0.03239674405428559,
"acc_norm": 0.6186896145771656,
"acc_norm_stderr": 0.03319458836849609,
"mc1": 0.21909424724602203,
"mc1_stderr": 0.014480038578757473,
"mc2": 0.4535233817405157,
"mc2_stderr": 0.016372852954289533
},
"harness|arc:challenge|25": {
"acc": 0.5017064846416383,
"acc_stderr": 0.014611305705056987,
"acc_norm": 0.5486348122866894,
"acc_norm_stderr": 0.014542104569955272
},
"harness|hellaswag|10": {
"acc": 0.47520414260107546,
"acc_stderr": 0.004983641854351149,
"acc_norm": 0.7254530969926309,
"acc_norm_stderr": 0.004453735900947838
},
"harness|hendrycksTest-abstract_algebra|5": {
"acc": 0.32,
"acc_stderr": 0.04688261722621503,
"acc_norm": 0.32,
"acc_norm_stderr": 0.04688261722621503
},
"harness|hendrycksTest-anatomy|5": {
"acc": 0.5333333333333333,
"acc_stderr": 0.043097329010363554,
"acc_norm": 0.5333333333333333,
"acc_norm_stderr": 0.043097329010363554
},
"harness|hendrycksTest-astronomy|5": {
"acc": 0.6776315789473685,
"acc_stderr": 0.03803510248351585,
"acc_norm": 0.6776315789473685,
"acc_norm_stderr": 0.03803510248351585
},
"harness|hendrycksTest-business_ethics|5": {
"acc": 0.54,
"acc_stderr": 0.05009082659620332,
"acc_norm": 0.54,
"acc_norm_stderr": 0.05009082659620332
},
"harness|hendrycksTest-clinical_knowledge|5": {
"acc": 0.6867924528301886,
"acc_stderr": 0.028544793319055326,
"acc_norm": 0.6867924528301886,
"acc_norm_stderr": 0.028544793319055326
},
"harness|hendrycksTest-college_biology|5": {
"acc": 0.7222222222222222,
"acc_stderr": 0.037455547914624555,
"acc_norm": 0.7222222222222222,
"acc_norm_stderr": 0.037455547914624555
},
"harness|hendrycksTest-college_chemistry|5": {
"acc": 0.37,
"acc_stderr": 0.04852365870939099,
"acc_norm": 0.37,
"acc_norm_stderr": 0.04852365870939099
},
"harness|hendrycksTest-college_computer_science|5": {
"acc": 0.43,
"acc_stderr": 0.04975698519562428,
"acc_norm": 0.43,
"acc_norm_stderr": 0.04975698519562428
},
"harness|hendrycksTest-college_mathematics|5": {
"acc": 0.35,
"acc_stderr": 0.04793724854411019,
"acc_norm": 0.35,
"acc_norm_stderr": 0.04793724854411019
},
"harness|hendrycksTest-college_medicine|5": {
"acc": 0.630057803468208,
"acc_stderr": 0.0368122963339432,
"acc_norm": 0.630057803468208,
"acc_norm_stderr": 0.0368122963339432
},
"harness|hendrycksTest-college_physics|5": {
"acc": 0.4019607843137255,
"acc_stderr": 0.048786087144669955,
"acc_norm": 0.4019607843137255,
"acc_norm_stderr": 0.048786087144669955
},
"harness|hendrycksTest-computer_security|5": {
"acc": 0.78,
"acc_stderr": 0.04163331998932263,
"acc_norm": 0.78,
"acc_norm_stderr": 0.04163331998932263
},
"harness|hendrycksTest-conceptual_physics|5": {
"acc": 0.5319148936170213,
"acc_stderr": 0.03261936918467382,
"acc_norm": 0.5319148936170213,
"acc_norm_stderr": 0.03261936918467382
},
"harness|hendrycksTest-econometrics|5": {
"acc": 0.4649122807017544,
"acc_stderr": 0.04692008381368909,
"acc_norm": 0.4649122807017544,
"acc_norm_stderr": 0.04692008381368909
},
"harness|hendrycksTest-electrical_engineering|5": {
"acc": 0.5586206896551724,
"acc_stderr": 0.04137931034482758,
"acc_norm": 0.5586206896551724,
"acc_norm_stderr": 0.04137931034482758
},
"harness|hendrycksTest-elementary_mathematics|5": {
"acc": 0.42592592592592593,
"acc_stderr": 0.025467149045469553,
"acc_norm": 0.42592592592592593,
"acc_norm_stderr": 0.025467149045469553
},
"harness|hendrycksTest-formal_logic|5": {
"acc": 0.40476190476190477,
"acc_stderr": 0.04390259265377562,
"acc_norm": 0.40476190476190477,
"acc_norm_stderr": 0.04390259265377562
},
"harness|hendrycksTest-global_facts|5": {
"acc": 0.33,
"acc_stderr": 0.04725815626252605,
"acc_norm": 0.33,
"acc_norm_stderr": 0.04725815626252605
},
"harness|hendrycksTest-high_school_biology|5": {
"acc": 0.7709677419354839,
"acc_stderr": 0.02390491431178265,
"acc_norm": 0.7709677419354839,
"acc_norm_stderr": 0.02390491431178265
},
"harness|hendrycksTest-high_school_chemistry|5": {
"acc": 0.4876847290640394,
"acc_stderr": 0.035169204442208966,
"acc_norm": 0.4876847290640394,
"acc_norm_stderr": 0.035169204442208966
},
"harness|hendrycksTest-high_school_computer_science|5": {
"acc": 0.59,
"acc_stderr": 0.049431107042371025,
"acc_norm": 0.59,
"acc_norm_stderr": 0.049431107042371025
},
"harness|hendrycksTest-high_school_european_history|5": {
"acc": 0.7575757575757576,
"acc_stderr": 0.03346409881055953,
"acc_norm": 0.7575757575757576,
"acc_norm_stderr": 0.03346409881055953
},
"harness|hendrycksTest-high_school_geography|5": {
"acc": 0.7929292929292929,
"acc_stderr": 0.02886977846026705,
"acc_norm": 0.7929292929292929,
"acc_norm_stderr": 0.02886977846026705
},
"harness|hendrycksTest-high_school_government_and_politics|5": {
"acc": 0.8963730569948186,
"acc_stderr": 0.02199531196364424,
"acc_norm": 0.8963730569948186,
"acc_norm_stderr": 0.02199531196364424
},
"harness|hendrycksTest-high_school_macroeconomics|5": {
"acc": 0.617948717948718,
"acc_stderr": 0.024635549163908234,
"acc_norm": 0.617948717948718,
"acc_norm_stderr": 0.024635549163908234
},
"harness|hendrycksTest-high_school_mathematics|5": {
"acc": 0.29259259259259257,
"acc_stderr": 0.027738969632176088,
"acc_norm": 0.29259259259259257,
"acc_norm_stderr": 0.027738969632176088
},
"harness|hendrycksTest-high_school_microeconomics|5": {
"acc": 0.6680672268907563,
"acc_stderr": 0.03058869701378364,
"acc_norm": 0.6680672268907563,
"acc_norm_stderr": 0.03058869701378364
},
"harness|hendrycksTest-high_school_physics|5": {
"acc": 0.3576158940397351,
"acc_stderr": 0.03913453431177258,
"acc_norm": 0.3576158940397351,
"acc_norm_stderr": 0.03913453431177258
},
"harness|hendrycksTest-high_school_psychology|5": {
"acc": 0.8018348623853211,
"acc_stderr": 0.017090573804217902,
"acc_norm": 0.8018348623853211,
"acc_norm_stderr": 0.017090573804217902
},
"harness|hendrycksTest-high_school_statistics|5": {
"acc": 0.4861111111111111,
"acc_stderr": 0.03408655867977748,
"acc_norm": 0.4861111111111111,
"acc_norm_stderr": 0.03408655867977748
},
"harness|hendrycksTest-high_school_us_history|5": {
"acc": 0.803921568627451,
"acc_stderr": 0.027865942286639318,
"acc_norm": 0.803921568627451,
"acc_norm_stderr": 0.027865942286639318
},
"harness|hendrycksTest-high_school_world_history|5": {
"acc": 0.7932489451476793,
"acc_stderr": 0.0263616516683891,
"acc_norm": 0.7932489451476793,
"acc_norm_stderr": 0.0263616516683891
},
"harness|hendrycksTest-human_aging|5": {
"acc": 0.6771300448430493,
"acc_stderr": 0.03138147637575499,
"acc_norm": 0.6771300448430493,
"acc_norm_stderr": 0.03138147637575499
},
"harness|hendrycksTest-human_sexuality|5": {
"acc": 0.7633587786259542,
"acc_stderr": 0.03727673575596914,
"acc_norm": 0.7633587786259542,
"acc_norm_stderr": 0.03727673575596914
},
"harness|hendrycksTest-international_law|5": {
"acc": 0.8016528925619835,
"acc_stderr": 0.03640118271990946,
"acc_norm": 0.8016528925619835,
"acc_norm_stderr": 0.03640118271990946
},
"harness|hendrycksTest-jurisprudence|5": {
"acc": 0.7222222222222222,
"acc_stderr": 0.04330043749650742,
"acc_norm": 0.7222222222222222,
"acc_norm_stderr": 0.04330043749650742
},
"harness|hendrycksTest-logical_fallacies|5": {
"acc": 0.7730061349693251,
"acc_stderr": 0.03291099578615769,
"acc_norm": 0.7730061349693251,
"acc_norm_stderr": 0.03291099578615769
},
"harness|hendrycksTest-machine_learning|5": {
"acc": 0.5267857142857143,
"acc_stderr": 0.047389751192741546,
"acc_norm": 0.5267857142857143,
"acc_norm_stderr": 0.047389751192741546
},
"harness|hendrycksTest-management|5": {
"acc": 0.8155339805825242,
"acc_stderr": 0.03840423627288276,
"acc_norm": 0.8155339805825242,
"acc_norm_stderr": 0.03840423627288276
},
"harness|hendrycksTest-marketing|5": {
"acc": 0.8632478632478633,
"acc_stderr": 0.02250903393707781,
"acc_norm": 0.8632478632478633,
"acc_norm_stderr": 0.02250903393707781
},
"harness|hendrycksTest-medical_genetics|5": {
"acc": 0.66,
"acc_stderr": 0.04760952285695238,
"acc_norm": 0.66,
"acc_norm_stderr": 0.04760952285695238
},
"harness|hendrycksTest-miscellaneous|5": {
"acc": 0.8160919540229885,
"acc_stderr": 0.013853724170922526,
"acc_norm": 0.8160919540229885,
"acc_norm_stderr": 0.013853724170922526
},
"harness|hendrycksTest-moral_disputes|5": {
"acc": 0.7109826589595376,
"acc_stderr": 0.02440517393578323,
"acc_norm": 0.7109826589595376,
"acc_norm_stderr": 0.02440517393578323
},
"harness|hendrycksTest-moral_scenarios|5": {
"acc": 0.21675977653631284,
"acc_stderr": 0.013780598486443332,
"acc_norm": 0.21675977653631284,
"acc_norm_stderr": 0.013780598486443332
},
"harness|hendrycksTest-nutrition|5": {
"acc": 0.6928104575163399,
"acc_stderr": 0.026415601914388995,
"acc_norm": 0.6928104575163399,
"acc_norm_stderr": 0.026415601914388995
},
"harness|hendrycksTest-philosophy|5": {
"acc": 0.6784565916398714,
"acc_stderr": 0.026527724079528872,
"acc_norm": 0.6784565916398714,
"acc_norm_stderr": 0.026527724079528872
},
"harness|hendrycksTest-prehistory|5": {
"acc": 0.7037037037037037,
"acc_stderr": 0.02540719779889016,
"acc_norm": 0.7037037037037037,
"acc_norm_stderr": 0.02540719779889016
},
"harness|hendrycksTest-professional_accounting|5": {
"acc": 0.425531914893617,
"acc_stderr": 0.02949482760014437,
"acc_norm": 0.425531914893617,
"acc_norm_stderr": 0.02949482760014437
},
"harness|hendrycksTest-professional_law|5": {
"acc": 0.4654498044328553,
"acc_stderr": 0.012739711554045706,
"acc_norm": 0.4654498044328553,
"acc_norm_stderr": 0.012739711554045706
},
"harness|hendrycksTest-professional_medicine|5": {
"acc": 0.6139705882352942,
"acc_stderr": 0.029573269134411124,
"acc_norm": 0.6139705882352942,
"acc_norm_stderr": 0.029573269134411124
},
"harness|hendrycksTest-professional_psychology|5": {
"acc": 0.6454248366013072,
"acc_stderr": 0.019353360547553704,
"acc_norm": 0.6454248366013072,
"acc_norm_stderr": 0.019353360547553704
},
"harness|hendrycksTest-public_relations|5": {
"acc": 0.6454545454545455,
"acc_stderr": 0.045820048415054174,
"acc_norm": 0.6454545454545455,
"acc_norm_stderr": 0.045820048415054174
},
"harness|hendrycksTest-security_studies|5": {
"acc": 0.7142857142857143,
"acc_stderr": 0.028920583220675606,
"acc_norm": 0.7142857142857143,
"acc_norm_stderr": 0.028920583220675606
},
"harness|hendrycksTest-sociology|5": {
"acc": 0.8407960199004975,
"acc_stderr": 0.025870646766169136,
"acc_norm": 0.8407960199004975,
"acc_norm_stderr": 0.025870646766169136
},
"harness|hendrycksTest-us_foreign_policy|5": {
"acc": 0.85,
"acc_stderr": 0.035887028128263734,
"acc_norm": 0.85,
"acc_norm_stderr": 0.035887028128263734
},
"harness|hendrycksTest-virology|5": {
"acc": 0.5180722891566265,
"acc_stderr": 0.03889951252827216,
"acc_norm": 0.5180722891566265,
"acc_norm_stderr": 0.03889951252827216
},
"harness|hendrycksTest-world_religions|5": {
"acc": 0.8128654970760234,
"acc_stderr": 0.029913127232368036,
"acc_norm": 0.8128654970760234,
"acc_norm_stderr": 0.029913127232368036
},
"harness|truthfulqa:mc|0": {
"mc1": 0.21909424724602203,
"mc1_stderr": 0.014480038578757473,
"mc2": 0.4535233817405157,
"mc2_stderr": 0.016372852954289533
},
"harness|winogrande|5": {
"acc": 0.6621941594317285,
"acc_stderr": 0.013292583502910887
},
"harness|gsm8k|5": {
"acc": 0.019711902956785442,
"acc_stderr": 0.003828982978735705
}
}
```
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
[More Information Needed] | open-llm-leaderboard/details_jilp00__OpenHermes-Symbolic-Mistral-7B | [
"region:us"
] | 2024-01-06T23:01:29+00:00 | {"pretty_name": "Evaluation run of jilp00/OpenHermes-Symbolic-Mistral-7B", "dataset_summary": "Dataset automatically created during the evaluation run of model [jilp00/OpenHermes-Symbolic-Mistral-7B](https://huggingface.co/jilp00/OpenHermes-Symbolic-Mistral-7B) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_jilp00__OpenHermes-Symbolic-Mistral-7B\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-01-08T02:06:58.494676](https://huggingface.co/datasets/open-llm-leaderboard/details_jilp00__OpenHermes-Symbolic-Mistral-7B/blob/main/results_2024-01-08T02-06-58.494676.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6047117383672899,\n \"acc_stderr\": 0.03239674405428559,\n \"acc_norm\": 0.6186896145771656,\n \"acc_norm_stderr\": 0.03319458836849609,\n \"mc1\": 0.21909424724602203,\n \"mc1_stderr\": 0.014480038578757473,\n \"mc2\": 0.4535233817405157,\n \"mc2_stderr\": 0.016372852954289533\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.5017064846416383,\n \"acc_stderr\": 0.014611305705056987,\n \"acc_norm\": 0.5486348122866894,\n \"acc_norm_stderr\": 0.014542104569955272\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.47520414260107546,\n \"acc_stderr\": 0.004983641854351149,\n \"acc_norm\": 0.7254530969926309,\n \"acc_norm_stderr\": 0.004453735900947838\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.32,\n \"acc_stderr\": 0.04688261722621503,\n \"acc_norm\": 0.32,\n \"acc_norm_stderr\": 0.04688261722621503\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.5333333333333333,\n \"acc_stderr\": 0.043097329010363554,\n \"acc_norm\": 0.5333333333333333,\n \"acc_norm_stderr\": 0.043097329010363554\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.6776315789473685,\n \"acc_stderr\": 0.03803510248351585,\n \"acc_norm\": 0.6776315789473685,\n \"acc_norm_stderr\": 0.03803510248351585\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.54,\n \"acc_stderr\": 0.05009082659620332,\n \"acc_norm\": 0.54,\n \"acc_norm_stderr\": 0.05009082659620332\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.6867924528301886,\n \"acc_stderr\": 0.028544793319055326,\n \"acc_norm\": 0.6867924528301886,\n \"acc_norm_stderr\": 0.028544793319055326\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7222222222222222,\n \"acc_stderr\": 0.037455547914624555,\n \"acc_norm\": 0.7222222222222222,\n \"acc_norm_stderr\": 0.037455547914624555\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.37,\n \"acc_stderr\": 0.04852365870939099,\n \"acc_norm\": 0.37,\n \"acc_norm_stderr\": 0.04852365870939099\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.43,\n \"acc_stderr\": 0.04975698519562428,\n \"acc_norm\": 0.43,\n \"acc_norm_stderr\": 0.04975698519562428\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.35,\n \"acc_stderr\": 0.04793724854411019,\n \"acc_norm\": 0.35,\n \"acc_norm_stderr\": 0.04793724854411019\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.630057803468208,\n \"acc_stderr\": 0.0368122963339432,\n \"acc_norm\": 0.630057803468208,\n \"acc_norm_stderr\": 0.0368122963339432\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.4019607843137255,\n \"acc_stderr\": 0.048786087144669955,\n \"acc_norm\": 0.4019607843137255,\n \"acc_norm_stderr\": 0.048786087144669955\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.78,\n \"acc_stderr\": 0.04163331998932263,\n \"acc_norm\": 0.78,\n \"acc_norm_stderr\": 0.04163331998932263\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5319148936170213,\n \"acc_stderr\": 0.03261936918467382,\n \"acc_norm\": 0.5319148936170213,\n \"acc_norm_stderr\": 0.03261936918467382\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.4649122807017544,\n \"acc_stderr\": 0.04692008381368909,\n \"acc_norm\": 0.4649122807017544,\n \"acc_norm_stderr\": 0.04692008381368909\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5586206896551724,\n \"acc_stderr\": 0.04137931034482758,\n \"acc_norm\": 0.5586206896551724,\n \"acc_norm_stderr\": 0.04137931034482758\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.42592592592592593,\n \"acc_stderr\": 0.025467149045469553,\n \"acc_norm\": 0.42592592592592593,\n \"acc_norm_stderr\": 0.025467149045469553\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.40476190476190477,\n \"acc_stderr\": 0.04390259265377562,\n \"acc_norm\": 0.40476190476190477,\n \"acc_norm_stderr\": 0.04390259265377562\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.33,\n \"acc_stderr\": 0.04725815626252605,\n \"acc_norm\": 0.33,\n \"acc_norm_stderr\": 0.04725815626252605\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7709677419354839,\n \"acc_stderr\": 0.02390491431178265,\n \"acc_norm\": 0.7709677419354839,\n \"acc_norm_stderr\": 0.02390491431178265\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.4876847290640394,\n \"acc_stderr\": 0.035169204442208966,\n \"acc_norm\": 0.4876847290640394,\n \"acc_norm_stderr\": 0.035169204442208966\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.59,\n \"acc_stderr\": 0.049431107042371025,\n \"acc_norm\": 0.59,\n \"acc_norm_stderr\": 0.049431107042371025\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7575757575757576,\n \"acc_stderr\": 0.03346409881055953,\n \"acc_norm\": 0.7575757575757576,\n \"acc_norm_stderr\": 0.03346409881055953\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7929292929292929,\n \"acc_stderr\": 0.02886977846026705,\n \"acc_norm\": 0.7929292929292929,\n \"acc_norm_stderr\": 0.02886977846026705\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8963730569948186,\n \"acc_stderr\": 0.02199531196364424,\n \"acc_norm\": 0.8963730569948186,\n \"acc_norm_stderr\": 0.02199531196364424\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.617948717948718,\n \"acc_stderr\": 0.024635549163908234,\n \"acc_norm\": 0.617948717948718,\n \"acc_norm_stderr\": 0.024635549163908234\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.29259259259259257,\n \"acc_stderr\": 0.027738969632176088,\n \"acc_norm\": 0.29259259259259257,\n \"acc_norm_stderr\": 0.027738969632176088\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6680672268907563,\n \"acc_stderr\": 0.03058869701378364,\n \"acc_norm\": 0.6680672268907563,\n \"acc_norm_stderr\": 0.03058869701378364\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.3576158940397351,\n \"acc_stderr\": 0.03913453431177258,\n \"acc_norm\": 0.3576158940397351,\n \"acc_norm_stderr\": 0.03913453431177258\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8018348623853211,\n \"acc_stderr\": 0.017090573804217902,\n \"acc_norm\": 0.8018348623853211,\n \"acc_norm_stderr\": 0.017090573804217902\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.4861111111111111,\n \"acc_stderr\": 0.03408655867977748,\n \"acc_norm\": 0.4861111111111111,\n \"acc_norm_stderr\": 0.03408655867977748\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.803921568627451,\n \"acc_stderr\": 0.027865942286639318,\n \"acc_norm\": 0.803921568627451,\n \"acc_norm_stderr\": 0.027865942286639318\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.7932489451476793,\n \"acc_stderr\": 0.0263616516683891,\n \"acc_norm\": 0.7932489451476793,\n \"acc_norm_stderr\": 0.0263616516683891\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.6771300448430493,\n \"acc_stderr\": 0.03138147637575499,\n \"acc_norm\": 0.6771300448430493,\n \"acc_norm_stderr\": 0.03138147637575499\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7633587786259542,\n \"acc_stderr\": 0.03727673575596914,\n \"acc_norm\": 0.7633587786259542,\n \"acc_norm_stderr\": 0.03727673575596914\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.8016528925619835,\n \"acc_stderr\": 0.03640118271990946,\n \"acc_norm\": 0.8016528925619835,\n \"acc_norm_stderr\": 0.03640118271990946\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7222222222222222,\n \"acc_stderr\": 0.04330043749650742,\n \"acc_norm\": 0.7222222222222222,\n \"acc_norm_stderr\": 0.04330043749650742\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7730061349693251,\n \"acc_stderr\": 0.03291099578615769,\n \"acc_norm\": 0.7730061349693251,\n \"acc_norm_stderr\": 0.03291099578615769\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.5267857142857143,\n \"acc_stderr\": 0.047389751192741546,\n \"acc_norm\": 0.5267857142857143,\n \"acc_norm_stderr\": 0.047389751192741546\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.8155339805825242,\n \"acc_stderr\": 0.03840423627288276,\n \"acc_norm\": 0.8155339805825242,\n \"acc_norm_stderr\": 0.03840423627288276\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8632478632478633,\n \"acc_stderr\": 0.02250903393707781,\n \"acc_norm\": 0.8632478632478633,\n \"acc_norm_stderr\": 0.02250903393707781\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.66,\n \"acc_stderr\": 0.04760952285695238,\n \"acc_norm\": 0.66,\n \"acc_norm_stderr\": 0.04760952285695238\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.8160919540229885,\n \"acc_stderr\": 0.013853724170922526,\n \"acc_norm\": 0.8160919540229885,\n \"acc_norm_stderr\": 0.013853724170922526\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7109826589595376,\n \"acc_stderr\": 0.02440517393578323,\n \"acc_norm\": 0.7109826589595376,\n \"acc_norm_stderr\": 0.02440517393578323\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.21675977653631284,\n \"acc_stderr\": 0.013780598486443332,\n \"acc_norm\": 0.21675977653631284,\n \"acc_norm_stderr\": 0.013780598486443332\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.6928104575163399,\n \"acc_stderr\": 0.026415601914388995,\n \"acc_norm\": 0.6928104575163399,\n \"acc_norm_stderr\": 0.026415601914388995\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.6784565916398714,\n \"acc_stderr\": 0.026527724079528872,\n \"acc_norm\": 0.6784565916398714,\n \"acc_norm_stderr\": 0.026527724079528872\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.7037037037037037,\n \"acc_stderr\": 0.02540719779889016,\n \"acc_norm\": 0.7037037037037037,\n \"acc_norm_stderr\": 0.02540719779889016\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.425531914893617,\n \"acc_stderr\": 0.02949482760014437,\n \"acc_norm\": 0.425531914893617,\n \"acc_norm_stderr\": 0.02949482760014437\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.4654498044328553,\n \"acc_stderr\": 0.012739711554045706,\n \"acc_norm\": 0.4654498044328553,\n \"acc_norm_stderr\": 0.012739711554045706\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6139705882352942,\n \"acc_stderr\": 0.029573269134411124,\n \"acc_norm\": 0.6139705882352942,\n \"acc_norm_stderr\": 0.029573269134411124\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6454248366013072,\n \"acc_stderr\": 0.019353360547553704,\n \"acc_norm\": 0.6454248366013072,\n \"acc_norm_stderr\": 0.019353360547553704\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6454545454545455,\n \"acc_stderr\": 0.045820048415054174,\n \"acc_norm\": 0.6454545454545455,\n \"acc_norm_stderr\": 0.045820048415054174\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7142857142857143,\n \"acc_stderr\": 0.028920583220675606,\n \"acc_norm\": 0.7142857142857143,\n \"acc_norm_stderr\": 0.028920583220675606\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.8407960199004975,\n \"acc_stderr\": 0.025870646766169136,\n \"acc_norm\": 0.8407960199004975,\n \"acc_norm_stderr\": 0.025870646766169136\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.85,\n \"acc_stderr\": 0.035887028128263734,\n \"acc_norm\": 0.85,\n \"acc_norm_stderr\": 0.035887028128263734\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5180722891566265,\n \"acc_stderr\": 0.03889951252827216,\n \"acc_norm\": 0.5180722891566265,\n \"acc_norm_stderr\": 0.03889951252827216\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8128654970760234,\n \"acc_stderr\": 0.029913127232368036,\n \"acc_norm\": 0.8128654970760234,\n \"acc_norm_stderr\": 0.029913127232368036\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.21909424724602203,\n \"mc1_stderr\": 0.014480038578757473,\n \"mc2\": 0.4535233817405157,\n \"mc2_stderr\": 0.016372852954289533\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.6621941594317285,\n \"acc_stderr\": 0.013292583502910887\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.019711902956785442,\n \"acc_stderr\": 0.003828982978735705\n }\n}\n```", "repo_url": "https://huggingface.co/jilp00/OpenHermes-Symbolic-Mistral-7B", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "[email protected]", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|arc:challenge|25_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|arc:challenge|25_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|gsm8k|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|gsm8k|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hellaswag|10_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hellaswag|10_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-06T22-59-14.313525.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-management|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-virology|5_2024-01-08T02-06-58.494676.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["**/details_harness|winogrande|5_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["**/details_harness|winogrande|5_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-01-08T02-06-58.494676.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_01_06T22_59_14.313525", "path": ["results_2024-01-06T22-59-14.313525.parquet"]}, {"split": "2024_01_08T02_06_58.494676", "path": ["results_2024-01-08T02-06-58.494676.parquet"]}, {"split": "latest", "path": ["results_2024-01-08T02-06-58.494676.parquet"]}]}]} | 2024-01-08T02:09:34+00:00 | [] | [] | TAGS
#region-us
|
# Dataset Card for Evaluation run of jilp00/OpenHermes-Symbolic-Mistral-7B
Dataset automatically created during the evaluation run of model jilp00/OpenHermes-Symbolic-Mistral-7B on the Open LLM Leaderboard.
The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.
The dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results.
An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).
To load the details from a run, you can for instance do the following:
## Latest results
These are the latest results from run 2024-01-08T02:06:58.494676(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval):
## Dataset Details
### Dataset Description
- Curated by:
- Funded by [optional]:
- Shared by [optional]:
- Language(s) (NLP):
- License:
### Dataset Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Out-of-Scope Use
## Dataset Structure
## Dataset Creation
### Curation Rationale
### Source Data
#### Data Collection and Processing
#### Who are the source data producers?
### Annotations [optional]
#### Annotation process
#### Who are the annotators?
#### Personal and Sensitive Information
## Bias, Risks, and Limitations
### Recommendations
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Dataset Card Authors [optional]
## Dataset Card Contact
| [
"# Dataset Card for Evaluation run of jilp00/OpenHermes-Symbolic-Mistral-7B\n\n\n\nDataset automatically created during the evaluation run of model jilp00/OpenHermes-Symbolic-Mistral-7B on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-08T02:06:58.494676(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
"TAGS\n#region-us \n",
"# Dataset Card for Evaluation run of jilp00/OpenHermes-Symbolic-Mistral-7B\n\n\n\nDataset automatically created during the evaluation run of model jilp00/OpenHermes-Symbolic-Mistral-7B on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:",
"## Latest results\n\nThese are the latest results from run 2024-01-08T02:06:58.494676(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):",
"## Dataset Details",
"### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:",
"### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Out-of-Scope Use",
"## Dataset Structure",
"## Dataset Creation",
"### Curation Rationale",
"### Source Data",
"#### Data Collection and Processing",
"#### Who are the source data producers?",
"### Annotations [optional]",
"#### Annotation process",
"#### Who are the annotators?",
"#### Personal and Sensitive Information",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Dataset Card Authors [optional]",
"## Dataset Card Contact"
] | [
6,
193,
67,
4,
40,
29,
3,
4,
9,
6,
5,
7,
4,
7,
10,
9,
5,
9,
8,
10,
46,
8,
7,
10,
5
] | [
"passage: TAGS\n#region-us \n# Dataset Card for Evaluation run of jilp00/OpenHermes-Symbolic-Mistral-7B\n\n\n\nDataset automatically created during the evaluation run of model jilp00/OpenHermes-Symbolic-Mistral-7B on the Open LLM Leaderboard.\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the Open LLM Leaderboard).\n\nTo load the details from a run, you can for instance do the following:## Latest results\n\nThese are the latest results from run 2024-01-08T02:06:58.494676(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):## Dataset Details### Dataset Description\n\n\n\n\n\n- Curated by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Language(s) (NLP): \n- License:### Dataset Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Out-of-Scope Use## Dataset Structure## Dataset Creation### Curation Rationale### Source Data#### Data Collection and Processing#### Who are the source data producers?### Annotations [optional]#### Annotation process#### Who are the annotators?#### Personal and Sensitive Information## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Dataset Card Authors [optional]"
] |
2054c5540a9f5b814df1ae08858c4787f58f60ef |
# Overview of the Financial News Translation Dataset for OpenAI Model Fine-tuning
## Introduction:
This dataset has been curated with the primary objective of fine-tuning varioyus language models to effectively translate financial news content embedded in HTML format. The intention is to enhance the language model's proficiency in accurately and contextually translating financial information for a global audience in a production envionrment.
## Dataset Composition:
The dataset encompasses a diverse and comprehensive collection of financial news articles sourced from Benzinga, covering a wide range of topics such as market trends, economic indicators, company reports, and financial analyses. The articles are presented in HTML format, reflecting the real-world structure of web pages commonly used to disseminate financial information.
## Key Features:
- Multilingual Content: The dataset includes financial news articles in various languages, enabling the model to develop a robust understanding of language nuances specific to the financial domain across diverse linguistic landscapes.
- HTML Structure: To simulate real-world scenarios, the dataset preserves the HTML structure of the financial news articles. This structure includes elements such as headers, paragraphs, lists, and embedded multimedia, ensuring that the model learns to navigate and translate content within the context of web-based presentations.
- Domain-specific Vocabulary: The dataset incorporates a rich set of domain-specific terms and jargon commonly found in financial news. This ensures that the fine-tuned model not only accurately translates general language but also captures the intricacies of financial terminology, promoting precise and contextually relevant translations.
- Varied Content Lengths: Financial news articles often vary in length and complexity. The dataset includes articles of different lengths to expose the model to a wide spectrum of text, enabling it to handle both brief updates and in-depth analyses effectively.
## Use Case and Significance:
The fine-tuned model resulting from this dataset aims to empower applications and services that require the translation of financial news content for a global audience. It has the potential to facilitate timely and accurate dissemination of financial information across language barriers, supporting decision-making processes in the international financial landscape.
| Benzinga/Financial_News_Translation_Spanish_Finetune | [
"task_categories:translation",
"license:mit",
"openai ",
"finetune",
"translation",
"region:us"
] | 2024-01-06T23:11:13+00:00 | {"license": "mit", "task_categories": ["translation"], "tags": ["openai ", "finetune", "translation"]} | 2024-02-06T22:47:16+00:00 | [] | [] | TAGS
#task_categories-translation #license-mit #openai #finetune #translation #region-us
|
# Overview of the Financial News Translation Dataset for OpenAI Model Fine-tuning
## Introduction:
This dataset has been curated with the primary objective of fine-tuning varioyus language models to effectively translate financial news content embedded in HTML format. The intention is to enhance the language model's proficiency in accurately and contextually translating financial information for a global audience in a production envionrment.
## Dataset Composition:
The dataset encompasses a diverse and comprehensive collection of financial news articles sourced from Benzinga, covering a wide range of topics such as market trends, economic indicators, company reports, and financial analyses. The articles are presented in HTML format, reflecting the real-world structure of web pages commonly used to disseminate financial information.
## Key Features:
- Multilingual Content: The dataset includes financial news articles in various languages, enabling the model to develop a robust understanding of language nuances specific to the financial domain across diverse linguistic landscapes.
- HTML Structure: To simulate real-world scenarios, the dataset preserves the HTML structure of the financial news articles. This structure includes elements such as headers, paragraphs, lists, and embedded multimedia, ensuring that the model learns to navigate and translate content within the context of web-based presentations.
- Domain-specific Vocabulary: The dataset incorporates a rich set of domain-specific terms and jargon commonly found in financial news. This ensures that the fine-tuned model not only accurately translates general language but also captures the intricacies of financial terminology, promoting precise and contextually relevant translations.
- Varied Content Lengths: Financial news articles often vary in length and complexity. The dataset includes articles of different lengths to expose the model to a wide spectrum of text, enabling it to handle both brief updates and in-depth analyses effectively.
## Use Case and Significance:
The fine-tuned model resulting from this dataset aims to empower applications and services that require the translation of financial news content for a global audience. It has the potential to facilitate timely and accurate dissemination of financial information across language barriers, supporting decision-making processes in the international financial landscape.
| [
"# Overview of the Financial News Translation Dataset for OpenAI Model Fine-tuning",
"## Introduction:\nThis dataset has been curated with the primary objective of fine-tuning varioyus language models to effectively translate financial news content embedded in HTML format. The intention is to enhance the language model's proficiency in accurately and contextually translating financial information for a global audience in a production envionrment.",
"## Dataset Composition:\nThe dataset encompasses a diverse and comprehensive collection of financial news articles sourced from Benzinga, covering a wide range of topics such as market trends, economic indicators, company reports, and financial analyses. The articles are presented in HTML format, reflecting the real-world structure of web pages commonly used to disseminate financial information.",
"## Key Features:\n\n- Multilingual Content: The dataset includes financial news articles in various languages, enabling the model to develop a robust understanding of language nuances specific to the financial domain across diverse linguistic landscapes.\n\n- HTML Structure: To simulate real-world scenarios, the dataset preserves the HTML structure of the financial news articles. This structure includes elements such as headers, paragraphs, lists, and embedded multimedia, ensuring that the model learns to navigate and translate content within the context of web-based presentations.\n\n- Domain-specific Vocabulary: The dataset incorporates a rich set of domain-specific terms and jargon commonly found in financial news. This ensures that the fine-tuned model not only accurately translates general language but also captures the intricacies of financial terminology, promoting precise and contextually relevant translations.\n\n- Varied Content Lengths: Financial news articles often vary in length and complexity. The dataset includes articles of different lengths to expose the model to a wide spectrum of text, enabling it to handle both brief updates and in-depth analyses effectively.",
"## Use Case and Significance:\nThe fine-tuned model resulting from this dataset aims to empower applications and services that require the translation of financial news content for a global audience. It has the potential to facilitate timely and accurate dissemination of financial information across language barriers, supporting decision-making processes in the international financial landscape."
] | [
"TAGS\n#task_categories-translation #license-mit #openai #finetune #translation #region-us \n",
"# Overview of the Financial News Translation Dataset for OpenAI Model Fine-tuning",
"## Introduction:\nThis dataset has been curated with the primary objective of fine-tuning varioyus language models to effectively translate financial news content embedded in HTML format. The intention is to enhance the language model's proficiency in accurately and contextually translating financial information for a global audience in a production envionrment.",
"## Dataset Composition:\nThe dataset encompasses a diverse and comprehensive collection of financial news articles sourced from Benzinga, covering a wide range of topics such as market trends, economic indicators, company reports, and financial analyses. The articles are presented in HTML format, reflecting the real-world structure of web pages commonly used to disseminate financial information.",
"## Key Features:\n\n- Multilingual Content: The dataset includes financial news articles in various languages, enabling the model to develop a robust understanding of language nuances specific to the financial domain across diverse linguistic landscapes.\n\n- HTML Structure: To simulate real-world scenarios, the dataset preserves the HTML structure of the financial news articles. This structure includes elements such as headers, paragraphs, lists, and embedded multimedia, ensuring that the model learns to navigate and translate content within the context of web-based presentations.\n\n- Domain-specific Vocabulary: The dataset incorporates a rich set of domain-specific terms and jargon commonly found in financial news. This ensures that the fine-tuned model not only accurately translates general language but also captures the intricacies of financial terminology, promoting precise and contextually relevant translations.\n\n- Varied Content Lengths: Financial news articles often vary in length and complexity. The dataset includes articles of different lengths to expose the model to a wide spectrum of text, enabling it to handle both brief updates and in-depth analyses effectively.",
"## Use Case and Significance:\nThe fine-tuned model resulting from this dataset aims to empower applications and services that require the translation of financial news content for a global audience. It has the potential to facilitate timely and accurate dissemination of financial information across language barriers, supporting decision-making processes in the international financial landscape."
] | [
29,
18,
78,
83,
256,
74
] | [
"passage: TAGS\n#task_categories-translation #license-mit #openai #finetune #translation #region-us \n# Overview of the Financial News Translation Dataset for OpenAI Model Fine-tuning## Introduction:\nThis dataset has been curated with the primary objective of fine-tuning varioyus language models to effectively translate financial news content embedded in HTML format. The intention is to enhance the language model's proficiency in accurately and contextually translating financial information for a global audience in a production envionrment.## Dataset Composition:\nThe dataset encompasses a diverse and comprehensive collection of financial news articles sourced from Benzinga, covering a wide range of topics such as market trends, economic indicators, company reports, and financial analyses. The articles are presented in HTML format, reflecting the real-world structure of web pages commonly used to disseminate financial information.## Key Features:\n\n- Multilingual Content: The dataset includes financial news articles in various languages, enabling the model to develop a robust understanding of language nuances specific to the financial domain across diverse linguistic landscapes.\n\n- HTML Structure: To simulate real-world scenarios, the dataset preserves the HTML structure of the financial news articles. This structure includes elements such as headers, paragraphs, lists, and embedded multimedia, ensuring that the model learns to navigate and translate content within the context of web-based presentations.\n\n- Domain-specific Vocabulary: The dataset incorporates a rich set of domain-specific terms and jargon commonly found in financial news. This ensures that the fine-tuned model not only accurately translates general language but also captures the intricacies of financial terminology, promoting precise and contextually relevant translations.\n\n- Varied Content Lengths: Financial news articles often vary in length and complexity. The dataset includes articles of different lengths to expose the model to a wide spectrum of text, enabling it to handle both brief updates and in-depth analyses effectively."
] |
3cf894d5e1709bd095bc7ccf89d74a3d337ab075 | # Celebrity 1000
Top 1000 celebrities. 18,184 images. 256x256. Square cropped to face. Embeddings generated with [tonyassi/celebrity-classifier](https://huggingface.co/tonyassi/celebrity-classifier). | tonyassi/celebrity-1000-embeddings | [
"region:us"
] | 2024-01-07T01:31:33+00:00 | {"dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "Aaron Eckhart", "1": "Aaron Paul", "2": "Aaron Rodgers", "3": "Aaron Taylor-Johnson", "4": "Abbi Jacobson", "5": "Abhishek Bachchan", "6": "Abigail Breslin", "7": "Abigail Spencer", "8": "Adam Brody", "9": "Adam Devine", "10": "Adam Driver", "11": "Adam Lambert", "12": "Adam Levine", "13": "Adam Sandler", "14": "Adam Scott", "15": "Adele", "16": "Adrian Grenier", "17": "Ad\u00e8le Exarchopoulos", "18": "Aidan Gillen", "19": "Aidan Turner", "20": "Aishwarya Rai", "21": "Aja Naomi King", "22": "Alden Ehrenreich", "23": "Aldis Hodge", "24": "Alec Baldwin", "25": "Alex Morgan", "26": "Alex Pettyfer", "27": "Alex Rodriguez", "28": "Alexander Skarsg\u00e5rd", "29": "Alexandra Daddario", "30": "Alfre Woodard", "31": "Alia Shawkat", "32": "Alice Braga", "33": "Alice Eve", "34": "Alicia Keys", "35": "Alicia Vikander", "36": "Alison Brie", "37": "Allison Janney", "38": "Allison Williams", "39": "Alyson Hannigan", "40": "Amanda Peet", "41": "Amanda Seyfried", "42": "Amandla Stenberg", "43": "Amber Heard", "44": "America Ferrera", "45": "Amy Adams", "46": "Amy Poehler", "47": "Amy Schumer", "48": "Ana de Armas", "49": "Andie MacDowell", "50": "Andrew Garfield", "51": "Andrew Lincoln", "52": "Andrew Scott", "53": "Andy Garcia", "54": "Andy Samberg", "55": "Andy Serkis", "56": "Angela Bassett", "57": "Angelina Jolie", "58": "Anna Camp", "59": "Anna Faris", "60": "Anna Kendrick", "61": "Anna Paquin", "62": "AnnaSophia Robb", "63": "Annabelle Wallis", "64": "Anne Hathaway", "65": "Anne Marie", "66": "Anne-Marie", "67": "Ansel Elgort", "68": "Anson Mount", "69": "Anthony Hopkins", "70": "Anthony Joshua", "71": "Anthony Mackie", "72": "Antonio Banderas", "73": "Anya Taylor-Joy", "74": "Ariana Grande", "75": "Armie Hammer", "76": "Ashley Judd", "77": "Ashton Kutcher", "78": "Aubrey Plaza", "79": "Auli'i Cravalho", "80": "Awkwafina", "81": "Barack Obama", "82": "Bella Hadid", "83": "Bella Thorne", "84": "Ben Barnes", "85": "Ben Mendelsohn", "86": "Ben Stiller", "87": "Ben Whishaw", "88": "Benedict Cumberbatch", "89": "Benedict Wong", "90": "Benicio del Toro", "91": "Bill Gates", "92": "Bill Hader", "93": "Bill Murray", "94": "Bill Pullman", "95": "Bill Skarsg\u00e5rd", "96": "Billie Eilish", "97": "Billie Lourd", "98": "Billy Crudup", "99": "Billy Porter", "100": "Blake Lively", "101": "Bob Odenkirk", "102": "Bonnie Wright", "103": "Boyd Holbrook", "104": "Brad Pitt", "105": "Bradley Cooper", "106": "Brendan Fraser", "107": "Brian Cox", "108": "Brie Larson", "109": "Brittany Snow", "110": "Bryan Cranston", "111": "Bryce Dallas Howard", "112": "Busy Philipps", "113": "Caitriona Balfe", "114": "Cameron Diaz", "115": "Camila Cabello", "116": "Camila Mendes", "117": "Cardi B", "118": "Carey Mulligan", "119": "Carla Gugino", "120": "Carrie Underwood", "121": "Casey Affleck", "122": "Cate Blanchett", "123": "Catherine Keener", "124": "Catherine Zeta-Jones", "125": "Celine Dion", "126": "Chace Crawford", "127": "Chadwick Boseman", "128": "Channing Tatum", "129": "Charlie Cox", "130": "Charlie Day", "131": "Charlie Hunnam", "132": "Charlie Plummer", "133": "Charlize Theron", "134": "Chiara Ferragni", "135": "Chiwetel Ejiofor", "136": "Chloe Bennet", "137": "Chloe Grace Moretz", "138": "Chloe Sevigny", "139": "Chlo\u00eb Grace Moretz", "140": "Chlo\u00eb Sevigny", "141": "Chris Cooper", "142": "Chris Evans", "143": "Chris Hemsworth", "144": "Chris Martin", "145": "Chris Messina", "146": "Chris Noth", "147": "Chris O'Dowd", "148": "Chris Pine", "149": "Chris Pratt", "150": "Chris Tucker", "151": "Chrissy Teigen", "152": "Christian Bale", "153": "Christian Slater", "154": "Christina Aguilera", "155": "Christina Applegate", "156": "Christina Hendricks", "157": "Christina Milian", "158": "Christina Ricci", "159": "Christine Baranski", "160": "Christoph Waltz", "161": "Christopher Plummer", "162": "Christopher Walken", "163": "Cillian Murphy", "164": "Claire Foy", "165": "Clive Owen", "166": "Clive Standen", "167": "Cobie Smulders", "168": "Colin Farrell", "169": "Colin Firth", "170": "Colin Hanks", "171": "Connie Britton", "172": "Conor McGregor", "173": "Constance Wu", "174": "Constance Zimmer", "175": "Courteney Cox", "176": "Cristiano Ronaldo", "177": "Daisy Ridley", "178": "Dak Prescott", "179": "Dakota Fanning", "180": "Dakota Johnson", "181": "Damian Lewis", "182": "Dan Stevens", "183": "Danai Gurira", "184": "Dane DeHaan", "185": "Daniel Craig", "186": "Daniel Dae Kim", "187": "Daniel Day-Lewis", "188": "Daniel Gillies", "189": "Daniel Kaluuya", "190": "Daniel Mays", "191": "Daniel Radcliffe", "192": "Danny DeVito", "193": "Darren Criss", "194": "Dave Bautista", "195": "Dave Franco", "196": "Dave Grohl", "197": "Daveed Diggs", "198": "David Attenborough", "199": "David Beckham", "200": "David Duchovny", "201": "David Harbour", "202": "David Oyelowo", "203": "David Schwimmer", "204": "David Tennant", "205": "David Thewlis", "206": "Dax Shepard", "207": "Debra Messing", "208": "Demi Lovato", "209": "Dennis Quaid", "210": "Denzel Washington", "211": "Dermot Mulroney", "212": "Dev Patel", "213": "Diane Keaton", "214": "Diane Kruger", "215": "Diane Lane", "216": "Diego Boneta", "217": "Diego Luna", "218": "Djimon Hounsou", "219": "Dolly Parton", "220": "Domhnall Gleeson", "221": "Dominic Cooper", "222": "Dominic Monaghan", "223": "Dominic West", "224": "Don Cheadle", "225": "Donald Glover", "226": "Donald Sutherland", "227": "Donald Trump", "228": "Dua Lipa", "229": "Dwayne \"The Rock\" Johnson", "230": "Dwayne Johnson", "231": "Dylan O'Brien", "232": "Ed Harris", "233": "Ed Helms", "234": "Ed Sheeran", "235": "Eddie Murphy", "236": "Eddie Redmayne", "237": "Edgar Ramirez", "238": "Edward Norton", "239": "Eiza Gonzalez", "240": "Eiza Gonz\u00e1lez", "241": "Elijah Wood", "242": "Elisabeth Moss", "243": "Elisha Cuthbert", "244": "Eliza Coupe", "245": "Elizabeth Banks", "246": "Elizabeth Debicki", "247": "Elizabeth Lail", "248": "Elizabeth McGovern", "249": "Elizabeth Moss", "250": "Elizabeth Olsen", "251": "Elle Fanning", "252": "Ellen DeGeneres", "253": "Ellen Page", "254": "Ellen Pompeo", "255": "Ellie Goulding", "256": "Elon Musk", "257": "Emile Hirsch", "258": "Emilia Clarke", "259": "Emilia Fox", "260": "Emily Beecham", "261": "Emily Blunt", "262": "Emily Browning", "263": "Emily Deschanel", "264": "Emily Hampshire", "265": "Emily Mortimer", "266": "Emily Ratajkowski", "267": "Emily VanCamp", "268": "Emily Watson", "269": "Emma Bunton", "270": "Emma Chamberlain", "271": "Emma Corrin", "272": "Emma Mackey", "273": "Emma Roberts", "274": "Emma Stone", "275": "Emma Thompson", "276": "Emma Watson", "277": "Emmanuelle Chriqui", "278": "Emmy Rossum", "279": "Eoin Macken", "280": "Eric Bana", "281": "Ethan Hawke", "282": "Eva Green", "283": "Eva Longoria", "284": "Eva Mendes", "285": "Evan Peters", "286": "Evan Rachel Wood", "287": "Evangeline Lilly", "288": "Ewan McGregor", "289": "Ezra Miller", "290": "Felicity Huffman", "291": "Felicity Jones", "292": "Finn Wolfhard", "293": "Florence Pugh", "294": "Florence Welch", "295": "Forest Whitaker", "296": "Freddie Highmore", "297": "Freddie Prinze Jr.", "298": "Freema Agyeman", "299": "Freida Pinto", "300": "Freya Allan", "301": "Gabrielle Union", "302": "Gael Garcia Bernal", "303": "Gael Garc\u00eda Bernal", "304": "Gal Gadot", "305": "Garrett Hedlund", "306": "Gary Oldman", "307": "Gemma Arterton", "308": "Gemma Chan", "309": "Gemma Whelan", "310": "George Clooney", "311": "George Lucas", "312": "Gerard Butler", "313": "Giancarlo Esposito", "314": "Giannis Antetokounmpo", "315": "Gigi Hadid", "316": "Gillian Anderson", "317": "Gillian Jacobs", "318": "Gina Carano", "319": "Gina Gershon", "320": "Gina Rodriguez", "321": "Ginnifer Goodwin", "322": "Gisele Bundchen", "323": "Glenn Close", "324": "Grace Kelly", "325": "Greg Kinnear", "326": "Greta Gerwig", "327": "Greta Scacchi", "328": "Greta Thunberg", "329": "Gugu Mbatha-Raw", "330": "Guy Ritchie", "331": "Gwen Stefani", "332": "Gwendoline Christie", "333": "Gwyneth Paltrow", "334": "Hafthor Bjornsson", "335": "Hailee Steinfeld", "336": "Hailey Bieber", "337": "Haley Joel Osment", "338": "Halle Berry", "339": "Hannah Simone", "340": "Harrison Ford", "341": "Harry Styles", "342": "Harvey Weinstein", "343": "Hayden Panettiere", "344": "Hayley Atwell", "345": "Helen Hunt", "346": "Helen Mirren", "347": "Helena Bonham Carter", "348": "Henry Cavill", "349": "Henry Golding", "350": "Hilary Swank", "351": "Himesh Patel", "352": "Hozier", "353": "Hugh Bonneville", "354": "Hugh Dancy", "355": "Hugh Grant", "356": "Hugh Jackman", "357": "Hugh Laurie", "358": "Ian Somerhalder", "359": "Idris Elba", "360": "Imelda Staunton", "361": "Imogen Poots", "362": "Ioan Gruffudd", "363": "Isabella Rossellini", "364": "Isabelle Huppert", "365": "Isla Fisher", "366": "Issa Rae", "367": "Iwan Rheon", "368": "J.K. Rowling", "369": "J.K. Simmons", "370": "Jack Black", "371": "Jack Reynor", "372": "Jack Whitehall", "373": "Jackie Chan", "374": "Jada Pinkett Smith", "375": "Jaden Smith", "376": "Jaimie Alexander", "377": "Jake Gyllenhaal", "378": "Jake Johnson", "379": "Jake T. Austin", "380": "James Cameron", "381": "James Corden", "382": "James Franco", "383": "James Marsden", "384": "James McAvoy", "385": "James Norton", "386": "Jamie Bell", "387": "Jamie Chung", "388": "Jamie Dornan", "389": "Jamie Foxx", "390": "Jamie Lee Curtis", "391": "Jamie Oliver", "392": "Jane Fonda", "393": "Jane Krakowski", "394": "Jane Levy", "395": "Jane Lynch", "396": "Jane Seymour", "397": "Janelle Mon\u00e1e", "398": "January Jones", "399": "Jared Leto", "400": "Jason Bateman", "401": "Jason Clarke", "402": "Jason Derulo", "403": "Jason Isaacs", "404": "Jason Momoa", "405": "Jason Mraz", "406": "Jason Schwartzman", "407": "Jason Segel", "408": "Jason Statham", "409": "Jason Sudeikis", "410": "Javier Bardem", "411": "Jay Baruchel", "412": "Jay-Z", "413": "Jeff Bezos", "414": "Jeff Bridges", "415": "Jeff Daniels", "416": "Jeff Goldblum", "417": "Jeffrey Dean Morgan", "418": "Jeffrey Donovan", "419": "Jeffrey Wright", "420": "Jemima Kirke", "421": "Jenna Coleman", "422": "Jenna Fischer", "423": "Jenna Ortega", "424": "Jennifer Aniston", "425": "Jennifer Connelly", "426": "Jennifer Coolidge", "427": "Jennifer Esposito", "428": "Jennifer Garner", "429": "Jennifer Hudson", "430": "Jennifer Lawrence", "431": "Jennifer Lopez", "432": "Jennifer Love Hewitt", "433": "Jenny Slate", "434": "Jeremy Irons", "435": "Jeremy Renner", "436": "Jeremy Strong", "437": "Jerry Seinfeld", "438": "Jesse Eisenberg", "439": "Jesse Metcalfe", "440": "Jesse Plemons", "441": "Jesse Tyler Ferguson", "442": "Jesse Williams", "443": "Jessica Alba", "444": "Jessica Biel", "445": "Jessica Chastain", "446": "Jessica Lange", "447": "Jessie Buckley", "448": "Jim Carrey", "449": "Jim Parsons", "450": "Joan Collins", "451": "Joan Cusack", "452": "Joanne Froggatt", "453": "Joaquin Phoenix", "454": "Jodie Comer", "455": "Jodie Foster", "456": "Joe Jonas", "457": "Joe Keery", "458": "Joel Edgerton", "459": "Joel Kinnaman", "460": "Joel McHale", "461": "John Boyega", "462": "John C. Reilly", "463": "John Cena", "464": "John Cho", "465": "John Cleese", "466": "John Corbett", "467": "John David Washington", "468": "John Goodman", "469": "John Hawkes", "470": "John Krasinski", "471": "John Legend", "472": "John Leguizamo", "473": "John Lithgow", "474": "John Malkovich", "475": "John Mayer", "476": "John Mulaney", "477": "John Oliver", "478": "John Slattery", "479": "John Travolta", "480": "John Turturro", "481": "Johnny Depp", "482": "Johnny Knoxville", "483": "Jon Bernthal", "484": "Jon Favreau", "485": "Jon Hamm", "486": "Jonah Hill", "487": "Jonathan Groff", "488": "Jonathan Majors", "489": "Jonathan Pryce", "490": "Jonathan Rhys Meyers", "491": "Jordan Peele", "492": "Jordana Brewster", "493": "Joseph Fiennes", "494": "Joseph Gordon-Levitt", "495": "Josh Allen", "496": "Josh Brolin", "497": "Josh Gad", "498": "Josh Hartnett", "499": "Josh Hutcherson", "500": "Josh Radnor", "501": "Jude Law", "502": "Judy Dench", "503": "Judy Greer", "504": "Julia Garner", "505": "Julia Louis-Dreyfus", "506": "Julia Roberts", "507": "Julia Stiles", "508": "Julian Casablancas", "509": "Julian McMahon", "510": "Julianna Margulies", "511": "Julianne Hough", "512": "Julianne Moore", "513": "Julianne Nicholson", "514": "Juliette Binoche", "515": "Juliette Lewis", "516": "Juno Temple", "517": "Jurnee Smollett", "518": "Justin Bartha", "519": "Justin Bieber", "520": "Justin Hartley", "521": "Justin Herbert", "522": "Justin Long", "523": "Justin Theroux", "524": "Justin Timberlake", "525": "KJ Apa", "526": "Kaitlyn Dever", "527": "Kaley Cuoco", "528": "Kanye West", "529": "Karl Urban", "530": "Kat Dennings", "531": "Kate Beckinsale", "532": "Kate Bosworth", "533": "Kate Hudson", "534": "Kate Mara", "535": "Kate Middleton", "536": "Kate Upton", "537": "Kate Walsh", "538": "Kate Winslet", "539": "Katee Sackhoff", "540": "Katherine Heigl", "541": "Katherine Langford", "542": "Katherine Waterston", "543": "Kathryn Hahn", "544": "Katie Holmes", "545": "Katie McGrath", "546": "Katy Perry", "547": "Kaya Scodelario", "548": "Keanu Reeves", "549": "Keegan-Michael Key", "550": "Keira Knightley", "551": "Keke Palmer", "552": "Kelly Clarkson", "553": "Kelly Macdonald", "554": "Kelly Marie Tran", "555": "Kelly Reilly", "556": "Kelly Ripa", "557": "Kelvin Harrison Jr.", "558": "Keri Russell", "559": "Kerry Washington", "560": "Kevin Bacon", "561": "Kevin Costner", "562": "Kevin Hart", "563": "Kevin Spacey", "564": "Ki Hong Lee", "565": "Kiefer Sutherland", "566": "Kieran Culkin", "567": "Kiernan Shipka", "568": "Kim Dickens", "569": "Kim Kardashian", "570": "Kirsten Dunst", "571": "Kit Harington", "572": "Kourtney Kardashian", "573": "Kristen Bell", "574": "Kristen Stewart", "575": "Kristen Wiig", "576": "Kristin Davis", "577": "Krysten Ritter", "578": "Kyle Chandler", "579": "Kylie Jenner", "580": "Kylie Minogue", "581": "Lady Gaga", "582": "Lake Bell", "583": "Lakeith Stanfield", "584": "Lamar Jackson", "585": "Lana Del Rey", "586": "Laura Dern", "587": "Laura Harrier", "588": "Laura Linney", "589": "Laura Prepon", "590": "Laurence Fishburne", "591": "Laverne Cox", "592": "LeBron James", "593": "Lea Michele", "594": "Lea Seydoux", "595": "Lee Pace", "596": "Leighton Meester", "597": "Lena Headey", "598": "Leonardo Da Vinci", "599": "Leonardo DiCaprio", "600": "Leslie Mann", "601": "Leslie Odom Jr.", "602": "Lewis Hamilton", "603": "Liam Hemsworth", "604": "Liam Neeson", "605": "Lili Reinhart", "606": "Lily Aldridge", "607": "Lily Allen", "608": "Lily Collins", "609": "Lily James", "610": "Lily Rabe", "611": "Lily Tomlin", "612": "Lin-Manuel Miranda", "613": "Linda Cardellini", "614": "Lionel Messi", "615": "Lisa Bonet", "616": "Lisa Kudrow", "617": "Liv Tyler", "618": "Lizzo", "619": "Logan Lerman", "620": "Lorde", "621": "Lucy Boynton", "622": "Lucy Hale", "623": "Lucy Lawless", "624": "Lucy Liu", "625": "Luke Evans", "626": "Luke Perry", "627": "Luke Wilson", "628": "Lupita Nyong'o", "629": "L\u00e9a Seydoux", "630": "Mackenzie Davis", "631": "Madelaine Petsch", "632": "Mads Mikkelsen", "633": "Mae Whitman", "634": "Maggie Gyllenhaal", "635": "Maggie Q", "636": "Maggie Siff", "637": "Maggie Smith", "638": "Mahershala Ali", "639": "Mahira Khan", "640": "Maisie Richardson-Sellers", "641": "Maisie Williams", "642": "Mandy Moore", "643": "Mandy Patinkin", "644": "Marc Anthony", "645": "Margaret Qualley", "646": "Margot Robbie", "647": "Maria Sharapova", "648": "Marion Cotillard", "649": "Marisa Tomei", "650": "Mariska Hargitay", "651": "Mark Hamill", "652": "Mark Ruffalo", "653": "Mark Strong", "654": "Mark Wahlberg", "655": "Mark Zuckerberg", "656": "Marlon Brando", "657": "Martin Freeman", "658": "Martin Scorsese", "659": "Mary Elizabeth Winstead", "660": "Mary J. Blige", "661": "Mary Steenburgen", "662": "Mary-Louise Parker", "663": "Matt Bomer", "664": "Matt Damon", "665": "Matt LeBlanc", "666": "Matt Smith", "667": "Matthew Fox", "668": "Matthew Goode", "669": "Matthew Macfadyen", "670": "Matthew McConaughey", "671": "Matthew Perry", "672": "Matthew Rhys", "673": "Matthew Stafford", "674": "Max Minghella", "675": "Maya Angelou", "676": "Maya Hawke", "677": "Maya Rudolph", "678": "Megan Fox", "679": "Megan Rapinoe", "680": "Meghan Markle", "681": "Mel Gibson", "682": "Melanie Lynskey", "683": "Melissa Benoist", "684": "Melissa McCarthy", "685": "Melonie Diaz", "686": "Meryl Streep", "687": "Mia Wasikowska", "688": "Michael B. Jordan", "689": "Michael C. Hall", "690": "Michael Caine", "691": "Michael Cera", "692": "Michael Cudlitz", "693": "Michael Douglas", "694": "Michael Ealy", "695": "Michael Fassbender", "696": "Michael Jordan", "697": "Michael Keaton", "698": "Michael Pena", "699": "Michael Pe\u00f1a", "700": "Michael Phelps", "701": "Michael Shannon", "702": "Michael Sheen", "703": "Michael Stuhlbarg", "704": "Michelle Dockery", "705": "Michelle Monaghan", "706": "Michelle Obama", "707": "Michelle Pfeiffer", "708": "Michelle Rodriguez", "709": "Michelle Williams", "710": "Michelle Yeoh", "711": "Michiel Huisman", "712": "Mila Kunis", "713": "Miles Teller", "714": "Milla Jovovich", "715": "Millie Bobby Brown", "716": "Milo Ventimiglia", "717": "Mindy Kaling", "718": "Miranda Cosgrove", "719": "Miranda Kerr", "720": "Mireille Enos", "721": "Molly Ringwald", "722": "Morgan Freeman", "723": "M\u00e9lanie Laurent", "724": "Naomi Campbell", "725": "Naomi Harris", "726": "Naomi Scott", "727": "Naomi Watts", "728": "Naomie Harris", "729": "Nas", "730": "Natalie Dormer", "731": "Natalie Imbruglia", "732": "Natalie Morales", "733": "Natalie Portman", "734": "Nathalie Emmanuel", "735": "Nathalie Portman", "736": "Nathan Fillion", "737": "Naya Rivera", "738": "Neil Patrick Harris", "739": "Neil deGrasse Tyson", "740": "Neve Campbell", "741": "Neymar Jr.", "742": "Nicholas Braun", "743": "Nicholas Hoult", "744": "Nick Jonas", "745": "Nick Kroll", "746": "Nick Offerman", "747": "Nick Robinson", "748": "Nicole Kidman", "749": "Nikolaj Coster-Waldau", "750": "Nina Dobrev", "751": "Noah Centineo", "752": "Noomi Rapace", "753": "Norman Reedus", "754": "Novak Djokovic", "755": "Octavia Spencer", "756": "Odessa Young", "757": "Odette Annable", "758": "Olivia Colman", "759": "Olivia Cooke", "760": "Olivia Holt", "761": "Olivia Munn", "762": "Olivia Wilde", "763": "Oprah Winfrey", "764": "Orlando Bloom", "765": "Oscar Isaac", "766": "Owen Wilson", "767": "Pablo Picasso", "768": "Patrick Dempsey", "769": "Patrick Mahomes", "770": "Patrick Stewart", "771": "Patrick Wilson", "772": "Paul Bettany", "773": "Paul Dano", "774": "Paul Giamatti", "775": "Paul McCartney", "776": "Paul Rudd", "777": "Paul Wesley", "778": "Paula Patton", "779": "Pedro Almod\u00f3var", "780": "Pedro Pascal", "781": "Penelope Cruz", "782": "Pen\u00e9lope Cruz", "783": "Pete Davidson", "784": "Peter Dinklage", "785": "Phoebe Dynevor", "786": "Phoebe Waller-Bridge", "787": "Pierce Brosnan", "788": "Portia de Rossi", "789": "Priyanka Chopra", "790": "Quentin Tarantino", "791": "Rachel Bilson", "792": "Rachel Brosnahan", "793": "Rachel McAdams", "794": "Rachel Weisz", "795": "Rafe Spall", "796": "Rainn Wilson", "797": "Ralph Fiennes", "798": "Rami Malek", "799": "Rashida Jones", "800": "Ray Liotta", "801": "Ray Romano", "802": "Rebecca Ferguson", "803": "Rebecca Hall", "804": "Reese Witherspoon", "805": "Regina Hall", "806": "Regina King", "807": "Renee Zellweger", "808": "Ren\u00e9e Zellweger", "809": "Rhys Ifans", "810": "Ricardo Montalban", "811": "Richard Armitage", "812": "Richard Gere", "813": "Richard Jenkins", "814": "Richard Madden", "815": "Ricky Gervais", "816": "Ricky Martin", "817": "Rihanna", "818": "Riley Keough", "819": "Rita Ora", "820": "River Phoenix", "821": "Riz Ahmed", "822": "Rob Lowe", "823": "Robert Carlyle", "824": "Robert De Niro", "825": "Robert Downey Jr.", "826": "Robert Pattinson", "827": "Robert Sheehan", "828": "Robin Tunney", "829": "Robin Williams", "830": "Roger Federer", "831": "Rooney Mara", "832": "Rosamund Pike", "833": "Rosario Dawson", "834": "Rose Byrne", "835": "Rose Leslie", "836": "Roselyn Sanchez", "837": "Ruby Rose", "838": "Rupert Grint", "839": "Russell Brand", "840": "Russell Crowe", "841": "Russell Wilson", "842": "Ruth Bader Ginsburg", "843": "Ruth Wilson", "844": "Ryan Eggold", "845": "Ryan Gosling", "846": "Ryan Murphy", "847": "Ryan Phillippe", "848": "Ryan Reynolds", "849": "Ryan Seacrest", "850": "Salma Hayek", "851": "Sam Claflin", "852": "Sam Heughan", "853": "Sam Rockwell", "854": "Sam Smith", "855": "Samara Weaving", "856": "Samuel L. Jackson", "857": "Sandra Bullock", "858": "Sandra Oh", "859": "Saoirse Ronan", "860": "Sarah Gadon", "861": "Sarah Hyland", "862": "Sarah Jessica Parker", "863": "Sarah Michelle Gellar", "864": "Sarah Paulson", "865": "Sarah Silverman", "866": "Sarah Wayne Callies", "867": "Sasha Alexander", "868": "Scarlett Johansson", "869": "Scott Speedman", "870": "Sean Bean", "871": "Sebastian Stan", "872": "Selena Gomez", "873": "Selma Blair", "874": "Serena Williams", "875": "Seth MacFarlane", "876": "Seth Meyers", "877": "Seth Rogen", "878": "Shailene Woodley", "879": "Shakira", "880": "Shania Twain", "881": "Sharlto Copley", "882": "Shawn Mendes", "883": "Shia LaBeouf", "884": "Shiri Appleby", "885": "Shohreh Aghdashloo", "886": "Shonda Rhimes", "887": "Sienna Miller", "888": "Sigourney Weaver", "889": "Simon Baker", "890": "Simon Cowell", "891": "Simon Pegg", "892": "Simone Biles", "893": "Sofia Boutella", "894": "Sofia Vergara", "895": "Sophie Turner", "896": "Sophie Wessex", "897": "Stanley Tucci", "898": "Stephen Amell", "899": "Stephen Colbert", "900": "Stephen Curry", "901": "Stephen Dorff", "902": "Sterling K. Brown", "903": "Sterling Knight", "904": "Steve Carell", "905": "Steven Yeun", "906": "Susan Sarandon", "907": "Taika Waititi", "908": "Taraji P. Henson", "909": "Taron Egerton", "910": "Taylor Hill", "911": "Taylor Kitsch", "912": "Taylor Lautner", "913": "Taylor Schilling", "914": "Taylor Swift", "915": "Teresa Palmer", "916": "Terrence Howard", "917": "Tessa Thompson", "918": "Thandie Newton", "919": "The Weeknd", "920": "Theo James", "921": "Thomas Brodie-Sangster", "922": "Thomas Jane", "923": "Tiger Woods", "924": "Tilda Swinton", "925": "Tim Burton", "926": "Tim Cook", "927": "Timothee Chalamet", "928": "Timothy Olyphant", "929": "Timothy Spall", "930": "Timoth\u00e9e Chalamet", "931": "Tina Fey", "932": "Tobey Maguire", "933": "Toby Jones", "934": "Toby Kebbell", "935": "Toby Regbo", "936": "Tom Brady", "937": "Tom Brokaw", "938": "Tom Cavanagh", "939": "Tom Cruise", "940": "Tom Ellis", "941": "Tom Felton", "942": "Tom Hanks", "943": "Tom Hardy", "944": "Tom Hiddleston", "945": "Tom Holland", "946": "Tom Hollander", "947": "Tom Hopper", "948": "Tom Selleck", "949": "Toni Collette", "950": "Tony Hale", "951": "Topher Grace", "952": "Tracee Ellis Ross", "953": "Tyra Banks", "954": "Tyrese Gibson", "955": "Uma Thurman", "956": "Usain Bolt", "957": "Uzo Aduba", "958": "Vanessa Hudgens", "959": "Vanessa Kirby", "960": "Vera Farmiga", "961": "Victoria Pedretti", "962": "Viggo Mortensen", "963": "Vin Diesel", "964": "Vince Vaughn", "965": "Vincent Cassel", "966": "Vincent D'Onofrio", "967": "Vincent Kartheiser", "968": "Viola Davis", "969": "Walton Goggins", "970": "Wes Anderson", "971": "Wes Bentley", "972": "Whoopi Goldberg", "973": "Will Ferrell", "974": "Will Poulter", "975": "Willem Dafoe", "976": "William Jackson Harper", "977": "William Shatner", "978": "Winona Ryder", "979": "Woody Harrelson", "980": "Yara Shahidi", "981": "Yvonne Strahovski", "982": "Zac Efron", "983": "Zach Braff", "984": "Zach Galifianakis", "985": "Zachary Levi", "986": "Zachary Quinto", "987": "Zayn Malik", "988": "Zazie Beetz", "989": "Zendaya", "990": "Zoe Kazan", "991": "Zoe Kravitz", "992": "Zoe Saldana", "993": "Zoey Deutch", "994": "Zooey Deschanel", "995": "Zo\u00eb Kravitz", "996": "Zo\u00eb Saldana"}}}}, {"name": "embeddings", "sequence": "float64"}], "splits": [{"name": "train", "num_bytes": 303785226.616, "num_examples": 18184}], "download_size": 305594693, "dataset_size": 303785226.616}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2024-01-29T16:52:49+00:00 | [] | [] | TAGS
#region-us
| # Celebrity 1000
Top 1000 celebrities. 18,184 images. 256x256. Square cropped to face. Embeddings generated with tonyassi/celebrity-classifier. | [
"# Celebrity 1000\nTop 1000 celebrities. 18,184 images. 256x256. Square cropped to face. Embeddings generated with tonyassi/celebrity-classifier."
] | [
"TAGS\n#region-us \n",
"# Celebrity 1000\nTop 1000 celebrities. 18,184 images. 256x256. Square cropped to face. Embeddings generated with tonyassi/celebrity-classifier."
] | [
6,
42
] | [
"passage: TAGS\n#region-us \n# Celebrity 1000\nTop 1000 celebrities. 18,184 images. 256x256. Square cropped to face. Embeddings generated with tonyassi/celebrity-classifier."
] |
7561e33c16c7a47a973f9efa5019a7ba8834080e |
```
link: https://huggingface.co/datasets/OpenAssistant/oasst2
```
Message counts by language:
- en: 64,513
- es: 28,199
- ru: 13,935
- zh: 8,615
- de: 6,145
- fr: 3,880
- pt-BR: 2,699
- th: 1,560
- ca: 1,283
- it: 943
- uk-UA: 845
- ja: 788
- pl: 435
- eo: 295
- eu: 274
- vi: 207
- fi: 138
- hu: 113
- ar: 80
- nl: 72
- da: 44
- tr: 37
- ko: 24
- he: 24
- id: 12
- cs: 12
- bn: 1
- sv: 1 | NickyNicky/oasst2_chatml | [
"language:en",
"language:es",
"language:ru",
"language:zh",
"language:de",
"language:fr",
"language:th",
"language:ca",
"language:it",
"language:ja",
"language:pl",
"language:eo",
"language:eu",
"language:vi",
"language:fi",
"language:hu",
"language:ar",
"language:nl",
"language:da",
"language:tr",
"language:ko",
"language:he",
"language:id",
"language:cs",
"language:bn",
"language:sv",
"region:us"
] | 2024-01-07T01:44:47+00:00 | {"language": ["en", "es", "ru", "zh", "de", "fr", "th", "ca", "it", "ja", "pl", "eo", "eu", "vi", "fi", "hu", "ar", "nl", "da", "tr", "ko", "he", "id", "cs", "bn", "sv"], "dataset_info": {"features": [{"name": "Text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 35636342, "num_examples": 13848}], "download_size": 19635797, "dataset_size": 35636342}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | 2024-01-09T19:13:26+00:00 | [] | [
"en",
"es",
"ru",
"zh",
"de",
"fr",
"th",
"ca",
"it",
"ja",
"pl",
"eo",
"eu",
"vi",
"fi",
"hu",
"ar",
"nl",
"da",
"tr",
"ko",
"he",
"id",
"cs",
"bn",
"sv"
] | TAGS
#language-English #language-Spanish #language-Russian #language-Chinese #language-German #language-French #language-Thai #language-Catalan #language-Italian #language-Japanese #language-Polish #language-Esperanto #language-Basque #language-Vietnamese #language-Finnish #language-Hungarian #language-Arabic #language-Dutch #language-Danish #language-Turkish #language-Korean #language-Hebrew #language-Indonesian #language-Czech #language-Bengali #language-Swedish #region-us
|
Message counts by language:
- en: 64,513
- es: 28,199
- ru: 13,935
- zh: 8,615
- de: 6,145
- fr: 3,880
- pt-BR: 2,699
- th: 1,560
- ca: 1,283
- it: 943
- uk-UA: 845
- ja: 788
- pl: 435
- eo: 295
- eu: 274
- vi: 207
- fi: 138
- hu: 113
- ar: 80
- nl: 72
- da: 44
- tr: 37
- ko: 24
- he: 24
- id: 12
- cs: 12
- bn: 1
- sv: 1 | [] | [
"TAGS\n#language-English #language-Spanish #language-Russian #language-Chinese #language-German #language-French #language-Thai #language-Catalan #language-Italian #language-Japanese #language-Polish #language-Esperanto #language-Basque #language-Vietnamese #language-Finnish #language-Hungarian #language-Arabic #language-Dutch #language-Danish #language-Turkish #language-Korean #language-Hebrew #language-Indonesian #language-Czech #language-Bengali #language-Swedish #region-us \n"
] | [
143
] | [
"passage: TAGS\n#language-English #language-Spanish #language-Russian #language-Chinese #language-German #language-French #language-Thai #language-Catalan #language-Italian #language-Japanese #language-Polish #language-Esperanto #language-Basque #language-Vietnamese #language-Finnish #language-Hungarian #language-Arabic #language-Dutch #language-Danish #language-Turkish #language-Korean #language-Hebrew #language-Indonesian #language-Czech #language-Bengali #language-Swedish #region-us \n"
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.